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Attack Design for Maximum Malware Spread
Through EV Commute and Charge in
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Abstract—The growing number of electric vehicles (EVs) on
the roads led to a wide deployment of public EV charging stations
(EVCSs). Recent reports revealed that both EVs and EVCSs
are targets of cyber-attacks. In this context, a malware attack
on vehicle-to-grid (V2G) communications increases the risk of
malware spread among EVs and public EVCSs. However, the
existing literature lacks practical studies on malware spread in
power-transportation systems. Hence, this paper demonstrates
malicious traffic injection and proposes strategies to identify
target EVCSs that can maximize physical malware spread within
power-transportation systems. We first show the feasibility of
injecting malicious traffic into the front-end V2G communication.
Next, we establish a model that reflects the logical connectivity
among the EVCSs, based on a realistic framework for large-
scale EV commute and charge simulation (EVCCS). The logical
connectivity is then translated into a malware spread probability,
which we use to design an optimal attack strategy that identifies
the locations of target EVCSs that maximize the malware spread.
We compare malware spread due to random, cluster-based, and
optimal attack strategies in both urban (Nashville) and rural
(Cookeville) U.S. cities. Our results reveal that optimal attack
strategies can accelerate malware spread by 10− 33%.

Index Terms—Power-transportation systems, electric vehicle,
electric vehicle charging station, malware attack, cybersecurity.

NOMENCLATURE
Abbreviations

ACC Attacker communication controller
CAN Controller area network
DoS Denial-of-service
EV Electric Vehicle
EVCSs EV charging stations
EVSE Electric vehicle supply equipment
EVCSMS EV charging station management systems
EVCC EV communication controller
EVCCS EV commute and charge simulation
IDS Intrusion detection systems
OSM Open Street Map
SoC State-of-charge
SQL Structured Query Language
SECC Supply equipment communication controller
V2G Vehicle-to-grid
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Parameters and Variables
A Targeted EVCS
C Set of C EVCSs of a city
Ci EVCS i
D Number of days
d Day count
ei,j Edges connecting node i and node j in the graph
f(A) Fitness function
Gc Logical connectivity graph
Ge Empirical connectivity graph
I Set of infected EVCSs
I Number of infected EVCSs
K Zones in a city (census tract)
m Motif
O Set of centroids of zones
o Centroid of each zone
Pv Charging pattern of EV number v
P Collective charging patterns for all EVs
Rij Number of times an EV charges at Ci then Cj

S Set of EVCSs
Ti Count of EV charges at Ci

tpv Binary charging variable
U Number of clusters
V Set of v EVs registered in a city
Z City
z Zone in a city
Λ Average distance among EVCSs in the city
ρij Probability an EV charging at Ci then Cj

I. INTRODUCTION

Recent reports estimate that 125 million electric vehicles
(EVs) will be on the roads by 2030 [2]. The growing trend
of EV adoption is driven by financial and environmental ad-
vantages. Specifically, an EV costs one-fourth of the expenses
of a gas-fueled vehicle while contributing to lowering carbon
dioxide emissions [3], [4]. Overall, there are two methods to
charge EVs. The first is dynamic wireless charging, where
EVs charge on the move via induction coils, which has the
limitations of weak power transfer and high power loss during
induction [3]. The second is static charging, where parked
plug-in EVs are charged from the power grid via a charge
point. EVs can be charged either at home or at public EV
charging stations (EVCSs). Reports have indicated that 35%
of EV owners charge their EVs at home while the majority
of EV owners (65%) rely on public EVCSs [5]. The charging
pattern at the public EVCSs is intertwined with the behavior
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of EV owners, including their arrival and departure times and
the EV’s battery state-of-charge (SoC) levels [6].

EVs have coupled the power and transportation systems as
EV charging via EVCSs is part of the power system while EV
commute is part of the transportation system. Yet, EV charging
at public EVCSs poses serious cybersecurity risks. In 2022,
hackers attacked public EVCSs in Russia [7], England [8],
and a Tesla car in Germany [9]. To initiate and complete EV
charging, vehicle-to-grid (V2G) communications take place,
e.g., via ISO 15118 [10], for session setup, service discovery,
electrical parameters, payment details, authorization, cable
check, and power delivery [11]. As a result, a malware-infected
EV can infect EVCSs or vice versa. Hence, the propagation of
malware can spread across other EVs and EVCSs. A similar
cyber-attack strategy is reported against public charging of
smartphones in 2011, namely, Juice Jacking [12]. Accordingly,
the interaction between EVs and public EVCSs is a common
vector for malware, e.g., ransomware, spread [13].

The vulnerability of EVCSs and EVs to cyber-attacks could
potentially result in transferring them into botnets [14] dissem-
inating malware that causes power outages, traffic congestion,
etc. However, the existing literature lacks practical studies on
physical malware spread in power-transportation systems. The
existing studies focus on assessing threat levels and cyber-
attack propagation via communication networks, rather than
the physical spread of malware through EVs commuting and
charging at public EVCSs. To defend the power-transportation
system against malware attacks, this paper is the first to inves-
tigate the physical spread of malware due to EV mobility and
charging at public EVCSs. The goal is to identify target EVCSs
that could serve as hubs for malware propagation, maximizing
malware spread among EVs and EVCSs. Identifying such
stations would help system operators to defend the EVCSs
against possible attacks and limit malware spread by isolating
the potentially infected EVCS from EV charging, containing
malware propagation in the system.

A. Related Works

EVCSs have Ethernet, serial, and USB ports for main-
tenance of firmware and software updates, which can be
potential intrusion points [15]. Additionally, many EVCSs
operate on Linux systems with vulnerable security credentials
and communicate through the RS232 protocol [16], [17].
Weak access controls in EVCS operating systems allow ad-
ministrative changes without requiring root user access [18].
EVCSs have vulnerabilities at the electric vehicle supply
equipment (EVSE), EV connectors, Internet connections, and
maintenance terminals, enabling malware injection and ma-
nipulating charging setting [19]. Idaho National Laboratory
(INL) revealed security weaknesses in EVSE, such as out-
dated Linux kernels, vulnerable root processes, weakly hashed
passwords, missing secure boot, unsigned firmware, exposed
ports, direct processor control, and insecure coding prac-
tices [20]. Vulnerabilities in EVSE was identified including
an exposed Structured Query Language (SQL) server that
could lead to data exfiltration [21]. During the 2022 Russian-
Ukraine conflict, EV chargers in Moscow were hacked. It
was later revealed that a Russian EV charger provider had

outsourced components to a Ukrainian company, giving the
outsourced firm remote access and control over the charging
functionality enabling remote changes to EVSE settings [22].
In this context, several studies in the literature assessed the
security vulnerabilities in EVCSs [17], [23], [24]. Particularly,
the security assessment of EV charging station management
systems (EVCSMS) revealed vulnerabilities through reverse
engineering and penetration testing, prompting vendors like
Schneider Electric to acknowledge the need for improved
security measures [25]. As a result, different types of intrusion
detection systems (IDSs) have been developed to detect cyber-
attacks in EVCS [26]–[28].

Furthermore, existing research has investigated cybersecu-
rity threats related to in-vehicle communications based on
the controller area network (CAN bus) [29]. Following this,
several IDSs for in-vehicle network have been proposed [28],
[30]. It is also important to highlight that malicious USB
devices can be used to infect EVs [31], which can take
place during mechanic repair or car rental [32]. Researchers
also demonstrated a remote malware injection attack, named
“TBONE” [33] targeting Tesla S, 3, X, and Y models, exploit-
ing Internet connection manager vulnerabilities to load new
Wi-Fi firmware, which controls in-vehicle systems, including
steering and acceleration modes. Additionally, the boot secu-
rity of Nvidia’s system on chip, used in Tesla’s autopilot and
Mercedes-Benz’s infotainment system, was bypassed with a
voltage fault injection attack, enabling the execution of ma-
licious software components [34]. These studies demonstrate
the vulnerability of EVs and EVCSs to cyber-attacks.

The literature explored various EV charging-related cyber-
attacks, including false data injection attacks for overcharging
and denial of charging [35], man-in-the-middle attacks [36],
payment fraud and battery damage [18], eavesdropping, tam-
pering and forgery threats [37], and denial-of-service (DoS)
[38]. The impacts of these cyber-attacks on the power system
are reported in [17] and [39]. According to INL, there is a
concern that EVs could potentially inject viruses into EVCSs
leading to the further spread of malware among other EVs and
EVCSs [40]. Additionally, cyber-attacks during EV charging
such as charge manipulation attacks [41], delayed charging
[42], and coordinated charging-discharging attack [43] are
also studied in literature.While limited works have studied
response strategies against malware attacks on EVCSs [44],
[45], to the best of our knowledge, the physical malware spread
among EVs and EVCSs remains unexplored.

There is a lack of practical studies in the existing literature
on the physical spread of malware within power-transportation
systems. Research has predominantly focused on assessing the
spread of cyber-attacks via communication networks, rather
than investigating how malware can physically spread through
EVs commuting and charging at public EVCSs. Also, the
existing literature does not present a dataset of EV commute
and charge that can be used to study physical malware spread
in public EVCSs. Some relevant studies [44], [45] rely on
randomly generated hop distances and symmetric EV mobility
matrices that do not accurately reflect real-world EV mobility
patterns. Additionally, these studies focus on assessing threat
levels and cyber-attack propagation via communication net-
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works, rather than the physical spread of malware through
EVs at EVCSs. They also do not address the design of attack
strategies or identify the most impactful EVCSs.

B. Challenges

In an EV charging system, malware spread can occur on two
levels [44]: (a) physical level due to the charging of an EV at
different public EVCSs. In this case, an infected EVCS infects
the charging EV, then the infected EV infects other EVCSs,
which further spreads to other EVs, and so on; (b) cyber
level where the malware propagates across the communication
network connecting the EVCSs for energy management. This
paper focuses on the physical spread of malware due to the
mobility of infected EVs among public EVCSs. In this case,
the mobility and charging patterns of EVs among the public
EVCSs represent a key factor to the understanding of the
physical malware spread. Specifically, the mobility and charg-
ing patterns of EVs provide information about the probability
of EVs charging at EVCS X given that they charged in the
previous time slot at EVCS Y, which translates into a logical
connectivity among EVCSs that governs the physical malware
spread. However, relevant EV datasets [46] are useful only in
describing the spatial distribution of the charging load, which
cannot be used to extract the probability of physical malware
spread. Moreover, existing studies that simulate EV mobility
among EVCSs (e.g., based on Markov Chain Monte Carlo) are
either tied to specific geographical locations, which limits their
applicability [47] or are not backed up with real data, which
limits their practicality [44], [48]. Hence, there is a need for a
method to generate a practical dataset that reflects the mobility
and charging patterns of EVs among EVCSs. This dataset then
can be used to find the probability of malware spread. Based
on this study, system operators can identify target EVCSs that
maximize the physical malware spread, thus, isolating such
EVCSs when a malware attack is detected.

C. Contributions

To fill in the research gap, we carried out the following:
• We first employed MiniV2G [31] to illustrate malware

injection attacks on the front-end V2G communication
link, based on the ISO 15118 protocol, between an EVSE
and an EV during the EV’s charging process.

• Next, we studied the malware spread among EVCSs
after the injection attacks. To do this, we proposed
a framework for EV commute and charge simulation
(EVCCS) and created a practical dataset that reflects EV
mobility and charging patterns among public EVCSs. The
EVCCS framework relies on publicly available datasets
and statistics to mimic real-life daily commute and charg-
ing events in any given U.S. city, while considering: (a)
the city population distribution among residential areas,
workplaces, and entertainment regions, (b) the locations
of public EVCSs and the number of registered EVs within
the city, and (c) the average commute time, human daily
motifs, and real-time traffic conditions.

• Based on the dataset from the EVCCS, we developed a
probabilistic graph model to reflect the logical connectiv-
ity among the EVCSs due to EV mobility and charging

events. The graph model describes the probability that a
given EV charges at one EVCS in a given charging event
and then charges at another EVCS in another charging
event. We investigated the logical connectivity among
EVCSs in two case studies representing examples of rural
(Cookeville) and urban (Nashville) cities. Our results
demonstrate that unlike Nashville, Cookeville presents
a fully connected graph. However, Nashville presents a
more dense but partially connected graph.

• Using the logical connectivity graphs and EVCCS, we
compared three malware attack strategies on public
EVCSs in terms of the speed of malware spread. The first
attack strategy is a benchmark that targets public EVCSs
at random. The second attack strategy clusters the EVCSs
and then targets the centroid of each cluster to speed up
the malware spread. The last attack strategy searches for
the subset of EVCSs that maximizes the malware spread
using a heuristic technique (genetic optimization). Our
results demonstrate that the cluster-based and optimal
attack strategies can speed up the malware spread by 20%
and 32%, respectively, in an urban city (Nashville), and
by 10% and 20% in a rural city (Cookeville). Further,
the number of initially targeted EVCSs plays a vital role
in speeding up malware spread. For example, by strate-
gically targeting only 4 EVCSs out of 101 in Nashville,
the speed of malware spread is increased by 33%.

• We proposed an empirical method to create an approx-
imate logical connectivity graph based solely on the
locations of EVCSs and their average separation in the
city. This empirical graph presents a very simple way
from an attacker perspective to identify target EVCSs
without having access to any dataset about EV mobility
and charging patterns among EVCSs in a city. Our results
demonstrate that using the empirical connectivity graph,
the attacker can speed up the malware spread by 20%.

The rest of this paper is organized as follows. To motivate
our study, Section II demonstrates a malware injection at-
tack on front-end V2G communications based on the ISO
15118 protocol. Then, Section III details the proposed EVCCS
framework and derives the logical connectivity graph to infer
the malware spread probability. Section IV describes the
optimal and cluster-based malware attack strategies that aim to
maximize the malware spread in the system and discusses the
benchmark random attack and the empirical logical connec-
tivity graph. Section V presents and discusses the simulation
results. Finally, Section VI concludes this paper.

II. INJECTION ATTACK IN V2G COMMUNICATION

V2G communication enables EVs to exchange power and
information with the EVSE at the EVCS. To demonstrate the
feasibility of injecting malware in V2G communications, we
employ the MiniV2G [31] simulator. MiniV2G is based on
Mininet [49], an open-source communication network simu-
lator, and reference implementation of ISO 15118 standard
(RiseV2G) [50]. Our simulation environment comprises an EV
and a public EVCS. The EVCS consists of a set of EVSE
units that are interconnected via a local area network (LAN),
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all managed by an EVCS charging management system, as
illustrated in Fig. 1. Each EVSE unit is equipped with a phys-
ical outlet to charge an EV. When the EV is connected to the
EVSE to charge, V2G communications take place between the
supply equipment communication controller (SECC) and the
EV communication controller (EVCC), managed by the EVSE
and EV, respectively. In our attack setup, the attacker deploys
an attacker communication controller (ACC) module within
their own EV, transforming it into EVa as illustrated in Fig.
1. ACC incorporates the capabilities of Open vSwitch [51],
Parasite6 [52], and V2Gdecoder [53], wrapping the EVCC
functionalities to regulate V2G communications and inject ma-
licious traffic. Positioned between the SECC and EVCC, the
ACC employs Open vSwitch and Parasite6 to redirect traffic.
Additionally, V2Gdecoder handles EXI payload encoding and
decoding between EVCC and SECC [53]. Specifically, any
V2G communication between EVCC and SECC will first be
redirected to the ACC module where V2Gdecoder can be used
to encode the malware and inject it into the V2G traffic. In
this work, we studied the injection of run-time instances such
as ${Runtime.getRuntime().exec("rm -rf /")},
DoS instances like ${::-${::-${}}}, remote code execu-
tion such as ${jndi:ldap://attacker.com/a}, and
malware instances such as the Fork Bomb (rabbit virus, 60
bytes) and Tinba (Tiny Banker Trojan, 20 KB). For instance,
the Fork Bomb malware would cause a DoS on EVCSs,
disrupting the charging of EVs at all infected EVCSs. With
wide EV adoption, this attack could lead to overvoltage in
the power system and cripple the transportation system due
to the inability of charging the EVs. It should be highlighted
that other forms of malware can be considered given that they
preserve the V2G XML message format, timing, and size. This
includes ransomware similar in execution to the Mirai botnet,
charge manipulation attacks [41], delayed charging attack [42],
and coordinated charging-discharging attack [43].

To demonstrate the feasibility of the malware injection
attacks, we show the following results. First, normal V2G
communication traffic is illustrated in Fig. 2 and Fig. 3 shows
an example of a successful malware injection attack. In the
attack case, the ACC intercepts the regular communication
between the SECC and the EVCC. Then, the ACC modifies
the EXI messages to insert the malicious content and redirects
the malicious traffic toward the targeted EVSE.

With this demonstration of a successful malware injection
attack, the next section presents an EV commute and charge
simulation framework that helps us investigate the malware
spread pattern across the power-transportation system.

III. LARGE-SCALE EV COMMUTE AND CHARGE
FRAMEWORK

This section discusses the process of creating a realistic
database of a U.S. city and simulating the mobility and
charging patterns of EVs within the city. The resulting dataset
from this process will be used to extract the malware spread
probability across the power-transportation system.

The process starts by identifying regions in the city for
residential units, workplaces, shopping malls, restaurants, and

Fig. 1. V2G communication between SECC and EVCC.

Fig. 2. Example of normal V2G traffic.

Fig. 3. An attack during a V2G request message.

entertainment. Then, we classified the amenities according to
their land use and building type. In addition, the locations of
public EVCSs within the city are identified. The aforemen-
tioned amenities are then associated with specific city zones.
The number of registered EVs in the city are then distributed
among the city zones. Using daily human motifs based on
real-life statistics, the commute of EVs is simulated among
the city zones and amenities. The SoC of the EV batteries are
updated according to the commute distance, time, and real-
time traffic conditions. Charging of EVs is carried out at the
nearest public EVCS on a per-need basis. The details of this
EVCCS framework are outlined below.

A. Creating Geographical Database for the City

OpenStreetMap (OSM) [54] is used to identify residential
units, workplaces, shopping malls, and entertainment within
the city. It uses the city’s map to create organized lists of
these places. The OSM’s Overpass application programming
interface (API) is utilized to query the city’s information,
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Fig. 4. Nashville’s map featuring locations of public EVCSs.

passing the results output in a shapefile (.shp) format. OSM
uses its own query language to create these queries. For
instance, to locate all the restaurants within a designated area
defined by latitude and longitude values in a boundary box
(bbox) = (36.10745, −85.48559, 36.26983, −85.52532), the
query is as follows:

(node [”restaurant”] bbox; way [”restaurant”] bbox;
relation [”restaurant”] bbox;); out body;

In this query, the terms “node,” “way,” and “relation” corre-
spond to elements in OSM’s conceptual data model, where
“restaurant” is categorized as an amenity. Upon processing
the query, the Overpass API generates a .shp file containing
the geographical locations of all the restaurants within the
designated area. Similarly, queries for different amenities such
as residential units, shopping centers, hospitals, universities,
schools, and offices are executed to obtain individual .shp file
for each amenity. Additionally, the positions of public EVCSs
within the city are collected in a .CSV file format from the
U.S. Department of Energy’s (DoE) Alternative Fuels Data
Center [55]. Subsequently, this .CSV file is restructured into
a .shp file format in the Quantum Geographic Information
System (QGIS) [56], which is recognized as one of the
most extensively employed applications for working with
geographic data. QGIS combines the generated .shp files to
craft a visual map of the city. Next, the city is divided into
K zones, i.e., Z = [z1, z2, z3, . . . , zK ] based on census tract
numbers in QGIS. Each zone is allocated a distinctive ID and
census tract number. The centroid for each zone is defined as
O = [o1, o2, o3, . . . , oK ]. QGIS is then utilized to visualize
and quantify the presence of various amenities within each
distinct zone. Fig. 4 depicts the zones alongside the locations
of public EVCSs within the city of Nashville, Tennessee.
B. Population Distribution and Number of Registered EVs

Data related to the city’s overall population and the count
of individuals working across different sectors is collected
from the U.S. Census Bureau [57]. The city’s population is
then distributed between residential areas and workplaces, ac-
counting for average commuting durations and the workforce
population in each sector. Information about the typical time
spent commuting to work within the city is sourced from

BestPlaces [58]. For instance, Fig. 5 provides insight into the
average work commute time in Cookeville.

Information about the number of registered EVs in a specific
city can be obtained from Atlas EV Hub [59]. For instance, in
2022, there were a total of 116 registered EVs in Cookeville.
Next, an object is created for each EV, encompassing distinct
attributes such as house ID, driver ID, occupation, workplace,
daily routines, battery SoC level, charging habits, and zone
ID. These attributes of EV defines the person who drives it.
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Fig. 5. Commute duration to work in Cookeville [58].
C. EV Commute and Charge

Modeling EVs as they move between different destinations
is rooted in human daily patterns. Some of the common motifs
derived from statistical data in [60], shown in Fig. 6, depict
a sequence of activities. For example, the motif in Figure
6(c), HWLWSH, is defined as the activity of home (H), work
(W), lunch (L), work (W), shopping (S), and home (H). The
motifs in Figure 6(a)−(e) are for weekdays and the motif in
Figure 6(f) is for weekends. When a motif is chosen for a
specific day, the day’s activities are simulated at 30-minute
intervals, resulting in 48 motif for each EV per day. Moreover,
accurate departure times for work are extracted from [61] and
considered in the simulation framework to ensure a realistic
representation. For instance, Table I provides a summary of
departure times for commuting to work in Putnam County,
Tennessee, a region that includes the city of Cookeville.
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Fig. 6. Illustration of daily human motifs [60].

D. Generation of EV Objects and Simulation

Consider a set of V EVs defined by V = {1, 2, . . . , V },
with V equals the number of registered EVs in the city, and
a list of C EVCSs defined by C = {1, 2, . . . , C} with C
equals the number of public EVCSs in the city. A total of
V EV objects are instantiated with distinct attributes such
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TABLE I. Commute time in Putnam County, TN [61].

Time Population Time Population
of the day departing of the day departing

12 AM - 5 AM 3.83% 8 AM - 8.30 AM 5.48%
5 AM - 5.30 AM 2.29% 8.30 AM - 9 AM 2.74%
5.30 AM - 6 AM 4.58% 9 AM - 10 AM 3.24%
6 AM - 6.30 AM 7.83% 10 AM - 11 AM 1.69%
6.30 AM - 7 AM 9.56% 11 AM - 12 PM 1.12%
7 AM - 7.30 AM 30.09% 12 PM - 4 PM 7.36%
7.30 AM - 8 AM 14.25% 4 PM - 12 AM 5.96%

as human ID, workplace, daily routines, EV’s battery SoC,
charging pattern, and zone ID. Each EV object’s workplace is
assigned based on factors that include the commute distance
to work (e.g., based on Table I and Fig. 5 for Cookeville)
and the number of employees in each sector. As an example
in the City of Cookeville, Tennessee Tech University has
approximately 10, 000 workers and students [62], while the
population of Cookeville is around 35, 000 [63], and there
were 116 registered EVs in Cookeville in 2022 [59]. Con-
sequently, roughly (10, 000/35, 000) × 116 ≈ 33 EVs are
assigned to EV owners affiliated with the Tennessee Tech
University for work or education. The EVCCS framework
creates commuting patterns for all city EVs based on daily
motifs, chosen based on weekdays and weekends, and then
structured into a 48-element sequence. Likewise, each EV’s
motif is also extended to 48 elements signifying activities in
half-hour intervals. WAZE API [64] is used to determine in
real-time the trip duration and commute distance between two
locations while accounting for the traffic conditions. WAZE is
a community-driven GPS-based navigation system that gives
route details, trip time, traffic information, and map data. It
enables us to capture real-time traffic conditions and rerouting.

When an EV’s battery SoC hits a defined lower limit (e.g.,
10%, around 20 minutes of driving), it heads to the closest
EVCS. Similarly, if the SoC is insufficient for the next trip,
the EV also heads to the nearest EVCS. On the contrary, if
the battery SoC is adequate for the next destination, the EV
travels there with the SoC decreased based on the commute’s
length and duration. Notably, the EVCCS models preferences
of EVCS based on factors such as charger availability and
number of EVSE within the EVCS.

Algorithm 1 provides a summary of the EVCCS framework.
The following values were used in our evaluations: the total
number of days 365, total number of motifs 48, the SoC
threshold 10%, and the target charging level of the EV 100%.

E. Generation of Logical Connectivity Graph

Based on EVCCS, the charging pattern Pv of each indi-
vidual EV is stored within its corresponding EV object v.
The collective set of charging patterns for all EVs, denoted
as P = {P1,P2, . . . ,Pv}, is used to calculate the logical
connectivity among public EVCSs. Let Ci and Cj denote two
EVCSs. The interconnection signifies the likelihood that an
EV charging at station Ci will choose station Cj for its next
charging cycle. The following describes the development of
this logical connectivity graph Gc. The total count of instances

Algorithm 1: EVCCS: Electric Vehicle Commute and
Charge Simulation Framework

1 Choose a city and define its geographical boundaries;
2 Utilize a query with amenities over the city in the

Overpass API of OpenStreetMap to obtain shapefiles;
3 Partition the city into K zones, denoted as

[z1, z2, z3, . . . , zK ], and determine centroids
[o1, o2, o3, . . . , oK ] of these zones;

4 Identify the amenities within each zone and count their
occurrences using QGIS;

5 Determine the actual driving distance Λoi,oj and
duration toi,oj between centroids in
[o1, o2, o3, . . . , oK ] using the WAZE API;

6 Let V represent the total number of registered EVs in
the city, and set v = 1;

7 while v ≤ V do
8 Create an EV object (v) with a set of attributes;
9 Assign a job and a workplace to v, taking into

consideration commute time and employee
population in each sector as in [65] and [61];

10 Increment v by 1;
11 end
12 Consider C EVCSs in the city as in [55]; let d

represent a day with d = 1 and v = 1;
13 while d ≤ 365 do
14 while v ≤ V do
15 Assign each user 48 daily motifs based on their

likelihood to occur;
16 Increment v by 1;
17 end
18 Let m denote a motif, starting with m = 1 and

v = 1;
19 while m ≤ 48 do
20 while v ≤ V do
21 if SoC of v is ≤ 10% or insufficient for the

next destination then
22 Charge v at the nearest station and

update its SoC to 100%;
23 Update charging pattern of v with the

corresponding station ID;
24 end
25 else
26 v travels to the intended destination,

decreasing SoC based on commute
distance and duration (obtained from
WAZE API);

27 end
28 Increment v by 1;
29 end
30 Increment m by 1 ;
31 end
32 Increment d by 1;
33 end
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where EVs charge at station Ci can be calculated as

Ti =
V∑

v=1

|Pv|∑
p=1

tpv, (1)

where,

tpv =

{
1, if Ci ∈ Pv ,
0, otherwise.

(2)

The total number of times an EV charges at Ci in one cycle
and subsequently at Cj in the next cycle is determined by

Rij =
V∑

v=1

|Pv|∑
p=1

rpv, (3)

where

rpv =

{
1, if Pv(p) = Cj and Pv(p− 1) = Ci,
0, otherwise.

(4)

Hence, the probability of an EV charging at Ci in one cycle
while choosing Cj for the next cycle is calculated as

ρij = Rij/Ti. (5)

The probabilities ρij are calculated for all the EVCSs within
the city to create a probabilistic charging graph Gc, which
represents the logical connectivity graph. In this work, two
case studies are considered for Cookeville and Nashville. The
resulting connectivity graph for Cookeville is illustrated in
Fig. 7. where nodes represent the ID of the EVCS, and edges
denote the probability that an EV charged at EVCS X in one
charging event will charge at EVCS Y in the next charging
event. For instance, at EVCS 6000, 24% of the total EVs
charged at EVCS 6000 will charge at EVCS 8000 in the
next charging event, while 4% of EVs charged at EVCS 8000
will charge at EVCS 6000. Similarly, 32% of EVs charged at
EVCS 8000 will charge at the same EVCS in the next charging
event. There is a high transition probability from all public
EVCSs to EVCSs 8000 and 7000, justified by Tennessee Tech
University’s proximity to public EVCS 8000 and a nearby
grocery shop near EVCS 7000. Similarly, a connectivity graph
for Nashville is generated; however, it is not shown due to
its complexity. In Cookeville, there were 8 EVCSs and 116
EVs, whereas Nashville had approximately 3391 EVs and 250
EVCSs in 2022 [55].

The logical connectivity graph indicates the probability of
malware spread from one station to another due to the mobility
of EVs among the EVCSs. When a victim EV charges at an
infected EVCS it gets infected. As the infected EV charges at
another EVCS, as described by the probabilities indicated in
the logical connectivity graph, the malware infects the EVCS,
hence, spreading among all EVs and EVCSs.

IV. MALWARE ATTACK STRATEGIES

This section identifies the set of EVCSs C that when targeted
with the malware attack of Section II, the malware spread
among the EVCSs requires the least number of days. An
optimal attack strategy is proposed based on a black-box
solver, namely, the genetic optimization algorithm. Further-
more, we consider three benchmark strategies, namely, random
attacks, cluster-based attacks, and cluster-based attacks with an
empirical connectivity graph.

A. Optimal Attack Strategy

The practical identification of the most effective EVCSs that
would accelerate the malware spread is based on simulations
(as given by EVCCS in Algorithm 1) and data-driven models
(as given by the logical connectivity graph). This process can-
not be described using explicit equations. Therefore, heuristic
(black-box) optimization techniques can be used. In this work,
we consider the genetic optimization as an example of such
heuristic techniques. Algorithm 2 summarizes the attack strat-
egy. The genetic algorithm defines its fitness function as the
number of days required to infect 90% of the EVCSs in a city,
which is determined by the EVCCS described in Algorithm
1. In Algorithm 2, the maximum number of generations is
set to N . Initially, the C EVCSs are divided into S sets
through random selection, ensuring that each element appears
exactly once in one of the sets without repetition or omission.
This step is pivotal as it leverages a hierarchical approach,
potentially leading to a more balanced and diverse element
selection, reducing the risk of local optima, and enhancing the
overall quality of the final selection. Subsequently, populations
of candidate solutions are initialized separately for all S sets,
with chromosomes having a size of |A|. The most suitable
chromosome from each of the S sets is then identified by
applying the genetic algorithm for N generations, using the
fitness function f(A) provided by the EVCCS. The final
selected chromosomes from S sets are added to a temporary
variable set, denoted as T . Once again, populations of candi-
date solutions for set T are initialized, with chromosomes of
size |A|. The genetic algorithm is then applied to determine the
fittest solution. Ultimately, the chromosome representing the
|A| selected EVCSs that facilitate the fastest malware spread
within the set of public EVCSs is obtained.

Algorithm 3 describes the calculation of the number of days
to spread the malware, which represents the fitness function in
Algorithm 2. In Algorithm 3, a while loop continues until the
number of infected EVCSs (I) reaches or exceeds 90% of the
total EVCSs (C). Inside the while loop, V EVs are simulated
as they move within the city using EVCCS. These EVs
gradually deplete their charge levels as they travel. For each
individual EV (v), the algorithm evaluates whether recharging
is necessary, and if it occurs at a specific EVCS (Ci). Two key
scenarios are considered: if an EV charges at Ci, the algorithm
checks whether the EV is already infected (v ∈ I) and whether
Ci is not yet infected (Ci /∈ E). If these conditions are met,
the EVCS is marked as infected by adding it to the set I.
Conversely, if the EV is not infected (v /∈ I) and Ci is already
infected (Ci ∈ E), the EV is marked as infected by adding it
to set I. With each iteration, a counter D increments by 1,
tracking the days required for malware propagation.

B. Benchmark Strategies
This subsection presents three strategies that serve as bench-

marks for comparison with the optimal attack strategy.
1) Random Attack Strategy: This represents the simplest

attack strategy. Herein, the attacker randomly selects the
EVCSs for malware injection attack. Let A represent the
randomly attacked EVCSs from a pool of C EVCSs.
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Fig. 7. Logical connectivity graph of Cookeville. The nodes represent the EVCSs in the city and the edges denote the
probability of charging at EVCSs at consecutive charging events.

2) Cluster-based Attack Strategy: In a rural city like
Cookeville, it is common to find residential, work, and shop-
ping areas within the same zone. On the contrary, in an urban
metropolis like Nashville, these activities are often distributed
between different zones. In a large urban city, various distinct
geographical zones exist each with its designated services,
including workplaces, residential neighborhoods, and commer-
cial districts. As a result, individuals residing in one zone
are more likely to work in another zone and may choose to
shop either within their own zone or in nearby areas. In this
case, malware spread via randomly selected EVCSs can be
time-consuming if the chosen EVCS do not have a significant
impact. A more effective approach is to select EVCSs from
different zones/clusters, which is done by applying clustering
methods. One example is the Girvan-Newman algorithm [66],
which divides the network graph into clusters based on the
betweenness of its edges. By targeting nodes (EVCSs) with
high-degree centrality from each cluster, attackers can accel-
erate malware spread among EVCSs.

Algorithm 4 summarizes the attack strategy based on four
essential steps. First, the logical connectivity graph Gc is
divided into clusters using the Girvan-Newman algorithm.
Second, the degree centrality of each node within these clusters
is calculated, quantifying its local connectivity. Third, the
node with the highest degree centrality is selected as the
central node within each cluster, indicating its prominence in
mediating interactions within that cluster. Lastly, the algorithm
outputs a list of nodes with the highest degree centrality. A
subset of such central nodes, denoted by A, are then targeted
with the malware injection attack.

3) Cluster-based Attach Strategy with Empirical Connectiv-
ity Graph: To identify A in the clustering strategy of Section
IV.B.2, the logical connectivity graph, Gc is required. This
means that the attacker is running the EVCCS framework to
construct the logical connectivity graph. Herein, we explore
a simpler clustering-based strategy that does not rely on the

logical connectivity graph. Instead, we construct an empirical
connectivity graph, Ge to identify the relationship between
the EVCSs. Unlike Gc, Ge is an undirected graph and has
no weights on the edges. In the empirical graph, an edge is
established between nodes when the spatial distance between
two nodes is less than a specific threshold distance Λ. The
threshold selection is based on the average distance between
the EVCSs in the city. Whenever two EVCSs are separated
by a distance less than this threshold, the two EVCSs are
considered to be logically connected. When EVCSs are close
to each other, drivers are more likely to choose between them
based on convenience and availability. The closer the EVCSs,
the higher the probability that a driver will charge at either
one. The clustering-based algorithm described in Algorithm 4
is then applied on Ge.

Algorithm 5 describes the procedure to build the empirical
connectivity graph. The algorithm takes inputs such as the
collection of EVCSs within a city, the distances between
them, and the predefined threshold distance Λ. Distances
between EVCSs can be acquired using tools such as QGIS
and WAZE, with WAZE providing travel distances between
any pair of GPS points on the map. Subsequently, the threshold
distance Λ can be computed by averaging the distances among
the EVCSs. The process begins by initializing an edgeless
graph, denoted as Ge, comprising C EVCSs. Then, we get
the spatial distances, Λi,j , among all the EVCSs within C set
using the WAZE API. Subsequently, we calculate the average
distance among these EVCSs. This average distance serves
as the designated threshold for establishing edge connections
within the graph Ge. Hence, an edge (ei,j) is created between
pair of nodes in Ge if their spatial distance falls below the
threshold value and if no connection between them has been
established previously. Additionally, as a concluding step, if
Ge represents a disconnected graph, we rectify its connectivity
by introducing connections to the nearest nodes in terms of
spatial distance. This step ensures that the graph is path-
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Algorithm 2: Optimal attack strategy
Input: Logical connectivity graph Gc, Set of EVCSs

in the city C, EVCCS framework, maximum
number of generation N

Output: Set of A targeted EVCSs
initialize: Fitness function f(A) as the number of

days to propagate the malware across 90%
of EVCSs in the city, calculated from the
EVCCS, T = [·]

function: FitEVCCS(N ): for j ← 1 to N do
Evaluate the fitness of each candidate solution by
calling EVCCS to calculate the number of days it
took to infect 90% of the EVCSs when targeting A
Select individuals for reproduction based on their
fitness
Perform crossover and mutation to create a new
population
Replace the old population with the new population

end
1 Create S sets by randomly selecting vertices from the

Gc, ensuring that each element from Gc is included
exactly once in one of the sets, with no repetitions or
omissions.

2 Initialize a population of candidate solutions, each
with a chromosome of size |A|, for all the S sets

3 for i← 1 to S do
4 FitEVCCS(N )
5 Add selected vertices to set T
6 end
7 Initialize a population of candidate solutions, each

with a chromosome of size |A|, for the set T
8 FitEVCCS(N )
9 A ← a set of selected EVCSs to be attacked

connected, in other words, fully reachable.

Fig. 8. Empirical charging graph of Cookeville

Fig. 8 shows an empirical connectivity graph for Cookeville,
using a 2.5-mile threshold. In Fig. 8, EVCS 1201 connects
with EVCS 1202 since they are within 2.5 miles, but it does
not connect to EVCS 8000 as it exceeds the threshold.

V. SIMULATION RESULTS

The EVCCS was developed in a Python 3.8.3 environment,
leveraging NumPy, Matplotlib, NetworkX, and the genetic
algorithm library. The implementation has been carried out
on an MacOS with a 1.4 GHz processor and 8 GB RAM.

A. EVCS Radius

This metric measures the distance from each city’s centroid
to its respective EVCSs. In Cookeville, as shown in Fig. 9, all

Algorithm 3: Calculating the number of days for
malware spread in ≥ 90% of EVCSs in the city
Input: EVCCS, set of EVCSs C, set of targeted

EVCSs A, set of infected EVCSs including A,
set of all EVs V , set of infected EVs I, logical
connectivity graph Gc

Output: D = number of days to spread the malware
across 90% of EVCSs in the city

Initialize: D ← 0, I ← {·}, ∀v = {1, 2, . . . , V }
randomly select initial EVCS from set C to
charge

1 while |E| ≤ 0.9× C do
2 V EVs travel within the EVCCS, gradually

depleting their charge levels as they move.
3 for v ← 1 to V do
4 if v requires recharging and charges at Ci ∈ C

then
5 if v ∈ I and Ci /∈ E then
6 E ← E ∪ {Ci}
7 end
8 if V /∈ I and Ci ∈ E then
9 I ← I ∪ {v}

10 end
11 end
12 end
13 D = D + 1
14 end

Algorithm 4: Cluster-based attack strategy
Input: Set of all EVCSs C, logical connectivity graph

Gc, and number of clusters U
Output: Set of targeted EVCSs A

1 Cluster Gc into U clusters using Girvan-Newman
clustering algorithm [66]

2 Calculate the degree centrality of all the vertices of Gc
after clustering,

3 Select the vertices from each cluster with the highest
degree centrality and add to A

EVCSs are within a 3-miles radius from the city’s centroid,
indicating that they are likely to be utilized by the same group
of EV owners. In contrast, as illustrated in Fig. 10, the majority
of the EVCSs in Nashville are positioned approximately 25-
miles away from the city’s centroid, and they are widely
distributed across the city with considerable distances between
them, making it less likely for all EVCSs to be used by the
same set of owners. The EVCSs in Nashville are often found
to be far apart and distributed throughout the city. Further-
more, the EVCSs in Nashville tend to cluster within specific
geographical areas. Consequently, it is highly probable that
EV owners within the same territory utilize the same group
of EVCSs, with minimal chances of an EV from one cluster
using the EVCSs from another cluster. It is noteworthy that
101 EVCSs fall within a 30-mile radius from the centroid of
the city, signifying a concentration of EVCSs in the downtown
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Algorithm 5: Design of Empirical Connectivity Graph
Input: Set of all EVCSs C, distances between EVCSs,

and distance threshold Λ, i.e., average distance
among EVCSs

Output: Empirical connectivity graph, Ge
Initialize: Edgeless Graph Ge with C EVCSs as

nodes, ω ← 0, xω ←∞
1 for i← 1 to C do
2 ω ← 0
3 xω ←∞
4 for j ← 1 to C do
5 if (Λ{i,j} ≤ Λ) and (ei,j /∈ Ge) then
6 connect edge ei,j in graph Ge
7 end
8 else
9 if Λi,j ≤ xω then

10 ω ← j, xω ← Λi,j

11 end
12 end
13 end
14 for i← 1 to C do
15 if eiω /∈ Ge then
16 connect edge ei,ω in graph Ge
17 end
18 end
19 end

area of Nashville.
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B. Malware Spread

We conducted the following experiments in both rural
and urban settings. Firstly, we examined the performance of
various attack strategies, including random, cluster-based, and
optimal methods, in terms of the time required for malware
to spread across the EVCSs in Cookeville and Nashville. Our
simulation results in Fig. 11 revealed that for Cookeville, the
malware took > 12 days to spread using the random-based
strategy, ≥ 12 days using the cluster-based strategies, and
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Fig. 11. Comparison of different strategies in Cookeville city.
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Fig. 12. Comparison of different strategies in Nashville city.

10 days using the optimal strategy when attacking a single
EVCS. This indicates > 16% improvement in malware spread
when employing the optimal strategy compared to the random
one. Similarly, in the case of Nashville, as shown in Fig. 12,
attacking a single EVCS resulted in the following to infect all
the EVCSs: 69 days for the random attack strategy, 57 days for
the cluster-based strategy, and 52 days for the optimal attack
strategy. Here, the optimal attack showed a 9% improvement
over the cluster-based method and a 32% improvement over
the random-based approach. It is worth noting that the clus-
tering strategies based on the probabilistic and the empirical
connectivity graphs exhibit close performance with both out-
performing the random attack strategy, and coming as second
best after the optimal strategy. Specifically, compared with the
random attack strategies, cluster-based attack strategies can
speed up the malware spread by 10% in Cookeville and 20%
in Nashville.

Next, we investigated the effect of the number of attacked
clusters and the number of attacked EVCS per cluster in the
cluster-based strategy in Cookeville and Nashville. Intuitively,
increasing the number of clusters and the targeted EVCS per
cluster accelerates malware spread as shown in Fig. 13 and
14. In both Cookeville and Nashville, targeting two EVCSs
from two clusters speeds up malware spread by 10% and
17%, respectively, compared to targeting two EVCSs without
clustering. Expanding clusters and targeting specific EVCSs
accelerates malware spread, showing attackers with limited
data can outperform random attacks.

Finally, we investigated the impact of the number of targeted
EVCSs on malware spread in both Cookeville and Nashville,
focusing on optimal attack strategies. For Cookeville, as shown
in Fig. 15, as the number of initially targeted EVCSs increased
from 1 to 4, the time required for malware spread was 10,
9, 9, and 8 days respectively. Hence, this increase in the
number of targeted EVCSs yields an improvement of 20%
reduction in the malware spread duration when targeting 4
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out of a total of 8 EVCSs in Cookeville (i.e., targeting 50%
of the EVCSs in the city). On the other hand, in the case of
Nashville, increasing the number of initially targeted EVCSs
from 1 to 4 (out of 250 EVCSs) resulted in malware spread
in 52, 43, 41, and 35 days respectively. This demonstrated
a substantial improvement in the time to spread the malware,
decreasing by 17%, 21%, and 33%, respectively, as the number
of initial targets increased only from 1 to 4 (i.e., 1.6% of the
EVCSs in Nashville) as illustrated in Fig. 16. These results
underscore the significance of the number of attacked EVCSs
in optimizing the speed of malware spread.
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VI. CONCLUSION

In this research, we studied the vulnerabilities in front-end
V2G communication based on ISO 15118 and successfully
executed malware injection attacks between EVs and EVCSs.
Next, we studied the malware spread among EVCSs in the
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Fig. 16. Different number of targeted EVCSs in Nashville.

city. This was done by first establishing a comprehensive
city dataset, facilitating the analysis of EV movement patterns
and charging behaviors. Using this dataset, we constructed an
EV commute and charging simulator (EVCCS) and developed
probabilistic connectivity graphs, finding that in Cookeville the
EVCSs exhibit full connectivity, while in the case of Nashville,
the EVCSs are partially connected. Using the EVCCS and the
probabilistic graphs, we studied the probability of malware
spread among EVCSs and explored various attack strategies
that aim at finding the locations and the number of target
EVCSs who when attacked, the speed of malware spread can
be maximized. Among these strategies, optimal attacks based
on genetic algorithms emerge as the most effective strategy,
selecting target EVCSs with high charge-sharing connectivity.
Increasing the number of initially targeted stations signifi-
cantly accelerates malware spread, particularly in Nashville
(an example of an urban city), where a 17-day improvement
and a 33% acceleration are achieved when targeting only 1.6%
of the EVCSs in the city. The second best strategy is the
clustering-based attacks that rely on empirical connectivity
graphs as this strategy requires minimal information and
exhibits a 32% improvement in malware spread compared
with random attacks. These results and the developed tools
(EVCCS) can play a significant role in future studies to protect
the most effective EVCSs, hence, limiting malware spread
among the stations in the city.
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