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Abstract—The digital transformation of power system
introduces False Data Injection Attacks (FDIAs) on voltage
stability that compromises the operational integrity of
power grids. Existing detection mechanisms for FDIAs often
fall short as they overlook the complexities of cyberattacks
targeting voltage stability and rely on outdated models that
do not capture the dynamic interplay between power system
operations and potential threats. In response to these gaps,
this paper proposes a novel FDIA detection method
designed specifically for voltage regulation vulnerabilities,
aiming to enhance the voltage stability index. The proposed
method utilizes an unsupervised learning framework
capable of identifying cyberattacks targeting voltage
regulation. A bi-level optimization approach is put forward
to concurrently optimize the objectives of both attackers
and defenders in the context of voltage regulation. The
effectiveness of this approach is validated through
comprehensive training and testing on a variety of attack
scenarios, demonstrating superior generalization across
different conditions. Extensive simulations on the Iberian
power system topology, with 486 buses, show that the
proposed model achieves more than 93% detection rate.
These results highlight the robustness and efficacy of the
proposed strategy in strengthening the cyber resilience of
power systems against sophisticated FDIA threats on
voltage stability.

Index Terms—cybersecurity, data falsification, false data
injection attacks, graph autoencoder, voltage regulation,
voltage stability

I. INTRODUCTION

Modern power systems have become more advanced
and efficient, but they often operate close to their stability
limits with reduced security margins [1]. When these
limits are exceeded, or the security margins are not
maintained, the risk of large-scale blackouts increases
significantly. Therefore, assessing the stability of power
systems, particularly voltage stability, is crucial [2].
Voltage instability occurs when the system cannot
maintain acceptable steady-state voltages across all buses
under normal operations or after disturbances. This
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instability is primarily caused by factors such as system
overloading, reactive power shortages, or equipment
failures. A historical event in Egypt on April 24, 1990 [3]
underscored the impact of voltage instability on power
systems.

Voltage-regulating equipments, such as capacitor
banks, voltage regulators, on-load tap changers, static
Volt-Ampere Reactive (VAR) compensators, and smart
inverters, work together to ensure voltage stability by
minimizing fluctuations and system oscillations. This is
typically achieved by injecting reactive power into the
system. However, a shortage of reactive power can lead
to voltage drops which, in turn, triggers cascading
failures. Regulating devices may disconnect generators to
prevent overheating, causing further reductions in
reactive power. This cycle can ultimately lead to a
voltage collapse. With the modernization of grids,
voltage-regulating devices are increasingly managed
remotely through various communication technologies.
While this automation enhances grid control, it also
increases the vulnerability of voltage regulation networks
to cyberattacks. In False Data Injection Attacks (FDIAs),
malicious actors falsify the voltage readings by making
them to seem high (additive attacks), low (deductive
attacks), or a blend of the two (camouflage attacks), to
compromise the voltage stability index. These attacks can
introduce fluctuations in the voltage levels which, in turn,
disrupt the voltage stability index.

A. Related Works

Previous attack detection strategies rely on the
residuals between actual and measured data [4]. When
these residuals exceed a certain threshold, they indicate
the possible presence of bad data. Although these
methods are widely used, it has been shown that FDIAs
can bypass such detectors.

To develop more robust FDIA detection strategies,
recent methods have utilized the Kullback-Leibler (KL)
distance [5] and a Bayesian framework [6]. However,
these methods often struggle to detect FDIAs that share
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the same distribution as historical measurements and are
generally more effective at identifying attacks that result
in abnormal system conditions.

Recently, machine learning and deep learning-based
methods for detecting FDIAs have gained significant
attention due to their ability to learn inherent features
from data. In this context, feed-forward neural network
(FNN)-based FDIA detectors have been reported to
achieve accuracy levels exceeding 90% [7, 8].
Esmalifalak et al. [9] introduced a detection scheme using
a support vector machine (SVM), which achieved an F1
score of 82%. To further enhance detection capabilities,
the study in [10] introduced a variational autoencoder for
anomaly detection in power grids. A comparative
performance analysis in [11] showed that a deep belief
network-based approach outperformed extreme learning
machines and residual-based detectors. However, a
limitation of these methods is their inability to fully
capture the spatial relationships within  sensor
measurement data, as they often overlook the topological
features of power grids [12].

Graph-based attack detection strategies offer a
powerful solution to address the limitations of traditional
deep learning models by effectively capturing both spatial
and temporal features from graph-structured power
system data [13]. For instance, a study in [14] showed a
4% improvement in the F1 score over a standard GNN-
based detector. To detect unobservable attacks, an
ARIMA-based model was introduced in [15], enabling
better adaptation to sudden variations in the spectral
domain. A modified multi-temporal graph Convolutional
Neural Network (CNN) achieved 96% accuracy by
integrating the training phases of graph convolutions and
multilayer perceptions to represent node features [16]. In
[17], a hybrid approach combining a graph CNN with a
long-short time memory (LSTM) module also reached a
96% detection rate. A Graph Autoencoder (GAE)-based
model demonstrated its effectiveness on unseen
topologies, with 12% improvement over shallow
detectors [18]. Comparative studies [19] further indicated
that autoencoders with attention mechanisms outperform
simple and variational autoencoders in detecting FDIAs
and enhancing system resilience to cyberattacks. Despite
these advances, most graph-based detectors are trained
and tested without considering the impact on voltage
stability, which is frequently affected by FDIAs.

A specialized FDIA detection algorithm for voltage
stability is crucial due to the unique and complex
challenges involved in maintaining voltage levels within
power systems. FDIAs that target voltage measurements
can cause small but critical deviations in data that
traditional detectors may overlook. Even minor
discrepancies in reactive power can accumulate, leading
to misalignment between actual and perceived system
states and potentially causing voltage collapse. This risk
is heightened under stressed conditions, such as peak
loads or post-fault scenarios, where the system’s margin
for error is already minimal. A dedicated algorithm would
continuously monitor the voltage stability index and
provide early warnings to prevent the system from
reaching critical instability. Therefore, given the specific
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vulnerabilities and high stakes associated with voltage
stability, a dedicated FDIA detection approach is required.

B. Contributions

The key contributions of this paper are summarized as
follows.

e First, we introduce a GAE-based detector for
cyberattacks on voltage regulation that captures both
temporal and spatial relationships in power grid data
using Chebyshev convolutional operations.

e Second, the proposed model effectively detects
FDIAs, even with unseen topologies, validating its
generalization and practical applicability.

e Third, we employ a bi-level optimization framework
to craft cyberattacks with enhanced effectiveness and
stealthiness and to create a more potent threat to the
voltage regulation.

e Fourth, to showcase the efficacy of the proposed
detector, we undertake comprehensive simulations,
subjecting it to a range of power system attacks
including targeted scenarios on random and
vulnerable buses.

II. VOLTAGE STABILITY INDEX

The voltage stability index is an indicator of power
system health and operational reliability. This index is
designed to reach a marginal value as the system reaches
close to the instability point. To assess the stability of the
overall system, we considered both the bus and line
voltage stability indices [20] which will be discussed next.

A. Bus Voltage Stability Index

If ¥, and V; represent the voltage at b* generator bus
and i load bus, the matrix F can be represented in terms
of the sub-matrices Y; and Yu. Ng is the number of
generator bus. We express the bus voltage stability index
at the ith bus, 4%, as:

Vb
F., 2L
i,b Vi ’

; N
dp=11-%,2, 6]
In the event of cyberattacks, the A% index can be
falsely altered at various buses. The manipulated A
index, denoted as A at the ith bus is expressed as
~ N, \%4
Ay = [1-%,, R, @)
where V; indicates the false voltage measurement at bus i.
Taking the average of A% over all the buses gives the

global bus voltage stability index for the whole system.

B. Line Voltage Stability Index

The bus voltages V; and V; at the ends of the line
connecting buses i and j are related by

Vi 3)

2 2

(V} n Pk,jR+Qk,jXR) n (Pk,jXR—Qk,jR) ’
Vj Vj

where the active and reactive powers flowing from bus k

to bus j are denoted by Py ; and Qy ;, respectively; R is

the equivalent resistance and X is the reactance of the
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branch. The line voltage stability index A’z’j of the line
connecting buses k and j is given by:

Vi

)
J2V1-2+2(Pk_jR+Qk_jXR)

kj _
A7 =

“

and satisfies this condition 0 < Alz’] < 1. When the
system is near its stability limit, the voltage stability
index approaches 1. The overall voltage stability index,
4,, is determined by taking the maximum value between
the line voltage index 4; and bus voltage index 4z: 4, =
max{4;,4g}.

III. BI-LEVEL OPTIMIZATION PROBLEM FORMULATION

In this section, we formulate a bi-level optimization
problem for voltage stability in power systems involving
an attacker and a defender, each with distinct objectives.
The attacker aims to maximize disruption by destabilizing
the system’s voltage, while the defender seeks to
minimize this impact through security measures. If an
attacker alters the voltage measurement at a bus, the
voltage deviation is given by AV, = [AV}, AV2,xxX
,AI/('lNl] The defender counters by using load
compensation devices to inject reactive power at load

buses, denoted as qg = [q4, g3, XXX, quvl]. Here, q4
represents the reactive power vector that the defender
uses to mitigate the attack AV,. The utility function for
the attacker, U, (AV,, q4), is defined as:

Ua(AV,, qq) = I, Pu(h)AL, (5)

where P, (h;) is the probability of a successful attack at
load bus i, dependent on the binary variable h; [21]. If the
attack on node i succeeds, h; = 1; otherwise, h; = 0. The
defender’s utility function, U;(AV,, q4), is given by:

Ua(AV,, qq) = —Uy(AV,, qq) (6)

The bi-level optimization problem is formulated as
follows:

O]

f(AVy, qq) = argrrtllix Ua(g(AVy,94),94)  (8)

g(AvV, qq) = argmax Uy,(AV,, qq)

Eq. (7) represents the attacker’s upper-level objective,
aiming to maximize the disruption of the voltage stability
index. Given the defender’s action q,, the attacker
identifies a strategy pair, g(AV, qq) . Equation (8)
defines the defender’s lower-level objective, which seeks
to maximize compensation against the attacker’s actions.

IV. GAE-BASED ATTACK DETECTION SCHEME

The features of GAE-based attack detection framework
are next reviewed.

A. Components of Graphs

An interconnected power system can be modeled as a
graph, which makes GAE-based methods suitable for
understanding its complex dynamics. In this graph
representation, power grid buses are nodes and their

connections are edges. Power grids are typically modeled
as undirected, interconnected weighted graphs [14, 22].
In this paper, we define the power system graph as G =
(v, E,W), where IV represents the set of nodes (buses)
and & represents the set of edges (physical lines
interconnecting buses). The adjacency matrix W € R™"

models the weighted relationships between buses. If

buses i and j are connected, the weight W; ; is assigned to

edge e = (i,j). A graph representation of the considered
power system is represented in Fig. 1.
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Fig 1. Graph representation of the Iberian power system.

B. Unsupervised Learning Objective

The goal is to identify deviations in input samples X,
indicating the presence of cyberattacks in power systems.

The input samples consist of temporal measurements of

active and reactive power, [P, Q,] € R™2 at the ¢ th
timestamp. As shown in Fig. 2, the input data passes
through graph encoder layers /£, which produce a latent
representation at layer Iy, followed by graph decoder
layers Ip. The graph encoder and decoder functions are
E; = fg(X) and Dg; = f;(X), respectively. The objective

is to minimize the reconstruction error between the

original input and its reconstruction:

minC(X, f (fz (X)), 9
where {u} represents the training parameters, and the cost
function C(-) is the mean squared error measuring the
difference between fj (fz(X)) and X.
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Fig. 2. Architecture of the proposed GAE.
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C. Chebyshev Convolution Operation

During each training stage, the spectral graph
convolution of a signal ¢ € X is defined as UyyUT 0,
where U contains the eigenvectors of the normalized
Laplacian L. = UQUT, ¢y = diagonal(8) is the spectral
filter, and 8 € R™ is the parameter vector in the Fourier
domain. The diagonal matrix Q holds the non-negative
eigenvalues 2 of L, and UTo represents the Fourier
transform of o. Later a polynomial approximation is
introduced as, H,(Q) = YL v 2%, where y = (y,¥2,%
XX,¥m) are the coefficients for an m-order polynomial.
To enhance training stability, a truncated Chebyshev
polynomial expansion N,,, (&) is applied [23]:

Hy(Q) = X2 VN (D), (10)

where @ = 2Q/1 —I. The Chebyshev polynomials are
recursively defined as N, (p) = 2pN,_1(p) — Np—a (p),
with Ny = 1 and N; = p. The filtering process is:

k=0 YNk (L)o, (11

where L = 2L/2 — I. The complexity is O(m|&]|), and
with Chebyshev polynomials limited to the mth order, the
convolutions are localized to m hops.

D. GAE Architecture

The architecture of the proposed GAE model is
depicted in Fig. 2. Each element of its architecture is
discussed next.

1) Graph encoder Eg

The graph encoder has /g Chebyshev graph
convolutional layers. The inputs to the graph
convolutional layers or the number of channels in a
hidden encoding layer [ is indicated by N, . If b'E
denotes the bias of layer I and *; represents the graph
convolutional operator. The result is the output tensor,
X'E denoted as,

H,(L)o =

X'E = ReLU(ym ()Xt + b'E) (12)
To extract the temporal relationships from the time-series
signal, we incorporate an LSTM unit that facilitates the
modeling of recurrent information flows. An LSTM cell
consists of the input if_, output of,, and forget gate f;\.
Inside an LSTM unit, there exists two distinct states: 1)
the cell state C fE, and ii) the LSTM output or hidden state
Hf.
2)  Graph decoder Dy

The main aim of the graph decoder is to produce an
output V* that closely resembles the input X . The
reconstruction error is measured via 7 = ||[V* — X||. In
the same vein as the graph encoder, the outputs of the
graph decoder are sequentially fed to the LSTM that
processes time-evolving graph features. The cell state of
the graph decoder-LSTM is regulated by if , o/, and fi£,
which stand for the input, output, and forget gates,
respectively.
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V. THREAT MODELING AND DATA GENERATION

A. Threat Model

If the voltage measurement at bus i and timestamp ¢ is
denoted as V, then the true voltage measurement, V&, ;
should align with the measured voltage, V5, ; at control
end (e, Viue;=V4: ). The tampered voltage

true,i
measurement may contain false data values. The attack
functions during different attack scenarios are represented

as

t _ t t
Viatsei = Virue,i T AV,

t
I/false,i = Vttrue,i - AVit

t —yt t t
Vfalse,i - Vtrue,i + eAVL’ - (1 - e)AVi ,

where AV} denotes the maliciously inserted data by the
adversary, and e denotes a binary variable with a value of
1 indicating an additive attack and 0 representing a
deductive attack. The attack functions incorporate
additive, deductive, and combined attacks.

B. Strategies for Attacks

1) Random node attacks

These attacks randomly target r buses from a total of
N;, creating N;!/(r!(N; —r)!) possible subsets. Such
randomness can lead to severe voltage instability,
especially if affected buses are not restored promptly.
2) Vulnerable nodes attacks

Vulnerability refers to a power node’s likelihood of
being a weak point in the system. Attacks on such nodes
can cause significant voltage instability. We evaluate
vulnerability by assigning scores to nodes based on
electrical and topological metrics to identify the most
vulnerable buses. We use the Analytical Hierarchical
Process (AHP) to determine weights for each metric,
calculate scores for electrical and topological
vulnerabilities, and combine these to determine an overall
vulnerability score.

C. Data Generation

To generate the normal time-series voltage data, we
perform power flow analysis using Newton’s method in
the MATLAB MATPOWER toolbox. This toolbox
facilitates the calculation of system voltages, currents,
and both real and reactive power flows.

D. Hyperparameter Optimization

We use a sequential grid search to optimize the
hyperparameters for the proposed and benchmark
detectors. The optimal hyperparameters for CNN, FNN,
LSTM, GCNN, and GNN are:

Hcnn =14, 32, 0.4, Rmsprop, 5, Relu},
Henyn = {4,32,0,Adam, N/A, Relu},
Histm = {3,32,0.2, Adam, N/A, Relu},
Henn =15, 32, 0.2, Rmsprop, 4, Relu},
Han =16, 64,0.2, Adam, 5, Relu}.

For the ARIMA model, the optimal differencing
degree and moving average are 1 and 0. The SVM
model’s optimal gamma, kernel, and regularization are
auto, sigmoid, and 1.
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E. Performance Evaluation Metrics

The detection performance of the proposed FDIA
detector is evaluated using three metrics: Detection Rate

(DR), DR = —"—: False Alarm Rate (FAR), FAR =
L; and Accuracy (ACC), ACC = S i L B— Here,
FP+TN TP+TN+FP+FN

TP, TN, FP, and FN denote the number of true positives,
true negatives, false positives, and false negatives,
respectively.

VI. EXPERIMENTAL EVALUATIONS

In this study, three different attack types are considered:

additive, deductive, and camouflage attacks. For the latter
attack strategy, both additive and deductive attacks are
chosen in equal proportions. For each attack scenario, 5,
10, 15, and 20% attack injection levels are chosen. On
average the proposed model achieves 98.11% accuracy,
98.76% detection rate, and 8.13% false alarm rate.

A. Performance Against Random Attacks on Buses

The proposed model’s detection performance against
random buses attacks is depicted in Table 1. The results
reveal that as the injection level of the attack increases,
the effectiveness of the detection decreases. This
performance drop may be due to the increased likelihood
of false positives.

B. Performance Against Attacks on Vulnerable Buses

The performance of the proposed model for the
mentioned attack strategy is presented in Table II. From
the table, it is observed that for each test case, the model
reports relatively lower accuracy compared to the random

node attacks. However, the model achieves more than 93%

accuracy across the attack scenarios.

TABLE I: PERFORMANCE AGAINST RANDOM NODE ATTACKS

Attack type Perfo.rmance Injection levels
Metric 5% 10% 15% 20%
DR 91.18 99.07 98.17 96.40
Additive FAR 6.48 8.28 9.97 10.79
ACC 98.87 98.77 97.88 95.80
DR 98.10 97.33 96.88 94.47
Deductive FAR 8.24 9.63 10.99 12.98
ACC 97.03 97.09 96.50 94.61
DR 97.15 95.58 94.97 92.90
Combined FAR 10.38 10.93 12.80 13.72
ACC 95.22 95.58 95.38 93.54

TABLE II: PERFORMANCE AGAINST VULNERABLE NODE ATTACKS

Performance Injection levels
Attacktype  ypogric 5% 10%  15%  20%
DR 98.31 97.78 97.01 95.88
Additive FAR 6.51 8.27 10.11 10.83
ACC 98.07 97.31 96.49 94.73
DR 98.22 97.67 96.99 95.75
Deductive FAR 6.58 8.37 9.95 11.33
ACC 98.00 97.17 96.37 94.56
DR 97.50 97.03 95.91 94.64
Combined FAR 9.56 10.22 11.13 12.66
ACC 97.25 96.41 95.12 93.98

92

VIL

This study presents a GAE-based FDIA detection
framework dedicated to voltage regulation, evaluating its
effectiveness against various attack types and injection
levels. The proposed detector integrates an autoencoder
with Chebyshev graph convolution recurrent layers to
capture spatial and temporal correlations in measurement
data. Simulation results show that the proposed model
achieves up to 93.80% accuracy, with an average 20%
improvement in ACC compared to benchmark detectors.
Developing a generalized cyberattack detection scheme is
suggested for future research.
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