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ABSTRACT The integration of information and communication technologies into modern power systems
has contributed to enhanced efficiency, controllability, and voltage regulation. Concurrently, these technolo-
gies expose power systems to cyberattacks, which could lead to voltage instability and significant damage.
Traditional false data injection attacks (FDIAs) detectors are inadequate in addressing cyberattacks on
voltage regulation since a) they overlook such attacks within power grids and b) primarily rely on static
thresholds and simple anomaly detection techniques, which cannot capture the complex interplay between
voltage stability, cyberattacks, and defensive actions. To address the aforementioned challenges, this paper
develops an FDIA detection approach that considers data falsification attacks on voltage regulation and
enhances the voltage stability index. A graph autoencoder-based detector that is able to identify cyberattacks
targeting voltage regulation is proposed. A bi-level optimization approach is put forward to concurrently
optimize the objectives of both attackers and defenders in the context of voltage regulation. The proposed
detector underwent rigorous training and testing across different kinds of attacks, demonstrating enhanced
generalization performance in all situations. Simulations were performed on the Iberian power system
topology, featuring 486 buses. The proposed model achieves 98.11% average detection rate, which represents
a significant enhancement of 10-25% compared to the cutting-edge detectors. This provides strong evidence
for the effectiveness of proposed strategy in tackling cyberattacks on voltage regulation.

INDEX TERMS  Cybersecurity, voltage regulation, graph autoencoder, voltage stability, false data injection
attacks, bad data intrusion, machine learning.

I. INTRODUCTION

LECTRIC power systems are becoming more sophis-
E ticated and operating more efficiently, but at the same
time, they are frequently closer to their stability limits and
exhibit more reduced margins for security [1]. Exceeding
these stability limits or neglecting the security margins can
lead to significant consequences, including the risk of large-
scale blackouts. This makes examining a power system’s
stability conditions—particularly its voltage stability—a pri-
ority [2]. Voltage instability manifests through the system’s

inability to maintain permissible steady-state voltages across
all of its buses during normal operating conditions and/or
after physical disturbances. The primary contributing factors
to this phenomenon include system overloading, shortage of
reactive power, and equipment failures. The major conse-
quences of voltage instability encompass load curtailment,
cascade tripping of power components, or even blackout.
Voltage instability events have been identified as pivotal
factors in several worldwide blackouts, such as the blackout
incident in Egypt on April 24, 1990 [3] and the 2012 blackout
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in India triggered by the overloading of transmission lines [4].
Thus, a fast and precise assessment of voltage stability is
necessary to prevent large-scale blackouts.

Within an electrical grid, voltage-regulating equipment
such as switched capacitor banks, step voltage regulators,
on-load tap changers, static VAR compensators, and smart
inverters in photovoltaic (PV) systems function together in a
coordinated manner to ensure voltage stability by minimizing
voltage fluctuations and system oscillations [5]. In general,
grid stabilization is performed by injecting reactive power
into the system. Also, a shortage of reactive power may lead
to a drop in voltage levels, and the voltage drop may overload
other lines, trip transmission lines, or initiate cascading fail-
ures. Therefore, regulating devices disconnect the generators
to prevent overheating. To counteract the voltage drop, the
system responds by injecting reactive power to maintain a sta-
ble voltage level. However, this injection leads to a decrease
in reactive power, causing further voltage drops. This process
results in a progressive and continuous reduction of voltage
levels that ultimately leads to a voltage collapse. As part
of grid modernization, voltage-regulating devices are now
being controlled remotely using a variety of communication
technologies. The adoption of communication channels and
automation systems has increased the vulnerability of voltage
regulation networks to cyberattacks.

In false data injection attacks (FDIAs), malicious actors
falsify the voltage readings by making them to seem high
(a.k.a. additive attacks), low (a.k.a. deductive attacks), or a
a blend of the two (a.k.a. camouflage attacks), to compro-
mise the voltage stability index. In case of additive attacks,
attackers manipulate voltage measurements to apparently
high voltage levels which give the misleading impression
of instability. This may lead further to an overestimation of
system robustness and pushing the system to operate closer to
its stability margins [6]. Conversely, in deductive attack sce-
narios, attackers manipulate voltage measurements to make
them appear lower than the original values. Combined attacks
present a unique challenge, as they involve the manipulation
of both high and low voltage values, making them harder
to detect. These attacks can introduce fluctuations in the
voltage levels which, in turn, disrupt the voltage stability
index. Therefore, this study proposes a novel FDIA detector
to prevent voltage instability in power grids and evaluates the
impact of these attacks on grid’s stability.

A. RELATED WORKS

The literature on cyberattack detection in power systems is
diverse, encompassing traditional techniques like anomaly
detection and signature-based methods, as well as more
advanced methods such as deep learning and graph theory-
based strategies [7]. The earlier attack detection strategies
utilize residuals within the actual and measured data [8].
If the residual exceeds a specific threshold, it raises concerns
about the potential presence of bad data. Despite the extensive
utilization of these approaches, it has been evidenced that
FDIAs can evade these detectors.
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With the goal of developing robust FDIA detection strate-
gies, recent approaches employed the Kullback Leibler (KL)
distance [9], Bayesian framework [10], and Markov chain
framework [11]. However, these approaches often face dif-
ficulties to detect FDIAs when it comes to detecting attacks
with identical distribution as the historical measurements.
They tend to be most effective at detecting attacks that create
unusual system conditions.

Recently, machine learning and deep learning-based
FDIAs detection mechanisms have attracted attention due to
their inherent features learning ability [12]. In this regard,
feed-forward neural network (FNN)-based FDIA detectors
with obtained accuracy exceeding 90% were reported in [13]
and [14]. In [15], the authors introduced a detection scheme
using a Support Vector Machine (SVM), which achieved an
F1 score of 82%. A strategy that combines the Kalman filter
and recurrent neural network (RNN) was proposed in [16],
and achieved a 96% detection accuracy. Another hybrid strat-
egy that combines an autoencoder with a generative adver-
sarial network (GAN) reported a detection performance of
96.2% [17]. In search for a reinforcing solution, the study [18]
introduced a variational autoencoder for anomaly detection in
power grids. A comparative performance analysis conducted
in [19] demonstrated that the deep belief network (DBN)-
based implementation outperforms extreme learning machine
(ELM)-based detectors [20] and residual-based detectors.
Furthermore, a detector based on convolutional neural net-
works (CNNs) achieved 99% detection accuracy, where a
CNN and Kalman filter were employed to model temporal
and spatial data correlations [21]. One drawback of these
methods is that they do not fully extract the spatial relation-
ships inherent in the sensor measurement data, as they over-
look the topological features of the power systems [22], [23].

Graph-centric attack detection strategies provide a com-
pelling solution to overcome the inherent limitations of
traditional deep learning models. One of the key advantages
of employing graph-based methods is their ability to extract
spatial as well as temporal features from the graph-structured
power system data [24]. A study in [22], reported a 4%
improvement in the F1 score compared to a GNN-based
detector. To detect unobservable attacks, an auto-regressive
moving average (ARIMA)-based model was proposed in [25]
that helps the detection model to adapt better to sudden
variation in the spectral domain. In [26], a revised version
of the multi-temporal graph CNN was reported where the
training phases of the graph convolutions as well as the mul-
tilayer perceptions are blended together to simultaneously
illustrate the node features. Such a model achieved a remark-
able 96% accuracy across different power system topologies.
A hybrid strategy was proposed in [17] where graph CNN
was combined with a long short-term memory (LSTM)
module in order to achieve 96% detection rate. A graph
autoencoder-based implementation was reported in [27]
where the detector was tested on unseen topology. An ensem-
ble detector utilizing graph autoencoder (GAE) demonstrated
a 12% enhancement in detection performance over shallow
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detectors [28]. Furthermore, the authors in [29] conducted a
comparative analysis of autoencoders equipped with attention
mechanism (AAM), simple autoencoders (SAE), and varia-
tional autoencoders (VAE) for FDIAs detection. The results
showed that AAM enhanced system resilience to cyberattacks
and demonstrated superior detection performance. Despite
the benefits provided by these detectors based on GNN, it is
important to note that they are typically trained and tested
on power systems without considering the voltage stabil-
ity aspect. In general, power systems frequently experience
voltage fluctuations and FDIAs can significantly affect the
voltage stability index. Therefore, it is crucial to compre-
hensively explore the consequences of FDIAs on the voltage
stability index.

A dedicated FDIA detection algorithm for voltage stability
is essential due to the complex nature of maintaining reac-
tive power levels across the grid, ensuring all buses remain
within voltage limits. FDIAs on voltage measurements can
introduce subtle deviations that traditional detectors might
miss. Voltage stability issues often arise from small reactive
power imbalances, which, if accumulated, misalign actual
and perceived system states, increasing the risk of collapse.
These issues worsen under stress, such as peak loads or post-
fault scenarios, where the system has minimal error tolerance.
A dedicated algorithm would monitor the voltage stability
index, providing early warnings to prevent the system from
reaching critical points, addressing voltage stability’s unique
vulnerabilities and associated risks.

B. CONTRIBUTIONS AND ORGANIZATION
The key contributions of this paper are summarized as fol-
lows.

« First, we overcome the shortcomings of existing FDIA
detectors by introducing a GAE-based detector specif-
ically for cyberattacks on voltage regulation. The pro-
posed detector captures both the temporal and the spatial
(topological) relationships inherent in the power grid
data by employing Chebyshev convolutional operation.

« Second, we demonstrate that our proposed model effec-
tively identifies FDIAs even when encountering pre-
viously unseen topological configurations. Our testing
dataset includes scenarios that were not part of the
model’s training dataset. This corroborates the practical
applicability and generalization abilities of our approach
to real-world situations.

o Third, we employ a bi-level optimization framework
to craft cyberattacks with enhanced effectiveness and
stealthiness and to create a more potent threat to the
voltage regulation. This enables validation of the detec-
tion performance in the presence of more challenging
cyberattacks.

« Fourth, to showcase the efficacy of the proposed detec-
tor, we undertake comprehensive simulations, subject-
ing it to a range of power system attacks, including

additive, deductive, and camouflage attacks. The sim-
ulations encompass two distinct scenarios: i) when the
attacker targets random buses, and ii) when the attackers
target the most vulnerable buses. The latter case aids
in developing strong protection measures by highlight-
ing vulnerabilities within the power grid. An additional
contribution involves the development of sophisticated
cyberattacks targeting both the distributed generators
(DGs) and load buses.

The remainder of the paper is organized as follows.
Section II explains voltage stability and its index calculation.
Section III presents the bi-level (attacker-defender) optimiza-
tion problem. The architecture of the proposed GAE model
is presented in Section IV. Section V presents the attack
modeling, strategies of attacks, and generation of normal and
attack data. In section VI the benchmark strategies, their
hyperparameters optimization, and performance evaluation
metrics are discussed. The experimental results are illustrated
in section VII and section IX provides the paper’s conclusion.

Il. VOLTAGE STABILITY

Voltage stability is achieved through voltage regulation where
protective devices work in a coordinated manner to regulate
the voltage. When there is a shortage of reactive power, gener-
ators equipped with special voltage regulation devices (such
as VAR compensators) inject reactive power into the system.
This injection counteracts the voltage drop and increases
the voltage levels. Conversely, when there is an excess of
reactive power in the system, the voltage regulation devices
(such as capacitors and reactors) absorb that reactive power to
counteract excessive voltage levels. In this paper, we consider
voltage compensators that guarantee that the voltage applied
to the loads stays within acceptable limits. Our study primar-
ily focuses on steady-state voltage stability. We have chosen
this focus because steady-state voltage stability ensures that
the power system can maintain acceptable voltage levels
under normal operating conditions and small disturbances
over extended periods. This aspect of voltage stability is
relevant for the cyber-attacks considered in this study. In the
case of considered cyber-attacks, attackers aim to alter system
parameters stealthily over time without causing immediate,
large-scale disruptions.

A. VOLTAGE STABILITY INDEX

The voltage stability index is an indicator of power system
health and operational reliability, quantifying the system’s
ability to maintain steady voltage levels. This index is
designed to reach a marginal value as the system reaches
close to the instability point. A power system’s operational
state remains within the specified range by ensuring voltage
stability at each bus [30]. To assess the stability of the overall
system, we considered both the bus and line voltage stability
indices [31] which will be discussed next.
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1) BUS VOLTAGE STABILITY INDEX
We express the bus voltage stability index at the i bus, Ag,
as

ZF,b— : (1)

where V;, denotes the voltage at the b generator bus, and V;
stands for the voltage at the i load bus. N, and N; indicate
the number of generator buses and load buses, respectively.
Matrix F is expressed in terms of the sub-matrices Y;; and Yjp,
of bus admittance matrix Y as follows:

[F]=[—Yul ' [Vi]. 2

Let Iy, I;, Vp, and V; represent the current and voltage at the
b generator bus and i™ load bus, respectively. The bus admit-
tance matrix is decomposed into 4 sub-matrices as follows:

I | | Yop Yui || Vi
-Gl e

The AiB index ranges from O to 1, with values 0 and 1 indi-
cating low and high voltage instabilities, respectively.

The data concerning the operational status of a power
system, such as magnitude of the voltage (|V|), is transmitted
to the Energy Management Center (EMC) through an exten-
sive communication channel. However, in the context of a
communication network, this data is susceptible to malicious
cyber-attacks. Such attacks can result in the alteration of the
measurement data presented to the EMC operator and provide
a false depiction of the voltage stability index. In the event of
cyberattacks, the Ag index can be falsely altered at various
buses. The manipulated A% index, denoted as Ais at the i
bus is expressed as

W“‘

Aj = 1—ZF,b— : )

where V; indicates the false voltage measurement at bus i.
Taking the average of Ay over all the buses gives the global
bus voltage stability index for the whole system.

2) LINE VOLTAGE STABILITY INDEX
The bus voltages Vi and V; at the ends of the line connecting
buses i and j are related by

PyR + OiiXr\> [ PiiXr — iR\’
Vk:\/(‘/]+ kj ij R) +( kjAR ij )’ (5)
v 4

where the active and reactive powers flowing from bus k
to bus j are denoted by Py; and Qy;, respectively; R is the
equivalent resistance and Xy is the reactance of the branch.
The line voltage stability index A of the line connecting
buses k and j is given by:

W Vi

Al = ; (6)
\/ 2ij + 2 (PR + OkiXr)
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and satisfies this condition 0 < A]]i] < 1. If the system
operates close to the stability limit, the index will approach 1.
For a power system with N}, branches, the index of the most
unstable branch is selected as the indicator of overall line
voltage stability, AL = max{A!, A%, e A]Lvh}. The final
overall voltage stability index A, is determined by taking the
maximum between the two indices, i.e., A, = max{Ar, A}.
By considering the stronger index, this approach acknowl-
edges that the overall system can continue to function
effectively as long as one aspect remains uncompromised.
This approach will improve the resilience and robustness of
the system against cyberattacks.

lll. BI-LEVEL OPTIMIZATION PROBLEM FORMULATION
In this section, we formulate a bi-level optimization problem
for voltage stability in the power systems. This problem
involves an attacker and a defender with their distinct roles
and objectives. In this context, the attacker aims to maximize
the damage by disrupting the voltage stability of the system.
On the other hand, the defender seeks to minimize the damage
impact by implementing security measures. These conflicting
objectives and strategies create a dynamic and adversarial
environment where the actions of one party influence the
choices made by the other. If an attacker successfully alters
the voltage measurement at a bus, the original voltage at
that bus will change by AV,. The attacker’s manipulations
are denoted as AV, = [A Val, AVaz, ey AV;V '1. Concretely,
the defender uses load compensation devices to regulate the
voltage by injecting the reactive power at load buses. The
defender’s action to the attack AV, is defined as g4 =
[q}i, qtzi, ey qgl], where g4 is the reactive power vector that
the defender can compensate against attack AV,. Now, given
the AV; and qZ at i™ load bus, the utility function of the
attacker is defined as

N;

Ud(AVa, qa) = D Pa (hi) AL, )
i=1

where P, (h;) is the probability of outcomes of attack at load
bus i depending on the binary variable A; [32]. If the attack
on node i is successful, then #; = 1; otherwise, #; = 0. The
defender’s utility function is defined as

Ui(AVq, qa) = —Us(AVq, qa). (3)
Given the utility functions of both attacker and defender, the
bi-level optimization problem is formulated as:

8(AVy, qq) = arg max Us(AVy, qq) 9
f(AVq, qq) = arg rrgx Ua(g(AVqy, qa). qa), (10)

s.t. upper — levelconstraints :
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Pi= > aji (Vi= Vi) +af,; (8 —8:).Vie (N}
i i i
Qi= D iy (Vi— Vi) — e, (8 —8;). Vi € (N}
[N
PIARS Wl
i i

130" -> 0" =0

i i
P < P < P, Vi € {N))
O™ < Qi < O™, Vi € (N1}
V,'mm <Vi< Vimax’ Vie {Nl}

Ha
Z Ci < B,
i=1

(11a)
lower — levelconstraints :
q; < quax, Vi e {N;}
>0 -3 o =0
/ i (11b)

oM < 0; < O,
LS=0
$=0,

i

Vi e {N}}

where

e P;, O;: active and reactive power at bus i, resp.

« P Q": injected active and reactive power at bus i,
resp.

o PN, O°": consumed active and reactive power at bus 7,
resp.

. P}“i“, P™: minimum and maximum active power limit
at bus i, resp.

. Q;“in, Q" minimum and maximum reactive power
limit at bus i, resp.

o VUM VI minimum and maximum voltage limit at

bus i, resp.
o Cj, B,: cost of attacking bus i and total attacker’s budget,
resp.

o L;:load shedding at bus i.

Eq. (9) represents the upper-level objective function defined
from the attacker’s perspective that aims to maximize the
disruption of the voltage stability index. For defender’s action
qa, the attacker determines a strategy pair, g(AV,, q4). The
lower-level objective function defined in Eq. (10) represents
the defender’s perspective, whose aim is to maximize the
compensation for the attacker’s action.

The constraints of the optimization problem include the
upper-level and lower-level constraints defined from the
attacker and defender perspectives, respectively. The set of
upper-level constraints in Eq. (11a) consists of (in order): the
active and reactive power flow from bus i to i/, where «; y =
Ry /Rii, + Xfi,, a;’i, = X,;lv/R%’i, + Xfl.,, and §; indicates the
voltage angle at bus /; active and reactive power balance; the
limit of the total active and reactive power demand; the mini-
mum and maximum voltage limit; budget limit as the attacker
has a limited budget for creating an attack. An attacker has a
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limited ability to attack a certain number of nodes, n, due to
budget constraints. The lower-level constraints in Eq. (11b)
consist of (in order): maximum reactive power limit of a
bus constrained by q’émax; reactive power balance; reactive
power limit, and load shedding constraints. In the bi-level
optimization framework, by iterating between the attacker
and defender levels, the optimization framework provides
a balance between effective defense and successful attack
strategies.

IV. GAE-BASED ATTACK DETECTION SCHEME
The features of GAE-based attack detection framework are
next reviewed.

A. COMPONENTS OF GRAPHS

Since an interconnected power system can be portrayed as
graph structure, GAE-based methods can be implemented
to comprehend its complex behavior and characteristics.
In the considered graph representation, the components of
the power grid are translated into graph elements with the
buses representing the nodes and their connectivity serving
as the edges. The modeling of power grids commonly takes
the form of undirected interconnected weighted graphs [22],
[27]. In this paper, we choose to represent the power system
as an undirected graph since the directed graph’s asymmetric
adjacency matrix constrains the exchange of data within the
network. Fig. 1 presents the considered undirected power
system model. We define the power system graph as the
triplet G = (N, &, W). Each element of the set of nodes
N corresponds to a specific bus of the power system. The
set of edges & indicates the physical lines that interconnect
the buses, facilitating the power flow throughout the network.
The adjacency matrix W € R"*" models the weighted rela-
tionships between buses. When buses i and j are connected,
the weight W;; is assigned to the edge e = (i,/). This
representation facilitates the GAE to capture the system’s
state by integrating both the topological characteristics (i.e.,
the position of buses in space and their interconnections) and
the temporal attributes (i.e., power flows) of the power grid.

B. LEARNING OBJECTIVE

We would like to classify input samples X into the two dis-
tinct categories, corresponding to the presence and absence
of cyberattacks, respectively. The input samples contain the
temporal measurement data for active and reactive power
values, [P,, Q,] € R™2 at the " timestamp. Fig. 2 depicts
the model’s architecture. The input data is fed to the graph
encoder layers /g, which output the latent representation at
latent layer /y. The graph decoding layer Ip follows. The
aim is to learn the data patterns from benign input samples
so that at the time of testing any deviation from the normal
operating state can be flagged. Such a deviation is measured
by the reconstruction error n while reconstructing. The graph
encoder and graph decoder functions are denoted by Eg =
fe (X) and Dg = fp (X) respectively. The objective function

VOLUME 12, 2025
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FIGURE 1. Graph representation of the Iberian power system.

of the proposed model is defined as
IfB?C(X,fD (fe (X)), (12)

where {1t} stands for the set of training parameters. The cost
function C (.) represents the mean squared error and measures
the dissimilarity between fp (fg(X)) and X.

C. CHEBYSHEV CONVOLUTION OPERATION

During each training stage, the spectral graph convolution
of signal 0 € X is performed as Ul/thTa. Matrix U
incorporates the eigenvectors of normalized Laplacian L =
UQUT, spectral filter ¥, = diagonal (9), and parameter
vector is denoted as & € R”" in the Fourier domain. The
diagonal matrix € captures the non-negative eigenvalues X
of L. The Fourier transformation of ¢ is conducted through
U” . A major limitation of this filtering operation is that it
is not always guaranteed to be spatially localized. Spatially
localized filters are important as they can extract features
from particular regions of interest within the input data, rather
than performing filtering operations over the entire input
sequence. This concern can be addressed by employing a
polynomial approximation, Hy, () = > % QF where
y = (1, Y2, ..., ¥Ym) represents the vector of coefficients
that the model seeks to learn for an m-order polynomial.
To improve the training stability of these polynomial filters,
a truncated Chebyshev polynomial expansion of H) () is
introduced in [33]. Concretely, the enhancement of H) (£2)
using Chebyshev polynomials Ny(82) of order m is defined
as

Hy(®) = D" niNp(R) (13)
k=0

where 2 = 28/A — L. The Chebysheb polynomial-based
recursive formulation takes the form N,,(p) = 2pN,,—1(p) —
Nm—2(p) with N9 = 1 and N; = p. The filtering process is

VOLUME 12, 2025

expressed as

UH, (@)U "o = Hy(L)o = > yNeL)o,  (14)
k=0

where L = 2L /) — 1. The computational complexity of the
filtering operation is O(m|€|). Moreover, as the Chebyshev
polynomials are limited to the m™ order, the filter operation
is limited to m hops. This enables the implementation of
localized Chebyshev convolutions.

D. GAE ARCHITECTURE

The GAE architecture consists of three layers: 1) encoder
Eg that maps the input graph data into a lower-dimensional
latent space; 2) latent layer /5 (X); and 3) decoder Dg that
reconstructs the original graph data from the latent space.

1) GRAPH ENCODER Eg

The graph encoder has /g Chebyshev graph convolutional
layers. The inputs to the graph convolutional layers or the
number of channels in a hidden encoding layer /¢ is indicated
by N.. These layers extract the spatial characteristics from the
network via graph convolution operations, bias addition, and
the application of the ReLLU activation function. The result is
the output tensor denoted as

X'F = ReLU (y,,, xg X'E1 4 blE) . (15)

Here b'E denotes the bias of layer [ and *g represents the
graph convolutional operator. The bias in the ReLU activation
function helps to capture non-linearities.

To extract the temporal relationships from the time-series
signal, we incorporate an LSTM unit that facilitates the
modeling of recurrent information flows. For each node, the
output of the previous graph encoder is a vector that serves as
the input to the LSTM layer. As the information flows through
the LSTM, it maintains a memory of past information, allow-
ing it to capture temporal dependencies and patterns over
time. The LSTM layer adapts to handle sequential data and
is ideal for time series processing. The memory module
mitigates issues such as vanishing or exploding gradients
that often arise during the learning process. An LSTM cell
consists of the input 7 , output o] , and forget gate f;’ .

Inside an LSTM unit, there exist two distinct states: 1)
the cell state C ’E, which retains information for an extended
period, and ii) the LSTM output or hidden state H ;E The two
states are expressed as:

. €l = FLC ity anh (Wi XG, + UL HI + by,
« H| =0} tanh(Cf )
E E E
C ;E_l and H ;E_I represent the previous cell and hidden states,
respectively; W, and U, refers to the learning weights and

by, is the bias; and ¢ (-) signifies the non-linear activation
function.
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FIGURE 2. Architecture of the proposed GAE.

2) LATENT LAYER Iy

Iy enables a compressed representation of the input infor-
mation. The latent layer holds the compact representation of
data which is then concatenated with X2 and conveyed to the
graph decoder.

3) GRAPH DECODER Dg

The main aim of the graph decoder is to produce an output V*
that closely resembles the input X. The reconstruction error
is measured via

n=|v:-x|*. (16)

In the same vein as the graph encoder, the outputs of the
graph decoder are sequentially fed to the LSTM that pro-
cesses time-evolving graph features. The LSTM updates its
current hidden state H ;D based on the current input from
the graph decoder layer and the previous hidden state H ;;1
seamlessly. The update mechanism allows LSTM to retain in
memory the previous graph states and the capturing of tem-
poral dependencies across graph states. The cell state of the
graph decoder-LSTM is regulated by i , 0] , and f; , which
stand for the input, output, and forget gates, respectively. The
decoder cell and hidden state are given by:

. Cl, =, Cly ! i, tanh (WEXI + UG H +55).
« Hj, =0l anh(C},).
E. TRAINING AND TESTING
At each timestamp 7, each node (i.e. bus) of the con-
structed graph contains a voltage signal, V (v;, t), used as
an input to the GAE model. As discussed in Section IV-B,
the objective is to reconstruct the voltage tensor, V* (f) =<
Vi), vi(),...,vy(t) > from the input V =<
vi(@),va(t),...,v,(t) >. Given a training dataset that
contains |nT| training samples, our task involves training
GAE with the aim of maximizing the likelihood of V*.
The GAE model is designed to distinguish benign samples
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from malicious samples based on the reconstruction error
(12). During training, the model extracts the features from
the normal condition data. At the time of testing, it can
identify abnormalities by performing a comparison between
the reconstructed samples and the actual samples. To expedite
the training process, we partitioned the training data into
batches of equal size, X,, € X, which are processed through
the model for 132 epochs with a specific learning rate ¢.

V. THREAT MODELING AND DATA GENERATION

A. THREAT MODEL

If the voltage measurement at bus i and timestamp ¢ is denoted
as V/, then the true voltage measurement, Vt’rue’. should align

]
with the measured voltage, V} . at control end (i.e., V., =
|78 ;). The tampered voltage measurement may contain false
data values. The attack functions during different attack sce-

narios are represented as

Attackfunctions
Vftalse,i = Vttme‘i + AVit
Vf[alse,i = th;ue,i - AVit (17a)
Vftalse,i = Vt_true,i +e- AVit —(I—e)- AV;,

where AVl.t denotes the maliciously inserted data by the
adversary, and e denotes a binary variable with a value of
1 indicating an additive attack and O representing a deductive
attack. The attack functions in Eq. (17a) incorporate additive,
deductive, and combined attacks. During the additive attacks,
the manipulation intends to keep the voltage measurements
within the permissible range, while in reality, the actual
voltage readings might fall below the considered threshold.
Additive attacks can create a situation where an unusually
high voltage level is introduced into the system. The excessive
voltage, if not promptly detected and mitigated, may overload
the protective elements and safety mechanisms. On the other
hand, deductive attacks create the false impression of lower
power levels than what truly exists in reality. The reduction
in voltage level may lead to a false sense of security, poten-
tially causing the voltage regulation elements to underreact
or remain passive. Lastly, in the combined attack scenarios,
the attacker creates a more complex attack pattern containing
both additive and deductive attacks. The attacker may target
some nodes with additive attacks and other nodes with deduc-
tive attacks, potentially leading to system inefficiencies and
malfunctions.

B. IMPACT OF ATTACK SCENARIOS ON SYSTEM
BEHAVIOR

In this section, we elaborate on how these attacks influence
the system’s dynamics and the overall reliability of the sys-
tem.

1) ADDITIVE ATTACKS

Additive attacks result in apparently higher voltage readings,
potentially causing the system to experience overvoltage. Due
to this false sense of security, the system might not increase
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reactive power support or may delay shedding load to relieve
stress on the system.

2) DEDUCTIVE ATTACKS

In contrast, deductive attacks decrease the voltage read-
ings, potentially leading to undervoltage conditions. This
false perception of instability may cause the system to
overcompensate by injecting excessive reactive power. Such
overcompensation can destabilize the system, leading to inef-
ficient operations and potential voltage oscillations.

3) COMBINED ATTACKS

Combined attacks involve a combination of both apparently
higher and lower voltage readings across different parts of
the system. These fluctuating voltage readings can cause
significant confusion for system operators, as some parts of
the grid may appear to be stable while others seem unstable.
This inconsistent data can lead to both under and over-
compensation, where operators might simultaneously reduce
reactive power in some areas while unnecessarily injecting it
in others.

C. STRATEGIES FOR ATTACKS

1) RANDOM NODE ATTACKS

These attacks involve randomly selecting power buses as
targets. In essence, they consist of randomly selecting r buses
from a total of N; buses. This random selection offers a mul-
titude of possible subsets N;!/(r!(N; — r)!) and their impact
can cause severe voltage instability, particularly if the affected
buses are not quickly returned to normal operation.

2) VULNERABLE NODES ATTACKS

Vulnerability concerns the likelihood of a power node act-
ing as a possible weak spot in the system. A cyberattack
on such a sensitive bus could potentially inflict significant
voltage instability on the entire system. The objective of
vulnerability evaluation is to assign vulnerability scores to
individual nodes. We examined an extensive set of vulner-
ability metrics, containing electrical as well as topological
metrics. The electrical vulnerability metrics comprise i) load
shedding, which quantifies the total apparent power in the
aftermath of a disruption, ii) betweenness centrality that eval-
uates the degree to which a bus is positioned along paths
connecting two other buses, iii) effective graph resistance
provides a comprehensive measure of the cost associated with
power transfer between two buses of the network, and iv)
degree centrality, representing the count of direct power flows
affecting a power bus. The metrics for assessing topologi-
cal vulnerability encompass i) degree centrality, representing
the count of nodes and power lines that directly impact a
node, ii) connectivity impact determines the count of nodes
that stay interconnected following a disruption, iii) clustering
coefficient, modeling the tendency of buses to form clusters,
iv) connectivity loss, which measures the average reduction
in the count of generation units following a disruption, v)
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betweenness centrality, indicating a bus’s role in the smallest
paths that connect two other buses.

We determine the weight factors for each vulnerability
metric using the Analytical Hierarchical Process (AHP) that
performs a pairwise comparison to establish their relative
importance. We then calculate the topological vulnerability
score by weighting and summing the topological metrics,
and perform similar operations for the electrical vulnerability
score. Finally, through a second AHP analysis, we attain the
weights for both the electrical and topological vulnerability
scores to calculate the overall vulnerability score.

D. DATA GENERATION

To generate the normal time-series voltage data, we perform
power flow analysis using Newton’s method in the MATLAB
MATPOWER toolbox. This toolbox facilitates the calculation
of system voltages, currents, and both real and reactive power
flows. Initially, a scalar vector, F' is created by normalizing
the voltage data from the considered power system. This
scaling factor is then applied to the voltage data from the
preceding timestamp, using a normal distribution with a mean
of 14-0.025F and a standard deviation of 0.01. This operation
increases the dynamic range of the data, generating dynamic
changes in the time-series voltage datasets.

This approach generates extensive spatiotemporal datasets
for power systems in both standard and attack conditions,
essential for developing detection mechanisms against volt-
age stability attacks. For the chosen system, 288 daily power
dynamics snapshots (every five minutes) are recorded. Fol-
lowing the specified attack strategy, bad data are injected, and
the resulting datasets, containing node voltage features and
edge power flow features, are used to train and test the model.
Input features provide a full view of system operations,
while binary output labels classify samples as “normal” or
“anomalous.” This structured data supports model training to
enhance power system security against cyber threats, focus-
ing on voltage stability.

VI. EXPERIMENTAL SETUP

In this section, we present the benchmark detectors and the
process of hyperparameter selection. Choosing the optimal
hyperparameters allows the detectors to achieve their best
performance and provides a fair and balanced comparison
within the detectors. Subsequently, in this section, we provide
the definitions for the performance evaluation metrics.

A. PROPOSED MODEL SIMULATION

The developed GCNN-LSTM prediction algorithm takes the
data sample, learning rate, regularization weight, the number
of LSTM hidden layers as well as the number of graph
convolution structures as input. The model is configured
with 64 neurons per layer and incorporates a dropout rate
of 0.2 to prevent overfitting. The Adam optimizer is used
for efficient training, with an order of neighborhood K =
5 to capture the local structure of the graph. The model is
processed by first calculating each sample’s adjacency and

19



IEEE Open Access Journal of

s power and Energy

Laplacian matrices. The encoder transforms these matrices
into a latent representation, from which the decoder recon-
structs the graph. The model’s performance is optimized by
minimizing the reconstruction loss through backpropagation,
iterating until a predefined error threshold is reached. The
training of the model, performed on an NVIDIA GeForce
RTX 3080, takes approximately two to four hours to achieve
optimal results. This GAE model is a robust tool for encoding
and reconstructing graph structures with high accuracy.

B. BENCHMARK DETECTION STRATEGIES

We herein assess and compare the FDIAs detection per-
formance of the GAE-based approach against two primary
classes of detectors: the detectors based on graph theory
and the traditional machine learning-based detectors. The
graph-based detector is considered based on the formulation
n [22]. On the other hand, the traditional machine-learning
detectors include: 1) ARIMA model: a shallow unsupervised
learning model that forecasts future patterns by reducing the
mean squared error (MSE); 2) LSTM: a type of recurrent neu-
ral network (RNN) that equipped with specialized memory
cells that can capture long-range dependencies and handle
vanishing gradient problems; 3) feedforward neural network
(FNN): a supervised architecture that extracts features by
using a stack of hidden layers consisting of fully connected
neurons; 4) CNN, which employs convolutional operation
to learn the features adaptively; and 5) SVM: a supervised
machine learning algorithm that works by finding a hyper-
plane separating different classes.

C. HYPERPARAMETER OPTIMIZATION

To optimize the detection performance, we utilize a sequen-
tial grid search algorithm to optimize the hyperparameters
of both the proposed and benchmark detectors. The opti-
mal hyperparameter, H{ = {number of layer, number
of neurons in each layer, dropout rate, optimizer, acti-
vation function, order of neighborhood} for CNN, FNN,
LSTM, GCNN and GNN are (in order): Hcnn =
{4,32,0.4, Rmsprop, 5, Relu}, Hpny = {4, 32,0, Adam,
N/A,Relu}, Hrstm = {3,32,0.2, Adam, N/A, Relu, }
Hoenn = {5,32,0.2, Rmsprop, 4, RelU}, and Hgan =
{6,64,0.2, Adam, 5, Relu}. For ARIMA model, we con-
ducted an exploration of the search space from the set
{0, 1, 2, 3}. Ultimately, we determined that the optimal values
for the differencing degree and moving average were 1 and 0,
correspondingly. For the SVM model, we have chosen the
optimal settings for the gamma, kernel, and regularization
parameters as: auto, sigmoid, and 1.

D. PERFORMANCE EVALUATION METRICS
The performance metrics to evaluate the detection perfor-
mance of the proposed FDIA detector are next discussed.

¢ Detection rate, DR = %, measuring the ability to

identify actual poisonous samples.
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o False alarm rate, FAR = %, indicating how fre-
quently non-malicious samples are incorrectly flagged
as threats.

e Accuracy, ACC = %, offering a compre-
hensive assessment of the detector’s performance in
detecting both malicious and benign samples.

In this context, TP, TN, FP, and FN signify the number
of true positives, true negatives, false positives, and false
negatives, respectively.

E. AHP OUTPUTS

We adopted the AHP methodology to determine the vulnera-
bility score of each node. The AHP outputs for topological
metrics are as follows: CSs neighborhood density: 0.3637,
connectivity impact: 0.1612, connectivity loss: 0.2458, and
betweenness centrality: 0.2294. For the electrical metrics,
the AHP outputs are: load shedding: 0.7555, effective graph
resistance: 0.0300, and electrical degree centrality: 0.2145.
After obtaining the weights through AHP analysis, each nor-
malized metric is multiplied by its respective weight. The
weighted metric scores are then summed to calculate the
vulnerability score of each node. Following this, we per-
formed AHP analysis again to determine the overall weights
for the topological and electrical metrics, yielding 0.8713 for
topological and 0.1287 for electrical metrics.

VIl. EXPERIMENTAL EVALUATIONS

This section presents the overall FDIA detection performance
of the proposed model across different attack scenarios and
injection levels.

A. OVERALL PERFORMANCE ANALYSIS

In this study, three different attack types are considered:
additive, deductive, and camouflage attacks. For the latter
attack strategy, both additive and deductive attacks are cho-
sen in equal proportions. For each attack scenario, 5, 10,
15, and 20% attack injection levels are chosen. On aver-
age the proposed model achieves 98.11% accuracy (ACC),
98.76% detection rate (DR), and 8.13% false alarm rate
(FAR). The model performs with relatively higher accuracy
for additive and deductive attacks compared to the combined
attacks. Moreover, the detection performance of the proposed
approach is further evaluated with the F1-8 score which
allows to control the balance between false positives and false
negatives using the 8 parameter. The F1-8 score is defined as

(1+8%) x (Pg x Rp)
(B> x Pg + Rp)

F1-8 = , (18)
where precision Pg indicates the accuracy of positive predic-
tions and is defined as Pg = TP;F—fFP. Recall Rg assesses the
model’s ability to identify all relevant instances in the dataset
and is defined as Rg = %.

The Fl-beta scores of the proposed model versus the S
values in the interval [0.6 — 1.5] are depicted in Fig. 3.

The scores approaching 1 indicate higher performance and
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FIGURE 3. F1-beta score across different g values.

TABLE 1. Performance against random node attacks.

TABLE 2. Performance against vulnerable node attacks.

. Injection levels

Attack type Performance Metric 59 10% 15% 20%
DR 98.31 97.78 97.01 95.88

Additive FAR 6.51 8.27 10.11 10.83
ACC 98.07 97.31 96.49 94.73

DR 98.22 97.67 96.99 95.75

Deductive FAR 6.58 8.37 9.95 11.33
ACC 98.00 97.17 96.37 94.56

DR 97.50 97.03 9591 94.64

Combined FAR 9.56 10.22 11.13 12.66
ACC 97.25 96.41 95.12 93.98

TABLE 3. Performance against DG node attacks.

the scores approaching 0 indicate lower performance. The
results shown in Fig. 3 confirm that the model achieves
a balanced performance between false positives and false
negatives.

B. PERFORMANCE AGAINST RANDOM ATTACKS ON
BUSES

The proposed model’s detection performance against random
buses attacks is depicted in Table 1. The results reveal that
as the injection level of the attack increases, the effective-
ness of the detection decreases. This drop in performance
can be attributed to the corresponding rise in false positives
detection. In the event of additive attacks, the model attains
98.85-95.78% in ACC, 6.50-10.83% in FAR, and 99.20-
96.42% in DR. In the event of deductive attack scenarios,
the model shows almost similar performance. Compared
to the additive and deductive attacks, the combined attack
reports a 3-5% drop in detection performance. This perfor-
mance drop may be due to the increased likelihood of false
positives.

C. PERFORMANCE AGAINST ATTACKS ON VULNERABLE
BUSES

During the most vulnerable bus attack scenario, an attacker
targets the most susceptible power buses to maximize the
damage. The performance of the proposed model for the
mentioned attack strategy is presented in Table 2. From
the table, it is observed that for each test case, the model
reports relatively lower accuracy compared to the random
node attacks. However, the model achieves more than 93%
accuracy across the attack scenarios.
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. Injection levels
Attack type Performance Metric 5% 10% 15% 20%
. Injection levels DR 97.91 97.16 96.01 94.63
Attack type | Performance Metric ™,/ 10% 15% 20% Additive FAR 6.59 8.57 10.99 11.26
DR 99.18 | 99.07 | 9817 | 9640 ACC 97.99 | 9705 | 96.19 | 95.36
Additive FAR 6.48 8.28 9.97 10.79 . DR 97.85 | 97.00 | 95.59 | 942l
ACC %587 T 9577 T 9788 95.80 Deductive FAR 6.64 8.71 11.07 11.89
DR 9510 T 9733 | 9648 0447 ACC 97.93 | 97.10 | 96.11 95.03
Deductive FAR 8.24 9.63 10.99 12.98 ) DR 97.30 | 9682 | 9522 | 94.00
ACC 03 T 9700 T 9650 0161 Combined FAR 695 8.75 1113 11.98
DR 715 9558 | 9497 92.90 ACC 97.76_| 9690 | 95.49 94.94
Combined FAR 1038 | 1093 | 12.80 13.72
ACC 9522 | 9558 | 9538 93.54

D. DETECTION PERFORMANCE AGAINST DGs ATTACKS
In this section, we assess the performance of the proposed
model in detecting cyberattacks specifically on DGs. Detect-
ing attacks on DGs presents unique challenges due to the
distributed and dynamic nature of these resources. In this
study, we considered non-dispatchable DGs as they are more
susceptible to the impacts of cyberattacks. Their output can-
not be easily adjusted to counteract the effects of such attacks.
If an attacker manipulates the voltage data associated with
these generators, the grid operators have limited options to
compensate for the discrepancy, potentially leading to stabil-
ity issues. By focusing on non-dispatchable DGs, the study
reflects real-world challenges and vulnerabilities in managing
these types of energy sources, making the research more rele-
vant to current and future power systems. Table 3 reports the
model’s performance in the presence of DGs attacks. Over-
all, from Table 3, we can conclude that the model achieves
more than 87% accuracy over the test scenarios. Similar to
the random and most vulnerable buses attack strategy, the
performance for DGs attacks decreases with the increase of
the attack injection levels.

E. COMPARATIVE DETECTION PERFORMANCE

In Fig. 4, the detection performance of the proposed GAE
model is compared with other state-of-the-art detectors.
To obtain a consistent comparison, all models are tested
with optimal hyperparameters, as described in Section VI.
The attack injection level for all the models is kept con-
stant at 20%. From Fig. 4, it is observed that the proposed
GAE-based detector achieves the highest DR and ACC and
the lowest FAR. The graph CNN (GCNN)-based detector
performs closer to the proposed GAE-based detector, yet the
proposed model holds superiority over the GCNN model.
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FIGURE 4. Detection comparison with benchmark detectors.

ARIMA model-based detector exhibits the poorest perfor-
mance in terms of detection capabilities. This indicates that,
in the context of the application, ARIMA’s ability to detect
specific criteria or anomalies falls behind that of the other
models considered. The aforementioned relative performance
analysis confirms the superiority of the proposed model.

F. PERFORMANCE AGAINST NOISE

In this section we introduced synthetic noise into the orig-
inal data to mimic the real-world scenarios where data can
be inherently tampered, noisy, or subject to uncertainties.
By incorporating noise into our modeling process, we aim to
create a more realistic representation of the system’s behavior
and topology. In a realistic system setting, the elements of
power systems are exposed to interfering signals, for instance,
corona noise, jet flyovers, insulator noise, wind-induced
noise, or noise due to human intervention. This indicates
that the measured signals from the power systems present
irregular and changing properties, and important fault-related
information may get hidden amidst strong noise. To mimic
such a scenario, we included Additive White Gaussian Noise
(AWGN) into the original data with a signal-to-noise ratio
(SNR) ranging from 10 to 20 dB (as per [34]). We then tested
our proposed system using this noisy data. The results pre-
sented in Fig. 5 reveal that within the considered noise range,
the proposed model maintains a good detection performance.
Specifically, only a 2% drop in detection performance is
observed when compared to the low noise condition at 10 dB
SNR. During the robustness analysis, we kept the training
data free from noise and tested the system with noise-injected
data it had not been exposed to before. This analysis confirms
the noise-immune performance of the proposed method.

VIil. PRACTICAL IMPLEMENTATION

Implementing the research on detecting cyber attacks on
voltage stability in a practical system setting involves several
key steps. First, the GAE model developed in this study can
be integrated into the power grid’s existing monitoring and
control infrastructure. This integration can occur at central-
ized control centers where real-time data from various nodes
in the power grid are continuously collected and analyzed.
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FIGURE 5. Performance against different levels of noise.

The model will process incoming voltage data, which could
come from SCADA systems. The practical deployment may
also include setting up automatic response mechanisms based
on the model’s detections. For instance, the system could
isolate affected parts of the grid, adjust reactive power sup-
port, or initiate load shedding to prevent a voltage collapse.
Additionally, the proposed model is trained on the year-round
data, it generally does not require frequent retraining unless
there are significant changes in the power system’s topol-
ogy or operational conditions. Moreover, periodic retraining
could also be considered a best practice, especially in systems
where operational patterns evolve over time due to factors like
changing demand profiles and the increasing penetration of
renewable energy sources.

IX. CONCLUSION

This study introduced a GAE-based FDIA detection frame-
work in the context of voltage regulation. The proposed
detector combines the autoencoder with Chebyshev graph
convolution recurrent layers to effectively capture both spatial
and temporal correlations in measurement data. A bi-level
optimization framework is proposed to design cyberattacks
and enhance the model’s adaptability and resilience in the
face of dynamic network changes and errors. In addi-
tion, we considered attacks on DGs that contribute to grid
resilience and renewable energy integration. The extensive
simulation studies conducted in this paper report that the
proposed model achieves accuracy levels as high as 93.80%.
A comparative performance analysis against the benchmark
detectors shows an average of 20% improvement in ACC. The
development of a generalized cyber attack detection scheme
remains open for future investigations.
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