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Abstract

Enantiomerically or diastereomerically enriched transition metal complexes bearing formally
anionic, sp3-hybridized, C-stereogenic alkyl ligands ([M]-R*) are historically important for
applications in determining the stereochemistry of fundamental steps in organometallic chemistry;
isoelectronic P-stereogenic analogues ([M]-P*) have been studied more recently. These complexes
are key intermediates in asymmetric catalysis, and the stereochemistry of their formation and
reactions controls stereoselectivity. Understanding these processes with chiral catalysts may enable
rational design of asymmetric transformations. This review covers their chemistry, including
preparation by resolution or asymmetric synthesis (controlled by chiral substrates or chiral
ligands), configurational stability, the stereochemistry of fundamental transformations, and their

role in catalysis.

1. Introduction

1.1 Why?

This review covers enantiomerically or diastereomerically enriched transition metal complexes
bearing formally anionic, sp3-hybridized, C-stereogenic alkyl ligands, abbreviated here as [M]-R*
(Scheme 1, left). This class of compounds is historically important for its applications in
determining the stereochemistry of fundamental steps in organometallic chemistry, such as
oxidative addition/reductive elimination and migratory insertion. As noted by Whitesides, “The
most valuable single type of information to have in characterizing the mechanism of a reaction
that makes or breaks bonds at a tetrahedral carbon atom is the stereochemistry of the
transformation at that carbon.”’ The Sx1 and Sx2 substitutions are classic examples in organic

chemistry; progress in this area for organometallics was reviewed by Flood? in 1981 and, in part,



by Malinakova® in 2004; this manuscript includes more recent examples. In asymmetric catalysis,
[M]-R* complexes are key intermediates and the stereochemistry of their formation and reactions
controls stereoselectivity. Understanding these processes with chiral catalysts may enable rational

design of asymmetric transformations.

Scheme 1. Transition Metal Complexes with C-Stereogenic Alkyl Ligands and Their P-

Stereogenic Analogues
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To complement study in these well-established areas, more recent work has investigated P-
stereogenic analogues (Scheme 1, right). In addition to two anionic substituents (R,R’ = H,
alkyl/aryl, halide, alkoxide, etc.) these “carbon copies™ also include a group (E =0, S, BH3) which
gives them a formal negative charge and distinguishes their chemistry from the more common
phosphine ligands, PR3.

1.2 Scope of this review

This review focuses on transition metal complexes which have been isolated or observed
spectroscopically, omitting studies where the stereochemistry of catalytic or stoichiometric
transformations of a chiral substrate is used to infer details about the process.> Main group [M]-
R* complexes, for example of Mg or Li, appear only when used for transmetalation to transition
metals. These extensively studied organometallics, however, are useful in asymmetric synthesis
and stereochemical studies, as described in multiple reviews.® Although complexes with other

chiral hydrocarbyl ligands are known, the focus here is on simple alkyls, leaving out w-allyl,’

atropisomeric,® and planar-chiral examples.” In most cases, the R* group is enantiomerically



enriched, but diastereomeric mixtures sometimes also provide valuable information, as described
below.

Although not covered here, one such approach deserves special mention. Whitesides developed an
NMR method to determine the stereochemistry of reactions which formed or destroyed [M]-R*
bonds." It relies on the magnitude of H-H coupling in threo and erythro isomers of specifically
deuterium-labeled organometallics. Scheme 2 shows an example, where migratory insertion was
shown to proceed with retention of configuration at carbon, since the erythro starting material was
converted to an erythro product, in which H and D remained sy to each other. Newman projections
are often used to illustrate these processes. Since its introduction in 1974, this approach has been

applied in more than 100 papers, which are accessible from citations of reference 1.

Scheme 2. Example of the Whitesides NMR Method for Determining the Stereochemistry of

Reactions at Metal-Carbon Bonds
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2. Synthesis [M]-R* complexes may be prepared by the standard methods used for other
organometallics. Scheme 3 shows some of the most common approaches. Oxidative addition of an
enantiomerically enriched chiral substrate R*X gives a C-stereogenic ligand. X is commonly a
halide or related leaving group, but examples of C-H, C-C, or C-P oxidative addition are also
known. Transmetalation, often from a main group organometallic [M’]-R*, may transfer
enantiomerically enriched R* with complete retention or inversion of configuration. However,
configurational instability of the main group and/or transition metal alkyls (see section 3 below)
provides the opportunity for asymmetric induction in this step. Finally, migratory insertion of an
alkene into a M-H bond, with appropriate regiochemistry, may also yield [M]-R* groups in a

process often seen in asymmetric catalysis.

Scheme 3. Synthesis of Transition Metal Complexes with C-Stereogenic Alkyl Ligands
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2.1 Resolution

Instead of starting with an enantiomerically enriched substrate, a more general approach to [M]-
R* complexes is resolution, often using reagents derived from the chiral pool. Ideally, separation
of the resulting diastereomers gives them both in high yield and purity, and the resolving agent can
be removed from the products without erosion of enantiopurity and recovered. In practice,

resolution often requires trial and error, and it is often challenging to accomplish all these goals.!”



Scheme 4 shows an early example, in which diastereomeric Ni-alkyls were partially separated by

recrystallization of their menthyl esters.!!

Scheme 4. Diastereomeric Chiral Nickel Alkyls Bearing a Pendant Menthyl Ester
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Similarly, oxidative addition of a diastereomeric mixture of alkyl bromides bearing a menthyl ester

substituent to mercury metal gave separable [Hg]-R* diastereomers (Scheme 5).!2

Scheme 5. Synthesis and Diastereomer Separation of Chiral Organomercury Complexes Bearing
a Pendant Menthyl Ester
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The tricyclic palladacycles in Scheme 6 formed polymeric aggregates but are shown as monomers
for simplicity. As in Schemes 4-5, preparation of menthyl esters, here by transesterification, gave
separable diastereomers.!* A similar resolution was accomplished using the chiral bis(phosphine)

diop.'*



Scheme 6. Resolution of Chiral Palladacycles Using Menthol or Bis(phosphine) Chiral Auxiliaries

diastereomer separation

(=)-menthol OH
racemic cat. p-TsOH
AN
(-)-menthol
H
><O " PPh,
o) PPh,
H
diop

Chiral amines and amino acids are often used as resolving agents for [M]-R* complexes because
of their low cost, structural diversity, and ready removal with acid. For example, Scheme 7 shows
resolution of palladacycles with the readily available PhCHMeNH; or a proline derivative.!>-16
Note: depending on the relative orientation of the bidentate ligands, dinuclear Cl-bridged
palladacycles like 1 can exist as cis or trans isomers, which may interconvert in solution,'” and
their structures have not been determined in some cases. To reflect this ambiguity, this common
motif (see also Schemes 9-12 and 16 below) is drawn in this review as a generic dimer, except in

cases where the geometry is known.



Scheme 7. Resolution of Palladacycles Using a Chiral Amine or Amino Acid
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Similarly, cyclopalladation of a quinoline-phenol gave chiral amine adducts (Scheme 8).'® For n =

1, after separation of the diastereomers, the chiral amine could be replaced with pyridine.

Scheme 8. Resolution of a Quinoline-Derived Palladacycle with a Chiral Amine
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A 1972 report of direct cyclopalladation of ethylquinoline with LixPdCls (Scheme 9) was later
claimed to be irreproducible.!” Nevertheless, resolution of the resulting Cl-bridged dimer with
PhCHMeNH; enabled isolation of enantioenriched adducts. Replacement of the chiral amine with

PPh; gave another optically active derivative.?°
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Scheme 9. Resolution of an Ethylquinoline-Derived Palladacycle with a Chiral Amine
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Related palladacycles formed from ethylquinoline were resolved using the amino acid S-leucine
to give both diastereomers in about 90% de. Scheme 10 shows an example where the resolving

agent could be removed with acetic acid.?!

Scheme 10. Resolution of a Chiral Ethylquinoline-Derived Palladacycle Using an Amino Acid
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Scheme 11 shows a related resolution with a chiral diamine. The product was thermally stable (110
°C, 3 h, no epimerization), but attempted amine removal with HCI caused some loss of

enantiopurity. However, using acetic acid at lower temperature avoided this problem.??

11



Scheme 11. Resolution of a Chiral Palladacycle Using a Chiral Diamine

>98% de
racemic ligand after separation >98% ee
(tBu), (+Bu), (+Bu),
@L{P\Pd/m\ (S,9)-stien @g; _AcOH _ @Pd/m\
AN / CH,ClI, AN
Me 2 d H2 5°C H Me

In a variation of this approach, transmetalation of a chiral (racemic) organolithium to a chiral

amine-palladacycle gave diastereomers which were separated by recrystallization (Scheme 12)."

Scheme 12. Formation of Diastereomeric Palladacycles by Transmetalation from Lithium

SIMe3
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Resolutions with chiral amines are not restricted to [Pd]-R* complexes. Scheme 13 shows a related
process in cobaloxime complexes, where a chiral Co-alkyl group was generated from hydrogen

and an alkene.?

12



Scheme 13. Synthesis of Chiral Cobalt Alkyls from Hydrogen and Acrylonitrile and Their

Resolution Using a Chiral Amine
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2.2 Absolute asymmetric synthesis

Resolution provides at most a 50% yield of one enantiomer. In an unusual but attractive approach,
some racemic compounds which crystallize in a chiral space group form enantiomerically pure
crystals. This “absolute asymmetric synthesis” has been discovered only by trial and error, but
when successful it provides [M]-R* complexes without requiring any chiral material. For example
(Scheme 14), the bis-picoline adduct of bis-indenyl zinc crystallized in high enantiomeric excess
and could then be halogenated with high ee.?* Similarly, spontaneous resolution of bis-MeCp

complex 2 also occurred, giving enantiomerically pure crystals.?’

13



Scheme 14. Absolute Asymmetric Synthesis of a Chiral Organozinc Reagent and its

Stereoselective Halogenation
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2.3 Chiral substrates

[M]-R* groups may be prepared directly from chiral substrates by oxidative addition of
enantiomerically enriched R*X, where X = halide or H, by selective activation of one hydrogen in
a CHz group, or by other methods.

2.3.1 Oxidative addition

Oxidative addition of an enantiomerically enriched quinoline derivative to Pt(0) gave a
platinacycle whose regiochemistry was not reported; Scheme 15 shows one possible regioisomer.
On the basis of optical activity measurements, inversion of configuration at carbon was claimed.
However, as acknowledged in the paper, the authors were not able to gauge the extent of

stereoselection or the absolute configurations of the reactants and products.?®

14



Scheme 15. Synthesis of a Chiral Platinacycle by Oxidative Addition of a Chiral Quinoline Alkyl

Bromide Derivative
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Related palladacycles were prepared from an enantiomerically enriched organomercury complex,
which was resolved using camphorsulfonic acid. After Hg-Br oxidative addition to Pd(0), yielding
a Pd-Hg bond, “redox transmetalation” gave Pd(II) complexes (Scheme 16). The enantiopurity of

the reagents and products, studied by optical rotation measurements, was not quantified.?’

Scheme 16. Synthesis of Chiral Ethylquinoline-Derived Palladacycles by Redox Transmetalation

from Mercury to Palladium

enriched enriched enriched
A Pd(PPhg), Xy, Pd(dba), X
Me Me
Pd—Br _ Pd—Br
| Me ! Hg—Br .y | |
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Analogous chiral palladacycles were formed by P-C cleavage of chiral phosphine ligands, in which
the C-stereogenic center was transferred to Pd with or without stereocontrol. In Scheme 17, heating
a Pd((S,S)-Et-FerroTANE) complex gave palladacycle 3 as a mixture of diastereomers, presumably

via P-C reductive elimination to yield a phosphetanium cation, followed by P-C oxidative addition.

15



The kinetic stereochemistry of this process could not be determined, because the isomers of 3
interconverted in solution, presumably via reversible -hydride elimination/reinsertion. A similar

process in 4 opened the second phosphetane ring, again yielding a mixture of stereoisomers.?® The

newly formed Pd-C and P-Ph bonds are shown in blue.

Scheme 17. Synthesis and Epimerization of Chiral Palladium Alkyls by Ring Opening of a Chiral

Bis(phosphetane) Ligand
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In contrast, similar chemistry in a chiral Pd-diazaphospholane complex gave only one isomer, with
stereospecific methyl transfer from palladium to phosphorus and ring opening to yield a new [Pd]-

R* stereogenic center (Scheme 18, with the new Pd-C and P-C bonds in blue).?®
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Scheme 18. Stereospecific Synthesis of a Chiral Palladium Alkyl by Ring Opening of a Chiral

Bis(phospholane) Ligand
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2.3.2 Diastereoselective cyclometalation of CH> groups

In these reactions, anchoring a chiral substrate to a metal with a donor group enables selective
activation of a neighboring CH group to yield a [M]-R* complex. For example, cyclometalation
of the camphor-derived phosphine phenop at Pd or Pt generated several new chiral centers,

including one at the metal-bound carbon (Scheme 19).3°

Scheme 19. Synthesis of Chiral Metallacycles by Cyclometalation of a Camphor-Derived

Phosphine

M = Pd or Pt

Pd(COD)Cl,
or N32Pt0|4
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In a less selective example, cyclopalladation of a related camphor hydrazine derivative gave an
inseparable cis-trans mixture of Cl-bridged dimers without stereocontrol at the Pd-bound carbon;
Scheme 20 shows a trans isomer which was crystallographically characterized. Treatment with
Na(acac) or PPh; gave monomeric complexes which could be partially separated by

chromatography to give diastereoenriched mixtures which slowly epimerized in solution.3!

Scheme 20. Synthesis of Chiral Palladacycles from a Camphor-Derived Hydrazone

MeZN N
NaOAc H
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\
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Pd—CI Pd—O
\ N
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With a similar chiral substrate, coordination of both pyridine and amide nitrogens resulted in
selective formation of palladacycle 5, in which coordinated acetonitrile could be replaced with
PPh; (Scheme 21).3? See Scheme 114 below for application of this process in catalytic asymmetric

C-H functionalization.
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Scheme 21. Synthesis of a Chiral Palladacycle from a Bornylamine Derivative
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Related bidentate coordination of a chiral imine-amide resulted in selective C-H activation of an

ethyl CH> group to yield a palladacycle with an NOC pincer ligand (Scheme 22).33 See Scheme

75 below for additional stereochemical studies of this [Pd]-R* group.

Scheme 22. Synthesis of a Chiral Palladacycle via C-H Activation of a Chiral Bifunctional Imine-
Amide
-Bu -Bu
FsC Sy )w(NEtg PA(OAG), FSC\@CNJ\[FNBZ
a4, l
H O AcOD-d, —Pd—0

then CH,Cl,/MeOH

Me chromatography Me C|)I

Similarly, bidentate coordination of an enantiomerically enriched pyridine-phosphine
chalcogenide to palladium resulted in stereospecific activation of a ketone CH» group to yield
chiral Pd-alkyl pincer complexes (Scheme 23).3* This reaction was extended from the parent
pyridine derivative to dinuclear ones featuring meta- or para-arene cores, or a bipyridine, yielding

[Pd]-R* complexes 6-8.
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Scheme 23. Synthesis of Chiral Palladacycles from Enantiomerically Enriched Phosphine

Chalcogenide-Pyridine Substrates

Ph
X "'PPh
N :
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Pd(NCMe),Cl,

NaOAc

Similar chemistry occurred with a substrate bearing a vinyl substituent at the C-stereocenter, with

a variety of Pd(II) sources (Scheme 24).3

Scheme 24. Cyclopalladation of an Enantiomerically Enriched Pyridine-Phosphine Chalcogenide
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Cl
Cyclopalladation of a chiral sulfoxide caused formation of two Pd-C bonds, with stereocontrol at

the Pd-bound alkyl group. Bidentate S/O coordination led to a trimeric palladacycle, with distorted

square planar Pd(II) centers (Scheme 25 shows the local environment at Pd).3¢

20



Scheme 25. Synthesis of a Trimeric Chiral Palladacycle from C-H Activation of an

Enantiomerically Enriched Sulfoxide
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2.3.3 Other methods

Protonation of square planar 9 gave octahedral Pt complexes with high stereoselectivity controlled
by a potentially tetradentate chiral bis(imine)-bis(pyridine) ligand derived from cis-
cyclohexanediamine (Scheme 26). In the proposed mechanism, after imine N-protonation in 9,
attack of Pt at carbon yields 10 or 12, whose structure depended on the anion.>’” With chloride
coordination, the ligand was tridentate, and kinetic product 10 was converted to
thermodynamically favored 11. With the more weakly coordinating trifluoroacetate anion, pyridine

coordination to give 12 required the opposite configuration at the Pt-bound carbon.

21



Scheme 26. Stereoselective Formation of Chiral Platinum Alkyls by Protonation of a
Cyclohexanediamine-Derived Ligand
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N~

In a complicated process whose mechanism is unclear, a chiral oxazoline-phosphaalkene ligand
was converted to a chiral dinuclear complex, in which the [Pd]-R* ligand was formed from an

ortho methyl in a P-mesityl group (Scheme 27).38
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Scheme 27. Synthesis of a Dinuclear Palladium Chiral Alkyl Complex After Selective Ring

Opening of an Enantiomerically Enriched Phosphaalkene-Oxazoline

i. MeLi
Mes ii. MeOH
P N= iii. Pd(COD)Cl,

2.3.4 Ligand Isomerization
Unexpected isomerization of chiral binaphthyl-based bidentate ligands is another route to [M]-R*
complexes. For example, isomerization of the P~N BINAP analogue MAP gave a P~C-chelate

with a Pd-bound C-stereogenic center.*® A related process yielded a m-allyl complex (Scheme 28).

Scheme 28. Formation of Chiral Palladacycles via Isomerization of the Binaphthylphosphine-

amine MAP

PdCI2 l l NMe, [Pd(aIIyI)(NCMe)Z][BF4]
oy

MAP

This P~C-bonding mode also occurred in Pt-Binolate complexes, like the enantiopure one in

Scheme 29; 4 similar coordination was originally discovered with a racemic ligand.*!
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Scheme 29. Formation of a Cyclic [Pt]-R* Complex via Isomerization of a Chiral Binaphtholate

Ligand

2.3.5 Transmetalation

The configurational instability of main group organometallics [M’]-R* makes selective synthesis
of [M]-R* complexes by transmetalation challenging. However, this process can be highly
diastereoselective when R* contains more than one chiral center. For example, treatment of
menthyl chloride with Mg gives an interconverting mixture of the expected MenMgCl and its C-
epimeric neomenthyl isomer NeoMenMgCl. Because the menthyl reagent reacts more quickly
with electrophiles, this cocktail often preferentially yields menthyl products with main group
reagents such as phosphorus and tin derivatives.*> Extending this approach to transition metal
halides gave gold and platinum menthyl complexes; the Pt-Br came from dibromoethane used to

generate the Grignard reagent (Scheme 30).%3

Scheme 30. Synthesis of Chiral Gold and Platinum-Menthyl Complexes by Transmetalation from
Magnesium

PhgP—_ FPT
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Pt(dppe)Cl, [P\ /Br
Pt _i-Pr
P/ WMG
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2.3.6 Oxidative Cyclization

The palladacycles whose resolution was shown in Scheme 6 were prepared as racemates by
oxidative cyclization of cyclopropenes. Using C>-symmetric cyclopropenes with enantiomerically
enriched lactic acid ester substituents resulted in asymmetric synthesis of enantiomerically

enriched [Pd]-R* complexes (Scheme 31 shows an example).**

Scheme 31. Synthesis of Chiral Palladacycles via Oxidative Cyclization of C>-Symmetric Chiral

Cyclopropenes
96:4 dr
*RO,C  CO,R* *RO,C  CO,R*
sz(dba)3 . : g .
*RO,C CO,R* ., + B
R* = (R)-CHMe(COt-Bu) "RO,CT Npy” “COR* *RO,C™ “py~ TCOR®

2.4 Stereocontrol by chiral ligands Synthesis of [M]-R* complexes does not require preformed
R* groups for oxidative addition or transmetalation. Instead, they may be formed from achiral
substrates, for example by 2,1-insertion of a-olefins like styrene into metal-hydride bonds.

2.4.1 Migratory insertion

Generation of a chiral bis(phosphine) copper hydride complex in the presence of styrenes resulted
in formation of [Cu]-R* complexes with high diastereoselectivity arising from relative insertion
rates (Scheme 32). As shown in more detail in Scheme 109 below, this process is important in

catalytic asymmetric hydroboration of alkenes.*’
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Scheme 32. Diastereoselective Synthesis of Chiral Copper Alkyls by Reaction of Styrenes with a

Bis(phosphine) Copper Hydride Complex

@]
DTBM-Segphos
< O 9P OMe
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tBu t-Bu
PAr
<O O 2 Ar=

[Cu] = Cu(DTBM-Segphos)
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[Cul-H —— [Cu]/\”'Ar + Ar“)\[Cu]
H H

major minor

Similarly, regio- and stereospecific 2, 1-insertion of styrene or vinyltrimethysilane into a Zr-C bond
gave metallacycles in which the a-substituent pointed away from the chiral ligand (Scheme 33);

related insertions of cis- or trans-2-butene were also stereospecific.*®

Scheme 33. Regio- and Stereospecific 2,1-Insertion of Styrene into a Zr-C Bond Yielded a Chiral

Alkyl Complex

AN
o XS | S)
BPh, ' Me” F BPh, H

Replacing bipyridine with a chiral bis(phosphine) diphos*, such as Chiraphos, caused a 3-hydride

elimination-reinsertion sequence which resulted in ring contraction and formation of a [Ni]-R*

26



metallacycle, in which the C-stereocenter could epimerize via the Ni-hydride intermediates shown

in the box (Scheme 34).47

Scheme 34. Formation of Chiral Nickel Metallacycles by Ring Contraction and Their

Isomerization via Reversible 3-Hydride Elimination and Reinsertion

Related [Pt]-R* complexes were prepared by carbene insertion into Pt-halide (X) or Pt-Me bonds;
separation of diastereomers bearing chiral bis(phosphine) ligands enabled isolation of
enantiomerically pure complexes (Scheme 35). As might be expected, starting with a chiral
complex gave higher stereoselectivity than replacing COD with a chiral bis(phosphine).*® These
diastereoselective reactions were carried out with a variety of diazo precursors and diphos*

ligands.*

Scheme 35. Synthesis of Chiral Pt-Alkyl Complexes by Insertion of Carbenes into Pt-X or Pt-C

Bonds

P. Me P. /‘VH P Me X=Cl Br, |
C Np _NCHCOR ("N, e+ (- o X R = OEt, OMen, Ph
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p X P \AH
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th Ph2 SiMe3 SIM93
\ /X Me3SiCHN, P\ /jvx (R,R)-Chiraphos X%\
pt7 ——— 2~ P Me ve  PHCOD)
/ AN up to 10:1 P/ \X 1:1 selectivity x

selectivity

Ph2 Ph,
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2.4.2 Enolate formation

Keto-enol tautomerization provides the opportunity for kinetic and/or thermodynamic control of
diastereoselectivity in formation of [M]-R* enolate complexes, which often undergo epimerization
at the C-stereogenic carbon. For example, treatment of a cyclic amide with base in the presence of
a chiral palladium aryl bromide complex gave mixtures of enolate complexes, in which the
diastereoselectivity depended on the aryl substituents (Scheme 36).>° See Scheme 111 below for

their role in Pd-catalyzed cross-coupling, where C-C reductive elimination formed the products.

Scheme 36. Diastereoselective Synthesis of Palladium-Segphos Enolate Complexes

o R i. KOt-Bu R
4 O Ph, /©/ Ph,
o) P P 1:1dr (R=CN)
P Pd_ P Pd O  3:2dr(R=H)
O P PT
<o Phy Ph, N—pMe

Similarly, a chiral cyclohexanediamine ligand controlled diastereoselectivity in formation of cyclic

palladium enolates and could later be replaced by phosphines (Scheme 37).3!

Scheme 37. Diastereoselective Synthesis of Chiral Palladium Enolate Complexes

R de = 64% (R = H)
Et0,C.__O de = 50% (R = OMe)
Me, Me,
O\ _KOtBu O\‘ )@\R 2 PPhy  PhaP R
AP A PhsP” Pd\(O
Meg Meg H CO,Et H CO,Et
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In related reactions with chiral bis(phosphines), diastereoselectivity depended on the ligand and
the base, with kinetic or thermodynamic control observed (Scheme 38).5? Related chemistry with
a chiral diamine ligand gave aza- or oxapalladacycles, and addition of more base resulted in either

enrichment or erosion of diastereomeric excess.>>

Scheme 38. Diastereoselective Synthesis of Carbon-Bound Palladium Enolate Complexes

EtO,C._O
th )@ Ph,
Me><0 KOt-Bu K \
Me” o0 / \|

A th P

ho H CO,Et

Extending this approach gave palladacycles with two [Pd]-R* groups as mixtures of diastereomers,

with some control over the relative conformations of the Pd-C substituents (cis-trans ratio, Scheme

39).54

Scheme 39. Diastereoselective Synthesis of Palladacycle Enolate Complexes Containing Two Pd-

Bound C-Stereogenic Centers

ar1:1
d th
CHzPh dr81:19
£ KOt Bu £ (cis/trans)
\( \CHzPh \( \CHQPh 4 diastereomers
Ph2 p-Tol Ph2

In a similar asymmetric synthesis of a thermodynamically controlled mixture of palladacycles, the
ylide configuration was controlled by the chiral C~N chelate (Scheme 40).%> Scheme 56 below

shows interconversion of these diastereomers on warming.
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Scheme 40. Synthesis of Chiral Palladacycles Featuring a Pd-Bound Ylide Carbon

Me, PPh2 Me, Ehz
N@/WF N ®
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2.4.3 Cycloaddition

[Zr]-R* complexes were formed by highly selective [2+2] cycloaddition of a chiral zirconocene

imido complex with a racemic allene to give one diastereomer of a chiral metal alkyl (Scheme 41).

Using 2 equiv of racemic allene enabled stoichiometric kinetic resolution.>®

Scheme 41. Synthesis of Chiral Metallacycles from a Zirconium-Imido Complex and Allenes
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This system showed match-mismatch behavior, in which the matched allene enantiomer reacted

quickly to make only 13, while its enantiomer yielded an equilibrium mixture with mis-matched

14. Heating 13 or 14 caused isomerization to a 3:1 mixture of 13 and 15 (Scheme 42). At lower

temperature, mis-matched 14 formed a mixture of all four possible isomers; the mechanism of

these isomerizations is discussed in Scheme 50 below.>’
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Scheme 42. Match-Mismatch Effects in Formation and Isomerization of Chiral Zirconacycles

PO 105 °C

(R) 3:1 mixture ﬂ
Ph \
matched 13 Q{ \>_\ 15

o

N

—/

mismatched 14 N \2_\

2.4.4 Miscellaneous synthetic methods

Section 2.3.2 above showed examples in which coordination of a chiral substrate led to selective
intramolecular activation of a CHz group, yielding a [M]-R* center. Such processes may also occur
with an achiral substrate, mediated by a separate chiral ligand. Thus, in Scheme 43, the chiral
sulfoxide ligands promoted asymmetric cycloplatination to give a separable mixture of

diastereomers of chiral Pt alkyls, obtained in 45% de.’®

Scheme 43. Diastercoselective Synthesis of Chiral Pt-Alkyl Complexes via Asymmetric

Cycloplatination
separable diastereomers
9 » (.
N Me
N SW 'Tl/ s ITI/ S ?
O H o+ J
cis-PtCl5((S)-Me(Ar)SO), CI—F|’t 3 o CI_T J\ Me
H
Ar=p-T0/ Me/s\'w,Ar Me Me/s\'l’Ar
(0] (0]
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Similarly, a chiral ebthi ligand in an ansa-metallocene controlled the selectivity of B-CH»
deprotonation to generate proposed zircona-aziridine intermediates in which the N-Ar and R
groups were expected to be trans (Scheme 44). Insertion of an alkyne into the Zr-C bond, proposed
to go with retention of configuration at carbon, gave metallacycles with high regioselectivity and

diastereoselectivity.>

Scheme 44. Generation of Chiral Zircona-Aziridine Complexes and Selectivity of their Reaction

with Alkynes

. Ar
ﬂ | - Ar
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Me Me —/ R

V&l =
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Switching the solvent to THF enabled isolation of a closely related zircona-aziridine (Scheme 45).

When generated in benzene instead, it isomerized to form a bicyclic [Zr]-R* complex.®°

Scheme 45. Synthesis of a Chiral Zircona-aziridine and Its Solvent-Mediated Isomerization

oN. )
o R
\Z/N LINPh(CH,Ph) \z _OTf LiNPh(CH,Ph) \Z/ /N\Ph
r I r
S Ta . #

Finally, diastereoselectivity of nucleophilic attack by a P-stereogenic Pt-phosphido group on

acrylonitrile was controlled either by a chiral bis(phosphine) diphos* or by chiral phosphido
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substituents (Scheme 46).%! See Scheme 113 below for the importance of such processes in

catalytic asymmetric hydrophosphination of Michael acceptor alkenes.

Scheme 46. Diastercoselective Formation of Chiral Pt Alkyl Complexes by Attack of a Phosphido

Ligand on Acrylonitrile

CN
- CN P
CP\F’t/P\R’R_:/ CP\Pt/K/ \ R
R’
P/ \Me P/ \Me

3. Configurational stability

The configurational stability, or instability, of [M]-R* complexes is important in their synthesis
and applications. Epimerization of the C-stereocenter may occur by M-C homolysis, yielding
radicals, by reversible reductive elimination/oxidative addition, by reversible [-hydride
elimination/migratory insertion, or by other less common processes.

3.1 M-C bond homolysis

The enantiomerically enriched Rh-alkyl 16, whose synthesis is described below in Scheme 62,
racemized on heating via Rh-C homolysis, yielding radicals which either recombined or escaped
the solvent cage, yielding observable fragmentation products. From the activation parameters of
this first-order process, a Rh-C bond strength of 31 kcal/mol was estimated. In a crossover
experiment using OMe and OEt-labeled substrates, after phosphite-induced C-C reductive
elimination (see Scheme 73 below), the expected mixtures of quinolines were observed (Scheme

47).62
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Scheme 47. Evidence for Rh-C Bond Homolysis in Racemization of Chiral Rhodacycle 16

=
\N crossover
ol Rh i. 45 °C

\< ii. P(OMe);
OMe Q OEt R = Me, R’_ Et or Me

R=H, R’ = Etor Me

Another example of [M]-R* epimerization ascribed to M-C homolysis to give radicals, followed
by their recombination, occurred in a single crystal to single crystal transformation observed upon
exposing the chiral cobalt alkyl complex from Scheme 13 to X-rays (Scheme 48). Following the
slow process by X-ray crystallography showed that the R-cyanoethyl complex was gradually
converted to the disordered “racemate” (mixture of diastereomers).®® Similar solid-state
photoracemizations were observed in related Co(dmgH), complexes, again attributed to radical
formation and recombination, and analogous thermal reactions enabled estimation of the Co-C

bond energy, about 28-29 kcal/mol.*

Scheme 48. X-Ray Induced Racemization of a Chiral Cobalt Alkyl Complex

o/H N O o/H o
Me = H' ‘Me\{/
(R) N
Xrays
/|\ /\\
\\\H/ \\‘H/

L = (S)-H,NCHMePh
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Related complexes were prepared in surprising consecutive photochemical solid-state
transformations, which could be observed in single crystals by X-ray crystallography. For example,
a 3-cyanopropyl group was converted first to 2-cyanopropyl, then to 1-cyanopropyl, with
asymmetric induction controlled by the nature of the cobalt alkyl and the axial chiral Lewis base

(Scheme 49).9

Scheme 49. Formation of Chiral Cobalt Alkyls by Solid-State Photoisomerization

H
O/H \O O O O/H \‘O
| § ve. \Et
_N N N N
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L
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H X =CN or CO,Me H H

C-epimerization of the chiral zirconacycles in Scheme 42 (R = Ph) was proposed to occur by a
similar Zr-C homolysis-recombination pathway (Scheme 50).” However, for metallacycles
derived from dialkylallenes, reversible B-hydride elimination caused both racemization and E-Z

1somerization.
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Scheme 50. Epimerization of Zirconium Metallacycles by Zr-C Bond Homolysis or -Hydride

Elimination

B-hydride
elimination

R=alkyl Cpyzr{_ zj/

CpZZr\?:\ CpQZr\>:§
R
N R Ar
R H N T &
R=Ph _Cp,zr

Zr-C ?ﬁph

homolysis Ph

3.2 Reversible B-hydride elimination/migratory insertion

Chiral palladacycles, intermediates in asymmetric Heck catalysis (see Scheme 112 below),
epimerized in the presence of acid via a proposed B-hydride elimination/reinsertion sequence in
which several intermediates were observed (Scheme 51). After protonation at the amido nitrogen
and ligand dissociation, B-hydride elimination gave Pd alkene hydride complex 17, which can
interconvert with linear Pd-alkyl 18, or re-insert to make the other epimer of the Pd-CHMe group,

followed by proton transfer and N-Pd coordination to complete the isomerization.5
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Scheme 51. Proposed Mechanism of Epimerization of a Chiral Palladacycle via Reversible 3-

Hydride Elimination/Insertion
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3.3 Reversible a-elimination

a-Elimination, although less common than 3-elimination, can also result in [M]-R* epimerization.
For example, in Scheme 52, thermal epimerization of a Pt complex from Scheme 35 was faster
with X = Br or I than for X = CI and followed first-order kinetics. Rates were little affected by
solvent polarity or addition of halide, suggesting an anchimeric assistance mechanism for
epimerization, with neighboring group participation. Reversible a-elimination (C-X oxidative

addition to Pt) to give a Pt-carbene intermediate was proposed to cause epimerization.*®
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Scheme 52. Epimerization of a [Pt]-R* Complex Via Reversible a-Halide Elimination ([Pt] =

Pt(Chiraphos), X = Halide)

SlMe3 SiMes X w  Mes SiMes  pn,
SlMe [RRRY P Y
\[ \ — %\Me | iy )\Me X /\ 4
Me [Pt] = [Pt]ﬁ\ = [P{] = Me Pt
\\“' \ | Me \X X/ \P
th X Ph,

3.4 Reversible reductive elimination/oxidative addition

C-H activation of a cyclopropane gave separable diastereomers of an [Ir]-R* complex, which upon
heating interconverted faster than reductive elimination occurred (Scheme 53).%7 This C-
epimerization was proposed to proceed by reversible reductive elimination/oxidative addition via

an intermediate alkane complex.

Scheme 53. Proposed Mechanism of Interconversion of Diastereomers of Iridium-Cyclopropyl

Complexes via Reversible Reductive Elimination/Oxidative Addition

e e e [ |

intermediate
| r\

AAr. Ar.
H |!I PMe; §tPMe3 H PMe, H PMe alkane complex
H iz H?

3.5 o-7 interconversions

The C-epimeric Pd-alkyl complexes in Scheme 54 were initially formed with inversion of
configuration at carbon in oxidative addition, then equilibrated, presumably via n'-n*-n' o-n

interconversions common in Pd-allyls.®
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Scheme 54. Formation and Epimerization of Diastereomeric Pd-Cyclobutenyl Complexes

CO,H CO,H
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In a similar process, C-epimerization in zirconaaziridines like those in Schemes 44-45 was
proposed to occur via interconversion of n- and N-bound imine complexes (Scheme 55). Because
one enantiomer reacted faster than the other with a chiral carbonate, tuning the rate of the insertion

by modifying the conditions resulted in high selectivity.®

Scheme 55. Role of Zirconaaziridine Epimerization in Diastereoselective Reaction with a Chiral

Carbonate

(0] N N N | R proposed
| | epimerization
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In a similar 6-n process, the chiral Pd-ylide complexes from Scheme 40 were proposed to undergo

C-epimerization via reversible formation of a t-bound intermediate (Scheme 56).5

Scheme 56. Proposed Mechanism of C-Epimerization of [Pd]-R* Ylide Complexes

Me, th Me, th Ph2
N ® N ® N
N _ pd/
PPh, F’th PPh2
© " RFO proposedH
ClO4 epimerization R CIO4 R
intermediate

3.6 Transmetalation

Transmetalation of chiral main group alkyls [M’]-R* to transition metal complexes is important in
cross-coupling catalysis, so their mechanism of C-epimerization is of interest.”” In a recent
example, a computational study found that isomerization of a [Zn]-R* complex occurred via a
concerted dinuclear mechanism promoted by addition of ZnCl,, with the chiral alkyl group

bridging two Zn atoms in the transition state (Scheme 57). 7!

Scheme 57. Proposed Dinuclear Mechanism of Racemization of a Chiral Zn-Alkyl Complex

t
H Me
L L > L L
ZnCl,L : ZnCl,L
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Me” ph cl o C Ph” Me

3.7 Via enolates
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The base-mediated epimerization of chiral metal enolate complexes mentioned in Schemes 36-39
above may occur via reversible deprotonation of the metal-bound stereocenter, as proposed in

Scheme 58.52

Scheme 58. Proposed Mechanism of Base-Mediated Epimerization of a Chiral Pd-Enolate

Complex ([Pd] = Pd(diphos*))

0 O O
\<

EtO OK

3.8 Probing configurational stability via ligand exchange

In some [M]-R* complexes, C-epimerization is too slow to be observed directly. However, if
exchange of the enantiomers of an ancillary ligand is fast, the [M]-R* diastereomers will
interconvert, enabling study of the thermodynamics and kinetics of C-epimerization. For example,
in Scheme 59, C-epimerization, presumably via reversible 3-hydride elimination/insertion was
slow, but adding racemic Ph-BPE caused exchange on the NMR time scale, interconverting the
diastereomers.”” Please see Scheme 109 below for the importance of related processes in Cu-

catalyzed asymmetric alkene hydroboration.
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Scheme 59. Determining the Rate and Thermodynamics of Epimerization of a Chiral Copper Alkyl
Complex by Ligand Substitution
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Scheme 60 shows a similar approach to study of a configurationally stable [Zn]-R* bis(oxazoline)
complex.” With R = Et or CH2Ph, the two diastereomers interconverted slowly, with a free energy
of activation of 27.2 kcal/mol at 25 °C. However, with added racemic ligand, Zn-L exchange was
rapid on the NMR time scale, enabling determination of the relative thermodynamic stability of

the diastereomers.
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Scheme 60. Ligand Substitution in a Configurationally Stable Chiral Bis(Oxazoline)-Zinc Alkyl

Complex
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4. Stereochemistry of fundamental transformations

As mentioned in the introduction, study of [M]-R* complexes has been important in the
development of mechanistic understanding in organometallic chemistry. This section describes
recent examples, as an extension of Flood’s original 1981 review.?

4.1 Oxidative addition

Oxidative addition may occur via a concerted mechanism, with retention at carbon, by an Sn2-
type process, with inversion at carbon, or via radicals, leading to scrambling of stereochemistry.
Experimental observation of the stereochemistry thus provides mechanistic information.

4.1.1 Retention at carbon (concerted)

Cyclopalladation of a chiral deuterium-labelled ethylquinoline at palladium proceeded with
retention of configuration and a large kinetic isotope effect, consistent with concerted oxidative

addition (Scheme 61).74
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Scheme 61. A Large Kinetic Isotope Effect in Selective Cyclopalladation of a Deuterium-Labeled

Chiral Ethylquinoline

Me !‘-| D
A K,PdCl,
NS MeOH/H,0

= retention at C

C-C oxidative addition of an enantiomerically enriched quinoline to Rh occurred with retention of
configuration at carbon to give a chiral Rh alkyl (Scheme 62), whose configurational stability was
discussed in Scheme 47.> See Scheme 73 for the reverse process, phosphite-induced C-C

reductive elimination with retention of configuration at carbon, and additional comments.

Scheme 62. Retention of Configuration at Carbon in C-C Oxidative Addition of a Quinoline

Derivative to Rhodium

i. [RN(CoHg)oCllo

i. pyridine CI—Rh
retention
/
OMe
enriched \ | Ph

Similar retention of configuration in C-O oxidative addition of epoxides to Ni(0) was observed in
two related studies. In Scheme 63, this observation was ascribed to a bimetallic pathway with

stepwise epoxide ring opening and reclosing, via the intermediates in the box.”
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Scheme 63. Retention of Configuration at Carbon in Oxidative Addition of a Racemic Epoxide to

Ni(0)
(t‘BU)zP
Bu),R  P(tB
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(0] / _Ni
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P P Ni—P(+-Bu) Ni
(+Bu)2 (+Bu), \ 2 /N
(+BU)P (tBu),P"  P(t-Bu),

With a more substituted cis-epoxide, oxidative addition was proposed to go with retention of
configuration to form an observable nickelaoxetane intermediate, before B-hydride elimination

and reinsertion gave the isolated ring-expanded product (Scheme 64).7

Scheme 64. Oxidative Addition of an Epoxide to Nickel Gave a Nickelaoxetane Intermediate with

Retention of Configuration at Carbon

(+Bu), P

tBu |——P(t-Bu)2 ., (t Bu)s, (t Bu)s
PhA \Ph
0.5 N|—
retention
tBu

(t Bu), (t Bu)2

4.1.2 Inversion at carbon (Sn2-type)
In contrast to these epoxide examples, oxidative addition of a deuterium-labelled syn-aziridine to

Ni(0) gave an anti-nickelacycle, with inversion at the C-stereocenter. This process was proposed

45



to occur via nucleophilic ring opening, followed by rotation about a C-C bond and ring closure by

attack of the amido anion at nickel (Scheme 65).”7

Scheme 65. Formation of a Nickela-azetidine by Ring Opening of a D-Labelled Aziridine with

Inversion at Carbon
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As in previous work establishing enantiomerically enriched D-labelled benzyl chlorides as useful
stereochemical probe substrates, despite their limited configurational stability,’”® oxidative addition
to Pd(0) gave a mixture of diastereomers of the [Pd]-R* product with predominant inversion of

configuration (Scheme 66).”

Scheme 66. Inversion of Configuration at Carbon in Oxidative Addition of a Deuterium-Labelled

Benzyl Chloride to Pd(0)

< o7 (R)-Binap OO Ph, Q H
F’ld Cl (R) P\Pd/(’%Ph
© L, P~ "l
\\|// Ph N1 OO Pha 85015
inversion

Oxidative addition of a sugar alkyl bromide derivative to Pd(0) occurred with inversion of

configuration at carbon (Scheme 67).8°
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Scheme 67. Inversion of Configuration at Carbon in Oxidative Addition of a Sugar Alkyl Bromide

to Palladium(0)
OAc OAc
AcO
PE
ACO O Pd(PEty)s ACO% l 's
AcO b ! AcO Pd—Br
r

PEt,

In a similar process with a manganese nucleophile, some sugars reacted with high stereoselectivity
with inversion at carbon (Scheme 68). Oxidative addition was less selective in other cases,

depending on the substrate substituents.?!

Scheme 68. Stereochemistry of Nucleophilic Attack on Chiral Sugar Alkyl Bromide Derivatives

OR Inversion OR
RO R=Me Bn RO Mn(CO)s
RO Br RO

Changing reaction conditions also affected stereoselectivity of these oxidative additions (Scheme
69), which again proceeded with inversion using KMn(CO)s to give the -isomer. However, in the
presence of [NBuy4][Br], which promotes anomerization, NaMn(CO)s formed a 3:2 mixture of

isomers. Several related Mn-sugar complexes were formed in similar reactions.®?
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Scheme 69. Controlling Selectivity of Mn-C Bond Formation in the Reactions of [Mn(CO)s]~ with

Chiral Sugar-Derived Alkyl Bromides

OBn OBn
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4.1.3 Scrambling (radical)
Oxidative addition of a related sugar alkyl bromide to iridium gave a mixture of inversion and
retention products, consistent with a radical process, as expected for this AIBN-promoted reaction

(Scheme 70).83

Scheme 70. Stereochemistry of Radical-Mediated Oxidative Addition of a Sugar Alkyl Bromide

to Iridium
PMeS
OAc | OAc
OC—I1—C|
AcO 0 AcO 0 PMe
AcO PMes AcO I &0
AcO AcO Ir
Br AIBN retention and o | “Br
inversion at C PMey

Similar reactions with Pt(0) gave a mixture of isomers, in which the a-sugar was favored (Scheme

71). A radical chain mechanism was proposed.’*
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Scheme 71. Stereochemistry of Oxidative Addition of Sugar-Derived Alkyl Halides to Platinum(0)
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In a more complicated process, the stereochemistry of nucleophilic attack of a dinuclear metal
carbonyl anion on an alkyl dihalide was investigated (Scheme 72). In the proposed mechanism,
electron transfer gives a carbon radical, which inverts rapidly, destroying the stereochemical
information at that center, then combines with cobalt to make one [Co]-R* bond unselectively. The
second Co-C bond formation was suggested to proceed with higher selectivity, probably with

inversion of configuration at carbon, to yield a dinuclear metallacycle.®>

Scheme 72. Stereochemistry of Nucleophilic Attack of a Metal Carbonyl Anion on a Diiodoalkane
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4.2 Reductive elimination

4.2.1 Retention at carbon (concerted)

Treating a [Rh]-R* complex with P(OMe); promoted C-C reductive elimination (Scheme 73),
yielding the same enantioenriched quinoline derivative used to make the chiral Rh-alkyl by
oxidative addition (Scheme 62 above).%> Therefore, both oxidative addition and reductive
elimination must have occurred with the same stereochemistry, either with double inversion or
double retention. Since analogous reductive eliminations were known to proceed with retention,

the authors concluded that both steps went with retention of configuration at carbon.

Scheme 73. Retention of Configuration at Carbon in C-C Reductive Elimination from a Quinoline-

Derived Rhodacycle
Ph =
MeO 0 P(OMe)s N
H —
N retention C|_R|h o
N H
= ‘e
Jpn OMe
enriched AN
enriched

In Scheme 74, the relative configuration of the Pd and methyl norbornyl substituents provided a
probe of the stereochemistry of C-N reductive elimination, which occurred for several different N-
Ar groups on heating in the presence of the N-heterocyclic carbene SIPr. Since retention was

observed, the authors proposed a concerted process.
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Scheme 74. C-N Reductive Elimination from Palladium with Retention of Configuration at

Carbon
i-Pr i-Pr retention
N
[ —PdT SN + Pd(SIPY),
N NHAr A
i-Pr i-Pr

Similarly, because C-F reductive elimination from a chiral Pd alkyl occurred with retention of
configuration, a concerted mechanism was proposed (Scheme 75, see Scheme 22 for generation

of this [Pd]-R* group under related conditions).*?

Scheme 75. Proposed Mechanism of Palladium-Catalyzed Oxidative C-F Bond Formation with

Retention of Configuration at Carbon via Chiral Palladacycle Intermediates
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In related C-F reductive eliminations from Pt(IV) (Scheme 76), oxidation with XeF> or related
reagents gave dications, which formed products with retention of configuration at carbon, most
easily explained by concerted reductive elimination. However, addition of anionic nucleophiles,
such as [NBu4][OAc], gave mixtures of retention and inversion products, which was rationalized
by attack of acetate at platinum to form a six-coordinate complex, followed by displacement of

fluoride anion, whose Sn2 attack at carbon causes inversion.?’
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Scheme 76. Oxidatively Induced C-Halogen Bond Formation in Platinum Alkyls with Retention

or Inversion of Configuration at Carbon Influenced by an Added Nucleophile
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4.2.2 Inversion at carbon (Sn2-type)

Similar invertive reductive elimination pathways are common when an anionic ligand dissociates
from the metal, followed by attack on a coordinated alkyl group. For example, C-O reductive
elimination of a diastereomerically enriched mixture of D-labelled Pd-benzyl complexes occurred
with inversion at carbon, suggesting dissociation of the aryloxide anion, perhaps promoted by n?’-

benzyl coordination, followed by nucleophilic attack (Scheme 77).88
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Scheme 77. C-O Reductive Elimination from Palladium with Inversion of Configuration at Carbon
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With the same D-labelled probe, inversion of configuration at carbon was also observed in C-N

reductive elimination, with the same interpretation (Scheme 78).797°

Scheme 78. C-N Reductive Elimination from Palladium with Inversion of Configuration at Carbon
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Inversion at carbon also occurred in oxidatively induced C-N reductive elimination from nickel
(Scheme 79). By analogy to the proposed mechanism of formation of the D-labeled nickelacycle
(Scheme 65), this process could occur by Ni-N heterolysis to yield an N-anion, which attacks at
carbon in an SN2 process. However, the involvement of oxygen suggested that a homolytic Sul

pathway was also possible.””””
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Scheme 79. Oxidatively Induced C-N Reductive Elimination of an Aziridine from Nickel
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Treatment of a D-labelled [Pd]-R* palladacycle with NF(SO2Ph): resulted in C-N bond formation
with inversion of configuration at carbon, consistent with the mechanism shown in Scheme 80.
After N-F oxidative addition to yield Pd(IV), dissociation of the amido anion, followed by Sn2

attack at the Pd-bound carbon was proposed.®’

Scheme 80. Proposed Mechanism Leading to Inversion of Configuration at Carbon in Reaction of
a D-Labelled Palladacycle with NF(SO2Ph)>
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4.3 Migratory Insertion
On the precedent of observations like those in Scheme 2, migratory insertion is often assumed to

proceed with retention of configuration at the migrating carbon. In Scheme 81, reaction of the
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enantiomerically enriched palladacycle from Scheme 10 with an activated alkyne gave a new
optically active palladacycle. Although the absolute configuration was not determined, the authors

proposed that insertion proceeded with retention.””

Scheme 81. Insertion of an Activated Alkyne into the Pd-C Bond of a Chiral Ethylquinoline-

Derived Palladacycle

MeO,C————CO,Me
retention

MeO,C CO,Me
enriched
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4.4 Transmetalation

Transmetalation of chiral alkyl groups from main group metals to transition metals, important in
cross-coupling catalysis, may proceed with inversion or retention of configuration, which is
commonly assessed using chiral probe molecules without isolation or observation of
intermediates.’! In Scheme 82, a configurationally stable chelated organolithium underwent
transmetalation to Hg and Pd with predominant inversion of configuration, rationalized by the

greater steric accessibility of the site opposite lithium to electrophiles.®?
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Scheme 82. Inversion of Configuration at Carbon in Transmetalation from a Chiral Lithium Alkyl

to Mercury or Palladium

inversion inversion
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4.5 Cycloaddition
The structure of the products in [2+2] cycloadditions of cis- and trans-stilbene with a zirconocene-

benzyne complex provided evidence for a concerted process with retention of stereochemistry

(Scheme 83).%3

Scheme 83. Retention of Stereochemistry in Cycloadditions of Stilbenes with a Zirconocene-

Benzyne Complex
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4.6 Nucleophilic attack on coordinated ligands
The stereochemistry of nucleophilic attack on coordinated alkenes provides mechanistic

information. Trans attack occurs with an external nucleophile, while cis attack suggests an internal
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nucleophile, as in migratory insertion.”* For example, the stereochemistry of the four-membered

rings in Scheme 84 was direct evidence for trans attack of amines on Pd-bound E- or Z-butene.”

Scheme 84. Evidence for Trans Attack of an Amine on Coordinated Alkenes in Synthesis of a
Palladacycloaminobutane
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In a related example, treatment of a D-labeled alkene with a Pd(PNP) pincer dication must result
in anti-aminopalladation by attack of the amine on coordinated alkene (Scheme 85, top). Instead,
reaction with palladium trifluoroacetate, followed by the PNP ligand gave the same product,
showing that amino-palladation occurred in both pathways, not alkene insertion into the Pd-N

bond, which would give the syn-product (Scheme 85).%°
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Scheme 85. Evidence for anti-Aminopalladation in Pd-Mediated Intramolecular Hydroamination

of a D-Labelled Substrate
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In contrast, cis-aminopalladation occurred in palladacycle formation in Scheme 86. The structure
shown fits the reported empirical formula, but presumably this complex forms aggregates or

coordinates additional ligands, with four-coordinate palladium.”®

Scheme 86. Cis-Aminopalladation in Formation of a Palladacycle

M
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Nucleophilic attack on a coordinated alkene in Scheme 87 gave a 97:3 mixture of diastereomers
which both contained two chiral centers, proposed to form from sterically preferred anti attack vs

the less favored syn attack.”’
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Scheme 87. Anti Attack of Methoxide on a Ru-Bound Alkene Preferentially Gave the RR and SS

Diastereomers of the Ru-Alkyl Product, Only One of Which is Shown
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In an unusual process, halide ions attacked the chiral alkyl group in [Pt]-R* complexes (Scheme
88, see Schemes 35 and 52 for related transformations in this system). Displacement of bromide
from carbon by iodide occurred with inversion of configuration in a proposed Sn1 process. This
apparent contradiction was explained by anchimeric assistance by platinum via a proposed carbene
intermediate.*® After C-Br oxidative addition to Pt gives a five-coordinate carbene complex,
migration of iodide to the carbene is faster than rotation about the Pt=C bond, resulting in inversion
of configuration at C. Then halide exchange at platinum yields the product. Alternatively, a related

mechanism with cationic intermediates formed by loss of bromide anion was possible.

Scheme 88. Anchimeric Assistance in Attack of Halides at Pt-C Bonds ([Pt] = Pt(Chiraphos))

H H
N T M P © S
\[ 1By [Fi)t] o, 'SiMes | Ny | 'SiMes

SiMe, = [PI=<_ ~ | —
/ ™ | siMes ' ~p” r wip”
| Ph, Phy
Ph2 | Ph2 (S) Ph2
"y H PO A 1" O NP A "
\[ N, SiMe; I Y AR |
Br [Pt]:< = Pt SiMes; suvle3
N | siMe;  ~p” e / N
Phy Br Ph, Phy

59



Stereospecific nucleophilic attack of a borohydride reagent on a Re-carbene gave deuterium-

labeled [Re]-R* benzyl complexes (Scheme 89).%8

Scheme 89. Stereospecific Nucleophilic Attack on a Re-Carbene Gave Chiral Re-Benzyl

Complexes
o G|>O @
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4.7 Electrophilic attack on coordinated ligands

These processes usually occur with retention of configuration at carbon, but exceptions are known.
Reactions may occur via addition to the metal, followed by reductive elimination, by direct attack
at carbon, or via four-centered transition states. In Scheme 90, which involves Re-benzyl
complexes like those in Scheme 89, protonolysis of a [Re]-R* group proceeded with retention at

both Re and C.%°
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Scheme 90. Protonolysis of a C-Stereogenic Re-Bound Alkyl Ligand Resulted in Retention of

Configuration at Both Carbon and Rhenium

retention
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In Scheme 91, protonolysis of a diastereomeric mixture of [Ru]-R* complexes which differed only
in the configuration of the metal-bound carbon was expected to proceed with retention of
configuration via protonation at Ru, followed by reductive elimination. However, the process was
not stereospecific, resulting in the same enantiomeric enrichment of the product for different
mixtures of the metal complex, either 95:5 or 72:28 dr. Therefore, two parallel protonolysis
pathways were proposed, with retention or inversion at C. To explain the latter, either protonation
at the back side of the Ru-C bond or at N, followed by intramolecular proton transfer, were invoked

(box, Scheme 91).190
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Scheme 91. Non-Stereospecific Protonolysis of Chiral Ruthenium Alkyls and Proposed

Mechanisms Leading to Inversion at Carbon
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Treatment of a D-labelled titanocene with iodine resulted in retention of configuration at carbon

(Scheme 92).101

Scheme 92. Retention of Configuration at Carbon in lodination of Ti-C Bonds

Cp2T|®<Ph —2, Cp2T|/j’l + CleJ:Ph

retention

In related metallocene chemistry, however, hydrozirconation of a phospholene gave a [Zr]-R* C,P-
chelated complex with syn Ph and H groups. Reaction with diphenylchlorophosphine resulted in
P-C bond formation with inversion of configuration at carbon (Scheme 93). The authors suggested

that the expected four-center retentive transition state was not accessible because the bidentate
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ligand occupied a coordination site, necessitating an open transition state. However, with a closely
related derivative, retention at carbon occurred, showing that these reactions are still not well

understood.!02

Scheme 93. Inversion of Configuration at Carbon in Electrophilic Cleavage of a Zr-C Bond
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5. Catalysis

[M]-R* complexes are commonly invoked as intermediates in asymmetric catalysis, and in some
cases they have been directly observed or even isolated. Their structural characterization in
solution or the solid state provides information on the catalytic mechanism and the origin of
asymmetric induction.

5.1 Asymmetric hydrogenation

A key step in the most successful application of asymmetric catalysis, hydrogenation, involves
selective insertion of an alkene into a metal-hydride bond to give a chiral metal alkyl, whose
subsequent C-H reductive elimination, if another metal hydride is present, or protonolysis yields
the enantiomerically enriched hydrogenation product. For example, in Landis and Halpern’s
impactful mechanistic studies of Rh-catalyzed asymmetric hydrogenation, the disfavored alkene
adduct (“minor” pathway) led to the major hydrogenation product and [Rh]-R* intermediate 19

was observed by low-temperature 3'P NMR spectroscopy (Scheme 94).103
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Scheme 94. Diastereomeric [Rh]-R* Alkyl Hydride Intermediates in Rh(Dipamp)-Catalyzed

Asymmetric Hydrogenation of Methyl-(Z)-a-acetamidocinnamate (MAC)
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With the same Rh(Dipamp) catalyst and a similar substrate, related chiral alkyl hydrides, featuring
characteristic tridentate coordination of the [Rh]-R* group, were characterized by NMR
spectroscopy.!® In more recent studies (see below), however, the proposed Rh-O ester

coordination in such complexes is considered to involve the carbonyl oxygen.
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Scheme 95. Chiral Rhodium Alkyl Hydrides Observed as Intermediates in Rh-Catalyzed

Asymmetric Hydrogenation
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Similar NMR observations have been made for a variety of chiral bis(phosphines) and

functionalized alkene substrates. In Scheme 96, an alkyl hydride complex included an agostic C-

H bond, while a classical [Rh]-R* isomer with solvent coordination was not seen.!

Scheme 96. Generation of a Rh(PhanePhos) Agostic Alkyl Complex Formed by Alkene Insertion
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Similarly, with a more electron-rich chiral alkylphosphine, a thodium alkyl hydride intermediate
formed by enantiodetermining migratory insertion was observed by NMR spectroscopy (Scheme

97).106
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Scheme 97. Observation of a Rhodium Alkyl Hydride Complex, an Intermediate in Rh-Catalyzed

Asymmetric Hydrogenation
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With a related ligand having a larger bite angle, a whole series of four isomeric alkyl hydrides was
observed (Scheme 98, top). Replacing the usual amide substituent with a phosphonate gave chelate

20, which underwent ligand substitution to yield the more stable 21, with a tridentate ligand.'’

Scheme 98. Observation of Four Isomeric Rhodium Alkyl Hydride Complexes and Phosphonate

Analogues 20-21
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With an exotic tetraphosphine ligand designed to support dinuclear rhodium complexes, a

trihydride intermediate, which is an analogue of the usual monohydrides, was observed (Scheme

99).108
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Scheme 99. Observation of a Dinuclear Rhodium Alkyl Hydride Complex, an Intermediate in Rh-

Catalyzed Asymmetric Hydrogenation
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Analogous iridium complexes serve as models for the more active Rh catalysts, or as selective
catalysts in their own right. With Dipamp (compare Rh complexes in Schemes 94-95), both C-
epimers of stable [Ir]-R* cationic alkyl hydrides were formed by alkene insertion (Scheme 100).
They did not interconvert under the reaction conditions, so that both isomers could be observed,

in contrast to the Rh case, where only one was seen.!?®

Scheme 100. Diastereomeric Cationic Ir(Dipamp) Alkyl Hydrides
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In a follow-up paper from the same group, the absolute configurations of the chiral alkyl centers

were determined by NOE studies of related C-epimeric diastereomers with menthyl ester
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substituents, with coordination of the Dipamp MeO group (Scheme 101). Presumably similar

binding occurred in Scheme 100, although those complexes were drawn as five-coordinate.!!°

Scheme 101. Diastereomeric Cationic Ir(Dipamp) Alkyl Hydrides with Menthyl Ester Substituents
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With a P~N phosphine-oxazoline ligand, a five-coordinate Ir alkyl hydride complex was observed

(Scheme 101).!111:112

Scheme 102. Observation of an Iridium Alkyl Hydride Complex, an Intermediate in Ir-Catalyzed

Asymmetric Hydrogenation
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Rhodium and iridium dihydride intermediates react with alkenes to yield chiral alkyl hydrides, as
in Schemes 94-102 above. In contrast, ruthenium-catalyzed asymmetric hydrogenation often
involves monohydrides, in which alkene insertion again yields [Ru]-R* intermediates. Without a

remaining hydride, C-H reductive elimination is not possible, so reaction with Hy, either by
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protonolysis or oxidative addition/reductive elimination, is required to complete the catalytic
cycle. This sequence was observed with a Ru(Binap) catalyst in Scheme 103,!'!3 where B-hydride
elimination was fast and reversible prior to irreversible hydrogenolysis of the Ru-C bond, which

was assumed to proceed with retention of configuration at carbon.!

Scheme 103. Synthesis of a Chiral Ruthenium Alkyl via Insertion of a Functionalized Alkene into
a Ru-H Bond, followed by Hydrogenolysis with Retention of Configuration (L = Acetone or
Acetonitrile)
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Similarly, the related substrate dimethyl itaconate gave an isolable chiral Ru alkyl as a mixture of

diastereomers (only the major one is shown in Scheme 104).

Scheme 104. Synthesis of a Chiral Ruthenium Alkyl via Insertion of a Functionalized Alkene into

a Ru-H Bond
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5.2 Asymmetric hydroformylation

As in asymmetric hydrogenation, [M]-R* intermediates are formed in asymmetric
hydroformylation by alkene insertion into M-H bonds, but 2,1-insertion is required to yield the
desired branched products instead of the linear ones normally formed in commercial
hydroformylation of c-olefins.

Scheme 105 shows examples of such intermediates observed by NMR spectroscopy with a
Rh(diazaphospholane) catalyst and the substrates styrene, vinyl acetate, and 1-octene. The
kinetically favored branched alkyls were not configurationally stable, undergoing reversible 3-H

elimination to interconvert with the linear isomer, and acyl complexes were also observed.!!>116

Scheme 105. Chiral Rhodium Branched Alkyls: Intermediates in Rh-Catalyzed Asymmetric

Hydroformylation
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5.3 Asymmetric copolymerization
Related 2,1-insertions of alkenes into M-C bonds to give chiral alkyl intermediates are important

steps in metal-catalyzed alkene-CO copolymerization. For example, reaction of a styrene with a
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Pd(bis-oxazoline) cation gave only one diastereomeric metallacycle (Scheme 106), which

underwent further alternating insertions of CO and styrene to form the polymer.'!”

Scheme 106. Diastereospecific Formation of a Chiral Palladacycle, an Intermediate in CO-Styrene
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Similar processes occurred with isomeric propenylbenzenes (Scheme 107). These [Pd]-R*

complexes were intermediates in catalytic alkoxy-carbonylation of styrenes.'!3

Scheme 107. Chiral Palladacycles as Intermediates in Catalytic Alkoxycarbonylation of Styrenes
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Similarly, in PdA(BINAPHOS)-catalyzed copolymerization of styrene with CO, insertion of styrene
to make linear or branched metallacycles was observed. Scheme 108 shows only the branched
isomer, which was proposed to undergo B-H elimination, while the linear one was responsible for

productive copolymerization.'!® Further NMR study using a high-pressure flow cell showed that
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the branched isomer was inactive to further insertion but underwent 3-H elimination more slowly

under these conditions than previously expected.

Scheme 108. Chiral Palladacycles
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5.4 Asymmetric hydroboration

Intermediates

in Pd-Catalyzed CO-Styrene

The chiral copper alkyls in Scheme 32 were key intermediates in catalytic asymmetric

hydroboration (Scheme 109). In the proposed mechanism, kinetic selectivity in styrene insertion

gave an initial 19:1 mixture of [Cu]-R* intermediates. Interconversion of these complexes by 3-

hydride elimination/reinsertion was slow compared to productive c-bond metathesis with the

borane, so enantioselectivity from the insertion step was retained. Comparing the configuration of

the product with that of the Cu-alkyl intermediates showed that c-bond metathesis went with

retention of configuration at carbon.*’
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Scheme 109. Role of [Cu]-R* Intermediates in Catalytic Asymmetric Hydroboration of Styrenes
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In a related copper-catalyzed reaction of styrenes, both B-C and C-C bonds were formed using
B>Pin> and a second olefin, with enantioselectivity controlled by a chiral bis(phosphine) (Scheme
110). A key step, diastereoselective insertion of a styrene into a Cu-B bond to form [Cu]-R*

complexes, was observed by low-temperature NMR spectroscopy.!?!
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Scheme 110. Enantioselective Copper-Catalyzed Styrene/Alkene Coupling-Borylation and

Formation of a [Cu]-R* Intermediate
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5.5 Other asymmetric reactions

The chiral Pd enolates in Scheme 36 were intermediates in Pd-catalyzed cross-coupling with aryl
halides (Scheme 111). Although the equilibrium between the C-epimeric [Pd]-R* diastereomers
was only modestly selective, the minor isomer underwent C-C reductive elimination almost 100
times faster than the other, and Pd-enolate interconversion was faster to, or comparable in rate to

reductive elimination, which proceeded with retention of configuration at carbon.
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Scheme 111. Origin of Enantioselectivity in Palladium(Segphos)-Catalyzed Cross-Couplings via

Intermediate Chiral Enolate Complexes: Faster Reductive Elimination for One Diastereomer
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The chiral palladacycles whose C-epimerization was described in Scheme 51 were intermediates

in asymmetric intramolecular Heck reactions (Scheme 112).6

Scheme 112. Chiral Palladacycles Observed in Studies of the Asymmetric Heck Reaction (PMP

= 1,2,2,6,6-pentamethylpiperidine)
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Diastereoselective formation of [Pt]-R* complexes by nucleophilic attack of a P-stereogenic
phosphido ligand on a Michael acceptor alkene (Scheme 46) was the enantioselective step in
asymmetric hydrophosphination catalysis, where it was observed directly (Scheme 113, Is = 2,4,6-
(i-Pr)sC¢H2).!?> Although the C-stereocenter was destroyed by C-H reductive elimination,

diastereoselective attack on the alkene controlled the configuration of the P-stereocenter.

Scheme 113. Diastereoselective Formation of Chiral Pt-Alkyl Intermediates in Catalytic

Asymmetric Hydrophosphination of Acrylonitrile
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Scheme 21 showed asymmetric cyclopalladation of a chiral bornylamine derivative. The resulting
[Pd]-R* complex was a competent intermediate for Pd-catalyzed arylation of this substrate
(Scheme 114), for which a mechanism involving oxidative addition to yield Pd(IV), followed by

C-C reductive elimination, was proposed.*?

76



Scheme 114. A Chiral Bornylamine-Derived Palladacycle as Catalyst Precursor for Selective

Cross-Coupling via C-H Activation
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6. Analogous Chemistry with P-Stereogenic Anionic Ligands

Metal phosphido complexes M-PR; are isoelectronic analogues of metal alkyls M-CR3, where the
phosphorus lone pair takes the place of a carbon substituent. Although phosphines PR3 are
configurationally stable,'?* M-PR, complexes undergo rapid pyramidal inversion,'?* which makes
it difficult to prepare P-stereogenic derivatives [M]-PRR’ in enantiomerically or diastereomerically
pure form for investigation of the stereochemistry of their reactions.'?® This configurational
instability has been exploited in asymmetric catalysis to prepare P-stereogenic phosphines, !¢ but
does not enable direct comparison to the [M]-R* complexes which are the main subject of this
review. However, replacing the P lone pair in [M]-PR2 with an oxide, sulfide, or borane yields
configurationally stable species whose stereochemical behavior and role in catalysis has been

investigated (Scheme 115).
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Scheme 115. Pyramidal Inversion in P-Stereogenic Metal Phosphido Complexes and

Configurationally Stable Analogues
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In contrast to the results with the more commonly studied [M]-R* complexes (section 4 above),
fundamental transformations of [M]-P* analogues, including oxidative addition, reductive
elimination, migratory insertion, and transmetalation have all been observed to proceed with
retention of configuration. It is not clear if this reflects a fundamental difference between the
chemistry of phosphorus and carbon, or simply the limited number of studies on P to date.

P-H oxidative addition of an enantiomerically pure menthoxy-phosphine oxide to Pt(0) occurred
with retention of configuration, as did Pd-catalyzed hydrophosphinylation of alkynes with this

substrate using the precursor Pd(PPhMe;):Me,/Ph,P(O)OH (Scheme 116).1%7

Scheme 116. Retention of Configuration at Phosphorus in P-H Oxidative Addition to Pt(0) and in

Pd-Catalyzed Hydrophosphinylation of Alkynes
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In analogous gold chemistry with the same substrate, Au-P bond formation proceeded with

retention of configuration at P (Scheme 117).128:129
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Scheme 117. Retention of Configuration at Phosphorus in Au-P Bond Formation
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A similar P-H->P-M process on palladium, with a closely related menthol-derived substrate, also

went with retention (Scheme 118).130

Scheme 118. Retention of Configuration at Phosphorus in Pd-P Bond Formation
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Transmetalation from gold to palladium transferred phosphido-oxide groups with retention of

configuration at P, which was exploited in a stereospecific Pd-catalyzed P-C cross-coupling

(Scheme 119).128
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Scheme 119. Transmetalation of a Phosphido Oxide Group from Au to Pd with Retention of

Configuration at Phosphorus, and Its Application in Cross-Coupling Catalysis
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The reaction of a gold phosphido-oxide complex with a terminal alkyne resulted in
protodemetalation, yielding the secondary phosphine oxide with retention of configuration at
phosphorus. With an activated alkyne, DMAD, migratory insertion gave a gold-vinyl complex

with retention of configuration at P (Scheme 120).!%°

Scheme 120. Retention of Configuration in Formation of Au-P Bonds from a P-Stereogenic

Secondary Phosphine Oxide, and in Insertion of an Alkyne into an Au-P Bond
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Pd-P bond formation involving an enantioenriched secondary phosphine-borane
(“transmetalation”) proceeded with retention at P, at low temperature (Scheme 121). However, on
warming the stereospecificity was reduced, presumably because of the configurational instability
of the phosphido-borane anion. This effect could be exploited by starting with racemic phosphine-
borane at room temperature, which resulted in dynamic kinetic resolution with modest selectivity.

P-C reductive elimination of a phosphido-borane Pd-aryl complex also went with retention at P.!3!

Scheme 121. Retention of Configuration at Phosphorus in Pd-P Bond Formation and P-C

Reductive Elimination Involving a Phosphine-Borane
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Scheme 122 shows an analogous P-C reductive elimination of a phosphido-oxide group, also with

retention of configuration at P.!3°

Scheme 122. Retention of Configuration at Phosphorus In P-C Reductive Elimination from Pd
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7. Conclusions

This survey has demonstrated the continued importance of [M]-R* and analogous [M]-P*
complexes in determining the stereochemistry of fundamental transformations involving M-C and
M-P bonds, such as oxidative addition, reductive elimination, transmetalation, and migratory
insertion, and the use of these observations to provide mechanistic information. Synthesis or
generation of these compounds exploits classical approaches in organometallic chemistry, applied
to chiral substrates or controlled by chiral ligands. [M]-R* groups are often configurationally
stable, but C-epimerization by processes such as B-hydride elimination or M-C homolysis is
mechanistically significant and may be valuable or undesired in catalysis. Because the
fundamentals appear relatively well established, further study of this subject will probably be
focused on applications to asymmetric catalysis, where more mechanistic knowledge should prove
useful in rational design.
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