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Abstract  

Enantiomerically or diastereomerically enriched transition metal complexes bearing formally 

anionic, sp3-hybridized, C-stereogenic alkyl ligands ([M]-R*) are historically important for 

applications in determining the stereochemistry of fundamental steps in organometallic chemistry; 

isoelectronic P-stereogenic analogues ([M]-P*) have been studied more recently. These complexes 

are key intermediates in asymmetric catalysis, and the stereochemistry of their formation and 

reactions controls stereoselectivity. Understanding these processes with chiral catalysts may enable 

rational design of asymmetric transformations. This review covers their chemistry, including 

preparation by resolution or asymmetric synthesis (controlled by chiral substrates or chiral 

ligands), configurational stability, the stereochemistry of fundamental transformations, and their 

role in catalysis. 

 

1. Introduction 

1.1 Why? 

This review covers enantiomerically or diastereomerically enriched transition metal complexes 

bearing formally anionic, sp3-hybridized, C-stereogenic alkyl ligands, abbreviated here as [M]-R* 

(Scheme 1, left). This class of compounds is historically important for its applications in 

determining the stereochemistry of fundamental steps in organometallic chemistry, such as 

oxidative addition/reductive elimination and migratory insertion. As noted by Whitesides, “The 

most valuable single type of information to have in characterizing the mechanism of a reaction 

that makes or breaks bonds at a tetrahedral carbon atom is the stereochemistry of the 

transformation at that carbon.”1 The SN1 and SN2 substitutions are classic examples in organic 

chemistry; progress in this area for organometallics was reviewed by Flood2 in 1981 and, in part, 
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by Malinakova3 in 2004; this manuscript includes more recent examples. In asymmetric catalysis, 

[M]-R* complexes are key intermediates and the stereochemistry of their formation and reactions 

controls stereoselectivity. Understanding these processes with chiral catalysts may enable rational 

design of asymmetric transformations.  

 

Scheme 1. Transition Metal Complexes with C-Stereogenic Alkyl Ligands and Their P-

Stereogenic Analogues 

 

To complement study in these well-established areas, more recent work has investigated P-

stereogenic analogues (Scheme 1, right). In addition to two anionic substituents (R,R’ = H, 

alkyl/aryl, halide, alkoxide, etc.) these “carbon copies”4 also include a group (E = O, S, BH3) which 

gives them a formal negative charge and distinguishes their chemistry from the more common 

phosphine ligands, PR3. 

1.2 Scope of this review 

This review focuses on transition metal complexes which have been isolated or observed 

spectroscopically, omitting studies where the stereochemistry of catalytic or stoichiometric 

transformations of a chiral substrate is used to infer details about the process.5 Main group [M]-

R* complexes, for example of Mg or Li, appear only when used for transmetalation to transition 

metals. These extensively studied organometallics, however, are useful in asymmetric synthesis 

and stereochemical studies, as described in multiple reviews.6 Although complexes with other 

chiral hydrocarbyl ligands are known, the focus here is on simple alkyls, leaving out π-allyl,7 

atropisomeric,8 and planar-chiral examples.9 In most cases, the R* group is enantiomerically 
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enriched, but diastereomeric mixtures sometimes also provide valuable information, as described 

below.  

Although not covered here, one such approach deserves special mention. Whitesides developed an 

NMR method to determine the stereochemistry of reactions which formed or destroyed [M]-R* 

bonds.1 It relies on the magnitude of H-H coupling in threo and erythro isomers of specifically 

deuterium-labeled organometallics. Scheme 2 shows an example, where migratory insertion was 

shown to proceed with retention of configuration at carbon, since the erythro starting material was 

converted to an erythro product, in which H and D remained syn to each other. Newman projections 

are often used to illustrate these processes. Since its introduction in 1974, this approach has been 

applied in more than 100 papers, which are accessible from citations of reference 1. 

 

Scheme 2. Example of the Whitesides NMR Method for Determining the Stereochemistry of 

Reactions at Metal-Carbon Bonds 
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2. Synthesis [M]-R* complexes may be prepared by the standard methods used for other 

organometallics. Scheme 3 shows some of the most common approaches. Oxidative addition of an 

enantiomerically enriched chiral substrate R*X gives a C-stereogenic ligand. X is commonly a 

halide or related leaving group, but examples of C-H, C-C, or C-P oxidative addition are also 

known. Transmetalation, often from a main group organometallic [M’]-R*, may transfer 

enantiomerically enriched R* with complete retention or inversion of configuration. However, 

configurational instability of the main group and/or transition metal alkyls (see section 3 below) 

provides the opportunity for asymmetric induction in this step. Finally, migratory insertion of an 

alkene into a M-H bond, with appropriate regiochemistry, may also yield [M]-R* groups in a 

process often seen in asymmetric catalysis. 

 

Scheme 3. Synthesis of Transition Metal Complexes with C-Stereogenic Alkyl Ligands 

 

 

2.1 Resolution 

Instead of starting with an enantiomerically enriched substrate, a more general approach to [M]-

R* complexes is resolution, often using reagents derived from the chiral pool. Ideally, separation 

of the resulting diastereomers gives them both in high yield and purity, and the resolving agent can 

be removed from the products without erosion of enantiopurity and recovered. In practice, 

resolution often requires trial and error, and it is often challenging to accomplish all these goals.10  
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Scheme 4 shows an early example, in which diastereomeric Ni-alkyls were partially separated by 

recrystallization of their menthyl esters.11 

 

Scheme 4. Diastereomeric Chiral Nickel Alkyls Bearing a Pendant Menthyl Ester 

 

 

Similarly, oxidative addition of a diastereomeric mixture of alkyl bromides bearing a menthyl ester 

substituent to mercury metal gave separable [Hg]-R* diastereomers (Scheme 5).12 

 

Scheme 5. Synthesis and Diastereomer Separation of Chiral Organomercury Complexes Bearing 

a Pendant Menthyl Ester 

 

 

The tricyclic palladacycles in Scheme 6 formed polymeric aggregates but are shown as monomers 

for simplicity. As in Schemes 4-5, preparation of menthyl esters, here by transesterification, gave 

separable diastereomers.13 A similar resolution was accomplished using the chiral bis(phosphine) 

diop.14 
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Scheme 6. Resolution of Chiral Palladacycles Using Menthol or Bis(phosphine) Chiral Auxiliaries 

 

 

Chiral amines and amino acids are often used as resolving agents for [M]-R* complexes because 

of their low cost, structural diversity, and ready removal with acid. For example, Scheme 7 shows 

resolution of palladacycles with the readily available PhCHMeNH2 or a proline derivative.15,16 

Note: depending on the relative orientation of the bidentate ligands, dinuclear Cl-bridged 

palladacycles like 1 can exist as cis or trans isomers, which may interconvert in solution,17 and 

their structures have not been determined in some cases. To reflect this ambiguity, this common 

motif (see also Schemes 9-12 and 16 below) is drawn in this review as a generic dimer, except in 

cases where the geometry is known. 
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Scheme 7. Resolution of Palladacycles Using a Chiral Amine or Amino Acid 

 

 

Similarly, cyclopalladation of a quinoline-phenol gave chiral amine adducts (Scheme 8).18 For n = 

1, after separation of the diastereomers, the chiral amine could be replaced with pyridine. 

 

Scheme 8. Resolution of a Quinoline-Derived Palladacycle with a Chiral Amine 

 

 

A 1972 report of direct cyclopalladation of ethylquinoline with Li2PdCl4 (Scheme 9) was later 

claimed to be irreproducible.19 Nevertheless, resolution of the resulting Cl-bridged dimer with 

PhCHMeNH2 enabled isolation of enantioenriched adducts. Replacement of the chiral amine with 

PPh3 gave another optically active derivative.20 
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Scheme 9. Resolution of an Ethylquinoline-Derived Palladacycle with a Chiral Amine 

 

 

Related palladacycles formed from ethylquinoline were resolved using the amino acid S-leucine 

to give both diastereomers in about 90% de. Scheme 10 shows an example where the resolving 

agent could be removed with acetic acid.21 

 

Scheme 10. Resolution of a Chiral Ethylquinoline-Derived Palladacycle Using an Amino Acid 

 

 

Scheme 11 shows a related resolution with a chiral diamine. The product was thermally stable (110 

°C, 3 h, no epimerization), but attempted amine removal with HCl caused some loss of 

enantiopurity. However, using acetic acid at lower temperature avoided this problem.22 
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Scheme 11. Resolution of a Chiral Palladacycle Using a Chiral Diamine 

 

 

In a variation of this approach, transmetalation of a chiral (racemic) organolithium to a chiral 

amine-palladacycle gave diastereomers which were separated by recrystallization (Scheme 12).19 

 

Scheme 12. Formation of Diastereomeric Palladacycles by Transmetalation from Lithium  

  

 

Resolutions with chiral amines are not restricted to [Pd]-R* complexes. Scheme 13 shows a related 

process in cobaloxime complexes, where a chiral Co-alkyl group was generated from hydrogen 

and an alkene.23 
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Scheme 13. Synthesis of Chiral Cobalt Alkyls from Hydrogen and Acrylonitrile and Their 

Resolution Using a Chiral Amine 

 

 

2.2 Absolute asymmetric synthesis 

Resolution provides at most a 50% yield of one enantiomer. In an unusual but attractive approach, 

some racemic compounds which crystallize in a chiral space group form enantiomerically pure 

crystals. This “absolute asymmetric synthesis” has been discovered only by trial and error, but 

when successful it provides [M]-R* complexes without requiring any chiral material. For example 

(Scheme 14), the bis-picoline adduct of bis-indenyl zinc crystallized in high enantiomeric excess 

and could then be halogenated with high ee.24 Similarly, spontaneous resolution of bis-MeCp 

complex 2 also occurred, giving enantiomerically pure crystals.25  
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Scheme 14. Absolute Asymmetric Synthesis of a Chiral Organozinc Reagent and its 

Stereoselective Halogenation 

 

 

2.3 Chiral substrates 

[M]-R* groups may be prepared directly from chiral substrates by oxidative addition of 

enantiomerically enriched R*X, where X = halide or H, by selective activation of one hydrogen in 

a CH2 group, or by other methods. 

2.3.1 Oxidative addition 

Oxidative addition of an enantiomerically enriched quinoline derivative to Pt(0) gave a 

platinacycle whose regiochemistry was not reported; Scheme 15 shows one possible regioisomer.  

On the basis of optical activity measurements, inversion of configuration at carbon was claimed. 

However, as acknowledged in the paper, the authors were not able to gauge the extent of 

stereoselection or the absolute configurations of the reactants and products.26  
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Scheme 15. Synthesis of a Chiral Platinacycle by Oxidative Addition of a Chiral Quinoline Alkyl 

Bromide Derivative 

  

 

Related palladacycles were prepared from an enantiomerically enriched organomercury complex, 

which was resolved using camphorsulfonic acid. After Hg-Br oxidative addition to Pd(0), yielding 

a Pd-Hg bond, “redox transmetalation” gave Pd(II) complexes (Scheme 16). The enantiopurity of 

the reagents and products, studied by optical rotation measurements, was not quantified.27 

 

Scheme 16. Synthesis of Chiral Ethylquinoline-Derived Palladacycles by Redox Transmetalation 

from Mercury to Palladium 

 

 

Analogous chiral palladacycles were formed by P-C cleavage of chiral phosphine ligands, in which 

the C-stereogenic center was transferred to Pd with or without stereocontrol. In Scheme 17, heating 

a Pd((S,S)-Et-FerroTANE) complex gave palladacycle 3 as a mixture of diastereomers, presumably 

via P-C reductive elimination to yield a phosphetanium cation, followed by P-C oxidative addition. 
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The kinetic stereochemistry of this process could not be determined, because the isomers of 3 

interconverted in solution, presumably via reversible b-hydride elimination/reinsertion. A similar 

process in 4 opened the second phosphetane ring, again yielding a mixture of stereoisomers.28 The 

newly formed Pd-C and P-Ph bonds are shown in blue. 

 

Scheme 17. Synthesis and Epimerization of Chiral Palladium Alkyls by Ring Opening of a Chiral 

Bis(phosphetane) Ligand 

 

 

In contrast, similar chemistry in a chiral Pd-diazaphospholane complex gave only one isomer, with 

stereospecific methyl transfer from palladium to phosphorus and ring opening to yield a new [Pd]-

R* stereogenic center (Scheme 18, with the new Pd-C and P-C bonds in blue).29 
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Scheme 18. Stereospecific Synthesis of a Chiral Palladium Alkyl by Ring Opening of a Chiral 

Bis(phospholane) Ligand 

 

 

2.3.2 Diastereoselective cyclometalation of CH2 groups  

In these reactions, anchoring a chiral substrate to a metal with a donor group enables selective 

activation of a neighboring CH2 group to yield a [M]-R* complex. For example, cyclometalation 

of the camphor-derived phosphine phenop at Pd or Pt generated several new chiral centers, 

including one at the metal-bound carbon (Scheme 19).30 

 

Scheme 19. Synthesis of Chiral Metallacycles by Cyclometalation of a Camphor-Derived 
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In a less selective example, cyclopalladation of a related camphor hydrazine derivative gave an 

inseparable cis-trans mixture of Cl-bridged dimers without stereocontrol at the Pd-bound carbon; 

Scheme 20 shows a trans isomer which was crystallographically characterized. Treatment with 

Na(acac) or PPh3 gave monomeric complexes which could be partially separated by 

chromatography to give diastereoenriched mixtures which slowly epimerized in solution.31  

 

Scheme 20. Synthesis of Chiral Palladacycles from a Camphor-Derived Hydrazone 

 

 

With a similar chiral substrate, coordination of both pyridine and amide nitrogens resulted in 

selective formation of palladacycle 5, in which coordinated acetonitrile could be replaced with 

PPh3 (Scheme 21).32 See Scheme 114 below for application of this process in catalytic asymmetric 

C-H functionalization. 
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Scheme 21. Synthesis of a Chiral Palladacycle from a Bornylamine Derivative 

 

 

Related bidentate coordination of a chiral imine-amide resulted in selective C-H activation of an 

ethyl CH2 group to yield a palladacycle with an NOC pincer ligand (Scheme 22).33 See Scheme 

75 below for additional stereochemical studies of this [Pd]-R* group. 

 

Scheme 22. Synthesis of a Chiral Palladacycle via C-H Activation of a Chiral Bifunctional Imine-

Amide  

 

 

Similarly, bidentate coordination of an enantiomerically enriched pyridine-phosphine 

chalcogenide to palladium resulted in stereospecific activation of a ketone CH2 group to yield 

chiral Pd-alkyl pincer complexes (Scheme 23).34 This reaction was extended from the parent 

pyridine derivative to dinuclear ones featuring meta- or para-arene cores, or a bipyridine, yielding 

[Pd]-R* complexes 6-8. 
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Scheme 23. Synthesis of Chiral Palladacycles from Enantiomerically Enriched Phosphine 

Chalcogenide-Pyridine Substrates 

 

 

Similar chemistry occurred with a substrate bearing a vinyl substituent at the C-stereocenter, with 

a variety of Pd(II) sources (Scheme 24).35 

 

Scheme 24. Cyclopalladation of an Enantiomerically Enriched Pyridine-Phosphine Chalcogenide 

 

 

Cyclopalladation of a chiral sulfoxide caused formation of two Pd-C bonds, with stereocontrol at 

the Pd-bound alkyl group. Bidentate S/O coordination led to a trimeric palladacycle, with distorted 

square planar Pd(II) centers (Scheme 25 shows the local environment at Pd).36 
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Scheme 25. Synthesis of a Trimeric Chiral Palladacycle from C-H Activation of an 

Enantiomerically Enriched Sulfoxide 

 

 

2.3.3 Other methods 

Protonation of square planar 9 gave octahedral Pt complexes with high stereoselectivity controlled 

by a potentially tetradentate chiral bis(imine)-bis(pyridine) ligand derived from cis-

cyclohexanediamine (Scheme 26). In the proposed mechanism, after imine N-protonation in 9, 

attack of Pt at carbon yields 10 or 12, whose structure depended on the anion.37 With chloride 

coordination, the ligand was tridentate, and kinetic product 10 was converted to 

thermodynamically favored 11. With the more weakly coordinating trifluoroacetate anion, pyridine 

coordination to give 12 required the opposite configuration at the Pt-bound carbon. 
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Scheme 26. Stereoselective Formation of Chiral Platinum Alkyls by Protonation of a 

Cyclohexanediamine-Derived Ligand 

   

 

In a complicated process whose mechanism is unclear, a chiral oxazoline-phosphaalkene ligand 

was converted to a chiral dinuclear complex, in which the [Pd]-R* ligand was formed from an 

ortho methyl in a P-mesityl group (Scheme 27).38 
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Scheme 27. Synthesis of a Dinuclear Palladium Chiral Alkyl Complex After Selective Ring 

Opening of an Enantiomerically Enriched Phosphaalkene-Oxazoline 

 

 

2.3.4 Ligand Isomerization 

Unexpected isomerization of chiral binaphthyl-based bidentate ligands is another route to [M]-R* 

complexes. For example, isomerization of the P~N BINAP analogue MAP gave a P~C-chelate 

with a Pd-bound C-stereogenic center.39 A related process yielded a π-allyl complex (Scheme 28). 

 

Scheme 28. Formation of Chiral Palladacycles via Isomerization of the Binaphthylphosphine-

amine MAP 
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Scheme 29. Formation of a Cyclic [Pt]-R* Complex via Isomerization of a Chiral Binaphtholate 

Ligand 

 

 

2.3.5 Transmetalation  

The configurational instability of main group organometallics [M’]-R* makes selective synthesis 

of [M]-R* complexes by transmetalation challenging. However, this process can be highly 

diastereoselective when R* contains more than one chiral center. For example, treatment of 

menthyl chloride with Mg gives an interconverting mixture of the expected MenMgCl and its C-

epimeric neomenthyl isomer NeoMenMgCl. Because the menthyl reagent reacts more quickly 

with electrophiles, this cocktail often preferentially yields menthyl products with main group 

reagents such as phosphorus and tin derivatives.42 Extending this approach to transition metal 

halides gave gold and platinum menthyl complexes; the Pt-Br came from dibromoethane used to 

generate the Grignard reagent (Scheme 30).43  

 

Scheme 30. Synthesis of Chiral Gold and Platinum-Menthyl Complexes by Transmetalation from 
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2.3.6 Oxidative Cyclization  

The palladacycles whose resolution was shown in Scheme 6 were prepared as racemates by 

oxidative cyclization of cyclopropenes. Using C2-symmetric cyclopropenes with enantiomerically 

enriched lactic acid ester substituents resulted in asymmetric synthesis of enantiomerically 

enriched [Pd]-R* complexes (Scheme 31 shows an example).44 

 

Scheme 31. Synthesis of Chiral Palladacycles via Oxidative Cyclization of C2-Symmetric Chiral 

Cyclopropenes 
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rates (Scheme 32). As shown in more detail in Scheme 109 below, this process is important in 

catalytic asymmetric hydroboration of alkenes.45  
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Scheme 32. Diastereoselective Synthesis of Chiral Copper Alkyls by Reaction of Styrenes with a 

Bis(phosphine) Copper Hydride Complex 

 

 

Similarly, regio- and stereospecific 2,1-insertion of styrene or vinyltrimethysilane into a Zr-C bond 

gave metallacycles in which the a-substituent pointed away from the chiral ligand (Scheme 33); 

related insertions of cis- or trans-2-butene were also stereospecific.46 

 

Scheme 33. Regio- and Stereospecific 2,1-Insertion of Styrene into a Zr-C Bond Yielded a Chiral 

Alkyl Complex 

 

 

Replacing bipyridine with a chiral bis(phosphine) diphos*, such as Chiraphos, caused a b-hydride 

elimination-reinsertion sequence which resulted in ring contraction and formation of a [Ni]-R* 

O

O

O

O PAr2
PAr2

DTBM-Segphos

t-But-Bu
OMe

Ar =

[Cu] = Cu(DTBM-Segphos)

[Cu] H
Ar Me

[Cu]
H
Ar

Me

[Cu]
H

Ar+

major minor

Zr
N

N

MeBPh4

R

Me

Zr
N

BPh4

Me

R

H

R = Ph, SiMe3



 27 

metallacycle, in which the C-stereocenter could epimerize via the Ni-hydride intermediates shown 

in the box (Scheme 34).47  

 

Scheme 34. Formation of Chiral Nickel Metallacycles by Ring Contraction and Their 

Isomerization via Reversible b-Hydride Elimination and Reinsertion 
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complex gave higher stereoselectivity than replacing COD with a chiral bis(phosphine).48 These 

diastereoselective reactions were carried out with a variety of diazo precursors and diphos* 

ligands.49 
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2.4.2 Enolate formation 

Keto-enol tautomerization provides the opportunity for kinetic and/or thermodynamic control of 

diastereoselectivity in formation of [M]-R* enolate complexes, which often undergo epimerization 

at the C-stereogenic carbon. For example, treatment of a cyclic amide with base in the presence of 

a chiral palladium aryl bromide complex gave mixtures of enolate complexes, in which the 

diastereoselectivity depended on the aryl substituents (Scheme 36).50 See Scheme 111 below for 

their role in Pd-catalyzed cross-coupling, where C-C reductive elimination formed the products. 

 

Scheme 36. Diastereoselective Synthesis of Palladium-Segphos Enolate Complexes 

 

 

Similarly, a chiral cyclohexanediamine ligand controlled diastereoselectivity in formation of cyclic 

palladium enolates and could later be replaced by phosphines (Scheme 37).51  
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In related reactions with chiral bis(phosphines), diastereoselectivity depended on the ligand and 

the base, with kinetic or thermodynamic control observed (Scheme 38).52 Related chemistry with 

a chiral diamine ligand gave aza- or oxapalladacycles, and addition of more base resulted in either 

enrichment or erosion of diastereomeric excess.53 

 

Scheme 38. Diastereoselective Synthesis of Carbon-Bound Palladium Enolate Complexes 

 

 

Extending this approach gave palladacycles with two [Pd]-R* groups as mixtures of diastereomers, 

with some control over the relative conformations of the Pd-C substituents (cis-trans ratio, Scheme 

39).54 
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Scheme 40. Synthesis of Chiral Palladacycles Featuring a Pd-Bound Ylide Carbon 

 

 

2.4.3 Cycloaddition 

[Zr]-R* complexes were formed by highly selective [2+2] cycloaddition of a chiral zirconocene 

imido complex with a racemic allene to give one diastereomer of a chiral metal alkyl (Scheme 41). 

Using 2 equiv of racemic allene enabled stoichiometric kinetic resolution.56 

 

Scheme 41. Synthesis of Chiral Metallacycles from a Zirconium-Imido Complex and Allenes 
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Scheme 42. Match-Mismatch Effects in Formation and Isomerization of Chiral Zirconacycles 

 

 

2.4.4 Miscellaneous synthetic methods 

Section 2.3.2 above showed examples in which coordination of a chiral substrate led to selective 

intramolecular activation of a CH2 group, yielding a [M]-R* center. Such processes may also occur 

with an achiral substrate, mediated by a separate chiral ligand. Thus, in Scheme 43, the chiral 

sulfoxide ligands promoted asymmetric cycloplatination to give a separable mixture of 

diastereomers of chiral Pt alkyls, obtained in 45% de.58 
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Similarly, a chiral ebthi ligand in an ansa-metallocene controlled the selectivity of b-CH2 

deprotonation to generate proposed zircona-aziridine intermediates in which the N-Ar and R 

groups were expected to be trans (Scheme 44). Insertion of an alkyne into the Zr-C bond, proposed 

to go with retention of configuration at carbon, gave metallacycles with high regioselectivity and 

diastereoselectivity.59 

 

Scheme 44. Generation of Chiral Zircona-Aziridine Complexes and Selectivity of their Reaction 

with Alkynes 

 

 

Switching the solvent to THF enabled isolation of a closely related zircona-aziridine (Scheme 45). 

When generated in benzene instead, it isomerized to form a bicyclic [Zr]-R* complex.60 

 

Scheme 45. Synthesis of a Chiral Zircona-aziridine and Its Solvent-Mediated Isomerization   
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substituents (Scheme 46).61 See Scheme 113 below for the importance of such processes in 

catalytic asymmetric hydrophosphination of Michael acceptor alkenes. 

 

Scheme 46. Diastereoselective Formation of Chiral Pt Alkyl Complexes by Attack of a Phosphido 

Ligand on Acrylonitrile 
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Scheme 47. Evidence for Rh-C Bond Homolysis in Racemization of Chiral Rhodacycle 16 
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Related complexes were prepared in surprising consecutive photochemical solid-state 

transformations, which could be observed in single crystals by X-ray crystallography. For example, 

a 3-cyanopropyl group was converted first to 2-cyanopropyl, then to 1-cyanopropyl, with 

asymmetric induction controlled by the nature of the cobalt alkyl and the axial chiral Lewis base 

(Scheme 49).65 

 

Scheme 49. Formation of Chiral Cobalt Alkyls by Solid-State Photoisomerization 
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Scheme 50. Epimerization of Zirconium Metallacycles by Zr-C Bond Homolysis or b-Hydride 

Elimination 
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Scheme 51. Proposed Mechanism of Epimerization of a Chiral Palladacycle via Reversible b-

Hydride Elimination/Insertion 
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Scheme 52. Epimerization of a [Pt]-R* Complex Via Reversible a-Halide Elimination ([Pt] = 

Pt(Chiraphos), X = Halide) 

 

 

3.4 Reversible reductive elimination/oxidative addition 

C-H activation of a cyclopropane gave separable diastereomers of an [Ir]-R* complex, which upon 

heating interconverted faster than reductive elimination occurred (Scheme 53).67 This C-
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Scheme 54. Formation and Epimerization of Diastereomeric Pd-Cyclobutenyl Complexes 

 

 

 

In a similar process, C-epimerization in zirconaaziridines like those in Schemes 44-45 was 

proposed to occur via interconversion of π- and N-bound imine complexes (Scheme 55). Because 

one enantiomer reacted faster than the other with a chiral carbonate, tuning the rate of the insertion 
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In a similar s-π process, the chiral Pd-ylide complexes from Scheme 40 were proposed to undergo 

C-epimerization via reversible formation of a π-bound intermediate (Scheme 56).55 

 

Scheme 56. Proposed Mechanism of C-Epimerization of [Pd]-R* Ylide Complexes 
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Scheme 57. Proposed Dinuclear Mechanism of Racemization of a Chiral Zn-Alkyl Complex 
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The base-mediated epimerization of chiral metal enolate complexes mentioned in Schemes 36-39 

above may occur via reversible deprotonation of the metal-bound stereocenter, as proposed in 

Scheme 58.52 

 

Scheme 58. Proposed Mechanism of Base-Mediated Epimerization of a Chiral Pd-Enolate 

Complex ([Pd] = Pd(diphos*)) 
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diastereomers.72 Please see Scheme 109 below for the importance of related processes in Cu-

catalyzed asymmetric alkene hydroboration. 
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Scheme 59. Determining the Rate and Thermodynamics of Epimerization of a Chiral Copper Alkyl 

Complex by Ligand Substitution 
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Scheme 60. Ligand Substitution in a Configurationally Stable Chiral Bis(Oxazoline)-Zinc Alkyl 

Complex 
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Scheme 61. A Large Kinetic Isotope Effect in Selective Cyclopalladation of a Deuterium-Labeled 

Chiral Ethylquinoline 
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Scheme 63. Retention of Configuration at Carbon in Oxidative Addition of a Racemic Epoxide to 

Ni(0) 

 

 

With a more substituted cis-epoxide, oxidative addition was proposed to go with retention of 

configuration to form an observable nickelaoxetane intermediate, before b-hydride elimination 

and reinsertion gave the isolated ring-expanded product (Scheme 64).76 
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to occur via nucleophilic ring opening, followed by rotation about a C-C bond and ring closure by 

attack of the amido anion at nickel (Scheme 65).77  

 

Scheme 65. Formation of a Nickela-azetidine by Ring Opening of a D-Labelled Aziridine with 

Inversion at Carbon 
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Scheme 67. Inversion of Configuration at Carbon in Oxidative Addition of a Sugar Alkyl Bromide 

to Palladium(0)  

 

 

In a similar process with a manganese nucleophile, some sugars reacted with high stereoselectivity 

with inversion at carbon (Scheme 68). Oxidative addition was less selective in other cases, 

depending on the substrate substituents.81  

 

Scheme 68. Stereochemistry of Nucleophilic Attack on Chiral Sugar Alkyl Bromide Derivatives 

 

 

Changing reaction conditions also affected stereoselectivity of these oxidative additions (Scheme 

69), which again proceeded with inversion using KMn(CO)5 to give the b-isomer. However, in the 

presence of [NBu4][Br], which promotes anomerization, NaMn(CO)5 formed a 3:2 mixture of 

isomers. Several related Mn-sugar complexes were formed in similar reactions.82 
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Scheme 69. Controlling Selectivity of Mn-C Bond Formation in the Reactions of [Mn(CO)5]– with 

Chiral Sugar-Derived Alkyl Bromides 

 

 

4.1.3 Scrambling (radical) 

Oxidative addition of a related sugar alkyl bromide to iridium gave a mixture of inversion and 

retention products, consistent with a radical process, as expected for this AIBN-promoted reaction 

(Scheme 70).83 

 

Scheme 70. Stereochemistry of Radical-Mediated Oxidative Addition of a Sugar Alkyl Bromide 

to Iridium 

 

 

Similar reactions with Pt(0) gave a mixture of isomers, in which the a-sugar was favored (Scheme 

71). A radical chain mechanism was proposed.84  
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Scheme 71. Stereochemistry of Oxidative Addition of Sugar-Derived Alkyl Halides to Platinum(0) 

 

 

In a more complicated process, the stereochemistry of nucleophilic attack of a dinuclear metal 

carbonyl anion on an alkyl dihalide was investigated (Scheme 72). In the proposed mechanism, 

electron transfer gives a carbon radical, which inverts rapidly, destroying the stereochemical 

information at that center, then combines with cobalt to make one [Co]-R* bond unselectively. The 

second Co-C bond formation was suggested to proceed with higher selectivity, probably with 

inversion of configuration at carbon, to yield a dinuclear metallacycle.85 

 

Scheme 72. Stereochemistry of Nucleophilic Attack of a Metal Carbonyl Anion on a Diiodoalkane 
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4.2 Reductive elimination 

4.2.1 Retention at carbon (concerted) 

Treating a [Rh]-R* complex with P(OMe)3 promoted C-C reductive elimination (Scheme 73), 

yielding the same enantioenriched quinoline derivative used to make the chiral Rh-alkyl by 

oxidative addition (Scheme 62 above).62 Therefore, both oxidative addition and reductive 

elimination must have occurred with the same stereochemistry, either with double inversion or 

double retention. Since analogous reductive eliminations were known to proceed with retention, 

the authors concluded that both steps went with retention of configuration at carbon. 

 

Scheme 73. Retention of Configuration at Carbon in C-C Reductive Elimination from a Quinoline-

Derived Rhodacycle 

 

 

In Scheme 74, the relative configuration of the Pd and methyl norbornyl substituents provided a 

probe of the stereochemistry of C-N reductive elimination, which occurred for several different N-

Ar groups on heating in the presence of the N-heterocyclic carbene SIPr. Since retention was 

observed, the authors proposed a concerted process.86 
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Scheme 74. C-N Reductive Elimination from Palladium with Retention of Configuration at 

Carbon 

 

 

Similarly, because C-F reductive elimination from a chiral Pd alkyl occurred with retention of 

configuration, a concerted mechanism was proposed (Scheme 75, see Scheme 22 for generation 

of this [Pd]-R* group under related conditions).33 

 

Scheme 75. Proposed Mechanism of Palladium-Catalyzed Oxidative C-F Bond Formation with 

Retention of Configuration at Carbon via Chiral Palladacycle Intermediates 

 

 

In related C-F reductive eliminations from Pt(IV) (Scheme 76), oxidation with XeF2 or related 

reagents gave dications, which formed products with retention of configuration at carbon, most 

easily explained by concerted reductive elimination. However, addition of anionic nucleophiles, 

such as [NBu4][OAc], gave mixtures of retention and inversion products, which was rationalized 

by attack of acetate at platinum to form a six-coordinate complex, followed by displacement of 

fluoride anion, whose SN2 attack at carbon causes inversion.87 

N

N
i-Pr i-Pr

i-Pr i-Pr

Pd
NHAr

SIPr
Δ ArHN + Pd(SIPr)2

retention

H

Me

F3C N
O

NEt2
t-Bu

Pd(OAc)2
“F+” source
C6F5CO2H

Pd
Me

F3C N
O

NEt2
t-Bu

O2CC6F5

F
F

Me

F3C
O

H
retention



 52 

Scheme 76. Oxidatively Induced C-Halogen Bond Formation in Platinum Alkyls with Retention 

or Inversion of Configuration at Carbon Influenced by an Added Nucleophile 

 

 

4.2.2 Inversion at carbon (SN2-type) 

Similar invertive reductive elimination pathways are common when an anionic ligand dissociates 

from the metal, followed by attack on a coordinated alkyl group. For example, C-O reductive 

elimination of a diastereomerically enriched mixture of D-labelled Pd-benzyl complexes occurred 

with inversion at carbon, suggesting dissociation of the aryloxide anion, perhaps promoted by h3-

benzyl coordination, followed by nucleophilic attack (Scheme 77).88 
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Scheme 77. C-O Reductive Elimination from Palladium with Inversion of Configuration at Carbon 

 

 

With the same D-labelled probe, inversion of configuration at carbon was also observed in C-N 

reductive elimination, with the same interpretation (Scheme 78).7979 

 

Scheme 78. C-N Reductive Elimination from Palladium with Inversion of Configuration at Carbon 

 

 

Inversion at carbon also occurred in oxidatively induced C-N reductive elimination from nickel 

(Scheme 79). By analogy to the proposed mechanism of formation of the D-labeled nickelacycle 

(Scheme 65), this process could occur by Ni-N heterolysis to yield an N-anion, which attacks at 

carbon in an SN2 process. However, the involvement of oxygen suggested that a homolytic SH1 

pathway was also possible.7777 
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Scheme 79. Oxidatively Induced C-N Reductive Elimination of an Aziridine from Nickel 

 

 

Treatment of a D-labelled [Pd]-R* palladacycle with NF(SO2Ph)2 resulted in C-N bond formation 

with inversion of configuration at carbon, consistent with the mechanism shown in Scheme 80. 

After N-F oxidative addition to yield Pd(IV), dissociation of the amido anion, followed by SN2 

attack at the Pd-bound carbon was proposed.89 

 

Scheme 80. Proposed Mechanism Leading to Inversion of Configuration at Carbon in Reaction of 

a D-Labelled Palladacycle with NF(SO2Ph)2 
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enantiomerically enriched palladacycle from Scheme 10 with an activated alkyne gave a new 

optically active palladacycle. Although the absolute configuration was not determined, the authors 

proposed that insertion proceeded with retention.90 

 

Scheme 81. Insertion of an Activated Alkyne into the Pd-C Bond of a Chiral Ethylquinoline-

Derived Palladacycle 

 

 

4.4 Transmetalation 

Transmetalation of chiral alkyl groups from main group metals to transition metals, important in 

cross-coupling catalysis, may proceed with inversion or retention of configuration, which is 

commonly assessed using chiral probe molecules without isolation or observation of 

intermediates.91 In Scheme 82, a configurationally stable chelated organolithium underwent 

transmetalation to Hg and Pd with predominant inversion of configuration, rationalized by the 

greater steric accessibility of the site opposite lithium to electrophiles.92  
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Scheme 82. Inversion of Configuration at Carbon in Transmetalation from a Chiral Lithium Alkyl 

to Mercury or Palladium 

 

 

4.5 Cycloaddition 

The structure of the products in [2+2] cycloadditions of cis- and trans-stilbene with a zirconocene-

benzyne complex provided evidence for a concerted process with retention of stereochemistry 

(Scheme 83).93 

 

Scheme 83. Retention of Stereochemistry in Cycloadditions of Stilbenes with a Zirconocene-

Benzyne Complex 
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nucleophile, as in migratory insertion.94 For example, the stereochemistry of the four-membered 

rings in Scheme 84 was direct evidence for trans attack of amines on Pd-bound E- or Z-butene.95 

 

Scheme 84. Evidence for Trans Attack of an Amine on Coordinated Alkenes in Synthesis of a 

Palladacycloaminobutane 

 

 

In a related example, treatment of a D-labeled alkene with a Pd(PNP) pincer dication must result 

in anti-aminopalladation by attack of the amine on coordinated alkene (Scheme 85, top). Instead, 

reaction with palladium trifluoroacetate, followed by the PNP ligand gave the same product, 

showing that amino-palladation occurred in both pathways, not alkene insertion into the Pd-N 

bond, which would give the syn-product (Scheme 85).89  
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Scheme 85. Evidence for anti-Aminopalladation in Pd-Mediated Intramolecular Hydroamination 

of a D-Labelled Substrate 

 

   

In contrast, cis-aminopalladation occurred in palladacycle formation in Scheme 86. The structure 

shown fits the reported empirical formula, but presumably this complex forms aggregates or 

coordinates additional ligands, with four-coordinate palladium.96 

 

Scheme 86. Cis-Aminopalladation in Formation of a Palladacycle 

 

 

Nucleophilic attack on a coordinated alkene in Scheme 87 gave a 97:3 mixture of diastereomers 

which both contained two chiral centers, proposed to form from sterically preferred anti attack vs 

the less favored syn attack.97  
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Scheme 87. Anti Attack of Methoxide on a Ru-Bound Alkene Preferentially Gave the RR and SS 

Diastereomers of the Ru-Alkyl Product, Only One of Which is Shown 

 

 

In an unusual process, halide ions attacked the chiral alkyl group in [Pt]-R* complexes (Scheme 

88, see Schemes 35 and 52 for related transformations in this system). Displacement of bromide 

from carbon by iodide occurred with inversion of configuration in a proposed SN1 process. This 

apparent contradiction was explained by anchimeric assistance by platinum via a proposed carbene 

intermediate.48 After C-Br oxidative addition to Pt gives a five-coordinate carbene complex, 

migration of iodide to the carbene is faster than rotation about the Pt=C bond, resulting in inversion 

of configuration at C. Then halide exchange at platinum yields the product. Alternatively, a related 

mechanism with cationic intermediates formed by loss of bromide anion was possible. 

 

Scheme 88. Anchimeric Assistance in Attack of Halides at Pt-C Bonds ([Pt] = Pt(Chiraphos)) 
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Stereospecific nucleophilic attack of a borohydride reagent on a Re-carbene gave deuterium-

labeled [Re]-R* benzyl complexes (Scheme 89).98 

 

Scheme 89. Stereospecific Nucleophilic Attack on a Re-Carbene Gave Chiral Re-Benzyl 

Complexes 

 

 

4.7 Electrophilic attack on coordinated ligands 

These processes usually occur with retention of configuration at carbon, but exceptions are known. 

Reactions may occur via addition to the metal, followed by reductive elimination, by direct attack 

at carbon, or via four-centered transition states. In Scheme 90, which involves Re-benzyl 

complexes like those in Scheme 89, protonolysis of a [Re]-R* group proceeded with retention at 

both Re and C.99 
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Scheme 90. Protonolysis of a C-Stereogenic Re-Bound Alkyl Ligand Resulted in Retention of 

Configuration at Both Carbon and Rhenium 

 

 

In Scheme 91, protonolysis of a diastereomeric mixture of [Ru]-R* complexes which differed only 

in the configuration of the metal-bound carbon was expected to proceed with retention of 

configuration via protonation at Ru, followed by reductive elimination. However, the process was 

not stereospecific, resulting in the same enantiomeric enrichment of the product for different 

mixtures of the metal complex, either 95:5 or 72:28 dr. Therefore, two parallel protonolysis 

pathways were proposed, with retention or inversion at C. To explain the latter, either protonation 

at the back side of the Ru-C bond or at N, followed by intramolecular proton transfer, were invoked 

(box, Scheme 91).100 
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Scheme 91. Non-Stereospecific Protonolysis of Chiral Ruthenium Alkyls and Proposed 

Mechanisms Leading to Inversion at Carbon 

 

 

Treatment of a D-labelled titanocene with iodine resulted in retention of configuration at carbon 

(Scheme 92).101 

 

Scheme 92. Retention of Configuration at Carbon in Iodination of Ti-C Bonds 
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ligand occupied a coordination site, necessitating an open transition state. However, with a closely 

related derivative, retention at carbon occurred, showing that these reactions are still not well 

understood.102 

 

Scheme 93. Inversion of Configuration at Carbon in Electrophilic Cleavage of a Zr-C Bond 

 

 

5. Catalysis 

[M]-R* complexes are commonly invoked as intermediates in asymmetric catalysis, and in some 

cases they have been directly observed or even isolated. Their structural characterization in 

solution or the solid state provides information on the catalytic mechanism and the origin of 

asymmetric induction. 

5.1 Asymmetric hydrogenation 

A key step in the most successful application of asymmetric catalysis, hydrogenation, involves 

selective insertion of an alkene into a metal-hydride bond to give a chiral metal alkyl, whose 

subsequent C-H reductive elimination, if another metal hydride is present, or protonolysis yields 

the enantiomerically enriched hydrogenation product. For example, in Landis and Halpern’s 

impactful mechanistic studies of Rh-catalyzed asymmetric hydrogenation, the disfavored alkene 

adduct (“minor” pathway) led to the major hydrogenation product and [Rh]-R* intermediate 19 

was observed by low-temperature 31P NMR spectroscopy (Scheme 94).103 
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Scheme 94. Diastereomeric [Rh]-R* Alkyl Hydride Intermediates in Rh(Dipamp)-Catalyzed 

Asymmetric Hydrogenation of Methyl-(Z)-a-acetamidocinnamate (MAC)  

 

 

With the same Rh(Dipamp) catalyst and a similar substrate, related chiral alkyl hydrides, featuring 

characteristic tridentate coordination of the [Rh]-R* group, were characterized by NMR 

spectroscopy.104 In more recent studies (see below), however, the proposed Rh-O ester 

coordination in such complexes is considered to involve the carbonyl oxygen. 
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Scheme 95. Chiral Rhodium Alkyl Hydrides Observed as Intermediates in Rh-Catalyzed 

Asymmetric Hydrogenation 

 

 

Similar NMR observations have been made for a variety of chiral bis(phosphines) and 

functionalized alkene substrates. In Scheme 96, an alkyl hydride complex included an agostic C-

H bond, while a classical [Rh]-R* isomer with solvent coordination was not seen.105 

 

Scheme 96.  Generation of a Rh(PhanePhos) Agostic Alkyl Complex Formed by Alkene Insertion  

 

 

Similarly, with a more electron-rich chiral alkylphosphine, a rhodium alkyl hydride intermediate 

formed by enantiodetermining migratory insertion was observed by NMR spectroscopy (Scheme 

97).106 
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Scheme 97. Observation of a Rhodium Alkyl Hydride Complex, an Intermediate in Rh-Catalyzed 

Asymmetric Hydrogenation 

 

 

With a related ligand having a larger bite angle, a whole series of four isomeric alkyl hydrides was 

observed (Scheme 98, top). Replacing the usual amide substituent with a phosphonate gave chelate 

20, which underwent ligand substitution to yield the more stable 21, with a tridentate ligand.107 

 

Scheme 98. Observation of Four Isomeric Rhodium Alkyl Hydride Complexes and Phosphonate 

Analogues 20-21 
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trihydride intermediate, which is an analogue of the usual monohydrides, was observed (Scheme 
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Scheme 99. Observation of a Dinuclear Rhodium Alkyl Hydride Complex, an Intermediate in Rh-

Catalyzed Asymmetric Hydrogenation 

 

 

Analogous iridium complexes serve as models for the more active Rh catalysts, or as selective 

catalysts in their own right. With Dipamp (compare Rh complexes in Schemes 94-95), both C-

epimers of stable [Ir]-R* cationic alkyl hydrides were formed by alkene insertion (Scheme 100). 

They did not interconvert under the reaction conditions, so that both isomers could be observed, 

in contrast to the Rh case, where only one was seen.109 

 

Scheme 100. Diastereomeric Cationic Ir(Dipamp) Alkyl Hydrides 
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substituents, with coordination of the Dipamp MeO group (Scheme 101). Presumably similar 

binding occurred in Scheme 100, although those complexes were drawn as five-coordinate.110 

 

Scheme 101. Diastereomeric Cationic Ir(Dipamp) Alkyl Hydrides with Menthyl Ester Substituents 

 

 

With a P~N phosphine-oxazoline ligand, a five-coordinate Ir alkyl hydride complex was observed 

(Scheme 101).111,112 

 

Scheme 102. Observation of an Iridium Alkyl Hydride Complex, an Intermediate in Ir-Catalyzed 

Asymmetric Hydrogenation 
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protonolysis or oxidative addition/reductive elimination, is required to complete the catalytic 

cycle. This sequence was observed with a Ru(Binap) catalyst in Scheme 103,113 where b-hydride 

elimination was fast and reversible prior to irreversible hydrogenolysis of the Ru-C bond, which 

was assumed to proceed with retention of configuration at carbon.114 

 

Scheme 103. Synthesis of a Chiral Ruthenium Alkyl via Insertion of a Functionalized Alkene into 

a Ru-H Bond, followed by Hydrogenolysis with Retention of Configuration (L = Acetone or 

Acetonitrile) 

 

 

Similarly, the related substrate dimethyl itaconate gave an isolable chiral Ru alkyl as a mixture of 

diastereomers (only the major one is shown in Scheme 104). 

 

Scheme 104.  Synthesis of a Chiral Ruthenium Alkyl via Insertion of a Functionalized Alkene into 

a Ru-H Bond 
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5.2 Asymmetric hydroformylation 

As in asymmetric hydrogenation, [M]-R* intermediates are formed in asymmetric 

hydroformylation by alkene insertion into M-H bonds, but 2,1-insertion is required to yield the 

desired branched products instead of the linear ones normally formed in commercial 

hydroformylation of a-olefins. 

Scheme 105 shows examples of such intermediates observed by NMR spectroscopy with a 

Rh(diazaphospholane) catalyst and the substrates styrene, vinyl acetate, and 1-octene. The 

kinetically favored branched alkyls were not configurationally stable, undergoing reversible b-H 

elimination to interconvert with the linear isomer, and acyl complexes were also observed.115,116  

 

Scheme 105. Chiral Rhodium Branched Alkyls: Intermediates in Rh-Catalyzed Asymmetric 

Hydroformylation  
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Pd(bis-oxazoline) cation gave only one diastereomeric metallacycle (Scheme 106), which 

underwent further alternating insertions of CO and styrene to form the polymer.117  

 

Scheme 106. Diastereospecific Formation of a Chiral Palladacycle, an Intermediate in CO-Styrene 

Copolymerization 

 

 

Similar processes occurred with isomeric propenylbenzenes (Scheme 107). These [Pd]-R* 

complexes were intermediates in catalytic alkoxy-carbonylation of styrenes.118 

 

Scheme 107. Chiral Palladacycles as Intermediates in Catalytic Alkoxycarbonylation of Styrenes 
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the branched isomer was inactive to further insertion but underwent b-H elimination more slowly 

under these conditions than previously expected.120 

 

Scheme 108. Chiral Palladacycles as Intermediates in Pd-Catalyzed CO-Styrene 

Copolymerization 

 

 

5.4 Asymmetric hydroboration 

The chiral copper alkyls in Scheme 32 were key intermediates in catalytic asymmetric 
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the product with that of the Cu-alkyl intermediates showed that s-bond metathesis went with 

retention of configuration at carbon.45  
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Scheme 109. Role of [Cu]-R* Intermediates in Catalytic Asymmetric Hydroboration of Styrenes 
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complexes, was observed by low-temperature NMR spectroscopy.121 
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Scheme 110. Enantioselective Copper-Catalyzed Styrene/Alkene Coupling-Borylation and 

Formation of a [Cu]-R* Intermediate 

 

 

5.5 Other asymmetric reactions 

The chiral Pd enolates in Scheme 36 were intermediates in Pd-catalyzed cross-coupling with aryl 
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reductive elimination, which proceeded with retention of configuration at carbon.50 
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Scheme 111. Origin of Enantioselectivity in Palladium(Segphos)-Catalyzed Cross-Couplings via 

Intermediate Chiral Enolate Complexes: Faster Reductive Elimination for One Diastereomer 

 

 

The chiral palladacycles whose C-epimerization was described in Scheme 51 were intermediates 

in asymmetric intramolecular Heck reactions (Scheme 112).66  

 

Scheme 112. Chiral Palladacycles Observed in Studies of the Asymmetric Heck Reaction (PMP 

= 1,2,2,6,6-pentamethylpiperidine) 
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Diastereoselective formation of [Pt]-R* complexes by nucleophilic attack of a P-stereogenic 

phosphido ligand on a Michael acceptor alkene (Scheme 46) was the enantioselective step in 

asymmetric hydrophosphination catalysis, where it was observed directly (Scheme 113, Is = 2,4,6-

(i-Pr)3C6H2).122 Although the C-stereocenter was destroyed by C-H reductive elimination, 

diastereoselective attack on the alkene controlled the configuration of the P-stereocenter. 

 

Scheme 113. Diastereoselective Formation of Chiral Pt-Alkyl Intermediates in Catalytic 

Asymmetric Hydrophosphination of Acrylonitrile 
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C-C reductive elimination, was proposed.32 
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Scheme 114. A Chiral Bornylamine-Derived Palladacycle as Catalyst Precursor for Selective 

Cross-Coupling via C-H Activation 

 

 

6. Analogous Chemistry with P-Stereogenic Anionic Ligands 
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Scheme 115. Pyramidal Inversion in P-Stereogenic Metal Phosphido Complexes and 

Configurationally Stable Analogues 

 

 

In contrast to the results with the more commonly studied [M]-R* complexes (section 4 above), 

fundamental transformations of [M]-P* analogues, including oxidative addition, reductive 

elimination, migratory insertion, and transmetalation have all been observed to proceed with 

retention of configuration. It is not clear if this reflects a fundamental difference between the 

chemistry of phosphorus and carbon, or simply the limited number of studies on P to date. 

P-H oxidative addition of an enantiomerically pure menthoxy-phosphine oxide to Pt(0) occurred 

with retention of configuration, as did Pd-catalyzed hydrophosphinylation of alkynes with this 

substrate using the precursor Pd(PPhMe2)2Me2/Ph2P(O)OH (Scheme 116).127 

 

Scheme 116. Retention of Configuration at Phosphorus in P-H Oxidative Addition to Pt(0) and in 

Pd-Catalyzed Hydrophosphinylation of Alkynes 
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Scheme 117. Retention of Configuration at Phosphorus in Au-P Bond Formation  

 

 

A similar P-HàP-M process on palladium, with a closely related menthol-derived substrate, also 

went with retention (Scheme 118).130 

 

Scheme 118. Retention of Configuration at Phosphorus in Pd-P Bond Formation 
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configuration at P, which was exploited in a stereospecific Pd-catalyzed P-C cross-coupling 

(Scheme 119).128  

 

 

 

 

Au(L)(Ar)
retention

O

P
MenO

Ph
H

O

P
MenO

Ph
Au P

t-Bu t-Bu
O

P
MenO

Ph
Au

N

N

Mes

Mes

O

P
MenO

Bn
H

Pd(OAc)2
2 PEt3

O

P
MenO

Bn
Pd OAc

PEt3

PEt3

retention



 80 

Scheme 119. Transmetalation of a Phosphido Oxide Group from Au to Pd with Retention of 

Configuration at Phosphorus, and Its Application in Cross-Coupling Catalysis 

 

 

The reaction of a gold phosphido-oxide complex with a terminal alkyne resulted in 

protodemetalation, yielding the secondary phosphine oxide with retention of configuration at 

phosphorus. With an activated alkyne, DMAD, migratory insertion gave a gold-vinyl complex 

with retention of configuration at P (Scheme 120).129 

 

Scheme 120. Retention of Configuration in Formation of Au-P Bonds from a P-Stereogenic 

Secondary Phosphine Oxide, and in Insertion of an Alkyne into an Au-P Bond 
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Pd-P bond formation involving an enantioenriched secondary phosphine-borane 

(“transmetalation”) proceeded with retention at P, at low temperature (Scheme 121). However, on 

warming the stereospecificity was reduced, presumably because of the configurational instability 

of the phosphido-borane anion. This effect could be exploited by starting with racemic phosphine-

borane at room temperature, which resulted in dynamic kinetic resolution with modest selectivity. 

P-C reductive elimination of a phosphido-borane Pd-aryl complex also went with retention at P.131  

 

Scheme 121. Retention of Configuration at Phosphorus in Pd-P Bond Formation and P-C 

Reductive Elimination Involving a Phosphine-Borane 

 

 

Scheme 122 shows an analogous P-C reductive elimination of a phosphido-oxide group, also with 

retention of configuration at P.130 

 

Scheme 122. Retention of Configuration at Phosphorus In P-C Reductive Elimination from Pd 
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7. Conclusions 

This survey has demonstrated the continued importance of [M]-R* and analogous [M]-P* 

complexes in determining the stereochemistry of fundamental transformations involving M-C and 

M-P bonds, such as oxidative addition, reductive elimination, transmetalation, and migratory 

insertion, and the use of these observations to provide mechanistic information. Synthesis or 

generation of these compounds exploits classical approaches in organometallic chemistry, applied 

to chiral substrates or controlled by chiral ligands. [M]-R* groups are often configurationally 

stable, but C-epimerization by processes such as b-hydride elimination or M-C homolysis is 

mechanistically significant and may be valuable or undesired in catalysis. Because the 

fundamentals appear relatively well established, further study of this subject will probably be 

focused on applications to asymmetric catalysis, where more mechanistic knowledge should prove 

useful in rational design. 
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