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Abstract. In de novo protein sequencing, we often could only obtain
an incomplete protein sequence, namely scaffold, from top-down and
bottom-up tandem mass spectrometry. While most sections of the pro-
teins can be inferred from its homologous sequences, some specific section
of proteins is always missing and it is hard to predict the missing amino
acids in the gaps of the scaffold. Thus, we only focus on predicting the
gaps based on a probabilistic algorithm and machine learning models
instead predicting the complete protein sequence using generative AI
models in this paper. We study two versions of the protein scaffold fill-
ing problem with known size gaps and known mass gaps. For the known
size gaps version, we develop several machine learning models based on
random forest, k-nearest neighbors, decision tree and fully connected
neural network. For the known mass gap problem, we design a proba-
bilistic algorithm to predict the missing amino acids in the gaps. The
experimental results on both real and simulation data show that our
proposed algorithms show promising results of 100% and close to 100%
accuracy.

Keywords: Protein sequencing · Protein Scaffold filling · Machine
learning · Probablistic model · Heuristic algorithms

1 Introduction

In the fields of proteomics, protein sequencing determines the amino acid code
of a protein. Protein sequencing is a widely researched area, as it is beneficial
for highlighting the structures and functions of proteins. With such informa-
tion, researchers across a realm of fields in biology, chemistry, and medicine can
identify and develop more effective solutions to long-standing problems, such as
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pharmaceutical drug development and understanding the role that proteins play
in various diseases and conditions.

The advent of mass spectrometry marked a pivotal shift in protein sequenc-
ing technologies, offering substantial improvements over traditional methods like
Edman degradation, which, despite its utility, was limited by low throughput
and substantial sample requirements [4,8]. Mass spectrometry’s sensitivity to
attomole quantities of peptides represents a significant advancement, facilitat-
ing rapid and high-coverage data acquisition [4]. Early mass spectrometry-based
strategies for peptide sequencing laid the groundwork for the sophisticated tech-
niques in use today [2,12].

De novo sequencing and database searching are the two main methods com-
monly used in mass spectrometry protein sequencing [1]. With de novo protein
sequencing, there are two mass spectrometry based methods, known as top-down
and bottom-up approaches. Despite recent progress, most assembled proteins are
still in an incomplete form with gaps in the scaffold [11]. While most sections of
the proteins can be inferred from its homologous sequences, some specific section
of proteins is always missing and hard to predict the missing amino acids in the
gaps of the scaffold [11]. (Due to space constraint, we refer more background
and references on de novo protein sequencing to [1,5,11].)

We study two versions of the protein scaffold gap filling problems (PSGF). In
the first variant, we assume that the size of gaps (i.e., number of missing amino
acids) within a protein scaffold is known. For this version, we develop several
machine learning models with data pre-processing techniques to accurately pre-
dict the missing amino acids in the gaps. In the second variant, we handle the
gap filling problem of known mass (of the gaps) but unknown gap size; to be
precise, only the total mass of the missing amino acids required to fill the gaps
is known. For this version, we design a probabilistic algorithm to fill the missing
amino acids in the gaps.

When a homologous reference protein is given, a number of useful polynomial-
time algorithms based on local search and dynamic programming were developed
in 2017 by Qingge et al. for the protein scaffold gap filling problem [7]. The run-
ning time of their developed algorithms to obtain optimal solutions is O(n26),
where n is the size of the reference protein (also the total length of the pro-
tein to be filled) [7]. When a reference protein is not given, different innova-
tive approaches based on deep learning models such as a convolutional neural
network and long short-term memory for the protein scaffold gap filling prob-
lem were designed [10]. Sturtz et al. also introduced a convolutional denoising
autoencoder model, achieving remarkable accuracy in gap filling [9]. These meth-
ods mainly focus on the protein scaffold filling problem with known gap size. In
this paper, we will also solve the gap filling problem with known mass gaps in
the scaffold.

2 Methodology

Given an (unknown) target protein sequence T and a protein scaffold S =
(S1, S2, ..., Sm) of m contigs, with a gap composed of missing amino acids
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between contigs Si and Si+1, the protein scaffold gap filling (PSGF) problem
is to fill the missing amino acids in S to obtain S′ such that the number of one-
to-one matching amino acids between the filled sequence S′ and target sequence
T is maximized. (S′ is used as the predicted protein sequence for T .)

It is important to note that the exact sizes and masses of these missing
gaps may not be known. Our paper stands out due to its innovative approach
to addressing protein sequencing challenge by employing different algorithms.
Specifically, we introduce techniques for filling gaps in two different types of
PSGF problems as illustrated in Fig. 1. The first PSGF problem is focused on
the case with known gap size and the second on the case with known gap mass.
Machine learning models, such as random forest, k-nearest neighbors, decision
tree and fully connected neural network are used for the first version. For the
second PSGF problem (with known gap mass) we design a new probabilistic
algorithm (See Fig. 1). We provide a detailed description of our methods to
tackle both version of the PSGF problem below.

Fig. 1. An illustration for the two PSGF problems.

2.1 Data Collection

Two types of protein scaffold datasets, alemtuzumab’s light chain (MabCam-
path) [5] and antibody light chain proteoforms of Homo sapiens (P5A) [3] col-
lected from Dupré et al. [3] are used to evaluate the performance of our proposed
methods. The basic idea is that we will fill the gaps in the given scaffolds and
compare the similarity between constructed protein sequence with the ground
truth of the target protein sequences of alemtuzumab’s light chain (MabCam-
path) [5] and the antibody light chain proteoforms of Homo sapiens proteoform
(P5A) [3]. The real MabCampth scaffold 1 data [5] is generated by combining
the bottom-up and top-down mass spectrometry approaches, which consists of
five contigs and six gaps in the scaffold. We also generate simulated scaffold 2
data from MabCampth target sequence to further test the model performance.
Additionally, we generate two sets of simulated scaffold 3 and 4 datasets from the
proteoforms P5A by randomly introducing gaps in the target sequence. Figure 2
shows the features of the scaffold data, in which gap sizes are denoted by red
dashed lines and gap mass are given by the mass in Dalton. Scaffolds 1 and 3
has fewer and shorter gaps than scaffolds 2 and 4. These scaffold data will be
used to test models in different scenarios. Moreover, we retrieve 1000 homolo-
gous sequences for each scaffold sequence from NCBI’s Protein Blast Server [6]
as training data in our proposed machine learning models.
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Fig. 2. Target and scaffold sequences of Mabcampath and P5A proteoform.

2.2 Data Preprocessing

For the PSGF problem with known gap size, we have the input-output samples
in our training dataset by generating 11-mers starting from the first position of
each homologous sequence and shift it to the next position until we reach to end
of the sequence. Then we introduce gaps at the start and end position of each
input 11-mer to simulate scenarios where certain amino acids are missing and the
corresponding masked amino acids are output labels. For instance, in a 11-mer
“DIQMTQSPSSL”, gaps are added to create sequences “-IQMTQSPSSL” and
“DIQMTQSPSS-”. The corresponding output labels for these sequences would be
“D” and “L” respectively. This technique of creating training data results in train-
ing the model twice (in forward direction and reverse direction) as in [10]. Addi-
tionally, these sequences undergo a label encoding transformation, converting
each amino acid into a unique numeric value and making them compatible with
machine learning algorithms. We further refine the feature space through fea-
ture engineering techniques, such as singular value decomposition (SVD) and row
averaging. SVD is employed for dimensional reduction while preserving essential
patterns in the data, and row averaging simplifies the sequences and calculates
the average of numeric representations, aiding the models in detecting significant
patterns within the protein sequences. For the PSGF problem with known mass,
no specific data preprocessing is needed. We directly apply our proposed algo-
rithm to fill the scaffolds using its homologous sequences (obtained from NCBI’s
server).
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2.3 The Proposed Models for the PSGF Problem with Known Gap
Size

In this subsection, we develop machine learning models, such as decision tree,
KNN, random forest and combination of these models with row average and
singular value decomposition (SVD) techniques to solve the PSGF problem with
known gap size. Due to space constraint, we leave out all the methods related
to k-nearest neighbor and random forest to the full version.

The use of singular value decomposition (SVD) and row average in the con-
text of processing and analyzing protein scaffold gap filling is motivated by their
ability to simplify complex protein sequence data. By applying SVD, the dimen-
sionality of the sequence can be reduced while maintaining its primary structural
and functional properties. This reduction technique improves the models’ capac-
ity to correctly predict the missing amino acids in the scaffold with less time
and resources. The row average approach simplifies complex protein sequences
by reducing the complexity of protein sequences to a single numerical number
that represents the average of the encoded values of the amino acids in a kmer.
This simplicity becomes particularly advantageous when they are used as a pre-
processing step for machine learning algorithms, such as decision trees or random
forest or KNN, allowing for quick and efficient analysis.

Decision Tree. In this subsection, we employ a decision tree algorithm for
the protein scaffold gap filling problem. The initial step involves preprocessing
protein sequences into 11-mers which includes gap (“-”) at the start or end posi-
tions, which will be used as input data and the corresponding amino acid at
the gap position will be the output label. Algorithm1 illustrates the proposed
decision tree algorithm designed to solve protein scaffold gap filling problem. In
Algorithm1 there are terms as Gini impurity, features available for splitting and
stopping criteria. Gini impurity is a way to measure how mixed up or “impure”
a group of items is in decision trees. In PSGF, Gini impurity measures how
mixed the target y labels (missing amino acids) are among a set of items (11-
mer sequences) at a specific node in the decision tree. The best feature (position
in the 11-mer) and its value are selected by decision trees using Gini impurity
at each node to separate the dataset. In order to create child nodes that are
more “pure” in terms of their target y labels, the algorithm looks for splits that
will produce the largest decrease in Gini impurity. In decision trees, stopping
criteria are guidelines or conditions that determine when the algorithm should
stop dividing the nodes further. Feature availability refers to whether a feature
can still be used for making further splits in a decision tree. Feature availabil-
ity refers to whether a feature (every position in 11-mers) can still be used for
making further splits in a decision tree. If all features have been visited or if the
potential splits do not reduce Gini impurity, then no more features are available
for splitting at that node. Figure 3 shows simple decision tree illustration for
smaller 11-mers dataset.

We have also combined row average with decision tree provides a novel
method (denoted as Row Average + Decision Tree) for prediction of
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Algorithm 1: Decision Tree Algorithm for Protein Scaffold Gap Filling
1 Input: Training dataset of numerically encoded 11-mers with gaps (“-”) and

corresponding output labels y for each sample, which will be used to fill gaps;
2 Step 1: Initialize the Tree
3 Root node has a set of samples S including all 11-mers and corresponding

output labels y; Calculate the initial Gini impurity Gini(S) using the formula
Gini(S) = 1−

∑
(pi)

2, where pi is the proportion of items labeled with the ith y
labels in the set S

4 Step 2: Build the Decision Tree
5 while features available for splitting and the stopping criteria (Gini impurity =

0) not met do
6 for each feature f at each position in the 11-mers do
7 Identify all unique values V at feature position f and sort them
8 Calculate midpoints between consecutive values in V to determine

potential thresholds
9 for each potential threshold t calculated from midpoints do

10 Partition S into subsets Sleft and Sright based on t
11 Sleft contains all 11-mers with feature f value ≤ t
12 Sright contains all 11-mers with feature f value > t
13 Calculate Gini impurity for Sleft and Sright

14 end
15 Compute weighted Gini impurity for each split using the formula:

Weighted_Ginif,t =

(
|Sleft|
|S|

)
×Gini(Sleft)+

(
|Sright|
|S|

)
×Gini(Sright)

where |Sleft| and |Sright| are the counts of unique output y labels in
each subset, and |S| is the total count of 11-mers in set S

16 end
17 Choose the feature f and threshold t combination with the lowest

Weighted_Ginif,t for splitting
18 If multiple thresholds yield the same lowest Weighted_Ginif,t, select one

randomly
19 Split S into Sleft and Sright using the chosen threshold t at feature f
20 Create child nodes for Sleft and Sright, assigning the corresponding subset

to each
21 Assign a class (y label) to each node based on the majority class of the

subset at that node
22 Recursively apply the above steps to each child node, treating each as a new

root
23 end
24 Step 3: Predict Missing Amino Acid for New 11-mers with gaps
25 for each 11-mer do
26 node ← root of the tree
27 while node is not leaf do
28 v ← value at node’s feature in 11-mer
29 node ← v ≤ node’s threshold ? left child : right child
30 end
31 Output node’s class
32 end
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missing amino acids for PSGF. An additional efficient method for predicting
missing amino acids in protein sequences is to combine decision tree modeling
and SVD in the PSGF (denoted as SVD + Decision Tree). Again, due to
space constraint we will cover the details in the full version.

Algorithm 2: Algorithm for the PSGF Problem with Known Gap Masses
1 Set-up and the Goal:
2 Assume P (B) > 0.5 (say 0.9, which means that the contigs are more
similar to ground truth) and P (B) < 0.5 (say 0.1, which means that the
contigs are less similar to ground truth), the algorithm considers P (B) a
small probability.

3 The goal is to maximize P (A), ensure P (A ∩ B) is large and P (A ∩ B) is
small.

4 Compute P (A ∩ B) and P (A ∩ B):
5 Generate all possible sequences of amino acids of the mass ∆i and pick
one at a time, say ti.

6 Break SitiSi+1 into peptides of different lengths and compute the number
of these peptides appearing in the raw peptide data from the input
sequence, say α(ti).

7 Among all sampled ti, select the one with the max(α(ti)). (In practice,
record the largest 10, say.)

8 For P (A ∩ B), peptides are formed by the left end of Si+1, ti, and the
right end of Si.

9 Similarly, to compute P (A ∩ B), select ti with the min(β(ti)). (In
practice, record the smallest 10, say).

10 Compute P (A):
11 If α(ti) and β(ti) are recorded, select the ti with max{α(ti) − β(ti)} to

maximize P (A).

Fig. 3. Simple Decision Tree Illustration Example for PSGF.
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2.4 A Probabilistic Algorithm for the PSGF Problem with Known
Gap Mass

In this section, we consider another variant of the protein scaffold gap filling
problem where the mass of missing amino acids in the gaps are known, while
their precise sizes of how many amino acids missing are unknown. Given the
scaffold S = (S1, S2, · · · , Sm), to fill the gap between Si and Si+1 with protein
sequence Ti of the right total mass ∆i, our idea is roughly sample through all
peptides with the total mass ∆i (and we will show how to avoid a brute-force
method).
Define the Event Space

Let A denote the event that the gap between contigs Si and Si+1 is filled
with some protein sequence Ti of the desired mass ∆i. Let B denote the event
that Si and Si+1 are the correct contigs (i.e., with no error in them). The event
space can be further illustrated as following

Si

A︷︸︸︷
Ti Si+1︸ ︷︷ ︸

The gap between contigs is filled by Tiwith mass ∆i

Probability Computation:
The probability of A is calculated as:

P (A) = P (A|B) + P (A|B).

And by the formula of conditional probability:

P (A|B) =
P (A ∩ B)
P (B)

, P (A|B) =
P (A ∩ B)
P (B)

.

Algorithm2 shows the procedure to solve the PSGF problem with known gap
masses.

The main challenge of this algorithm is to generate all possible sequences
of amino acids of certain mass ∆i, even though we know the mass of each of
the amino acids. To tackle this challenge we first find the minimum and maxi-
mum possible length of a sequence with the targeted mass, i.e., min_length and
max_length, and then generate all sequences with a length from min_length to
max_length. For a large mass max_length can be large too (and it can take
O(n20) time to generate them, where n = max_length). Hence, to make this
algorithm more feasible, we generate the possible sequences of amino acids of a
total mass of ∆i using homologous sequences generated from NCBI’s server for
each scaffold.

We generate possible sequences of amino acids of a target mass ∆i using
the concept of kmers. For each length in [min_length, max_length] we generate
kmers using homologous sequences and choose the kmers of the target mass
∆i as a candidate for Ti. For instance, consider a certain mass 300 Daltons for
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which the minimum and maximum possible length of a sequence with this mass
can be 3 and 6 respectively. We can then generate kmers of length 3,4,5 and
6 respectively, using homologous sequences like “DIQMTQSPSSLSASVI...”, etc.
We select the kmers “DIQ”, “SIS”, “SGTD”, “NRGEC”, “IISSCT”, etc., which has
a total target mass ∆i = 300. Generating ti this way makes it feasible to fill the
gap with a large mass.

Additionally, when we construct the peptides from the left of Si and the
right of Si+1, we simply select up to 5 amino acids from them. In other words, in
SitiSi+1 and when computing P (A ∩ B), we only consider up to 5 amino acids
on the right (resp. left) end of Si (resp. Si+1).

3 Experimental Results

We test our proposed protein scaffold gap filling problem with known size on
Scaffold 1 and Scaffold 3, and test the proposed protein scaffold gap filling prob-
lem with known mass on Scaffold 2 and Scaffold 4, which have been introduced
in Sect. 2.1.

3.1 Results for PSGF with Known Gap Size Using ML Models

To increase the proposed machine learning models prediction accuracy, we utilize
data preprocessing techniques including row average and singular value decom-
position (SVD) to extract the important features from input data. We evaluate
the model performance by comparing the similarity between the filled gaps in
the scaffold with the corresponding positions of target sequence. The gap fill-
ing accuracy is a fraction of the number of one-to-one matching amino acids in
the gaps with the corresponding position at the target sequence with the length
of amino acids in the gaps of the scaffold. Each model is used to predict the

Table 1. The Model Training and Validation Accuracy on Mabcampath Data.

Train Acc. Validation Acc.
KNN 94.37 92.84
Decision Tree 97.52 94.46
Random Forest 97.52 95.60
SVD + KNN 94.43 93.01
SVD + Decision Tree 97.52 92.40
SVD + Random Forest 97.52 94.16
Row Average + KNN 95.74 94.50
Row Average + Decision Tree 97.51 96.92
Row Average + Random Forest 97.51 97.11
Fully Connected NN 94.92 92.83
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missing amino acids in the gaps of the scaffold one after another. The training
and validation accuracy of these models on Mabcampath data are illustrated in
Table 1.

To demonstrate the performance of our models on different scaffolds with
larger gaps, we run the models on Scaffold 1–4 data. All models show promising
performance on filling the gaps of these scaffolds. Table 4 shows the gap filling
accuracy of the proposed models on MabCampath and P5A protein scaffolds.
The prediction results show the proposed machine learning models can fill the
gaps of the protein scaffold accurately. Our proposed models also achieve 100%
gap filling accuracy compared with CNN-LSTM model developed in [10] on the
real MabCampth data. Figure 4 shows the 100% gap filling prediction accuracy
results on the Scaffold 1 and 3, which have smaller size of gaps. For the scaffolds
2 and 4 having the larger size of gaps, our proposed machine learning models also
achieve higher prediction accuracy up to 94.73% and 100% respectively. Table 4
summarizes all models prediction accuracy on Scaffold 1–4 datasets.

Fig. 4. Filled Mabcampath scaffold 1 and P5A proteoform scaffold 3 for all the models.

Table 2. Gap filling accuracy on MabCampath and P5A scaffold.

Gap Filling Acc.
Mab P5A
Scaffold 1 Scaffold 2 Scaffold 3 Scaffold 4

KNN 100.0 94.73 100.0 97.73
SVD + KNN 100.0 94.73 100.0 94.73
Row Average + KNN 100.0 94.73 100.0 94.73
Decision Tree 100.0 93.42 100.0 100.0
SVD + Decision Tree 100.0 93.42 100.0 94.73
Row Average + Decision Tree 100.0 93.42 100.0 100.0
Random Forest 100.0 93.42 100.0 100.0
SVD + Random Forest 100.0 93.42 100.0 97.36
Row Average + Random Forest 100.0 93.42 100.0 100.0
Fully Connected Neural Network 100.0 92.10 100.0 97.36
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3.2 Results for PSGF with Known Gap Masses Using
the Probabilistic Algorithm

We design and implement the Algorithm2 to fill the gaps in the protein scaffold
gap filling problem. To fill the gaps, we search the maximum value of α(ti) and
minimum value of β(ti) from all sample ti. We test our algorithm on all the gen-
erated scaffolds 1–4 shown in Fig. 2. Table 3 shows max(α(ti)) and min(β(ti)))
values of each gap for Mabcampath scaffold. We achieve 100% gap filling accu-
racy on all the scaffolds data. It demonstrates that our designed probabilistic
algorithm can fill missing amino acids in gaps accurately in the scenario of known
gap mass with unknown size of the gap. Table 3 and 4 show the computed amino
acids to fill Mabcampath and P5A scaffolds.

Table 3. Gap filling on MabCampath scaffold 1 with known mass.

Gap Mass Predicted combination Max(α(ti)) and Min(β(ti))
356 Dalton DIQ [572, 3]
286 Dalton ASQ [3, 9]
231 Dalton SGS [734, 31]
360 Dalton SGTD [70, 24]
1204 Dalton SSLQPEDIATY [8, 2]
445 Dalton RGEC [886, 0]

Table 4. Gap filling on P5A scaffold 3 with known mass.

Gap Mass Predicted combination Max(α(ti)) and Min(β(ti))
341 Dalton EIV [292, 0]
442 Dalton RASQ [238, 200]
459 Dalton SDEQ [991, 0]
438 Dalton STYS [990, 3]
445 Dalton RGEC [944, 0]

4 Conclusions

In this paper, we consider two versions of the protein scaffold gap filling (PSGF)
problem. For PSGF with known gap size, we propose several machine learning
models combined with data preprocessing engineering techniques, such as deci-
sion tree, KNN, random forest and also develop fully connected neural network
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to fill the gaps iteratively until all the gaps are filled. For the PSGF problem with
known gap mass, we design a probabilistic model to fill the missing amino acids
in the gaps. The experimental results on different scenario of scaffolds show that
our proposed algorithms achieve promising results on both real and simulation
datasets, in fact, with 100% or close to 100% accuracy in general. Moreover, the
proposed algorithms are simple, yet effective to solve the protein scaffold gap
filling problem.
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