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Abstract

This paper proposes a novel data-driven modelling and dynamic state-estimation
approach for nonlinear power and energy systems, highlighting the critical
role of a known dynamic model for accurate state estimation in the face
of uncertainty and complex models. The proposed framework consists of a
two-phase approach: data-driven model identification and state-estimation.
During the model identification phase, which spans a relatively short time
interval, state feedback is collected to identify the dynamics of the nonlinear
systems in the power grid using a novel density-guided sparse identification
algorithm. Unlike conventional sparse regression, which relies on a large li-
brary of linear and nonlinear functions to fit data, our proposed algorithm
iteratively updates a relatively small initial library by adding higher-order
nonlinear functions if the coefficients of the current functions are dense. Fol-
lowing the identification of the model’s dynamics, the estimation phase ad-
dresses the challenge of incomplete state measurements. By implementing
an unscented Kalman filter, the state variables of the system are dynami-
cally estimated by measuring the noisy output. Finally, simulation results
on an IEEE 30-bus system are presented to illustrate the effectiveness of
the density-guided sparse regression unscented Kalman filter compared to a
physics-based unscented Kalman filter with model uncertainty. This study
contributes to the fields of data-driven modelling techniques, machine learn-
ing for power systems, and computational intelligence in smart grids. It
emphasizes the use of advanced sparse regression and unscented Kalman fil-
ter methods for state estimation, enhancing the robustness and accuracy of
monitoring and control in electrical and energy systems.

Keywords: Data Driven Modelling, Dynamic State Estimation, Power and
Energy Systems, Unscented Kalman filter.
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1. Introduction

Data-driven modeling techniques play a pivotal role in enabling real-
time monitoring, predictive maintenance, and optimized operation through
Dynamic State Estimation (DSE). By continuously analyzing data from sen-
sors and smart meters, these methods accurately assess system conditions,
predict faults, and optimize resource allocation. This capability improves the
reliability, efficiency and resilience of the grid, supports the integration of re-
newable energy sources and allows proactive grid management in response
to changing demand and environmental conditions [1], [2]. These uncertain-
ties might be the result of sensor error or other sources of interference. The
dynamic of the system cannot be fully captured by the infrequent and non-
synchronous data provided by the supervisory control and data acquisition
(SCADA) system. On the other hand, wide area measurement and control
(WAMAC) uses phasor measurement units (PMUs) to provide much more
frequent measurements of the power system, enabling better understanding
and control of the system dynamics [3]. As power systems expand substan-
tially and renewable energy sources are rapidly integrated, the complexity of
power systems continues to increase [4],[5],[6], making the development of an
accurate power system model significantly more challenging. Considering the
uncertainty in power system models and the uncertainty of measurements,
there is a strong motivation to identify the model and estimate the states of
the power system [7]. Addressing these challenges requires advanced data-
driven modeling techniques and computational methods such as machine
learning and big data analytics.

Kalman filtering has emerged as a powerful tool for accurately estimat-
ing the dynamics of state variables of power systems. [8, 9]. The Ensemble
Kalman Filter (EnKF), which is a Monte Carlo approximation of a Kalman
filter, was developed to increase the accuracy of estimation by a Kalman filter
[10]. The original Kalman filter and the EnKF are applicable only for linear
dynamics. On the other hand, the Extended Kalman Filter (EKF) was pro-
posed for nonlinear dynamics. The EKF uses the Jacobian matrix to linearize
the model in each time step and implements the Kalman filter for state esti-
mation [8, 11]. Although EKF is successful in some low-dimensional models,
the estimation process diverts from the true values in high-dimensional and
highly nonlinear systems, including power systems. The Unscented Kalman
Filter (UKF) was developed with unscented transformation to provide accu-
rate estimation for nonlinear systems [12, 13]. The UKF employs a deter-
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ministic sampling approach to propagate the state of the system through a
set of carefully chosen sigma points. This enables more accurate estimation
in higher order nonlinear systems[14], [15]. The established accuracy of the
UKF for nonlinear systems motivated us to choose the UKF for our study of
nonlinear power systems.

There are existing approaches in power systems to DSE that use physics-
based models of power systems, disregarding the inherent uncertainties that
exist in practical scenarios, which means obtaining a detailed model of power
systems is not always possible or accurate enough to use. Further explo-
ration is necessary to confront these uncertainties within the context of DSE
for power systems. Data-driven model identification has the capability to
unearth the inherent model uncertainties. Nevertheless, constructing accu-
rate power system models from data is challenging, primarily due to the
nonlinearity and uncertainty inherent to these systems [16]. In the context
of power system identification, different studies have been devoted to ex-
ploring data-driven methods. These include Dynamic Mode Decomposition
(DMD) [17], Sparse Identification of Nonlinear Dynamics (SINDy)[18, 19],
neural networks [20], and Koopman theory [21], [22]. Among these methods,
DMD heavily relies on a linear dynamics assumption, but can handle high-
dimensional data. Neural-network-based approaches require a large amount
of training data and are also infamous for not being interpretable [18, 19].
The Koopman operator connects DMD to nonlinear dynamics through an
infinite dimensional linear operator. Under special circumstances and pro-
vided that a good measurement basis is selected, the Koopman operator
may converge to a finite dimensional space, but this is not guaranteed for
many systems[22]. On the other hand, sparse identification uses the sparse
regression technique to identify dominant dynamics of candidate functions,
and has shown promise in accurately modeling the unknown dynamics of
nonlinear systems [18, 19]. Among the major advantages of sparse regres-
sion is its sparsity, which enables easy implementation, reduces the training
time, results in an interpretable model, and provides an accurate formulation
that outperforms other model identification techniques. While the existing
research shows the significant potential of sparse regression in identifying
nonlinear dynamics of synchronous generators, its application in dynamic
state-estimation has not been reported yet.

1.1. Contributions

To be specific, our contribution can be outlined as:
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• Unlike traditional DSE techniques that predominantly rely on physics-
based models and often fail to account for model/parameter fluctu-
ations and uncertainties, our research uniquely addresses these chal-
lenges, focusing on state estimation for nonlinear power systems. This
emphasis ensures more robust and accurate system performance under
real-world conditions, where uncertainties are inherent and unavoid-
able.

• One significant contribution of our work is the enhancement of the
conventional sparse regression method. Traditional approaches involve
constructing an extensive library of linear and nonlinear functions to
represent system dynamics, which can be computationally intensive and
slow, particularly for real-time applications. Our innovative approach
reduces computational complexity and enhances computation speed by
starting with a smaller, more focused set of functions. This strategic
reduction in the initial library size not only minimizes computational
demands but also decreases interdependencies among the functions,
thereby streamlining the process of real-time model identification (see
Fig. 1).

• Another critical advancement in our method is the introduction of an
improved sparse regression technique that optimizes feature selection.
By systematically evaluating the correlation of feature values with the
ratio of the dominant element to the sparsity tuning parameter (γ),
our technique ensures more precise and effective feature selection. This
refinement addresses the limitations of the original sparse regression
method, providing a more sophisticated and accurate approach to iden-
tifying relevant system dynamics. The effectiveness of our approach is
demonstrated through comprehensive state-of-the-art comparisons, as
shown in Table 1.

The key distinction between learning-based machine learning models and
the sparse regression approach proposed in this paper lies in their method-
ology. While machine learning methods typically identify a nonlinear model
that best fits the measured data, sparse regression pinpoints the exact under-
lying dynamics of the system. Furthermore, techniques such as reinforcement
learning often require vast amounts of training data and are computationally
intensive [23]. In contrast, our method is significantly simpler and requires
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Figure 1: Proposed density-guided sparse regression of nonlinear generators: the library
of function is updated when a column of Ξ is dense and higher order nonlinear functions
should be added to the library till all the columns of Ξ are sparse.

Table 1: State-of-the-art study on model identification of power systems

Method Prior knowledge Linearization Adaptive
DMD [17] ✓ ✗ ✗

Neural Network [20] ✓ ✓ ✗

Koopman Theory [21] ✗ ✓ ✗

Sparse Regression [19] ✗ ✓ ✓

Proposed Method ✓ ✓ ✓

far less data, making it highly suitable for applications where data availability
is limited and low model complexity is essential.

The rest of the paper is organized as follows. Section 2 presents the
formulation of the model free state estimation problem. In sections 3 and 3.2,
sparse regression and UKF is introduced. Section 4 proposes the innovative
density-guided sparse regression UKF and section 5 includes the case studies.
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2. Problem Formulation

Without loss of generality, the model of a synchronous generator is con-
sidered as an illustrative example within nonlinear power systems. Here,
the problem of model identification and state estimation for a synchronous
generator is structured into two distinct segments. In the first part, the prob-
lem is model-free, and the generator’s inherent model remains undisclosed.
In the second part, the focus is shifted to the situation where the physics-
based model is established, yet the precise parameters of the model remain
undetermined.

2.1. Formulation of Synchronous Generator

Generally, the dynamic of a generator with additive process and measure-
ment noise has the following formulation.

ẋ = f(x,u) +w, (1)

y = g(x,u) + v, (2)

where the system has n state variables x ∈ Rn and d inputs u ∈ Rd. Also,
f(x,u) is the transition function, g(x,u) is the measurement function, and
w ∈ Rn and v ∈ Rm are the process and measurement noise, assumed to
be Gaussian, i.e., wk ∼ N(0,Qk), and vk ∼ N(0,Rk), where Qk ∈ Rn×n

and Rk ∈ Rm×m are covariances of the process noise and measurement noise
respectively. The transition function, f in (1), is assumed to be unknown
and the goal is first to identify the transition function and second to estimate
the states of the system. Without loss of generality, the physical model of
the fourth-order synchronous generator from [24] is considered. The behav-
ior of the system is described by the following equations, which need to be
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identified:

ẋ1 = ω0 x2, (3)

ẋ2 =
1

J
u1 −

D

J
x2 −

1

J
· 1
2
· ( 1
xq
− 1

x′d
) · u23 sin(2x1)

− 1

J
· 1
x′q

u3 x3 sinx1, (4)

ẋ3 =
1

T ′
do

u2 −
1

T ′
do

(1 +
xd − x′d

x′d
)x3

+
1

T ′
do

(
xd − x′d

x′d
)u3 cosx1, (5)

ẋ4 = −
1

T ′
qo

x4 +
1

T ′
qo

(
xq − x′q

x′q
) u3 sinx1, (6)

The generator has four states , n = 4, and three inputs, d = 3, defined
as x = [x1 x2 x3 x4]

T = [δ ∆w e′q e′d]
T and u = [u1 u2 u3] =

[Tm Efd Vt]
T , where δ (rad) is the rotor angle, ∆ω (rad/sec) is the devi-

ation of rotor speed from the synchronous speed, e′q (volt) is the transient
voltage along the q-axis, and e′d (volt) is the transient voltage along the
d-axis. The three inputs are Tm (Newton-meter), which represents the me-
chanical input torque, Efd (volt), the field excitation voltage (steady-state
internal voltage of the armature), and Vt (volt), the terminal bus voltage.
The measurement function, representing the electrical output power, is de-
fined as:

y =
u3

x′
d

x3 sin(x1) +
u2
3

2

( 1

xq

− 1

x′
d

)
sin(2x1). (7)

In these equations, J represents the inertia constant, and D is the damping
factor. The parameters T ′

do and T ′
qo are the transient open circuit time con-

stants on the direct and quadratic axes, respectively, while xd and xq denote
the synchronous reactance of the direct and quadratic axes. The terms x′

d

and x′
q represent the transient reactance along the direct and quadratic axes.

2.2. Model with uncertainty

In this subsection, the physics-based model of the nonlinear synchronous
generator is introduced where the linear and nonlinear functions in the tran-
sition function are known, however the parameters have uncertainties. Later
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Table 2: Values of model parameters

Parameter Value

J 13
D 0.05
T ′
do 0.131

T ′
qo 0.0131
xd 2.06
xq 1.254
x′
d 0.375

x′
q 0.375

in section 5, it is illustrated that our proposed model-free approach can sig-
nificantly overcome the physics-based state estimation. The physics-based
model of a nonlinear fourth-order synchronous generator is written as (3)-
(6) [25]. While the values of the model parameters are predetermined, it is
assumed that there is uncertainty in the value of parameters as formulated
in

xd = x̄d +∆xd, |∆xd| ≤ Dxd
(8)

xq = x̄q +∆xq, |∆xq| ≤ Dxq (9)

x′
d = x̄′

d +∆x′
d, |∆x′

d| ≤ Dx′
d

(10)

x′
q = x̄′

q +∆x′
q, |∆x′

q| ≤ Dx′
q
, (11)

where x̄d is the predetermined value, Dxd
is the bound of uncertainty (known

for each parameter), and ∆xd is the deviation of the parameter (unknown).

3. Mathematical Background

3.1. Sparse Regression Theory

Assume a dynamical system is modeled as

ẋ(t) = f(x(t),u(t)) (12)

where x is the state vector, u is the input vector and f(x,u) : Rn×Rd → Rn.
The underlying principle of sparse identification is that the function f consists
of only a few active terms. To identify the governing equations of the nonlin-
ear system, it is essential to collect the values of states, the time derivatives of
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θ(X,U) =
[
1 U X P2(X,U) P3(X,U) · · · sin(X,U) sin(X,U)

]
(13)

states and the inputs over m time steps during the identification phase [26].
(13) defines the vector of candidate functions θ(X,U) used in the density-
guided sparse regression algorithm. This vector is constructed to encompass
a variety of linear and nonlinear terms that describe the relationships be-
tween the input variables represented by X (state variables) and U (control
inputs). The first element, 1, represents a constant term, essential for fitting
models that may have nonzero intercepts. The term U captures the direct
influence of control input on system dynamics, allowing the model to account
for external manipulations. Additionally, the term X includes the state vari-
ables of the system, which are crucial to understanding its current condition.
Higher-order polynomial terms, represented by P2(X,U) and P3(X,U), en-
compass second-order and third-order polynomial combinations of X and U,
facilitating the modeling of more complex relationships between state and
control variables by capturing nonlinear interactions. Furthermore, the in-
clusion of trigonometric functions, specifically sin(X,U), allows the model
to account for periodic behaviors that may arise in certain power system
applications.

3.1.1. Data Collection
Since all measurements contain noise, it is needed to smooth out the data

to increase reliability before identification, and in this work, Savitzky-Golay
filtering [27] is applied. Based on the filtered data, the following matrices are

9



defined

X =


xT (t1)
xT (t2)

...
xT (tm)

 =


x1(t1) x2(t1) · · · xn(t1)
x1(t2) x2(t2) · · · xn(t2)

...
...

. . .
...

x1(tm) x2(tm) · · · xn(tm)

 ,

Ẋ =


ẋT (t1)

ẋT (t2)
...

ẋT (tm)

 =


ẋ1(t1) ẋ2(t1) · · · ẋn(t1)
ẋ1(t2) ẋ2(t2) · · · ẋn(t2)

...
...

. . .
...

ẋ1(tm) ẋ2(tm) · · · ẋn(tm)

 ,

U =


uT (t1)
uT (t2)

...
uT (tm)

 =


u1(t1) u2(t1) · · · ud(t1)
u1(t2) u2(t2) · · · ud(t2)

...
...

. . .
...

u1(tm) u2(tm) · · · ud(tm)

 , (14)

where X, U , and Ẋ are the matrices of the filtered states, inputs, and
time derivative of states, respectively. In the model identification phase, it is
assumed that the state variables X, their time derivatives Ẋ, and the input
data U can all be measured. Given this assumption, the Savitzky-Golay
filter is applied to the measured data to smooth out noise in X, Ẋ, and U,
ensuring the accuracy of the model identification. Since this process occurs
offline, smoothing the data prior to model identification is crucial. The time
stamps t1, t2, . . . , tm represent discrete points in the data collection phase,
which occurs before the identified model is used in Dynamic State Estimation
(DSE). This ensures that the model is constructed based on pre-processed
and noise-reduced data.

3.1.2. Library of Candidate Functions

To identify the terms on the right-hand side of (12), a library of candidate
functions is chosen. This library may encompass constants, polynomials, and
trigonometric terms. The structure of this library is denoted as in (13) (which
can be expanded by higher orders of nonlinearities), where P2(X,U) given
in (15) represents the second-order combinations of elements of X and U.

P2(X,U) =
[
x1(t)u1(t) x1(t)u2(t) · · · xn(t)ud(t)

]
(15)
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To construct the design matrix for model identification, the matrix P2(X,U),
shown in (15), captures the products of the state variables and inputs at each
time step. This matrix is then used to generate the design matrix Θ(X,U),
defined in (16). The matrix Θ(X,U) is formed by stacking the regression
terms θ(X(t),U(t)) for each time instant t1, t2, . . . , tm, where L is the num-
ber of regression terms at each time point and m is the total number of time
steps collected. This matrix is critical for identifying the system’s dynamics
through the proposed methodology. After m time steps, the matrix Θ, which
augments the matrix θ at each time step, is defined as (stacking rows):

Θ(X,U) =


θ(X(t1),U(t1))
θ(X(t2),U(t2))

...
θ(X(tm),U(tm))


m×L

time ↓ (16)

The time derivative of states Ẋ can now be written as a linear expansion
of the functions in the library Θ

Ẋ = Θ(X,U)Ξ, (17)

where Ξ is the matrix of coefficients for the candidate functions in Θ.

3.1.3. Identification by Sparse Regression

To continue with the regression problem, a sparsity-promoting hyper pa-
rameter is introduced. The goal of the optimization problem is then defined
as

ξh = argmin ∥Ẋh −Θ(X,U)ξ̂h∥2 + γ∥ξ̂h∥0 (18)

where ξh is the h-th column of Ξ represented by ξh = [ξ1 ξ2; · · · ξp]T , moreover
∥.∥2 and ∥.∥ denote l2 and l0 norm respectively. A sparse Ξ is derived by
iteratively solving a sequentially thresholded least-square optimization [28].
The second term on the right-hand side of 18 introduces a sparsity constraint
to the optimization problem. Specifically, the term γ∥ξ̂h∥0 aims to promote
a sparse solution for the vector ξ̂h, which represents the coefficients in the
regression model. The l0 norm counts the number of non-zero elements in
ξ̂h, effectively enforcing sparsity by penalizing the inclusion of unnecessary
parameters. This approach contrasts with the first term, which uses the
l2 norm to minimize the discrepancy between the predicted state dynamics
Θ(X,U)ξ̂h and the observed dynamics Ẋh. The sparsity tuning parameter
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γ plays a critical role in balancing the trade-off between fitting the data
(as captured by the l2 norm term) and maintaining a sparse representation
of the model coefficients (as captured by the l0 norm term). Adjusting γ
influences the degree of sparsity in the solution: a larger γ encourages sparser
solutions, while a smaller γ allows more parameters to be included in the
model. This flexibility helps ensure that the identified model remains relevant
and accurate in capturing the underlying dynamics of the system.
In (18), the matrix Ξ is L× n, where L is the number of possible regression
terms generated by the function Θ(X,U), and n is the number of states. The
vector ξh represents the h-th column of Ξ and is a sparse vector, meaning it
has only a subset of non-zero elements. Specifically, the number of non-zero
elements in ξh is denoted by p, which is much smaller than L.

3.2. Unscented Kalman Filter

Given the identified model in previous section, by measuring the noisy
output y, the states of the system are estimated via UKF with the assumption
of knowing the statistics of the process and measurement noise. As UKF
applies to discrete-time models of the system, it is necessary to write the
discrete-time model first.

3.2.1. Discrete Time Model

Using the Euler method, the time evolution of states and outputs is rep-
resented by

xk+1 = F(xk,uk) +wk, yk = G(xk,uk) + vk, (19)

where F (., .) andG(., .) are the discrete transition function and measurement
function respectively and are defined as

F(xk,uk) = xk + f̂(xk,uk,wk)∆t, (20)

G(xk,uk) = g(xk,uk). (21)

In (20), f̂(xk,uk,wk) represents the identified system model, which is origi-
nally in continuous form. This model captures the dynamics of the system
based on the identified model from the model identification process. Since
the filtering process operates in discrete time, f̂ is discretized with a time step
∆t, yielding the discrete state transition function F(xk,uk). This allows the
model to be updated at each time step of the estimation process, making it
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suitable for use in the Kalman filtering framework.
In UKF, by a set of deterministic sample points, known as sigma points, the
mean and covariance of a Gaussian random variable are estimated. When
sigma points are transformed by a nonlinear function, their true mean and
covariance can be calculated accurately to the 3rd order of Taylor series
expansion [29].

3.2.2. Prediction Step

In time step k, given the mean x̂+
k and covariance P+

k of a random variable
x ∈ Rn, 2n+1 Sigma points of the variable with equal weights are calculated
by the following procedure [30]

x̂
(0)
k = x̂+

k , (22)

x̂
(i)
k = x̂+

k + x̃(i), i = 1, · · · , 2n (23)

x̃(i) =
(√

nP+
k

)T

i
, i = 1, · · · , n (24)

x̃(n+i) = −
(√

nP+
k

)T

i
, i = 1, · · · , n (25)

where x̂
(i)
k , i = 0, · · · , 2n is the (i+1)-th sigma point of state variable and P+

k

is the estimated covariance of the state variable at time step k. In equations
(24) and (25), the notation (·)i represents the i-th element of the correspond-
ing vector. Specifically, it refers to the i-th row of the matrix

√
nP+

k , which
is the Cholesky factorization of the estimated covariance matrix at time step
k [31]. This factorization allows for efficient computation of the square root
of the covariance matrix, facilitating the generation of sigma points. Each
sigma point is transformed by the nonlinear function in (20) to the next time
step

x̂
(i)
k+1 = F (x

(i)
k ,uk), (26)

ŷ
(i)
k+1 = G(x

(i)
k+1,uk+1). (27)

By these propagated sigma points, the predicted state and the predicted
output at time step k + 1 are,

x̂−
k+1 =

1

2n+ 1

2n∑
i=0

x̂
(i)
k+1, ŷk+1 =

1

2n+ 1

2n∑
i=0

ŷ
(i)
k+1. (28)
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Consequently, the covariance of the state is predicted by

P−
k+1 =

1

2n

2n∑
i=1

(x̂
(i)
k+1 − x̂−

k+1)(x̂
(i)
k+1 − x̂−

k+1)
T +Qk, (29)

where P−
k+1 is the predicted covariance andQk is added to include the effect of

process noise. Additionally, the covariance of the output and cross covariance
of state and output at time step k + 1 is predicted by

Py =

∑2n
i=0(ŷ

(i)
k+1 − ŷk+1)(ŷ

(i)
k+1 − ŷk+1)

T

2n+ 1
+Rk, (30)

Pxy =
1

2n+ 1

2n∑
i=0

(x̂
(i)
k+1 − x̂−

k+1)(ŷ
(i)
k+1 − ŷk+1)

T . (31)

where Py denotes the predicted covariance of the measurement and Rk is
the measurement noise covariance. Additionally, Pxy denotes the cross-
covariance between the state and the measurement.

3.2.3. Update Step

With measurement yk+1 and Kalman filter equations [32], the estimation
of the mean and covariance in previous step is updated by

x̂+
k+1 = x̂−

k+1 +Kk+1[yk+1 − ŷk+1], (32)

P+
k+1 = P−

k+1 −Kk+1PyK
T
k+1, (33)

where Kk+1 is the Kalman gain and is calculated by

Kk+1 = PxyP
−1
y . (34)

Sigma points for propagating in the next time step is calculated by x̂+
k+1 and

P+
k+1 and the two steps of prediction and update will be repeated.

4. Density-Guided Sparse Regression UKF

In this section, Algorithm 1 is proposed to derive a sufficient library of
functions to identify the dynamics of synchronous generators in power grid.
The model of the system is identified and written as ẋT = θ(x,u)Ξ, where
Ξ is the matrix resulting from sparse regression in Algorithm 1. The matrix
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Ξ depends on the library of functions in θ(x,u). This proposed algorithm
begins with a relatively small library of nonlinear functions to find a model
to fit data set and represent the system dynamics. If one or more columns of
the matrix Ξ are not sparse, the algorithm will recognize that the nonlinear
functions in the selected library were insufficient to represent the dynamics
of the system. The proposed method is shown in Fig. 1.

4.1. Initial library of functions

Among the set of all possible nonlinear and linear functions, the set H
is chosen based on the inherent properties of the system.

H = {η1(x,u), · · · ,ηc(x,u)}, (35)

where ηi(x,u), i = 1, · · · , c are sets of functions raised to the ith power.
While H has many functions and is typically of substantial size, a subset
of H is selected as an initial library of functions for our sparse regression
method

θ0(x,u) ⊂H , (36)

where θ0(., .) is assumed to include l functions

θ0(x,u) =
[
θ1(x,u) θ2(x,u) · · · θl(x,u)

]
. (37)

The initial selection is based on the system’s inherent properties, which allows
us to focus on the most relevant terms. The choice of this initial library
directly impacts the final model. A well-constructed library ensures that the
model accurately captures the system dynamics while balancing complexity.
If critical terms from H are excluded, the model may be unable to fit the
data, failing to capture essential dynamics. Conversely, including too many
irrelevant terms from H can lead to overfitting, increasing computational
complexity, and reducing model generalizability. In practice, some knowledge
of dynamic functions is known and the problem is not treated as a black-box
model. This can limit the number of library functions in H . By selecting a
relevant subset of functions from H , the proposed method ensures accurate,
sparse, and interpretable models.

Assumption 4.1. For each j, θj(x,u) cannot be written as a linear combi-
nation of the other components θi(x,u), ∀i ̸= j.
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Taking into account all the snapshots of x ∈ Rn and u ∈ Rd, the matrices
X ∈ Rm×n, U ∈ Rm×d, Ẋ ∈ Rm×n and Θ are constructed as follows:

Θ0(X,U ) = [θ0(t1); θ
0(t2); · · · ; θ0(tm)], (38)

where θ0(ti) is the initial library in i-th time step. An initial solution for Ξ

in sparse regression algorithm is expressed as Ξ0 = Θ0(X,U )\Ẋ. In each
column of Ξ0, there is a dominant element with maximum absolute value
which is denoted as ξ∗. By considering the sparsity tuning parameter γ, the
elements with absolute value less than ξ∗/γ will be replaced with zero and
the expansion of Ξ0 ∈ RM×n can be written as

Ξ0 =


ξ01
ξ02
...
ξ0n


T

=


ξ01,1 ξ01,2 · · · ξ01,n
ξ02,1 ξ02,2 · · · ξ02,n
...

...
. . .

...
ξ0M,1 ξ0M,2 · · · ξ0M,n

 , (39)

where ξ0j , j = 1, · · · , n is the j-th column and ξ0i,j is the i-th element of this
column. Thus, dynamics of the system are modeled as[

ẋ1, ẋ2, · · · , ẋn

]
= (40)

[
θ1(x,u), θ2(x,u), · · · , θl(x,u)

]

ξ01,1 ξ01,2 · · · ξ01,n
ξ02,1 ξ02,2 · · · ξ02,n
...

...
. . .

...
ξ0l,1 ξ0l,2 · · · ξ0l,n

 .

The model is now a linear expansion of the nonlinear functions in θ0(x,u).
A challenging question is whether the non-linear functions were sufficient
enough to represent the model. In the following, this challenge is addressed
by proposing a density-guided approach.

4.2. Updating the library: The density suggests a higher order of nonlinear-
ities

The matrix Ξ0 has n columns where the column ξ0i corresponds to the
dynamic of i-th state

ẋj =
[
θ1(x,u), θ2(x,u), · · · , θl(x,u)

]

ξ01,j
ξ02,j
...

ξ0M,j

 , (41)
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where j = 1, · · · , n and (41) is a linear expansion of all the functions in the
library θ0(x,u) resulted by the original sparse regression algorithm.

Assumption 4.2. Assuming an exact representation in (41) exists with fi-
nite l, the time derivative of each state variable ẋj can be represented with a
finite l (number of terms). The functions θj(x,u) are members of the set H
defined in (35).

Theorem 4.1. Under assumption 4.2, if the column ξj is dense, this density
indicates that the library should be updated by adding more nonlinear func-
tions to represent the dynamic of ẋj. If the column ξj is sparse, this sparsity
indicates that the functions in the library are sufficiently large to represent
the dynamics of the system.

Proof. Suppose that the underlying dynamic of ẋj is of the form

ẋj =
K∑
k=1

αk,jφ
j
k(x,u), (42)

where φj
k(x,u), k = 1, · · · , K is a function of x and u and αj

k,j ∈ R is the
corresponding coefficient. By the sparse regression approach and the matrix
Ξ0, ẋj is identified as

˜̇xj ≈
L∑

k=1

ξk,jθk(x,u), (43)

where L ≫ K so the column ξj can potentially be sparse. Thus, the error

(˜̇xj − ẋj) is

ej =

K∑
k=1

(
ξk,jθk(x,u)− αk,jφ

j
k(x,u)

)
+

L∑
k=K+1

ξk,jθk(x,u). (44)

If for all 1 ≤ k ≤ K,φj
k(x,u), is equal to a θk(x,u) in the library then (44),

it can be written as

ej =
K∑
r=1

θr(x,u)
(
ξr,j − αr,j

)
+

L∑
r=K+1

ξr,jθr(x,u). (45)
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For minimizing the error for arbitrary (x,u){
ξr,j = αr,j, for r = 1, · · · , K
ξr,j = 0, for r = K + 1, · · · , L.

(46)

which results in a sparse column ξj . This implies that if φj
k, k = 1, · · · , K

are in the library of functions, the column ξj will be sparse. By the logic
of contra-positive, if the column ξj is dense, then there exists at least one
function φj

k that doesn’t exist in the library of functions and the library has
to be updated.

This iterative process of updating the library as elucidated in Algorithm
1, is repeated until all the columns of matrix Ξ are sparse.

Remark. The condition L ≫ K is imposed to guarantee that the library’s
size is sufficiently large for the coefficients to have the potential of spar-
sity. Without satisfying this condition, the library may encompass all re-
quired terms, yet the coefficient column could turn out to be dense. Even in
that case, by updating the library, the size of the library will increase and the
sparsity would appear given that all the terms include in the library.

4.3. Data-Driven unscented Kalman filter implementation

Following identifying the model of the generator by Algorithm 1, the
noisy output y of the generator is observed and the states are estimated by
implementing the proposed data-driven UKF via the following steps

1. Start the identification phase,

2. Excite the inputs of the generator and collect data set for x and ẋ and
u in each sampling time,

3. Improve the reliability of the data by a Savitzky-Golay filter,

4. Construct matrices X, Ẋ and U in the form of (14),

5. Start Algorithm 1 to find a sparse Ξ with a minimum number of non-
linear functions in the library θ(x,u),

6. Write the state space of model as ẋT = θ(x,u)Ξ,

7. Construct sigma points as in (22) and propagate them to the next time
step by the identified model,

8. Predict the mean and covariance of x and cross covariance between x
and y by (28)-(31),

9. Update the estimation by Kalman filter equations in (32)-(34).
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Figure 2: Schematic of the algorithm for density-guided sparse regression unscented
Kalman filter.
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The schematic of the proposed method is presented in Fig. 2. The excitation
of the system plays a crucial role in gathering sufficient data to accurately
capture the dynamics of the system and drive the underlying governing equa-
tions. Moreover, it is important that the identification phase occurs during
the transient state of the system dynamics when the system is exhibiting
dynamic behavior.

5. Case Studies

This section presents the application of the proposed method to a single
generator in a model-free context. The simulations are executed on a host
computer equipped with an Intel(R) Xeon(R) Silver 4214R CPU @ 2.40
GHz and 64 GB RAM. Subsequently, the implementation to a physics-based
model is extended to effectively address parameter uncertainty. Next, the
proposed approach is applied to a 30-bus system with and without fault
scenarios. For the identification phase, data collection is performed from
state variables and their corresponding time derivatives over a duration of
T1 = 2s with 5ms sampling time. The sparsity tuning factor is established
as γ = 20. The sinusoidal excitation is applied to all the inputs of the
generator to enhance the observability of the system during the identification
phase. By introducing small perturbations with a magnitude of 0.01 and
a frequency of 70Hz, the dynamic response of the system becomes more
noticeable, allowing the algorithm to more accurately capture the system’s
behavior. The normalized estimation error is defined as 1

n′

∑n′

i=1
∥z−ẑ∥
∥z∥ , where

z is the true value of the variable z, ẑ is the estimated value and n′ is the
number of data points. This criteria will be used to evaluate the estimation
accuracy in simulation results.

5.1. Single generator: Model-free

The initial condition of the state is set as x0 = [1, 0, 0, 0]T and the Gaus-
sian process and measurement noise are implemented with time invariant
covariance as Qk = 10−2 · In×n and Rk = 10−2 · Im×m, where n = 4 and
m = 1. The system’s single output measurement corresponds to the output
power, which has been shown to be sufficient for DSE in similar works [24].
Additionally, the system inputs u1, u2, u3 are also directly measured, enabling
a comprehensive estimation of all state variables. It is also noted that usually
in power systems, direct measurements of other states of generators (such as
δ or ∆ω) might not be available to the power system operator. Therefore, it
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Algorithm 1 Proposed Method: Density-Guided Sparse Regression

Data: U,X, Ẋ
Result: Ξ
Assume an exact representation in (41) with finite l.
Construct a set with different levels of nonlinear functions: H =
{η1(x,u), · · · ,ηc(x,u)}
Start with an initial library of function: θ(x,u) ⊂ H
for q=1:c-1 do

▷ comment: the iteration for various levels of nonlinear

subsets within H commences.

Find Ξ = Θ(X,U )\Ẋ;
for j=1:n do

µj ← max(Ξ(:, j))
▷ comment: µj is the dominant element in j-th column.

Set γ
▷ comment: γ is the sparsity tuning factor.

for i=1:m do
if |Ξ(i, j)| < µj/γ then

Ξ(i, j) = 0
▷ Removes the non-dominant elements while

retaining the features.

end

end

end
for j=1:n do

if Ξ is sparse then
j=j+1

else
θ(x,u) = [θ(x,u),ηq+1(x,u)];

Find Ξ = Θ(X,U )\Ẋ;
j=n+1; ▷ comment: to exit the local loops and

repeat the first loop to find new Ξ

end

end

end
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Table 3: Sparse regression UKF notations

Notation Description

x State variables of generator

n Number of state variables

m Number of time steps in identification phase

f Physics-based transition function

f̂ Identified transition function

X,Y , Ẋ Data set of states, inputs and states time derivative

γ Sparsity tuning

N Sparsity threshold

H(x,u) a set of nonlinear functions of x and u

η(x,u) a subset of nonlinear functions of x and u

θ(x,u) a library of nonlinear functions

∆t Sampling time interval

F Discrete transition function

g Measurement function

G Discrete measurement function

w Process noise

v Measurement noise

Qk Process noise covariance

Pk Measurement noise covariance

x̂+
k Estimated mean of the state at time step k

P+
k Estimated covariance of the state at time step k

x̃
(i)
k the (i+ 1)-th sigma point at time step k

x̂−
k Predicted mean of the state for time step k

P−
k Predicted covariance of the state for time step k

K Kalman gain
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is realistic to consider power measurement, which is widely available through
existing smart metering systems.

5.1.1. Initial library

As described in Algorithm 1, the identification begins by selecting an
initial library of functions as θ0(x,u) = [uT ,xT , cosT x, sinT x], which results
in a dense Ξ with a corresponding function for each row in Table 4. The
only sparse column in Ξ is the first column, indicating that the term x2 is a
sufficient representative for the time evolution of x1. Having dense columns
in Ξ indicates that the functions in the library of functions are not sufficient
enough to represent the time evolution of remaining states. Therefore, a new
library of functions is needed.

5.1.2. Updating the library
In the second iteration, a new library is selected that encompasses higher-

order nonlinearities beyond those considered in the initial library θ1(x,u) =
[θ0(x,u), η1(x,u), η2(x,u)], where ηi(x,u) is a vector encompassing all feasi-
ble combinations of the variables ui and xj, characterized by the forms

η1(x,u) = [ui sin(xj), xi sin(xj), ui cos(xj), xi cosxj ], (47)

η2(x,u) = [ui sin(2xj), xi sin(2xj), ui cos(2xj), xi cos 2xj ].

where ui ∈ {u1, · · · , ud} and xj, xk ∈ {x1, · · · , xn}. The updated library in
(47), will result in a new Ξ, in which the first, third and the fourth column
is sparse. However, the second column is still dense which indicates the need
to update the library by more iterations. By third iteration, the library is
updated as θ2(x,u) = [θ1(x,u), η3(x,u), η4(x,u)],

η3(x,u) = [ui xj sin(xk), ui xj cos(xk)] (48)

η4(x,u) = [u2i sin(2xj), x
2
i sin(2xj), u

2
i cos(2xj), x

2
i cos 2xj ].

This new library of functions results in the Ξ in Table 5, where all the
columns are sparse and the dynamics match the actual dynamics.

Employing the identified model and observing noisy y from (7), the states
of the system are estimated via unscented Kalman filter.

5.1.3. Selection of γ

The sparsity tuning parameter γ plays a crucial role in determining the
trade-off between model complexity and accuracy in sparse regression. To
select an optimal value for γ, experiments were conducted using different
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Table 4: Identified dense Ξ with insufficient library.

Ξ ẋ1 ẋ2 ẋ3 ẋ4

u1 0 0 0 0
u2 0 −0.94 −81.96 20.76
u3 0 0 41.79 10.16
x1 0 −0.54 8.70 −36.66
x2 377 0 −24.33 115.18
x3 0 0 −14.85 −26.71
x4 0 3.67 −52.04 150.56

cos x1 0 0 34.69 0
cos x3 0 0 5.60 −26.53
cos x4 0 0.53 −5.12 20.92
sin x1 0 0.63 −3.99 66.16
sin x3 0 0 0 0
sin x4 0 −3.74 44.94 −193.54

values: γ = 5, 15, 20, 25, and 30. The selection was based on minimizing
the normalized error of state variables within a time frame of 0.5 seconds.
The results in Fig.3 indicate that a low value of γ = 5 leads to an under-
identified model, where key elements from the library are excluded. This
exclusion introduces a significant error between the true state variables and
the estimated values, suggesting that γ = 5 is too small to capture the
essential dynamics of the system. As γ increases to 15 and 20, the error
decreases significantly, and the model accurately captures the underlying
system behavior. These values are found to be optimal, striking a balance
between model sparsity and accuracy, with minimal inclusion of unnecessary
elements from the library. However, for higher values of γ = 25 and 30,
the error begins to increase again. This indicates that unnecessary terms
from the library are being incorporated into the model, leading to overfitting
and reduced efficiency. Therefore, the results suggest that γ = 15 or 20 is
optimal for this study. In summary, the selection of γ is a critical process that
directly influences the sparsity and accuracy of the final model. The results
demonstrate that while smaller values may omit important dynamics, larger
values may introduce unnecessary complexity. Hence, an optimal range of
γ = 15 to γ = 20 achieves the best performance in this case.
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Table 5: Identified sparse Ξ with sufficient library of functions.

Ξ ẋ1 ẋ2 ẋ3 ẋ4

u1 0 0.076 0 0
u2 0 0 7.63 0
u3 0 0 0 0
x1 0 0 0 0
x2 377 -0.0038 0 0
x3 0 0 -20.49 0
x4 0 0 0 -76.33

u1 sin x4 0 0 0 0
...

...
...

...
...

u3 sin x1 0 0 0 52.75
u1 cos x1 0 0 0 0

...
...

...
...

...
u3 cos x1 0 0 34.30 0

...
...

...
...

...
u3 x3 sin x1 0 -0.20 0 0

...
...

...
...

...
u2
3 sin(2x1) 0 0.07 0 0

25



Figure 3: Impact of the sparsity tuning parameter γ on the normalized error of state
variables over a time period of 0.5 seconds. The results show that lower values of γ lead to
under-identification of the model, while higher values introduce unnecessary complexity.
Optimal performance is achieved with γ in the range of 15 to 20, balancing model accuracy
and sparsity.

26



5.1.4. Uncertainty in the model
In this case, it is assumed that the dynamic of the model is known as in

(3). However, there exists uncertainty about the parameters. Based on the
physics of the model, the library of function is selected as

θ(x,u) = (49)

[u1, u2, x2, x3, x4, u3 sinx1, u3 cosx1, u
2
3 sin(2x1), u3x3 sinx1]

Without loss of generality, it is assumed the uncertainty is in the parameter
xd, i.e.,

xd = x̄d +∆xd, |∆xd| ≤ Dxd
(50)

where x̄d = 2 and Dxd
= 0.7. Although the true value of xd is 2.05, physics-

based UKF estimates the state variables assuming xd = 2. It is illustrated in
Fig. 4 that, while the overall estimation error of all the state variables using
the proposed method is 0.18%, the estimation error for the physics-based
UKF is significantly higher at 10%. To further validate the effectiveness
of the proposed sparse regression UKF approach, its performance has been
compared with the model-based EKF (Extended Kalman Filter), which is
another well-recognized method for dynamic state estimation in power sys-
tems and assumes prior knowledge of the exact system model. The results of
this comparison indicate that both methods successfully estimate the system
states; however, the sparse regression UKF demonstrates a notable advantage
by not requiring precise information about the system’s underlying model.
Moreover, in terms of precision, the sparse regression UKF outperforms the
EKF, achieving a mean square error (MSE) of 0.18%, compared to 0.27%
for the EKF. This reduction in error underscores the enhanced precision of
the sparse regression UKF in handling the nonlinear and time-varying dy-
namics of the system without the constraints of model dependence. These
findings highlight the robustness and adaptability of the proposed approach,
making it particularly suitable for real-world applications in dynamic state
estimation.

5.2. Computational and memory efficiency

In this case study, the computational efficiency of the proposed density-
guided sparse regression method is compared to the conventional sparse re-
gression approache. In case 1, the nonlinear space H is defined in (35), which
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Figure 4: In contrast to physics-based UKF estimation which diverts from the true value,
density-guided sparse regression UKF accurately estimates the true value of state variables.

28



includes functions characterized by fourth-degree nonlinearities. The tradi-
tional sparse regression method, as described in [26], typically utilizes all
functions within this space H. In Case 2, the nonlinear space H extends to
fifth-degree nonlinearities, while in Case 3, it encompasses sixth-degree non-
linearities. In contrast, our density-guided sparse regression method does
not require the inclusion of all functions of the space H. Instead, the pro-
posed methodology starts with a library consisting of lower-order functions
and iteratively refines the selection over three iterations, only incorporating
the necessary higher-order nonlinearities as needed. Table 6 presents a de-
tailed comparison of computational efficiency between the proposed method
and the various cases mentioned. Specifically, it evaluates the run time as a
measure of computational efficiency and examines the sizes of the libraries
θ in (13) and Θ in (16) to highlight the memory efficiency of the proposed
approach. As shown in Table 6, this leads to a substantial reduction in run
time (down to 3.31 seconds in the same case) and a much smaller library
size compared to conventional sparse regression (Case 3), improving both
computational and memory efficiency. Thus, this iterative selection process
ensures that the method avoids the inefficiency of using the entire library,
while still effectively capturing the dynamics of the system.

Table 6: Comparison of computational and memory efficiency of the proposed method.

Proposed Method Case 1 Case 2 Case 3

Run Time [sec] 3.31 6.83 11.11 18.14
Size of Library 225 2, 955 35, 715 396, 075

Size of Θ 45× 103 591× 103 714× 104 792× 105

5.3. Effect of parameter variation

This case studies the effect of time-varying parameters of the model dur-
ing the steady-state operation of the synchronous generator. At time 30
seconds, the generator’s reactance xd changes from 2.06 to 2.50. Such a
change could normally happen during transients, causing a sudden shift in
the state variables of the generator. The physics-based UKF and density-
guided sparse regression UKF are compared in Fig. 5. As can be observed,
the physics-based UKF cannot track the true value of the state variables
because the parameter change was not included in the physics-based model
that the UKF used. However, the proposed density-guided sparse regres-
sion UKF can accurately identify and update the model online at the onset
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Figure 5: Impact of parameter change on accuracy of proposed density-guided sparse
regression UKF that can update the model online and provide an accurate estimation of
dynamics in real-time.
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of the transient. The model identification process requires time to adapt to
changes; therefore, while the initial identification can be considered offline for
this duration, the methodology then transitions to online state estimation.
It takes approximately 2 seconds from 30 seconds to 32 seconds to collect the
data, retrain the proposed model identification, and update the model for the
UKF. After this adaptation period, the UKF estimation continues with the
updated model. The physics-based UKF has a normalized estimation error
of 6.25%, rendering the estimation unreliable. In contrast, the true value
of state variables can be successfully estimated by the density-guided sparse
regression UKF with a normalized error of 0.24%.
It is important to note that during parameter changes, the library of func-
tions remains fixed, and no additional iterations are needed for model iden-
tification. Instead, the method adapts by updating the coefficients in the
model, allowing it to capture the system’s altered dynamics. This explains
the additional two-second delay in response after a parameter change.

5.4. IEEE 30-bus system

For a large scale implementation of the proposed data-driven DSE method,
a 30-bus power system is modeled, as depicted in Fig. 6. The input parame-
ters for high-lightened generators are assumed to beU1 = U3 = [0.8, 0.5, 0.98],
U2 = [0.8, 0.7, 0.98], U4 = [0.8, 0.7, 0.7]. By integrating the density-guided
sparse regression approach, the true underlying dynamics of generators are
identified. In essence, this illustrative demonstration underscores the util-
ity of the density-guided sparse regression UKF in effectively characteriz-
ing generator dynamics within a power system. The generator 1 and 3 is
the same generator identified in previous case with identifying matrix Ξ in
Table 5 which resulted in the identified state space in (47). After imple-
menting density-guided sparse regression, the matrix Ξ for generator 2 and
generator 4 is in Table 7 and 8 which result in their corresponding state
spaces. State-estimation results for the line 2 current are shown in Fig.7.
While a physics-based model UKF struggles to accurately track system un-
certainties, state variables, and line currents (with overall 36% normalized
estimation error), the proposed density-guided sparse regression UKF effec-
tively overcomes this limitation (with overall 0.12% normalized estimation
error), successfully monitoring and adapting to uncertainties in the system
parameters.
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Figure 6: IEEE 30-bus system.

Table 7: Identified sparse Ξ for generator 2.

G2 ẋ1 ẋ2 ẋ3 ẋ4

u1 0 0.076 0 0
u2 0 0 7.63 0
x2 376.95 -0.0038 0 0
x3 0 0 -35.76 0
x4 0 0 0 -76.33

u3 sinx1 0 0 0 52.75
u3 cos x1 0 0 75.01 0

u2
3 sin(2x1) 0 0.07 0 0

u3 x3 sin x1 0 -0.20 0 0
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Table 8: Identified sparse Ξ for generator 4

G4 ẋ1 ẋ2 ẋ3 ẋ4

u1 0 0.066 0 0
u2 0 0 7.63 0
x2 376.93 -0.0033 0 0
x3 0 0 -31.48 0
x4 0 0 0 -76.33

u3 sinx1 0 0 0 63.61
u3 cos x1 0 0 34.30 0

u2
3 sin(2x1) 0 0.06 0 0

u3 x3 sin x1 0 -0.17 0 0

Table 9: Parameters of generators in p.u.

Parameter G1, G3 G2 G4

J 13 13 15
D 0.05 0.03 0.05
T ′
do 0.131 0.131 0.131

T ′
qo 0.0131 0.0131 0.0131
xd 2.06 1.8 3.5
xq 1.254 1.35 1.5
x′
d 0.375 0.375 0.375

x′
q 0.375 0.375 0.375
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Figure 7: DSE results for line 2 current on after a transient.

5.5. Effect of fault

In this case, the performance of the proposed approach is evaluated in
a scenario where a fault manifests at 55-seconds within the 30-bus system.
Assume there are two parallel lines connecting node 23 to node 24 in the
30-bus system, the impedance of the corresponding line is the parallel com-
bination of these two impedances. Once a fault occurs on one the lines, the
line is isolated from the system and there will remain only one line connect-
ing bus 23 to 24. Therefore, the fault is characterized by the change in the

impedance from 5.5 + j22.85
t=55s−−−→ 20 + j50. The results provided in

Fig. 8 illustrate the accuracy of state estimation using our approach. Em-
ploying the density-guided sparse regression unscented Kalman filter, this
methodology effectively gauges the system’s response to the fault. As a re-
sult of the fault occurrence, the line current reduces (due to the increase in
line impedance), followed by subsequent oscillations. Significantly, the pro-
posed technique successfully captures the dynamics of line current after the
faults. The proposed approach demonstrates its practical utility in enhancing
system monitoring in real-world power system scenarios.
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5.5.1. Undervoltage fault

Undervoltage conditions frequently occur in power systems due to fac-
tors such as increased load, sudden generator disconnection, or transmission
equipment failure. In this analysis, an undervoltage fault affects generators 1
and 3, with the terminal bus voltage Vt dropping from 0.9 [p.u.] to 0.85 [p.u.],
as shown in Fig. 9. This drop in voltage causes notable changes in the sys-
tem’s line currents. Specifically, there is a reduction in the current of line
1, while the current in line 2 increases. The proposed density-guided sparse
regression method effectively handles this fault. Despite the voltage distur-
bance, the method identifies the fault and adjusts the state estimations for
the line currents with minimal error.

5.5.2. Node to ground fault

A node-to-ground short circuit is one of the most critical and common
faults in power systems. In this scenario, a fault occurs when the nodes 2
and 23 are grounded, leading to a significant change in line currents. This
fault can be triggered by various factors, such as insulation breakdowns or
external disturbances, and it affects both system stability and power gener-
ation. As illustrated in Fig.10, the density-guided sparse regression method
successfully detects the system dynamics’ shift caused by the short circuit
and adjusts the state estimation in real time. This allows the UKF to main-
tain high accuracy in its estimations, even in the presence of such a fault.
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Figure 9: DSE results for line 1 and line 2 current after an undervoltage fault.

The adaptability of the method to sudden changes in system dynamics un-
derscores its resilience in handling critical system disturbances.
Unlike parameter variations, fault scenarios like the short circuit in this ex-
ample do not require re-identification of the model. The existing function
library is sufficient to capture the dynamics, and fault detection is facilitated
by changes in line impedance and system inputs, allowing the method to
adapt seamlessly without an additional model identification step.

6. Conclusion

A novel data-driven modeling and dynamic state-estimation technique,
the density-guided sparse regression unscented Kalman filter, was proposed
in this paper. The technique employs a two-phase strategy that includes
model identification and state estimation. By defining and utilizing the den-
sity of coefficients as a guiding criterion, the proposed sparse regression-based
model identification approach iteratively updates the library of linear and
nonlinear functions, achieving precise data representation and model identi-
fication. The identified data-driven model was then used for dynamic state
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Figure 10: DSE result after node-to-ground fault: where nodes 2 and 23 are both connected
to the ground. This short circuit results in a significant change in the line currents, which
is efficiently handled by the density-guided sparse regression method.
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estimation of a nonlinear power system via an unscented Kalman filtering
technique. This data-driven and model-free method is specifically designed
to handle the complexities and limited measurements typical of nonlinear
generators. The results demonstrate that the method is proficient in accu-
rately estimating states in nonlinear power systems while adapting to model
and parameter changes in real-time, without relying on a predefined model.
Moreover, the proposed approach has shown notable resilience in the pres-
ence of model uncertainties or system-level faults, making it a robust solution
for real-world applications.
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