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Abstract—This paper introduces a new statistical learning
technique based on sparsity promotion for data-driven modeling
and control of solar photovoltaic (PV) systems. Compared
with conventional sparse regression techniques that might
introduce computational complexities when the number of
candidate functions increases, an innovative algorithm, named
adaptive regulated sparse regression (ARSR) is proposed.
The ARSR adaptively regulates the hyperparameter weights
of candidate functions to best represent the dynamics of
PV systems. This method allows for the application of
different sparsity-promoting hyperparameters for each state
variable, whereas the conventional approach uses the same
hyperparameter for all state variables, which may result in
not excluding all the unrelated terms from the dynamics.
Consequently, the proposed method can identify more complex
dynamics with greater accuracy. Utilizing this algorithm,
open-loop and closed-loop models of single-stage and two-stage
PV systems are obtained from measurements and are utilized for
control design purposes. Moreover, it is demonstrated that the
proposed data-driven approach can be successfully employed for
fault analysis studies, which distinguishes its capabilities from
other data-driven techniques. Finally, the proposed approach is
validated through real-time simulations.

Keywords— Photovoltaic (PV) Systems, Single-stage PV,
Two-stage PV, Closed-Loop Data-driven Modeling, Adaptive
Regulated Sparse Regression.

I. INTRODUCTION

AVAILABILITY of high-resolution measurements from
field devices and existing challenges for accurately

modeling distributed energy resources (DERs) have motivated
data-driven modeling and control of smart grid assets.
A wide range of system identification approaches have
been introduced to extract dynamics from data. Some
of these techniques include: dynamic mode decomposition
(DMD) [1], [2], Koopman operator [3], [4], and sparse
identification of nonlinear dynamics or sparse regression [5],
[6]. These approaches have also been applied to power systems
[7]–[10]. For instance, dynamic mode decomposition has been
employed in [7] for delay-tolerant microgrid control, while the
Koopman operator has been utilized in [8] to identify generator
dynamics for state estimation purposes.

The DMD is based on the assumption of linear dynamics
and cannot effectively handle nonlinear dynamics such
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as DERs. The Koopman operator is introduced as an
infinite-dimensional linear operator that can sometimes
transform the dynamics of a nonlinear system into a
linear representation. However, the transformation is only
guaranteed in certain scenarios and under certain assumptions,
which do not generally apply to nonlinear dynamics
[3], [4]. In contrast, sparse identification leverages sparse
regression to identify the dominant dynamics of candidate
functions and has demonstrated promising results in accurately
modeling the unknown dynamics of nonlinear systems [11],
[12]. One of the key advantages of sparse regression
is its implementation simplicity, reduced training time,
interpretability, and superior performance compared to other
model identification techniques. Numerous studies, including
our research, have demonstrated that sparse regression can be
efficiently applied in the field of power and energy, including
dynamics and impedance modeling of power converters in DC
microgrids [13], data-driven nonlinear modeling and feedback
linearization control of DERs [14], modularized sparse
identification (M-SINDy) of microgrid transient dynamics
[15], modeling of naval power systems [16], and power grid
parameter estimation [17].

The existing literature underscores the substantial potential
of sparse regression in identifying nonlinear dynamics within
dynamical systems. However, photovoltaic (PV)-based DERs
are instrumental in decarbonizing the power grid, yet a notable
research gap exists in developing data-driven models and
control strategies that cater to the diverse topologies and
dynamics of solar photovoltaic systems, encompassing both
single-stage and two-stage configurations. To the best of
our knowledge, no existing study has explored data-driven
modeling (both open-loop and closed-loop) and control of
PV systems using sparse regression. Furthermore, a key
hyperparameter (λ in (28)), which acts as a tuning knob for
sparsifying the dynamics in conventional sparse regression
methods, is fixed and can cause model identification errors
in high dimensional systems [5], [6], [15]. The exploration of
optimized selection of this key hyperparameter has not been
addressed in existing research.

To address these limitations, this paper develops a novel
data-driven modeling framework using adaptive regulated
sparse regression (ARSR) for characterization of the dynamics
of single-stage and two-stage photovoltaic (PV) systems
from available data. The approach employs adaptive sparse
regression to optimally identify the sparse dynamics from



Fig. 1 Proposed adaptive regulated sparse regression for modeling identification and control of PV systems.

a library of candidate functions and construct accurate
data-driven models using measurements. Compared to the
conventional sparse regression method, which uses a single
sparse-promoting hyperparameter for all state variables in the
dynamics, the proposed adaptive regularization approach can
apply different hyperparameters to different state variables
of the system and optimally tune these hyperparameters
during the identification process. This enhances the accuracy
of data-driven modeling and enables handling of complex
dynamics that the conventional method cannot manage, such
as closed-loop modeling for PV systems.

This paper makes several key contributions to the field of
PV system modeling and control, including: 1) introduction
of a fast and scalable sparsity promoting method for
dynamic model identification of nonlinear dynamics named as
adaptive regulated sparse regression algorithm; 2) data-driven
open-loop and closed-loop modeling of single-stage and
two-stage PV systems; 3) validation of the proposed method
in real-time simulation; 4) exploration of the proposed
data-driven method for model-free fault analysis.

The rest of the paper is structured as follows: Section II
formulates the problem. The ARSR method is introduced in
Section III. Section IV covers the data-driven system modeling

and control design. Section V comprises case studies, and
Section VI concludes the paper.

II. PROBLEM FORMULATION

This section presents the open-loop and closed-loop
dynamic models of single-stage and two-stage PV systems
to be utilized for the data-driven modeling approach in
the next sections. Fig. 1 shows the proposed data-driven
modeling approach to solve this challenge. An adaptive sparse
regression algorithm is employed to identify the dynamics of
PV systems using collected data. Subsequently, the outcomes
of the identification are harnessed to construct data-driven
models for the PV systems. Finally, data-driven controllers
are designed and implemented using the obtained data-driven
models.

A. Open-loop Dynamic Model and Control of PV systems

1) Single-Stage PV: The single-stage PV model consists
of a PV array, a three-phase voltage source converter (VSC),
and a low-pass filter connected to the main grid at a point of
common coupling (PCC), as shown in Fig.2. The DC-side of
the VSC is connected to the PV array with a capacitor Cdc and
the AC-side is connected to an LC filter. The components of
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Fig. 2 Schematic of a single-stage and two-stage PV systems.

the filter are represented by rc, Lc and Cf , and the impedance
of the grid is represented by Lg and rg , which refer to the
inductance and resistance of the grid.

a) AC-side Dynamics: The AC-side dynamics of the
system after converting to the dq-frame, can be described by
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where the output voltage and current of the VSC are
represented by vcd, vcq , icd and icq [14]. Furthermore, the
dq-frame voltages and currents of the grid are represented by
vgd, vgq , igd and igq . Also, the PCC voltage is represented by
vsd and vsq in dq-frame, and ω0 is the nominal frequency of
the grid.

b) DC-side Dynamics: Based on the power balance on
the DC and AC sides of the VSC (steady state), the output
power of the PV array (PPV ) should be equal to the VSC
output power (Pg) [18]. The voltage dynamics of the DC-link
capacitor can be described as

1

2
Cdcvdc × vdcs = PPV − Pg (2)

v̇dc =
iPV

Cdc
− 3

2

vgd
Cdcvdc

igd (3)

where vgd and igd are the voltage and current of the grid
along the d-axis; Pg = 3

2vgdigd; vdc and Cdc are the voltage
and capacitance of the capacitor on the DC side of VSC; and
iPV is the PV output current.

c) State Space Model: According to the AC-side and
DC-side dynamics, the system can be represented in state
space form as shown in equations (1) and (3).
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Fig. 3 Control block diagram of single-stage PV system.

d) Current Controllers: To regulate the converter current,
a current controller is implemented (see Fig.3), which can be
formulated as

vdref = (Kp1 +
Ki1

s
)(idref − icd)− ωLf icq + vsd (4)

vqref = (Kp1 +
Ki1

s
)(iqref − icq) + ωLf icd + vsq (5)

where vdref and vqref are the reference voltages in dq-frame
while idref and iqref are the reference currents of the
controller in dq-frame [19]. In addition, Kp1 and Ki1 are the
proportional and integral parameters of the PI regulators in the
current controller.

e) Active and Reactive Power Controllers: In grid-tie PV
systems, a phase-locked loop is implemented to synchronize
the converter frequency to the grid frequency by setting the
q component of the converter voltage (vcq) to 0 using a PI
controller [20]. Therefore, the dynamics of the active power
P and reactive power Q delivered by the system to the grid
are presented by

idref =
2

3vsd
Pref , iqref = − 2

3vsq
Qref (6)

where the Pref and Qref are the reference active and reactive
powers [19].

f) DC-link Voltage Controllers: In this case, since a
DC-link controller is applied to the system, idref is given by

idref = (Kp2 +
Ki2

s
)(vdcref − vdc) (7)

where vdcref is the nominal DC-link voltage and vdc is the
DC-link voltage. Parameters Kp2 and Ki2 are the proportional
and integral parameters of the PI regulator of the DC-link
controller [19].

In summary, a single-stage PV system is represented by
a nonlinear state space model formulated in (1) and (3),
incorporating two current controllers in equations (4) and (5),
a power controller in equation (6), and a DC-link voltage
controller in equation (7).



2) Two-stage PV: A two-stage PV system has a similar
structure as a single-stage PV system with an additional DC
to DC converter as shown in Fig.2.

a) DC to DC Converter: The DC to DC converter
amplifies the input voltage from the PV array by utilizing a
maximum power point tracking (MPPT) controller to deliver
the target power (PPV ref ). Dynamics of the DC/DC converter
are expressed in following equations [19].

diPV

dt
=

1

Lb
vPV − (1− dref )

Lb
vdc (8)

dvdc
dt

=
(1− dref )

Cdc
iPV − 1

Cdc
idc (9)

where vPV and iPV are the output voltage and current of the
PV array, Lb is the inductor within the DC to DC converter,
and Cdc is the DC-link capacitor. The input current of the
VSC, idc, can be represented by the power balance equation
below [19].

vdcidc =
3

2
(vsdisd + vsqisq) (10)

idc =
3

2vdc
(vsdisd + vsqisq) (11)

where vsd, vsq , isd and isq are the voltages and currents in
dq-frame at the PCC. In summary, the dynamics of a two-stage
PV system are represented by linear dynamics in (1) and the
nonlinear part shown below.

i̇PV =
1

Lb
vPV − (1− dref )

Lb
vdc (12)

v̇dc =
(1− dref )

Cdc
iPV − 1

Cdc

3

2vdc
(vsdisd + vsqisq) (13)

b) PV Power Controller: As shown in Fig. 4, besides
the current controller, DC-link voltage controller and reactive
power controller, a PV power controller is applied to the
system. In equations (8) and (9), the new variable dref
is defined as the duty cycle setpoint of the pulse width
modulation (PWM) block represented by

dref = (Kp3 +
Ki3

s
)(iPV ref − iPV ) (14)

where iPV is the output current of the PV array and proportional
parameter Kp3 and integral parameter Ki3 are the parameters
of the PI regulators in the current controller. Given that
PPV ref = vPV iPV ref , equation (14) can be rewritten as

dref = (Kp3 +
Ki3

s
)(
PPV ref

vPV
− iPV ) (15)

in which PPV ref is the reference power of the PV array, which
is given by the MPPT controller, and vPV is the output voltage
of the PV array. Since the dynamics of the MPPT controller is
much slower than current and DC voltage controller, they are
not considered for data-driven modeling [19]. Instead, PPV ref

is assumed to be known.
Hence, a two-stage PV system can be represented by a

nonlinear state space model of equations (1), (12) and (13),
incorporating two current controllers in equations (4) and (5),
a DC-link voltage controller in equation (7), a reactive power
(Q) controller, and a PV power controller in equation (15).
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Fig. 4 Control diagram of two-stage PV system.

B. Closed-loop Dynamic Model of PV systems

In an open-loop case, the PV plant model, excluding the
controllers, will be replaced by a data driven model. In a
closed-loop case, the combination of the PV plant and the
controller will be replaced by a data-driven model.
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Fig. 5 PI controllers of the PV system.

a) Single-Stage System Controller Modeling: Fig. 5
illustrates the structure of three PI controllers presented in
equations (4), (5), and (7). For modeling of controllers, the
outputs of integrators are treated as new state variables of the
system, labeled as δ, ϵ and η. Dynamics of these three states
are expressed as

δ̇ = (vdcref − vdc)Ki2 (16)
ϵ̇ = ((vdcref − vdc)Kp2 + δ − icd)Ki1 (17)
η̇ = (iqref − icq)Ki3 (18)

The dynamic of the inverter’s voltages vcd and vcq are then
defined by the following equations

vcd =((vdcref − vdc)Kp2 + δ − id)Kp1

+ ϵ− Lcω0icq + vsd (19)
vcq =((iqref − icq)Kp3 + η + Lcω0icd + vsq (20)

A closed-loop single-stage PV system can be represented by a
nonlinear state space model with equations (1), (3), (16), (17),



and (18). This representation is also used in cases studies in
Section V.

b) Q-V Droop Controller Modeling: The proposed
approach enables formulation of additional control functions,
such as droop control. This section explores the potential of
modeling the Q-V droop controller for distributed generation,
as defined in IEEE Std. 1547 [21]. A similar approach can be
used to model various types of droop controllers.

+++
-

Fig. 6 Schematic of Q-V droop controller.

To regulate the injected reactive power and voltage at the
PCC, the Q-V droop controller is implemented by adjusting
the reactive power setpoint iqref in Fig. 5 using ∆Q through
droop control, as shown in Fig. 6.

Q∗ = Qref +∆Q (21)

where the ∆Q is formulated as [22]

∆Q =

{
(−1/mQ)∆Q |∆V | > Vth

0 |∆V | ≤ Vth

(22)

where ∆V is the threshold voltage determined by the grid,
typically 5% of the reference voltage, and mQ is the droop
control coefficient. Additionally, ∆Q should be constrained
within the lower and upper limits of the droop output,
∆Qmax(−) and ∆Qmax(+), respectively. Following the
droop control, a reactive power controller is formulated to
generate the output current of the converter iqref ,

iqref = − 2Q∗

3Vsd
= −2(Qref +∆Q)

3Vsd
(23)

By replacing iqref in (20) with (23), dynamics of the inverter
voltage vcq with Q-V droop control can be obtained. Given that
VPCC is measurable, one can identify the Q-V droop control
dynamics (i.e., the unknown in (22), which is mQ) using the
proposed approach.

To conclude, the closed-loop single-stage PV system with a
Q-V droop controller can be represented by a nonlinear state
space model with equations (1), (3), (16), (17), and (18), with
the Q-V droop controller described by equations (21) (22),
and the reactive power controller detailed in equation (5).

III. SPARSE IDENTIFICATION OF PV SYSTEMS

In a real-world scenario, where access to every component
in the system is not feasible, data-driven modeling becomes
essential. In this research, we developed our approach based
on a sparsity promoting method to identify parameters in the
models and construct data-driven models for both single-stage
and two-stage PV systems. The proposed framework can be
generalized to identify any nonlinear dynamics. The proposed
sparsity-promoting model identification focuses on finding

models with minimum number of parameters, while data
fitting algorithms aim to fit a model to data as accurately
as possible, often without considering the complexity or
sparsity of the model. Sparsity-promoting techniques produce
simpler, more interpretable models by reducing the number
of parameters, which can enhance generalization and reduce
overfitting compared to traditional data-fitting algorithms. This
section will primarily introduce the sparse regression method
and our proposed methodology.

Consider a dynamic system, i.e., an open-loop single-stage
PV system represented by equations (1) and (3), an open-loop
two-stage PV system represented by equations (1), (12) and
(13), or a closed-loop single-stage PV system represented by
(1), (3), (16), (17) and (18), following a general state-space
model

ẋ(t) = f(x(t),u(t)). (24)

Here, the state variable vector of a system at time
t is represented by x(t) ∈ Rn and the inputs to
the system at time t are represented by u(t) ∈ Rm,
where n and m denote the dimensions of the state
variables and inputs. In this paper, the state variables
and inputs of an open-loop single-stage PV system are
denoted as: X1 = [icd, icq, igd, igq, vsd, vsq, vdc] and U1 =
[vcd, vcq, vgd, vgq, ω0, iPV ]. For an open-loop two-stage PV
system, the state variables and inputs are represented
as: X2 = [icd, icq, igd, igq, vsd, vsq, vdc, iPV ] and U2 =
[vcd, vcq, vgd, vgq, ω0, vPV , dref ]. In the case of a closed-loop
single-stage PV system, the state variables and inputs are
specified as: X3 = [icd, icq, igd, igq, vsd, vsq, vdc, δ, ϵ, η] and
U3 = [vdcref , iqref , vgd, vgq, iPV ]. The goal in this section is
to identify a data-driven version of the function f(x(t),u(t))
represented as Ẋ = Θ(X,U)Ξ for the PV systems from
available data. This process is explained in the following. For
other assets within smart grids, such as distributed generation
or flexible AC transmission systems (FACTS), as long as the
state variables and inputs are known and can be measured, the
proposed method can be applied.

A. Data Collection

According to (24), the time history of state variables
x(t) and inputs u(t) need to be collected [11], and the
derivative of states ẋ(t) can either be measured or numerically
approximated from x(t). The data then are sampled and
organized as three matrices

X =

x1(tk) x2(tk) · · · xn(tk)

 time ↓ (25)

U =

u1(tk) u2(tk) · · · um(tk)

 time ↓ (26)

Ẋ =

ẋ1(tk) ẋ2(tk) · · · ẋn(tk)

 time ↓ (27)



Θ(X,U) =

1 U X (X,U)
P2 (X,U)

P3 · · · sin((X,U)) cos((X,U)) · · ·

 time ↓ (28)

(X,U)
P2 =

u2
1(tk) u1(tk)u2(tk) · · · u1(tk)x1(tk) · · · u2

m(tk) x2
1(tk) x1(tk)x2(tk) · · · x2

n(tk)s

 (29)

B. Library Construction

The next step is to construct a library Θ(X,U)
containing all the candidate functions of the state variables
in the columns of X and U. These candidate functions
may include linear functions of state variables X =[
x1 x2 . . . xn

]
, polynomial functions such as xi + x2

i +
. . . xk

i ∀i ∈ {1, 2, . . . , n}, sinusoidal functions such as
sin(xi) ∀i ∈ {1, 2, . . . , n}, or polynomial/sinusoidal functions
of input/output variables such as sin(xiuj) or xiu

2
j ∀i ∈

{1, 2, . . . , n}, j ∈ {1, 2, . . . ,m}. Candidate functions in
this paper are illustrated in equation (28) and (29), where
(X,U)P2 and (X,U)P3 represent second and third-order
polynomials of X and U, respectively. Specifically, (X,U)P2 ,
with second-order terms, is shown in equation (29). During
the regression process, the construction of the library can
significantly influence the identification results. It is noted that
knowledge of the dynamics (full or partial) can significantly
improve the accuracy of the identification, as it removes the
unrelated library functions from the process and speeds up the
identification step.

To test this hypothesis, we increased the library of candidate
functions from 13 to 60 candidate functions. Our findings
indicate that by selecting appropriate sparsity-promoting
hyperparameters, the algorithm can effectively nullify
coefficients for most irrelevant candidate functions, ensuring
they do not impact our results. However, adding more
library functions increases the computation time costs for
identification when using a larger number of candidate
functions. In practice, if full knowledge of system dynamics
is not available, partial knowledge of dynamics can help
identify potential candidate functions and reduce the overall
number of candidate functions in the library, which eventually
increases the computational efficiency of identification phase.
For example, in this paper, it is known that dynamics of PV
system will not have a sinusoidal term involved due to the
nature of dq transformation. Therefore, the sinusoidal terms
from the library function can be removed.

C. Sparse Regression

Each column of Θ(X,U) represents a potential candidate
function for the right-hand side of equation (24). The matrix
Θ(X,U) allows considerable flexibility in selecting the
specific nonlinearities for inclusion in the candidate functions.
Since it is believed that only a small number of these
nonlinearities are active in each row of f(x(t),u(t)), a sparse

regression problem can be formulated to identify the sparse
coefficient vectors Ξ = [ξ1, ξ2, . . . , ξk, . . . , ξn] indicating
which nonlinearities are active. The process can be articulated
as an optimization problem

ξk = argmin
ξ′k

∥∥∥∥Ẋk −Θ(X,U)ξ′k

∥∥∥∥
2

+ λ

∥∥∥∥ξ′k∥∥∥∥
0

(30)

where ||·||2 denotes the L2-norm, measuring the overall
magnitude of the vector,

∣∣∣∣∣∣Ẋk −Θ(X,U)ξ′k

∣∣∣∣∣∣
2

represents the
optimization problem aiming to find the coefficient vector
ξk that minimizes the disparity between the measured data
Ẋk and the data-driven model Θ(X,U)ξ′k. In addition, ||·||0
denotes the L0-norm, the number of nonzero elements in
the coefficient vector [5]. The parameter λ serves as the
trade-off between fitting the data well and promoting sparsity
in the solution. It penalizes large values and encourages
many coefficients to be exactly zero. In other words, the
hyperparameter determines which candidate functions are
relevant. If a candidate function is deemed irrelevant, it is
assigned a coefficient of “0” and is excluded in subsequent
iterations. If the hyperparameter is set too small, even relevant
candidate functions may be excluded, leading to inaccurate
results. Conversely, if the hyperparameter is set too large,
irrelevant candidate functions may be included, resulting in
a complex and inaccurate outcome. Selecting an appropriate
value for λ is crucial in the sparse regression approach, which
is thoroughly discussed in section V.A.

D. Adaptive Regulated Sparse Regression

In order to better evaluate the performance of the method,
we first introduce our optimization criteria, root mean square
error (RMSE), which measures the error between the true and
predicted values of the k-th state. It is denoted as:

RMSE{Data(Ξ), Phy}k =

√∑P
i=1(ykpi − ykdi)2

P
(31)

where P represents the number of data points, ykpi denotes
the measurement of k-th state variable of the physical model
at data point i, and ykdi represents the prediction of k-th state
variable of the data-driven model for data point i. The RMSE
values serve as a quantitative measure of the dissimilarity
between the physical model and the data-driven model outputs,
providing insight into the accuracy and performance of the
data-driven model.



Conventional sparse regression approaches employ one
single λ value for all state variables, which poses challenges
in managing complex dynamics such as the closed-loop model
of PV systems. This challenge arises because the coefficients
of distinct terms in the differential equations for each state
variable may exhibit notable variations. For instance, in
equation (16) for δ, the coefficient Ki2 is 0.01, while in
equation (17) describing the dynamic of ϵ, the coefficient
Ki1 is 500. As discussed in the previous section, to include
a coefficient whose value is 500, the hyperparameter “λ”
should be set to at least above 500 (if a coefficient has
a true value much smaller than λ, it may be eliminated
by the sparcification). However, for coefficient with a value
0.01, using the same λ value is too large and may introduce
irrelevant functions. Identifying such coefficients proves to
be difficult using a single λ. To address this issue, a new
algorithm has been developed, which is described as an
optimization problem in the following

ξk = argmin
ξ′k

∥∥∥∥Ẋk −Θ(X,U)ξ′k

∥∥∥∥
2

+ λk

∥∥∥∥ξ′k∥∥∥∥
0

(32)

λk = argmin
λk

RMSE{Data(Ξ), Phy}k (33)

where ξk is the k-th column of coefficient matrix Ξ,
Ẋk is the derivative of k-th state and λk is the k-th
regularization parameter. It is worth mentioning that the
selection and combination of state variables in the library
function Θ(X,U) depend on the understanding of the system
dynamics. In this paper, we assume a partial knowledge
of the dynamics of the system and control (i.e., control
mode of the PV system). The key enhancement lies in the
algorithm’s capability to adapt the regularization parameter
λ dynamically while identifying distinct state variables of
the system. As shown in equation (32), parameter λ is
represented as a vector Λ = [λ1, λ2, . . . , λk, . . . , λn],
where the number of elements corresponds to the number
of state variables, and the hyperparameter for k-th state
variable, λk, is determined by equation (33). The sparse
regression method outlined in equation (32) is denoted as
SparseRegression{Ẋ,Θ(X,U),Λ}.

Algorithm 1 presents the ARSR, defined as
AdaptiveSINDy{Ẋ,Θ(X,U)}, which can be summarized in
three main steps: 1) Initialization, 2) Data-driven modeling,
and 3) RMSE calculation and Optimization loop. It is crucial
to emphasize that to compute the RMSE, a data-driven model
should be constructed using training data (discussed in Section
IV). Next we calculate the RMSEs between the measured
state variables and data-driven model predictions and compare
them with the test data. Moreover, since the relationship
between regularization parameters and state variable error
is non-linear, the algorithm updates the parameters using a
predefined step unit reaching the minimum state variable
error. More specifically, the step change is defined based on
the desired accuracy. Initially, a larger step change, such as
“1”, is used and then gradually reduced , and the process
is iteratively continued until the reconstructed data from the

identified model (X̂) accurately presented the measured data
(X). This process continues with progressively smaller step
changes until the data-driven model achieves the desired
accuracy.

Compared to the conventional sparse regression method,
allowing the use of different hyperparameters based on
varying state variables enables the proposed ARSR method
to maintain its ability to identify simple dynamics and handle
more complex systems with greater differences between state
variables. Additionally, the proposed method requires less
data. In our tests, as few as 8,000 to 200,000 data points
were sufficient to ensure accurate results. In contrast, other
data-driven methods such as deep learning required 3 million
data points to achieve the same accuracy [23]. However,
compared to conventional sparse regression [14], the proposed
method can manage more complex models with diverse range
of nonlinearities such as closed-loop modeling of PV systems.
The main reason is that conventional sparse regression
utilizes a fixed hyperparameter, which might not capture the
coefficients that are significantly different. For example, if

dynamics are represented as ẋ =

[
0.001

...

]
x +

[
...

560

]
u, due

to the large difference between coefficients (0.001, 560), a
single hyperparameter in conventional sparse regression cannot
accurately represent this system, while our proposed method
utilizes two hyperparameters, which can easily account for
the large difference between these two coefficients. The
performance of the ARSR is further discussed in section V.A
and V.B.

IV. DATA-DRIVEN MODELING AND CONTROL

Using the outcomes of the proposed ARSR, it becomes
feasible to construct data-driven controllers for both open-loop
and closed-loop PV systems.

A. Open-loop Data-driven Modeling with Controllers

Fig. 7 depicts the control of the physical model of both
PV systems consisting of a DC-link voltage controller, a
reactive power controller, and a current controller in dq-frame.
The two-stage PV system additionally includes a controller
for regulating the PV power via a DC-to-DC converter. The
dynamics of the data-driven DC-link voltage controller and
the reactive power controller should mirror those of the
physical model. The outputs of the data-driven controllers will
determine the converter voltages in the dq frame.

B. Data-driven Controllers Design

The design of controller gains for these current controllers
in Fig. 7 can now be accomplished based on the identified
data-driven model using ARSR. As shown in Fig. 8, a
simplified block diagram of current control loop is utilized
for designing the bandwidth of controllers in the data-driven
model [20].
According to [20], the simplified plant model is composed
of L and rc on the AC-side dynamics. The data-driven
plant dynamics are denoted by L̂ and r̂c, which can be



Fig. 7 Data-driven control design for single-stage and two-stage PV systems.

Algorithm 1 Adaptive Regulated Sparse Regression
Inputs: Measured derivativesẊ, library Θ(X,U), Optimized

states array StateX
Output: Sparse regression model coefficients Ξ, Optimal

regularization parameter vector Λ.
Initialization :
Λ = [λ1, λ2, ..., λn]; ▷ Init λs array
λmax, Steps; ▷ set the upper limit and unit steps

1: AdaptiveSINDy{Ẋ,Θ(X,U)}
2: Ξ̂ = SparseRegression{Ẋ,Θ(X,U),Λ}; ▷ find Ξ̂ with

initial λs
3: err = RMSE{Data(Ξ̂), Phy}; ▷ find the RMSEs for each

state between physical model and data-driven model with
current coefficient matrix Ξ̂

4: Ind = max(err) ▷ find the state with the largest RMSE
5: while Ind ≤ n do ▷ n is number of states
6: Λ̂ = Λ; ▷ update temporary lambda array
7: for Λ̂(Ind) = Λ(Ind) : Steps(Ind) : λmax(Ind) do
8: Ξ̂ = SparseRegression{X, Ẋ,Θ(X), Λ̂};
9: err = RMSE{Data(Ξ̂), Phy};

10: if err(Ind) is reduced then
11: Λ(Ind) = Λ̂(Ind)
12: end if
13: end for
14: StateX ← Ind ▷ update StateX with optimized states
15: Ind = max(err)
16: while Ind ∈ StatesX do
17: Ind = nextmax(err) ▷ find the state with next largest

RMSE
18: if length(StateX) = n then
19: Ξ = Ξ̂; ▷ update coefficient matrix
20: return ▷ The algorithm ends with all states are

optimized
21: end if
22: end while
23: end while

obtained through the sparse regression algorithm, as specified
in equation (1). Taking the d-axis controller as an example, the
transfer function of current controller kd(s) can be expressed
as [20]

kd =
kps+ ki

s
(34)

where kp and ki denote the proportional and integral gains of
the current controller, respectively. The loop gain is expressed

-

-

Fig. 8 Simplified closed-loop model of current controllers.

as

l(s) =

(
kp
Ls

)
s+ ki/kp
s+ rc/L

(35)

Due to the pole of the loop gain at s = −rc/L, an ideal loop
gain takes the form l(s) = kp/Ls, where the pole is cancelled
by the compensator zero at s = −ki/kp. Consequently, the
closed-loop transfer function becomes

G(s) =

(
l(s)

1 + l(s)

)
=

kp/L

s+ kp/L
=

1

τis+ 1
(36)

where τi is the time constant of the current controller
represented by τi = L/kp. By replacing L and rc with
their data-driven counterparts obtained via the proposed ARSR
method, a data-driven control design can be achieved. Thus
the data-driven proportional and integral gains kp and ki are
obtained.

kp =
L̂

τi
, ki =

r̂c
τi

(37)

Similar concept can be used to obtain the data-driven
controllers design for other controllers such as DC voltage
and power controller. By utilizing the constructed open-loop
models and controllers, data-driven single-stage and two-stage
PV systems can be developed based on the outcomes of the
ARSR algorithm.

V. CASE STUDIES

To evaluate the effectiveness of the proposed ARSR
approach for modeling and control of PV systems, various
case studies are conducted using time-domain and real-time
simulations in MATLAB and Opal-RT.



TABLE I Impact of sampling frequency on accuracy of data-driven model identification.

Sample Time Data Points States RMSEs
x1 x2 x3 x4 x5 x6 x7

1× 10−5s 400,000 0.0641 0.0068 0.0196 0.2088 2.0859 0.3564 1.2887
1× 10−4s 40,000 0.0641 0.0069 0.0196 0.2088 2.0859 0.3567 1.2886
1× 10−3s 4000 0.0641 0.0068 0.0195 0.2088 2.0858 0.3559 1.2881
1× 10−2s 400 17.2464 1.0540 226.6993 5.0518 62.6753 2234.8427 945.6372

A. Impact of Sampling Time

This case study analyzes the impact of sampling time on
the accuracy of the proposed approach for identifying the
dynamics of a single-stage PV system. In all scenarios, the
simulation was run for 4 seconds and the sampling time of data
collection was modified from 10 µs to 10 ms and the RMSE
of prediction of state variables is calculated as presented in
Table I. It is observed that the RMSE of state prediction
was not significantly impacted until the sampling time was
reduced to 1e−2 seconds (resulting in 400 data points). It is
noted that the accuracy of the proposed approach significantly
reduces when the sampling frequency reduces to 100 Hz
(0.01 sampling time). This highlights the need for having
phasor measurement units (PMUs) installed for a successful
identification or utilization of interpolation techniques if the
sampling frequency of measurement devices is not above 100
Hz.

B. Impact of hyperparameter λ for PV systems

This section demonstrates the impact of various λ values
on the identification of open-loop models for both single-stage
and two-stage PV systems.

1) Impact of λ in single-stage PV models: Fig. 9 and the
left part of Table II illustrate the tracking performance of the
single-stage PV system with two reference inputs: the DC-link
voltage vdc and reactive power Q. As depicted in the figure,
the data-driven models closely approximate the physical model
in the majority of cases when λ ranges from 1 to 35. Notably,
in Table II, the model achieves its best performance when λ
ranges from 5 to 35.

2) Impact of λ in Two-stage PV Models: Fig. 10 and
right part of the Table II illustrate the tracking performance
of the two-stage PV model with three reference inputs: the
DC-link voltage vdc, reactive power Q, and PV array power
PPV . When λ ranges from 1 to 30, the data-driven models
closely approximate the physical model. It is observed that
vdc exhibits optimal performance when λ is set to 30. On the
other hand, PPV and Q demonstrate their best performance
when λ changes to 5 and 1, respectively.

3) Analysis of Adaptive Method: To further improve the
results, the adaptive method outlined in section III.D is applied
to the open-loop modeling process for both single-stage and
two-stage PV systems. The resulting regulation parameters are
Λ1 = [5, 5, 5, 5, 30, 30, 20] and Λ2 = [1, 5, 5, 5, 30, 30, 1, 35],
respectively. Examining the tracking performance in the last
row of Table II, it is evident that the single-stage models
do not exhibit significant improvement since the conventional

Fig. 9 Impact of varying λ for identification of single-stage PV system.

Fig. 10 Impact of λ on identification of two-stage PV system.

method already achieves the optimal performance. However,
the two-stage models demonstrate a significant enhancement,
indicating that the adaptive method yields better results in
modeling complex systems.

In conclusion, the results obtained from the identification
process in this section demonstrate that varying the values
of λ can significantly impact the performance of the sparse
regression approach.



TABLE II References tracking performance (RMSEs) of single-stage and
two-stage PV systems.

λ
Single-stage Two-stage

vdc error Q error vdc error Q error PPV error
1 11.3752 28.9546 39.9779 30.7711 212.33
5 1.2882 3.2921 39.7971 27.3171 296.048

10 1.2882 3.2921 115.5112 59.6551 1930.4
15 1.2882 3.2921 98.9295 51.8175 1913.9
20 1.2882 3.2921 98.9295 51.8175 1913.9
25 1.2882 3.2921 98.9295 51.8175 1913.9
30 1.2882 3.2921 36.9085 339.3858 403.3931
35 1.2882 3.2921 36.9085 339.3858 403.3931
40 644.5295 358.758 696.4531 339.3858 1651.7

Adpt. 1.2882 3.2921 36.9085 26.6831 6.1833

Fig. 11 Comparison between the state variables of physical model and
closed-loop data-driven model.

C. Closed-loop Modeling for Single-stage PV Systems

This case study primarily addresses the closed-loop model
identification of a single-stage PV system using the proposed
ARSR algorithm. After employing measured data from the
single-stage PV system and utilizing the obtained sparse
matrix of coefficients Ξ via ARSR, the data-driven model
is formulated. To validate its effectiveness, a comparison
is conducted with the physical model. The outcomes of

regulation parameters λ and state errors (RMSEs) are
presented in Table III and Fig. 11. The rationale for selecting
states to assess the system is based on the differences
between open-loop and closed-loop models. In the open-loop
model with controllers, multiple reference inputs are used
for regulation. However, in the closed-loop model, it is more
appropriate to compare all the states of the system to obtain
a comprehensive evaluation. The results illustrate that the
data-driven model exhibits high accuracy when compared to
the original physical model. This conclusion is supported
by the small state variable errors detailed in Table III.
The outcomes of the closed-loop modeling in this section
demonstrate the effectiveness of the ARSR algorithm in
closed-loop sparse regression modeling for a single-stage PV
system.

Fig. 12 Real-time verification setup.

D. Real-time Simulation Verification

This case study focuses on real-time simulation of the
physical and data-driven models to verify the feasibility
and performance of the proposed ARSR approach in
real-world settings. The validation process is conducted using
the Opal-RT OP4610XG real-time simulator. It involves
comparing the single-stage PV system’s physical model with
its corresponding open-loop data-driven model, as described
in Section II. Both the physical model and the data-driven
model were constructed in MATLAB Simulink, transformed
into real-time models using RT-LAB software, and run in
the OP4610XG via an Ethernet connection. Subsequently, the
simulation results are observed through the analog outputs
of the OP4610XG using a digital oscilloscope, as shown in
Fig.12.

a) Verification of Single-stage PV system modeling : As
depicted in Fig. 13, screenshots captured from the oscilloscope
display six state variables of the two models. The red
curves represent the state variables of the data-driven model,
which closely match the blue curves that represent the state
variables of the physical model. Results confirm the ARSR
method’s capability and feasibility in accurately replicating
real-world physical systems. It is worth mentioning that,
there are slight differences between the real-time experiments
and simulation results such as high-frequency ripples on the
real-time data as shown in Fig. 13, which are attributed
to the detailed nature of real-time simulations with power
electronics switching functions, which have not been included



TABLE III RMSE of prediction in data-driven ARSR-based closed-loop single-stage PV system.

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

λ 1 1 2 1 7 19 1 0.01 1 1

State Error 0.0409 0.0006 0.0244 0.1548 1.5791 0.2592 0.8664 0.0009 0.0181 0.0008

Fig. 13 Real-time verification of 6 states in single-stage PV system.

in the simulations. For example, in real-time simulations, an
additional high-frequency ripple is observed, which is related
to the switching frequency of the transistors in the power
converters. Such switching ripples were not observed in the
simulations as averaged converter models were used.

b) Verification of Single-stage PV system under Fault:
This case study introduces data-driven fault analysis capability
of the ARSR approach in single-stage PV systems. The
proposed framework is depicted in Fig. 14. To ensure a
fair and consistent comparison, all the reference inputs are
set to be constant throughout this section. Figs. 15 and 16
depict the results for the verification of undervoltage and
grounded faults, respectively. In these figures, the red curves
represent the output currents (icd, icq) of the inverter in the
data-driven model, while the blue curves represent the same
state variables in the physical model. The tests lasted for 4
seconds, during which the grid voltage dropped from 380V
to 200V at 2 seconds for the undervoltage fault, and the
three-phase was grounded at 2 seconds for the grounded fault.
Overall, the red and blue curves in both tests exhibit similar
trends, demonstrating that the proposed method captures
the characteristics of the physical model under both fault
conditions. The slight differences between the curves after
the fault are primarily attributed to the data-driven model
representing an averaged system without the dynamics of
power electronics and switches. The results confirm close
agreement between the data-driven model and physical model
for capturing the dynamics of the PV system during faults.
The results confirm close agreement between the data-driven
model and physical model for capturing the dynamics of the
PV system during faults.

A major limitation of a model-based approach is its inability
to account for real-time system parameter changes. For
example, the grid impedance is constantly changing depending
on the topology of the grid and that would impact the
voltage at the point of common coupling during transients.
A model-based PV generation control that utilizes a fixed
grid impedance cannot deal with these dynamic changes. On
the other hand, a data-driven approach, such as the proposed
method, can re-identify the dynamics of the system in close
to real-time and capture these parameter changes. As a result,
the controller parameters can be updated to account for these
changing scenarios.

VI. CONCLUSION

This paper introduces ARSR algorithm and its application
in data-driven modeling for single-stage and two-stage
PV systems. Using measurements, sparse identification of
nonlinear dynamics is employed to identify the dynamic
models of PV systems. Open-loop and closed-loop data-driven
models are developed for data-driven modeling of PV systems
and the results are compared with physical models. The
results confirm a close agreement with optimized root mean
squared error of prediction for the data-driven models. The
proposed adaptive hyperparameter tuning approach increases
the efficiency and accuracy of conventional sparse regression
technique by adaptively identifying the hyperparameters
that optimizing the error of prediction. Application of the
proposed ARSR algorithm in fault study highlights the
data-driven model’s ability to simulate grid faults accurately.
Finally, validations through real-time simulation confirm
the applicability of the proposed approach for eliminating
the dependency of existing PV controllers’ reliance on



Fig. 14 Fault study and fault detection of single-stage PV system.

known physical models. The proposed method may introduce
additional computational costs due to the introduction of a
set of sparsity-promoting hyperparameters for dealing with
complex dynamics. However, compared to the conventional
sparse regression that might not accurately identify the
complex dynamics, this step is necessary to optimize the
performance. Therefore, the additional computational cost
introduced by the proposed adaptive sparsity promoting
method is compensated by its superior performance for
identifying complex dynamics with diverse coefficients. Future
research will aim to create precise data-driven models in noisy
environments, focusing on exploring state estimation using the
sparse regression approach in PV systems.
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