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Abstract—This paper presents a pioneering data-centric ap-
proach for model identification of inverter-based resources (IBRs)
in smart grids, which includes renewable energy systems and
energy storage technologies. Unlike traditional methods that
depend on fixed models and extensive system identification tools,
our approach leverages emerging systems behavioral theories
and combines them with singular value decomposition (SVD)
to efficiently identify IBR models from data. The SVD’s ability
to reduce the dimension of collected data is instrumental in
capturing critical dynamic features from minimal data inputs. By
applying the principle of persistence of excitation and organizing
input/output data into a Hankel matrix form, we derive a robust,
model-free representation of IBR dynamics that requires signifi-
cantly less data than conventional machine learning methods. The
effectiveness of our approach is validated through comprehensive
time-domain simulations, demonstrating its potential for model-
free IBR control applications.

Index Terms—Singular Value Decomposition (SVD),Inverter-
based Resources, Willems’ Fundamental Lemma.

I. INTRODUCTION

Inverter-based resources (IBRs), such as renewable energy
systems and storage units, are indispensable for achieving
the global 2050 net-zero emissions goal. However, challenges
arise due to the potential destabilization of the power grid
caused by inadequate control mechanisms, which can result
in significant power outages. The integrity and effectiveness
of these IBR controllers hinge critically on the availability
of precise and reliable dynamic models. Such models are
essential to ensure both the robustness and stability of the
overall control design.

Conventional control methods for IBRs are generally cat-
egorized into model-based and model-free strategies, each
reliant on the presence or absence of an underlying model
of the IBR system. Model-based control is further subdivided
into linear strategies [1] and nonlinear approaches [2]. These
model-based methods develop system models either from first
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principles or through data-driven techniques. The complexity
involved in modeling diverse IBR configurations, the extensive
nature of the grid, and the inability of traditional physics-
based models to accommodate uncertainties have all driven
the adoption of data-driven system identification tools.

A diverse array of methodologies has been introduced to
facilitate the extraction of system dynamics directly from
data. Notable among these are dynamic mode decomposition
(DMD) [3], the Koopman operator [4], deep learning [5],
[6], and sparse identification of nonlinear dynamics, also
known as sparse regression [7], [8]. These techniques have
been effectively applied within the realm of power systems
management, ranging from delay-tolerant microgrid control
[9]-[12], as demonstrated through the use of DMD [9], and
deep learning for load identification [6], to the application of
the Koopman operator for generator dynamic state estimation
[12].

Despite the advancements in data-driven techniques for
IBRs, these methods encounter several notable challenges
that can impede their broader application. Primarily, the
performance of these techniques is often restricted by the
requirement for large datasets to achieve satisfactory results.
This dependency on extensive data can limit the practicality
and efficiency of the methods in real-world scenarios [13].
Moreover, the absence of an underlying physical model com-
plicates the interpretability of the control strategies, posing
challenges in comprehending the basis of the controller’s de-
cisions and troubleshooting control issues [13]. Additionally,
these methods frequently struggle to generalize effectively to
new, unseen conditions, which further restricts their utility
in dynamic environments where operational conditions can
vary unpredictably [8]. These traditional techniques often fail
to capture the dynamically changing conditions inherent in
modern power grids.

To address this challenge, this paper introduces a new
approach that leverages a data-centric perspective alongside
singular value decomposition (SVD) to identify IBR models
from the minimum required amount of data. By integrating
SVD with systems behavioral theories, the dimension of



data can be further reduced and computational efficiency of
proposed data-centric method can significantly be increased.
Drawing inspiration from systems behavioral theory, as orig-
inally proposed in Willems’ fundamental lemma [14], [15],
our method is grounded in the principle of persistence of
excitation. Several recent studies have explored the application
of systems behavioral theories for data-centric modeling and
control of dynamical systems so far [16]-[18]. This rigorous
mathematical concept ensures that the model directly reflects
the underlying data, adhering to the axiom “Model is Data.”
However, this approach requires constructing large-scale Han-
kel matrices of measured input/output data, which might intro-
duce computational complexities especially for large-scale grid
modeling purposes. Therefore, to address this gap, we propose
a novel combination of SVD with systems behavioral theories
to enable a low-rank factorization of Hankel matrix without
losing important information in the measured trajectories. As
a result, SVD plays a crucial role in the proposed method for
enhancing the quality of data analysis. By breaking down data
matrices into simpler orthogonal and diagonal matrices, SVD
helps in isolating and eliminating noise and non-dominant data
samples, while preserving the most significant features of the
data set [19], [20]. This dual approach not only simplifies the
modeling process but significantly increases the accuracy and
efficiency of system identification and control strategies. Our
simulation results in MATLAB validate the effectiveness of an
SVD-based data-centric technique for model identification of
IBRs. This analysis explores the robustness of the approach
demonstrates its practical utility across different scenarios.

The remainder of the paper is structured as follows: Section
IT discusses the fundamental systems behavioral theories that
underpin our methodology. Section III details the modeling
of IBRs using our proposed approach. Section IV presents
simulations and validation of our work, demonstrating the
efficacy and potential of the techniques. Finally, Section V
concludes the paper.

II. FUNDAMENTAL SYSTEMS BEHAVIORAL THEORIES

In the context of data-centric modeling for IBRs, a founda-
tional understanding of systems behavioral theories is crucial.
This section delineates the essential theoretical framework
required for constructing a data-centric representation of IBR
dynamics, with a particular emphasis on Hankel matrices and
principles derived from systems behavioral theories. Given a
signal = € R, the aggregated data over the interval [k, k + T
is represented as x[k,k + T] = [x(k) x(k:JrT)]T.
The Hankel matrix for signal x, denoted H(x), is defined
to encapsulate the dynamics of the system over time. It is
constructed as follows for indices &, ¢, and N,

Hpn(x) =
x(k) x(k+1) x(k+ N —1)

x(k+1) x(k+ N)

(D

x(k+t—1) x(k+1t) (k4N +t—1)

For cases where the Hankel matrix’s order is one (¢ = 1), the
matrix simplifies to:

Hk,l,N(X) = [X(k) X(k + 1)

The state-space representation involves the vector of state
variables x, control inputs u, and outputs y, given by

x(k+N-1)] @

x=Ax+ Bu, y=Cx+ Du 3)

For ¢ samples of input-output data, these relationships can be
represented using Hankel matrices [17]
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Here, xy denotes the initial condition, and Ot and Ct are

matrices derived from the system parameters C, A, B, and D
as [17]
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Consider a collection of input-output data over a fixed number
of samples ¢, represented as uf’fﬂ and ymT], where the
superscript m denotes these as measured data. These data
samples can be effectively organized into Hankel matrices to
analyze the system’s dynamics. The input-output dynamics for
this system are represented by the equation [17]
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In this context, Hy 7_.(z) is the Hankel matrix for the state
data x™. This configuration captures the dynamics of the
system by mapping the states and inputs to their outputs
through the matrices O; and C}, with I; A being an identity
matrix.

A. Willems’ Fundamental Lemma

This lemma introduces a non-parametric approach for repre-
senting linear time-invariant systems through Hankel matrices,
contingent on the persistence of excitation condition [14] [15].

1) Persistence of Excitation Lemma [14]: The lemma spec-
ifies that for a signal  in R™ which is persistently exciting
of order ¢, the corresponding Hankel matrix for any 7-long
trajectory will exhibit full rank nt, i.e., [15]

rank(Hy 7_4(x)) = nt 7

2) Fundamental Lemma for Linear Systems: Building upon
the initial lemma, the fundamental lemma for linear systems
represented by (4) posits that if a T-long measurement of input
u™ in R™ is persistently exciting of order n + t, then any ¢-
long trajectory of system inputs and outputs can be effectively
represented using a Hankel matrix of order ¢ [15].
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for some vector « that can be determined (see the proof in
reference [17]).

B. Singular Value Decomposition

Singular value decomposition (SVD) is an essential matrix
factorization technique in linear algebr. In the decomposition
process, a matrix is expressed in terms of three other matrices,
showcasing orthogonal and diagonal characteristics that are
crucial for understanding the structure of the original matrix.
The idea in this paper is to apply SVD to the Hankel matrix
of data for increasing the computational efficiency of data-
centric modeling of IBRs. The SVD [21] of a Hankel matrix
Y is expressed as

Y =Usv” 9

where U and V represent orthogonal matrices, and X is a
diagonal matrix containing the singular values. The ordering
of the singular values can be mathematically described by the
following inequalities [19], [20]

k k
Zaizc-Zn fork=1,2,...,n—1 (10)
i=1 i=1

n n
E g; =C- E Ti
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where 01 > 09 > ... > o, are the ordered singular values
of a matrix Y [21], and 7y, 79, ..., T, are elements of another
ordered set being compared, and c is the desired proportion
of variance to retain (e.g., 0.95).

This factorization not only elucidates the structural attributes
of Y but also facilitates various computations, including the
derivation of a reduced-rank version of Y. Specifically, a
reduced-rank approximation, denoted as Y., can be recon-
structed by retaining only the first r largest singular values and
corresponding singular vectors. This approximation is given by

Y

Y, =U%, V] (12)

where U,, ¥,, and V. are derived from the first » components
of U, 3, and V, respectively. The matrix Y, thus represents the
rank-r matrix that is closest to Y, offering a practical approach
for dimensionality reduction and data compression.

III. DATA-CENTRIC MODELING OF IBRS

Fig 1 illustrates the structure of the proposed framework for
data-centric identifiaction an IBR, characterized by a voltage
source converter (VSC) linked to the main electrical grid
through a three-phase filter. This filter comprises inductance
L., resistance 7., and capacitance C, collectively known as
grid impedance components. The main focus of this paper is
on leveraging a data-centric modeling approach for elucidating
the dynamics of IBRs and use SVD reconstruct a low-rank
version of data-centric model to reduce data dimension and
increase the computational efficiency of proposed data-centric
modeling. For a deeper dive into control design methodologies
pertinent to IBRs, interested readers may read additional
detailed studies referenced in [22].

A. dq-frame Modeling of IBR

Phase-locked loop (PLL) is instrumental in achieving syn-
chronization between the converter’s voltage at the point of
common coupling (PCC) and the grid frequency [22]. This
synchronization ensures that the IBR operates harmoniously
within the grid infrastructure.

Assuming a PLL exists, dynamics on the AC side of the
IBR in the dg-frame are expressed as [23]

Ved — Vpd + WoLclcq = (Les +7¢)icd (13)
Veqg — Vpg — WoLcted = (LeS 4 7¢)icq (14)
Upd — Vgd + WoLning = (Lns + 1 )ind (15)
Upg — Ugq — WoLnindg = (Lns + 7p)ing (16)
ted — ind + wWoCvpg = Cysupg (17

leq = Ing = wWoCvpa = CysUpg (18)

where s denotes the Laplace operator, wg is the nominal
frequency(377 rad/s) of the system, and V.4, Veg, ted, teq are
the dg-frame components of the converter output voltage and
current, respectively. Additionally, the above equations can be
represented in following state-space form as

x=Ax+ Bu, y=0Cx (19)

Where X = [icq fcq Ind ing Upd qu]T is state vector,
U = [Ued Veq Vgd Ugq)!, and y is output vector. The
system matrices A, B and C are found to be [23]
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—wo —1= 0 0 -7
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B. Data-Centric Modeling of IBRs

Assuming the system’s inputs wu,, and outputs x,, are
collected, and assuming a full-state feedback y = x, the IBR
dynamics can be described through persistence of excitation

upg | _ (Hier—e ()|
Xo Hy o (x™)| 7
where « is a vector that parameterizes the linear combination
of past trajectory matrices to predict future system states.
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Fig. 1. Proposed data-centric modeling of a grid-connected IBR.

According to the Rouche-Capelli theorem, the system admits
infinite solutions for «, which can be represented as [17]

my] T
izt -

Hyr—i(x™) X0
- HmTt<um)]* {Hl,t,mum)]
" |:H1,t7Tt(Xm) Hy g1 (x™) Jw,  (22)

where w is any vector in R”, highlighting the degrees of
freedom in the model’s predictions. The IBR dynamics in
discrete form is then expressed as

x(k+1)=Hopr—t+1(x™)a, (23)

noting that Hy ; 7441 (x™) is the Hankel matrix for advanced
measurements or the derivative estimations given by
ox(i41) —x(i—1)
= 2h
where h is the sampling interval. This differential approxi-
mation is essential for capturing dynamic transitions without
direct derivative measurements. The data-centric model is then
expressed as

; (24)

X(k’ + 1) = Hl,t,T—t-&-l(X)O‘a (25)

which indicates that the future state z(k+ 1) can be predicted
directly from past measurements encapsulated in the Hankel
matrix, using the coefficient vector « calculated to best fit the
data. This approach bypasses the need for conventional state-
space models, providing a robust framework for modeling
IBRs directly from input-output data. The validation of this
modeling approach is achieved by demonstrating that

lLfl,t,Tt(um)]T

Hypr—i(x™) (26)

[B Al=Hiir-1+1(X) [

which shows that the system matrices A and B can be directly
derived from the Hankel matrices of input and state data, see
proof in [17].

C. Singular Value Decomposition of Data-Centric

Our approach involves the construction of Hankel matrices
from T-sample time-series data, followed by the application of
SVD to identify dominant singular values and vectors, which
reveal significant modes and features of the data [19], [20].
The multidimensional time-series data from the IBR states, are
horizontally concatenated into a single matrix X,,. A Hankel
matrix, which is a structured matrix where each ascending
skew-diagonal from left to right is constant, is then generated
for each data series. This is performed by defining an initial
segment length L, which effectively determines the matrix’s
ability to capture the temporal structure within the data

H1,L(Xfl)]

here, © = 1...6, as there are 6 states in an IBR. These
individual Hankel matrices H1, H2, H3, H4, H5, and H6
are subsequently stacked to form a larger matrix H, which
consolidates the information from all data channels H =
[Hi Hy Hs H; Hs Hg]T. The next step involves ap-
plying the SVD to the Hankel matrices H;, which decomposes
the matrices into three matrices U;, S;, and V; as

H; = U%V;" (28)

From S;, the diagonal elements are extracted and a threshold
is set to identify significant singular values, which are then
used to reconstruct a low-rank approximation of the Hankel
matrix, i.e., threshold = 0.95 x max(diag(.5)).



The determination of the rank &, which defines the number
of significant singular values to retain, is pivotal for capturing
the essential structure of the matrix while minimizing the
complexity. Our operation identifies the indices of singular
values that are greater than or equal to a pre-defined threshold.
This threshold determines the largest of these indices, which
specifies the cut-off rank k. This value k effectively limits
the number of singular values and vectors considered in the
reduced matrix, ensuring a balance between approximation
accuracy and computational efficiency.

H, = US V- (29)

where U}, represents the matrix comprising the first £ columns
of U;, which includes the left singular vectors associated
with the largest & singular values, ¥ is the k£ x k diagonal
matrix containing the largest k singular values, and V;!' is the
transpose of the matrix consisting of the first £ columns of V;,
incorporating the right singular vectors corresponding to these
singular values.

This formulation ensures that H,. captures the most signif-
icant features of the original matrix H;, providing an opti-
mal balance between approximation accuracy and complexity
reduction. The rank-k approximation effectively retains the
principal structural and statistical properties of H;, making
it invaluable in various data processing and machine learning
applications. The H,. is then converted back to a vector form to
analyze or visualize the data effectively. Having the reduced-
order Hankel matrix, a data-centric IBR model can then be
obtained by

;
o [Ho g (™)

B Al=H,qrpen(X) | 00T } 30

[ ] Jer—t+1]( )[Hr,[l,t,T—t](Xm) (30)

IV. CASE STUDIES

To validate the effectiveness of the proposed data-centric
modeling and SVD-based IBR models, several case studies
are carried out using time-domain simulation in MATLAB.
The parameters of IBR were obtained from [23].

A. Case 1: Data-Centric IBR Model Identification

This case study aims to determine the minimum quantity
of sample data required for successful identification of IBR
models. Utilizing a simulation model of an IBR in an open-
loop configuration [23], data were sampled over a duration
with a granularity of 50 microseconds, resulting in a dataset
comprising 7" = 100 samples. Initially, constant input vectors
were applied to the system. However, it became apparent that
such inputs did not sufficiently excite the system to meet the
necessary rank conditions for effective model identification.
Specifically, the condition rank(H; ;17— (z)) = nt = 6t for
t = 1 was not satisfied, indicating the insufficiency of the data
diversity with constant inputs [15]. To address this challenge,
a small perturbation was introduced to all input signals by
superimposing a sinusoidal waveform with amplitude less than
5% of the nominal input amplitude. This modification proved
to be pivotal, as it enabled the achievement of the desired rank
condition with merely 14 samples.

Following the enhancement of input excitation, a data-
centric representation of the IBR model was developed and
implemented in MATLAB as shown in Fig. 2. Results illustrate
an accurate identification of IBR dynamics with minimum data
and prove the efficacy of proposed data-centric methodologies
to streamline the model identification process, ensuring accu-
racy while minimizing the requisite data volume.
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Fig. 2. Data-centric modeling of IBRs without SVD.

B. Case 2: SVD Reconstruction Data

This case study delves into the utilization of SVD to
reconstruct a set of system responses, with a focus on transient
reduction and accurate replication of the original data curves.
Simulation results for this case are shown in Fig. 3. Analysis
revealed that the reconstructed data is closely aligned with the
original datasets, capturing the essential dynamics with high
fidelity. This precise matching of the curves not only confirms
the effectiveness of the SVD in reducing the dimension of
Hankel matrix for improved computational efficiency, but also
demonstrates the method’s capacity to retain crucial informa-
tion.

V. CONCLUSION

This paper proposed a computationally efficient approach
for combining data-centric theories with singular value decom-
position (SVD) for model-free identification of dynamics in
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Fig. 3. Comparison between SVD and data-centric model.

inverter-based resources (IBRs). This innovative methodology
facilitates a more robust, adaptable, and efficient handling
of dynamic grid environments, significantly enhancing op-
erational stability and reducing reliance on extensive data
inputs. The case studies underscored the practical benefits of
our approach, demonstrating not only its ability to reduce
data dimension, but also its potential in improving system
identification and response times. Moving forward, the adop-
tion of such advanced data-centric models, supplemented by
mathematical tools such as SVD, could facilitate model-free
and data-centric control designs for inverter-dominated smart
grids.
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