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ABSTRACT

Ensuring the safety of autonomous vehicles (AV) remains

a critical challenge, particularly when navigating morally

ambiguous scenarios. Enhancements in this area are crucial

for increasing trust and boosting the adoption of AV. Exist-

ing state-of-the-art solutions, such as predictive controllers

and the ethical valence theory, prioritize decisions based on

preset priorities. In contrast, reinforcement learning-based

models can be implemented to mimic actions based on

widely established ethical theories. This paper proposes a

novel approach to address the problem of random credence

generation in moral uncertainty for AVs. We combine the

simplex algorithmwith theDempster-Shafer (DS) combina-

tion technique to integrate the established ethical theories.

We model the reward structure using a linear minimiza-

tion approach. The simplex algorithm solves this model

e�ectively, and its results are used as evidence for the

Dempster-Shafer combination technique, which generates

the plausibility of theories and serves as credence in our

framework. Our approach demonstrates superior perfor-

mance compared to existing models, o�ering a promising

solution to the ethical challenges of autonomous driving.

CCS CONCEPTS

• Computing methodologies → Multi-agent systems;

• Theory of computation→ Sequential decision mak-

ing; Linear programming; Active learning; • Applied

computing → Decision analysis.

KEYWORDS

autonomous vehicles, moral uncertainty, ethical theories,

credence, reinforcement learning

1 INTRODUCTION

Autonomous vehicles (AVs) have shown promise in exceed-

ing human performance in certain areas [1], particularly in

reducing tra�c congestion and improving safety. Despite

these advantages, AVs still face challenges in gaining pub-

lic trust and widespread adoption [2]. While advancements

have been made in navigation and security, a signi�cant

area of ongoing research is decision-making in ethically

ambiguous situations [3]. There is ongoing debate about

the most suitable ethical framework for AVs to navigate

moral dilemmas [4]. There is also a need to explore eclectic

strategies for integrating multiple ethical theories within

the decision-making process.

1.1 Motivation

While numerous ethical theories exist, such as utilitari-

anism, deontology, and virtue ethics, philosophers con-

tinuously debate on which theory holds the most weight

[5]. Developers tackling ethical decision-making in AVs

must navigate this complex landscape of di�ering view-

points. Current attempts include the ethical valence theory

[6], which assigns value to outcomes based on the num-

ber of individuals a�ected. Additionally, the lexicographic

optimization technique prioritizes certain moral princi-

ples over others in speci�c situations [7]. These methods,

often coupled with a model predictive controller to opti-

mize actions, aim to navigate complex ethical scenarios.

However,they face limitations due to their static nature.

Tra�c environments are dynamic and require robust tech-

niques to address unforeseen situations. Research suggests

that implementing RL in AVs o�ers signi�cant advantages

[8]. Recent advancements in reinforcement learning (RL)

o�er promising alternatives [4]. RL’s ability to adapt to

dynamic scenarios and unforeseen circumstances makes

it a potential solution for tackling the ethical challenges

of autonomous driving.

1.2 Problem Statement

The authors in [4] took a signi�cant step in merging RL

with moral uncertainty by addressing most of the con-

cepts outlined in the MacAskill’s book [9]. Their approach

hinges on selecting actions based on the number of theo-

ries, the associated action weights, and the credence (de-

gree of belief in a theory). They introduced two primary

theories: utilitarianism and deontology. While this is a

commendable initial step, it is crucial to consider incorpo-

rating multiple theories, given the existence of numerous

widely accepted ethical frameworks. The simulations were

conducted in a grid world, featuring four scenarios where

an uncontrollable trolley is faced with a moral dilemma: ei-

ther hitting a large number of people or diverting to a side

track and causing harm to fewer individuals. While these

scenarios are simple to start with, they must be adapted to

real-time tra�c situations, which often present unforeseen

challenges. One of the key challenges addressed in their

work is the generation of credence. Currently, credence in

the theories is randomly generated. However, when action

selection depends on credence, random generation may

lead to inconsistent results. Therefore, there is a need to

re�ne the generation of credence based on the underlying

theories.
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1.3 Contribution

In this paper, we contribute to addressing the problem of

random credence in moral uncertainty [4] by proposing a

novel approach that combines the simplex algorithm with

the DS combination technique to solve the minimization

problem.

• Weuse simplex algorithm as it is widely used in var-

ious �elds and applications due to its e�ciency and

e�ectiveness in �nding optimal solutions for linear

programming problems. In this paper, our objec-

tive is to minimize (Eq. 6) the total harm caused by

autonomous systems in ethical dilemmas, where

the optimal decision is paramount. The simplex

algorithm’s ability to quickly iterate through pos-

sible solutions and converge to an optimal or near-

optimal solution is crucial in navigating the ethi-

cal landscapes that autonomous systems face. The

scalability of the simplex algorithm ensures that it

can handle increasingly complex scenarios as the

machine’s capabilities and the scope of its ethical

considerations expand [10].

• Similarly, DS theory [11] o�ers a powerful tool for

handling uncertainty and making decisions in situ-

ations. Since credence value is randomly generated

it has uncertainty in the outcomes of the decision

making. DS theory allows for the representation

of partial ignorance or uncertainty by assigning

belief masses to sets of outcomes. It allows the inte-

gration of diverse information to arrive at a more

informed decision with the help of its systematic

way of combining evidence from multiple sources.

Our method involves modeling a minimization linear prob-

lem based on moral theories, with appropriate constraints.

We then employ the simplex algorithm [12], known for

its e�ectiveness in solving linear programming problems,

to solve this model. The results obtained from the sim-

plex algorithm serve as evidence for the DS combination

technique. This technique generates the plausibility of

the theories, which in turn is used as the credence in our

framework. Our approach has demonstrated superior per-

formance compared to the random credence generation

method used in existing models.

2 RELATED WORK

Bogosian [13] argued that intelligent vehicles dealing with

moral philosophy should accept uncertainty regarding

morality while addressing the intractable nature of dis-

agreement among theories. The author advocated for adopt-

ing moral uncertainty, similar to the voting problem pro-

posed by William MacAskill. Along with discussing the

reason behind employing a maximum expected choice-

worthiness function, the author also described the neces-

sity of an ordinal ranking and the impact of credence on a

moral machine. He developed a computational framework

to address the challenge of disagreement among moral

philosophers regarding choosing the correct moral theory.

The author also discussed the commercial viability of these

moral machines. However, the practical challenges in the

deployment of the model are not addressed as the author

has not implemented the framework proposed, which lim-

its the applicability and real-world impact of the research.

Authors in [14] conducted two experiments, involving

scenarios where AVs had to decide between staying in

the lane or swerving. Each scenario was characterized by

potential collisions and varying probabilities. The study

found that subjects consistently preferred the default ac-

tion of staying in the lane, even when it did not minimize

expected losses. Moral acceptability of the default option

was higher, especially under uncertainty. The study high-

lights the importance of understanding moral judgments

under risk and uncertainty to develop socially acceptable

policies for AVs in critical conditions. However, it is impor-

tant to note that the paper does not delve into the direct

implementation of moral uncertainty in automated vehi-

cles, leaving a gap in practical application.

Hong et al. [7] investigated the development of a pre-

dictive control framework for ethical decision-making in

autonomous driving using rational ethics. The study aimed

to utilize a lexicographic optimization technique along

with a model predictive controller to solve ethical decision-

making problems by establishing a priority order. The

authors employed a simulation-based methodology, using

Prescan for simulation and developing the Lexicographic

Optimization Model Predictive Controller (LO-MPC) in

MATLAB/Simulink. They generated an arti�cial potential

�eld representing vehicles, road users, obstacles, and road

boundaries, calculated potential crash severity using this

�eld, and determined obstacle priority. The LO-MPC was

then used to solve ethical decision-making based on these

priorities.The results of the simulations were conducted

in three di�erent scenarios: Human vs. Vehicles (a moral

dilemma), Road Regulation vs. Tra�c Accidents, and Road

Regulation vs. Unexpected Animal encounters. In all sce-

narios, the LO-MPC successfully minimized the total harm

caused by the vehicle compared to the path�nding-MPC

approach. Despite their e�ectiveness, these methods are

limited by their static nature, which may not adequately

address the dynamic nature of tra�c environments and the

need for robust techniques to handle unforeseen situations.

The authors in [6] explored applying Ethical Valence

Theory (EVT) to solve ethical decision-making in AVs.

They framed AV decision-making as a form of claimmitiga-

tion, where di�erent road users hold varying moral claims

about the vehicle’s behavior. The authors proposed using

Markov Decision Processes (MDP) to evaluate all possible

harms and select actions that minimize harm, prioritizing

the safety of road users and passengers of the AV while

considering tra�c regulations. Claims are formulated as

harms and valence, with valence indicating the degree of

social acceptability attached to the claims. Two moral the-

ories, Risk-Averse Altruism and Threshold Egoism, were

applied. Risk-Averse Altruism prioritizes protecting road

users with the highest valence unless the AV passenger’s
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risk is severe, while Threshold Egoism protects the AV

passenger unless the high valence road user is severely

at risk. The authors tested the framework in a dilemma

where the AV must decide between saving a pedestrian

and avoiding a collision with a peer vehicle. The results

showed the choice of operative moral theory in�uenced

the decision: Risk-Averse Altruism led to colliding with a

wall, while Threshold Egoism resulted in colliding with the

pedestrian. One limitation is that ethical decisions depend

on the operative moral theory used to select the action, and

the use of a possible valence hierarchy is not universally

agreed upon.

The authors in [4] explored the intersection of moral

philosophy and reinforcement learning (RL) to address

moral uncertainty in arti�cial intelligence (AI) systems.

Two voting systems, Nash voting and Variance voting,

are introduced to guide AI agents in ethically complex

decision-making using moral theories such as deontol-

ogist and utilitarian. The paper proposes a method for

updating moral theories using credence values without

retraining the policy. Experimental results in grid world

environments mainly consists of classic, double, guard,

and doomsday. However, this approach faces limitations,

such as the di�culty of assigning and updating credence

values for each theory and potential bias towards domi-

nant theories in Nash voting. Additionally, the paper’s use

of simple grid world environments may not fully capture

the complexities of real-world moral dilemmas.

3 PROPOSED WORK

3.1 Overview of Random Credence

Figure 1 represents the framework developed by authors

in [4]. The initial vector contains the credence assigned

the theories. The degree of belief that the agent has in

theory ğ is considered as the level of credence in theory

ÿ8 . The input vector, along with the initial vector, contains

the state of the environment and the action space of the

agent at each step. The authors replaced the standard re-

ward function with a cardinal choice worthiness function

ē8 (ĩ, ė, ĩ
′), which is analogous to the reward function. Au-

thors de�ned the function č8 (ĩ, ė) (Eq. 1)as the expected

sum of future choice-worthiness discounted over time for

theory i, starting from state s and taking action a, while

all future actions follow the current policy.

č8 (ĩ, ė) = ā

[

∞
∑

C=0

ĀCē8 (ĩC , ėC , ĩC+1) |ĩ0 = ĩ, ė0 = ė)

]

(1)

The reward is calculated as the product of the credence

in the theory andē8 at every step. RL agent is chosen de-

pending on the voting method selected. The authors used a

proximal policy optimization (PPO) agent [15] to train the

agent with the Nash voting method and a SARSA agent

[16] to train the agent with the variance voting method.

The agent then selects an action using the optimal policy,

which uses the input vector and the reward value. This

action governs the trolley’s direction, which is directly

responsible for the harm caused to the people on the track.

Figure 1: System Model

We have approached the problem of credence in two

ways.

• Dempster Credence: Here, we combine the DS tech-

nique with random credence.

• Simplex Credence: Here, we have modeled the cre-

dence in theories using simplex algorithm.We have

constructed a linear programming problem from

the theories, starting by creating objective func-

tions using the actions from theories, modeling the

constraints with appropriate bounds, solving the

objective function using the simplex algorithm to

�nd optimal solution, generated mass functions

using optimal solution and optimal values from

simplex algorithm and used the plausibility score

as the credence in theories.

3.2 Dempster Credence

As an initial step to strengthen the power of credence and

stabilize it, we have combined the random credence with

DS technique by using the credence generated randomly as

the evidence to the DS combination to get the plausibility

score of the theories.

3.2.1 Overview of Dempster-Shafer theory. The Dempster-

Shafer (DS) theory of evidence is a mathematical frame-

work that quanti�es belief in statements by integrating

independent evidence from various sources. It deals with

uncertainty by assigning levels of belief to subsets of po-

tential events, which di�ers from traditional probability

theory. This theory operates under the assumption of in-

herent ignorance, which results in uncertainty, and em-

ploys the DS rule to merge belief functions. Below compo-

nents together form the basis of the DS theory of evidence,

providing a framework for reasoning under uncertainty

and combining evidence from multiple sources.

• The frame of discernment (Θ) is a set of all possible

outcomes, with each outcome representing a mu-

tually exclusive, discretized value (utilitarian and

deontology).
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• The power set P(Θ) ofΘ is a set of all subsets of (Θ),

including individual elements, representing the DS

frame of (Θ).

• Evidence consists of events or symptoms, where

each evidence maps to a single hypothesis or a

set of hypotheses. Di�erent levels of evidence are

considered, such as credence generated randomly.

• Mass function (m-value): The mass function relates

to the weights of elements in P(Θ), indicating the

belief assigned to each subset of Θ. It sums to 1

across all subsets, with the lower bound used as

the belief function and the upper bound used to

calculate the plausibility function.

• Plausibility function (Pl): The plausibility function

determines the upper bound of the interval by sum-

ming the mass functions of subsets þ that inter-

sect with a given subset (ý), indicating the de-

gree of plausibility assigned to each subset of Θ.

(þ ∩ý ≠ č), ČĢ (ý) : 2Θ → [0, 1] [11].

ČĢ (ý) =
∑

�∩�≠q

ģ(þ) (2)

3.2.2 Dempster credence calculation. Weuse the randomly

generated credence (ÿA ) as a base to generate themass func-

tionģ(Ī8 ) of theories. The system treats the credence of

theory as the likelihood of the theory being superior while

its complement (1- credence of the theory) is the likelihood

of the theory being inferior. The system generates mass

function tuple for both theories using the credence gen-

erated randomly. The mass function tuple containsģ(ğ)

(the mass function of theory 1),ģ(ğ′) (the mass function

of theory 2).

ģ) (ğ) = ÿAğ (3)

ģ) (ğ‘) = 1 −ÿA ′ğ
(4)

In Eq. 3, ğ is the selected theory and in Eq. 4 ğ′ is the other

theory.

The plausibility score ČĢ3 (Đ8 ) is calculated using the

mass functions generated using Eqs.3 and 4. This value is

used as the credence for the theories in the simulation.

3.3 Simplex Credence

3.3.1 Simplex Model. The system architecture (See Figure

2) involves modeling a linear programming problem based

on moral theories. The problem is then solved to �nd the

optimal solution using the simplex algorithm. Next, the

plausibility values of the theories are determined using the

optimal solution as evidences with the DS theory. These

plausibility scores are used as the credence of the theo-

ries. We call the credence generated in our framework as

simplex credence to di�erentiate from existing credence.

The credence in the initial vector of Figure 1 is replaced

by simplex credence. In the framework, the theories (Ī8 )

are formulated in the form of a dictionary with keys as

the action (ėC ) and the values as the rewards (Ĩ0) associ-

ated with the actions. Equation 5 showcases the structural

representation of theory.

Ī8 = {ėC : Ĩ0} (5)

Figure 2: Simplex Model

Objective function generation. The objective function

ċ (Ĝ ) is de�ned as the sum of the unique actions ė8 present

in both theories.

ċ (Ĝ ) =
∑

8∈C

ė8 (6)

In the system, there are two theories: utilitarianism and

deontology. These theories are de�ned such that every ac-

tion has a corresponding weight, which is used to calculate

the reward at the end. Deontology considers all actions and

their associated weights, focusing on the actions and the

harm caused by the actions of an agent. On the other hand,

utilitarianism only has two values: harms and doomsday.

For utilitarianism, the primary goal is to maximize happi-

ness, without consideration for how it is achieved. Actual

representation of theories in the simulation is given below:

• Deontologist: { pushed harms : -4, collateral harms

: -1, lies : -0.5, doomsday : -10 }.

• Utilitarian: { harms : -1, doomsday : -300 }

From the above representation of the deontologist the-

ory, "pushed harms" is associated with the action "push"

in a double and guard environment where the agent has

a choice to push the fat man onto the track. When the

agent chooses to switch, the "collateral harms" are used

to calculate the penalty for the agent. Similarly, "lies" is

associated with the action "lie" in the guard environment.

The "harms" in the utilitarian theory is a generic penalty

used to calculate the total reward for the agent after its

choice. The value of "doomsday" in both theories is used

to calculate the penalty for the agent when the agent’s

preference is doomsday in the doomsday environment.

From the above theories, we get pushed harms, collateral

harms, lies, doomsday and harms. The sum of the above

unique keys forms the objective function which is later

solved using simplex algorithm using the constraints.
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Constraints generation. The constraints (ÿC ) are gener-

ated as sum of product of actions ė8 and the reward value

Ĩ0 associated with the actions in a given theory.

ÿCğ =

∑

ė8Ĩ0 < Ĩ3>><B30~ğ (7)

The constraintsÿCğ re�ect the theories in the form of an

equation. Regardless of the theory, the overall aim here is

the safety of the humans involved. To illustrate this, the

constraints are designed to prevent the selection of "dooms-

day" as an action. This is achieved by limiting the value

of a constraint to be less than the value of the reward for

"doomsday," as prescribed by the theory.We solve the objec-

tive function ċ (Ĝ ) with constraints ÿCğ as a minimization

problem using the simplex algorithm. The Simplex algo-

rithm halts when an optimal solution ċĩ (ċ (Ĝ )) is found.

For this, we have used linprog function from the scipy

package [17] which uses tableau-based simplex method.

Simplex algorithm �nds the optimal values of the vari-

ables ċĬ0 in objective function ċ (Ĝ ). We use the optimal

values to generate the mass functions of the theories.

3.3.2 Dempster - Shafer Technique.

Mass function generation using optimal value. The opti-

mal values generated using the simplex algorithm serve

as a base to generate mass functionsģ(Ĝ ) supporting the

theories which are used to calculate the plausibility values

of the theories. For each action value in the theory, the

system generates mass functions consisting of evidence

supporting theory 1 (ģ8
0 (1)), and evidence supporting the-

ory 2 (ģ8
0 (2)).

ģ8
0 (1) =

{
ċĬė

ċĩ (ċ (Ĝ )
� 5 ċĬė

ċĩ (ċ (Ĝ )
>0.2

0.1 �;B4

(8)

ģ8
0 (2) = 1 −ģ8

0 (1) (9)

Plausibility calculation. The generated mass functions

using Eq. 8 and Eq. 9 are combined using the DS rule

of combination [11] which is later used to calculate the

plausibility score of the theories.

Plausibility as credence. The plausibility scores of the-

ories generated from the previous step are used as the

credence of the theories, denoted as ďÿ8 . We refer to this

credence as simplex credence. This step ensures that the

credence of the theories is generated from the preferences

of theories instead of random generation. We believe that

the incorporation of theories in credence calculation will

play a crucial role in the agent’s preference of actions and

will enhance its performance.

Incorporating credence into the existing framework. To

understand the power of credence, it is helpful to provide

an overview of the various contexts in which credence

is used. The RL agent at the switch follows two di�erent

voting methods: Nash voting and variance voting. The

authors incorporated the PPO RL framework with Nash

voting, and the SARSA framework is used with variance

voting. At each step, the input to the RL agent contains

the credence in theory ÿ8 , the state of the environment ĩC ,

and the reward from the previous step Ď(ĩC−1), which is

calculated using the values in the theories. The action space

comprises particular actions associated with the selected

environment. The agent is trained to select an action ė

using the optimal policyÿ . The selected action ismultiplied

by the credence, and the value is considered as votes Ē0ğ

as referred in Eq. 10.

Ē0ğ = ė8 ×ÿ8 (10)

The action associated with the highest votes is selected

as the �nal action in both theories. In addition to the selec-

tion of action, the credence also plays a crucial role in the

calculation of the reward for the agent. The authors used

a simple reward structure in Nash voting Eq. 11, which

is the product of the credence in theory and the choice-

worthiness functionē8 (ĩ, ė, ĩ
′).

Ď(ĩ, ė, ĩ′) =
∑

8

ÿ8ē8 (ĩ, ė, ĩ
′) (11)

In variance voting, the credence is replaced by the variance-

normalized credence Eq. 12.

Ď(ĩ, ė, ĩ′) =
∑

8

ĭ8ē8 (ĩ, ė, ĩ
′) (12)

where:

ĭ8 = ÿ8/(

√

Ă2
8 + Ċ) (Ć8 (ĩ)) (13)

where Ċ is a small constant (10−6 in our experiments). In

order to select the values of parameters of the a�ne trans-

formation ofč8 instead of direct vote theory i the variance

voting suggests that the č8 function should be normalized

by the expected value āB∼( of its variance across timesteps.

Ă2
8 = āB∼(

[

1

ġ

∑

0

(č8 (ĩ, ė) − Ć8 (ĩ))
2

]

(14)

where ġ is number of actions in a discrete action space :

Ć8 (ĩ) =
1

ġ

∑

0

č8 (ĩ, ė) (15)

The random credenceÿ8 in the equations Eq. 10, 11 and 13

is replaced with simplex credence ďÿ8 which is generated

in the previous steps in the simulation.

4 SIMULATION SETUP AND RESULTS

4.1 Datasets

We utilize an open-source framework, [18], that imple-

ments moral uncertainty using reinforcement learning as

the basis for our work, which extends this existing frame-

work. The simulation involves a trolley that, without in-

tervention, will hit people standing on the main track.

An agent, positioned at a switch, faces a moral dilemma:

whether to divert the trolley to a side track with fewer peo-

ple. There are four environments: classic, guard, double,

and doomsday. In the classic scenario, (See Figure 3(a)),

the agent must decide between pulling the switch to save
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fewer people or doing nothing and letting more people

be harmed. The double environment in Figure 3(b) intro-

duces a fat man on the side track, adding complexity to

the decision-making process. The agent has three options:

do nothing, push the fat man onto the track, or pull the

switch to divert the trolley. In the guard environment (See

Figure 3(c)), the agent faces a similar moral dilemma, but

with the added option of lying to the guard to push a heavy

person onto the track, potentially saving more lives but in-

volving dishonesty. In the doomsday environment (Figure

3(d)), the agent is given the additional option of intention-

ally choosing to kill a large number of people, contrasting

sharply with the other options aiming to minimize harm.

Figure 3: Trolley environment

4.2 Simulation Environment

The simulations are carried out on a NVIDIA dual GPU

workstation AMD(R) Ryzen threadripper pro 3955wx 16

cores x32 with 128 GB RAM on a Ubuntu 20.04.5 LTS. We

ran the simulations for 107 episodes with random, Demp-

ster and simplex credence. For visualization purposes we

had represented the plots for 3 × 106 episodes of random,

Dempster and simplex credence.

4.3 Results

We have compared the performance of random credence

(the work done in [4]) with Dempster Credence and Sim-

plex credence. We have presented two types of results to

compare the performance of the agent in di�erent envi-

ronments and learning rates using the reward gained by

theories with di�erent credence methods.

4.3.1 Reward Analysis. The results show the average re-

ward gained by the RL agents using random credence,

Dempster credence, and simplex credence. The reward

plots contain the rewards gained by the agents in di�erent

environments such as classic, double, guard, and doomsday

using deontology and utilitarian theories. The results from

0− 0.75× 106 episodes represent the reward gained by the

agent using a speci�ed theory in the classic environment.

Results from 0.75 × 106 − 1.5 × 106 episodes illustrate the

reward gained by the agent in the double environment.

The reward gained by the agent in the guard environment

is represented in the graph during 1.5 × 106 − 2.25 × 106

episodes, and the reward gained by the agent during 2.25×

106−3.0×106 episodes represents the agent’s performance

in the doomsday environment.

Deontologist reward. Figures 4(a), 4(b) and 4(c) represent

average reward values of agent with random credence,

Dempster credence and simplex credence using deontology

theory. From Figure 4(a), we observe that the plot is left-

skewed and denser from 0.5 × 106 to 1.5 × 106 episodes.

The agent was able to achieve an average reward value

of more than 50 for over 50% of the time. In Figure 4(b),

representing Dempster credence, we see that the reward is

distributed evenly for approximately 2.0×106 episodes and

moderately distributed from 2.0 × 106 − 3.0 × 106 episodes.

The agent was able to achieve an average reward of more

than 40. From the simplex credence plot in Figure 4(c), we

can see that it is right-skewed, and the average reward

value is below 80 most of the time.

(a) (b) (c)

Figure 4: (a) Reward with random credence, (b) Re-

ward with Dempster credence, (c) Reward with sim-

plex credence

(a) (b) (c)

Figure 5: (a) Reward with random credence, (b) Re-

ward with Dempster credence, (c) Reward with sim-

plex credence

Utilitarian reward. Figures 5(a), 5(b) and 5(c) represent

the average reward values of agent with random credence,

Dempster credence and simplex credence using utilitarian

theory. From the average reward value plots of agent using

utilitarian theory, we can observe that the plots are right

skewed in nature. From Figure 5(a), we observe that the

minimum average reward value is -40. The agent main-

tained a constant -20 for approximately 1.75×106 episodes

from 0.2×106 to 2.0×106. However, from 2.0×106 episodes,

we can see that the agent’s average reward value decreased

from -20 to -40 by 3.0×106 episodes. Figure 5(b) represents

the average reward value the utilitarian agent received

using Dempster credence. We can see that the minimum

reward value is -10. It is evident from the graph that the

agent was able to maintain a constant reward value of

-4 until 0.7 × 106 episodes when dealing with the classic

environment. It then decreased to -10 by 1.7× 106 episodes

6
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and remained moderately low with few elevations in the

reward until the 3.0 × 106 episode. From Figure 5(c), we

observe that the agent’s minimum average reward value is

-4, and the agent was able to achieve a constant -2 reward

value for most of the time during the simulation. The agent

was constantly able to maintain a -2 average reward for

about the �rst 2.5 × 106 episodes, and the reward value

started to decrease during the last 0.5 × 106 episodes from

2.5 × 106 episode to 3.0 × 106 episode.

4.3.2 Performance Analysis. In this section we discuss

about the performance of the agent with random credence,

Dempster credence and simplex credence in di�erent envi-

ronments using Nash voting and variance voting methods

as described in the paper [4]. In the plots, the x-axis rep-

resents the credence in deontology theory ranging from

0% - 100%. When the credence in deontology is 10%, the

credence in utilitarian will be 100-10 that is 90%. The y-axis

represents the no of people on track. The graph illustrates

the preferences of an agent across various levels of cre-

dence while considering di�erent numbers of people on

the track.

(a) (b) (c)

Figure 6: (a) Randomcredence, (b) Dempster credence,

(c) Simplex credence

4.3.3 Classic Environment : Nash Voting. Figures 6(a), 6(b)

and 6(c) represent the preference of the choice by the

agent with the Nash voting method using random cre-

dence, Dempster credence and simplex credence respec-

tively. The Figure 6(a) shows that an agent with random

credence tends to prefer switching when there is one per-

son on the track, with a 20% credence in deontology. This

preference continues up to a 50% credence in deontology

with ten persons on the track. However, when the credence

in deontology exceeds 50%, the agent tends to prefer doing

nothing, regardless of the number of people on the track.

Figure 6(b) depicts the preference of the agent with Demp-

ster credence. The graph indicates that the agent tends

to prefer doing nothing when there are fewer than three

people on the track, with a 75% credence. However, as the

number of people increases beyond three, the agent’s pref-

erence shifts to switching, regardless of the credence. This

preference holds until there are eight people on the track.

Additionally, when the credence in deontology reaches

around 90%, the agent chooses to do nothing even with

eight people on the track. Notably, the agent prefers doing

nothing with a 75% credence in deontology when there are

ten people on the track. From Figure 6(c) we can see that

regardless of no of people on track and credence in deon-

tology the agent with simplex credence always preferred

to switch.

(a) (b) (c)

Figure 7: (a) Randomcredence, (b) Dempster credence,

(c) Simplex credence

4.3.4 Classic Environment : Variance Voting. Figures 7(a),

7(b) and 7(c) represent the agent’s choice preference using

the variance voting method with random credence, Demp-

ster credence, and simplex credence in classic environment.

From Figure 7(a) representing the choice preference of the

agent using random credence, we can observe that the

agent, with approximately 50% credence in deontology,

prefers to switch regardless of the number of people on

the track. However, this trend changes when the credence

in deontology increases above 50%, leading the agent to

prefer doing nothing. Figure 7(b) illustrates the preference

of the agent using Dempster credence. From the graph, we

observe that the agent prefers doing nothing over switch-

ing when there are fewer than 3 people on the track. How-

ever, when the number of people on the track increases

beyond 3 and the credence in deontology is less than 50%,

the agent chooses to switch over doing nothing. Regardless

of the count of people on the track, when the credence in

deontology is greater than 50%, the agent prefers doing

nothing. It is evident from Figure 7(c) that the agent pre-

ferred switch over nothing regardless of credence and no

of people on track using simplex credence.

4.3.5 Double Environment : Nash Voting. Figures 8(a), 8(b)

and 8(c) represent the agent’s choice preference in the

double environment using the Nash voting method with

random credence, Dempster credence, and simplex cre-

dence, respectively. Figure 8(a) represents the preference

of the agent with random credence. We can observe that

when the credence in deontology is less than 30%, the agent

prefers to push over doing nothing and switch, regardless

of the count of people on the track. As the credence in-

creases beyond 30%, the agent changes its preference to

switch. The agent continues to choose switch when there

are fewer than 3 people on the track, with 100% credence

in deontology. However, when the number of people on

the track increases beyond 3, with 75% credence, the agent

prefers doing nothing. This preference remains consistent

until there are 10 people on the track with slight varia-

tions between switch and nothing when the no of people

on track ranges from 3-5. Figure 8(b) represents the pref-

erence of the agent using Dempster credence. From the
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graph, we can observe that the agent chooses to push when

the credence in deontology is around 30%, regardless of

the number of people on the track. The agent changes its

preference to doing nothing when the credence in deon-

tology reaches 50%, a preference that constant until the

end. The agent only chooses to switch when the number

of people on the track is more than 5 and the credence in

deontology is between 30% and 50%. From Figure 8(c) we

can observe that the agent with simplex credence always

preferred to push irrespective of credence and number of

people on track.

(a) (b) (c)

Figure 8: (a) Randomcredence, (b) Dempster credence,

(c) Simplex credence

4.3.6 Double Environment : Variance Voting. Figures 9(a),

9(b) and 9(c) represent the agent’s choice preference in dou-

ble environment using the variance voting method with

random credence, Dempster credence, and simplex cre-

dence, respectively. Figure 9(a) represents the preference

of the agent with random credence. From the graph we can

see that the agent choose to switch till 60% of credence in

deontology and from 60% to 100% of credence in deontol-

ogy the agent choose to nothing over switch irrespective

of number of people on tracks. The Figure 9(b) represents

the preference of the agent using Dempster credence. From

the graph, we can observe that the agent chooses to switch

when the credence in deontology is around 50%, regardless

of the number of people on the track. The agent changes

its preference to doing nothing when the credence in de-

ontology ranges from 50% to 100%. From Figure 9(c) we

can observe that the agent with simplex credence always

preferred to switch.

(a) (b) (c)

Figure 9: (a) Randomcredence, (b) Dempster credence,

(c) Simplex credence

(a) (b) (c)

Figure 10: (a) Random credence, (b) Dempster cre-

dence, (c) Simplex credence

4.3.7 Guard Environment : Nash Voting. Figures 10(a), 10(b)

and 10(c) represent the preference of agent with Nash vot-

ing using random, Dempster and simplex credence. From

Figure 10(a) we can observe that there is a correlation be-

tween the number of people on track and choice of the

agent until the credence in deontology is around 50%. As

the number of people increase from 1-10 the the agent

choose to lie only. Once the credence in deontology in-

creases more than 40% the agent changes its preference

to nothing and this action continues till the credence in

deontology is 100%. From Figure 10(b), which represents

the preference of the agent with Dempster credence, we

observe a correlation between the number of people on

the track and the agent’s preference. However, this correla-

tion is only noticeable when the credence is less than 40%.

As the credence increases beyond 40%, the agent changes

its preference to doing nothing, maintaining this prefer-

ence until 100% credence. In Figure 10(c), we see that the

agent chooses to do nothing when there are fewer than 3

people on the track, regardless of the credence in deontol-

ogy. When the number of people on the track is greater

than 4, the agent chooses to push instead of doing nothing.

This preference is consistent across di�erent levels of cre-

dence. However, when the number of people on the track

is around 3-4, the agent chooses to lie, irrespective of the

credence in deontology.

(a) (b) (c)

Figure 11: (a) Random credence, (b) Dempster cre-

dence, (c) Simplex credence

4.3.8 Guard Environment : Variance Voting. The Figures

11(a), 11(b) and 11(c) represents the preference of agent

with variance voting using random, Dempster and simplex

credence. From Figure 11(a), we can see a correlation be-

tween the number of people and the choice made by the

agent. As the number of people increases, the agent’s pref-

erence to choose to lie continues, even when the credence
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increases up to 20%. However, when the credence in deon-

tology increases beyond 20%, we can see a switch in the

agent’s preference to do nothing, which continues until

the end. In Figure 11(b), representing the preference of the

agent with Dempster credence, we observe that the agent

prefers to lie only when the credence in deontology is less

than 25%. Once the credence increases beyond 25%, the

agent chooses to do nothing, continuing this preference

until 100%. From Figure 11(c), representing the agent’s

preference using simplex credence, we can observe that

the agent prefers doing nothing over lying or pushing

throughout the entire simulation.

(a) (b) (c)

Figure 12: (a) Random credence, (b) Dempster cre-

dence, (c) Simplex credence

4.3.9 Doomsday Environment : Nash Voting. Figures 12(a),

12(b) and 12(c) represent the preference of the agent with

Nash voting using random credence, Dempster credence

and simplex credence. From the �gures below, it is clear

that the agent always preferred to switch throughout, re-

gardless of the credence and number of people on the track.

The same preference is observed in all three cases with

random, Dempster, and simplex credence.

(a) (b) (c)

Figure 13: (a) Random credence, (b) Dempster cre-

dence, (c) Simplex credence

4.3.10 Doomsday Environment : Variance Voting. Figures

13(a), 13(b) and 13(c) represent the preference of the agent

with variance voting using random, Dempster and sim-

plex credence. From Figure 13(a), which represents the

agent’s preference with random credence, we can see that

the agent consistently chose to switch over doing nothing

or selecting the doomsday option. This preference remains

constant until the credence in deontology reaches 95%.

However, the agent changes its preference when the num-

ber of people on the track is less than 5, but with a credence

greater than 95%. The agent’s preference was similar in

a doomsday scenario when using Dempster and Simplex

credence, as shown in Figures 13(b) and 13(c). The agent

preferred switch over nothing and the doomsday option

throughout the simulation.

5 DISCUSSION

The preference for a moral theory depends on the cre-

dence generated. With random credence, the agent’s per-

formance is unstable, whereas with Dempster credence,

the agent’s performance is uniform and better than with

random credence. The agent using the simplex credence

performs better than the agent using random and Demp-

ster credence. This can be observed from Figure 5(c), where

the maximum average reward value gained by the utilitar-

ian agent using simplex credence is -4, while the agents

using random and Dempster credence gained -40 (see Fig-

ure 5(a)) and -10 (see Figure 5(b)), respectively.

5.1 Key Scienti�c Insights

From the analysis of agent preferences, it is evident that the

agent using simplex credence consistently outperformed

the agents using random credence and Dempster credence

by consistently choosing the option that saves the greatest

number of people.

• This preference is clearly demonstrated in the clas-

sic environment with both voting methods, where

the agent consistently preferred to switch over do-

ing nothing (see Figures 6 , 7).

• In the double environment, when the agent used

Nash voting, the agent using simplex credence only

preferred to push over doing nothing and switch. In

contrast, when the agent used variance voting, the

agent preferred to switch over push and nothing. In

both cases, the agent’s preference save more num-

ber of people when compared to agents preference

using random and Dempster credence.

• The superiority of simplex credence is further high-

lighted in the guard environment with Nash voting.

The agent preferred to do nothing when the num-

ber of people on the track was less than 2, and to

push when there were 3 or more people on the

track. Pushing the large man onto the track re-

quires the agent to �rst lie to the guard. In order to

save more people, the agent chose to push. When

the agent used variance voting with simplex cre-

dence, the agent preferred to do nothing over lying

only and pushing. In contrast, the agents with ran-

dom credence and Dempster credence opted for

lying only without pushing the large man when

the credence in deontology was less than 20%. This

demonstrates the consistency of the agent using

simplex credence.

• In the doomsday environment with both voting

methods, all three agents showed similar prefer-

ences. However, the agent using random credence

with variance voting changed its preference to do
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nothing from switch when the credence in deon-

tology was around 95% and the number of people

on the track was less than 5. Where as, the agents

using Dempster credence and simplex credence

were consistent in choosing switch from start to

end. From the performance analysis of the agents,

it is evident that using simplex credence instead of

random credence boosted the agent’s performance

in saving a greater number of people in most envi-

ronments.

Using simplex credence consistently increased the agent’s

e�ciency in saving more people, with no signs of integra-

tion issues a�ecting the agent’s performance.

6 CONCLUSION

We propose two di�erent approaches to deal with the prob-

lem of random credence. In the �rst approach, we combine

random credence with the Dempster-Shafer technique to

stabilize the agent’s performance. In the second approach,

we introduce a novel framework that generates credence

from moral theories using the simplex algorithm and the

Dempster-Shafer technique collectively. From the prefer-

ences of agents in di�erent environments, we observe that

agents using Dempster and simplex credence consistently

choose the option that saves more people. This can be seen

in the results, where the agent using simplex credence

incurs considerably less penalty compared to the agent us-

ing Dempster credence, indicating a preference for saving

more people. From the results it is evident that the choice

preference of agent using Dempster credence is uniform

where the agent using simplex preferred the choice which

saved more number of people. In future work, we plan to

incorporate the dynamics of the agent’s environment into

the framework to calculate credence.

LIMITATIONS

One limitation of our study is that we observed the selec-

tion of only one theory by the agents, re�ecting a utilitar-

ian behavior. While this aligns with the simplicity of our

model, it may not capture the complexity of real-world

ethical decision-making, which often involves considering

multiple ethical theories simultaneously. Another limita-

tion is that the agent’s behavior using simplex credence

changed when the voting method was switched from Nash

voting to variance voting this is observed mainly in double

and guard environment. This behavior change suggests

that the choice of voting method can in�uence the agent’s

decision-making process. Additionally, we found that the

agent’s behavior with Nash voting was generally better

than with variance voting.
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