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ABSTRACT

Ensuring the safety of autonomous vehicles (AV) remains
a critical challenge, particularly when navigating morally
ambiguous scenarios. Enhancements in this area are crucial
for increasing trust and boosting the adoption of AV. Exist-
ing state-of-the-art solutions, such as predictive controllers
and the ethical valence theory, prioritize decisions based on
preset priorities. In contrast, reinforcement learning-based
models can be implemented to mimic actions based on
widely established ethical theories. This paper proposes a
novel approach to address the problem of random credence
generation in moral uncertainty for AVs. We combine the
simplex algorithm with the Dempster-Shafer (DS) combina-
tion technique to integrate the established ethical theories.
We model the reward structure using a linear minimiza-
tion approach. The simplex algorithm solves this model
effectively, and its results are used as evidence for the
Dempster-Shafer combination technique, which generates
the plausibility of theories and serves as credence in our
framework. Our approach demonstrates superior perfor-
mance compared to existing models, offering a promising
solution to the ethical challenges of autonomous driving.
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1 INTRODUCTION

Autonomous vehicles (AVs) have shown promise in exceed-
ing human performance in certain areas [1], particularly in
reducing traffic congestion and improving safety. Despite
these advantages, AVs still face challenges in gaining pub-
lic trust and widespread adoption [2]. While advancements
have been made in navigation and security, a significant
area of ongoing research is decision-making in ethically
ambiguous situations [3]. There is ongoing debate about
the most suitable ethical framework for AVs to navigate
moral dilemmas [4]. There is also a need to explore eclectic
strategies for integrating multiple ethical theories within
the decision-making process.
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1.1 Motivation

While numerous ethical theories exist, such as utilitari-
anism, deontology, and virtue ethics, philosophers con-
tinuously debate on which theory holds the most weight
[5]. Developers tackling ethical decision-making in AVs
must navigate this complex landscape of differing view-
points. Current attempts include the ethical valence theory
[6], which assigns value to outcomes based on the num-
ber of individuals affected. Additionally, the lexicographic
optimization technique prioritizes certain moral princi-
ples over others in specific situations [7]. These methods,
often coupled with a model predictive controller to opti-
mize actions, aim to navigate complex ethical scenarios.
However,they face limitations due to their static nature.
Traffic environments are dynamic and require robust tech-
niques to address unforeseen situations. Research suggests
that implementing RL in AVs offers significant advantages
[8]. Recent advancements in reinforcement learning (RL)
offer promising alternatives [4]. RL’s ability to adapt to
dynamic scenarios and unforeseen circumstances makes
it a potential solution for tackling the ethical challenges
of autonomous driving.

1.2 Problem Statement

The authors in [4] took a significant step in merging RL
with moral uncertainty by addressing most of the con-
cepts outlined in the MacAskill’s book [9]. Their approach
hinges on selecting actions based on the number of theo-
ries, the associated action weights, and the credence (de-
gree of belief in a theory). They introduced two primary
theories: utilitarianism and deontology. While this is a
commendable initial step, it is crucial to consider incorpo-
rating multiple theories, given the existence of numerous
widely accepted ethical frameworks. The simulations were
conducted in a grid world, featuring four scenarios where
an uncontrollable trolley is faced with a moral dilemma: ei-
ther hitting a large number of people or diverting to a side
track and causing harm to fewer individuals. While these
scenarios are simple to start with, they must be adapted to
real-time traffic situations, which often present unforeseen
challenges. One of the key challenges addressed in their
work is the generation of credence. Currently, credence in
the theories is randomly generated. However, when action
selection depends on credence, random generation may
lead to inconsistent results. Therefore, there is a need to
refine the generation of credence based on the underlying
theories.



1.3 Contribution

In this paper, we contribute to addressing the problem of
random credence in moral uncertainty [4] by proposing a
novel approach that combines the simplex algorithm with
the DS combination technique to solve the minimization
problem.

e We use simplex algorithm as it is widely used in var-
ious fields and applications due to its efficiency and
effectiveness in finding optimal solutions for linear
programming problems. In this paper, our objec-
tive is to minimize (Eq. 6) the total harm caused by
autonomous systems in ethical dilemmas, where
the optimal decision is paramount. The simplex
algorithm’s ability to quickly iterate through pos-
sible solutions and converge to an optimal or near-
optimal solution is crucial in navigating the ethi-
cal landscapes that autonomous systems face. The
scalability of the simplex algorithm ensures that it
can handle increasingly complex scenarios as the
machine’s capabilities and the scope of its ethical
considerations expand [10].

e Similarly, DS theory [11] offers a powerful tool for
handling uncertainty and making decisions in situ-
ations. Since credence value is randomly generated
it has uncertainty in the outcomes of the decision
making. DS theory allows for the representation
of partial ignorance or uncertainty by assigning
belief masses to sets of outcomes. It allows the inte-
gration of diverse information to arrive at a more
informed decision with the help of its systematic
way of combining evidence from multiple sources.

Our method involves modeling a minimization linear prob-
lem based on moral theories, with appropriate constraints.
We then employ the simplex algorithm [12], known for
its effectiveness in solving linear programming problems,
to solve this model. The results obtained from the sim-
plex algorithm serve as evidence for the DS combination
technique. This technique generates the plausibility of
the theories, which in turn is used as the credence in our
framework. Our approach has demonstrated superior per-
formance compared to the random credence generation
method used in existing models.

2 RELATED WORK

Bogosian [13] argued that intelligent vehicles dealing with
moral philosophy should accept uncertainty regarding
morality while addressing the intractable nature of dis-
agreement among theories. The author advocated for adopt-
ing moral uncertainty, similar to the voting problem pro-
posed by William MacAskill. Along with discussing the
reason behind employing a maximum expected choice-
worthiness function, the author also described the neces-
sity of an ordinal ranking and the impact of credence on a
moral machine. He developed a computational framework
to address the challenge of disagreement among moral
philosophers regarding choosing the correct moral theory.
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The author also discussed the commercial viability of these
moral machines. However, the practical challenges in the
deployment of the model are not addressed as the author
has not implemented the framework proposed, which lim-
its the applicability and real-world impact of the research.

Authors in [14] conducted two experiments, involving
scenarios where AVs had to decide between staying in
the lane or swerving. Each scenario was characterized by
potential collisions and varying probabilities. The study
found that subjects consistently preferred the default ac-
tion of staying in the lane, even when it did not minimize
expected losses. Moral acceptability of the default option
was higher, especially under uncertainty. The study high-
lights the importance of understanding moral judgments
under risk and uncertainty to develop socially acceptable
policies for AVs in critical conditions. However, it is impor-
tant to note that the paper does not delve into the direct
implementation of moral uncertainty in automated vehi-
cles, leaving a gap in practical application.

Hong et al. [7] investigated the development of a pre-
dictive control framework for ethical decision-making in
autonomous driving using rational ethics. The study aimed
to utilize a lexicographic optimization technique along
with a model predictive controller to solve ethical decision-
making problems by establishing a priority order. The
authors employed a simulation-based methodology, using
Prescan for simulation and developing the Lexicographic
Optimization Model Predictive Controller (LO-MPC) in
MATLAB/Simulink. They generated an artificial potential
field representing vehicles, road users, obstacles, and road
boundaries, calculated potential crash severity using this
field, and determined obstacle priority. The LO-MPC was
then used to solve ethical decision-making based on these
priorities.The results of the simulations were conducted
in three different scenarios: Human vs. Vehicles (a moral
dilemma), Road Regulation vs. Traffic Accidents, and Road
Regulation vs. Unexpected Animal encounters. In all sce-
narios, the LO-MPC successfully minimized the total harm
caused by the vehicle compared to the pathfinding-MPC
approach. Despite their effectiveness, these methods are
limited by their static nature, which may not adequately
address the dynamic nature of traffic environments and the
need for robust techniques to handle unforeseen situations.

The authors in [6] explored applying Ethical Valence
Theory (EVT) to solve ethical decision-making in AVs.
They framed AV decision-making as a form of claim mitiga-
tion, where different road users hold varying moral claims
about the vehicle’s behavior. The authors proposed using
Markov Decision Processes (MDP) to evaluate all possible
harms and select actions that minimize harm, prioritizing
the safety of road users and passengers of the AV while
considering traffic regulations. Claims are formulated as
harms and valence, with valence indicating the degree of
social acceptability attached to the claims. Two moral the-
ories, Risk-Averse Altruism and Threshold Egoism, were
applied. Risk-Averse Altruism prioritizes protecting road
users with the highest valence unless the AV passenger’s
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risk is severe, while Threshold Egoism protects the AV
passenger unless the high valence road user is severely
at risk. The authors tested the framework in a dilemma
where the AV must decide between saving a pedestrian
and avoiding a collision with a peer vehicle. The results
showed the choice of operative moral theory influenced
the decision: Risk-Averse Altruism led to colliding with a
wall, while Threshold Egoism resulted in colliding with the
pedestrian. One limitation is that ethical decisions depend
on the operative moral theory used to select the action, and
the use of a possible valence hierarchy is not universally
agreed upon.

The authors in [4] explored the intersection of moral
philosophy and reinforcement learning (RL) to address
moral uncertainty in artificial intelligence (AI) systems.
Two voting systems, Nash voting and Variance voting,
are introduced to guide Al agents in ethically complex
decision-making using moral theories such as deontol-
ogist and utilitarian. The paper proposes a method for
updating moral theories using credence values without
retraining the policy. Experimental results in grid world
environments mainly consists of classic, double, guard,
and doomsday. However, this approach faces limitations,
such as the difficulty of assigning and updating credence
values for each theory and potential bias towards domi-
nant theories in Nash voting. Additionally, the paper’s use
of simple grid world environments may not fully capture
the complexities of real-world moral dilemmas.

3 PROPOSED WORK

3.1 Overview of Random Credence

Figure 1 represents the framework developed by authors
in [4]. The initial vector contains the credence assigned
the theories. The degree of belief that the agent has in
theory i is considered as the level of credence in theory
C;. The input vector, along with the initial vector, contains
the state of the environment and the action space of the
agent at each step. The authors replaced the standard re-
ward function with a cardinal choice worthiness function
Wi (s, a,s"), which is analogous to the reward function. Au-
thors defined the function Q;(s, a) (Eq. 1)as the expected
sum of future choice-worthiness discounted over time for
theory i, starting from state s and taking action a, while
all future actions follow the current policy.

Qi(s,a) =E | > y'Wilse,ar,s0)lso =s,a0 = a) | (1)
=0

The reward is calculated as the product of the credence
in the theory and W; at every step. RL agent is chosen de-
pending on the voting method selected. The authors used a
proximal policy optimization (PPO) agent [15] to train the
agent with the Nash voting method and a SARSA agent
[16] to train the agent with the variance voting method.
The agent then selects an action using the optimal policy,
which uses the input vector and the reward value. This
action governs the trolley’s direction, which is directly

responsible for the harm caused to the people on the track.
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Figure 1: System Model

We have approached the problem of credence in two
ways.

e Dempster Credence: Here, we combine the DS tech-
nique with random credence.

e Simplex Credence: Here, we have modeled the cre-
dence in theories using simplex algorithm. We have
constructed a linear programming problem from
the theories, starting by creating objective func-
tions using the actions from theories, modeling the
constraints with appropriate bounds, solving the
objective function using the simplex algorithm to
find optimal solution, generated mass functions
using optimal solution and optimal values from
simplex algorithm and used the plausibility score
as the credence in theories.

3.2 Dempster Credence

As an initial step to strengthen the power of credence and
stabilize it, we have combined the random credence with
DS technique by using the credence generated randomly as
the evidence to the DS combination to get the plausibility
score of the theories.

3.2.1  Overview of Dempster-Shafer theory. The Dempster-
Shafer (DS) theory of evidence is a mathematical frame-
work that quantifies belief in statements by integrating
independent evidence from various sources. It deals with
uncertainty by assigning levels of belief to subsets of po-
tential events, which differs from traditional probability
theory. This theory operates under the assumption of in-
herent ignorance, which results in uncertainty, and em-
ploys the DS rule to merge belief functions. Below compo-
nents together form the basis of the DS theory of evidence,
providing a framework for reasoning under uncertainty
and combining evidence from multiple sources.

o The frame of discernment (0) is a set of all possible
outcomes, with each outcome representing a mu-
tually exclusive, discretized value (utilitarian and
deontology).



e The power set P(0) of © is a set of all subsets of (0),
including individual elements, representing the DS
frame of (®).

e Evidence consists of events or symptoms, where
each evidence maps to a single hypothesis or a
set of hypotheses. Different levels of evidence are
considered, such as credence generated randomly.

e Mass function (m-value): The mass function relates
to the weights of elements in P(®), indicating the
belief assigned to each subset of ©. It sums to 1
across all subsets, with the lower bound used as
the belief function and the upper bound used to
calculate the plausibility function.

o Plausibility function (Pl): The plausibility function
determines the upper bound of the interval by sum-
ming the mass functions of subsets B that inter-
sect with a given subset (A), indicating the de-
gree of plausibility assigned to each subset of ©.
(BNA # ¢), PI(A) : 2° — [0,1] [11].

PiA)= ) m(B) o)

BNA#¢

3.2.2 Dempster credence calculation. We use the randomly
generated credence (C,) as a base to generate the mass func-
tion m(t;) of theories. The system treats the credence of
theory as the likelihood of the theory being superior while
its complement (1- credence of the theory) is the likelihood
of the theory being inferior. The system generates mass
function tuple for both theories using the credence gen-
erated randomly. The mass function tuple contains m(i)
(the mass function of theory 1), m(i’) (the mass function
of theory 2).

mr (i) = Cy, (3)
mr(i') = 1-Cy (4)
In Eq. 3, i is the selected theory and in Eq. 4 i’ is the other

theory.

The plausibility score Ply(T;) is calculated using the
mass functions generated using Eqs.3 and 4. This value is
used as the credence for the theories in the simulation.

3.3 Simplex Credence

3.3.1 Simplex Model. The system architecture (See Figure
2) involves modeling a linear programming problem based
on moral theories. The problem is then solved to find the
optimal solution using the simplex algorithm. Next, the
plausibility values of the theories are determined using the
optimal solution as evidences with the DS theory. These
plausibility scores are used as the credence of the theo-
ries. We call the credence generated in our framework as
simplex credence to differentiate from existing credence.
The credence in the initial vector of Figure 1 is replaced
by simplex credence. In the framework, the theories (¢;)
are formulated in the form of a dictionary with keys as
the action (a;) and the values as the rewards (r;) associ-
ated with the actions. Equation 5 showcases the structural
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representation of theory.
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Utilitarian
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Figure 2: Simplex Model

Objective function generation. The objective function
O(f) is defined as the sum of the unique actions a; present
in both theories.

o(f) = Y a ©)
i€t

In the system, there are two theories: utilitarianism and
deontology. These theories are defined such that every ac-
tion has a corresponding weight, which is used to calculate
the reward at the end. Deontology considers all actions and
their associated weights, focusing on the actions and the
harm caused by the actions of an agent. On the other hand,
utilitarianism only has two values: harms and doomsday.
For utilitarianism, the primary goal is to maximize happi-
ness, without consideration for how it is achieved. Actual
representation of theories in the simulation is given below:

e Deontologist: { pushed harms : -4, collateral harms
: -1, lies : -0.5, doomsday : -10 }.
e Utilitarian: { harms : -1, doomsday : -300 }

From the above representation of the deontologist the-
ory, "pushed harms" is associated with the action "push"
in a double and guard environment where the agent has
a choice to push the fat man onto the track. When the
agent chooses to switch, the "collateral harms" are used
to calculate the penalty for the agent. Similarly, "lies" is
associated with the action "lie" in the guard environment.
The "harms" in the utilitarian theory is a generic penalty
used to calculate the total reward for the agent after its
choice. The value of "doomsday" in both theories is used
to calculate the penalty for the agent when the agent’s
preference is doomsday in the doomsday environment.
From the above theories, we get pushed harms, collateral
harms, lies, doomsday and harms. The sum of the above
unique keys forms the objective function which is later
solved using simplex algorithm using the constraints.
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Constraints generation. The constraints (C;) are gener-
ated as sum of product of actions a; and the reward value
rq associated with the actions in a given theory.

Cti = Z aiTq < Ydoomsday; (7)

The constraints C;, reflect the theories in the form of an
equation. Regardless of the theory, the overall aim here is
the safety of the humans involved. To illustrate this, the
constraints are designed to prevent the selection of "dooms-
day" as an action. This is achieved by limiting the value
of a constraint to be less than the value of the reward for
"doomsday," as prescribed by the theory. We solve the objec-
tive function O(f) with constraints Cy, as a minimization
problem using the simplex algorithm. The Simplex algo-
rithm halts when an optimal solution Os(O(f)) is found.
For this, we have used linprog function from the scipy
package [17] which uses tableau-based simplex method.

Simplex algorithm finds the optimal values of the vari-
ables Ov, in objective function O(f). We use the optimal
values to generate the mass functions of the theories.

3.3.2 Dempster - Shafer Technique.

Mass function generation using optimal value. The opti-
mal values generated using the simplex algorithm serve
as a base to generate mass functions m(f) supporting the
theories which are used to calculate the plausibility values
of the theories. For each action value in the theory, the
system generates mass functions consisting of evidence
supporting theory 1 (m! (1)), and evidence supporting the-

ory 2 (ml(2)).

i os0 1 oadiy>02
m,(1) = 8)
0.1 Else
mg(2) = 1—my(1) 9)

Plausibility calculation. The generated mass functions
using Eq. 8 and Eq. 9 are combined using the DS rule
of combination [11] which is later used to calculate the
plausibility score of the theories.

Plausibility as credence. The plausibility scores of the-
ories generated from the previous step are used as the
credence of the theories, denoted as SC;. We refer to this
credence as simplex credence. This step ensures that the
credence of the theories is generated from the preferences
of theories instead of random generation. We believe that
the incorporation of theories in credence calculation will
play a crucial role in the agent’s preference of actions and
will enhance its performance.

Incorporating credence into the existing framework. To
understand the power of credence, it is helpful to provide
an overview of the various contexts in which credence
is used. The RL agent at the switch follows two different
voting methods: Nash voting and variance voting. The
authors incorporated the PPO RL framework with Nash
voting, and the SARSA framework is used with variance

voting. At each step, the input to the RL agent contains
the credence in theory C;, the state of the environment s;,
and the reward from the previous step R(s;_1), which is
calculated using the values in the theories. The action space
comprises particular actions associated with the selected
environment. The agent is trained to select an action a
using the optimal policy 7. The selected action is multiplied
by the credence, and the value is considered as votes V,i
as referred in Eq. 10.

Vai=a; X C; (10)

The action associated with the highest votes is selected
as the final action in both theories. In addition to the selec-
tion of action, the credence also plays a crucial role in the
calculation of the reward for the agent. The authors used
a simple reward structure in Nash voting Eq. 11, which
is the product of the credence in theory and the choice-
worthiness function W;(s, a,s’).

R(s,a,s") = ZCiWi(s, a,s’) (11)

In variance voting, the credence is replaced by the variance-
normalized credence Eq. 12.

R(s,a,s") = ZwiWi(s, a,s’) (12)
where: l
wi = Cif (yJo + ) (u(s)) (13)

where € is a small constant (107 in our experiments). In
order to select the values of parameters of the affine trans-
formation of Q; instead of direct vote theory i the variance
voting suggests that the Q; function should be normalized
by the expected value E;.s of its variance across timesteps.

2
o; = Ess

1
> (Qi(s.0) - ui(s>)2] (19
a
where k is number of actions in a discrete action space :
1
His) = g 20069 (15)

The random credence C; in the equations Eq. 10, 11 and 13
is replaced with simplex credence SC; which is generated
in the previous steps in the simulation.

4 SIMULATION SETUP AND RESULTS
4.1 Datasets

We utilize an open-source framework, [18], that imple-
ments moral uncertainty using reinforcement learning as
the basis for our work, which extends this existing frame-
work. The simulation involves a trolley that, without in-
tervention, will hit people standing on the main track.
An agent, positioned at a switch, faces a moral dilemma:
whether to divert the trolley to a side track with fewer peo-
ple. There are four environments: classic, guard, double,
and doomsday. In the classic scenario, (See Figure 3(a)),
the agent must decide between pulling the switch to save



fewer people or doing nothing and letting more people
be harmed. The double environment in Figure 3(b) intro-
duces a fat man on the side track, adding complexity to
the decision-making process. The agent has three options:
do nothing, push the fat man onto the track, or pull the
switch to divert the trolley. In the guard environment (See
Figure 3(c)), the agent faces a similar moral dilemma, but
with the added option of lying to the guard to push a heavy
person onto the track, potentially saving more lives but in-
volving dishonesty. In the doomsday environment (Figure
3(d)), the agent is given the additional option of intention-
ally choosing to kill a large number of people, contrasting
sharply with the other options aiming to minimize harm.

B

(a) Classic

o

(d) Doomsday

(b) Double

(¢) Guard

Figure 3: Trolley environment

4.2 Simulation Environment

The simulations are carried out on a NVIDIA dual GPU
workstation AMD(R) Ryzen threadripper pro 3955wx 16
cores x32 with 128 GB RAM on a Ubuntu 20.04.5 LTS. We
ran the simulations for 107 episodes with random, Demp-
ster and simplex credence. For visualization purposes we
had represented the plots for 3 x 10° episodes of random,
Dempster and simplex credence.

4.3 Results

We have compared the performance of random credence
(the work done in [4]) with Dempster Credence and Sim-
plex credence. We have presented two types of results to
compare the performance of the agent in different envi-
ronments and learning rates using the reward gained by
theories with different credence methods.

4.3.1 Reward Analysis. The results show the average re-
ward gained by the RL agents using random credence,
Dempster credence, and simplex credence. The reward
plots contain the rewards gained by the agents in different
environments such as classic, double, guard, and doomsday
using deontology and utilitarian theories. The results from
0 —0.75 x 10° episodes represent the reward gained by the
agent using a specified theory in the classic environment.
Results from 0.75 x 10° — 1.5 X 10° episodes illustrate the
reward gained by the agent in the double environment.
The reward gained by the agent in the guard environment
is represented in the graph during 1.5 X 10° — 2.25 x 10°
episodes, and the reward gained by the agent during 2.25 X
10° —3.0x 10° episodes represents the agent’s performance
in the doomsday environment.
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Deontologist reward. Figures 4(a), 4(b) and 4(c) represent
average reward values of agent with random credence,
Dempster credence and simplex credence using deontology
theory. From Figure 4(a), we observe that the plot is left-
skewed and denser from 0.5 X 10° to 1.5 X 10° episodes.
The agent was able to achieve an average reward value
of more than 50 for over 50% of the time. In Figure 4(b),
representing Dempster credence, we see that the reward is
distributed evenly for approximately 2.0x 10° episodes and
moderately distributed from 2.0 x 10¢ — 3.0 X 10° episodes.
The agent was able to achieve an average reward of more
than 40. From the simplex credence plot in Figure 4(c), we
can see that it is right-skewed, and the average reward

value is below 80 most of the time.
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Figure 4: (a) Reward with random credence, (b) Re-
ward with Dempster credence, (c) Reward with sim-
plex credence
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Figure 5: (a) Reward with random credence, (b) Re-
ward with Dempster credence, (c) Reward with sim-
plex credence

Utilitarian reward. Figures 5(a), 5(b) and 5(c) represent
the average reward values of agent with random credence,
Dempster credence and simplex credence using utilitarian
theory. From the average reward value plots of agent using
utilitarian theory, we can observe that the plots are right
skewed in nature. From Figure 5(a), we observe that the
minimum average reward value is -40. The agent main-
tained a constant -20 for approximately 1.75 x 10° episodes
from 0.2x10° to 2.0x 10°. However, from 2.0 10° episodes,
we can see that the agent’s average reward value decreased
from -20 to -40 by 3.0 x 10° episodes. Figure 5(b) represents
the average reward value the utilitarian agent received
using Dempster credence. We can see that the minimum
reward value is -10. It is evident from the graph that the
agent was able to maintain a constant reward value of
-4 until 0.7 X 10° episodes when dealing with the classic
environment. It then decreased to -10 by 1.7 X 10° episodes
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and remained moderately low with few elevations in the
reward until the 3.0 X 10° episode. From Figure 5(c), we
observe that the agent’s minimum average reward value is
-4, and the agent was able to achieve a constant -2 reward
value for most of the time during the simulation. The agent
was constantly able to maintain a -2 average reward for
about the first 2.5 X 10° episodes, and the reward value
started to decrease during the last 0.5 x 10° episodes from
2.5 X 10° episode to 3.0 x 10° episode.

4.3.2  Performance Analysis. In this section we discuss
about the performance of the agent with random credence,
Dempster credence and simplex credence in different envi-
ronments using Nash voting and variance voting methods
as described in the paper [4]. In the plots, the x-axis rep-
resents the credence in deontology theory ranging from
0% - 100%. When the credence in deontology is 10%, the
credence in utilitarian will be 100-10 that is 90%. The y-axis
represents the no of people on track. The graph illustrates
the preferences of an agent across various levels of cre-
dence while considering different numbers of people on
the track.

om N W B U o N ® o O

Nothing
Switch

Nothing Switch
Switch

Number on tracks (X)
Number on tracks (X)
Number on tracks (X)

S N W s U N Do
S N W s U e N Do
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Credence in deontology
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Figure 6: (a) Random credence, (b) Dempster credence,
(c) Simplex credence

4.3.3  Classic Environment : Nash Voting. Figures 6(a), 6(b)
and 6(c) represent the preference of the choice by the
agent with the Nash voting method using random cre-
dence, Dempster credence and simplex credence respec-
tively. The Figure 6(a) shows that an agent with random
credence tends to prefer switching when there is one per-
son on the track, with a 20% credence in deontology. This
preference continues up to a 50% credence in deontology
with ten persons on the track. However, when the credence
in deontology exceeds 50%, the agent tends to prefer doing
nothing, regardless of the number of people on the track.
Figure 6(b) depicts the preference of the agent with Demp-
ster credence. The graph indicates that the agent tends
to prefer doing nothing when there are fewer than three
people on the track, with a 75% credence. However, as the
number of people increases beyond three, the agent’s pref-
erence shifts to switching, regardless of the credence. This
preference holds until there are eight people on the track.
Additionally, when the credence in deontology reaches
around 90%, the agent chooses to do nothing even with
eight people on the track. Notably, the agent prefers doing
nothing with a 75% credence in deontology when there are
ten people on the track. From Figure 6(c) we can see that

regardless of no of people on track and credence in deon-
tology the agent with simplex credence always preferred
to switch.
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Figure 7: (a) Random credence, (b) Dempster credence,
(c) Simplex credence

4.3.4 Classic Environment : Variance Voting. Figures 7(a),
7(b) and 7(c) represent the agent’s choice preference using
the variance voting method with random credence, Demp-
ster credence, and simplex credence in classic environment.
From Figure 7(a) representing the choice preference of the
agent using random credence, we can observe that the
agent, with approximately 50% credence in deontology,
prefers to switch regardless of the number of people on
the track. However, this trend changes when the credence
in deontology increases above 50%, leading the agent to
prefer doing nothing. Figure 7(b) illustrates the preference
of the agent using Dempster credence. From the graph, we
observe that the agent prefers doing nothing over switch-
ing when there are fewer than 3 people on the track. How-
ever, when the number of people on the track increases
beyond 3 and the credence in deontology is less than 50%,
the agent chooses to switch over doing nothing. Regardless
of the count of people on the track, when the credence in
deontology is greater than 50%, the agent prefers doing
nothing. It is evident from Figure 7(c) that the agent pre-
ferred switch over nothing regardless of credence and no
of people on track using simplex credence.

4.3.5 Double Environment : Nash Voting. Figures 8(a), 8(b)
and 8(c) represent the agent’s choice preference in the
double environment using the Nash voting method with
random credence, Dempster credence, and simplex cre-
dence, respectively. Figure 8(a) represents the preference
of the agent with random credence. We can observe that
when the credence in deontology is less than 30%, the agent
prefers to push over doing nothing and switch, regardless
of the count of people on the track. As the credence in-
creases beyond 30%, the agent changes its preference to
switch. The agent continues to choose switch when there
are fewer than 3 people on the track, with 100% credence
in deontology. However, when the number of people on
the track increases beyond 3, with 75% credence, the agent
prefers doing nothing. This preference remains consistent
until there are 10 people on the track with slight varia-
tions between switch and nothing when the no of people
on track ranges from 3-5. Figure 8(b) represents the pref-
erence of the agent using Dempster credence. From the



graph, we can observe that the agent chooses to push when
the credence in deontology is around 30%, regardless of
the number of people on the track. The agent changes its
preference to doing nothing when the credence in deon-
tology reaches 50%, a preference that constant until the
end. The agent only chooses to switch when the number
of people on the track is more than 5 and the credence in
deontology is between 30% and 50%. From Figure 8(c) we
can observe that the agent with simplex credence always
preferred to push irrespective of credence and number of
people on track.
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Figure 8: (a) Random credence, (b) Dempster credence,
(c) Simplex credence

4.3.6 Double Environment : Variance Voting. Figures 9(a),
9(b) and 9(c) represent the agent’s choice preference in dou-
ble environment using the variance voting method with
random credence, Dempster credence, and simplex cre-
dence, respectively. Figure 9(a) represents the preference
of the agent with random credence. From the graph we can
see that the agent choose to switch till 60% of credence in
deontology and from 60% to 100% of credence in deontol-
ogy the agent choose to nothing over switch irrespective
of number of people on tracks. The Figure 9(b) represents
the preference of the agent using Dempster credence. From
the graph, we can observe that the agent chooses to switch
when the credence in deontology is around 50%, regardless
of the number of people on the track. The agent changes
its preference to doing nothing when the credence in de-
ontology ranges from 50% to 100%. From Figure 9(c) we
can observe that the agent with simplex credence always
preferred to switch.
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Figure 9: (a) Random credence, (b) Dempster credence,
(c) Simplex credence
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Figure 10: (a) Random credence, (b) Dempster cre-
dence, (c) Simplex credence

4.3.7  Guard Environment : Nash Voting. Figures 10(a), 10(b)
and 10(c) represent the preference of agent with Nash vot-
ing using random, Dempster and simplex credence. From
Figure 10(a) we can observe that there is a correlation be-
tween the number of people on track and choice of the
agent until the credence in deontology is around 50%. As
the number of people increase from 1-10 the the agent
choose to lie only. Once the credence in deontology in-
creases more than 40% the agent changes its preference
to nothing and this action continues till the credence in
deontology is 100%. From Figure 10(b), which represents
the preference of the agent with Dempster credence, we
observe a correlation between the number of people on
the track and the agent’s preference. However, this correla-
tion is only noticeable when the credence is less than 40%.
As the credence increases beyond 40%, the agent changes
its preference to doing nothing, maintaining this prefer-
ence until 100% credence. In Figure 10(c), we see that the
agent chooses to do nothing when there are fewer than 3
people on the track, regardless of the credence in deontol-
ogy. When the number of people on the track is greater
than 4, the agent chooses to push instead of doing nothing.
This preference is consistent across different levels of cre-
dence. However, when the number of people on the track
is around 3-4, the agent chooses to lie, irrespective of the
credence in deontology.

om N W s U e N oo S

N RO -]

E N W s Vo N oo

Nothing
. Lie Only

Nothing Nothing

== Lie Only

Number on tracks (X)
Number on tracks (X)
Number on tracks (X)

%  25%  50%  75% 100%
Credence in deontology

%  25% 50% 75% 100% 0%  25% 50%  75% 100%
Credence in deontology Credence in deontology

(@ (b) (©

Figure 11: (a) Random credence, (b) Dempster cre-
dence, (c) Simplex credence

4.3.8 Guard Environment : Variance Voting. The Figures
11(a), 11(b) and 11(c) represents the preference of agent
with variance voting using random, Dempster and simplex
credence. From Figure 11(a), we can see a correlation be-
tween the number of people and the choice made by the
agent. As the number of people increases, the agent’s pref-
erence to choose to lie continues, even when the credence
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increases up to 20%. However, when the credence in deon-
tology increases beyond 20%, we can see a switch in the
agent’s preference to do nothing, which continues until
the end. In Figure 11(b), representing the preference of the
agent with Dempster credence, we observe that the agent
prefers to lie only when the credence in deontology is less
than 25%. Once the credence increases beyond 25%, the
agent chooses to do nothing, continuing this preference
until 100%. From Figure 11(c), representing the agent’s
preference using simplex credence, we can observe that
the agent prefers doing nothing over lying or pushing
throughout the entire simulation.
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Figure 12: (a) Random credence, (b) Dempster cre-
dence, (c) Simplex credence

4.3.9 Doomsday Environment : Nash Voting. Figures 12(a),
12(b) and 12(c) represent the preference of the agent with
Nash voting using random credence, Dempster credence
and simplex credence. From the figures below, it is clear
that the agent always preferred to switch throughout, re-
gardless of the credence and number of people on the track.
The same preference is observed in all three cases with
random, Dempster, and simplex credence.
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Figure 13: (a) Random credence, (b) Dempster cre-
dence, (c) Simplex credence

4.3.10 Doomsday Environment : Variance Voting. Figures
13(a), 13(b) and 13(c) represent the preference of the agent
with variance voting using random, Dempster and sim-
plex credence. From Figure 13(a), which represents the
agent’s preference with random credence, we can see that
the agent consistently chose to switch over doing nothing
or selecting the doomsday option. This preference remains
constant until the credence in deontology reaches 95%.
However, the agent changes its preference when the num-
ber of people on the track is less than 5, but with a credence
greater than 95%. The agent’s preference was similar in

a doomsday scenario when using Dempster and Simplex
credence, as shown in Figures 13(b) and 13(c). The agent
preferred switch over nothing and the doomsday option
throughout the simulation.

5 DISCUSSION

The preference for a moral theory depends on the cre-
dence generated. With random credence, the agent’s per-
formance is unstable, whereas with Dempster credence,
the agent’s performance is uniform and better than with
random credence. The agent using the simplex credence
performs better than the agent using random and Demp-
ster credence. This can be observed from Figure 5(c), where
the maximum average reward value gained by the utilitar-
ian agent using simplex credence is -4, while the agents
using random and Dempster credence gained -40 (see Fig-
ure 5(a)) and -10 (see Figure 5(b)), respectively.

5.1 Key Scientific Insights

From the analysis of agent preferences, it is evident that the
agent using simplex credence consistently outperformed
the agents using random credence and Dempster credence
by consistently choosing the option that saves the greatest
number of people.

o This preference is clearly demonstrated in the clas-
sic environment with both voting methods, where
the agent consistently preferred to switch over do-
ing nothing (see Figures 6 , 7).

e In the double environment, when the agent used
Nash voting, the agent using simplex credence only
preferred to push over doing nothing and switch. In
contrast, when the agent used variance voting, the
agent preferred to switch over push and nothing. In
both cases, the agent’s preference save more num-
ber of people when compared to agents preference
using random and Dempster credence.

o The superiority of simplex credence is further high-
lighted in the guard environment with Nash voting.
The agent preferred to do nothing when the num-
ber of people on the track was less than 2, and to
push when there were 3 or more people on the
track. Pushing the large man onto the track re-
quires the agent to first lie to the guard. In order to
save more people, the agent chose to push. When
the agent used variance voting with simplex cre-
dence, the agent preferred to do nothing over lying
only and pushing. In contrast, the agents with ran-
dom credence and Dempster credence opted for
lying only without pushing the large man when
the credence in deontology was less than 20%. This
demonstrates the consistency of the agent using
simplex credence.

e In the doomsday environment with both voting
methods, all three agents showed similar prefer-
ences. However, the agent using random credence
with variance voting changed its preference to do



nothing from switch when the credence in deon-
tology was around 95% and the number of people
on the track was less than 5. Where as, the agents
using Dempster credence and simplex credence
were consistent in choosing switch from start to
end. From the performance analysis of the agents,
it is evident that using simplex credence instead of
random credence boosted the agent’s performance
in saving a greater number of people in most envi-
ronments.

Using simplex credence consistently increased the agent’s
efficiency in saving more people, with no signs of integra-
tion issues affecting the agent’s performance.

6 CONCLUSION

We propose two different approaches to deal with the prob-
lem of random credence. In the first approach, we combine
random credence with the Dempster-Shafer technique to
stabilize the agent’s performance. In the second approach,
we introduce a novel framework that generates credence
from moral theories using the simplex algorithm and the
Dempster-Shafer technique collectively. From the prefer-
ences of agents in different environments, we observe that
agents using Dempster and simplex credence consistently
choose the option that saves more people. This can be seen
in the results, where the agent using simplex credence
incurs considerably less penalty compared to the agent us-
ing Dempster credence, indicating a preference for saving
more people. From the results it is evident that the choice
preference of agent using Dempster credence is uniform
where the agent using simplex preferred the choice which
saved more number of people. In future work, we plan to
incorporate the dynamics of the agent’s environment into
the framework to calculate credence.

LIMITATIONS

One limitation of our study is that we observed the selec-
tion of only one theory by the agents, reflecting a utilitar-
ian behavior. While this aligns with the simplicity of our
model, it may not capture the complexity of real-world
ethical decision-making, which often involves considering
multiple ethical theories simultaneously. Another limita-
tion is that the agent’s behavior using simplex credence
changed when the voting method was switched from Nash
voting to variance voting this is observed mainly in double
and guard environment. This behavior change suggests
that the choice of voting method can influence the agent’s
decision-making process. Additionally, we found that the
agent’s behavior with Nash voting was generally better
than with variance voting.
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