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Magnetic tunnel junctions (MTJs), that consist of two ferromagnetic electrodes separated by an insulating barrier layer, have 

non-trivial fundamental properties associated with spin-dependent tunneling. Especially interesting are fully crystalline MTJs 

where spin-dependent tunneling is controlled by the symmetry group of wave vector. In this work, using first-principles quantum-

transport calculations, we explore spin-dependent tunneling in fully crystalline SrRuO3/SrTiO3/SrRuO3 (001) MTJs and predict 

tunneling magnetoresistance (TMR) of nearly 3000%. We demonstrate that this giant TMR effect is driven by symmetry matching 

(mismatching) of the incoming and outcoming Bloch states in the SrRuO3 (001) electrodes and evanescent states in the SrTiO3 

(001) barrier. We argue that under the conditions of symmetry-controlled transport, spin polarization, whatever definition is used, 

is not a relevant measure of spin-dependent tunneling. In the presence of diffuse scattering, however, e.g. due to localized states in 

the band gap of the tunnel barrier, symmetry matching is no longer valid and TMR in SrRuO3/SrTiO3/SrRuO3 (001) MTJs is 

strongly reduced. Under these conditions, the spin polarization of the interface transmission function becomes a valid measure of 

TMR. These results provide an important insight into understanding and optimizing TMR in all-oxide MTJs.  

1. Introduction 

Spintronics is an active research field that encodes information 

in electronic devices using spin degrees of freedom [ 1 ]. A 

commonly used spintronic device is a magnetic tunnel junction 

(MTJ) which consists of two ferromagnetic metal electrodes 

separated by a non-magnetic tunnel barrier [2-6]. Tunneling 

magnetoresistance (TMR) is the key functional property of MTJs. 

TMR is characterized by a change in resistance of the device 

when the relative magnetization of the two ferromagnetic 

electrodes is changed from parallel to antiparallel [ 7 ]. This 

resistance change serves as an ON/OFF ratio in a spintronic 

device and can reach several hundred percent, providing 

sufficient accuracy to read-out the magnetization state. The 

substantial TMR effect in MTJs enables them to be used as 

building blocks of magnetic random-access memories (MRAMs) 

for data storage and processing [8]. Recently, the concept of 

TMR has been expanded to antiferromagnetic tunnel junctions 

(AFMTJs) where antiferromagnets serve as metal electrodes [9-

17] and two-dimensional MTJs with ultrathin van der Waals 

layers [18-25].      

The TMR effect occurs in MTJs due to spin-polarized 

tunneling which is controlled by magnetization of the two FM 

electrodes. This can be empirically quantified by Julliere’s 

formula [2], 𝑇𝑀𝑅 =
2𝑝1𝑝2

1−𝑝1𝑝2
, where  𝑝1  and  𝑝2  are spin 

polarizations of the two ferromagnetic electrodes. Based on this 

formula, FM electrodes with a greater spin polarization support 

a larger TMR, and TMR is expected to be a function the transport 

spin polarization. Quantitatively, however, the spin polarization 

is not uniquely defined and can be referred either to the uneven 

number of up-spin and down-spin electrons at the Fermi energy 
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or to the unbalanced (spin-polarized) currents carried by 

electrons with opposite spin orientations [26]. Even in the latter 

case, the transport spin polarization appears to be different as 

determined from spin-dependent tunneling [3] or ballistic 

transmission [27,28] experiments.  

Furthermore, in crystalline MTJs where the transverse wave 

vector is conserved in the tunneling process, an accurate 

description of spin-dependent transport is expected to consider 

symmetries of the incoming and outcoming Bloch states in the 

electrodes and evanescent states in the barrier [29]. In particular, 

matching of the majority-spin 1-symmetry band in the Fe (001) 

ferromagnet to the 1-symmtery evanescent state in the MgO 

(001) insulator is responsible for a sizable positive spin 

polarization and giant TMR in Fe/MgO/Fe (001) MTJs [30, 31]. 

Also, symmetry arguments explain a large negative spin 

polarization of electrons tunneling from ferromagnetic bcc Co 

(001) through SrTiO3 (001) tunneling barrier [32] consistent 

with the experimental observations [33,34]. It is now commonly 

accepted that the transport spin polarization of MTJs is 

controlled by the ferromagnet/barrier pair rather than the 

ferromagnet alone, which can be understood in terms of the 

interface transmission function [35,36].    

While these concepts are now well understood, there are not 

many experiments, apart from Fe/MgO/Fe (001) MTJs, where 

full crystallinity of MTJs is achieved and where the notions of 

symmetry matching could be explicitly verified for spin-

dependent tunneling. Among different materials that can be 

utilized in MTJs, complex oxide ferromagnets and insulators are 

relevant because they can be grown epitaxially forming a single-

crystalline full-oxide MTJ. For example, using SrTiO3 (STO) as 

an insulating tunnel barrier, a TMR of 1800% at T = 4°K was 
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demonstrated in LSMO/STO/LSMO MTJs [ 37 ], where a 

nominally half-metallic La2/3Sr1/3MnO3 (LSMO) was used as an 

oxide electrode ferromagnet. 

Among other magnetic oxides, SrRuO3 (SRO) is interesting 

because it represents an itinerant ferromagnet that has perovskite 

structure with well-defined stoichiometry. SRO has a bulk Curie 

temperature of 160 K [38] with magnetism driven by Ru 4d 

electrons [39]. SRO has been extensively investigated [40], but 

recently gained an increased attention due to the emergent 

magnetic phenomena, such as anomalous and topological Hall 

effects, Weyl fermions, and topological spin textures associated 

with it [41-45]. Also, it represents a practical material to study 

current-induced magnetization switching [46] and perpendicular 

magnetic anisotropy tailored by the substrate [ 47 ]. In 

combination with perovskite oxide insulators, SRO can be used 

to explore the fundamental physics of spin-dependent tunneling 

in fully crystalline MTJs. For example, based on first-principles 

calculations, it was predicted that using ferroelectric BaTiO3 as 

a tunnel barrier and SRO as electrodes in an MTJ leads to 

coexistent tunneling magnetoresistance and electroresistance 

effects [48]. Experimentally, STO was employed as a tunnel 

barrier in several experiments. Earlier studies have demonstrated 

small negative TMR effects ~2% in SRO/STO/LSMO MTJs [49], 

indicating a negative spin polarization of SRO of about 10% 

consistent with the preceding experimental measurements based 

on the Meservey-Tedrow technique [3] that utilized tunneling 

from SRO through STO to a superconductor [50]. Very recently, 

fully crystalline all-oxide SRO/STO/SRO MTJs have been 

grown and demonstrated much larger TMR ratios up to 25% [51], 

indicating a much higher spin polarization (~34% according to 

Julliere’s formula) of SRO compared to that measured 

previously [49, 50]. These results indicate that the physics of 

spin-dependent tunneling in SRO/STO/SRO MTJs is not fully 

understood and requires further elucidation.     

 In this work, using first-principles quantum-transport 

calculations, we explore spin-dependent tunneling in fully 

crystalline SRO/STO/SRO (001) MTJs and predict TMR of 

nearly 3000%. We demonstrate that this giant TMR effect is 

driven by symmetry matching (mismatching) of the incoming 

and outcoming Bloch states in the SRO (001) electrodes and 

evanescent states in the STO (001) barrier. We argue that under 

the conditions of symmetry-controlled transport, spin 

polarization, whatever definition is used, is not a relevant 

measure of spin-dependent tunneling. In the presence of diffuse 

scattering, however, e.g. due to localized states in the band gap 

of the tunnel barrier, symmetry matching is no longer valid and 

TMR in SRO/STO/SRO (001) MTJs is strongly reduced. Under 

these conditions, the spin polarization of the interface 

transmission function becomes a valid measure of TMR. These 

results provide an important insight into understanding and 

optimizing TMR in all-oxide MTJs. 

2. Methodology 

The electronic structure calculations are carried out based on 

density functional theory (DFT) using the plane-wave projected 

augmented wave (PAW) method [52] as implemented in Vienna 

ab initio Simulation Package (VASP) [ 53 , 54 ]. We use the 

Perdew-Burke-Ernzerhof (PBE) [ 55 ] exchange-correlation 

functional within the generalized gradient approximation (GGA).  

For the self-consistent calculations, a plane-wave basis set with 

a plane-wave cutoff of 500 eV and a k-point mesh of 8×8×8 is 

used for the bulk cubic SRO and STO. Experimentally measured 

lattice constants of a = 3.952 Å and 3.905 Å are assumed in the 

calculations for cubic bulk SRO [56] and STO [57], respectively. 

We consider an SRO/STO/SRO (001) heterostructure, consisting 

of 3 unit cells of SRO (001) on each side separated by 4 unit cells 

of STO (001). The in-plane lattice constant of the heterostructure 

is fixed to the lattice parameter of the cubic STO. A k-point mesh 

of 8×8×1 is used for self-consistent electronic structure 

calculations. The structural optimization is carried out using 

VASP maintaining the symmetry of the heterostructure. The 

positions of the atoms are relaxed toward equilibrium until the 

Hellman–Feynman forces become less than 0.01 eV/Å. For the 

 

FIG. 1 (a) Electronic band structure of bulk SrRuO3 plotted along the 

high symmetry lines in the Brillouin zone for majority- (red lines) and 

minority- (blue lines) spin electrons. Dominant orbital contributions are 

indicated. (b,c) Fermi surfaces of the majority (b) and minority (c) spin 

of bulk SrRuO3. Colors are used to aid the eye in delineating different 

sheets and different sides of the same sheet of the Fermi surface. High-

symmetry points in the Brillouin zone are indicated. 
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Fermi surface calculations, we use the Wannier interpolation 

technique as implemented in the Wannier90 package [58]. A 

very dense k-point mesh of 100×100×100 is used to calculate the 

Fermi surface.  

 Calculations of the transport properties are performed using 

the nonequilibrium Green’s function formalism (DFT+NEGF 

approach) [59], as implemented in Synopsys QuantumATK [60], 

using the atomic structures relaxed by VASP. In QuantumATK, 

the nonrelativistic Fritz-Haber-Institute (FHI) pseudopotentials 

are employed with a single-zeta-polarized basis, and a cut-off 

energy is set to 130 Ry. K-point meshes of 13×13×13 are used 

for bulk SRO and STO and 13×13×151 for SRO/STO/SRO 

MTJs. Transmission functions are calculated using k-point 

meshes of 401×401 in the two-dimensional Brillouin zone 

(2DBZ) of SRO and SRO/STO/SRO based MTJs.  

Figures are plotted using VESTA [61] (atomic structures), 

XCrySDen [62] (Fermi surfaces), Python [63] (Figs. 3(b) and 

4(c)) and gnuplot [64] (all other figures).    

3. Spin-dependent properties of bulk SrRuO3 

Figure 1(a) shows the electronic band structure of bulk SRO, 

indicating itinerant ferromagnetic ground state with the 

exchange splitting of majority- and minority-spin bands of about 

0.7eV. Owing to the strong delocalization of the Ru-4d 

electronic wave function, a large crystal field splitting at Ru-4d 

site stabilizes the low spin state. The calculated magnetic 

moment of 1.14 µB at the Ru sites is consistent with low spin 

state of the Ru4+  in agreement with the earlier studies [65,66]. 

Figures 1(b) and 1(c) show the majority- and minority-spin 

Fermi surfaces of bulk SRO, each of them having several sheets 

[indicated by color in Figs. 1(b,c)]. An orbital analysis of the 

electronic states at the Fermi surface reveals that majority-spin 

states are mainly composed of the Ru 𝑒𝑔 orbitals.  They are split 

into the 𝑑𝑥2−𝑦2  states forming a band that represents a cross 

pattern of three corrugated tubes (the yellow surface in Fig. 1(b)) 

and the 𝑑𝑧2 states forming a nearly spherical Fermi surface sheet 

of small radius [the green surface in Fig. 1(b) inside the tube]. 

On the contrary, the minority-spin states are mainly composed 

of the Ru 𝑡2𝑔 orbitals. They are split into the 𝑑𝑥𝑧 and 𝑑𝑦𝑧 states 

that form a nearly double-degenerate spherical Fermi surface 

sheet [the magenta surface in Fig. 1(c)] and the 𝑑𝑥𝑦  states 

producing a cross pattern of three tubes [the blue surface in Fig. 

1(c)]. 

The Fermi surface determines the number of conduction 

channels, i.e. the number of propagating Bloch states, available 

for electronic transport. That is determined by     

𝑁∥
𝜎(𝑘⃗ ∥) =

ℏ

2
∑∫|𝑣𝑛𝑧

𝜎 |
𝜕𝑓

𝜕𝐸𝑛
𝜎(𝑘⃗ )

𝑑𝑘𝑧

𝑛

 ,              (1) 

where 𝜎  denotes the spin index (↑  or ↓) , 𝑘⃗ = (𝑘⃗ ∥, 𝑘𝑧)  is the 

wave vector in the Brillouin zone, 𝑘⃗ ∥ = (𝑘𝑥, 𝑘𝑦)   is the 

transverse wave vector, 𝐸𝑛
𝜎 is energy of band n, 𝑣𝑛𝑧

𝜎 =
1

ℏ

𝜕𝐸𝑛
𝜎

𝜕𝑘𝑧
 is 

the band velocity along the transport z direction, and f is the 

Fermi distribution function. Figures 2(a) and 2(b) show the 

calculated number of conduction channels, 𝑁∥
↑  and 𝑁∥

↓ ,  for 

majority and minority spins, respectively, as a function of  𝑘⃗ ∥  in 

the 2D Brillouin zone (2DBZ) of SRO (001). The distributions 

of 𝑁∥
↑ and 𝑁∥

↓ reflect the projection of the spin-dependent Fermi 

surfaces on the plane perpendicular to the transport direction (i.e., 

 
FIG. 2 (a,b) The number of conduction channels as a function of 𝑘⃗ ∥ in 

the 2D Brillouin zone for majority (a) and minority (b)  spins at the 

Fermi energy 𝐸𝐹. High-symmetry points are indicated. (c,d) Projection 

of the majority- (c) and minority- (d) Fermi surface on the (001) plane. 

(e) Distribution of 𝑘⃗ ∥-dependent spin polarization 𝑝𝑁
∥ (𝑘⃗ ∥) in the 2D 

Brillouin zone at 𝐸𝐹 .Colors are used to delineate different Fermi 

surface sheets. (f) The spin polarization of the total number of 

conduction channels, 𝑝𝑁 , and the spin polarization of the interface 

transmission function, 𝑝𝑇, as functions of energy. Vertical dashed line 

indicates the Fermi energy.   
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[001] in our case), where each Fermi surface sheet adds one 

conduction channel at a given 𝑘⃗ ∥ if its projection to this point is 

non-vanishing [Figs. 2(c,d)]. As a result, for the majority spins, 

we have 𝑁∥
↑ = 1 in the regions of the 2DBZ where one of the two 

non-overlapping Fermi surface sheets, corresponding to the  

𝑑𝑥2−𝑦2 and 𝑑𝑧2 states, is projected on the (001) plane. For the 

minority spins, we find 𝑁∥
↓  = 2 around the Γ̅ point due to the 

contribution from the nearly double-degenerate 𝑑𝑥𝑧  and 𝑑𝑦𝑧 

bands, and 𝑁∥
↓ = 3 at the edge of these Fermi surface sheets due 

to their overlap with the 𝑑𝑥𝑦  bands. The latter are projected on 

the (001) plane at the periphery of the 2DBZ around the  X̅  and 

Y̅ points creating regions with 𝑁∥
↓ = 1. 

Due to the spin-dependent Fermi surface of SRO [Figs. 1(b) 

and 1(c)], the number of conduction channels is spin polarized, 

i.e. 𝑁∥
↑  and 𝑁∥

↓  have different values and distribution in the 

2DBZ of SRO (001). We therefore define a 𝑘⃗ ∥-dependent spin 

polarization 𝑝𝑁
∥ (𝑘⃗ ∥) =

𝑁∥
↑−𝑁∥

↓

𝑁∥
↑+𝑁∥

↓ , reflecting the relative difference 

between 𝑁∥
↑ and 𝑁∥

↓ at each 𝑘⃗ ∥. As seen from Figure 2(e), there 

are regions where 𝑁∥
↑ ≠ 0, while 𝑁∥

↓ = 0, or vice versa, resulting 

in the full spin polarization, 𝑝𝑁
∥ = ±1  (±100%) (the blue- and 

red-colored areas). There are also regions around the X̅  and Y̅ 

points of the 2DBZ where the spin polarization is zero [the 

yellow-colored areas in Fig. 2(e)].  

Figure 2(f) shows the total spin polarization of the number 

of conduction channels, 𝑝𝑁 =
𝑁↑−𝑁↓

𝑁↑+𝑁↓,  as a function of energy, 

where 𝑁𝜎  is the total number of conduction channels, 𝑁𝜎 =
1

(2𝜋)2
∫𝑁∥

𝜎(𝑘⃗ ∥)𝑑𝑘⃗ ∥, We find the spin polarization of about −62% 

at the Fermi energy (𝐸𝐹). The negative sign of 𝑝𝑁 qualitatively 

reflects a larger weight of minority spin states at the Fermi 

energy and agrees with the experimental result [50]. We note, 

however, that the calculated value of 𝑝𝑁  does not take into 

account the effect of a tunnel barrier that is normally used in the 

Meservey-Tedrow technique and therefore is not expected to 

have quantitative agreement with the experiment of Ref. [50].  

A more relevant to the calculated 𝑝𝑁 is a spin polarization 

that is measured using point contact Andreev reflection (PCAR) 

spectroscopy [27,28]. This technique does not require a tunnel 

barrier and measures the spin polarization of a ferromagnetic 

metal associated with its ballistic conductance [67]. It should be 

noted, however, the PCAR technique lacks the ability to 

determine the sign of spin polarization (in contrast to the 

Meservey-Tedrow techniques), which is obviously a drawback. 

The ballistic conductance 𝐺𝜎 per area and spin is related to the 

number of conduction channels 𝑁∥
𝜎(𝑘⃗ ∥)  integrated over the 

transverse momenta:  

𝐺𝜎 =
𝑒2

ℏ

1

(2𝜋)2
∫𝑁∥

𝜎(𝑘⃗ ∥)𝑑𝑘⃗ ∥  .                        (2) 

Hence, the calculated 𝑝𝑁 provides a proper quantitative measure 

of the spin polarization of SrRuO3 obtained in an PCAR 

experiment. According to the available PCAR data, the 

measured spin polarization of SrRuO3 ranges from 50 to 60% 

[68-71], which is in excellent agreement with the calculated 

value |𝑝𝑁| = 62%. 

As seen from Figure 2(f), the absolute value of 𝑝𝑁 is 

gradually reducing with the decrease of energy and changes sign 

at around  𝐸 = 𝐸𝐹 − 0.45 eV. This behavior is largely follows 

from the reduced size of the minority-spin Fermi surface area 

associates with the Ru t2g bands, and the appearance of the 

majority-spin t2g bands at lower energies [Fig. 1(a)]. 

4. Spin-dependent tunneling in SRO/STO/SRO MTJs  

Next, we construct an SRO/STO/SRO (001) MTJ where SRO 

(001) serves as ferromagnetic electrodes and STO (001) as an 

insulating tunnel barrier. Figure 3(a) shows the atomic structure 

 

FIG. 3 (a) Atomic structure of SrRuO3/SrTiO3/SrRuO3 MTJ. (b) 

Layer-dependent density of states (DOS) across the MTJ. The Fermi 

energy (EF) is indicated by the horizontal dashed line. (c,d) Calculated 

total transmission of the MTJ for the parallel and antiparallel 

magnetization states, TP and TAP, respectively, (c) and TMR (d) as a 

functions of energy.  In (d)  𝑇𝑀𝑅1 =
𝑇𝑃−𝑇𝐴𝑃

𝑇𝐴𝑃
, where TP and TAP are 

plotted in (c), whereas 𝑇𝑀𝑅2 =
2𝑝𝑇

2

1−𝑝𝑇
2, where 𝑝𝑇 is the spin polarization 

of the ITF plotted in Fig. 2(f). 
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of the SRO/STO/SRO (001) heterostructure that is structurally 

optimized, as described in Sec 2. Our DFT calculations find that 

a wide band gap of STO is well maintained across the junction 

and the Fermi energy is located well inside the band gap [Fig. 

3(b)], thus providing conditions for direct electron tunneling. 

This heterostructure serves as a scattering region connected to 

two semi-infinite SRO (001) electrodes for our calculations of 

the transport properties of SRO/STO/SRO (001) MTJ. We 

calculate spin-resolved transmissions for parallel magnetization 

(𝑇𝑃 = 𝑇𝑃
↑ + 𝑇𝑃

↓) and antiparallel magnetization (𝑇𝐴𝑃 = 𝑇𝐴𝑃
↑ + 𝑇𝐴𝑃

↓ , 

where 𝑇𝐴𝑃
↑ = 𝑇𝐴𝑃

↓  by symmetry) of the SRO electrodes in the 

MTJ. Figure 3(c) shows the results of this calculation as a 

function of energy 𝐸. It is seen that for all energies around the 

Fermi energy and above, 𝑇𝑃 is much larger than 𝑇𝐴𝑃, resulting is 

a very large TMR ratio 𝑇𝑀𝑅 =
𝑇𝑃−𝑇𝐴𝑃

𝑇𝐴𝑃
. At 𝐸 = 𝐸𝐹, we obtain a 

giant TMR of more than 2900 %.  With decreasing the energy, 

the TMR ratio becomes even larger, reaching the maximum of 

5630% at 𝐸 = 𝐸𝐹 − 0.25 eV. At lower energies, however, it 

drops down to about 50% at 𝐸 = 𝐸𝐹 − 0.5 eV.  

The predicted giant TMR effects in an SRO/STO/SRO (001) 

MTJ can be explained by considering the symmetry group of 

wave vector. In crystalline MTJs, where the transverse wave 

vector 𝑘⃗ ∥ is conserved during tunneling, the wave functions of 

the MTJ belong to the symmetry group of the wave vector. This 

leads to the requirement of symmetry matching between the 

incoming and outgoing Bloch states in the electrodes and the 

evanescent states in the barrier. In the following, we therefore 

analyze the symmetry of the propagating Bloch states in SRO 

(001) and the evanescent states in STO (001).  

In bulk SRO and STO, the cubic crystal field splits the 3d-

orbitals of the Ru and Ti atoms into higher energy two-fold 

degenerate 𝑒𝑔 bands (formed of the 𝑑𝑥2−𝑦2 and 𝑑𝑧2 orbitals) and 

lower-energy three-fold degenerate 𝑡2𝑔  bands (formed of 𝑑𝑥𝑦 ,  

𝑑𝑥𝑧 , and 𝑑𝑦𝑧  orbitals). In the SRO/STO/SRO (001) MTJ, the 

symmetry is lowered from cubic to tetragonal thus lifting the 

partial degeneracy of the 𝑡2𝑔  and 𝑒𝑔  bands: the 𝑡2𝑔  band splits 

into a doubly degenerate (𝑑𝑥𝑦,  𝑑𝑥𝑧) band and a non-degenerate 

𝑑𝑥𝑦  band and the 𝑒𝑔 band splits into non-degenerate  𝑑𝑥2−𝑦2 and 

𝑑𝑧2  bands. Along the [001] direction (denoted by Δ ) of the 

layered perovskite structure, the symmetry group of the wave 

vector is equivalent to that of the 𝐶4𝑣 point group and has four 

irreducible representations: Δ1(𝑧
2), Δ2(𝑥𝑦), Δ′

2(𝑥
2 − 𝑦2), and 

Δ5(𝑥𝑧, 𝑦𝑧) . The band structure of SRO along the Γ  - Z  

symmetry line [Fig. 4(a)] indicates that there are two bands 

crossing the Fermi energy: the majority-spin band of the Δ1 

symmetry and the doubly degenerate minority-spin band of the 

Δ5 symmetry.  

For efficient transmission across the STO barrier layer, the 

symmetry of these propagating Bloch states in SRO (001) needs 

to be matched to the symmetry of low-decay-rate evanescent 

states in STO (001). The evanescent states appear within the 

band gap of STO, characterized by wave-functions that decay 

exponentially with a rate κ, which is determined by the complex 

band structure [29-32].  Figure 4 (b) shows the complex bands 

of STO (001) with the lowest decay rates calculated at the Γ̅ 

point (𝑘∥ = 0) of the 2DBZ. These complex bands represent a Δ5 

doublet and a Δ1 singlet. The wave-function symmetry must be 

maintained across the whole crystalline MTJ. As a result, at the 

Γ̅ point, the majority-spin states of SRO decay inside the barrier 

according to the Δ1 decay rate of STO, whereas the minority-spin 

states of SRO decay according to the Δ5 decay rate, giving rise 

to a perfect correspondence between the band symmetry and spin.  

These symmetry constraints lead to a perfect spin-valve 

effect at the Γ̅ point. For the parallel-aligned MTJ, the majority-

spin states of the Δ1 symmetry and the minority-spin states of the 

Δ5 symmetry are efficiently transmitted from the left to the right 

SRO electrode across the STO barrier. In contrast, for the 

antiparallel-aligned MTJ, majority-spin Δ1 states of the left 

electrode cannot be transmitted to the minority-spin Δ5 states of 

the right electrode and vice versa. Thus, transmission of the 

antiparallel-aligned MTJ is expected to be zero at the Γ̅ point. 

 

FIG. 4 (a) Spin-polarized bands along the [001] direction for SrRuO3. 

Majority-spin (solid) and minority-spin (dashed) bands near the Fermi 

energy are labeled according to their symmetry. The Fermi energy is 

set to zero (solid black line). The dotted black lines indicate E=EF -0.2 

eV (the upper line) and E = EF − 0.4 eV (the lower line). (b) Complex 

bands of SrTiO3 with two lowest decay rates, calculated at the Γ̅  point. 

(c) 𝑘∥-resolved decay rate calculated at Fermi energy of the MTJ. (d-f)  

𝑘∥-resolved transmission at E = EF for majority- (d) and minority- (e) 

spin electrons for parallel-aligned MTJ and for either-spin electrons 

(𝜎 = ↑ or ↓) for antiparallel-aligned MTJ (f).  
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To explicitly demonstrate these symmetry-driven features, 

we decompose the total transmission at EF into the contributions 

from each transverse wave vector 𝑘⃗ ∥  and plot 𝑘⃗ ∥ -resolved 

transmissions 𝑇𝑃
↑(𝑘⃗ ∥) , 𝑇𝑃

↓(𝑘⃗ ∥) , and 𝑇𝐴𝑃
𝜎 (𝑘⃗ ∥)  (𝜎 = ↑ or ↓  ) in 

Figures 4(d-f), respectively. Note that 𝑇𝐴𝑃
↑ (𝑘⃗ ∥) = 𝑇𝐴𝑃

↓ (𝑘⃗ ∥)  by 

symmetry. As is evident from the Figure, at the Γ̅ point (𝑘∥ = 0), 

𝑇𝑃
↓(𝑘⃗ ∥) ≫ 𝑇𝑃

↑(𝑘⃗ ∥) , and 𝑇𝐴𝑃
𝜎 (𝑘⃗ ∥) = 0 . The latter is due to the 

symmetry mismatch between the Δ1 majority-spin states of the 

left electrode and the minority-spin Δ5 states in the right 

electrode. The former is due to the much smaller Fermi wave 

vector of the majority-spin 𝑑𝑧2 states compared to that of the 𝑑𝑥𝑧 

and 𝑑𝑦𝑧 states along the Γ - Z  symmetry line [Fig. 1 (b,c)].   

While this symmetry constraint is not explicitly satisfied 

away from the Γ̅ point in the 2DBZ, it is seen from Figures 4(e) 

and 4(f) that 𝑇𝑃
↓(𝑘⃗ ∥) remains much larger that 𝑇𝐴𝑃

𝜎 (𝑘⃗ ∥) around 

the Γ̅ point, producing a sizable contribution to the overall TMR.  

It is notable that the transmission distributions in Figures 4(d-f) 

form cross patterns with the largest contributions along the 

vertical and horizontal midlines in the 2DBZ. This feature is 

explained by the calculated 𝑘⃗ ∥-resolved lowest decay rates of the 

evanescent states in STO (001). As seen from Figure 4(c), at the 

Fermi energy, the distribution of the lowest decay rates in the 

2DBZ has a pronounced cross pattern resembling that in the 

transmission distributions in Figures 4 (d-f).  

Next, we elucidate the origin of the TMR enhancement at 

energies below the Fermi energy down to 𝐸 = 𝐸𝐹 − 0.25 eV 

followed by a significant drop in TMR at 𝐸 = 𝐸𝐹 − 0.3 eV [Fig. 

3(d)]. While the energy dependence of TMR could not be 

explicitly measured, it is relevant to a voltage dependence of 

TMR and, more importantly, provides important insights into the 

physics of spin-dependent tunneling. Figures 5 (a-c) show the 

calculated 𝑘⃗ ∥-resolved transmissions at 𝐸 = 𝐸𝐹 − 0.2 eV, where 

we observe significant enhancement of TMR up to about 4000% 

[Fig. 3(d)]. As seen from by the upper dotted line in Figure 4(a), 

indicating 𝐸 = 𝐸𝐹 − 0.2 eV, there are two bands crossing this 

energy along the Γ - Z line: the majority-spin Δ1 band and the 

minority-spin Δ5 band. These bands are the same as those that 

appear at the Fermi energy, and hence the symmetry selection 

rule remains unchanged. However, with reducing the energy 

closer to the bottom the majority-spin Δ1 band and to the nearly 

flat majority-spin Δ′
2 band [Fig. 4(a)], the majority-spin Fermi 

surface shrinks, reducing the area of available conducting 

channels for electron tunneling in the antiparallel configuration 

of MTJ. This substantially reduces 𝑇𝐴𝑃
𝜎 (𝑘⃗ ∥) and hence enhances 

TMR. Further reduction of energy down to 𝐸 = 𝐸𝐹 − 0.4 eV 

[the lower dotted line in Figure 4(a)] fully eliminates the 

majority-spin Δ1  and Δ′
2  bands from those contributing to 

transmission. Instead, a majority-spin Δ5  band appears at this 

energy and participates in the tunneling process. This band has 

the same symmetry as the minority-spin Δ5 band, thus lifting the 

spin-symmetry mismatch for the antiparallel-aligned MTJ. As a 

result, and as is evident from Figures 5(d-f), we observe a sizable 

transmission at the Γ̅ point and around it for both the 𝑇𝑃
↑(𝑘⃗ ∥)  and  

𝑇𝐴𝑃
𝜎 (𝑘⃗ ∥). This leads to a significant reduction of TMR down to 

about 110% at this energy.  

5. Spin polarization and its relevance to TMR   

Next, we discuss transport spin polarization associated with the 

spin-dependent tunneling in SRO/STO/SRO (001) MTJs and its 

relevance to TMR. As we have already mentioned, the spin 

polarization of the number of conduction channels 𝑝𝑁 does not 

take into account the effect of the tunnel barrier and is more 

relevant to the spin polarization measured using PCAR 

spectroscopy [27,28]. The quantity that is normally considered 

as relevant to TMR is the spin polarization of the interface 

transmission function (ITF) that includes the ferromagnet/barrier 

pair rather than the ferromagnet alone [35,36].  Explicitly, the 

ITF is proportional to the square of the amplitude of the 

evanescent barrier wavefunction, matched with the scattering 

state incident from a given electrode, in the middle of the tunnel 

barrier. If the tunneling current at a given transverse wavevector 

𝑘⃗ ∥ is dominated by a single evanescent barrier state, then the 𝑘⃗ ∥ 

-resolved transmission probability 𝑇𝜎(𝑘⃗ ∥ ) of the MTJ can be 

represented as a product of the ITFs 𝑡𝑖
𝜎(𝑘⃗ ∥ ) for the left (𝑖 = 1) 

and right (𝑖 = 2) electrodes [35, 36]: 

𝑇𝜎(𝑘⃗ ∥) = 𝑡1
𝜎(𝑘⃗ ∥)𝑡2

𝜎(𝑘⃗ ∥).                           (3) 

 

FIG. 5 (a-f)  𝑘∥-resolved transmission at 𝐸 = 𝐸𝐹 − 0.2 eV (a-c) and 

𝐸 = 𝐸𝐹 − 0.4  eV (d-f) for majority- (a,d) and minority- (b,e) spin 

electrons for parallel-aligned MTJ and for either-spin electrons (𝜎 = ↑

or ↓)  electrons for antiparallel-aligned MTJ (c,f).  
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This approximation becomes better with increasing barrier 

thickness, because tunneling states with larger decay rates are 

exponentially suppressed.  

In our case, the two electrodes are the same and hence the 

ITF can be obtained from 𝑇𝑃
𝜎(𝑘⃗ ∥), as follows    

       𝑡𝜎(𝑘⃗ ∥) =  √𝑇𝑃
𝜎(𝑘⃗ ∥).                            (4) 

The fact that transmission can be factorized according to Eq. (3) 

implies that transmission of the antiparallel-aligned MTJ can be 

obtained from 𝑡𝜎(𝑘⃗ ∥):  

                          𝑇𝐴𝑃
𝜎 (𝑘⃗ ∥) = 𝑡↑(𝑘⃗ ∥)𝑡

↓(𝑘⃗ ∥),                    (5)  

where 𝜎 =↑  or ↓.  Figures 6(a) and 6(b), respectively, show the 

𝑘∥-resolved majority- and minority-spin ITFs calculated using 

Eq. (4), and Figure 6(c) shows the 𝑘∥ -resolved 𝑇𝐴𝑃
𝜎 (𝑘⃗ ∥) 

calculated using Eq. (6) at 𝐸 = 𝐸𝐹 − 0.4 eV. Comparing Figure 

6(c) with Figure 5(f), we observe a reasonable agreement 

between the distributions of the transmission 𝑇𝐴𝑃
𝜎 (𝑘⃗ ∥)  in the 

2DBZ calculated explicitly [(Fig. 5(f)] and using the 

factorization of Eq. (5) [(Fig. 6(c)] at 𝐸 = 𝐸𝐹 − 0.4  eV. In 

contrast, as seen from Figures 6 (d-f), the same calculation 

performed at 𝐸 = 𝐸𝐹  reveals significant disagreement between 

the 𝑘∥ -resolved 𝑇𝐴𝑃
𝜎 (𝑘⃗ ∥)  calculated explicitly [(Fig. 4(f)] and 

using the factorization of Eq. (7) [(Fig. 6(f)] in terms of 𝑡𝜎(𝑘⃗ ∥) 

[Figs. 6(d,e)]. This difference between the results obtained for 

different energies (𝐸 = 𝐸𝐹 and 𝐸 = 𝐸𝐹 − 0.4) reflects a change 

in the transport mechanism as explained next.     

As we saw above, at energies 𝐸 ≤ 𝐸𝐹 − 0.3  eV, the 

tunneling transmission between SRO (001) electrodes across the 

STO tunnel barrier is determined by the majority- and minority-

spin bands that belong to the Δ5 symmetry. As a result, the only 

evanescent state in STO (001) that controls transmission (at the 

Γ̅ point and around it) also belongs to the Δ5 symmetry. There is 

largely no contribution from other evanescent states. This is the 

condition for the factorization [Eq. (3)] to be valid. Therefore, at 

energies below 𝐸 = 𝐸𝐹 − 0.3 eV, the spin-polarized tunneling 

in SRO/STO/SRO (001) MTJs can be well described using the 

concept of ITF. On the contrary, at energies 𝐸 ≥ 𝐸𝐹 − 0.25 eV, 

the majority- and minority-spin Bloch states belong to the 

different symmetries, Δ1 and Δ5 respectively. As a result, they are 

transmitted across the STO barrier through the different 

evanescent states of the respective symmetries. At these 

conditions, the factorization (3) fails for the antiparallel-aligned 

MTJ where two evanescent states of different symmetry are 

present.      

This has important implications for spin polarization as a 

measure of TMR. As seen from Figures 6(a,b), the ITFs are 

largely dominated by the cross area around the Γ̅  point where 

the decay constant 𝜅(𝑘⃗ ∥) has a minimum [Fig. 4(c)]. As a result, 

at those energies where the 𝑘⃗ ∥-dependent factorization [Eq. (3)] 

is valid (i.e., 𝐸 ≤ 𝐸𝐹 − 0.3 eV), we expect that the factorization 

of the total transmission 𝑇𝜎 in terms of the integrated ITF    

𝑡𝜎 =
1

(2𝜋)2
∫𝑡𝜎(𝑘⃗ ∥)𝑑𝑘⃗ ∥  ,                    (6) 

should also be a reasonable approximation. This implies that the 

transmission for the parallel- and antiparallel-aligned MTJs can 

be, respectively, written as  

            𝑇𝑃
𝜎 = (𝑡𝜎)2 ,                                     (7) 

             𝑇𝐴𝑃
𝜎 = 𝑡↑𝑡↓ .                                      (8) 

This factorization implies that TMR can be described in terms of 

Julliere’s formula applied to MTJ with the same electrodes: 

         𝑇𝑀𝑅 =
2𝑝

𝑇
2

1 − 𝑝
𝑇
2
 ,                             (9) 

where 𝑝𝑇  is the spin polarization of the total (integrated) 

interface transmission 

                 𝑝𝑇 =
𝑡↑−𝑡↓

𝑡↑−𝑡↓
.                                 (10) 

In Figure 2(f), we plot the calculated spin polarization 𝑝𝑇 as 

a function of energy and the corresponding TMR in Figure 3(d). 

As seen from Figure 3(d), at energies 𝐸 ≤ 𝐸𝐹 − 0.3  eV, the 

explicitly calculated TMR from transmissions 𝑇𝑃 and 𝑇𝐴𝑃 of the 

 

FIG. 6 (a, b)  𝑘∥-resolved interface transmission function (ITF) for 

majority- (a) and minority- (b) spin electrons at 𝐸 = 𝐸𝐹 − 0.4 eV. (c) 

𝑘∥ -resolved transmission per spin for antiparallel-aligned MTJ 

calculated from the ITFs at 𝐸 = 𝐸𝐹 − 0.4  eV. (d,e) Same as (a,b), 

respectively, at 𝐸 = 𝐸𝐹. (f) Same as (c) at 𝐸 = 𝐸𝐹.  
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whole MTJ [𝑇𝑀𝑅1 in Fig. 3(d)] is in reasonable agreement with 

the TMR calculated from the spin polarization of the ITF [𝑇𝑀𝑅2 

in Fig. 3(d)]. This fact indicates that 𝑝𝑇 can serve as a proper 

measure of TMR for this MTJ at energies 𝐸 ≤ 𝐸𝐹 − 0.3  eV, 

where the single evanescent state controls transmission. On the 

contrary, at energies  𝐸 ≥ 𝐸𝐹 − 0.25  eV, we observe a huge 

disagreement between the explicitly calculated TMR and the 

TMR that is obtained from 𝑝𝑇 using Julliere’s formula. This is 

due to the transmission across the STO barrier being controlled 

by two different evanescent states lifting the condition for the 

factorization [Eq. (3)], as was discussed above.  

Based on this result, we can draw three conclusions. First,  𝑝𝑇 

can serve as a proper measure of TMR under conditions when 

only one evanescent state controls tunneling transmission and 

later is dominated by a region of the 2DBZ where the decay rate 

is lowest. This is, for example, the case for Fe/MgO/Fe MTJs 

[30]. However, under conditions where majority- and minority-

spin states are transported across the barrier through two 

different evanescent states, such as at  𝐸 = 𝐸𝐹  in our case, 𝑝𝑇 

cannot serve as a proper measure of TMR. In principle, one can 

anticipate a situation where  𝑝𝑇 = 0, while the TMR is very large 

driven by the symmetry mismatch between the majority- and 

minority-spin states. In fact, if the transmission is not factorized, 

there is no proper quantity, in general, which could be defined as 

the spin polarization to characterize TMR.     

Second, if tunneling occurs from a ferromagnetic metal 

across an insulator to a non-magnetic metal, which has a 

featureless spin-degenerate Fermi surface, the integrated ITF [Eq. 

(6)] of the ferromagnet/insulator pair is expected to control the 

spin dependence of transmission probability. This kind of 

junction geometry is similar to the Meservey-Tedrow-type 

experiment where tunneling occurs to a superconductor [3]. If 

the ferromagnetic/insulator pair is crystalline SRO/STO, we 

expect that the spin polarization measured in such experiment 

should be determined by 𝑝𝑇 . According to our calculation at 

𝐸 = 𝐸𝐹  [Fig. 2(f)],  𝑝𝑇  = −55%, which has the same sign but 

larger magnitude than the spin polarization of −10% measured in 

Ref. [50]. We argue that the reason for this disagreement is a lack 

of high crystallinity of the experimentally fabricated junctions 

which is critical for obtaining the high degree of spin polarization. 

It would be helpful to revisit these measurements using high-

quality epitaxial junctions which can be grown using modern 

thin-film deposition techniques.       

Third, the factorization of transmission [Eqs. (7-8)] in terms 

of the integrated ITF [Eq. (6)] factually implies that 𝑘⃗ ∥ 

conservation does not any longer hold, and the incoming Bloch 

states with a given 𝑘⃗ ∥  can be transmitted to any arbitrary 𝑘⃗ ′∥ . 

This behavior is relevant to MTJs where non-resonant localized 

states in the barrier lead to diffuse scattering. For example, this 

is the case for Fe/MgO/Fe MTJs which contain O vacancies [72]. 

We argue that diffuse scattering by O vacancies may be relevant 

to the recent experiments of Ref. [51]. It is well known that the 

formation energy of O vacancies in STO is low, and thus they 

are likely present in the STO tunnel barrier (if not specially 

controlled). Under conditions of diffuse scattering the predicted 

TMR is 85% [Fig. 3(d) at 𝐸 = 𝐸𝐹], which is somewhat larger but 

comparable to that measured experimentally (25%).   

6. Summary and outlook 

Using first-principles quantum-transport calculations, we have 

investigated spin-polarized transport properties of crystalline 

SrRuO3/SrTiO3/SrRuO3 (001) MTJs and predicted a giant TMR 

effect of nearly 3000%. This giant TMR is driven by symmetry 

matching (mismatching) of the incoming and outcoming Bloch 

states in the SRO (001) electrodes and evanescent states in the 

STO (001) barrier. We argued that under the conditions of 

symmetry-controlled transport in these MTJs, spin polarization, 

whatever definition is used, is not a relevant measure of spin-

dependent tunneling. In the presence of diffuse scattering, 

however, e.g. due to localized states in the band gap of the tunnel 

barrier produced by O vacancies, symmetry matching is no 

longer valid and TMR in SRO/STO/SRO (001) MTJs is strongly 

reduced. Under these conditions, the spin polarization of the 

SRO/STO (001) interface transmission function becomes a valid 

measure of TMR. These results provide an important insight into 

understanding and optimizing TMR in all-oxide MTJs. In 

particular, it is likely that symmetry-controlled tunneling 

predicted in this work has not yet been practically realized in 

experiments due O oxygen vacancies and/or other defects 

present in the tunnel barrier. We therefore encourage 

experimentalists working in this field to improve quality of their 

SRO/STO/SRO (001) MTJs to search for the giant TMR effects 

predicted in this work.    
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