

1

2 **A 2b-RAD parentage analysis pipeline for complex and mixed DNA samples**

3 Word count: abstract: 232 words; main text: 6857 words

4 Tables: 0 [Supplemental: 3]

5 Figures: 4 [Supplemental: 9]

6

7 **Key words:** parentage analysis, paternity testing, next-generation sequencing, 2b-RAD
8 sequencing, identity-by-state matrix, combined paternity index

9

10 **ABSTRACT**

11 Next-generation sequencing technology has revolutionized genotyping in many fields of

12 study, yet parentage analysis often still relies on microsatellite markers that are costly to generate

13 and are currently available only for a limited number of species. 2b-RAD sequencing (2b-RAD)

14 is a DNA sequencing technique developed for ecological population genomics that utilizes type

15 IIB restriction enzymes to generate consistent, uniform fragments across samples. This

16 technology is inexpensive, effective with low DNA inputs, and robust to DNA degradation.

17 Here, we developed a probabilistic genotyping-by-sequencing genetic testing pipeline for

18 parentage analysis by using 2b-RAD for inferring familial relationships from mixed DNA

19 samples and populations. Our approach to partial paternity assignment utilizes a novel weighted

20 outlier paternity index (WOPPI) adapted for next-generation sequencing data and an identity-by-

21 state (IBS) matrix-based clustering method for pedigree reconstruction. The combination of these

22 two parentage assignment methods overcomes two major obstacles faced by other genetic testing

23 methods: 1) It allows detection of parentage when closely related or inbred individuals are in the

24 alleged parent population (e.g., in laboratory strains); and 2) it resolves mixed DNA samples. We

25 successfully demonstrate this novel approach by correctly inferring paternity for samples pooled

26 from multiple offspring (i.e., entire clutches) in a highly inbred population of an East African

27 cichlid fish. The unique advantages of 2b-RAD in combination with our bioinformatics pipeline

28 enable straightforward and cost-effective parentage analysis in any species regardless of genomic

29 resources available.

30

31 **INTRODUCTION**

32 Genetic testing is fundamental to both ecology and forensic science for inferring
33 relationships among individuals without direct historical knowledge (Flanagan, 2018). Its
34 success is based on the insight that knowledge of variation in a relatively small number of
35 Mendelian loci is sufficient to infer the structure and history of a population or to identify
36 familial relationships (Thompson, 1976; Thompson & Meagher, 1987). For decades, such
37 analyses have relied on short tandem repeats (STRs, often referred to as microsatellite markers),
38 which take considerable time to develop and validate (Jones, 2010). Due to the large initial cost
39 of establishing and validating microsatellites, their use has been limited to relatively few species,
40 to outbred populations with numerous polymorphic loci, and to studies with relatively small
41 sample sizes. Additionally, the requirement for human curation of microsatellite data can be
42 considered more of an ‘art form’ than quantitative approach, with difficulty transferring criteria
43 between laboratories (Flanagan, 2018). In addition, mixed samples (i.e., samples containing
44 DNA from multiple individuals) results can be difficult to ascertain with STRs, especially when
45 there are more than three contributors or any DNA degradation (Yang, 2019). Lastly,
46 microsatellite-based approaches are ill-suited to automation of bioinformatic analysis pipelines
47 (Hodel, 2016).

48 In its simplest form, parentage analysis is based on diploid offspring receiving one allele
49 per locus from each parent. If the offspring and a putative parent share no alleles, then this
50 individual can be excluded. However, **parentage analysis by exclusion** assumes that there are
51 no errors for biological (e.g., mutations during meiosis) or technical (e.g. genotyping error)
52 reasons (Chakraborty, 1974). Because exclusion testing only relies on homozygous sites, thus
53 discarding most of the genetic information, this approach is rarely used anymore (Flanagan et al.,

54 2018; Kalinowski, 2007; Marshall, 1998). Instead, maximum-likelihood methods were
55 developed to identify parent-offspring pairs in natural populations (Meagher, 1986). **Categorical**
56 **allocation**, the most common parentage analysis used within this framework, calculates the
57 relative likelihood of different hypotheses about putative triadic relationship being true. The
58 likelihood is the probability of observing the genotypes given the proposed relationship, which
59 can then be calculated through Mendelian inheritance rules (Kalinowski et al., 2007; Marshall et
60 al., 1998). Instead of using absolute likelihood, a log-likelihood ratio is calculated by dividing
61 the proposed triad likelihood by the likelihood that the members of a given triad are unrelated
62 (Marshall et al., 1998). A positive log-likelihood ratio indicates that the triad is likely related but
63 is difficult to interpret statistically. Therefore, parentage confidence is assessed by the difference
64 between the highest log-likelihood ratio and the second highest log-likelihood ratio score. This in
65 turn is compared to a critical value generated by simulation that uses observed allele frequencies
66 and considers number of alleged fathers, proportion of potential fathers sampled, completeness
67 of genetic data, and the genotyping error rate. Importantly, the reliability of the categorical
68 allocation procedure critically depends on marker quality, the number of candidate fathers, and
69 that the mother's genotype is known (Marshall, 1998). Another popular method for parentage
70 analysis is **partial paternity testing**, which uses a Bayesian posterior probability to partially
71 assign offspring to candidate parents, with the highest posterior probability indicating likely
72 parentage (Devlin, 1988). Additionally, a prior for parentage can be assigned using known
73 ecological or behavioral variables instead of assuming that mating is random, though this is
74 generally not done, as it would confound the testing of those variables. This method outperforms
75 categorical likelihood models as it avoids systematic biases such as over-assigning paternity to
76 males with a relatively higher number of homozygous loci (Devlin, 1988). Partial paternity

77 testing fell out of favor and is underutilized in the study of paternity since in most cases it is
78 impractical to consider fractions of paternity (Flanagan, 2018).

79 The advent of next-generation sequencing (NGS) has made it possible to efficiently
80 identify thousands or even millions of single nucleotide polymorphisms (SNPs) in a population
81 at low cost, which has revolutionized population genetics (Pool, 2010). **Genotyping-by-**
82 **sequencing** approaches have eliminated the need for expensive and labor-intensive development
83 and validation of microsatellite markers, as SNPs are much more abundant, have lower mutation
84 rates, and can be genotyped with lower error rates (Anderson 2006). In fact, depending on the
85 frequency of minor and null alleles, degree of linkage disequilibrium, and number of parental
86 pairs, as few as 60-200 SNP markers, or ~500 if minor allele frequencies were low, outperform
87 any microsatellite-based approaches (Dussault, 2018; Premachandra, 2019; Andrews, 2018;
88 Anderson, 2006; Flanagan, 2018; Fernández, 2013). SNPs are particularly attractive when a
89 population has low polymorphism (e.g., due to inbreeding) or when samples are mixed or
90 contaminated with other sources of DNA (e.g., in forensic settings) (Flanagan et al., 2018;
91 Hodel, 2016). Importantly, SNP-based approaches lend themselves to automation, which further
92 increases efficiency and decreases cost. Given these numerous benefits, it is not surprising that
93 the potential of genotyping-by-sequencing to dramatically advance our genotyping abilities for
94 parentage analysis was recognized early (Glaubitz, 2003), yet to date remarkably few studies
95 have utilized SNPs for parentage analysis (Flanagan, 2018).

96 One common NGS method in population genomics is Restriction-site-associated DNA
97 sequencing (RAD-seq), which requires as little as 10-100 ng of DNA as input (Andrews, 2016)
98 and uses short-read sequencing of a large library of DNA fragments to generate genotypes across
99 millions of loci (Baird, 2008). Because RAD-seq methods do not require a reference genome,

100 this approach is ideally suited for species with limited genomic resources. The type IIB
101 restriction endonucleases RAD-seq (2b-RAD, Wang, 2012) method produces smaller uniform
102 fragment sizes with greater efficiency and lower cost than other RAD-seq methods, while still
103 providing large numbers of SNP markers to assess paternity (Puritz, 2014; Andrews, 2016). The
104 target fragment size in 2b-RAD is small and uniform (36 bp), which makes this method robust to
105 DNA degradation and thus well suited for forensic applications if the degraded fragment sizes
106 remain above ~50b (Barbanti, 2020).

107 While the use of NGS in parentage analysis has been growing, the effectiveness of this
108 approach for more challenging applications, such as closely related individuals or mixed
109 samples, has yet to be established. Current bioinformatic analysis pipelines for genotyping-by-
110 sequencing usually rely on either categorical allocation or sibship reconstruction (Flanagan,
111 2018). Using multiple full- or half-siblings and one parent's full multi-locus genotype it is
112 possible to reconstruct the genotype of an unknown relative with parental sibship reconstruction
113 (Wang, 2004). A pedigree reconstruction method is required when related individuals may be
114 present in the pool of alleged parents, although this approach requires testing more individuals
115 than those of interest. Parentage analysis is particularly challenging in populations with high *Fis*,
116 or high inbreeding, due to the reduction in informative distinctive loci when heterozygosity is
117 low. However, RAD-seq approaches provide sufficient coverage for genome-wide analyses with
118 only a few hundred SNP loci required (Andrews, 2016; Kardos, 2015). The use of marker-based
119 approaches is encouraged for highly inbred populations, particularly when using non-model
120 organisms as individuals are more homozygous across sites due to a greater degree of loci being
121 'identical by descent' (IBD) (Kardos, 2015).

122 A powerful method to measure relatedness in populations is clustering of an identity-by-
123 state matrix (IBS), which is optimized for heterogeneous populations but is still capable of
124 distinguishing closely related individuals (Stevens, 2011; Jin, 2017). IBS evaluates genetic
125 similarity between pairs of samples by calculating the average degree of matching across all loci.
126 However, clustering of an IBS matrix does not consider known data, such as pedigree data or
127 maternal information, and therefore can greatly benefit from combination with techniques that do
128 (Luan, 2012). A study in Pacific and European oysters combined both categorical allocation and
129 identity-by-state clustering to successfully identify closely related individuals by grouping with
130 multidimensional scaling (Gutierrez, 2017).

131 Nevertheless, there is an urgent need to develop efficient and robust parentage analysis
132 pipelines for RAD-seq methods, especially *de novo* methods such as 2b-RAD, that can overcome
133 real-world challenges such as complex population structure, inbred families, and mixed or
134 contaminated DNA samples. The field of forensic genetics has set out guidelines for handling
135 DNA mixtures, typically constrained with the inclusion of closely related individuals, that
136 requires estimating relative contribution from each individual (Gill, 2006; Gill, 2015). Crucially,
137 any approach of pooling more than two individuals requires a SNP based approach with many
138 sites (Yang, 2019).

139 Here, we systematically investigated several 2b-RAD-based parentage analysis methods
140 in the African cichlid fish, *Astatotilapia burtoni*, a model system in social neuroscience
141 (Hofmann, 2006; Weitekamp & Hofmann, 2014). This species forms highly complex and
142 dynamic social communities that can be readily studied and manipulated in the laboratory
143 (Hofmann, 1999; Maruska, 2015). *A. burtoni* males of this species attract females to territorial
144 bowers for mating, after which females incubate their offspring in their mouth for two weeks

145 (Fernald & Hirata, 1977). However, even though a female may spend considerable time with any
146 given male, the time spent in or near a male's bower is no reliable indicator of successful mating
147 (Kidd, 2006). In fact, females can mate with multiple males and thus incubate clutches with
148 multiple paternity (Theis, 2012). Assigning paternity based on behavior alone is thus unreliable.
149 Laboratory populations of *A. burtoni* are, however, highly inbred (Salzburger, 2018), which has
150 foiled prior attempts to establish genotyping based on microsatellite markers (unpublished
151 observations; for *A. burtoni* microsatellites see: Sanetra, 2009). These challenging characteristics
152 make this species an ideal model system for systematically testing the performance of various
153 2b-RAD parentage analysis methods with genetically homogeneous and/or mixed samples. In
154 the present study, we first validate the use of novel parentage analysis technique in triads of
155 known paternity (Fig 1). We then demonstrate the potential of this approach in naturalistic
156 communities.

157

158 **METHODS**

159 Behavioral Experiments

160 All animals used in this study were obtained from a laboratory population descended for
161 about 60 generations from a wild-caught stock of 400 individuals (Fernald & Hirata, 1977). All
162 work was done in compliance with the Institutional Animal Care and Use Committee (IACUC)
163 at The University of Texas at Austin.

164 In the first experiment we established n=12 **triads with known paternity** consisting of
165 one male (known father), a female incubating his offspring, and the offspring themselves by
166 placing one male each (standard length SL 5.5 – 6.5 cm) into a compartment equivalent to one
167 third of a 120 L hexagonal aquarium (i.e., four aquaria in total), along with three reproductive,

168 non-brooding females (SL 4.0 – 4.9 cm). Clear dividers between the compartments allowed for
169 social interactions between all inhabitants of a given aquarium, while preventing any matings to
170 take place across compartments, thus ensuring known paternity of any resulting offspring. To
171 allow females to go through at least one full 28-day reproductive cycle (Kidd et al., 2013), we
172 maintained these communities for two months. Eight males fathered at least one brood from 13
173 females, resulting in a total of 15 broods collected. There were 2 cases in which the same father
174 and mother pair had multiple broods together resulting in biological replicates. Two males, one
175 with biological replicate broods and another with two broods from two different females, were
176 selected to be technically replicated and sequenced in duplicate. Any females that incubated fry
177 more than once served as a biological replicate for the parentage analysis. A further five broods
178 and one mother were randomly selected for technical replicates as well, resulting in a total of 20
179 broods with replicates.

180 In a second experiment, we established n=6 **naturalistic communities** of *A. burtoni* in
181 120 L aquaria, each consisting of 8 males (SL 5.0 – 6.6 cm) and 8 females (SL 4.0 – 5.5 cm),
182 which ensured that multiple males in each community could establish a territory and seek out
183 mating opportunities, while at the same time affording females the opportunity to have eggs
184 fertilized by more than one male in a single mating bout, thus potentially creating broods with
185 multiple paternity. For each community, we monitored social behavior, male social status, and
186 space uses three times a week at 15:00 hours for 10 minutes each using a digital video system,
187 while also measuring body mass and standard length every other week (data not shown). Over
188 the 12-week observation period we collected 25 broods from 23 mothers (1 – 6 broods per
189 community), with two females incubating two broods each. Two males and two broods from
190 different communities served as technical replicates.

191 Throughout either experiment, broods were collected from females' buccal cavity
192 approximately one week after fertilization and stored in 70% ethanol at 4° C. At that stage, fry
193 are large enough to be easily separated from any remaining yolk and to yield abundant DNA. A
194 razor and slide were used to separate any yolk and cut individuals in half. The bottom and top
195 halves for all the fry in each brood were then pooled and stored separately. This allowed for each
196 brood pool to consist of approximately equal proportions of each offspring. At the end of each
197 experiment, we collected fin-clips collected from all adults and stored them in 70% ethanol at 4°
198 C until DNA extraction.

199 Broods are named by the 3-letter tank code, the color-tag of their mother, and the date
200 collected. Females are named by their color-tag followed by their 3-letter tank code, males are
201 named in a similar fashion. Any name that ends in an underscore by a letter (i.e. '_A' or '_B')
202 indicates a technical replicate. Therefore, a mother and brood will share both the unique tank ID
203 and color, while the brood will also indicate a date. In the known triads, with only one male per
204 tank, the unique tank id can identify the correct father for any given brood. In the naturalistic
205 communities, only real mothers can be identified by unique tank id. In the known triad, the
206 alleged father pool consisted of all adult males used in triads. In the unknown community, the
207 alleged father pool was limited to males within each tank.

208

209 Library preparation and sequencing

210 DNA was extracted from fin clips and fry using Maxwell 16 Tissue DNA Purification kit
211 (Promega, USA) and then purified using Zymo DNA Clean & Concentrator kit (Zymo Research,
212 USA) according to the manufacturer's instructions. We then prepared sequencing libraries
213 according to Wang (2012) (we used version "2bRAD_protocol_may15_2017_nnrw", the most

214 up-to-date detailed protocol is available at https://github.com/z0on/2bRAD_denovo). Briefly, a
215 type IIB restriction enzyme BcgI (New England Biolabs) was used to digest DNA into uniform
216 36 base pair fragments. Adaptors with unique molecular identifiers (UMI) ligated to the
217 fragments barcoded only on the 3' end before being stored overnight at 4°C. The ligase was then
218 heat-inactivated with a 10-minute incubation at 65°C. Samples were then pooled with 12
219 different 3' barcodes and amplified before a final purification step of the pooled libraries for the
220 band at 160-180 base pairs using the Pippin Prep (Sage Science, USA) protocol. Libraries were
221 sequenced on the Illumina HiSeq 2500 platform (Illumina, USA) at UT Austin's Genomic
222 Sequencing and Analysis Facility generating 418 million reads (2.9 million reads per sample on
223 average).

224

225 Bioinformatic analyses

226 *Processing of raw reads and quality control*

227 The 2bRAD sequencing reads were de-multiplexed, trimmed, and de-duplicated using the
228 custom script accommodating the 2bRAD-specific triple-barcoding scheme and degenerate
229 ligated tags to identify PCR duplicates (https://github.com/z0on/2bRAD_denovo). The SNP
230 profiles were generated by 2bRAD sequencing using the 2b-RAD pipeline from Wang, 2012 and
231 mapped to the reference *A. burtoni* genome (RefSeq assembly version GCF_000239415.1
232 AstBur1.0; Brawand, 2015). The resulting mapped to the *A. burtoni* genome with 81%
233 efficiency, and to closely related Nile Tilapia genome with 55% efficiency. ANGSD
234 (Korneliussen, 2014) with SAMtools (Li, 2009) model produced genotype likelihoods for each
235 individual across all 1.7 million loci. Two males from one of the naturalistic communities (G2)
236 were removed at this stage, as they only had sequence coverage for less than 1% of these sites

237 while all the remaining fish had >60% coverage. Having less than 1% coverage of sites not only
238 indicates a likely technical issue with sequencing on those samples but also does not provide
239 enough sites to establish paternity.

240 To avoid sampling each egg individually or be limited to only a small portion of brood as
241 is common, pooling brood DNA and using a read depth of around 50X enabled an assessment of
242 the proportion of paternity attributable to each male. This level of coverage is not needed for
243 adults, instead 20X coverage was used to sufficiently resolve heterozygous SNPs. Quality
244 control from the bam files for all adults (supplemental figure 1) and all broods (supplemental
245 figure 2) indicate good quality and sequencing depth. Of note, is the variation in coverage among
246 adults which would result in differential rates of confident base calls among males. Therefore,
247 males sequenced at higher depth have more sites to match with broods which could skew
248 paternity testing towards highly sequenced males.

249

250 Parentage analysis techniques

251 *CERVUS*

252 We applied the popular paternity analysis software CERVUS version 3.0.7 to the known
253 triad dataset (Kalinowski, 2007). This program uses allele frequencies and individual genotype
254 calls to calculate a likelihood score for each potential parent and the combination of a known
255 parent and an alleged parent as represented by the log-likelihood ratio. A log-likelihood ratio, or
256 the delta log-likelihood ratio score for comparing to the next most likely parent, above 0 is
257 considered a likely paternity match. CERVUS utilizes a simulation of the observed allele
258 frequencies to determine the predicted likelihood difference of the real parent compared to a

259 random individual in the population. Additionally, CERVUS has an option to incorporate an
260 estimate of genotyping error provided by the user.

261 We assigned genotype calls to the known triad samples by assigning genotype
262 probabilities above 0.75 as the correct genotype for that site in an individual. Next, SNPs were
263 filtered by the minor allele frequency (MAF) to reduce the number of total sites using six
264 different cutoffs: 0.4, 0.3, 0.2, 0.1, 0.05, 0.03 (Andrews, 2018). Paternity testing was run twice
265 for each MAF cutoff with CERVUS calculating allele frequency once using just adults and once
266 using all samples. Simulation was therefore done 12 times for 100,000 offspring, 12 potential
267 males, 95% proportion of fathers sampled, 50% proportion of typed alleles missing data,
268 estimated genotyping error rate of 1%, and minimum typed loci of 50% total loci per analysis
269 (Crain, 2020; Andrews, 2018)

270

271 *Relative Combined Paternity Index*

272 After bam files were generated using SAMtools and referenced to *A. burtoni* genome,
273 ANGSD was used to filter out SNPs and assign genotype likelihoods at the remaining site for
274 each individual and brood. A custom R-script was used to filter out sites based on adult
275 population genotype frequency using all adults in known triads and unknown communities
276 respectively to avoid unwanted biases (Flanagan, 2018). Using the function ‘paternityIndex’
277 from the R package ‘paternity’ (Rosyara, 2014), each pair of mother and brood was used to
278 calculate paternity index for every alleged father at the filtered sites.

279 Paternity index is a ratio of the likelihood of the offspring’s genotype conditional on the
280 mother and alleged father’s genotype over the likelihood of the offspring’s genotype given the
281 mother’s genotype. This means that increase in paternity index can be considered an increase in

282 paternity probability and is standard method of partial paternity allocation (Baur, 1986). The
283 paternity index from the R package paternity uses a set of equations that utilize population allele
284 frequency to calculate the paternity index for a given locus given the genotype of offspring,
285 mother, and alleged father at that site (Elston, 1986).

286 A combined paternity index (CPI) for a given alleged father is then calculated by taking
287 the product of the paternity index for every site. This method, developed for microsatellites,
288 requires genotypes to be assigned and drops down to zero if there are any exclusion sites. We
289 attempted to replicate this method using our sequencing data by setting a genotyping threshold.
290 This method failed as every male including the fathers had a CPI score of zero, and we had
291 limited success when we excluded exclusion sites altogether. While null alleles can be easily
292 identified or ignored, allelic dropouts are particularly challenging for parentage analysis as this
293 type of sequencing error can create false exclusions between parents and offspring, although
294 false alleles can also pose challenges (Wang, 2010). Since this approach requires a genotyping
295 call across the mother, brood, and alleged father, allele sites that were not present in at least one
296 individual of the triad being tested were removed from the analysis on a per triad basis.
297 Similarly, sites that would indicate an exclusion for an alleged father were removed to ensure
298 that no possible sequencing or genotyping errors altered paternity, as a single exclusion site
299 would result in a paternity index of zero. Taken together, only sites that would add paternity
300 information were included with the goal that the most likely father would maintain the highest
301 relative CPI score of all alleged fathers. With microsatellite data, the probability of paternity is
302 traditionally determined as the CPI divided by one plus the CPI, assuming a uniform prior, is
303 commonly used. This method of probability of paternity does not work with the large number of
304 sites used as most alleged fathers would end up with probability of paternity well above 99 %.

305 Therefore, a relative CPI was calculated by dividing paternal CPI by the sum of all the CPI
306 scores for every alleged father of a mother and brood pair. This novel relative CPI approach
307 mirrors the use of delta log-likelihood ratio score in categorical allocation parentage analysis, in
308 which the top two highest scoring males are compared (Marshall et al., 1998). The false-positive
309 rate threshold determined in the known triads was used to filter CPI for unknown paternity. The
310 relative CPI percentage and false-positive threshold were used to assign likelihood of paternity
311 and identify cases in which paternity could not be assigned, respectively. For relative CPI,
312 genotypes were assigned to loci with a genotype likelihood above 0.6 resulting in ~8,000 sites
313 used in parentage analysis.

314

315 *Weighted Outlier Paternity Index (WOPi)*

316 After bam files were generated after mapping reads to *A. burtoni* genome using bowtie2,
317 ANGSD was used to assign genotype likelihoods at the remaining sites for each individual and brood.
318 A custom script was used to filter out non-variable sites by selecting sites with at least two
319 samples having an alternative allele with a read count of 2 or greater. Each pair of mother and
320 brood was used to calculate paternity index for every alleged father at the filtered sites. Novel to
321 this approach, the genotype probabilities assigned by ANGSD were used directly without
322 applying a threshold to assign genotypes. This produces an output beagle format file, which is a
323 standardized table that includes genotype likelihood for each individual at every locus with a
324 single SNP for all genotype combinations: homozygous major allele, homozygous minor allele,
325 and heterozygous. Here we used the reference state to assign the reference and alternative alleles,
326 although these can be determined *de novo* per population. Importantly, sites with no data for an
327 individual are given equal probability for all three possible genotypes. This allows for the

328 incorporation of the sequencing error-correction inherent in the ANGSD output directly into the
329 paternity calculation, since no one genotype at any loci can have an absolute genotype
330 probability.

331 We developed a weighted paternity index to incorporate genotype probabilities directly
332 with CPI. For each site, we calculated every paternity index value for all possible genotype
333 combinations across the alleged father, mother, and brood. We then multiplied each paternity
334 index value for a given set of genotypes at a specific site by the genotype probabilities that the
335 individuals have those genotypes at that site. The weighted paternity index for a site is the sum of
336 all these paternity index values that have been weighted by the probability that the individuals
337 have that specific genotype combination (Fig 2a). To achieve this a custom R function was
338 developed, taking inspiration from the R function ‘paternityIndex’ from the package ‘paternity’
339 (Rosyara, 2014). Importantly, weighted paternity index maintains exclusion sites, either real or
340 from sequencing error, as they no longer have a value of zero instead assigning a value based on
341 the probability that it is an exclusion site.

342 An information score criterion was developed to filter out sites that had no read coverage,
343 in which case an individual had equal probability of all three genotypes. The information score
344 was calculated by taking the difference of the highest and lowest genotype probability for a
345 given site in an individual. An information score of zero would therefore indicate that the site
346 had been assigned an equal probability (e.g., 0.33) for all three genotypes. Implementing this
347 filter reduces random noise due to variation in coverage, as sites with no data are assigned equal
348 probability to all three genotypes.

349 Performing a standard CPI does not work with sequencing data as multiplying that many
350 values below one will result in a number too small to compute. The theoretical distribution of

351 paternity index values has a mean around one, as we would predict most sites would not be
352 informative regarding paternity, with any exclusion sites having a value of zero. Importantly, the
353 lowest possible paternity index value for a non-exclusion site is 0.5. That means any weighted
354 paternity index below 0.5 indicates either a likely exclusion site or that the alleged father is
355 unlikely to be the father compared with the population. Likewise, any value on the other side of
356 the distribution above 1.5 indicates that the alleged father is more likely to be the father.
357 Therefore, we can limit the number of sites by focusing on the outlier tails and taking the
358 combined product of the values above 1.5 and below 0.5, termed weighted outlier paternity index
359 (WOPI). A father was assigned paternity with a WOPI score well above the distribution of
360 WOPI scores for all other males. Determining the degree of separation from other alleged fathers
361 was done by generating a mean and standard deviation of the WOPI for a specific brood and
362 mother pair across the pool of alleged father, excluding the alleged father with the highest WOPI
363 score. Then this mean and standard deviation was used to calculate a z-score for each alleged
364 father and paternity assigned if the highest scoring male passed a z-score threshold. This
365 threshold was determined by selecting a value that correctly identified all correct fathers from the
366 known triad experiment. If no male scores above this z-score threshold than paternity could not
367 be determined. Since this method also depends on a well sequenced mother, broods were filtered
368 out that did not cluster with their mother (see '*Identity-by-State (IBS) Matrix*').

369

370 *Identity-by-State (IBS)*

371 Genotyping data for adult samples, with technical replicates removed, were processed
372 through ANGSD to create a table of ~23,000 adult sites present in at least 10 individuals at a
373 read depth of at least 2, which was then indexed through ANGSD. This indexed site file was

374 used to filter sites for the ANGSD command that generated the IBS matrix. An IBS matrix was
375 generated for the broods with the females and males separately for the known triads and each
376 naturalistic community, respectively. The dendrogram of the IBS matrix was generated with a
377 custom R script using the function pvclust (Suzuki, 2006) to generate hierarchical clustering,
378 with agglomeration method UPGMA and euclidean distance, providing both an approximately
379 unbiased (AU) p-value and edge height for each dendrogram.

380 To assign paternity or maternity, the first internal node from the offspring had to be
381 above an AU p-value threshold and only contain one other individual. The AU p-value threshold
382 was determined by selecting a value that successfully identified correct fathers in the known
383 triads. Offspring that did not properly cluster with known mother after IBS matrix clustering
384 were removed. Paternity assignment was determined by finding the closest node to a brood with
385 a putative father and assessing the AU p-value. If that first node had multiple fathers then
386 paternity could not be determined.

387

388 *Population heterozygosity*

389 The original fish population was allowed to breed freely, rendering it too inbred for
390 microsatellite analysis (Pauquet et al., 2018). In addition, the individuals used here were selected
391 based on size and other attributes, not their relatedness status, to set up functional social groups.
392 We determined individual global heterozygosity and inbreeding coefficient for all adults using
393 242,308 high quality sites present in 99% of adults. Heterozygosity was calculated as the site
394 frequency spectrum (SFS) estimation for a single sample using ANGSD and realSFS to get the
395 proportion of heterozygous genotypes. Finally, we performed a test for Hardy-Weinberg

396 equilibrium (HWE) based on genotype likelihoods using ANGSD to determine the inbreeding
397 coefficient.

398

399 **RESULTS**

400 Experiment 1: Known triads

401 *CERVUS*

402 With a total of 2,400 paternity tests run, 12 for each of the 20 broods, only 4 of the 20
403 broods resulted in a trio log-likelihood ratio and trio delta score above 0 for any of the allele
404 frequencies (see supplemental table 1). All 4 of these broods, with at least one positive trio log-
405 likelihood ratio across all the parameters, did identify the correct father indicating no false
406 positives but a low success rate. Additionally, we found that it took longer to run compared to
407 the other parentage analysis methods, due to both the number of simulations run and the fact that
408 it uses a GUI instead of an R script. Overall, this method did not identify any false-positives
409 while only assigning paternity to 4 out of 20 known triad broods.

410

411 *Relative Combined Paternity Index*

412 For the known triads, a CPI threshold was set to eliminate any false-positives, and while
413 it added three false-negatives, this stringent filter can confidently assign both paternity and
414 identify cases in which it is unknown. A realistic father threshold of e^{27} was sufficient to
415 eliminate any false positives from the known paternity triads, as such is used as the threshold
416 under which a male is not considered the likely father. This means that any brood that does not
417 have a male above this threshold is considered to have unknown paternity. Using known
418 paternity triads, 16 out of 20 broods the male with the highest relative CPI was the correct father,

419 including brood technical replicates, but three of these fell below CPI threshold (see
420 supplemental table 2).

421

422 *Weighted Outlier Paternity Index (WOPI)*

423 For the known triads, the WOPI approach correctly assigned paternity for all 15/15
424 broods and all technical replicates (see supplemental figure 3). A z-score threshold of e^{20} was
425 selected empirically as the lowest value that clearly distinguished correct fathers from all the
426 other alleged fathers (see supplemental figure 4). This threshold prevented false positives when
427 testing WOPI by removing the true father (see supplemental figure 5). This method
428 outperformed paternity testing via CERVUS and a relative CPI approach in correctly assigning
429 paternity (see supplemental table 2).

430

431 *Identity-by-State (IBS) Matrix*

432 Each technical replicate paired with its appropriate counterpart at an AU p-value of at
433 least 80, which empirically served as the threshold for a successful node. For the known triads, in
434 the IBS matrix of just females and broods, every brood shared the closest node with the correct
435 mother with an AU p-value above 80 (see supplemental figure 8). Hierarchical clustering of the
436 male and brood IBS matrix correctly identified the father at the first node for 13/15 broods (Fig
437 4a). Of the remaining two broods, one did pair with the correct father at the first node, but the
438 AU p-value was below threshold at 54. The second brood, which was also technically replicated,
439 had both the correct father and another male at the first node that had an AU p-value of 68 (see
440 supplemental figure 8). Both of these males, ‘Black.I4A’ and ‘Grey.I5B’, had additional broods
441 that clustered correctly indicating that the issue may be with the brood not the males.

442

443 Experiment II: Naturalistic communities

444 *Weighted Outlier Paternity Index (WOPI)*

445 For the naturalistic communities, the WOPI approach assigned paternity above the z-
446 score threshold for 11 of 15 collected broods after removing broods that failed maternal pairing
447 in the IBS matrix approach (Fig 4b). The four broods that did not assign a father also did not
448 have a father assigned by the IBS approach. Additionally, of the 11 broods that did not cluster
449 with their mother in the IBS approach only 2 had a father assigned by WOPI (see supplemental
450 table 3). Together, these results indicate that the WOPI method is conservative when calling
451 paternity. Each brood shows a distinct range of the WPI outlier tails across alleged fathers (see
452 supplemental figure 6). Putative fathers are easily distinguished when applying the z-score
453 threshold determined in the Known Triad experiment (see supplemental figure 7).

454

455 *Identity-by-State (IBS)*

456 The naturalistic communities had variable success with the IBS approach, probably due
457 to the much higher incidence of closely related individuals present in each community. After
458 filtering out cases in which mothers and broods did not match, fathers were successfully assigned
459 to 10/15 of these broods, all assignments agreeing with the WOPI results (Fig 4b). All technical
460 replicates were easily identified and appropriately paired (see supplemental figure 9). Two
461 additional broods that failed maternal pairing also had a father assigned (see supplemental table
462 3). One brood that had no father assigned by the IBS approach had it assigned by the WOPI
463 approach.

464

465 Population heterozygosity

466 We determined individual global heterozygosity for adults by calculating the SFS
467 estimation for a single sample using ANGSD to get the proportion of heterozygous genotypes
468 across 242,308 sites present in 99% of adults. We found low levels of heterozygosity across sites
469 in the adult population with a mean of 0.00246 ($s = 0.00017$) (see supplemental figure 10).
470 Additionally, we performed a test for Hardy-Weinberg equilibrium (HWE) based on genotype
471 likelihoods across these same sites in adults. We found that the interindividual F statistic,
472 inbreeding coefficient, was mostly positive across sites with a mean of 0.638 ($s = 0.142$). This
473 average positive value indicates a high degree of inbreeding, as the sites are heterozygous
474 deficient compared with HWE expectations (see supplemental figure 10).⁴

475

476 **DISCUSSION**

477 We used 2b-RAD to develop a parentage analysis method that uses a combination of the
478 novel WOPI approach and IBS clustering (Fig 1). Together, these approaches are specifically
479 designed to deal with mixed samples and genetically homogeneous populations. The WOPI
480 approach accounts for genotyping uncertainty and integrates data from both parents. IBS
481 clustering is crucial in identifying cases in which the mother and offspring do not cluster
482 together, indicating a potential issue with sequencing or presence of a close maternal relative in
483 the dataset. Therefore, it serves as an appropriate filter for the WOPI approach, which is
484 dependent on both maternal and paternal data. Additionally, IBS clustering of potential fathers
485 provides insight into the population structure to identify problematic closely related males.
486 Together, these methods outperformed traditional methods of paternity such as CPI and
487 CERVUS (see supplemental table 2).

488 The WOPI approach was able to correctly identify paternity for pooled broods in all 15
489 known triads, while also determining a z-score threshold that prevented false-positives when the
490 correct father was not present. IBS matrix clustering correctly identified paternity for pooled
491 broods in 13 of the 15 known triads, with one being correct but below threshold and another not
492 assigning any father. The combination of these two techniques identified paternity for 100% of
493 the known triad broods (Fig 4a).

494 Application of WOPI and IBS matrix clustering to naturalistic communities resulted in 11
495 of 15 broods having paternity assigned by at least one method, 10 of which had concordant
496 assignments by both methods (Fig 4b). The failure of maternal clustering provides an appropriate
497 filter for WOPI as this method relies on both quality paternal and maternal data. Compared to the
498 known triads, in which every mother-offspring pair was correctly identified by IBS clustering,
499 the naturalistic communities only have correct identification of mother-offspring pairs in 15
500 broods, with 12 broods failing to have a mother identified (see supplemental table 3). Both
501 techniques appear robust to false positives, as evidenced by the high concordance of cases which
502 both methods did not assign parentage.

503

504 *Limitations*

505 Samples comprised of DNA mixtures pose difficulties when determining how related
506 individuals and genotypes are represented in the mixture (Gill, 2015). One goal of the present
507 study was to understand the effects of pooling all the offspring within a brood on parentage
508 assignment. The possibility to pool offspring could considerably lower the cost of brood
509 parentage analysis. Had individuals within a brood been sequenced separately, a maximum-
510 likelihood algorithm could be used to generate the full set of possible parents with parental

511 sibship reconstruction (Wang, 2004). We treated each pooled brood as a population with
512 genotype probabilities reflecting brood allele frequencies. Therefore, we had to use techniques
513 that did not rely on genotype calls but considered relative probabilities of every possible
514 genotype.

515 Broods with multiple paternity are common in *A. burtoni* (Kellogg, 1995; Theis, 2012).
516 When using pooled broods, partial paternity testing is the only method capable of detecting
517 multiple paternity. An advantage of partial analysis is that uncertainty from parentage analysis is
518 incorporated as the uncertainty in the final estimate, whereas categorical allocation typically
519 discards uncertainty early in the analysis. We predict that a multiple paternity brood would result
520 in an instance where one male could not be identified as a father, as the multiple fathers would
521 be equally likely. Future work will examine the effect multiple paternity broods have on these
522 parentage analyses and whether true partial paternity can be resolved.

523 In some naturalistic communities neither the WOPI nor IBS approach reliably identified a
524 father. While this is to be expected if maintaining a low false positive rate is a goal, the
525 thresholds determined in our study will not be universal. Specifically, we assigned empirical
526 thresholds from the Known triad experiment that maximized the number of correct father calls
527 while allowing for no false positives. Future research will need to focus on expanding these
528 approaches to other systems and datasets to ascertain the exact relationship between number of
529 sites, sample size, and population allele frequency with appropriate thresholds.

530

531 *Inbred populations*

532 A majority of parentage testing techniques, such as categorical allocation, work under the
533 assumption that parents are unrelated, and the population of putative parents contain no close

534 relatives, as this can lead to instances in which full-siblings can be incorrectly assigned parentage
535 over actual parents (Thompson, 1976; Marshall et al., 1998; Thompson & Meagher, 1987).
536 Inbred populations pose a problem to both microsatellite and SNP assays due to low levels of
537 variation among individuals (Fisher, 2009). Nevertheless, an analysis with fewer than 100 SNPs
538 can outperform the use of microsatellites in homogenous populations (Fisher, 2009; Tokarska,
539 2009). The most informative SNP loci are ones with high minor allele frequency and low
540 likelihood of allelic dropouts, with more loci required with lower allelic diversity (Flanagan,
541 2018). Parentage analysis can be skewed when closely related males (e.g., brothers) are present
542 in the sample as they will cluster together and can result in a set of related putative fathers
543 (Double, 1997). Therefore, our success in developing a parentage analysis pipeline even in a
544 highly inbred, homozygous population demonstrates the overall effectiveness of this approach
545 (supplemental figure 10). If close relatives are suspected to be in the sample, we recommend
546 including broader pedigree analysis such as IBS clustering (Flanagan, 2018). The combination of
547 WOPI and IBS testing allows detection of parentage in sample populations from closely related
548 individuals.

549

550 *Use of RAD-seq for parentage analysis*

551 Few studies have employed a next-generation sequencing for parentage analysis, possibly
552 due to the perception that this approach is expensive, involves intensive molecular biology skills,
553 or requires advanced bioinformatics expertise (Flanagan, 2018; Palaiokostas, 2020; Crain,
554 2020.). However, with the widespread adoption of bioinformatics training, the introduction of
555 more user-friendly analysis pipelines, it is only a matter of time before NGS becomes the
556 preferred method of parentage analysis. Financial obstacles have diminished over time with

557 RAD-seq analysis becoming more accessible and affordable, particular with cost-effective
558 approaches such as 2b-RAD (Hodel, 2016; Puritz, 2014). The cost per sample can be further
559 decreased by reducing sequencing depth or utilizing reduced-representation adapters, which
560 decreases the number of sites sequenced by 4- or 16-fold. Importantly, techniques such as 2b-
561 RAD are highly amenable for use with lower-quality, slightly degraded DNA samples from non-
562 model species (Barbanti, 2020). Additionally, 2b-RAD provides an excellent tool for analysis
563 beyond parentage and is well-established in the field of molecular-ecology (Puritz, 2014; Wang,
564 2012).

565 With NGS it is highly unlikely that any data produced will be error free, especially with
566 large numbers of samples and/or markers. Most current parentage analysis techniques
567 incorporate some form of error rate correction that the user provides. Generally, these are based
568 on expectations for microsatellites and may not account for sequencing error and allelic dropouts
569 of PCR bias that arise from NGS techniques. (Kalinowski, 2007; Flanagan, 2018). Therefore, we
570 recommend using sequencing methods that incorporate some form of PCR duplicate
571 discrimination, such as 2b-RAD, and analysis pipelines that can calculate genotyping probability,
572 such as ANGSD.

573

574 **CONCLUSIONS**

575 2b-RAD is a cost-effective sequencing-based method capable of handling complex
576 biological samples with limited genomic resources. In the present study, we combined two
577 approaches to parentage analysis: WOPI, a novel partial paternity allocation, and IBS clustering,
578 a pedigree reconstruction analysis. Together, these techniques can confirm paternity cases while
579 accounting for genotyping uncertainty. We expect this novel approach to have broad applications

580 in public health, forensics, crop and life stock breeding, conservation management, and
581 evolutionary ecology studies.

582

583 **ACKNOWLEDGEMENTS**

584 We thank Dr. Becca Young and members of the Hofmann lab for guidance and
585 discussion. This work was supported by a US Department of Justice graduate fellowship to IMC,
586 an EEB start-up grant to IMC, and NSF-IOS grant 1326187 to HAH.

587 **DATA AND CODE AVAILABILITY**

588 The filtered deduplicated reads have been deposited to the NCBI Short Read Archive
589 (SRA), bioproject PRJNA754415. The code used in this paper together with documentation can
590 be accessed as the GitHub repository, <https://github.com/imillercrows/ParentageAnalysis>.

591 **CONFLICT OF INTEREST**

592 The authors have no competing interests to declare.

593

594 **REFERENCES**

595 Anderson, E. C., & Garza, J. C. (2006). The power of single-nucleotide polymorphisms for
596 large-scale parentage inference. *Genetics*, 172(4), 2567–2582.
597 <https://doi.org/10.1534/genetics.105.048074>

598 Andrews, K. R., Good, J. M., Miller, M. R., Luikart, G., & Hohenlohe, P. A. (2016). Harnessing
599 the power of RADseq for ecological and evolutionary genomics. *Nature Publishing
600 Group*, 17. <https://doi.org/10.1038/nrg.2015.28>

601 Andrews, K. R., Adams, J. R., Cassirer, E. F., Plowright, R. K., Gardner, C., Dwire, M.,
602 Hohenlohe, P.A., Waits, L. P. (2018). A bioinformatic pipeline for identifying
603 informative SNP panels for parentage assignment from RADseq data. *Molecular Ecology
604 Resources*, 18(6), 1263–1281. <https://doi.org/10.1111/1755-0998.12910>

605 Barbanti, A., Torrado, H., Macpherson, E., Bargelloni, L., Franch, R., Carreras, C., & Pascual,
606 M. (2020). Helping decision making for reliable and cost-effective 2b-RAD sequencing
607 and genotyping analyses in non-model species. *Molecular Ecology Resources*, 20(3),
608 795–806. <https://doi.org/10.1111/1755-0998.13144>

609 Baur, M. P., Elston, R. C., Gürtler, H., Henningsen, K., Hummel, K., Matsumoto, H., Mayr, W.,
610 Moris, J. W., Niejenhuis, L., Polesky, H., Salmon, D., Valentin, J., Walkers, R. (1986).
611 No fallacies in the formulation of the paternity index. *American Journal of Human
612 Genetics*, 39(4), 528. Retrieved from
613 <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1683973/?page=2>

614 Brawand, D., Wagner, C. E., Li, Y. I., Malinsky, M., Keller, I., Fan, S., ... Di Palma, F. (2015).
615 The genomic substrate for adaptive radiation in African cichlid fish. *Nature*, 513(7518),
616 375–381. <https://doi.org/10.1038/nature13726>

617 Chakraborty, R., Shaw, M., & Schull, W. J. (1974). Exclusion of paternity: the current state of
618 the art. *American Journal of Human Genetics*, 26(4), 477–488. Retrieved from
619 <http://www.ncbi.nlm.nih.gov/pubmed/4841637>

620 Crain, J., Larson, S., Dorn, K., Hagedorn, T., DeHaan, L., & Poland, J. (2020). Sequenced-based
621 paternity analysis to improve breeding and identify self-incompatibility loci in
622 intermediate wheatgrass (*Thinopyrum intermedium*). *Theoretical and Applied Genetics*,
623 133(11), 3217–3233. <https://doi.org/10.1007/s00122-020-03666-1>

624 Devlin, B., Roeder, K., & Ellstrand, N. C. (1988). Fractional paternity assignment: theoretical
625 development and comparison to other methods. *Theoretical and Applied Genetics*, 76(3),
626 369–380. <https://doi.org/10.1007/BF00265336>

627 DeWoody, J. A., & Avise, J. C. (2000). Microsatellite variation in marine, freshwater and
628 anadromous fishes compared with other animals. *Journal of Fish Biology*. John Wiley &
629 Sons, Ltd (10.1111). <https://doi.org/10.1006/jfbi.1999.1210>

630 Double, M. C., Cockburn, A., Barry, S. C., & Smouse, P. E. (1997). Exclusion probabilities for
631 single-locus paternity analysis when related males compete for matings. *Molecular
632 Ecology*, 6(12), 1155–1166. <https://doi.org/10.1046/j.1365-294X.1997.00291.x>

633 Dussault, F. M., & Boulding, E. G. (2018). Effect of minor allele frequency on the number of
634 single nucleotide polymorphisms needed for accurate parentage assignment: A
635 methodology illustrated using Atlantic salmon. *Aquaculture Research*, 49(3), 1368–1372.
636 <https://doi.org/10.1111/are.13566>

637 Elston, R. C. (1986). Probability and paternity testing. *American Journal of Human Genetics*,
638 39(1), 112–122. Retrieved from <http://www.ncbi.nlm.nih.gov/pubmed/3752078>

639 Fernald, R. D., & Hirata, N. R. (1977). Field study of *Haplochromis burtoni*: Quantitative
640 behavioral observations. *Animal Behaviour*, 25, 964–975.

641 Fernández, M. E., Gosczynski, D. E., Lirón, J. P., Villegas-Castagnasso, E. E., Carino, M. H.,
642 Ripoli, M. V., ... Giovambattista, G. (2013). Comparison of the effectiveness of
643 microsatellites and SNP panels for genetic identification, traceability and assessment of
644 parentage in an inbred Angus herd. *Genetics and Molecular Biology*, 36(2), 185–191.
645 <https://doi.org/10.1590/S1415-47572013000200008>

646 Fisher, P. J., Malthus, B., Walker, M. C., Corbett, G., & Spelman, R. J. (2009). The number of
647 single nucleotide polymorphisms and on-farm data required for whole-herd parentage
648 testing in dairy cattle herds. *Journal of Dairy Science*, 92(1), 369–374.
649 <https://doi.org/10.3168/jds.2008-1086>

650 Flanagan, S. P., & Jones, A. G. (2018). The future of parentage analysis: From microsatellites to
651 SNPs and beyond. *Molecular Ecology*, *mec*.14988. <https://doi.org/10.1111/mec.14988>

652 Gill, P., Brenner, C. H., Buckleton, J. S., Carracedo, A., Krawczak, M., Mayr, W. R., ... Weir, B.
653 S. (2006). DNA commission of the International Society of Forensic Genetics:
654 Recommendations on the interpretation of mixtures. *Forensic Science International*,
655 160(2–3), 90–101. <https://doi.org/10.1016/j.forsciint.2006.04.009>

656 Gill, P., Haned, H., Bleka, O., Hansson, O., Dørum, G., & Egeland, T. (2015). Genotyping and
657 interpretation of STR-DNA: Low-template, mixtures and database matches - Twenty
658 years of research and development. *Forensic Science International: Genetics*, 18, 100–
659 117. <https://doi.org/10.1016/j.fsigen.2015.03.014>

660 Glaubitz, J. C., Rhodes, O. E., & Dewoody, J. A. (2003). Prospects for inferring pairwise
661 relationships with single nucleotide polymorphisms. *Molecular Ecology*, 12(4), 1039–
662 1047. <https://doi.org/10.1046/j.1365-294X.2003.01790.x>

663 Gutierrez, A. P., Turner, F., Gharbi, K., Talbot, R., Lowe, N. R., Peñaloza, C., ... Houston, R. D.
664 (2017). Development of a Medium Density Combined-Species SNP Array for Pacific and
665 European Oysters (*Crassostrea gigas* and *Ostrea edulis*). *G3* (Bethesda, Md.), 7(7),
666 2209–2218. <https://doi.org/10.1534/g3.117.041780>

667 Hadfield, J. D., Richardson, D. S., & Burke, T. (2006). Towards unbiased parentage assignment:
668 Combining genetic, behavioural and spatial data in a Bayesian framework. *Molecular
669 Ecology*, 15(12), 3715–3730. <https://doi.org/10.1111/j.1365-294X.2006.03050.x>

670 Hodel, R. G. J., Segovia-Salcedo, M. C., Landis, J. B., Crowl, A. A., Sun, M., Liu, X., ... Soltis,
671 P. S. (2016). The Report of My Death was an Exaggeration: A Review for Researchers
672 Using Microsatellites in the 21st Century. *Applications in Plant Sciences*, 4(6), 1600025.
673 <https://doi.org/10.3732/apps.1600025>

674 Hofmann, H. a, Benson, M. E., & Fernald, R. D. (1999). Social status regulates growth rate:
675 consequences for life-history strategies. *Proceedings of the National Academy of
676 Sciences of the United States of America*, 96(24), 14171–14176.
677 <https://doi.org/10.1073/pnas.96.24.14171>

678 Jin, Y., Schäffer, A. A., Sherry, S. T., & Feolo, M. (2017). Quickly identifying identical and
679 closely related subjects in large databases using genotype data. *PLoS ONE*, 12(6).
680 <https://doi.org/10.1371/journal.pone.0179106>

681 Jones, A. G., & Ardren, W. R. (2003, October 1). Methods of parentage analysis in natural
682 populations. *Molecular Ecology*. John Wiley & Sons, Ltd (10.1111).
683 <https://doi.org/10.1046/j.1365-294X.2003.01928.x>

684 Jones, A. G., Small, C. M., Paczolt, K. A., & Ratterman, N. L. (2010, January 1). A practical
685 guide to methods of parentage analysis. *Molecular Ecology Resources*. John Wiley &
686 Sons, Ltd (10.1111). <https://doi.org/10.1111/j.1755-0998.2009.02778.x>

687 Kalinowski, S. T., Taper, M. L., & Marshall, T. C. (2007). Revising how the computer program
688 CERVUS accommodates genotyping error increases success in paternity assignment.
689 *Molecular Ecology*, 16(5), 1099–1106. <https://doi.org/10.1111/j.1365-294X.2007.03089.x>

690 Kardos, M., Luikart, G., & Allendorf, F. W. (2015). Measuring individual inbreeding in the age
691 of genomics: Marker-based measures are better than pedigrees. *Heredity*, 115(1), 63–72.
692 <https://doi.org/10.1038/hdy.2015.17>

693 Kellogg, K. A., Markert, J. A., Stauffer, J. R., & Kocher, T. D. (1995). Microsatellite variation
694 demonstrates multiple paternity in lekking cichlid fishes from Lake Malawi, Africa.
695 *Proceedings of the Royal Society B: Biological Sciences*, 260(1357), 79–84.
696 <https://doi.org/10.1098/rspb.1995.0062>

697 Kidd, M. R., Danley, P. D., & Kocher, T. D. (2006). A direct assay of female choice in cichlids:
698 all the eggs in one basket. *Journal of Fish Biology*, 68(2), 373–384.
699 <https://doi.org/10.1111/j.0022-1112.2006.00896.x>

700 Kidd, M. R., O'Connell, L. A., Kidd, C. E., Chen, C. W., Fontenot, M. R., Williams, S. J., &
701 Hofmann, H. A. (2013). Female preference for males depends on reproductive

703 physiology in the African cichlid fish *Astatotilapia burtoni*. General and Comparative
704 Endocrinology, 180(1), 56–63. <https://doi.org/10.1016/j.ygcen.2012.10.014>

705 Korneliussen, T. S., Albrechtsen, A., & Nielsen, R. (2014). ANGSD: Analysis of Next
706 Generation Sequencing Data. BMC Bioinformatics, 15(1), 356.
707 <https://doi.org/10.1186/s12859-014-0356-4>

708 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., ... Durbin, R. (2009). The
709 Sequence Alignment/Map format and SAMtools. Bioinformatics, 25(16), 2078–2079.
710 <https://doi.org/10.1093/bioinformatics/btp352>

711 Luan, T., Woolliams, J. A., Degård, J., Dolezal, M., Roman-Ponce, S. I., Bagnato, A., &
712 Meuwissen, T. H. E. (2012). The importance of identity-by-state information for the
713 accuracy of genomic selection. Genetics Selection Evolution, 44(1), 28.
714 <https://doi.org/10.1186/1297-9686-44-28>

715 Marshall, T. C., Slate, J., Kruuk, L. E. B., & Pemberton, J. M. (1998). Statistical confidence for
716 likelihood-based paternity inference in natural populations. Molecular Ecology, 7(5),
717 639–655. <https://doi.org/10.1046/j.1365-294x.1998.00374.x>

718 Maruska, K. P. (2015). Social Transitions Cause Rapid Behavioral and Neuroendocrine Changes.
719 Integrative and Comparative Biology, 55(2), 294–306. <https://doi.org/10.1093/icb/icv057>

720 Meagher, T. R., & Thompson, E. (1986). The relationship between single parent and parent pair
721 genetic likelihoods in genealogy reconstruction. Theoretical Population Biology, 29(1),
722 87–106. [https://doi.org/10.1016/0040-5809\(86\)90006-7](https://doi.org/10.1016/0040-5809(86)90006-7)

723 Palaiokostas, C., Clarke, S. M., Jeuthe, H., Brauning, R., Bilton, T. P., Dodds, K. G., ... de
724 Koning, D. J. (2020). Application of low coverage genotyping by sequencing in

725 selectively bred arctic charr (*Salvelinus alpinus*). *G3: Genes, Genomes, Genetics*, 10(6),
726 2069–2078. <https://doi.org/10.1534/g3.120.401295>

727 Pauquet, G., Salzburger, W., & Egger, B. (2018). The puzzling phylogeography of the
728 haplochromine cichlid fish *Astatotilapia burtoni*. *Ecology and Evolution*, 8(11), 5637–
729 5648. <https://doi.org/10.1002/ece3.4092>

730 Pool, J. E., Hellmann, I., Jensen, J. D., & Nielsen, R. (2010, March 1). Population genetic
731 inference from genomic sequence variation. *Genome Research*. Cold Spring Harbor
732 Laboratory Press. <https://doi.org/10.1101/gr.079509.108>

733 Premachandra, H. K. A., Nguyen, N. H., & Knibb, W. (2019). Effectiveness of SNPs for
734 parentage and sibship assessment in polygamous yellowtail kingfish *Seriola lalandi*.
735 *Aquaculture*, 499, 24–31. <https://doi.org/10.1016/j.aquaculture.2018.09.022>

736 Puritz, J. B., Matz, M. V., Toonen, R. J., Weber, J. N., Bolnick, D. I., & Bird, C. E. (2014).
737 Demystifying the RAD fad. *Molecular Ecology*, 23(24), 5937–5942.
738 <https://doi.org/10.1111/mec.12965>

739 Rosyara, U. (2014). paternity: Paternity tests using SNPs. Retrieved from <https://r-forge.r-project.org/projects/familyassoc>

740 Salzburger, W. (2018). Understanding explosive diversification through cichlid fish genomics.
741 *Nature Reviews Genetics*. Nature Publishing Group. [https://doi.org/10.1038/s41576-018-0043-9](https://doi.org/10.1038/s41576-018-
742 0043-9)

743 Sanetra, M., Henning, F., Fukamachi, S., & Meyer, A. (2009). A microsatellite-based genetic
744 linkage map of the cichlid fish, *Astatotilapia burtoni* (Teleostei): A comparison of
745 genomic architectures among rapidly speciating cichlids. *Genetics*.
746 <https://doi.org/10.1534/genetics.108.089367>

748 Stevens, E. L., Heckenberg, G., Roberson, E. D. O., Baugher, J. D., Downey, T. J., & Pevsner, J.
749 (2011). Inference of Relationships in Population Data Using Identity-by-Descent and
750 Identity-by-State. *PLoS Genetics*, 7(9), e1002287.
751 <https://doi.org/10.1371/journal.pgen.1002287>

752 Suzuki, R., & Shimodaira, H. (2006). Pvclust: An R package for assessing the uncertainty in
753 hierarchical clustering. *Bioinformatics*, 22(12), 1540–1542.
754 <https://doi.org/10.1093/bioinformatics/btl117>

755 Theis, A., Salzburger, W., Egger, B., & Steinke, D. (2012). The Function of Anal Fin Egg-Spots
756 in the Cichlid Fish *Astatotilapia burtoni*. *PLoS ONE*, 7(1). <https://doi.org/10.1371/journal.pone.0032227>

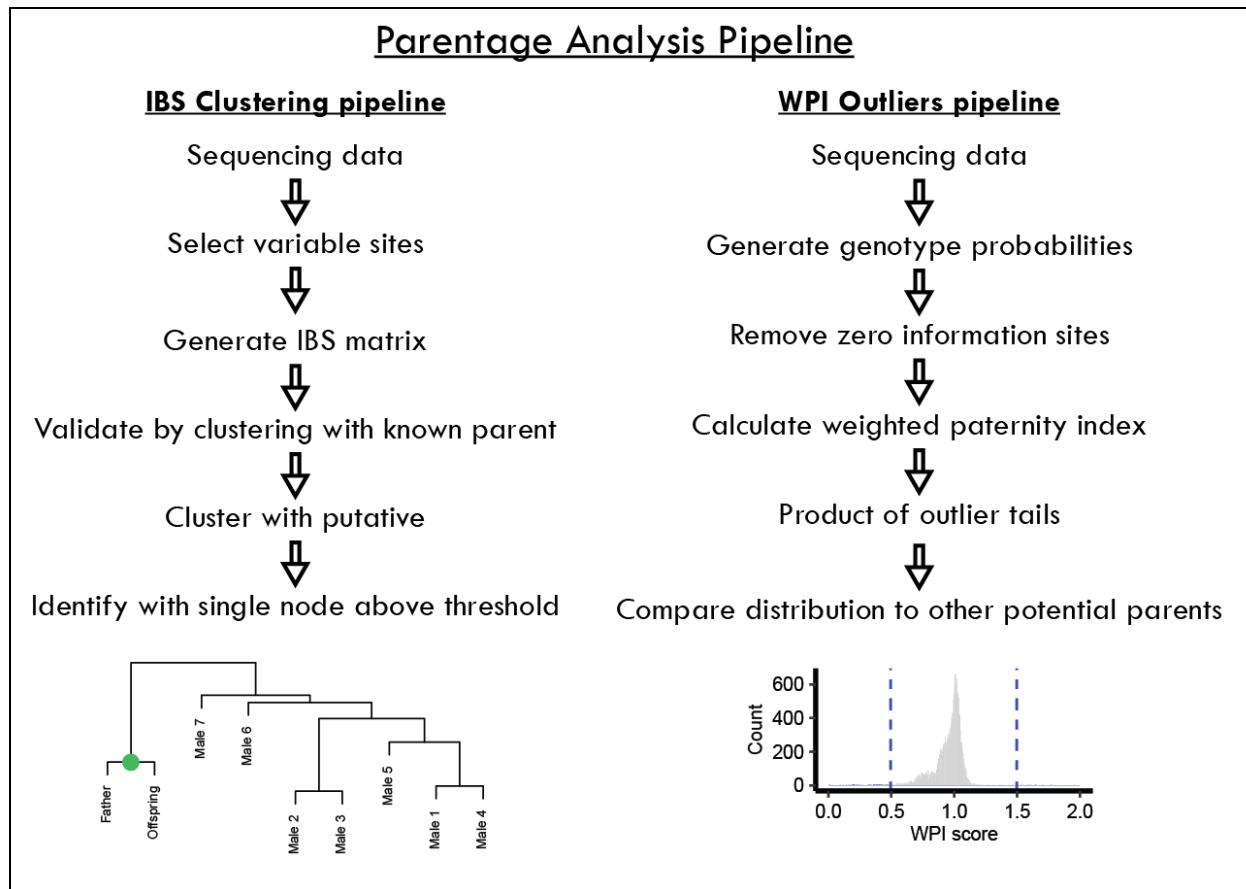
757 Thompson, E. A. (1976). A paradox of genealogical inference. *Advances in Applied Probability*,
758 8(04), 648–650. <https://doi.org/10.2307/1425927>

759 Thompson, E. A., & Meagher, T. R. (1987). Parental and Sib Likelihoods in Genealogy
760 Reconstruction. *Biometrics*, 43(3), 585. <https://doi.org/10.2307/2531997>

761 Tokarska, M., Marshall, T., Kowalczyk, R., Wójcik, J. M., Pertoldi, C., Kristensen, T. N., ...
762 Bendixen, C. (2009). Effectiveness of microsatellite and SNP markers for parentage and
763 identity analysis in species with low genetic diversity: The case of European bison.
764 *Heredity*, 103(4), 326–332. <https://doi.org/10.1038/hdy.2009.73>

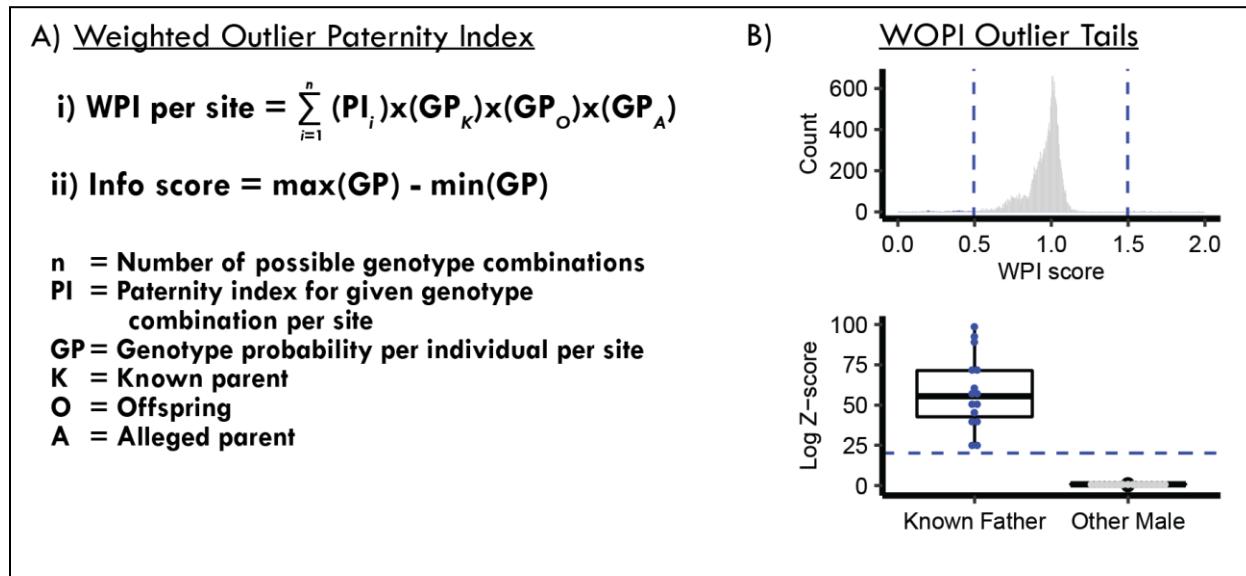
765 Wang, J. (2010). Effects of genotyping errors on parentage exclusion analysis. *Molecular
766 Ecology*, 19(22), 5061–5078. <https://doi.org/10.1111/j.1365-294X.2010.04865.x>

767 Wang, J. (2004). Sibship Reconstruction from Genetic Data with Typing Errors. *Genetics*,
768 166(4), 1963–1979. <https://doi.org/10.1534/genetics.166.4.1963>

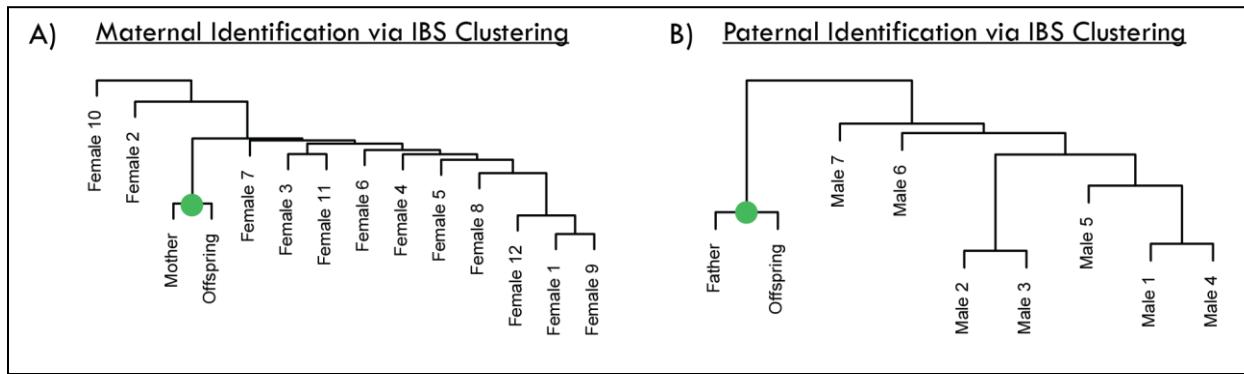

769 Wang, S., Meyer, E., Mckay, J. K., & Matz, M. V. (2012). 2b-rad: a simple and flexible method
770 for genome-wide genotyping. <https://doi.org/10.1038/nmeth.2023>

771 Yang, J., Lin, D., Deng, C., Li, Z., Pu, Y., Yu, Y., ... Chen, F. (2019, August 1). The advances in
772 DNA mixture interpretation. *Forensic Science International*. Elsevier Ireland Ltd.
773 <https://doi.org/10.1016/j.forsciint.2019.05.024>
774
775

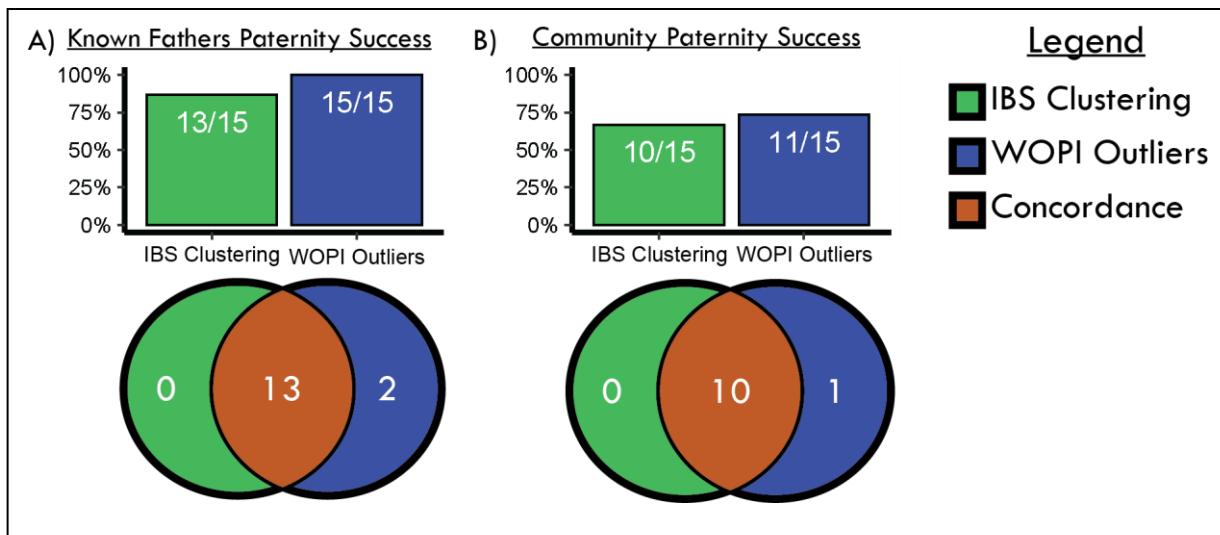
776


FIGURES

777



778


779 **Figure 1:** Parentage analysis pipelines developed for complementary methods from next-
 780 generation sequencing data utilizing IBS matrix clustering, which is responsive to relatedness
 781 among samples, and WOPI outliers, directly incorporates maternal data.

783 **Figure 2:** The weighted outlier paternity index (WOPI) method adapts a Bayesian approach to
 784 parentage analysis for next-generation sequencing to identify fathers from a pool of samples and
 785 requires the mother being known. A) Two equations used in the WOPI pipeline. (i) Weighted
 786 paternity index values are calculated for each site taking the traditional paternity index weighted
 787 by the probability of a specific genotype combination summed across all possible genotype
 788 combinations. (ii) The information score is calculated to filter out sites with no genotyping
 789 information as a technique to reduce noise. The info score for a site in an individual is calculated
 790 as the difference between the maximum and minimum genotype probability of the three possible
 791 genotypes. An info score of zero indicates that there is an equal probability (i.e. 0.33) chance that
 792 at that site an individual is any genotype and is therefore filtered out. B) A histogram of weighted
 793 paternity index (WPI) scores from a sample for which the correct father is known with dashed
 794 lines denoting outlier cutoffs (Top). The WOPI outlier score is the product of the tails of the
 795 distribution outside the theoretical outlier cutoffs. Known fathers have WOPI outlier scores above
 796 a z-score threshold when compared to the distribution of the other alleged parents (Bottom).

799 **Figure 3:** Hierarchical clustering of IBS distance matrix from known triad experiment. Limiting the
 800 samples in the matrix to potential parents of one sex and offspring creates a dendrogram wherein
 801 the offspring pair with their parent at the first internal node (green dot). Paternity or maternity was
 802 assigned if the first internal node from the offspring connected to a single individual and was above
 803 AU p-value threshold. A) A sample offspring, with known maternity and paternity (same as Fig
 804 2.), clustered with a pool of all the females from the known triad experiment to check appropriate
 805 pairing of known mother at first node. B) Dendrogram generated using a pool of males from the
 806 known triad experiment and same sample offspring correctly identifies known father.

808

809 **Figure 4:** Complementary methods successfully identify paternity with concordance between
 810 methods. Bar charts represent the number of paternity calls made by each technique, respectively.
 811 Venn diagrams show the overlap between the samples that received paternity assignments. A)
 812 Across both methods, all 15/15 broods were assigned the correct father when using triads with
 813 known paternity. B) Across six naturalistic communities, conservative paternity methods assigned
 814 paternity to 11/15 broods, after filtering the offspring that failed to appropriately cluster with their
 815 respective mother via IBS matrix clustering.

816