

1
2 **Neural and molecular mechanisms underlying female mate choice decisions in vertebrates**
3

4 Ross S. DeAngelis¹, Hans A. Hofmann¹⁻³
5

6 ¹Department of Integrative Biology, The University of Texas at Austin 78712
7

²Institute for Neuroscience, The University of Texas at Austin 78712
8

³Institute for Cellular and Molecular Biology, The University of Texas at Austin 78712
9

10
11 Corresponding author:

12 Dr. Hans A. Hofmann

13 The University of Texas at Austin

14 Department of Integrative Biology

15 2415 Speedway – C0990

16 Austin, TX 78712, USA

17 Phone: +1-512-475-6754

18 Email: hans@utexas.edu

19
20 Word count:

21 Abstract: 245

22 Main text: 7503

23
24 Figures: 1

25
26 Keywords: Sexual Selection, Social Behavior, Reproduction, Evolution, Neural Substrates

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41 **Abstract**

42 Female mate choice is a dynamic process that allows individuals to selectively mate with those
43 of the opposite sex that display a preferred set of traits. Because in many species males compete
44 with each other for fertilization opportunities, female mate choice can be a powerful agent of
45 sexual selection, often resulting in highly conspicuous traits in males. Although the evolutionary
46 causes and consequences of the ornamentation and behaviors displayed by males to attract mates
47 have been well studied, embarrassingly little is known about the proximate neural mechanisms
48 through which female choice occurs. In vertebrates, female mate choice is inherently a social
49 behavior, and although much remains to be discovered about this process, recent evidence
50 suggests the neural substrates and circuits underlying other fundamental social behaviors (such
51 as pair bonding, aggression and parental care) are likely similarly recruited during mate choice.
52 Notably, female mate choice is not static, as social and ecological environments can shape the
53 brain and, consequently, behavior in specific ways. In this Review, we discuss how social and/or
54 ecological influences mediate female choice and how this occurs within the brain. We then
55 discuss our current understanding of the neural substrates underlying female mate choice, with a
56 specific focus on those that also play a role in regulating other social behaviors. Finally, we
57 propose several promising avenues for future research by highlighting novel model systems and
58 new methodological approaches, which together will transform our understanding of the causes
59 and consequences of female mate choice.

60 **Introduction**

61 Few decisions in life are more consequential for individual fitness than choosing a mate. Mate
62 choice (see Glossary) is the result of selectively mating with only some individuals of the
63 opposite sex, whose members compete for fertilization opportunities. Because of its evolutionary
64 significance, the ultimate causes and consequences of mate choice have been studied in depth
65 (Andersson and Simmons, 2006; Jennions and Petrie, 1997; Widemo and Sæther, 1999).

66 Variability in trait expression in one sex is often mirrored by correlated variability in preferences
67 of the opposite sex. This results in non-random mating patterns (Edward, 2014) and functions as
68 a primary driver of sexual selection (see Glossary; Andersson, 1994). As a consequence,
69 variation in the phenotypes of the chosen sex are positively correlated with differences in
70 evolutionary fitness (Halliday, 1983). In fact, individuals prevented from exercising mate choice
71 (e.g. in forced pairings) experience reduced reproductive success and lower offspring viability
72 (Gowaty et al., 2003; Iyengar and Eisner, 1999; Lancaster et al., 2009).

73

74 In species that exercise mate choice, a display producer expresses traits that attract mates, and
75 these traits evolve in tandem with the mechanisms that allow the chooser to discriminate
76 amongst such traits displayed by potential mates. For example, in the guppy *Poecilia reticulata*,
77 a poeciliid fish, males display their tails to attract female mates, and females prefer longer tails to
78 shorter ones (Bischoff et al., 1985). Hence, both tail length in males, and the corresponding
79 discriminatory mechanisms in females must correlate for the selection of longer-tailed males as
80 mates. As we discuss below, females are often the ‘choosier’ sex. Given the critical importance
81 of female mate choice in individual fitness, sexual selection and evolution, it is surprising how
82 few studies have examined the underlying neural and molecular mechanisms, although this is
83 beginning to change. In this Review, we summarize what is currently known about the neural
84 and molecular mechanisms of female mate choice and how these mechanisms fit within a
85 broader understanding of vertebrate social behavior (see Glossary). Given the paucity of studies
86 exploring the mechanistic basis of female mate choice in invertebrates, here we discuss only
87 vertebrates. We focus on neurochemical signals and brain areas that have previously been
88 identified as evolutionarily conserved across vertebrates and have known roles in the regulation
89 of social behaviors outside of mate choice, including (but not limited to) aggression, parental

90 care and sexual behavior (O'Connell and Hofmann, 2011; Weitekamp and Hofmann, 2017).
91 Finally, we highlight future avenues of fruitful research opportunities.
92
93 Mate preference and mate choice (see Glossary), two distinct forms of behavior, are often
94 inherently related (Lynch et al., 2005; Rosenthal, 2017). This is especially true in species which
95 display long-term associative partnerships prior to reproduction (DeAngelis and Rhodes, 2016;
96 Donaldson et al., 2010), where preference for a particular mate precedes the choice to mate. A
97 relationship between mate preference and mate choice is also observed in non-monogamous
98 species, where a preference to associate with individuals displaying a particular phenotype is
99 expressed prior to mating (Cummings et al., 2007; Desjardins et al., 2010; Wong and Cummings,
100 2014). In many species, the formation of a particular mate preference may be more critical to
101 fitness than the moment of choice when mating occurs. Importantly, the research we discuss in
102 this Review encompasses studies addressing both the mechanisms of female mate choice and
103 those underlying female preference, as they are intertwined.

104

105 **Female versus male mate choice**

106 Females, by definition, produce a limited number of larger and more metabolically expensive
107 gametes compared to males, which tends to limit their reproductive opportunities, whereas males
108 are more often limited by the number of females that are available for mating. Hence, females
109 increase their fitness by mating with optimal male phenotypes and investing in offspring
110 survival. The resulting skew of a small proportion of males obtaining a larger proportion of
111 available mating opportunities leads to a greater chance of selection from female choice than
112 from male choice. In many species, females are therefore the choosier sex and males are more
113 likely to show a greater response to the pressures of sexual selection compared to females. Of
114 course, there are many examples where males display mate choice behaviors – such as in fishes,
115 anurans, reptiles, birds and mammals (Liao and Lu, 2009; Preston et al., 2005; Shine et al., 2004;
116 Werner and Lotem, 2003) – and males may even be the choosier sex in some instances.
117 However, males generally choose mates based on non-heritable characteristics, such as
118 reproductive state (Edward and Chapman, 2011). The evolutionary consequences of male mate
119 choice are muted in such cases, since sexual selection occurs only if the preferred phenotype
120 increases fitness in the chosen sex. Therefore, in this Review we primarily focus on mechanisms

121 found within the female brain that underlie the decision to mate with distinct and specific male
122 phenotypes.

123

124 **Proximate mechanisms of female mate choice**

125 The ultimate consequences of female mate choice are an increase in individual fitness and the
126 corresponding evolutionary persistence of a particular male traits (Edward, 2014; Lancaster et
127 al., 2009). Although these ultimate consequences are well understood, the specific proximate
128 mechanisms that underlie the processes of 'how' female mate choice occurs remain enigmatic. In
129 many species, mate choice is fundamentally a social process that relies on the integration of
130 (often multimodal) sensory information – that signals sex, species and the quality of potential
131 mates – with internal physiological conditions, such as reproductive status and available energy
132 reserves. The brain's decision-making circuit must evaluate this information, possibly in
133 conjunction with social signals from other conspecifics (see Glossary), before expression of a
134 mate preference or choice. Importantly, neither choice nor preference are necessarily static, as
135 both can vary with seasons, environmental condition, physical condition, reproductive state,
136 hormone levels, and previous experiences and/or affiliations. The recognition that the neural and
137 molecular processes in the female brain are a key substrate of sexual selection, in combination
138 with conceptual and technological advances, has resulted in a growing interest in studying the
139 neural substrates underlying this behavior.

140

141 Although different vertebrate species display a diversity of social behaviors, many of which have
142 evolved independently, these behavioral outputs often share common underlying neural and
143 molecular substrates (O'Connell and Hofmann, 2011B; Weitekamp and Hofmann, 2017; Young
144 et al., 2019). An evolutionarily ancient social decision-making network (SDMN; see Glossary)
145 located in the fore- and midbrain of all vertebrates evaluates the salience and valence of a social
146 stimulus by integrating sensory information about the (social) environment with an individual's
147 own condition and prior experience, eventually resulting in a behavioral choice (O'Connell and
148 Hofmann, 2011; O'Connell and Hofmann, 2012). Importantly, deeply conserved signaling
149 pathways – such as steroid hormones, neuropeptides and biogenic amines – are involved in
150 regulating SDMN function in the context of aggression, parental care, pair bonding and sexual
151 behavior (reviewed in Weitekamp and Hofmann 2017). This framework is well suited for

152 gaining an integrative understanding of the neural circuits and signaling molecules underlying
153 any social behavior across diverse species. In the following paragraphs, we will place what we
154 currently know about the neural and molecular underpinnings of female mate choice and related
155 behaviors within this framework (Figure 1). Because of its tight functional integration with the
156 SDMN, we include here also discussion of the role of the neocortex, and its non-mammalian
157 homologs, in mate choice. The neocortex was originally not included in the SDMN because the
158 putative neocortical homologs in other vertebrate lineages were not well known at the time
159 (O'Connell and Hofmann 2011), but recent research has provided important new insights in this
160 regard (Briscoe et al., 2018; Ito and Yamamoto, 2009; Karten, 2015).

161

162 **Neural and molecular substrates of a preference for ‘attractive’ males**

163 Females prefer to mate with males based on phenotypic traits that are perceived as attractive.
164 Body coloration, odor cues and song production are all examples of traits that different taxa use
165 to assess potential mates. However, before they make a decision, females first need to recognize
166 and discriminate conspecifics from heterospecifics (see Glossary), as well as males from other
167 females. Several studies in diverse species have uncovered potential neural and molecular
168 mechanisms involved in preference formation, sex discrimination and species recognition (see
169 Glossary). Brain regions such as the nucleus accumbens, amygdala, preoptic area and cortical
170 areas have all been implicated in the discriminatory process of mate selection. The role of an
171 individual's genotype, as well as genomic responses, have also been the subject of mate choice
172 studies. Although this field of research has already generated important insights, a broader
173 theoretical framework for how this process occurs across vertebrates remains to be developed.

174

175 *Pair bonding*

176 In monogamous species, the formation of a mate preference is often closely linked to mate
177 choice and is therefore critical for individual fitness and its evolutionary consequences. This
178 process has been extensively studied in prairie voles (*Microtus ochrogaster*; (Johnson and
179 Young, 2015; Young et al., 2011). Depending on various ecological and demographic factors,
180 monogamy (see Glossary) can be advantageous, as it eliminates the need to find additional
181 mating partners once a pair bond is formed (Emlen and Oring, 1977). Further, vigorous territory
182 defense and biparental care can increase offspring survival. The initial act of mating is critical for

183 the formation of a pair bond, where specific males and females express a strong preference for
184 each other, while avoiding other conspecifics (Young, 2003; Young and Wang, 2004). The
185 nonapeptides vasopressin and oxytocin, along with the dopaminergic system, play a critical role
186 in this process (Johnson and Young, 2015; Lim and Young, 2004; Walum et al., 2012; Young
187 and Wang, 2004). Specifically, the act of mating activates the ventral tegmental area, resulting in
188 increased dopamine activity in the nucleus accumbens and prefrontal cortex, which synchronize
189 with the medial amygdala and lateral septum, areas rich in neuropeptide receptors, to associate
190 social learning with encoded reward. This orchestrated activity of dopaminergic- and
191 peptidergic-rich brain areas reinforces the act of mating to a conditioned partner preference, thus
192 forming enduring pair bonds (Young and Wang, 2004). This process has been most extensively
193 studied in voles, but several studies in birds and fish have provided evidence that similar
194 mechanisms regulate pair bonds across vertebrates (Day et al., 2019; Kelly and Goodson, 2014;
195 Klatt and Goodson, 2013; Nowicki et al., 2017; Oldfield and Hofmann, 2011)

196

197 *Species, sex and kin: preference for unrelated conspecific males*

198 Species recognition is a critical aspect of reproduction, as mating with a heterospecific individual
199 in most cases squanders reproductive effort and diminishes fitness (Burdfield-Steel and Shuker,
200 2011). The process of species recognition during mate choice has been studied in several
201 vertebrate species, including fish and birds, (Caspers et al., 2009; Couldridge and Alexander,
202 2002; Tokarz, 1995; Uy et al., 2009), yet the cognitive architecture of this discriminatory process
203 remains unclear (Phelps et al., 2006). The ability to discriminate conspecifics from
204 heterospecifics is thus a critical task during mate selection. This process was investigated by
205 Hoke et al. (2008), who examined the induction of the immediate early gene (IEG; see Glossary)
206 *egr-1*, a marker of neural activity, in the túngara frog (*Physalaemus pustulosus*), a model system
207 in research on sexual selection (see Glossary). When the authors exposed males and females of
208 this species to calls from either conspecifics or a closely related species, the IEG response in the
209 superior olivary nucleus, an auditory region in the lower brainstem, did not differ by sex.
210 However, there were sex differences in IEG expression in the laminar nucleus of the torus
211 semicircularis, a midbrain auditory region. Specifically, *egr-1* expression increased in males
212 following exposure to both con- and heterospecific calls. Conversely, in females, this region was
213 only activated in response to conspecific calls. This sex difference in selectivity for conspecifics

214 over heterospecifics may be a reflection of their higher investment in reproduction, which means
215 that missed mating opportunities are more costly for females. Patterns of neural activity in the
216 laminar nucleus of the torus semicircularis mirrored behavioral responses, inducing calling in
217 males and phonotaxis (see Glossary) in females (Hoke et al., 2008). These results suggest that
218 sex differences in mate selectivity are mirrored by selectivity in midbrain regions which may act
219 as decision-making areas in relaying auditory cues to forebrain processing areas (Wilczynski and
220 Ryan, 2010).

221

222 Like species recognition, sex discrimination is paramount in mate selection, as same-sex mating
223 squanders reproductive effort. Individuals in search of reproductive opportunities must be able to
224 recognize and express a preference for members of the opposing sex. In female Syrian hamsters
225 (*Mesocricetus auratus*), lesions of the medial preoptic area result in no differences in lordosis
226 (see Glossary; a precopulatory motivational behavior) or vaginal scent marking compared to
227 controls, but do eliminate the normal preference for male compared to female odors. However,
228 these hamsters retain the ability to discriminate between male and female scent markings
229 (Martinez and Petrusis, 2013). These results suggest that although the medial preoptic area may
230 not be necessary in sex discrimination, it is critical in regulating female preferences for males.
231 Although the ability to recognize the opposite sex is obviously important, opposite sex
232 preference is also necessary for successful reproduction. However, the processes in the brain
233 through which this occurs remain largely unknown.

234

235 In many species, kin recognition (see Glossary) has been suggested to minimize inbreeding
236 (Tang-Martinez, 2001). Specifically, genes belonging to the major histocompatibility complex
237 (MHC), which encode proteins that identify foreign substances within the body, have been
238 implicated in kin recognition and inbreeding avoidance (Grob et al., 1998), immune competence
239 (Kamiya et al., 2014; Sommer, 2005) and genetic compatibility (Penn, 2002). In fact, individuals
240 of numerous species can recognize even unfamiliar kin based on their MHC profiles (Gerlach
241 and Lysiak, 2006). In this way, MHC genes likely play an important role in mate choice and
242 sexual selection, although how variation in MHC alleles affects the underlying sensory and
243 decision-making mechanisms in the brain remains largely unknown (Santos et al., 2018).

244

245 Although an individual's genotype may bias its mating decisions, variation in neural gene
246 expression profiles can also be associated with mating behavior. In fact, researchers are
247 increasingly applying behavioral genomics approaches to examine the extent to which the neural
248 and molecular mechanisms underlying social behavior are evolutionarily conserved (e.g.
249 Rittschof et al., 2014; Young et al., 2019). To date, only one transcriptomics study (see Glossary)
250 has compared the neural gene expression profiles associated with female mate choice across both
251 populations and sex. Keagy et al. (bioRxiv preprint) examined how gravid females of three
252 different populations of stickleback fish (*Gasterosteus aculeatus*) respond to nesting males from
253 their own or different population. As expected, females prefer males from their own population,
254 and both male and female trait complexes (principal components of behavioral and/or
255 morphological traits) vary across populations. Interestingly, although population explains most
256 of the variation in gene expression, the authors identified several gene co-expression modules
257 that vary depending on whether focal females had viewed males from their own or different
258 population. Individual candidate genes that were previously associated with female mate choice
259 behavior and social decision making more generally (for review, see Weitekamp & Hofmann,
260 2016) were also investigated. Remarkably, neuroligin-3b and neuroserpin are differentially
261 expressed according to treatment (i.e. they show increased expression in females exposed to
262 males of their own population), which is consistent with the findings of Cummings et al. (2007)
263 – see below. In sum, the study by Keagy et al. (in prep) was the first to show that, across species,
264 the activity of specific gene co-expression modules is consistently associated with a female's
265 preference. The extent to which these molecular pathways associated with mating decisions are
266 similar across diverse species, possibly revealing an evolutionarily ancient decision-making
267 system, remains to be seen.

268
269 Of course, any association between gene expression changes in response to a social stimulus and
270 the resulting behavioral response does not establish the direction of any causal relationship
271 between genes and behavior. In fact, given the fast-paced social lives of many animals, it is
272 possible that the molecular pathways uncovered by behavioral transcriptomic studies in relation
273 to a variety of social behaviors may mainly serve to prepare the individual for similar situations
274 in the future.

275

276 *Preference for more ‘attractive’ males*

277 Behavioral ecologists have provided ample evidence that, in many species, females prefer to
278 associate (and often mate) with males that are perceived as more ‘attractive’ (Andersson and
279 Simmons, 2006). However, few studies have attempted to uncover the neural basis of this
280 preference. In one example, during estrous, female mice (*Mus musculus*) prefer intact versus
281 castrated males, and show increased neural activity in the preoptic area (as measured by IEG
282 induction) during lordosis following exposure to intact males. Lesions to either the preoptic area
283 or medial amygdala abolish this preference, although females treated in this way are still able to
284 discriminate between intact and castrated males (DiBenedictis et al., 2012; Sakuma, 2008).
285 Moreover, it has also been shown that the vomeronasal organ and accessory olfactory bulb are
286 important for social odor discrimination and sexual behavior in rodents (Bressler and Baum,
287 1996; Kondo et al., 2003). These results suggest that the preoptic area and medial amygdala are
288 not involved in olfactory discrimination *per se*, but play an important role in coordinating
289 adaptive behavioral responses to associate with attractive males prior to mating.

290

291 Several studies in songbirds have utilized IEGs to identify patterns of neural activity following
292 experimental manipulations of the social and ecological environment that females experience
293 prior to mating. In European Starlings, *Sturnus vulgaris*, for example, female preference for
294 longer songs (considered to be an indicator of male quality and, thus, attractiveness) can be
295 modulated by recent social experience (exposure to long versus short songs), and also by current
296 ecological conditions. Females with recent experience listening to long songs display an
297 increased IEG response in the caudomedial mesopallium (CMM, homologous to auditory
298 cortical structures in the mammalian brain) when later exposed to long songs; previous
299 experience with shortened day length (simulating the onset of the breeding season) amplifies this
300 result (Sockman and Ball, 2009; Sockman et al., 2002).

301

302 Poeciliid fishes are a well-studied group in the context of understanding the neural basis of mate
303 choice. Poeciliids are livebearers and exhibit a diversity of mating systems (see Glossary), with
304 males often displaying alternative reproductive tactics (see Glossary; Lynch et al., 2012),
305 rendering this family well suited to exploring the mechanisms of mate choice. In a pioneering
306 behavioral genomics study, Cummings et al. (2007) exposed female Northern swordtails

307 (*Xiphophorus nigrensis*) to different male reproductive strategies and an all-female control.
308 Females prefer to mate and associate with attractive courting males, and actively avoid smaller
309 coercive males. Using a brain-specific cDNA microarray, the authors identified 306 differently
310 expressed genes (Cummings et al., 2007) across treatments. Interestingly, a greater number of
311 genes are upregulated when females were exposed to smaller coercive males. This genomic
312 response may relate to the behavioral strategy of actively avoiding small males. Conversely, a
313 greater number of genes show a reduction in expression when females are exposed to large
314 (courting) males, and these genes are more highly expressed during exposure to all-female
315 groups, suggesting that these two conditions (attractive large males versus sexually not-salient
316 females) diametrically affect expression of the same genes (Cummings et al., 2007). Moreover,
317 female preference is associated with the increased expression of genes related to synaptic
318 plasticity (e.g. *neuroserpin a* and *neuroligin-3*) independent of social affiliation, whereas
319 intrasexual affiliation increases expression of genes typically related to social bonding (e.g.
320 *isotocin*, *vasotocin*) (Ramsey et al., 2012). Interestingly, a follow-up study showed that inhibiting
321 synaptic plasticity reduces female preference behaviors (Ramsey et al., 2014).

322
323 How do distinct mating contexts dynamically regulate brain gene expression profiles when
324 females are exposed to attractive versus non-attractive males? The mating system of Northern
325 swordtails, where males are either courting or mate coercively, was compared to that of the
326 mosquitofish *Gambusia affinis*, where males do not court and instead only pursue a coercive
327 mating strategy. Following exposure to males, genes in the brains of females displayed opposite
328 patterns of expression in response to these contrasting mating dynamics (Lynch et al., 2012).
329 Expression of genes underlying synaptic plasticity (e.g. *neuroserpin* and *neuroligan-3*) was
330 positively correlated with females' preference for attractive large males in swordtails, whereas in
331 mosquitofish the situation was reversed. In another study, Wang et al. found that this pattern is
332 reversed in mosquitofish following exposure to heterospecific courting swordtail males (Wang et
333 al., 2014), suggesting that the relationship between expression of synaptic plasticity genes and
334 mating behavior is dependent on the mating system and the mate choice environment. Finally,
335 using *in situ* hybridization, Wong et al. 2014 showed that female preference is positively
336 correlated with gene expression of *neuroligin-3* in the telencephalic areas Dm (a putative
337 homolog of the mammalian basolateral amygdala) and Dl (homologous to the hippocampus), the

338 ventral medial hypothalamus, as well as the preoptic area and the ventral telencephalic area Vv
339 (homologous to the lateral septum). Interestingly, expression of *tyrosine hydroxylase*, an enzyme
340 that catalyzes the rate-limiting step in the synthesis of catecholamines (and the expression of
341 which is often used to assess dopamine activity) was not dependent on choice contexts (Wong
342 and Cummings, 2014). Given the role of dopaminergic signaling in reward reinforcement, this
343 result might be surprising, although the experimental design may simply not have allowed
344 sufficient time for tyrosine hydroxylase expression to change in response to a female's
345 preference to mate with one male over another. Conversely, it is also possible that courtship only
346 induces release and not necessarily synthesis of dopamine. Taken together, these studies suggest
347 that the neural architecture underlying cognitive functions important for mate discrimination may
348 be altered by the differential expression of synaptic plasticity genes in a dynamic social
349 environment where females must continually discriminate amongst potential mates while also
350 avoiding coercive males.

351

352 In a recent analysis exploring the changes in gene expression associated with mate preferences in
353 another poeciliid species, the guppy (*Poecilia reticulata*), Bloch et al (2018) exposed females to
354 colorful and drab males for 10 min and subsequently measured transcriptomic changes in the
355 optic tectum (which integrates visual information) and the telencephalon (where many of the
356 SDMN nodes reside). Some females were known to show a preference for 'attractive' colorful
357 males, and these females showed a different pattern of differentially expressed genes in the
358 telencephalon than females that did not have a preference regarding male coloration. However,
359 all females showed similar changes in gene expression in the optic tectum in response to colorful
360 and drab males, suggesting that all females are able to discern the differences in male
361 appearance, but some lack the ability to integrate that information appropriately within the
362 telencephalon. In females that prefer colorful males, male coloration causes a differential
363 genomic response at the sensory processing and decision-making level. This study represents one
364 of the most comprehensive examples for identifying unique transcriptional responses underlying
365 mate preference formation. It is likely that brain regions sensitive to sensory information relay
366 those inputs to decision-making areas that orchestrate the appropriate behavioral response
367 (Bischof and Rollenhagen, 1999; Fisher et al., 2006; Hoke et al., 2008), a hypothesis that
368 requires more research. In summary, species recognition, sex discrimination and discrimination

369 of attractive versus unattractive mates are all important aspects of mate selection in choosy
370 females. Although several brain areas, neurotransmitters, genes and genomics responses have
371 been identified (Figure 1), the integrative study of these pathways across species will provide
372 further insight into the neural and molecular regulation of mate discrimination and selection.

373

374

375 **Temporal variation of preference**

376 Mate preferences are often highly dynamic, depending on age and reproductive state, as well as
377 social and ecological factors. In many species, males and females acquire mate preferences early
378 in life through exposure to particular traits of the opposite sex. Similarly, familiarity (see
379 Glossary) with an individual can bias mate choice even in adulthood. Finally, seasonal and other
380 ecological factors regulate reproductive state, which in turn influences selectiveness, receptivity
381 and choice.

382

383 *Acquiring a mate preference during development*

384 Early-life experiences – such as rearing environment, social interactions, social learning and
385 parent–offspring bonds – can affect mate-choice behaviors and predispose individuals to specific
386 mate preferences. One of the best-studied examples of early learning is sexual imprinting (see
387 Glossary), which predicts mating displays and mating preferences in adulthood and has been
388 described in teleost fishes (Delclos et al., 2020; Verzijden and ten Cate, 2007), songbirds (Ten
389 Cate and Vos, 1999) and mammals (Kendrick et al., 1998), including humans (Bereczkei et al.,
390 2004). Although the mechanistic basis of sexual imprinting has been addressed primarily in birds
391 and, more recently, in poeciliid fish, it likely has important consequences for sexual selection
392 and evolution in a wide range of species (Owens et al., 1999; Yang et al., 2019).

393

394 In a recent behavioral transcriptomics study, (Delclos et al., 2020) raised females of the
395 Sheepshead swordtail fish (*Xiphophorus birchmanni*) with adult groups of either conspecifics or
396 those of a sister species, the Highland swordtail *X. malinche*. The authors then tested the
397 preference of these females for olfactory cues of either species, followed by whole-brain
398 transcriptome profiling. The results showed that females preferred the odors of males to which
399 they had been exposed in early life. Moreover, the authors discovered specific gene co-

400 expression modules associated with rearing environment and odor preference, suggesting that
401 specific molecular pathways might underlie sexual imprinting. Although this study provides an
402 important foundation for future research in swordtails and other fishes, the specific neural
403 circuits underlying the developmental acquisition of mate preferences have been studied in much
404 more detail in songbirds.

405

406 In songbirds, juveniles of both sexes can become sexually imprinted on their father's song in a
407 two-stage process that includes the acquisition of the song memory during a critical period early
408 in life as well as a stabilization phase during the first sexual experience (Bischof and
409 Rollenhagen, 1999). In several elegant studies in male zebra finches (*Taeniopygia guttata*),
410 Bischof and coworkers implicated higher-order auditory projection areas putatively homologous
411 to the mammalian auditory association cortex [the hyperpallium apicale (HA), the caudomedial
412 nidopallium (CMN) and the caudomedial mesopallium (CMM), according to the avian
413 nomenclature as revised by (Jarvis et al., 2005)] in both the acquisition and stabilization phases
414 (Bischof and Rollenhagen, 1999; Lieshoff et al., 2004; Sadananda and Bischof, 2004). The
415 extent to which this occurs in females, which do not sing, but memorize their father's song and
416 become imprinted on it, has scarcely been investigated.

417

418 Where are these preferences formed and stored within the female brain? When zebra finch
419 females are re-exposed to their fathers' song during the stabilization period, neural activity
420 increases in the CMM, but not the CMN or hippocampus (Terpstra et al., 2006). In conjunction
421 with the results in males discussed above, this finding suggests that the CMM may be an
422 important brain area in the consolidation of learned songs and formation of preference,
423 independent of the ability to produce the song. Subsequent research by (Woolley and Doupe,
424 2008) demonstrated that the activity of the CMM is most pronounced in response to song that is
425 directed at the female, whereas the CMN responds the most to songs the female was exposed to
426 previously, suggesting that these auditory association regions integrate discrete information
427 independently and likely work in concert to coordinate mate preferences. We can conclude that
428 the current social environment likely primes the brain to respond to previously formed
429 preferences as a result of social exposure.

430

431 In another study exploring how development affects song preferences as adults, (Chen et al.,
432 2017) reared females either with both parents present or without the father present. Using the
433 IEG egr-1 as marker of neural activity, these authors demonstrated that CMN activity is
434 dependent on developmental exposure and song stimulus. Females reared with their father
435 present show increased egr-1 activity in response to courtship song compared to non-courtship
436 song. Females reared in the absence of male song show no difference in egr-1 expression
437 following the normally preferred courtship song compared to non-preferred non-courtship song.
438 Finally, egr-1 activity in the CMM is not dependent on rearing environment, and is higher in
439 response to courtship song versus non-courtship song (Chen et al., 2017). (Hauber et al., 2013)
440 went beyond these auditory association regions by examining how variable song stimuli and
441 social rearing environment interact to modulate neural activity in the field L complex, which is
442 the primary auditory forebrain area activated by hearing natural sounds and which receives input
443 from both the CMN and CMM. Specifically, these authors reared female zebra finches in one of
444 three conditions: with both parents present, with only the mother present (and the father absent)
445 or with Bengalese finches (*Lonchura striata domestica*) as foster parents. Once they had reached
446 adulthood, these females were then exposed to song playbacks from either zebra finch,
447 Bengalese finch, including their own (foster) father's song, or a Parson's finch (*Poephila cincta*),
448 and neuronal activity was recorded in the field L complex. In both the control and father-absent
449 groups, L field complex neurons were more active in response to conspecific songs, and no
450 differences were found in cross-fostered females following exposure to conspecific or their
451 foster-father's song. In cross-fostered females, neuronal firing was higher following exposure to
452 the foster species' song compared to the song of the Parson's finch (Hauber et al., 2013). These
453 findings underscore the importance of early-life social experience in the context of species
454 recognition and sexual imprinting.

455
456 Day et al. (2019) explored the role of dopamine receptors following the formation of a song
457 preference in adult female zebra finches. These authors exposed paired and unpaired females to
458 either a known or a novel song. Not surprisingly, paired females preferred their partner's song to
459 that of a stranger, whereas unpaired females showed no preference. Then, using a series of
460 antagonist and agonist treatments at both the D1 and D2 dopamine receptors, the authors
461 provided evidence that the D2 receptor is both necessary and sufficient for the maintenance of

462 this preference (Day et al., 2019). They suggest that the dopaminergic reward system is likely to
463 be activated during pair-bond formation, making the preference for familiar song rewarding and
464 maintaining the social bond.

465

466 Taken together, these data highlight the dynamic interactive nature of both current context and
467 previous experience on neural activity patterns in auditory processing regions in the context of
468 female mate choice.

469

470 *Familiarity*

471 Clearly, previous experiences and/or familiarity with potential mates can strongly influence
472 female mating behavior. Additional factors such as the current availability and quality of
473 potential mates (Sockman and Ball, 2009), as well as familiarity between potential mates, can
474 bias female mate choice (Kidd et al., 2013b). In fact, this is also the case in humans, where social
475 familiarity with potential mates is an important prerequisite for partner affiliation and, ultimately,
476 romantic love.

477

478 The phenomenon of love appears to be universal across human cultures (Jankowiak and Fischer,
479 1992), and is thought to be an evolutionary elaboration of the mammalian neural mechanism of
480 mate choice (Fisher et al., 2006). Therefore, many of the neural signatures underlying familiarity
481 in other vertebrates are likely also involved in the orchestration of human love. During the
482 perception of romantic love, several brain regions operate synchronously, including those
483 involved in sensory perception and emotional centers. Dopamine plays an important role in this
484 process, as it may rewire neural circuits to encode sensory stimuli from loved ones in a way that
485 is more potently rewarding, specifically through dopamine release in dopamine-rich brain areas
486 (Lim and Young, 2004). In an fMRI study of people who self-reported as intensely in love,
487 exposure to their beloved was followed by activation of dopamine-rich areas associated with
488 mammalian reward and motivation, such as the ventral tegmentum area and right caudate gyrus
489 (Fisher et al., 2005). Another study suggests that the neural substrates encoding sexual
490 preference in humans include phylogenetically ancient and evolutionarily highly conserved
491 subcortical brain structures, including the anterior and preoptic area of the hypothalamus, the
492 anterior and mediadorsal thalamus, septal area and the perirhinal parahippocampus, including the

493 dentate gyrus, and excluding more derived regions of the neocortex (Poeppl et al., 2016).
494 Although ethologists have often classified attachment and sexual affinity together with sex drive
495 or motivation, several fMRI studies have provided evidence that the neural circuits and brain
496 networks promoting reproductive motivation are distinct from those underlying the formation of
497 romantic love (Arnow et al., 2002; Fisher et al., 2005; Fisher et al., 2006; Gibson, 2015). Thus,
498 to understand the neural underpinnings of mate choice, we need to dissociate courtship,
499 attraction and choice from sexual motivation. Although these fMRI data from human studies
500 provide compelling evidence that distinct mechanisms regulate each independently,
501 corroborating evidence from non-human study systems is lacking.

502

503 Familiarity with an opposite-sex individual can also affect mate preferences in non-monogamous
504 species. An elegant study by Okuyama et al. (2014) used Japanese rice fish (*Oryzias latipes*), also
505 known as medaka, to explore how social familiarity can affect female mate choice. First, the
506 authors showed that females can identify and recognize potential mates and that familiarization
507 enhances female receptivity. They then identified two mutant lines with defective mating
508 behaviors, in which females did not display enhancement of receptivity following mate exposure.
509 Focusing on gonadotropin-releasing hormone (GnRH) and examining patterns of neural
510 migration, they identified that these mutant lines showed abnormal development of terminal
511 nerve (TN) GnRH3 neurons, thus demonstrating that normal GnRH3 peptides are required for
512 female preference of familiar males. Familiarization facilitates TN-GnRH3 neuron activity, as
513 firing rates are correlated with female receptivity (Okuyama et al., 2014).

514

515 In another study on medaka fish, Yokoi et al. (2020) generated lines carrying mutations in
516 oxytocin (OXT) and oxytocin receptor (OTR) genes. Results indicate that the OXT/OTR
517 pathway is critical for the formation of female preference for familiar males. In males, which
518 prefer to mate with unfamiliar females, mutant lines display a loss of unrestricted promiscuous
519 mating. The mutant lines display a series of transcriptional changes related to metabolism which
520 differ by sex; these changes may explain the sex differences in behavior following mutagenesis,
521 where mutant males display a loss of the normal preference to mate with unfamiliar females,
522 whereas mutant females lose their preference for familiar males (Yokoi et al., 2020). These
523 studies represent some of the most comprehensive attempts to explain the mechanistic neural

524 basis of mate choice. Although the results highlight specific neural and molecular components in
525 the maintenance of mate preference, future studies in a variety of model systems require more
526 spatial resolution, possibly informed by the SDMN, to determine the extent to which the
527 mechanistic basis of mate choice may be shared across vertebrate taxa.

528

529 Female familiarity and male–male interactions can also affect female mate choice behaviors. In
530 the highly social Burton’s mouthbrooder cichlid fish, *A. burtoni*, females observe males as they
531 competitively interact, and they integrate information based on the outcomes of these observed
532 interactions, which may then alter the females’ reproductive behaviors. In this study of *A.*
533 *burtoni*, females were first familiarized with specific males. Subsequently, females were allowed
534 to watch an aggressive interaction between familiar and unfamiliar males. Neural activity
535 patterns in nodes of the SDMN, including the lateral septum, preoptic area and ventromedial
536 hypothalamus, were highly dependent on whether familiar males won or lost the fight. Following
537 observation of familiar males losing a fight, the lateral septum (a region associated with anxiety
538 and social recognition) was activated, whereas observing familiar males winning a fight
539 activated the preoptic area and ventromedial hypothalamus, reproductive centers within the brain
540 (Desjardins et al., 2010). These findings demonstrate how social interactions and group
541 dynamics influence female reproductive behavior and highlight a need for future work exploring
542 how social information is processed within the brain and subsequently influences female
543 reproductive decisions.

544

545 *Female reproductive state*

546 Another important factor affecting mating behavior is female reproductive state. As
547 physiological attributes vary with maturity and seasonality, and within the reproductive cycle,
548 the motivation to find and select a mate also varies (Hunt et al., 2005; Lynch et al., 2005; Moore
549 and Moore, 2001). Circulating steroid hormones are a major factor contributing to reproductive
550 state, as they play an important role in the regulation of reproductive physiology (Adkins-Regan,
551 1998). In humans, variation within the menstrual cycle can affect female mate preferences (Puts,
552 2005). In female grey tree frogs (*Hyla versicolor*), exogenous administration of progesterone and
553 prostaglandin increases the frequency of phonotaxis; however, treatment does not affect female
554 discriminatory abilities (Gordon and Gerhardt, 2009). Non-reproductive females of Burton’s

555 mouthbrooder (*Astatotilapia burtoni*), a highly social African cichlid fish, normally prefer to
556 associate with small subordinate males as they are less aggressive than larger dominant males,
557 but on the day of spawning they switch their preference and mate with larger dominant males
558 (Kidd et al., 2013b). Remarkably, non-reproductive females treated with prostaglandin F2 α
559 (PGF2) dramatically reverse their normal preference (Kidd et al., 2013a). Building on this
560 observation, Juntti et al. (2016) used gene editing to show that PGF2 signaling is a necessary
561 factor for normal female reproductive behavior in this species. Furthermore, mRNA levels of the
562 PGF2 receptor (*Ptgfr*) increase in the preoptic area around the time of mating. These results
563 underscore the importance of the POA in female sexual behavior and provide strong support for
564 a causal role of the PGF2 pathway in regulating female mating preferences. The synthesis and
565 release of neuropeptides also influences female reproductive state. For example, in the female
566 grey tree frog, intracerebroventricular injections of arginine vasotocin (AVT) increase the speed
567 of phonotaxis (allowing females to more quickly direct attention towards the acoustic signals of
568 males), and blockade of AVT inhibits phonotaxis (Boyd, 2019). In summary, ancient signaling
569 pathways – steroid hormones, neuropeptides, prostaglandins and other hormones – that regulate
570 female reproductive physiology across vertebrates appear to also affect mating preferences,
571 although much remains to be discovered about the neural circuits involved (Figure 1).

572

573 **Future outlook**

574 A substantial body of work has addressed the neural and molecular substrates of social behavior
575 across vertebrates. This work has identified a suite of brain regions, gene regulatory pathways,
576 neurotransmitters and hormones that regulate social behaviors such as parental care, aggression,
577 pair bonding and sexual behavior. However, how these brain systems function in mate choice
578 remains understudied. Future studies exploring mate choice across diverse social systems,
579 incorporating phylogenetic comparative methods (see Glossary) and utilizing new genetic and
580 genomic techniques will substantially expand our understanding of how mate choice is mediated
581 within the brain and the extent to which it is evolutionarily conserved across taxa.

582

583 Importantly, although mechanisms of cognition and choice are often shared across the sexes,
584 there may also be certain differences, as the physiology of males and females can be very
585 different (DeAngelis and Rhodes, 2016; Dulac and Kimchi, 2007; Goodson, 2005; O'Connell et

586 al., 2013). Additionally, males and females often rely on different sensory inputs to assess mate
587 quality. For example, during sexual imprinting in birds, females memorize their father's song
588 and, as adults, prefer songs sung by potential mates that are similar to those of their fathers.
589 Conversely, male birds evaluate potential mates through visual and/or olfactory cues, as females
590 do not sing. Although different brain areas process these distinct sensory modalities, these cues
591 may be relayed to the same association centers, which may act as a decision-making brain area in
592 the processing of sensory information for the facilitation of mate choice. It will be fascinating to
593 see future studies test the hypothesis that conserved brain areas act as decision-making centers
594 both within a species (where sexes rely on distinct sensory inputs) and across taxa, to uncover
595 the degree of evolutionary conservation of this process. If there are highly conserved decision-
596 making areas present across taxa, we should see that although different groups rely on different
597 sensory inputs, shared decision-making areas may act similarly in their orchestration of mate
598 choice. These brain areas potentially include the highly conserved preoptic area, and future
599 studies exploring this region in mate selection could provide further insight.

600

601 Diverse social systems across taxa with variable social dynamics also provide promising systems
602 to investigate the neural mechanisms of mate choice. One example is the cichlid fish *A. burtoni*,
603 a species that displays multiple phenotypes within a sex, where dominant reproductive males can
604 be either blue or yellow in color (Dijkstra et al., 2017). Another, is when alternative reproductive
605 tactics are present, as are in ruffs (*Philomachus pugnax*), a lekking bird species where both
606 courting and satellite males are present (Lank et al., 1995). These species provide ideal study
607 systems for investigating female mate choice. In these species, females must make mating
608 decisions after assessing different options in dynamic social environments.

609

610 With recent advances in genomics and data processing, and corresponding reductions in cost,
611 phylogenetic comparative approaches can yield strong inferences similar to those from
612 experimental approaches. One recent example utilizing a comparative framework was in
613 exploration of a conserved transcriptomic signature underlying monogamy. Young et al. (2019)
614 compared transcriptomes of paired monogamous and non-monogamous species across diverse
615 vertebrate lineages and found substantial evidence to support the hypothesis that conserved and
616 ancient gene modules have been recruited repeatedly in evolutionarily independent transitions to

617 monogamy. This suggests that there may be other universal molecular mechanisms underlying
618 similarly fundamental social behaviors in vertebrates and beyond (O'Connell and Hofmann,
619 2011; Toth and Robinson, 2007). How mate choice decisions rely on similarly conserved
620 transcriptomic profiles across distantly related taxa remains unknown and provides an exciting
621 avenue of future comparative research.

622

623 Finally, recent technological advances in neuroscience provide many exciting opportunities to
624 clarify the relationship between brain and behavior. For example, in a recent study by Kohl et al.
625 (2018) virus-mediated retrograde trans-synaptic tracing, fiber photometry and calcium imaging
626 (see Glossary) were used to elegantly detail the relationship between galanin circuit architecture
627 and parental behavior in the mouse (*Mus musculus*) (Kohl et al., 2018). In another example,
628 Kingsbury et al. (2019) used calcium imaging to simultaneously record neural activity in two
629 interacting mice, illustrating that brain activity is correlated between individuals interacting in
630 real time (Kingsbury et al., 2019). These experiments represent remarkable examples of how
631 new technologies can uncover not only the neural architecture of specific neuronal circuits, but
632 also how discrete components functionally regulate social behavior. Although there are
633 limitations in their current application to non-traditional model systems, some of these
634 technologies are becoming feasible in diverse species. A comparative approach, exploring a
635 diversity of organisms with unique behavioral strategies will paint a clearer picture of the
636 evolution and function of neural substrates involved in social decision-making (Dulac et al.,
637 2014; Pollen and Hofmann, 2008; Roland and O'Connell, 2015; Yartsev, 2017).

638

639 **Conclusions**

640 In this Review, we have discussed a series of neurochemicals – including neurotransmitters,
641 nonapeptides and other neurohormones – and genes associated with female mate choice across
642 vertebrate taxa. Figure 1 summarizes which taxa these have been studied in, and where in the
643 brain they have been explored (when this information is available). From pairbonding mammals,
644 we know that activation of the ventral tegmental area and subsequent dopamine activity in the
645 nucleus accumbens is critical for the formation of female mate preferences and involves the
646 complementary synthesis and release of both vasopressin and oxytocin. These neurochemical
647 pathways have also been identified as substrates of female mate choice and/or preference in birds

648 (Day et al., 2019) and amphibians (Boyd, 2019). Additionally, in the swordtail *X. nigrensis*,
649 genes related to synaptic plasticity are expressed in core nodes of the SDMN (such as the lateral
650 septum, medial amygdala and preoptic area) during mate selection (Cummings et al., 2007), a
651 finding that has been corroborated in other teleosts using transcriptomic approaches (Bloch et al.
652 2018; Keagy et al., in prep). However, the extent to which these processes are conserved across
653 vertebrates remains unclear.

654

655 Importantly, dynamic social environments modulate how the brain integrates external
656 information to display appropriate adaptive mate choice behavior. Factors such as early life
657 experiences, social familiarity, the current social context and reproductive state all influence how
658 and when females make mate-choice decisions. Different species experience distinct social
659 environments and may rely on differing sensory modalities in mate choice. Although diverse
660 species likely differ in how the brain responds to these social and environmental dynamics, we
661 can predict that certain brain areas function in an evolutionarily conserved role as decision-
662 making areas in the integration of information and facilitation of female mate choice. The
663 preoptic area and medial amygdala are two such regions. These have been identified in mammals
664 as important for preference, but not necessary for mate discrimination (DiBenedictis et al., 2012;
665 Martinez and Petrulis, 2013; Sakuma, 2008). Other nodes of the SDMN, though clearly
666 important in a variety of social behaviors, have been largely ignored in the context of mate
667 choice and thus provide promising future areas to explore.

668

669 Female mate choice is fundamentally a social behavior. Even though it has long been recognized
670 as a powerful driver of sexual selection (Andersson and Simmons, 2006; Emlen and Oring,
671 1977), it is astonishing how little is known about the neural and molecular processes by which
672 the female brain recognizes and selects for male traits. This is in stark contrast to the proximate
673 mechanisms underlying sexually selected traits displayed by males, which have received much
674 attention, in part because they often are very conspicuous (Andersson and Simmons, 2006). Even
675 though our current understanding of mate choice mechanisms is woefully inadequate, the
676 evidence we have discussed here suggests that the evolutionarily conserved brain regions and
677 neurochemical pathways that regulate social decision-making across vertebrates also play a
678 critical role in the recognition and selection of suitable mates. Given novel methodological

679 advances that facilitate research across time scales and levels of biological organization, even in
680 non-traditional model systems, we can look forward to exciting new insights into mate choice
681 mechanisms and how they evolved.

682

683 **Acknowledgements**

684 We thank Chelsea Weitekamp and Eva Fischer for helpful comments on earlier versions of this
685 manuscript and members of the Hofmann lab for discussion. This work was supported by NSF
686 grants IOS-0843712 and IOS-1354942 to HAH.

687

688

- 689 **References**
690
- 691 **Adkins-Regan, E.** (1998). Hormonal mechanisms of mate choice. *American Zoologist* **38**,
692 166-178.
- 693 **Andersson, M. and Simmons, L. W.** (2006). Sexual selection and mate choice. *Trends in*
694 *ecology & evolution* **21**, 296-302.
- 695 **Andersson, M. B.** (1994). Sexual selection: Princeton University Press.
- 696 **Arnow, B. A., Desmond, J. E., Banner, L. L., Glover, G. H., Solomon, A., Polan, M. L.,**
697 **Lue, T. F. and Atlas, S. W.** (2002). Brain activation and sexual arousal in healthy, heterosexual
698 males. *Brain* **125**, 1014-1023.
- 699 **Bereczkei, T., Gyuris, P. and Weisfeld, G. E.** (2004). Sexual imprinting in human mate
700 choice. *Proceedings of the Royal Society of London. Series B: Biological Sciences* **271**, 1129-1134.
- 701 **Bischof, H.-J. and Rollenhagen, A.** (1999). Behavioural and neurophysiological aspects
702 of sexual imprinting in zebra finches. *Behavioural brain research* **98**, 267-276.
- 703 **Bischoff, R. J., Gould, J. L. and Rubenstein, D. I.** (1985). Tail size and female choice in
704 the guppy (*Poecilia reticulata*). *Behavioral Ecology and Sociobiology* **17**, 253-255.
- 705 **Boyd, S. K.** (2019). Effects of intracerebroventricular arginine vasotocin on a female
706 amphibian proceptive behavior. *Journal of Comparative Physiology A*, 1-9.
- 707 **Bressler, S. and Baum, M.** (1996). Sex comparison of neuronal Fos immunoreactivity in
708 the rat vomeronasal projection circuit after chemosensory stimulation. *Neuroscience* **71**, 1063-
709 1072.
- 710 **Briscoe, S. D., Albertin, C. B., Rowell, J. J. and Ragsdale, C. W.** (2018). Neocortical
711 association cell types in the forebrain of birds and alligators. *Current Biology* **28**, 686-696. e6.
- 712 **Burdfield-Steel, E. R. and Shuker, D. M.** (2011). Reproductive interference. *Current*
713 *Biology* **21**, R450-R451.
- 714 **Caspers, B. A., Schroeder, F. C., Franke, S., Streich, W. J. and Voigt, C. C.** (2009). Odour-
715 based species recognition in two sympatric species of sac-winged bats (*Saccopteryx bilineata*, *S.*
716 *leptura*): combining chemical analyses, behavioural observations and odour preference tests.
717 *Behavioral Ecology and Sociobiology* **63**, 741-749.
- 718 **Chen, Y., Clark, O. and Woolley, S. C.** (2017). Courtship song preferences in female
719 zebra finches are shaped by developmental auditory experience. *Proceedings of the Royal*
720 *Society B: Biological Sciences* **284**, 20170054.
- 721 **Couldridge, V. C. and Alexander, G. J.** (2002). Color patterns and species recognition in
722 four closely related species of Lake Malawi cichlid. *Behavioral Ecology* **13**, 59-64.
- 723 **Cummings, M. E., Larkins-Ford, J., Reilly, C. R., Wong, R. Y., Ramsey, M. and Hofmann,**
724 **H. A.** (2007). Sexual and social stimuli elicit rapid and contrasting genomic responses.
725 *Proceedings of the Royal Society B: Biological Sciences* **275**, 393-402.
- 726 **Day, N. F., Saxon, D., Robbins, A., Harris, L., Nee, E., Shroff-Mehta, N., Stout, K., Sun, J.,**
727 **Lillie, N. and Burns, M.** (2019). D2 dopamine receptor activation induces female preference for
728 male song in the monogamous zebra finch. *Journal of Experimental Biology* **222**, jeb191510.
- 729 **DeAngelis, R. S. and Rhodes, J. S.** (2016). Sex differences in steroid hormones and
730 parental effort across the breeding cycle in *Amphiprion ocellaris*. *Copeia* **104**, 586-593.

- 731 **Delclos, P. J., Forero, S. A. and Rosenthal, G. G.** (2020). Divergent neurogenomic
732 responses shape social learning of both personality and mate preference. *Journal of*
733 *Experimental Biology* **223**.
- 734 **Desjardins, J. K., Klausner, J. Q. and Fernald, R. D.** (2010). Female genomic response to
735 mate information. *Proceedings of the National Academy of Sciences* **107**, 21176-21180.
- 736 **DiBenedictis, B. T., Ingraham, K. L., Baum, M. J. and Cherry, J. A.** (2012). Disruption of
737 urinary odor preference and lordosis behavior in female mice given lesions of the medial
738 amygdala. *Physiology & behavior* **105**, 554-559.
- 739 **Dijkstra, P. D., Maguire, S. M., Harris, R. M., Rodriguez, A. A., DeAngelis, R. S., Flores,**
740 **S. A. and Hofmann, H. A.** (2017). The melanocortin system regulates body pigmentation and
741 social behaviour in a colour polymorphic cichlid fish. *Proceedings of the Royal Society B:*
742 *Biological Sciences* **284**, 20162838.
- 743 **Donaldson, Z. R., Spiegel, L. and Young, L. J.** (2010). Central vasopressin V1a receptor
744 activation is independently necessary for both partner preference formation and expression in
745 socially monogamous male prairie voles. *Behavioral neuroscience* **124**, 159.
- 746 **Dulac, C. and Kimchi, T.** (2007). Neural mechanisms underlying sex-specific behaviors in
747 vertebrates. *Current opinion in neurobiology* **17**, 675-683.
- 748 **Dulac, C., O'Connell, L. A. and Wu, Z.** (2014). Neural control of maternal and paternal
749 behaviors. *Science* **345**, 765-770.
- 750 **Edward, D. A.** (2014). The description of mate choice. *Behavioral Ecology* **26**, 301-310.
- 751 **Edward, D. A. and Chapman, T.** (2011). The evolution and significance of male mate
752 choice. *Trends in ecology & evolution* **26**, 647-654.
- 753 **Emlen, S. T. and Oring, L. W.** (1977). Ecology, sexual selection, and the evolution of
754 mating systems. *Science* **197**, 215-223.
- 755 **Fisher, H., Aron, A. and Brown, L. L.** (2005). Romantic love: an fMRI study of a neural
756 mechanism for mate choice. *Journal of Comparative Neurology* **493**, 58-62.
- 757 **Fisher, H. E., Aron, A. and Brown, L. L.** (2006). Romantic love: a mammalian brain
758 system for mate choice. *Philosophical Transactions of the Royal Society B: Biological Sciences*
759 **361**, 2173-2186.
- 760 **Gerlach, G. and Lysiak, N.** (2006). Kin recognition and inbreeding avoidance in zebrafish,
761 Danio rerio, is based on phenotype matching. *Animal Behaviour* **71**, 1371-1377.
- 762 **Gibson, L. S.** (2015). The science of romantic love: Distinct evolutionary, neural, and
763 hormonal characteristics. *Science*.
- 764 **Goodson, J. L.** (2005). The vertebrate social behavior network: evolutionary themes and
765 variations. *Hormones and behavior* **48**, 11-22.
- 766 **Gordon, N. M. and Gerhardt, H. C.** (2009). Hormonal modulation of phonotaxis and
767 advertisement-call preferences in the gray treefrog (Hyla versicolor). *Hormones and behavior*
768 **55**, 121-127.
- 769 **Gowaty, P. A., Drickamer, L. C. and Schmid-Holmes, S.** (2003). Male house mice
770 produce fewer offspring with lower viability and poorer performance when mated with females
771 they do not prefer. *Animal Behaviour* **65**, 95-103.
- 772 **Grob, B., Knapp, L., Martin, R. and Anzenberger, G.** (1998). The major
773 histocompatibility complex and mate choice: inbreeding avoidance and selection of good genes.
774 *Experimental and clinical immunogenetics* **15**, 119-129.

- 775 **Halliday, T.** (1983). The study of mate choice. *Mate choice* **1**, 462.
- 776 **Hauber, M. E., Woolley, S. M., Cassey, P. and Theunissen, F. E.** (2013). Experience
777 dependence of neural responses to different classes of male songs in the primary auditory
778 forebrain of female songbirds. *Behavioural brain research* **243**, 184-190.
- 779 **Hoke, K. L., Ryan, M. J. and Wilczynski, W.** (2008). Candidate neural locus for sex
780 differences in reproductive decisions. *Biology letters* **4**, 518-521.
- 781 **Hunt, J., Brooks, R. and Jennions, M. D.** (2005). Female mate choice as a condition-
782 dependent life-history trait. *The American Naturalist* **166**, 79-92.
- 783 **Ito, H. and Yamamoto, N.** (2009). Non-laminar cerebral cortex in teleost fishes? *Biology
784 letters* **5**, 117-121.
- 785 **Iyengar, V. K. and Eisner, T.** (1999). Female choice increases offspring fitness in an
786 arctiid moth (*Utetheisa ornatrix*). *Proceedings of the National Academy of Sciences* **96**, 15013-
787 15016.
- 788 **Jankowiak, W. R. and Fischer, E. F.** (1992). A cross-cultural perspective on romantic
789 love. *Ethnology* **31**, 149-155.
- 790 **Jarvis, E. D., Güntürkün, O., Bruce, L., Csillag, A., Kartén, H., Kuenzel, W., Medina, L.,
791 Paxinos, G., Perkel, D. J. and Shimizu, T.** (2005). Avian brains and a new understanding of
792 vertebrate brain evolution. *Nature Reviews Neuroscience* **6**, 151-159.
- 793 **Jennions, M. D. and Petrie, M.** (1997). Variation in mate choice and mating preferences:
794 a review of causes and consequences. *Biological Reviews* **72**, 283-327.
- 795 **Johnson, Z. V. and Young, L. J.** (2015). Neurobiological mechanisms of social attachment
796 and pair bonding. *Current opinion in behavioral sciences* **3**, 38-44.
- 797 **Kamiya, T., O'dwyer, K., Westerdahl, H., Senior, A. and Nakagawa, S.** (2014). A
798 quantitative review of MHC-based mating preference: the role of diversity and dissimilarity.
799 *Molecular ecology* **23**, 5151-5163.
- 800 **Kartén, H. J.** (2015). Vertebrate brains and evolutionary connectomics: on the origins of
801 the mammalian 'neocortex'. *Philosophical Transactions of the Royal Society B: Biological
802 Sciences* **370**, 20150060.
- 803 **Kelly, A. M. and Goodson, J. L.** (2014). Hypothalamic oxytocin and vasopressin neurons
804 exert sex-specific effects on pair bonding, gregariousness, and aggression in finches.
805 *Proceedings of the National Academy of Sciences* **111**, 6069-6074.
- 806 **Kendrick, K. M., Hinton, M. R., Atkins, K., Haupt, M. A. and Skinner, J. D.** (1998).
807 Mothers determine sexual preferences. *Nature* **395**, 229-230.
- 808 **Kidd, M. R., Dijkstra, P. D., Alcott, C., Lavee, D., Ma, J., O'Connell, L. A. and Hofmann,
809 H. A.** (2013a). Prostaglandin F2 α facilitates female mating behavior based on male
810 performance. *Behavioral Ecology and Sociobiology* **67**, 1307-1315.
- 811 **Kidd, M. R., O'Connell, L. A., Kidd, C. E., Chen, C. W., Fontenot, M. R., Williams, S. J.
812 and Hofmann, H. A.** (2013b). Female preference for males depends on reproductive physiology
813 in the African cichlid fish *Astatotilapia burtoni*. *General and comparative endocrinology* **180**, 56-
814 63.
- 815 **Kingsbury, L., Huang, S., Wang, J., Gu, K., Golshani, P., Wu, Y. E. and Hong, W.** (2019).
816 Correlated Neural Activity and Encoding of Behavior across Brains of Socially Interacting
817 Animals. *Cell*.

- 818 **Klatt, J. D. and Goodson, J. L.** (2013). Oxytocin-like receptors mediate pair bonding in a
819 socially monogamous songbird. *Proceedings of the Royal Society B: Biological Sciences* **280**,
820 20122396.
- 821 **Kohl, J., Babayan, B. M., Rubinstein, N. D., Autry, A. E., Marin-Rodriguez, B., Kapoor, V., Miyamishi, K., Zweifel, L. S., Luo, L. and Uchida, N.** (2018). Functional circuit architecture
822 underlying parental behaviour. *Nature* **556**, 326.
- 823 **Kondo, Y., Sudo, T., Tomihara, K. and Sakuma, Y.** (2003). Activation of accessory
824 olfactory bulb neurons during copulatory behavior after deprivation of vomeronasal inputs in
825 male rats. *Brain research* **962**, 232-236.
- 826 **Lancaster, L. T., Hipsley, C. A. and Sinervo, B.** (2009). Female choice for optimal
827 combinations of multiple male display traits increases offspring survival. *Behavioral Ecology* **20**,
828 993-999.
- 829 **Lank, D. B., Smith, C. M., Hanotte, O., Burke, T. and Cooke, F.** (1995). Genetic
830 polymorphism for alternative mating behaviour in lekking male ruff *Philomachus pugnax*.
831 *Nature* **378**, 59-62.
- 832 **Liao, W. B. and Lu, X.** (2009). Male mate choice in the Andrew's toad *Bufo andrewsi*: a
833 preference for larger females. *Journal of ethology* **27**, 413-417.
- 834 **Lieshoff, C., Große-Ophoff, J. and Bischof, H.-J.** (2004). Sexual imprinting leads to
835 lateralized and non-lateralized expression of the immediate early gene zenk in the zebra finch
836 brain. *Behavioural brain research* **148**, 145-155.
- 837 **Lim, M. M. and Young, L. J.** (2004). Vasopressin-dependent neural circuits underlying
838 pair bond formation in the monogamous prairie vole. *Neuroscience* **125**, 35-45.
- 839 **Lynch, K., Ramsey, M. E. and Cummings, M. E.** (2012). The mate choice brain:
840 comparing gene profiles between female choice and male coercive poeciliids. *Genes, Brain and
841 Behavior* **11**, 222-229.
- 842 **Lynch, K. S., Rand, A. S., Ryan, M. J. and Wilczynski, W.** (2005). Plasticity in female mate
843 choice associated with changing reproductive states. *Animal Behaviour* **69**, 689-699.
- 844 **Martinez, L. A. and Petrusis, A.** (2013). The medial preoptic area is necessary for sexual
845 odor preference, but not sexual solicitation, in female Syrian hamsters. *Hormones and behavior*
846 **63**, 606-614.
- 847 **Moore, P. J. and Moore, A. J.** (2001). Reproductive aging and mating: the ticking of the
848 biological clock in female cockroaches. *Proceedings of the National Academy of Sciences* **98**,
849 9171-9176.
- 850 **Nowicki, J., Pratchett, M., Walker, S., Coker, D. and O'Connell, L. A.** (2017).
851 Neurobiology of pair bonding in fishes; convergence of neural mechanisms across distant
852 vertebrate lineages. *bioRxiv*, 214759.
- 853 **O'Connell, L. A., Ding, J. H. and Hofmann, H. A.** (2013). Sex differences and similarities
854 in the neuroendocrine regulation of social behavior in an African cichlid fish. *Hormones and
855 behavior* **64**, 468-476.
- 856 **O'Connell, L. A. and Hofmann, H. A.** (2011). The vertebrate mesolimbic reward system
857 and social behavior network: a comparative synthesis. *Journal of Comparative Neurology* **519**,
858 3599-3639.

- 860 **O'Connell, L. A. and Hofmann, H. A.** (2011). Genes, hormones, and circuits: an
861 integrative approach to study the evolution of social behavior. *Frontiers in neuroendocrinology*
862 **32**, 320-335.
- 863 **O'Connell, L. A. and Hofmann, H. A.** (2012). Evolution of a vertebrate social decision-
864 making network. *Science* **336**, 1154-1157.
- 865 **Okuyama, T., Yokoi, S., Abe, H., Isono, Y., Suehiro, Y., Imada, H., Tanaka, M., Kawasaki,**
866 **T., Yuba, S. and Taniguchi, Y.** (2014). A neural mechanism underlying mating preferences for
867 familiar individuals in medaka fish. *Science* **343**, 91-94.
- 868 **Oldfield, R. G. and Hofmann, H. A.** (2011). Neuropeptide regulation of social behavior in
869 a monogamous cichlid fish. *Physiology & behavior* **102**, 296-303.
- 870 **Owens, I. P., Rowe, C. and Thomas, A. L.** (1999). Sexual selection, speciation and
871 imprinting: separating the sheep from the goats. *Trends in ecology & evolution* **14**, 131-132.
- 872 **Penn, D. J.** (2002). The scent of genetic compatibility: sexual selection and the major
873 histocompatibility complex. *Ethology* **108**, 1-21.
- 874 **Phelps, S. M., Rand, A. S. and Ryan, M. J.** (2006). A cognitive framework for mate choice
875 and species recognition. *The American Naturalist* **167**, 28-42.
- 876 **Poepli, T. B., Langguth, B., Rupprecht, R., Laird, A. R. and Eickhoff, S. B.** (2016). A
877 neural circuit encoding sexual preference in humans. *Neuroscience & Biobehavioral Reviews* **68**,
878 530-536.
- 879 **Pollen, A. A. and Hofmann, H. A.** (2008). Beyond neuroanatomy: novel approaches to
880 studying brain evolution. *Brain, Behavior and Evolution* **72**, 145-158.
- 881 **Preston, B., Stevenson, I., Pemberton, J., Coltman, D. and Wilson, K.** (2005). Male mate
882 choice influences female promiscuity in Soay sheep. *Proceedings of the Royal Society B:
883 Biological Sciences* **272**, 365-373.
- 884 **Puts, D. A.** (2005). Mating context and menstrual phase affect women's preferences for
885 male voice pitch. *Evolution and Human Behavior* **26**, 388-397.
- 886 **Ramsey, M. E., Maginnis, T. L., Wong, R. Y., Brock, C. and Cummings, M. E.** (2012).
887 Identifying context-specific gene profiles of social, reproductive, and mate preference behavior
888 in a fish species with female mate choice. *Frontiers in neuroscience* **6**, 62.
- 889 **Ramsey, M. E., Vu, W. and Cummings, M. E.** (2014). Testing synaptic plasticity in
890 dynamic mate choice decisions: N-methyl d-aspartate receptor blockade disrupts female
891 preference. *Proceedings of the Royal Society B: Biological Sciences* **281**, 20140047.
- 892 **Roland, A. B. and O'Connell, L. A.** (2015). Poison frogs as a model system for studying
893 the neurobiology of parental care. *Current Opinion in Behavioral Sciences* **6**, 76-81.
- 894 **Rosenthal, G. G.** (2017). Mate choice: the evolution of sexual decision making from
895 microbes to humans: Princeton University Press.
- 896 **Sadananda, M. and Bischof, H. J.** (2004). c-fos is induced in the hippocampus during
897 consolidation of sexual imprinting in the zebra finch (*Taeniopygia guttata*). *Hippocampus* **14**, 19-
898 27.
- 899 **Sakuma, Y.** (2008). Neural substrates for sexual preference and motivation in the female
900 and male rat. *Annals of the New York Academy of Sciences* **1129**, 55-60.
- 901 **Santos, P. S., Mezger, M., Kolar, M., Michler, F.-U. and Sommer, S.** (2018). The best
902 smellers make the best choosers: mate choice is affected by female chemosensory receptor
903 gene diversity in a mammal. *Proceedings of the Royal Society B* **285**, 20182426.

- 904 **Shine, R., Phillips, B., Waye, H., Lemaster, M. and Mason, R. T.** (2004). Species-isolating
905 mechanisms in a mating system with male mate choice (garter snakes, *Thamnophis* spp.).
906 *Canadian Journal of Zoology* **82**, 1091-1098.
- 907 **Sockman, K. W. and Ball, G. F.** (2009). Independent effects of song quality and
908 experience with photostimulation on expression of the immediate, early gene ZENK (EGR-1) in
909 the auditory telencephalon of female European starlings. *Developmental neurobiology* **69**, 339-
910 349.
- 911 **Sockman, K. W., Gentner, T. Q. and Ball, G. F.** (2002). Recent experience modulates
912 forebrain gene-expression in response to mate-choice cues in European starlings. *Proceedings
913 of the Royal Society of London. Series B: Biological Sciences* **269**, 2479-2485.
- 914 **Sommer, S.** (2005). The importance of immune gene variability (MHC) in evolutionary
915 ecology and conservation. *Frontiers in zoology* **2**, 1-18.
- 916 **Tang-Martinez, Z.** (2001). The mechanisms of kin discrimination and the evolution of kin
917 recognition in vertebrates: a critical re-evaluation. *Behavioural Processes* **53**, 21-40.
- 918 **Ten Cate, C. and Vos, D. R.** (1999). Sexual imprinting and evolutionary processes.
919 *Advances in the Study of Behavior* **28**, 1-31.
- 920 **Terpstra, N. J., Bolhuis, J. J., Riebel, K., van der Burg, J. M. and den Boer-Visser, A. M.**
921 (2006). Localized brain activation specific to auditory memory in a female songbird. *Journal of
922 Comparative Neurology* **494**, 784-791.
- 923 **Tokarz, R. R.** (1995). Mate choice in lizards: a review. *Herpetological Monographs*, 17-
924 40.
- 925 **Toth, A. L. and Robinson, G. E.** (2007). Evo-devo and the evolution of social behavior.
926 *Trends in Genetics* **23**, 334-341.
- 927 **Uy, J. A. C., Moyle, R. G., Filardi, C. E. and Cheviron, Z. A.** (2009). Difference in plumage
928 color used in species recognition between incipient species is linked to a single amino acid
929 substitution in the melanocortin-1 receptor. *The American Naturalist* **174**, 244-254.
- 930 **Verzijden, M. N. and ten Cate, C.** (2007). Early learning influences species assortative
931 mating preferences in Lake Victoria cichlid fish. *Biology letters* **3**, 134-136.
- 932 **Walum, H., Lichtenstein, P., Neiderhiser, J. M., Reiss, D., Ganiban, J. M., Spotts, E. L.,
933 Pedersen, N. L., Anckarsäter, H., Larsson, H. and Westberg, L.** (2012). Variation in the oxytocin
934 receptor gene is associated with pair-bonding and social behavior. *Biological psychiatry* **71**, 419-
935 426.
- 936 **Wang, S., Ramsey, M. E. and Cummings, M. E.** (2014). Plasticity of the mate choice
937 mind: courtship evokes choice-like brain responses in females from a coercive mating system.
938 *Genes, Brain and Behavior* **13**, 365-375.
- 939 **Weitekamp, C. and Hofmann, H.** (2017). Brain systems underlying social behavior.
- 940 **Werner, N. Y. and Lotem, A.** (2003). Choosy males in a haplochromine cichlid: first
941 experimental evidence for male mate choice in a lekking species. *Animal Behaviour* **66**, 293-
942 298.
- 943 **Widemo, F. and Sæther, S. A.** (1999). Beauty is in the eye of the beholder: causes and
944 consequences of variation in mating preferences. *Trends in ecology & evolution* **14**, 26-31.
- 945 **Wilczynski, W. and Ryan, M. J.** (2010). The behavioral neuroscience of anuran social
946 signal processing. *Current opinion in neurobiology* **20**, 754-763.

- 947 **Wong, R. Y. and Cummings, M. E.** (2014). Expression patterns of neuroligin-3 and
948 tyrosine hydroxylase across the brain in mate choice contexts in female swordtails. *Brain,
949 Behavior and Evolution* **83**, 231-243.
- 950 **Woolley, S. C. and Doupe, A. J.** (2008). Social context-induced song variation affects
951 female behavior and gene expression. *PLoS biology* **6**, e62.
- 952 **Yang, Y., Servedio, M. R. and Richards-Zawacki, C. L.** (2019). Imprinting sets the stage
953 for speciation. *Nature* **574**, 99-102.
- 954 **Yartsev, M. M.** (2017). The emperor's new wardrobe: rebalancing diversity of animal
955 models in neuroscience research. *Science* **358**, 466-469.
- 956 **Yokoi, S., Naruse, K., Kamei, Y., Ansai, S., Kinoshita, M., Mito, M., Iwasaki, S., Inoue, S.,
957 Okuyama, T. and Nakagawa, S.** (2020). Sexually dimorphic role of oxytocin in medaka mate
958 choice. *Proceedings of the National Academy of Sciences* **117**, 4802-4808.
- 959 **Young, K. A., Gobrogge, K. L., Liu, Y. and Wang, Z.** (2011). The neurobiology of pair
960 bonding: insights from a socially monogamous rodent. *Frontiers in neuroendocrinology* **32**, 53-
961 69.
- 962 **Young, L. J.** (2003). The neural basis of pair bonding in a monogamous species: A model
963 for understanding the biological basis of human behavior. In *Offspring: Human fertility behavior
964 in biodemographic perspective*: National Academies Press (US).
- 965 **Young, L. J. and Wang, Z.** (2004). The neurobiology of pair bonding. *Nature neuroscience*
966 **7**, 1048.
- 967 **Young, R. L., Ferkin, M. H., Ockendon-Powell, N. F., Orr, V. N., Phelps, S. M., Pogány,
968 Á., Richards-Zawacki, C. L., Summers, K., Székely, T. and Trainor, B. C.** (2019). Conserved
969 transcriptomic profiles underpin monogamy across vertebrates. *Proceedings of the National
970 Academy of Sciences* **116**, 1331-1336.

971

972 **Figure Legends**

973 **Figure 1: Summary of current understanding of the neural mechanisms of female mate
974 choice discussed in this Review.** (A) Simplified representation (extending the framework
975 proposed by O'Connell & Hofmann, 2011, 2012, and Weitekamp & Hofmann, 2016) of the
976 neurochemical pathways (biogenic amines, neuropeptides, hormones, and a gaseous
977 neuromodulator) and fore- and midbrain regions implicated in mediating female mate choice
978 behavior. Boxes, mammals; green, birds; purple, reptiles; orange, amphibians; blue, fish. Lines
979 indicate evidence available for each taxonomic group for a role in female mate choice of a given
980 neurochemical in a specific brain region. Black, mammals; blue, fish. (B) Sagittal view of a
981 mammalian brain indicating the fore- and midbrain regions (using mammalian nomenclature)
982 activated during female mate choice behavior as measured by immediate early gene induction.
983 Black ellipses, mammals; green, birds; purple, reptiles; orange, amphibians; blue, fish). Red
984 ellipses highlight nodes that have been suggested to act as decision-making areas by integrating
985 sensory information that allows for discrimination and subsequent choice. Grey ellipses represent
986 nodes that have not yet been identified in female mate-choice behavior. For nomenclature on
987 putative non-mammalian homologs see O'Connell & Hofmann, 2011. These nodes are highly
988 interconnected, but here we do not show connectedness for clarity; see O'Connell and Hofmann
989 2011 for connections. Abbreviations: 5-HT, serotonin; AH, anterior hypothalamus; AN, main
990 auditory nucleus; AOB, accessory olfactory bulb; AVP, arginine vasopressin; blAMY,
991 basolateral amygdala; BNST, bed nucleus of the stria terminalis; CA, cortical areas; DA,
992 dopamine; E2, estradiol; GABA, γ -aminobutyric acid; GAL, galanin; GnRH3, gonadotropin-
993 releasing hormone 3; HIP, hippocampus; LS, lateral septum; meAMY, medial amygdala; NAcc,
994 nucleus accumbens; NO, nitric oxide; OT, optic tectum; OXT, oxytocin; PAG, periaqueductal
995 gray; PGF2, prostaglandin F2 alpha; POA, preoptic area; PRL, prolactin; SON, superior olfactory
996 nucleus; STR, striatum; T, testosterone; Tl, laminar nucleus of the Torus; TN, terminal nerve
997 (teleost fish only); VMH, ventromedial hypothalamus; VP, ventral pallidum; VTA, central
998 tegmental area.

999 **Glossary**

1000 **Calcium imaging**

1001 A technique that uses a fluorescent calcium indicator to record simultaneously the activity of
1002 many neurons on the surface of the brains of awake and behaving animals.

1003 **Conspecific**

1004 A member of the same species.

1005 **Familiarity**

1006 Prior social experience of one individual with another through observation or interaction.
1007 Familiar individuals often behave differently towards each other than unfamiliar individuals.

- 1013
1014 **Fiber photometry**
1015 Like calcium imaging, this technique utilizes calcium indicators to monitor neural activity of
1016 genetically modified neuron populations located deeper in the brain.
1017
1018 **Heterospecific**
1019 A member of a different species. Although members of different species can sometimes produce
1020 viable offspring together, mating with heterospecific individuals usually results in decreased
1021 evolutionary fitness.
1022
1023 **Immediate early genes (IEGs)**
1024 IEGs are rapidly and transiently activated in response to a wide array of stimuli. Most IEGs
1025 encode transcription factors or DNA-binding proteins that coordinate the cellular response to
1026 a stimulus event. They are commonly used as markers of neural activity.
1027
1028 **Kin recognition**
1029 An individuals' ability to recognize and discriminate amongst others based on genetic
1030 relatedness. Kin recognition has important fitness consequences as it reduces inbreeding,
1031 which can have deleterious effects on offspring viability.
1032
1033 **Lordosis**
1034 A posture in which the back is arched downward, which is adopted by some female
1035 mammals to signal sexual receptivity, thereby facilitating vaginal penetration by the penis
1036 during copulation.
1037
1038 **Mate choice**
1039 Selectively mating with only some individuals of the opposite sex, whose members compete
1040 for fertilization opportunities
1041
1042 **Mate preference**
1043 An individual's bias for certain characteristics in a potential mate, e.g. conspicuous
1044 coloration, high condition or familiarity.
1045
1046 **Mating system**
1047 Sexually reproducing species vary in how males and females are organized with regards to
1048 reproductive behavior (common patterns include monogamy, polygamy and promiscuity,
1049 among others), which in turn affects (female) mate choice and sexual selection.
1050
1051 **Monogamy**
1052 A mating system in which an individual has only one mate at a time and preferentially
1053 associates and mates with that individual instead of a novel individual. Conversely,
1054 polygamy (which occurs in different forms) indicates that an individual has multiple
1055 reproductive partners during a reproductive period.
1056
1057 **Alternative reproductive tactics (ARTs)**

1058 Polymorphisms occur when two or more clearly different phenotypes occur within the same
1059 sex of a species, determined by either genetic variation or environmental factors.
1060 Polymorphisms that take the form of divergent reproductive behavior are referred to as
1061 alternative reproductive tactics (ARTs).

1062
1063 **Taxis**

1064 The directed movement of a free-moving organism or cell toward (positive) or away from
1065 (negative) an external stimulus. Examples include phototaxis, chemotaxis and phonotaxis,
1066 with light, chemicals and sound, respectively, as directional cues.

1067
1068 **Phylogenetic comparative methods**

1069 Because species vary in evolutionary distance to each other, studies that compare multiple
1070 species must take into account the historical relationships of lineages (phylogenies) when
1071 testing evolutionary hypotheses.

1072
1073 **Recognition versus Discrimination**

1074 Recognition refers to an organism's ability to identify potential mates through sensory
1075 inputs in a non-random way. Auditory, chemical and visual signals are examples of sensory
1076 cues often used in mate recognition. Recognition precedes discrimination: individuals must
1077 recognize specific traits and use those traits to discriminate amongst potential mates.
1078 Discrimination occurs when organisms prefer or decide to associate with others based on
1079 recognized traits. Recognition and discrimination are thus important behavioral traits in
1080 female mate choice.

1081
1082 **Sexual imprinting**

1083 A form of learning by which a juvenile learns specific characteristics of a parent or other
1084 familiar individual, which results in an adult preference for mates that resemble the learned
1085 template. This memory is acquired throughout a critical period during development and is
1086 subsequently stabilized during first courtship and/or reproduction.

1087
1088 **Sexual selection**

1089 A process of natural selection in which a) individuals of one biological sex choose to mate
1090 with members of the opposite sex (intrasexual selection) in a non-random way; and b)
1091 members of the same sex compete for access to mates (intersexual selection). Sexual
1092 selection results in some individuals of a population contributing more to reproduction than
1093 others.

1094
1095 **Social behavior**

1096 Any interaction between two or more members of a species in which one individual affects
1097 the behavior of the other in a manner that is highly dependent on current social context as
1098 well as environmental conditions. Aggression, sexual behavior, pair bonding, parental care
1099 and cooperation are frequently studied examples of social behavior.

1100
1101 **Social decision-making network (SDMN)**

1102 A highly conserved network of fore- and midbrain regions that evaluates the salience and
1103 rewarding properties of a social stimulus by integrating sensory information about the

1104 (social) environment with an individual's own condition and prior experience, eventually
1105 resulting in a behavioral choice. Evolutionarily ancient signaling pathways – such as steroid
1106 hormones, neuropeptides and biogenic amines – regulate SDMN function in the context of
1107 social behavior.

1108

1109 **Transcriptomics**

1110 The transcriptome comprises the set of all coding and non-coding RNA transcripts in a
1111 tissue or population of cells. Over the last quarter century, several massively parallel
1112 techniques have been developed to quantitatively measure transcript levels of thousands of
1113 genes simultaneously, most notably DNA microarrays and RNA-sequencing.

1114

1115 **Virus-mediated retrograde trans-synaptic tracing**

1116 A technique that employs certain viruses to trace neuronal connections retrogradely from the
1117 end point, or synapse, to the point of origin. This allows the visualization and identification
1118 of inputs through axonal transport from one area of the nervous system to another.