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Abstract

Female mate choice is a dynamic process that allows individuals to selectively mate with those
of the opposite sex that display a preferred set of traits. Because in many species males compete
with each other for fertilization opportunities, female mate choice can be a powerful agent of
sexual selection, often resulting in highly conspicuous traits in males. Although the evolutionary
causes and consequences of the ornamentation and behaviors displayed by males to attract mates
have been well studied, embarrassingly little is known about the proximate neural mechanisms
through which female choice occurs. In vertebrates, female mate choice is inherently a social
behavior, and although much remains to be discovered about this process, recent evidence
suggests the neural substrates and circuits underlying other fundamental social behaviors (such
as pair bonding, aggression and parental care) are likely similarly recruited during mate choice.
Notably, female mate choice is not static, as social and ecological environments can shape the
brain and, consequently, behavior in specific ways. In this Review, we discuss how social and/or
ecological influences mediate female choice and how this occurs within the brain. We then
discuss our current understanding of the neural substrates underlying female mate choice, with a
specific focus on those that also play a role in regulating other social behaviors. Finally, we
propose several promising avenues for future research by highlighting novel model systems and
new methodological approaches, which together will transform our understanding of the causes

and consequences of female mate choice.
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Introduction

Few decisions in life are more consequential for individual fitness than choosing a mate. Mate
choice (see Glossary) is the result of selectively mating with only some individuals of the
opposite sex, whose members compete for fertilization opportunities. Because of its evolutionary
significance, the ultimate causes and consequences of mate choice have been studied in depth
(Andersson and Simmons, 2006; Jennions and Petrie, 1997; Widemo and Sather, 1999).
Variability in trait expression in one sex is often mirrored by correlated variability in preferences
of the opposite sex. This results in non-random mating patterns (Edward, 2014) and functions as
a primary driver of sexual selection (see Glossary; Andersson, 1994). As a consequence,
variation in the phenotypes of the chosen sex are positively correlated with differences in
evolutionary fitness (Halliday, 1983). In fact, individuals prevented from exercising mate choice
(e.g. in forced pairings) experience reduced reproductive success and lower offspring viability

(Gowaty et al., 2003; Iyengar and Eisner, 1999; Lancaster et al., 2009).

In species that exercise mate choice, a display producer expresses traits that attract mates, and
these traits evolve in tandem with the mechanisms that allow the chooser to discriminate
amongst such traits displayed by potential mates. For example, in the guppy Poecilia reticulata,
a poeciliid fish, males display their tails to attract female mates, and females prefer longer tails to
shorter ones (Bischoff et al., 1985). Hence, both tail length in males, and the corresponding
discriminatory mechanisms in females must correlate for the selection of longer-tailed males as
mates. As we discuss below, females are often the ‘choosier’ sex. Given the critical importance
of female mate choice in individual fitness, sexual selection and evolution, it is surprising how
few studies have examined the underlying neural and molecular mechanisms, although this is
beginning to change. In this Review, we summarize what is currently known about the neural
and molecular mechanisms of female mate choice and how these mechanisms fit within a
broader understanding of vertebrate social behavior (see Glossary). Given the paucity of studies
exploring the mechanistic basis of female mate choice in invertebrates, here we discuss only
vertebrates. We focus on neurochemical signals and brain areas that have previously been
identified as evolutionarily conserved across vertebrates and have known roles in the regulation

of social behaviors outside of mate choice, including (but not limited to) aggression, parental
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care and sexual behavior (O’Connell and Hofmann, 2011; Weitekamp and Hofmann, 2017).

Finally, we highlight future avenues of fruitful research opportunities.

Mate preference and mate choice (see Glossary), two distinct forms of behavior, are often
inherently related (Lynch et al., 2005; Rosenthal, 2017). This is especially true in species which
display long-term associative partnerships prior to reproduction (DeAngelis and Rhodes, 2016;
Donaldson et al., 2010), where preference for a particular mate precedes the choice to mate. A
relationship between mate preference and mate choice is also observed in non-monogamous
species, where a preference to associate with individuals displaying a particular phenotype is
expressed prior to mating (Cummings et al., 2007; Desjardins et al., 2010; Wong and Cummings,
2014). In many species, the formation of a particular mate preference may be more critical to
fitness than the moment of choice when mating occurs. Importantly, the research we discuss in
this Review encompasses studies addressing both the mechanisms of female mate choice and

those underlying female preference, as they are intertwined.

Female versus male mate choice

Females, by definition, produce a limited number of larger and more metabolically expensive
gametes compared to males, which tends to limit their reproductive opportunities, whereas males
are more often limited by the number of females that are available for mating. Hence, females
increase their fitness by mating with optimal male phenotypes and investing in offspring
survival. The resulting skew of a small proportion of males obtaining a larger proportion of
available mating opportunities leads to a greater chance of selection from female choice than
from male choice. In many species, females are therefore the choosier sex and males are more
likely to show a greater response to the pressures of sexual selection compared to females. Of
course, there are many examples where males display mate choice behaviors — such as in fishes,
anurans, reptiles, birds and mammals (Liao and Lu, 2009; Preston et al., 2005; Shine et al., 2004;
Werner and Lotem, 2003) — and males may even be the choosier sex in some instances.
However, males generally choose mates based on non-heritable characteristics, such as
reproductive state (Edward and Chapman, 2011). The evolutionary consequences of male mate
choice are muted in such cases, since sexual selection occurs only if the preferred phenotype

increases fitness in the chosen sex. Therefore, in this Review we primarily focus on mechanisms



121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

found within the female brain that underlie the decision to mate with distinct and specific male

phenotypes.

Proximate mechanisms of female mate choice

The ultimate consequences of female mate choice are an increase in individual fitness and the
corresponding evolutionary persistence of a particular male traits (Edward, 2014; Lancaster et
al., 2009). Although these ultimate consequences are well understood, the specific proximate
mechanisms that underlie the processes of ‘how’ female mate choice occurs remain enigmatic. In
many species, mate choice is fundamentally a social process that relies on the integration of
(often multimodal) sensory information — that signals sex, species and the quality of potential
mates — with internal physiological conditions, such as reproductive status and available energy
reserves. The brain’s decision-making circuit must evaluate this information, possibly in
conjunction with social signals from other conspecifics (see Glossary), before expression of a
mate preference or choice. Importantly, neither choice nor preference are necessarily static, as
both can vary with seasons, environmental condition, physical condition, reproductive state,
hormone levels, and previous experiences and/or affiliations. The recognition that the neural and
molecular processes in the female brain are a key substrate of sexual selection, in combination
with conceptual and technological advances, has resulted in a growing interest in studying the

neural substrates underlying this behavior.

Although different vertebrate species display a diversity of social behaviors, many of which have
evolved independently, these behavioral outputs often share common underlying neural and
molecular substrates (O’Connell and Hofmann, 2011B; Weitekamp and Hofmann, 2017; Young
et al., 2019). An evolutionarily ancient social decision-making network (SDMN; see Glossary)
located in the fore- and midbrain of all vertebrates evaluates the salience and valence of a social
stimulus by integrating sensory information about the (social) environment with an individual’s
own condition and prior experience, eventually resulting in a behavioral choice (O'Connell and
Hofmann, 2011; O’Connell and Hofmann, 2012). Importantly, deeply conserved signaling
pathways — such as steroid hormones, neuropeptides and biogenic amines — are involved in
regulating SDMN function in the context of aggression, parental care, pair bonding and sexual

behavior (reviewed in Weitekamp and Hofmann 2017). This framework is well suited for
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gaining an integrative understanding of the neural circuits and signaling molecules underlying
any social behavior across diverse species. In the following paragraphs, we will place what we
currently know about the neural and molecular underpinnings of female mate choice and related
behaviors within this framework (Figure 1). Because of its tight functional integration with the
SDMN, we include here also discussion of the role of the neocortex, and its non-mammalian
homologs, in mate choice. The neocortex was originally not included in the SDMN because the
putative neocortical homologs in other vertebrate lineages were not well known at the time
(O’Connell and Hofmann 2011), but recent research has provided important new insights in this

regard (Briscoe et al., 2018; Ito and Yamamoto, 2009; Karten, 2015).

Neural and molecular substrates of a preference for ‘attractive’ males

Females prefer to mate with males based on phenotypic traits that are perceived as attractive.
Body coloration, odor cues and song production are all examples of traits that different taxa use
to assess potential mates. However, before they make a decision, females first need to recognize
and discriminate conspecifics from heterospecifics (see Glossary), as well as males from other
females. Several studies in diverse species have uncovered potential neural and molecular
mechanisms involved in preference formation, sex discrimination and species recognition (see
Glossary). Brain regions such as the nucleus accumbens, amygdala, preoptic area and cortical
areas have all been implicated in the discriminatory process of mate selection. The role of an
individual’s genotype, as well as genomic responses, have also been the subject of mate choice
studies. Although this field of research has already generated important insights, a broader

theoretical framework for how this process occurs across vertebrates remains to be developed.

Pair bonding

In monogamous species, the formation of a mate preference is often closely linked to mate
choice and is therefore critical for individual fitness and its evolutionary consequences. This
process has been extensively studied in prairie voles (Microtus ochrogaster; (Johnson and
Young, 2015; Young et al., 2011). Depending on various ecological and demographic factors,
monogamy (see Glossary) can be advantageous, as it eliminates the need to find additional
mating partners once a pair bond is formed (Emlen and Oring, 1977). Further, vigorous territory

defense and biparental care can increase offspring survival. The initial act of mating is critical for
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the formation of a pair bond, where specific males and females express a strong preference for
each other, while avoiding other conspecifics (Young, 2003; Young and Wang, 2004). The
nonapeptides vasopressin and oxytocin, along with the dopaminergic system, play a critical role
in this process (Johnson and Young, 2015; Lim and Young, 2004; Walum et al., 2012; Young
and Wang, 2004). Specifically, the act of mating activates the ventral tegmental area, resulting in
increased dopamine activity in the nucleus accumbens and prefrontal cortex, which synchronize
with the medial amygdala and lateral septum, areas rich in neuropeptide receptors, to associate
social learning with encoded reward. This orchestrated activity of dopaminergic- and
peptidergic-rich brain areas reinforces the act of mating to a conditioned partner preference, thus
forming enduring pair bonds (Young and Wang, 2004). This process has been most extensively
studied in voles, but several studies in birds and fish have provided evidence that similar
mechanisms regulate pair bonds across vertebrates (Day et al., 2019; Kelly and Goodson, 2014;

Klatt and Goodson, 2013; Nowicki et al., 2017; Oldfield and Hofmann, 2011)

Species, sex and kin: preference for unrelated conspecific males

Species recognition is a critical aspect of reproduction, as mating with a heterospecific individual
in most cases squanders reproductive effort and diminishes fitness (Burdfield-Steel and Shuker,
2011). The process of species recognition during mate choice has been studied in several
vertebrate species, including fish and birds, (Caspers et al., 2009; Couldridge and Alexander,
2002; Tokarz, 1995; Uy et al., 2009), yet the cognitive architecture of this discriminatory process
remains unclear (Phelps et al., 2006). The ability to discriminate conspecifics from
heterospecifics is thus a critical task during mate selection. This process was investigated by
Hoke et al. (2008), who examined the induction of the immediate early gene (IEG; see Glossary)
egr-1, a marker of neural activity, in the tungara frog (Physalaemus pustulosus), a model system
in research on sexual selection (see Glossary). When the authors exposed males and females of
this species to calls from either conspecifics or a closely related species, the IEG response in the
superior olivary nucleus, an auditory region in the lower brainstem, did not differ by sex.
However, there were sex differences in IEG expression in the laminar nucleus of the torus
semicircularis, a midbrain auditory region. Specifically, egr-1 expression increased in males
following exposure to both con- and heterospecific calls. Conversely, in females, this region was

only activated in response to conspecific calls. This sex difference in selectivity for conspecifics



214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244

over heterospecifics may be a reflection of their higher investment in reproduction, which means
that missed mating opportunities are more costly for females. Patterns of neural activity in the
laminar nucleus of the torus semicircularis mirrored behavioral responses, inducing calling in
males and phonotaxis (see Glossary) in females (Hoke et al., 2008). These results suggest that
sex differences in mate selectivity are mirrored by selectivity in midbrain regions which may act
as decision-making areas in relaying auditory cues to forebrain processing areas (Wilczynski and

Ryan, 2010).

Like species recognition, sex discrimination is paramount in mate selection, as same-sex mating
squanders reproductive effort. Individuals in search of reproductive opportunities must be able to
recognize and express a preference for members of the opposing sex. In female Syrian hamsters
(Mesocricetus auratus), lesions of the medial preoptic area result in no differences in lordosis
(see Glossary; a precopulatory motivational behavior) or vaginal scent marking compared to
controls, but do eliminate the normal preference for male compared to female odors. However,
these hamsters retain the ability to discriminate between male and female scent markings
(Martinez and Petrulis, 2013). These results suggest that although the medial preoptic area may
not be necessary in sex discrimination, it is critical in regulating female preferences for males.
Although the ability to recognize the opposite sex is obviously important, opposite sex
preference is also necessary for successful reproduction. However, the processes in the brain

through which this occurs remain largely unknown.

In many species, kin recognition (see Glossary) has been suggested to minimize inbreeding
(Tang-Martinez, 2001). Specifically, genes belonging to the major histocompatibility complex
(MHC), which encode proteins that identify foreign substances within the body, have been
implicated in kin recognition and inbreeding avoidance (Grob et al., 1998), immune competence
(Kamiya et al., 2014; Sommer, 2005) and genetic compatibility (Penn, 2002). In fact, individuals
of numerous species can recognize even unfamiliar kin based on their MHC profiles (Gerlach
and Lysiak, 2006). In this way, MHC genes likely play an important role in mate choice and
sexual selection, although how variation in MHC alleles affects the underlying sensory and

decision-making mechanisms in the brain remains largely unknown (Santos et al., 2018).
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Although an individual’s genotype may bias its mating decisions, variation in neural gene
expression profiles can also be associated with mating behavior. In fact, researchers are
increasingly applying behavioral genomics approaches to examine the extent to which the neural
and molecular mechanisms underlying social behavior are evolutionarily conserved (e.g.
Rittschof et al., 2014; Young et al., 2019). To date, only one transcriptomics study (see Glossary)
has compared the neural gene expression profiles associated with female mate choice across both
populations and sex. Keagy et al. (bioRxiv preprint) examined how gravid females of three
different populations of stickleback fish (Gasterosteus aculeatus) respond to nesting males from
their own or different population. As expected, females prefer males from their own population,
and both male and female trait complexes (principal components of behavioral and/or
morphological traits) vary across populations. Interestingly, although population explains most
of the variation in gene expression, the authors identified several gene co-expression modules
that vary depending on whether focal females had viewed males from their own or different
population. Individual candidate genes that were previously associated with female mate choice
behavior and social decision making more generally (for review, see Weitekamp & Hofmann,
2016) were also investigated. Remarkably, neuroligin-3b and neuroserpin are differentially
expressed according to treatment (i.e. they show increased expression in females exposed to
males of their own population), which is consistent with the findings of Cummings et al. (2007)
— see below. In sum, the study by Keagy et al. (in prep) was the first to show that, across species,
the activity of specific gene co-expression modules is consistently associated with a female’s
preference. The extent to which these molecular pathways associated with mating decisions are
similar across diverse species, possibly revealing an evolutionarily ancient decision-making

system, remains to be seen.

Of course, any association between gene expression changes in response to a social stimulus and
the resulting behavioral response does not establish the direction of any causal relationship
between genes and behavior. In fact, given the fast-paced social lives of many animals, it is
possible that the molecular pathways uncovered by behavioral transcriptomic studies in relation
to a variety of social behaviors may mainly serve to prepare the individual for similar situations

in the future.
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Preference for more ‘attractive’ males

Behavioral ecologists have provided ample evidence that, in many species, females prefer to
associate (and often mate) with males that are perceived as more ‘attractive’ (Andersson and
Simmons, 2006). However, few studies have attempted to uncover the neural basis of this
preference. In one example, during estrous, female mice (Mus musculus) prefer intact versus
castrated males, and show increased neural activity in the preoptic area (as measured by IEG
induction) during lordosis following exposure to intact males. Lesions to either the preoptic area
or medial amygdala abolish this preference, although females treated in this way are still able to
discriminate between intact and castrated males (DiBenedictis et al., 2012; Sakuma, 2008).
Moreover, it has also been shown that the vomeronasal organ and accessory olfactory bulb are
important for social odor discrimination and sexual behavior in rodents (Bressler and Baum,
1996; Kondo et al., 2003). These results suggest that the preoptic area and medial amygdala are
not involved in olfactory discrimination per se, but play an important role in coordinating

adaptive behavioral responses to associate with attractive males prior to mating.

Several studies in songbirds have utilized IEGs to identify patterns of neural activity following
experimental manipulations of the social and ecological environment that females experience
prior to mating. In European Starlings, Sturnus vulgaris, for example, female preference for
longer songs (considered to be an indicator of male quality and, thus, attractiveness) can be
modulated by recent social experience (exposure to long versus short songs), and also by current
ecological conditions. Females with recent experience listening to long songs display an
increased IEG response in the caudomedial mesopallium (CMM, homologous to auditory
cortical structures in the mammalian brain) when later exposed to long songs; previous
experience with shortened day length (simulating the onset of the breeding season) amplifies this

result (Sockman and Ball, 2009; Sockman et al., 2002).

Poeciliid fishes are a well-studied group in the context of understanding the neural basis of mate
choice. Poeciliids are livebearers and exhibit a diversity of mating systems (see Glossary), with
males often displaying alternative reproductive tactics (see Glossary; Lynch et al., 2012),
rendering this family well suited to exploring the mechanisms of mate choice. In a pioneering

behavioral genomics study, Cummings et al. (2007) exposed female Northern swordtails
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(Xiphophorus nigrensis) to different male reproductive strategies and an all-female control.
Females prefer to mate and associate with attractive courting males, and actively avoid smaller
coercive males. Using a brain-specific cDNA microarray, the authors identified 306 differently
expressed genes (Cummings et al., 2007) across treatments. Interestingly, a greater number of
genes are upregulated when females were exposed to smaller coercive males. This genomic
response may relate to the behavioral strategy of actively avoiding small males. Conversely, a
greater number of genes show a reduction in expression when females are exposed to large
(courting) males, and these genes are more highly expressed during exposure to all-female
groups, suggesting that these two conditions (attractive large males versus sexually not-salient
females) diametrically affect expression of the same genes (Cummings et al., 2007). Moreover,
female preference is associated with the increased expression of genes related to synaptic
plasticity (e.g. neuroserpin a and neuroligin-3) independent of social affiliation, whereas
intrasexual affiliation increases expression of genes typically related to social bonding (e.g.
isotocin, vasotocin) (Ramsey et al., 2012). Interestingly, a follow-up study showed that inhibiting

synaptic plasticity reduces female preference behaviors (Ramsey et al., 2014).

How do distinct mating contexts dynamically regulate brain gene expression profiles when
females are exposed to attractive versus non-attractive males? The mating system of Northern
swordtails, where males are either courting or mate coercively, was compared to that of the
mosquitofish Gambusia affinis, where males do not court and instead only pursue a coercive
mating strategy. Following exposure to males, genes in the brains of females displayed opposite
patterns of expression in response to these contrasting mating dynamics (Lynch et al., 2012).
Expression of genes underlying synaptic plasticity (e.g. neuroserpin and neuroligan-3) was
positively correlated with females’ preference for attractive large males in swordtails, whereas in
mosquitofish the situation was reversed. In another study, Wang et al. found that this pattern is
reversed in mosquitofish following exposure to heterospecific courting swordtail males (Wang et
al., 2014), suggesting that the relationship between expression of synaptic plasticity genes and
mating behavior is dependent on the mating system and the mate choice environment. Finally,
using in situ hybridization, Wong et al. 2014 showed that female preference is positively
correlated with gene expression of neuroligin-3 in the telencephalic areas Dm (a putative

homolog of the mammalian basolateral amygdala) and DI (homologous to the hippocampus), the
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ventral medial hypothalamus, as well as the preoptic area and the ventral telencephalic area Vv
(homologous to the lateral septum). Interestingly, expression of tyrosine hydroxylase, an enzyme
that catalyzes the rate-limiting step in the synthesis of catecholamines (and the expression of
which is often used to assess dopamine activity) was not dependent on choice contexts (Wong
and Cummings, 2014). Given the role of dopaminergic signaling in reward reinforcement, this
result might be surprising, although the experimental design may simply not have allowed
sufficient time for tyrosine hydroxylase expression to change in response to a female’s
preference to mate with one male over another. Conversely, it is also possible that courtship only
induces release and not necessarily synthesis of dopamine. Taken together, these studies suggest
that the neural architecture underlying cognitive functions important for mate discrimination may
be altered by the differential expression of synaptic plasticity genes in a dynamic social
environment where females must continually discriminate amongst potential mates while also

avoiding coercive males.

In a recent analysis exploring the changes in gene expression associated with mate preferences in
another poeciliid species, the guppy (Poecilia reticulata), Bloch et al (2018) exposed females to
colorful and drab males for 10 min and subsequently measured transcriptomic changes in the
optic tectum (which integrates visual information) and the telencephalon (where many of the
SDMN nodes reside). Some females were known to show a preference for ‘attractive’ colorful
males, and these females showed a different pattern of differentially expressed genes in the
telencephalon than females that did not have a preference regarding male coloration. However,
all females showed similar changes in gene expression in the optic tectum in response to colorful
and drab males, suggesting that all females are able to discern the differences in male
appearance, but some lack the ability to integrate that information appropriately within the
telencephalon. In females that prefer colorful males, male coloration causes a differential
genomic response at the sensory processing and decision-making level. This study represents one
of the most comprehensive examples for identifying unique transcriptional responses underlying
mate preference formation. It is likely that brain regions sensitive to sensory information relay
those inputs to decision-making areas that orchestrate the appropriate behavioral response
(Bischof and Rollenhagen, 1999; Fisher et al., 2006; Hoke et al., 2008), a hypothesis that

requires more research. In summary, species recognition, sex discrimination and discrimination
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of attractive versus unattractive mates are all important aspects of mate selection in choosy
females. Although several brain areas, neurotransmitters, genes and genomics responses have
been identified (Figure 1), the integrative study of these pathways across species will provide

further insight into the neural and molecular regulation of mate discrimination and selection.

Temporal variation of preference

Mate preferences are often highly dynamic, depending on age and reproductive state, as well as
social and ecological factors. In many species, males and females acquire mate preferences early
in life through exposure to particular traits of the opposite sex. Similarly, familiarity (see
Glossary) with an individual can bias mate choice even in adulthood. Finally, seasonal and other
ecological factors regulate reproductive state, which in turn influences selectiveness, receptivity

and choice.

Acquiring a mate preference during development

Early-life experiences — such as rearing environment, social interactions, social learning and
parent—offspring bonds — can affect mate-choice behaviors and predispose individuals to specific
mate preferences. One of the best-studied examples of early learning is sexual imprinting (see
Glossary), which predicts mating displays and mating preferences in adulthood and has been
described in teleost fishes (Delclos et al., 2020; Verzijden and ten Cate, 2007), songbirds (Ten
Cate and Vos, 1999) and mammals (Kendrick et al., 1998), including humans (Bereczkei et al.,
2004). Although the mechanistic basis of sexual imprinting has been addressed primarily in birds
and, more recently, in poeciliid fish, it likely has important consequences for sexual selection

and evolution in a wide range of species (Owens et al., 1999; Yang et al., 2019).

In a recent behavioral transcriptomics study, (Delclos et al., 2020) raised females of the
Sheepshead swordtail fish (Xiphophorus birchmanni) with adult groups of either conspecifics or
those of a sister species, the Highland swordtail X. malinche. The authors then tested the
preference of these females for olfactory cues of either species, followed by whole-brain
transcriptome profiling. The results showed that females preferred the odors of males to which

they had been exposed in early life. Moreover, the authors discovered specific gene co-
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400  expression modules associated with rearing environment and odor preference, suggesting that
401  specific molecular pathways might underlie sexual imprinting. Although this study provides an
402  important foundation for future research in swordtails and other fishes, the specific neural

403  circuits underlying the developmental acquisition of mate preferences have been studied in much

404  more detail in songbirds.
405

406  In songbirds, juveniles of both sexes can become sexually imprinted on their father’s song in a
407  two-stage process that includes the acquisition of the song memory during a critical period early
408 in life as well as a stabilization phase during the first sexual experience (Bischof and

409  Rollenhagen, 1999). In several elegant studies in male zebra finches (Taeniopygia guttata),

410  Bischof and coworkers implicated higher-order auditory projection areas putatively homologous
411  to the mammalian auditory association cortex [the hyperpallium apicale (HA), the caudomedial
412 nidopallium (CMN) and the caudomedial mesopallium (CMM), according to the avian

413  nomenclature as revised by (Jarvis et al., 2005)] in both the acquisition and stabilization phases
414  (Bischof and Rollenhagen, 1999; Lieshoff et al., 2004; Sadananda and Bischof, 2004). The

415  extent to which this occurs in females, which do not sing, but memorize their father’s song and
416  become imprinted on it, has scarcely been investigated.

417

418  Where are these preferences formed and stored within the female brain? When zebra finch

419  females are re-exposed to their fathers’ song during the stabilization period, neural activity

420  increases in the CMM, but not the CMN or hippocampus (Terpstra et al., 2006). In conjunction
421  with the results in males discussed above, this finding suggests that the CMM may be an

422  important brain area in the consolidation of learned songs and formation of preference,

423 independent of the ability to produce the song. Subsequent research by (Woolley and Doupe,
424  2008) demonstrated that the activity of the CMM is most pronounced in response to song that is
425  directed at the female, whereas the CMN responds the most to songs the female was exposed to
426  previously, suggesting that these auditory association regions integrate discrete information

427  independently and likely work in concert to coordinate mate preferences. We can conclude that
428  the current social environment likely primes the brain to respond to previously formed

429  preferences as a result of social exposure.

430
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In another study exploring how development affects song preferences as adults, (Chen et al.,
2017) reared females either with both parents present or without the father present. Using the
IEG egr-1 as marker of neural activity, these authors demonstrated that CMN activity is
dependent on developmental exposure and song stimulus. Females reared with their father
present show increased egr-1 activity in response to courtship song compared to non-courtship
song. Females reared in the absence of male song show no difference in egr-1 expression
following the normally preferred courtship song compared to non-preferred non-courtship song.
Finally, egr-1 activity in the CMM is not dependent on rearing environment, and is higher in
response to courtship song versus non-courtship song (Chen et al., 2017). (Hauber et al., 2013)
went beyond these auditory association regions by examining how variable song stimuli and
social rearing environment interact to modulate neural activity in the field L complex, which is
the primary auditory forebrain area activated by hearing natural sounds and which receives input
from both the CMN and CMM. Specifically, these authors reared female zebra finches in one of
three conditions: with both parents present, with only the mother present (and the father absent)
or with Bengalese finches (Lonchura striata domestica) as foster parents. Once they had reached
adulthood, these females were then exposed to song playbacks from either zebra finch,
Bengalese finch, including their own (foster) father’s song, or a Parson’s finch (Poephila cincta),
and neuronal activity was recorded in the field L complex. In both the control and father-absent
groups, L field complex neurons were more active in response to conspecific songs, and no
differences were found in cross-fostered females following exposure to conspecific or their
foster-father’s song. In cross-fostered females, neuronal firing was higher following exposure to
the foster species’ song compared to the song of the Parson’s finch (Hauber et al., 2013). These
findings underscore the importance of early-life social experience in the context of species

recognition and sexual imprinting.

Day et al. (2019) explored the role of dopamine receptors following the formation of a song
preference in adult female zebra finches. These authors exposed paired and unpaired females to
either a known or a novel song. Not surprisingly, paired females preferred their partner’s song to
that of a stranger, whereas unpaired females showed no preference. Then, using a series of
antagonist and agonist treatments at both the D1 and D2 dopamine receptors, the authors

provided evidence that the D2 receptor is both necessary and sufficient for the maintenance of
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this preference (Day et al., 2019). They suggest that the dopaminergic reward system is likely to
be activated during pair-bond formation, making the preference for familiar song rewarding and

maintaining the social bond.

Taken together, these data highlight the dynamic interactive nature of both current context and
previous experience on neural activity patterns in auditory processing regions in the context of

female mate choice.

Familiarity

Clearly, previous experiences and/or familiarity with potential mates can strongly influence
female mating behavior. Additional factors such as the current availability and quality of
potential mates (Sockman and Ball, 2009), as well as familiarity between potential mates, can
bias female mate choice (Kidd et al., 2013b). In fact, this is also the case in humans, where social
familiarity with potential mates is an important prerequisite for partner affiliation and, ultimately,

romantic love.

The phenomenon of love appears to be universal across human cultures (Jankowiak and Fischer,
1992), and is thought to be an evolutionary elaboration of the mammalian neural mechanism of
mate choice (Fisher et al., 2006). Therefore, many of the neural signatures underlying familiarity
in other vertebrates are likely also involved in the orchestration of human love. During the
perception of romantic love, several brain regions operate synchronously, including those
involved in sensory perception and emotional centers. Dopamine plays an important role in this
process, as it may rewire neural circuits to encode sensory stimuli from loved ones in a way that
1s more potently rewarding, specifically through dopamine release in dopamine-rich brain areas
(Lim and Young, 2004). In an fMRI study of people who self-reported as intensely in love,
exposure to their beloved was followed by activation of dopamine-rich areas associated with
mammalian reward and motivation, such as the ventral tegmentum area and right caudate gyrus
(Fisher et al., 2005). Another study suggests that the neural substrates encoding sexual
preference in humans include phylogenetically ancient and evolutionarily highly conserved
subcortical brain structures, including the anterior and preoptic area of the hypothalamus, the

anterior and mediodorsal thalamus, septal area and the perirhinal parahippocampus, including the
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dentate gyrus, and excluding more derived regions of the neocortex (Poeppl et al., 2016).
Although ethologists have often classified attachment and sexual affinity together with sex drive
or motivation, several fMRI studies have provided evidence that the neural circuits and brain
networks promoting reproductive motivation are distinct from those underlying the formation of
romantic love (Arnow et al., 2002; Fisher et al., 2005; Fisher et al., 2006; Gibson, 2015). Thus,
to understand the neural underpinnings of mate choice, we need to dissociate courtship,
attraction and choice from sexual motivation. Although these fMRI data from human studies
provide compelling evidence that distinct mechanisms regulate each independently,

corroborating evidence from non-human study systems is lacking.

Familiarity with an opposite-sex individual can also affect mate preferences in non-monogamous
species. An elegant study by Okuyama et al. (2014) used Japanese rice fish (Oryzia latipes), also
known as medaka, to explore how social familiarity can affect female mate choice. First, the
authors showed that females can identify and recognize potential mates and that familiarization
enhances female receptivity. They then identified two mutant lines with defective mating
behaviors, in which females did not display enhancement of receptivity following mate exposure.
Focusing on gonadotropin-releasing hormone (GnRH) and examining patterns of neural
migration, they identified that these mutant lines showed abnormal development of terminal
nerve (TN) GnRH3 neurons, thus demonstrating that normal GnRH3 peptides are required for
female preference of familiar males. Familiarization facilitates TN-GnRH3 neuron activity, as

firing rates are correlated with female receptivity (Okuyama et al., 2014).

In another study on medaka fish, Yokoi et al. (2020) generated lines carrying mutations in
oxytocin (OXT) and oxytocin receptor (OTR) genes. Results indicate that the OXT/OTR
pathway is critical for the formation of female preference for familiar males. In males, which
prefer to mate with unfamiliar females, mutant lines display a loss of unrestricted promiscuous
mating. The mutant lines display a series of transcriptional changes related to metabolism which
differ by sex; these changes may explain the sex differences in behavior following mutagenesis,
where mutant males display a loss of the normal preference to mate with unfamiliar females,
whereas mutant females lose their preference for familiar males (Yokoi et al., 2020). These

studies represent some of the most comprehensive attempts to explain the mechanistic neural
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basis of mate choice. Although the results highlight specific neural and molecular components in
the maintenance of mate preference, future studies in a variety of model systems require more
spatial resolution, possibly informed by the SDMN, to determine the extent to which the

mechanistic basis of mate choice may be shared across vertebrate taxa.

Female familiarity and male—male interactions can also affect female mate choice behaviors. In
the highly social Burton’s mouthbrooder cichlid fish, A. burtoni, females observe males as they
competitively interact, and they integrate information based on the outcomes of these observed
interactions, which may then alter the females’ reproductive behaviors. In this study of A.
burtoni, females were first familiarized with specific males. Subsequently, females were allowed
to watch an aggressive interaction between familiar and unfamiliar males. Neural activity
patterns in nodes of the SDMN, including the lateral septum, preoptic area and ventromedial
hypothalamus, were highly dependent on whether familiar males won or lost the fight. Following
observation of familiar males losing a fight, the lateral septum (a region associated with anxiety
and social recognition) was activated, whereas observing familiar males winning a fight
activated the preoptic area and ventromedial hypothalamus, reproductive centers within the brain
(Desjardins et al., 2010). These findings demonstrate how social interactions and group
dynamics influence female reproductive behavior and highlight a need for future work exploring
how social information is processed within the brain and subsequently influences female

reproductive decisions.

Female reproductive state

Another important factor affecting mating behavior is female reproductive state. As
physiological attributes vary with maturity and seasonality, and within the reproductive cycle,
the motivation to find and select a mate also varies (Hunt et al., 2005; Lynch et al., 2005; Moore
and Moore, 2001). Circulating steroid hormones are a major factor contributing to reproductive
state, as they play an important role in the regulation of reproductive physiology (Adkins-Regan,
1998). In humans, variation within the menstrual cycle can affect female mate preferences (Puts,
2005). In female grey tree frogs (Hyla versicolor), exogenous administration of progesterone and
prostaglandin increases the frequency of phonotaxis; however, treatment does not affect female

discriminatory abilities (Gordon and Gerhardt, 2009). Non-reproductive females of Burton’s
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mouthbrooder (Astatotilapia burtoni), a highly social African cichlid fish, normally prefer to
associate with small subordinate males as they are less aggressive than larger dominant males,
but on the day of spawning they switch their preference and mate with larger dominant males
(Kidd et al., 2013b). Remarkably, non-reproductive females treated with prostaglandin F2a
(PGF2) dramatically reverse their normal preference (Kidd et al., 2013a). Building on this
observation, Juntti et al. (2016) used gene editing to show that PGF2 signaling is a necessary
factor for normal female reproductive behavior in this species. Furthermore, mRNA levels of the
PGF2 receptor (Ptgfr) increase in the preoptic area around the time of mating. These results
underscore the importance of the POA in female sexual behavior and provide strong support for
a causal role of the PGF2 pathway in regulating female mating preferences. The synthesis and
release of neuropeptides also influences female reproductive state. For example, in the female
grey tree frog, intracerebroventricular injections of arginine vasotocin (AVT) increase the speed
of phonotaxis (allowing females to more quickly direct attention towards the acoustic signals of
males), and blockade of AVT inhibits phonotaxis (Boyd, 2019). In summary, ancient signaling
pathways — steroid hormones, neuropeptides, prostaglandins and other hormones — that regulate
female reproductive physiology across vertebrates appear to also affect mating preferences,

although much remains to be discovered about the neural circuits involved (Figure 1).

Future outlook

A substantial body of work has addressed the neural and molecular substrates of social behavior
across vertebrates. This work has identified a suite of brain regions, gene regulatory pathways,
neurotransmitters and hormones that regulate social behaviors such as parental care, aggression,
pair bonding and sexual behavior. However, how these brain systems function in mate choice
remains understudied. Future studies exploring mate choice across diverse social systems,
incorporating phylogenetic comparative methods (see Glossary) and utilizing new genetic and
genomic techniques will substantially expand our understanding of how mate choice is mediated

within the brain and the extent to which it is evolutionarily conserved across taxa.

Importantly, although mechanisms of cognition and choice are often shared across the sexes,
there may also be certain differences, as the physiology of males and females can be very

different (DeAngelis and Rhodes, 2016; Dulac and Kimchi, 2007; Goodson, 2005; O'Connell et
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al., 2013). Additionally, males and females often rely on different sensory inputs to assess mate
quality. For example, during sexual imprinting in birds, females memorize their father’s song
and, as adults, prefer songs sung by potential mates that are similar to those of their fathers.
Conversely, male birds evaluate potential mates through visual and/or olfactory cues, as females
do not sing. Although different brain areas process these distinct sensory modalities, these cues
may be relayed to the same association centers, which may act as a decision-making brain area in
the processing of sensory information for the facilitation of mate choice. It will be fascinating to
see future studies test the hypothesis that conserved brain areas act as decision-making centers
both within a species (where sexes rely on distinct sensory inputs) and across taxa, to uncover
the degree of evolutionary conservation of this process. If there are highly conserved decision-
making areas present across taxa, we should see that although different groups rely on different
sensory inputs, shared decision-making areas may act similarly in their orchestration of mate
choice. These brain areas potentially include the highly conserved preoptic area, and future

studies exploring this region in mate selection could provide further insight.

Diverse social systems across taxa with variable social dynamics also provide promising systems
to investigate the neural mechanisms of mate choice. One example is the cichlid fish A. burtoni,
a species that displays multiple phenotypes within a sex, where dominant reproductive males can
be either blue or yellow in color (Dijkstra et al., 2017). Another, is when alternative reproductive
tactics are present, as are in ruffs (Philomachus pugnax), a lekking bird species where both
courting and satellite males are present (Lank et al., 1995). These species provide ideal study
systems for investigating female mate choice. In these species, females must make mating

decisions after assessing different options in dynamic social environments.

With recent advances in genomics and data processing, and corresponding reductions in cost,
phylogenetic comparative approaches can yield strong inferences similar to those from
experimental approaches. One recent example utilizing a comparative framework was in
exploration of a conserved transcriptomic signature underlying monogamy. Young et al. (2019)
compared transcriptomes of paired monogamous and non-monogamous species across diverse
vertebrate lineages and found substantial evidence to support the hypothesis that conserved and

ancient gene modules have been recruited repeatedly in evolutionarily independent transitions to
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monogamy. This suggests that there may be other universal molecular mechanisms underlying
similarly fundamental social behaviors in vertebrates and beyond (O’Connell and Hofmann,
2011; Toth and Robinson, 2007). How mate choice decisions rely on similarly conserved
transcriptomic profiles across distantly related taxa remains unknown and provides an exciting

avenue of future comparative research.

Finally, recent technological advances in neuroscience provide many exciting opportunities to
clarify the relationship between brain and behavior. For example, in a recent study by Kohl et al.
(2018) virus-mediated retrograde trans-synaptic tracing, fiber photometry and calcium imaging
(see Glossary) were used to elegantly detail the relationship between galanin circuit architecture
and parental behavior in the mouse (Mus musculus) (Kohl et al., 2018). In another example,
Kingsbury et al. (2019) used calcium imaging to simultaneously record neural activity in two
interacting mice, illustrating that brain activity is correlated between individuals interacting in
real time (Kingsbury et al., 2019). These experiments represent remarkable examples of how
new technologies can uncover not only the neural architecture of specific neuronal circuits, but
also how discrete components functionally regulate social behavior. Although there are
limitations in their current application to non-traditional model systems, some of these
technologies are becoming feasible in diverse species. A comparative approach, exploring a
diversity of organisms with unique behavioral strategies will paint a clearer picture of the
evolution and function of neural substrates involved in social decision-making (Dulac et al.,

2014; Pollen and Hofmann, 2008; Roland and O'Connell, 2015; Yartsev, 2017).

Conclusions

In this Review, we have discussed a series of neurochemicals — including neurotransmitters,
nonapeptides and other neurohormones — and genes associated with female mate choice across
vertebrate taxa. Figure 1 summarizes which taxa these have been studied in, and where in the
brain they have been explored (when this information is available). From pairbonding mammals,
we know that activation of the ventral tegmental area and subsequent dopamine activity in the
nucleus accumbens is critical for the formation of female mate preferences and involves the
complementary synthesis and release of both vasopressin and oxytocin. These neurochemical

pathways have also been identified as substrates of female mate choice and/or preference in birds
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(Day et al., 2019) and amphibians (Boyd, 2019). Additionally, in the swordtail X. nigrensis,
genes related to synaptic plasticity are expressed in core nodes of the SDMN (such as the lateral
septum, medial amygdala and preoptic area) during mate selection (Cummings et al., 2007), a
finding that has been corroborated in other teleosts using transcriptomic approaches (Bloch et al.
2018; Keagy et al., in prep). However, the extent to which these processes are conserved across

vertebrates remains unclear.

Importantly, dynamic social environments modulate how the brain integrates external
information to display appropriate adaptive mate choice behavior. Factors such as early life
experiences, social familiarity, the current social context and reproductive state all influence how
and when females make mate-choice decisions. Different species experience distinct social
environments and may rely on differing sensory modalities in mate choice. Although diverse
species likely differ in how the brain responds to these social and environmental dynamics, we
can predict that certain brain areas function in an evolutionarily conserved role as decision-
making areas in the integration of information and facilitation of female mate choice. The
preoptic area and medial amygdala are two such regions. These have been identified in mammals
as important for preference, but not necessary for mate discrimination (DiBenedictis et al., 2012;
Martinez and Petrulis, 2013; Sakuma, 2008). Other nodes of the SDMN, though clearly
important in a variety of social behaviors, have been largely ignored in the context of mate

choice and thus provide promising future areas to explore.

Female mate choice is fundamentally a social behavior. Even though it has long been recognized
as a powerful driver of sexual selection (Andersson and Simmons, 2006; Emlen and Oring,
1977), it is astonishing how little is known about the neural and molecular processes by which
the female brain recognizes and selects for male traits. This is in stark contrast to the proximate
mechanisms underlying sexually selected traits displayed by males, which have received much
attention, in part because they often are very conspicuous (Andersson and Simmons, 2006). Even
though our current understanding of mate choice mechanisms is woefully inadequate, the
evidence we have discussed here suggests that the evolutionarily conserved brain regions and
neurochemical pathways that regulate social decision-making across vertebrates also play a

critical role in the recognition and selection of suitable mates. Given novel methodological
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advances that facilitate research across time scales and levels of biological organization, even in
non-traditional model systems, we can look forward to exciting new insights into mate choice

mechanisms and how they evolved.
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Figure Legends

Figure 1: Summary of current understanding of the neural mechanisms of female mate
choice discussed in this Review. (A) Simplified representation (extending the framework
proposed by O’Connell & Hofmann, 2011, 2012, and Weitekamp & Hofmann, 2016) of the
neurochemical pathways (biogenic amines, neuropeptides, hormones, and a gaseous
neuromodulator) and fore- and midbrain regions implicated in mediating female mate choice
behavior. Boxes, mammals; green, birds; purple, reptiles; orange, amphibians; blue, fish. Lines
indicate evidence available for each taxonomic group for a role in female mate choice of a given
neurochemical in a specific brain region. Black, mammals; blue, fish. (B) Sagittal view of a
mammalian brain indicating the fore- and midbrain regions (using mammalian nomenclature)
activated during female mate choice behavior as measured by immediate early gene induction.
Black ellipses, mammals; green, birds; purple, reptiles; orange, amphibians; blue, fish). Red
ellipses highlight nodes that have been suggested to act as decision-making areas by integrating
sensory information that allows for discrimination and subsequent choice. Grey ellipses represent
nodes that have not yet been identified in female mate-choice behavior. For nomenclature on
putative non-mammalian homologs see O’Connell & Hofmann, 2011. These nodes are highly
interconnected, but here we do not show connectedness for clarity; see O’Connell and Hofmann
2011 for connections. Abbreviations: 5-HT, serotonin; AH, anterior hypothalamus; AN, main
auditory nucleus; AOB, accessory olfactory bulb; AVP, arginine vasopressin; blAMY,
basolateral amygdala; BNST, bed nucleus of the stria terminalis; CA, cortical areas; DA,
dopamine; E2, estradiol; GABA, y-aminobutyric acid; GAL, galanin; GnRH3, gonadotropin-
releasing hormone 3; HIP, hippocampus; LS, lateral septum; meAMY, medial amygdala; NAcc,
nucleus accumbens; NO, nitric oxide; OT, optic tectum; OXT, oxytocin; PAG, periaqueductal
gray; PGF2, prostaglandin F2 alpha; POA, preoptic area; PRL, prolactin; SON, superior olivary
nucleus; STR, striatum; T, testosterone; T1, laminar nucleus of the Torus; TN, terminal nerve
(teleost fish only); VMH, ventromedial hypothalamus; VP, ventral pallidum; VTA, central
tegmental area.

Glossary

Calcium imaging
A technique that uses a fluorescent calcium indicator to record simultaneously the activity of
many neurons on the surface of the brains of awake and behaving animals.

Conspecific
A member of the same species.

Familiarity

Prior social experience of one individual with another through observation or interaction.
Familiar individuals often behave differently towards each other than unfamiliar individuals.
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Fiber photometry
Like calcium imaging, this technique utilizes calcium indicators to monitor neural activity of
genetically modified neuron populations located deeper in the brain.

Heterospecific

A member of a different species. Although members of different species can sometimes produce
viable offspring together, mating with heterospecific individuals usually results in decreased
evolutionary fitness.

Immediate early genes (IEGs)
IEGs are rapidly and transiently activated in response to a wide array of stimuli. Most IEGs
encode transcription factors or DNA-binding proteins that coordinate the cellular response to
a stimulus event. They are commonly used as markers of neural activity.

Kin recognition
An individuals’ ability to recognize and discriminate amongst others based on genetic
relatedness. Kin recognition has important fitness consequences as it reduces inbreeding,
which can have deleterious effects on offspring viability.

Lordosis
A posture in which the back is arched downward, which is adopted by some female
mammals to signal sexual receptivity, thereby facilitating vaginal penetration by the penis
during copulation.

Mate choice
Selectively mating with only some individuals of the opposite sex, whose members compete
for fertilization opportunities

Mate preference
An individual’s bias for certain characteristics in a potential mate, e.g. conspicuous
coloration, high condition or familiarity.

Mating system
Sexually reproducing species vary in how males and females are organized with regards to
reproductive behavior (common patterns include monogamy, polygamy and promiscuity,
among others), which in turn affects (female) mate choice and sexual selection.

Monogamy
A mating system in which an individual has only one mate at a time and preferentially
associates and mates with that individual instead of a novel individual. Conversely,
polygamy (which occurs in different forms) indicates that an individual has multiple
reproductive partners during a reproductive period.

Alternative reproductive tactics (ARTS)
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Polymorphisms occur when two or more clearly different phenotypes occur within the same
sex of a species, determined by either genetic variation or environmental factors.
Polymorphisms that take the form of divergent reproductive behavior are referred to as
alternative reproductive tactics (ARTS).

Taxis

The directed movement of a free-moving organism or cell toward (positive) or away from
(negative) an external stimulus. Examples include phototaxis, chemotaxis and phonotaxis,
with light, chemicals and sound, respectively, as directional cues.

Phylogenetic comparative methods

Because species vary in evolutionary distance to each other, studies that compare multiple
species must take into account the historical relationships of lineages (phylogenies) when
testing evolutionary hypotheses.

Recognition versus Discrimination

Recognition refers to an organism’s ability to identify potential mates through sensory
inputs in a non-random way. Auditory, chemical and visual signals are examples of sensory
cues often used in mate recognition. Recognition precedes discrimination: individuals must
recognize specific traits and use those traits to discriminate amongst potential mates.
Discrimination occurs when organisms prefer or decide to associate with others based on
recognized traits. Recognition and discrimination are thus important behavioral traits in
female mate choice.

Sexual imprinting

A form of learning by which a juvenile learns specific characteristics of a parent or other
familiar individual, which results in an adult preference for mates that resemble the learned
template. This memory is acquired throughout a critical period during development and is
subsequently stabilized during first courtship and/or reproduction.

Sexual selection

A process of natural selection in which a) individuals of one biological sex choose to mate
with members of the opposite sex (intrasexual selection) in a non-random way; and b)
members of the same sex compete for access to mates (intersexual selection). Sexual
selection results in some individuals of a population contributing more to reproduction than
others.

Social behavior

Any interaction between two or more members of a species in which one individual affects
the behavior of the other in a manner that is highly dependent on current social context as
well as environmental conditions. Aggression, sexual behavior, pair bonding, parental care
and cooperation are frequently studied examples of social behavior.

Social decision-making network (SDMN)

A highly conserved network of fore- and midbrain regions that evaluates the salience and
rewarding properties of a social stimulus by integrating sensory information about the
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(social) environment with an individual’s own condition and prior experience, eventually
resulting in a behavioral choice. Evolutionarily ancient signaling pathways — such as steroid
hormones, neuropeptides and biogenic amines — regulate SDMN function in the context of
social behavior.

Transcriptomics
The transcriptome comprises the set of all coding and non-coding RNA transcripts in a
tissue or population of cells. Over the last quarter century, several massively parallel
techniques have been developed to quantitatively measure transcript levels of thousands of
genes simultaneously, most notably DNA microarrays and RNA-sequencing.

Virus-mediated retrograde trans-synaptic tracing
A technique that employs certain viruses to trace neuronal connections retrogradely from the
end point, or synapse, to the point of origin. This allows the visualization and identification
of inputs through axonal transport from one area of the nervous system to another.
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