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students passively observe the instructor without asking questions
or following along. Active live coding, in which students extend 1 INTRODUCTION
a live coding example and discuss with peers, incorporates active
learning with the traditional live coding approach. We conducted a
quasi-experimental study in which one section of an advanced in-
troductory programming course was taught using active live coding
(ALC) and the other was taught using traditional live coding (TLC).
The goal of this work is to compare students’ behavioral engage-
ment in the two lectures using a classroom observation protocol
called the Behavioral Engagement Related to Instruction (BERI)
protocol. Our results from the 2,790 observations we collected in-
dicate that traditional live coding engages only 65% of students,
on average. However, we found a “persisting engagement” effect
of active live coding, where students were significantly more en-
gaged in the traditional live coding components of a lecture up to
20 minutes after the active live coding component. Notably, the
two lecture groups performed similarly on the Post-Lecture Ques-
tions, which were administered after each lecture as a review of
the lecture material. Therefore, our results indicate an improved
student engagement due to active live coding, but do not show a
corresponding improvement in conceptual knowledge.

Live coding is a recommended teaching practice in which an instruc-
tor dynamically programs in front of students. However, findings
related to students’ engagement during live coding are mixed. Some

Live coding is touted as a recommended teaching practice in com-
puting education [3]. A consistent line of work has focused on the
impact of live coding on students’ in-class engagement [28], from
Paxton’s early work in 2002 [20] to Shah et al.’s work in 2023 [30].
Analyses of student engagement during live coding has relied either
on the perceptions of instructors [4, 20, 25], who typically perceive
high engagement while live coding, or surveys and interviews from
students, who typically find live coding too fast, difficult to follow
along, and impractical for note-taking [30, 32]. Further, as Gaspar
and Langevin point out, live coding often becomes an activity in
which students can passively observe the instructor without active
engagement [12]—a problem that may be compounded through
videos of live coding demonstrations [32]. Due to conflicting per-
ceptions of and limited empirical works on students’ behavioral
engagement during live coding, a lingering question from instruc-
tors may be: how engaged are my students, really, when I live code?

Motivated by concerns about students’ engagement during live
coding, we conducted a quasi-experimental study to compare tra-
ditional live coding (TLC)—the typical instructor-led form of live
coding where students observe the instructor program [28]—to

CCS CONCEPTS active live coding (ALC)—a variant of TLC in which all students
« Social and professional topics — CS1; Model curricula. actively write code between traditional live coding components. In

these ALC components, students extend the code written by the
KEYWORDS instructor during live coding, discuss their code with a neighbor,

and then watch the instructor live code a solution, similar to the
process of Peer Instruction [22]. We used a classroom observation
approach to empirically compare students’ behavioral engagement
in two lecture sections of the same advanced, introductory pro-

@ ® This work is licensed under a Creative Commons Attribution gramming course: one lecture section taught using Ol’lly TLC and

— International 4.0 License. another lecture section taught using TLC and ALC. For each lecture,

we also asked students to answer pre- and post-lecture questions,
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e RQ1: How does behavioral engagement differ between stu-
dents in traditional and active live coding lectures?

e RQ2: How does performance on pre- and post-lecture ques-
tions differ between students in traditional and active live
coding lectures?

2 RELATED WORK
2.1 Behavioral Engagement

Fredricks et al. conducted a review of education research about
“school engagement” and point out that there are three aspects
of school engagement: behavioral engagement, emotional engage-
ment, and cognitive engagement [9]. Behavioral engagement refers
to students’ physical presence and participation in academic ac-
tivities, such as attending school and paying attention during lec-
tures [9]. While behavioral engagement is strongly correlated with
achievement [2, 9, 15], studies have used a variety of metrics to
measure different dimensions of behavioral engagement. For exam-
ple, some studies in computing education research have measured
the impact of lecture or laboratory attendance [5, 19, 33]. Others
have measured behavioral engagement through interaction with
course materials in flipped [1] or online courses [16]. The variety
of methods to measure behavioral engagement is largely a result
of the different goals of these studies. For example, studies for pre-
dicting student success and identifying at-risk students have relied
on easily-collected data such as lecture attendance so that other
instructors can easily adopt the prediction models [18].

Because our quasi-experiment is narrowly focused on lecture
techniques, we decided to measure in-lecture behavioral engage-
ment using a classroom observation approach called the Behavioral
Engagement Related to Instruction (BERI) protocol [17]. The BERI
protocol, created by Lane and Harris, describes a methodology to
directly observe students’ behavior throughout a lecture to estimate
classroom engagement [17]. The protocol was specifically designed
for measuring engagement in large, in-person university lectures
where observation of every single student is not feasible. In the
BERI protocol, a classroom observer sits among students and iden-
tifies 10 students to observe for the entire lecture. Roughly every
10 to 15 minutes, the classroom observers evaluate each of the 10
students for 15-30 seconds based on a rubric to determine whether
a student is “engaged” or “disengaged.” If it is difficult to classify
a student as engaged or disengaged, the observers should spend
an extra 15-30 seconds to observe the student until a classification
was clear according to a pre-defined rubric.

Lane and Harris measured the validity and reliability of the
BERI protocol by testing it across multiple pairs of observers, in
various class sizes, and at different locations in a classroom [17].
The average inter-rater reliability (IRR) of 2,154 observations from
6 pairs of observers was 96.5% and the results proved to be reliable
at different course sizes [17]. The authors also tested whether 10
students is a sufficient sample size to assess engagement trends in a
class by positioning three observers at various locations in a lecture
hall. They found that although there were slight variations among
different subgroups of students, the trends in the engagement were
the same among the different groups of students, leading the authors
to conclude that 10 students can serve as a proxy to understand
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engagement trends throughout a lecture [17]. We describe our
implementation of the BERI protocol in Section 4.1.

2.2 Engagement During Live Coding

Research on live coding predominantly analyzes the traditional,
instructor-led form of live coding. Studies have evaluated the effect
of live coding on student learning [25, 26], cognitive load [24],
engagement [20, 30], and programming processes [29, 30]. The
findings have shown that students taught with live coding and
those taught with static-code examples perform similarly on exams
and demonstrate similar adherence to incremental development and
debugging techniques [26, 29, 30]. In terms of student engagement,
limited studies have used methods beyond surveying students or
leveraging instructor perceptions. Our own prior work in which we
conducted a quasi-experimental comparison of live coding to static-
code examples [30] found that nearly 20% of students in the live
coding group wrote that the lectures were too fast, whereas only
2% in the static-code group wrote that same feedback [30]. Students
were also surveyed on the impact of their lecture style on facilitating
note-taking and holding their attention. In both questions, there
was a significant difference in favor of the static-code group (i.e.,
the live coding students felt their lecture style was worse at holding
attention and facilitating note-taking). Similar student perspectives
on the drawbacks of live coding for engagement have been reported
by Stephenson [32] and Grenli and Fagernes [14].

Though these works offer insight on students’ self-reported en-
gagement, end-of-term survey questions or student feedback only
offers a more high-level understanding of live coding. For example,
questions related to students’ engagement throughout a lecture can-
not be answered by such methods. Therefore, our current work to
use classroom observation throughout a course can offer instruc-
tors a deeper insight into students’ engagement in a live coding
lecture. Our use of pre- and post-lecture questions will also lend
insight into the conceptual knowledge students gain throughout
traditional live coding and active live coding lectures.

3 COURSE DESIGN
3.1 Lecture Design

In the Fall 2023 term at our R1 university, there were two lecture
sections in our accelerated introductory programming course. Both
lecture sections met on Tuesdays and Thursdays over the 10 week
term, amounting to 20 total lecture sections. The two sections were
taught by the same instructor, who has been using live coding
in introductory programming courses for nearly 8 years. Table 1
summarizes the notable differences between the two lectures, such
as the different timings and class sizes.

Table 1: The differences between the Active Live Coding
(ALC) and Traditional Live Coding (TLC) lectures.

Active Live 9:30am | 385 395-person
Coding (ALC) students room
Traditional Live 11:00am | 196 200-person
Coding (TLC) students room
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Both lecture sections always covered the same content; however,
the 9:30am section—the Active Live Coding (ALC) lecture—included
an active live coding component. During the active live coding pe-
riod, students were given roughly 5 to 7 minutes to write part of the
live coding example on their own and then discussed their solution
with peers for 3 minutes. Nearly all lectures included one active
live coding component, although three of the lectures included two
active live coding components per lecture. This corresponding time
in the 11am lecture—the Traditional Live Coding (TLC) lecture—
was used for the instructor to live code the same code snippet that
students wrote in the 9:30am section. During the traditional live
coding components in both lectures, the instructor would ask the
class to predict the output of the code example or to fill in a blank
in a line of code that the instructor had written to promote engage-
ment. The instructor would ask for a student volunteer for each
question asked throughout the lecture.

The structure of the two lecture sections was consistent through-
out the semester. Table 2 describes the different teaching activi-
ties conducted during lectures. Typically, each lecture began with
course announcements for up to 10 minutes. Then, students were
provided a link that was only active for 10 minutes to complete two
Pre-Lecture Questions on Gradescope [13] for attendance. Follow-
ing these preliminary activities, the instructor typically spent 10
to 15 minutes solving a problem from an in-class worksheet that
covered material from the previous lecture. After this worksheet
review, which typically concluded about 30 minutes into lecture,
the instructor began teaching the new content using the traditional
form of live coding in which the instructor screen-shares their code
editor. While traditional live coding was used extensively in both
the ALC and TLC lectures, the instructor used an active live cod-
ing component only in the ALC lecture. During this component,
students created a fork of the instructor’s Edstem [8] workspace,
spent 5 to 7 minutes extending the code the instructor had written,
then discussed their approach with students sitting near them for
3 minutes (similar to the process for Peer Instruction [21]). After
the active live coding component, the instructor used traditional
live coding to demonstrate a solution and continued introducing
new content. In the TLC lecture, this same time was used for the
instructor to live code the same code that students had been asked
to write in the ALC lecture. Occasionally, the instructor hand-wrote
notes on a sheet of paper that was projected to the class at least once
a lecture for several (<10) minutes. The purpose of the handwritten
notes was to emphasize certain pieces of conceptual knowledge,
such as important vocabulary, or to draw out diagrams. By the end
of the live coding and handwritten notes, there were typically 5
minutes left for students to complete two Post-Lecture Questions.

3.2 Participants

Our work is approved by our university’s institutional review board
with exempt status. The classroom observations are covered by this
approval due to the observations being done in a public setting
without sharing confidential student information. Prior to the term,
we gave students a research consent form to opt-in to sharing their
grades and survey data with the researchers. In total, 483 students
of the 581 (83.1%) students consented to their data being used for
research purposes. The results of the consent form were hidden
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Table 2: The different instructional components used during
the two lectures.

Activity Description
Course Instructor provides due date reminders and
Announcements | discusses course logistics

Pre-Lecture Students answer two multiple-choice ques-

Questions tions on Gradescope for attendance credit
Worksheet Instructor solves a problem from an in-class
Review worksheet on a projector

Handwritten Instructor handwrites notes on a blank piece
Notes of paper in front of the class using a projector.
Traditional Instructor codes in front of students and
Live Coding prompts questions to the class

Active Students extend the code from the instruc-

Live Coding
Post-Lecture
Questions

tor’s workspace for attendance credit
Students answer two more questions on
Gradescope for attendance credit

from the instructor, who is a member of the research team, until
after final course grades were submitted.

In order to understand our participants’ backgrounds, we con-
ducted a Pre-Course Survey in the first week of the term. We asked
students about their age, race, preferred pronouns, major, and na-
tive language. Among our consenting students, 95.2% were between
the ages of 18 to 22. In total, 50.7% of students were first-year un-
dergraduates, 24.4% were second-years, 17.6% were third-years,
and 6% were fourth-years. In terms of majors, 85.5% of students
were taking the class to fulfill a major or minor requirement, as
opposed to taking the class out of interest in CS (8.3%) or to switch
into the CS major (4.3%). This high percent of students taking the
course for their major or minor indicates that students had an in-
centive to perform well in the class for GPA records. Our gender
distribution is 61.5% male-identifying and 35% female-identifying.
The remaining students self-identified into categories of less than
10 students so we do not report these groups to preserve student
privacy. The three most common racial groups were Asian/Asian
American (61.6%), Latine (12.4%), and Caucasian (10.4%). Finally,
73.3% of our students were native English speakers whereas 25.9%
were non-native English speakers, with the remaining students
self-identifying as “Bilingual”. Since the course is presented as an
advanced introductory programming course, many students already
have some prior programming experience. Our Pre-Course Survey
indicated that 54.3% of students had some knowledge of Java and
71.9% of students had some knowledge of Python before the course.

4 METHODS

4.1 RQ1 Methods: Classroom Observation

To implement the BERI protocol as effectively as possible, the
same observer (our primary observer) attend both lecture sections
for each lecture throughout the term. Although Lane and Har-
ris showed that a single observer analyzing a single group of 10
students is sufficient to capture class engagement trends [17], a
secondary classroom observer accompanied the primary observer
to roughly half of the lectures. As recommended by Lane and Harris,
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Table 3: Condensed rubric used by classroom observers

Engaged Criteria

Disengaged Criteria

Computer
Use

Student is taking
notes or has instruc-
tor’s code open

Student is using the
computer for non-class
purposes or is doing
homework for the class

instruction

Looking/ | Student is looking | Student is not looking
Listening | at the instructor and | at the projector and in-
nodding along to | stead is distracted by
demonstrate attention | phone, laptop, etc.
Student Student is not talking | Student is talking or
Interaction | to neighbors during | laughing with neigh-

bors during instruction

our observers were familiar with the course material and teaching
methods that the instructor used. Further, since the authors of the
BERI protocol discussed the importance of using trained observers,
our primary observer spent the first week doing a “pilot-test” of the
protocol. As a result, our lecture observations began at the third
lecture. The primary observer then trained the secondary observer
for one lecture before the secondary observer began collecting data.

For each pair of lectures on the same day, our observers posi-
tioned themselves in the same location in the two lecture halls
ensure consistency in the observations (i.e., if the observer sat in
the back-middle of the ALC lecture on a certain day, they must
sit in the back-middle of the TLC lecture for that same day). Both
observers tracked their seating locations and the locations of the
10 students for each lecture to ensure an even distribution of the
entire lecture hall throughout the term. Throughout the term, we
were able to cover nearly the entire classroom with some seating
locations have multiple observations throughout the term.

Since students were encouraged to bring laptops to lecture, we
needed to be able to know whether students were using the com-
puter in an engaged manner (i.e., for note-taking, active live coding,
etc). Therefore, the observers carefully selected 10 students at the
start of lecture such that the students’ face and laptop were in view,
as these were important factors according to the rubric (see Table
3). Every 10 to 15 minutes, our observers recorded the instructional
activity (Pre-LQ, Worksheet Review, Live Coding, etc) and assigned
a label (“E” for Engaged or “D” for Disengaged) for each of the
ten students they selected. When students were classified as Dis-
engaged, our observers wrote down the reason for disengagement
(irrelevant computer use, socializing with neighbors, sleeping, etc).
For the observations during the Active Live Coding components,
our observers made sure to check the students’ laptops to make
sure each student was coding on the instructor’s Edstem workspace
(as opposed to working on a programming assignment, working
on material from another class, etc). The two observers messaged
each other throughout the lecture to ensure that both observers
conducted their data collection at the same time. In general, the
observers aimed to be as discreet as possible so students were not
aware that they were being observed.

In order to not influence the instructor’s teaching methods, the
results of the classroom observation were never shown to the in-
structor of the course until after the course was over. During the
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weekly research meetings to discuss the experiment, the instructor
of the course, who is an author on this paper, left the room so that
the observers could reflect on the observations without impacting
the instructor’s teaching approach.

4.2 RQ2 Methods: Pre- and Post-Lecture
Questions

To answer our second question, we analyzed student responses
to the pre- and post-lecture questions. Each set of pre- and post-
lecture questions included two multiple-choice questions hosted
on Gradescope [13]. The link was only active when the instructor
allowed students to work on the problems to ensure that only
students who were present in lecture could answer. In fact, the post-
lecture questions form required students to submit a picture of the
in-class worksheet handed out during lecture. We initially aimed
for the pre- and post-lecture questions to be isomorphic questions,
but halfway into the term we decided to have the pre- and post-
lecture questions be the exact same questions due to concerns
about whether our questions were truly isomorphic. The questions
covered the content for that specific lecture in order to a) measure
students’ prior knowledge on the topics and b) measure students’
learning gain on those topics during the lecture [22].

Our learning gain calculation is loosely based on the Weighted
Learning Gain metric, presented by Porter et al. in their work to mea-
sure the impact of Peer Instruction [22]. Due to different correctness
levels between the two lectures in the pre-lecture questions, our
calculation of learning gain focuses only on the Potential Learner
Group (PLG)—the group who answered the pre-lecture quests incor-
rectly. Our learning gain metric for each question is the percentage
of PLG students that correctly answered the post-lecture question.

5 RESULTS
5.1 RQ1 Results

Table 4 compares students’ lecture attendance throughout the quar-
ter. Although the average attendance rates are represented as per-
centages out of 100, we applied a two-sample t-test [23] (as opposed
to a z-test of proportion [27]) since these values are scores out of 100
rather than purely binomial distributions. We found no significant
difference between the groups and a very small effect size.

Table 4: Comparison of average lecture attendance.

Lecture Std t P eff.
Condition N Mean dev  stat val size
ALC Lecture | 303 87.3% 18.1%
TLC Lecture | 150 88.5% 19.1% ¢4 052 0064

Our classroom observation data allowed for a multi-faceted anal-
ysis of student engagement. Figure 1 shows the average number
of students that were engaged during each of the instructional
activities in both lectures. The sample sizes indicate the number
of students that were observed during each instructional activ-
ity throughout the term for a specific lecture group. For example,
we observed 180 students in the ALC lecture during Pre-Lecture
Questions. There is no data for Active Live Coding during the TLC
lecture because no active live coding was used in the TLC lecture.
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Student Engagement During Lecture Activities

Active LC Lecture = Traditional LC Lecture

N Dhestune RGN
W Roviow R
Live Coding 685%% tnCe80)

ot S MENo)
Active Live 97.0% (n=210)

Coding
P Guenions AL

0 20 40 60 80
Percentage of Students Engaged (out of 100)

100

Figure 1: Comparison of behavioral engagement between the
two lecture groups.

Average Student Engagement Throughout Lecture

® Active LC Lecture -- Traditional LC Lecture
100 95.0%
80
60
40 | | | | ] | |
10-20 mins 20-30mins 30-40mins 40-50mins 50-60mins 60-70mins 70-80mins

Pre LQ Wksht TLC TLC  ALC/TLC

Time into Lecture

TLC Post LQ

Figure 2: Average engagement throughout lectures.

Figure 2 shows students’ average engagement throughout lec-
ture based on the number of minutes into lecture. To create this
figure, we identified the most common instructional activity and the
average engagement for that activity for each ten-minute increment
in the 80-minute lectures. For example, the most common activity
from 10-20 minutes into lecture was the Pre-Lecture Questions,
from 20-30 minutes it was Worksheet Review, etc. The engagement
values represent the average engagement for that activity within
that specific 10-minute window (i.e., the average engagement for
Traditional Live Coding components between 30 to 40 minutes into
lecture is 70% for the ALC lecture and 65.4% for the TLC lecture).
Note that for the 50-60 minute period, the figure depicts the engage-
ment for Active Live Coding for the ALC lecture but Traditional
Live Coding in the TLC lecture.

Figure 3, which focuses only on the ALC lecture, compares stu-
dents’ engagement during traditional live coding components before
and after active live coding. The engagement in the traditional live
coding components before ALC was 61.5% but rose to 77.7% in the
traditional live coding components after ALC. Using a two-sample t-
test [23], the difference of these means is significant, with a p-value
< 0.001 and Cohen’s d of 1.16—a large effect size [10].
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Live Coding Engagement Pre- and Post-Active Learning

e s 61.5% (n=340)
Active Li =
Coding (ALC) 97.0% (n=210)
Live Codi o
(Post-ALC) 77.7% (N=190)
0 20 40 60 80 100

Percent of Students Engaged (out of 100)

Figure 3: Student engagement during live coding before and
after active live coding in the ALC lecture.

5.2 RQ2 Results

Our learning gain metric represents the proportion of students
who got the Pre-Lecture Question incorrect but answered the corre-
sponding Post-Lecture Question correctly. Since our learning gain
metric is sensitive to the proportion of students in the Potential
Learning Group (i.e., if there was only one student in the PLG, then
that student answering the post-lecture question correctly would
lead to a 100% learning gain), we did a preliminary analysis of the
correctness of students on the Pre-Lecture Questions. The groups
had similar rates of incorrectness throughout the term, with the
ALC lecture having an average of 43.1% of students in the PLG and
the TLC lecture having 40.8% of students in the PLG.

Table 5: Comparison of students’ learning gain.

Lecture Num Learning z P eff.

Condition | Questions Gain stat val  size

ALC 2768 50.7% 185 0064 0.062
TLC 1323 53.7% ’ ’ ’

Though we also conduct individual comparisons for the Pre- and
Post-Lecture Questions on a question-by-question basis, we report
the aggregate learning gain as a summary of the results. Table 5
shows that there is a 3 percentage point difference in the aggregate
learning gain throughout the term. The “Num Questions” column
represents the number of pairs of questions we analyzed during the
quarter from the Potential Learning Group. This number represents
only the questions According to our z-test of proportions [27], this
difference is not statistically significant with an & threshold of 0.05
and our Cohen’s h effect size for binary data [7] is low.

6 DISCUSSION
6.1 Interpretation of Results

Our data shows that active live coding not only re-engaged stu-
dents, but also had a persisting impact on engagement (Figures 2
and 3). Students typically started the lectures with high engagement
during the Pre-Lecture Questions but then slowly lost engagement
over the next 40 minutes. Within the ALC Lecture, the engagement
for traditional live coding was only 61.5% before the active learning
component (Figure 3), but peaks at 97% during active live coding.
The high engagement during active live coding is unsurprising: stu-
dents were told that their attendance would be based on whether
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they completed the coding activity and were instructed to discuss
their code with a neighbor. Following this active live coding com-
ponent, however, student engagement dropped from 97%, but still
stayed at 77.7% during the traditional live coding components after
active live coding. This different pre- and post-ALC engagement
represents a 26.3% improvement to student engagement, a signif-
icant difference. In fact, the average overall engagement during
traditional live doding in the ALC lecture is about 5 percentage
points higher than the engagement during traditional live coding in
the TLC lecture (68.9% vs 63.4%, Figure 1). This difference is roughly
1 out of every 20 students (5%) being engaged during live coding.

We reason that this persistent re-engagement occurs because
the active coding component may provide students intrinsic moti-
vation to watch the instructor live code. Since students complete
the coding activity on their own before discussing with peers, we
saw many students get stuck or realize that they are unsure how
to approach a problem. We suspect that this moment of realization
could motivate students to observe how the instructor approaches
the problem. Drawing upon the theory of Cognitive Apprenticeship
[6, 31], which is often cited in live coding research [28], students
are able to reflect on their own approach by seeing the instructor’s
approach. In contrast, students in the TLC lecture only see the
instructor’s approach without having attempted the problem on
their own, preventing the same reflection moment. Therefore, the
students in the ALC lecture have a greater investment into the
coding example that students in the TLC lecture do not have.

In general, our observations showed that traditional live coding
engages between 60-70% of students at any given time, roughly
similar engagement as handwritten notes on a projector. Based on
our observations during traditional live coding, students tended to
use their laptops for non-lecture purposes, such as doing homework
for another course, browsing courses to take in the next quarter, or
working on the programming assignment for this class (which still
counts as behaviorally disengaged). Our observations build upon
the results from Shah et al., who showed that students felt live cod-
ing was too fast and did not hold their attention [30]. Specifically,
our results shed light on the risks of students being encouraged to
use their laptop to follow along with the instructor’s live coding
lesson. In fact, we observed many students exhibiting blatant dis-
engagement by playing games or watching videos on their laptop.
Disengaged computer use was by far the most common cause of
disengagement that we observed. In fact, our observers compiled a
list of computer games that students were playing, including Chess,
Wordle, Geoguessr, 2048, and more. Given the prevalence of disen-
gaged computer use, an interesting follow-on study could evaluate
the effect of a “no electronics during lecture” policy on students’
engagement using classroom observations.

Despite the optimistic findings related to engagement during
active live coding lectures, students’ performance on Pre- and Post-
Lecture Questions did not indicate a stronger learning impact of
active live coding. The learning gain in the TLC lecture was three
percentage points higher than in the ALC lecture (Table 5). These
results do not seem to align with previous work that shows a link
between engagement and achievement [2, 9, 15]. However these
findings may actually highlight the impact of cognitive and emo-
tional engagement. As Fredricks et al. point out in their work about
school engagement, students can exhibit behavioral engagement,
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yet still be cognitively or emotionally disengaged (and vice versa)
[9]. It is certainly possible that we observed students to be behav-
iorally engaged in the ALC based on their physical characteristics
when they were, in fact, cognitively disengaged because they were
thinking about something unrelated to the class, such as social
plans or homework in a different course. These undetected forms
of engagement could explain learning gain results we saw.

6.2 Threats to Validity

We encountered several threats to validity during our study due
to the differences between the two lectures. For example, the ALC
lecture was held at 9:30am while the TLC lecture was at 11am. This
difference in lecture timing may have impacted some of our results,
such as attendance and in-class engagement. Some students may
have decided to simply not attend the 9:30am lecture due to its
earlier start time. Further, the difference in the sizes of the lectures
could have impacted students’ in-lecture engagement. Based on
our observers’ and instructor’s perceptions, the ALC lecture, which
was double the size of the TLC lecture, seemed to be noisier than
the TLC lecture. Physically, the lecture hall for the ALC lecture was
much larger than the lecture hall for the TLC lecture. We suspect
that proximity to the instructor can impact students’ engagement
(i.e., students further away could be more prone to disengagement).
Lastly, our instructor reflected that the 11am lectures seemed to
run more smoothly since the instructor had already taught the
same content in the 9:30am lecture. The instructor reported feeling
more prepared and encountered fewer technical issues in the 11am
lecture. These important differences between the two lectures could
certainly have impacted the engagement we observed.

Second, the Pre- and Post-Lecture Questions were all multiple
choice questions that targeted students’ conceptual understanding,
code comprehension, or code completion (i.e., “fill-in-the-blank”
questions) abilities. However, live coding primarily targets stu-
dents’ program generation and code writing abilities rather than
conceptual knowledge and code comprehension (which is primarily
targeted through static-code examples) [30]. Therefore, the con-
tent of the Pre- and Post Lecture Questions may not be the best
representation of students’ true learning gain via live coding.

7 CONCLUSION

Our study aimed to observe and measure students’ behavioral en-
gagement during Traditional Live Coding and an Active Live Cod-
ing lectures. Traditional live coding engages typically between
60-70% of students, with the lowest engagement occurring roughly
halfway through an 80-minute lecture. Our results showed that
active live coding increases students’ engagement during the ac-
tivity and had a persisting effect on engagement after the active
component. However, this increased engagement did not translate
to a higher learning gain during lectures, as the two groups demon-
strated similar learning gain during lectures. Our work also relies
on a promising classroom observation protocol that can be used for
future studies to help instructors understand the effect of various
lecture techniques and class policies on student engagement.
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