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1 Abstract 

2 

3 Neuronal networks are the standard heuristic model today for describing brain activity associated 

4 with animal behavior. Recent studies have revealed an extensive role for a completely distinct 

5 layer of networked activities in the brain – the gene regulatory network (GRN) – that orchestrates 

6 expression levels of hundreds to thousands of genes in a behavior-related manner. We examine 

7 emerging insights into the relationships between these two types of networks and discuss their 

8 interplay in spatial as well as temporal dimensions, across multiple scales of organization. We 

9 discuss properties expected of behavior-related GRNs by drawing inspiration from the rich 

10 literature on GRNs related to animal development, comparing and contrasting these two broad 

11 classes of GRNs as they relate to their respective phenotypic manifestations. Developmental 

12 GRNs also represent a third layer of network biology, playing out over a third time scale, which is 

13 believed to play a crucial mediatory role between neuronal networks and behavioral GRNs. We 

14 end with a special emphasis on social behavior, discuss whether unique GRN organization and 

15 cis-regulatory architecture underlies this special class of behavior, and review literature that 

16 suggests an affirmative answer. 

17 

18 

19 Significance Statement 

20 Behavior is controlled by neural and molecular systems in the brain. Models of neuronal networks 

21 (NNs) have proven to be useful to describe the electrochemical activities of brain cells, and 

22 recently models of behaviorally related gene regulatory networks (bGRNs) have been developed 

23 to describe the activities of genes inside these brain cells. This effort has been spurred by a 

24 growing literature demonstrating strong and specific changes in brain gene expression associated 

25 with specific behavioral responses. We compare and contrast NNs and bGRNs, aided by the 

26 wealth of knowledge that exists for developmentally related GRNs (dGRNs). Considering these 

27 three layers of network biology, operating over three time scales, provides intriguing new insights 

28 into brain and behavior. 

29 



30 Animal behavior arises in large part from the coordinated activities of cells in the nervous system. 

31 It is common to model this activity with neuronal networks (NNs) (1-4), which seek to describe 

32 how circuits of neurons transmitting electrochemical signals from one neuron to the next control 

33 sensory,  integrative,  and  motor  functions  of  an  organism  (5).  NNs  provide  quantitative 

34 representations of the signal processing activities that integrate perceptions of environmental 

35 stimuli with internal physiological states to produce the neuronal signals that orchestrate adaptive 

36 behavior (6). 

37 

38 A rich body of genetic and, more recently, genomic, studies have revealed that behavior is also 

39 associated with the coordinated activities of genes that operate in brain cells. Many studies have 

40 found significant, predictable, and specific changes in brain gene expression profiles associated 

41 with behavioral responses to particular environmental stimuli (7-14). These findings suggest that 

42 a second layer of network biology – that of gene regulatory networks (GRNs) – also underlies 

43 behavior. Expression of thousands of genes in the genome must be coordinated in order to 

44 generate the gene expression profiles that establish cell types, states and functions, and such 

45 coordination is also necessary to induce the characteristic expression changes associated with 

46 behavior. Orchestration of gene expression within a cell is achieved by regulatory interactions 

47 through which genes influence one another’s activity, often in response to extracellular signals, 

48 jointly establishing the GRN. A GRN is a collection of regulatory relationships among genes that 

49 helps us understand how “input” signals and cellular context map to “output” gene expression 

50 levels. Applied to the brain, a GRN is thus a natural construct to help explain the observed 

51 behavior-associated changes in gene expression profiles in mechanistic terms. It is worth noting 

52 that the GRN in our discussion refers to the regulatory relationships and interactions operative 

53 within the cell, and not to the statistical relationships determined as part of GRN reconstruction 

54 efforts (8). 

55 

56 Which gene regulatory interactions most impact the expression changes associated with a 

57 particular behavior? These interactions comprise a sub-network of the genome-wide GRN that 

58 we will refer to as a “behavior-associated GRN” (“bGRN”). Models of bGRNs have only recently 

59 been developed (8), and despite their usefulness, many questions remain unanswered regarding 

60 their composition and structural/functional characteristics, as well as their relationship to NNs. 

61 

62 Here, we highlight emerging concepts and open questions related to bGRNs. We argue that 

63 integrating both networks – NNs and bGRNs – holds great potential for a better understanding of 



64 how neurons and the genes expressed within them together regulate organismal behavior and 

65 channel its evolution (6, 15). While bGRNs are intracellular networks whose direct “outputs” are 

66 changes in gene expression, these intracellular changes are influenced by behavioral context and 

67 in turn feed back into NNs, with functional consequences in behavior. We also outline some paths 

68 for future research, with a special focus on social behavior, a particularly active area of research 

69 on bGRNs. 

70 

71 To guide our exploration of bGRNs we draw inspiration from the field of developmental biology, 

72 because metazoan gene regulatory networks are perhaps best understood in the context of 

73 development (16, 17). Developmental biology has already produced mature descriptions and 

74 theories of developmental GRNs (“dGRNs”) and also have inspired other researchers studying 

75 brain and behavior (18, 19). Moreover, there are deep connections between development and 

76 behavior, as we discuss below, and this also provides a strong framework for comparative 

77 analysis. We thus use dGRNs as a point of comparison and contrast for bGRNs. Even if we find, 

78 upon pushing the comparison further, that dGRNs are in fact a poor model for understanding 

79 behavioral regulation, the rich literature on dGRNs will have allowed us to frame baseline 

80 expectations about bGRN characteristics, and identifying departures from this baseline will help 

81 us appreciate unique aspects of behavioral gene regulation. In referring to developmental studies, 

82 we focus on the development of new cell types from precursor cells (17, 20), rather than organ 

83 development and other processes involving groups of cells. We do not claim to describe or 

84 compare all the many ways in which behavior and development have been studied; rather, we 

85 comment on salient properties vis-à-vis their associated networks and control mechanisms. 

86 

87 Gene regulatory networks in development and behavior 

88 Cellular states in development and behavior 

89 An important concept for mechanistic studies of development is the “cellular state” (21, 22). 

90 Development of the various cell types in the metazoan body can be seen as a temporal 

91 succession of cellular state transitions, operating in parallel on multiple cell lineages in the 

92 organism.  Gene  expression  profiles  (measured  as  genome-wide  transcript  profiles  or 

93 “transcriptomes”) have emerged as a convenient yet powerful surrogate for cell states. GRNs, 

94 which control these profiles, are the underlying systems that drive cell state transitions (23). For 

95 instance, if a set of genes change expression as a cell transitions from one state to another, the 

96 GRN may explain those changes as the effects of one or more transcription factors (TFs) that 

97 were activated or deactivated in the transition (17). In fact, GRNs not only explain state transitions, 



98 they also underlie the very existence of stable transcriptomic profiles representing cell states (24, 

99 25) (Figure 1A). 

100 

101 Organisms also show transitions from one distinct behavior to another. In some cases, each 

102 behavior is performed briefly, while in other cases each behavior is performed for a relatively long 

103 period time, giving rise to “behavioral states” [7].  In species living in complex societies with 

104 division of labor, social dominance hierarchies, alternative reproductive tactics, and other forms 

105 of behavioral plasticity, some individuals perform the same set of behaviors repeatedly, 

106 sometimes for days or longer, thus exhibiting extreme behavioral states (26). Gene expression 

107 profiles in specific brain regions or even whole brains have proven useful as surrogates for 

108 behavioral states (Figure 1A); in some cases the correspondence between brain gene expression 

109 profile and behavior is strong enough to use the former to predict the latter (7, 27). This is similar 

110 to how gene expression profiles serve as reliable signatures of developmental stages and 

111 corresponding cellular states. 

112 

113 There are similarities and differences in the delicate balance between the stability and flexibility 

114 (openness to transitions) of states in both development and behavior. Transcriptomic studies have 

115 revealed not only that behavioral stimuli change brain gene expression profiles in brain tissues in 

116 a predictable and reproducible manner, but also that the new expression profile is stable, 

117 commensurate with the stability of the behavioral state. In other words, the brain or brain region 

118 being profiled transitions from one stable molecular state to another in response to the stimulus, 

119 and a sufficient number of cells apparently must undergo the same or similar cell state transitions 

120 so that their measured aggregate expression profiles at the tissue level still reflect this transition. 

121 This speculation suggests that individual cells in the brain switch states in a coordinated manner 

122 – akin to cellular state transitions during development. However, behaviors are in general more 

123 ephemeral than typical cellular states in development, so we would expect that the transcriptomic 

124 correlates of behavior are correspondingly more fluid (28) than those of cells in a developmental 

125 context. Both dGRNs and bGRNs govern cell state dynamics, but it is plausible that the dynamical 

126 features of bGRNs are more skewed toward flexibility. 

127 

128 A second point of comparison between developmental and behavioral systems with implications 

129 for underlying GRNs lies in the multi-scale organization of states and their coordinated transitions. 

130 Development is the determination and differentiation of many different cell types through time. 

131 Each cell type emerges by a transition from a precursor cell type, with multiple transitions 



132 occurring in parallel across space that are coordinated by local as well as longer-range signaling. 

133 Likewise, transcriptomic state transitions associated with behavior are manifested in multiple brain 

134 regions simultaneously (29), presumably coordinated by neuronal connections as well as humoral 

135 cell-cell communication involving hormones and neuromodulators. We therefore expect to see 

136 common themes shared between development and behavior regarding how GRNs operate in 

137 different spatial locations coordinate their activities. 

138 

139 Gene expression changes during development and behavior 

140 Changes in brain gene expression associated with behavioral changes are generally of modest 

141 magnitudes, with studies reporting statistically significant changes to be two-fold or less (29). As 

142 a point of contrast, more dramatic expression changes are seen in early development (16, 17, 

143 30), where transcriptomes first establish cell lineages that will give rise to a vast diversity of 

144 tissues of the body. A simple explanation of this contrast may be differences in cellular 

145 heterogeneity between tissues analyzed – the early embryo will give rise to tissues ranging from 

146 gonads to brain, whereas in behavioral studies cells of a smaller range of similar lineages are 

147 being studied. Additionally, most behavioral transcriptomics studies have so far relied on “bulk” 

148 (whole brain region or even whole brain) rather than single-cell expression measurements, and 

149 the relatively modest expression changes noted may be the consequence of only a subset of cells 

150 in the bulk sample participating in the change. On the other hand, developmental studies often 

151 make use of single cell sequencing (31) and/or spatial expression profiles such as those based 

152 on in situ hybridization (32), allowing construction of higher resolution transcriptomic maps that 

153 resolve cellular heterogeneity. 

154 

155 However, there may be a biological reason for observed differences in the magnitude of gene 

156 expression differences between early development and behavior, related to differences in the 

157 persistence of behavioral and developmental states. Behavioral changes, especially when 

158 associated with an active stimulus, are generally more plastic than development; animals can 

159 rapidly transition from one behavior to a variety of other behaviors, depending on the social and 

160 ecological context. This stands in stark contrast to the typically unidirectional nature of 

161 developmental  progression,  which  ultimately  establishes  different  cell  types  with  distinct 

162 expression profiles. Different behaviors are seen to induce different directions of change in brain 

163 gene expression profiles (10), and by extrapolation we expect that the number of distinct 

164 behaviorally related transcriptomic changes exceeds the diversity of paths normally taken from 

165 any given  developmental state. It is reasonable  to  speculate  that the  less pronounced 



166 transcriptomic  changes  seen  in  behavioral  contexts  (compared  to  those  noted  in  early 

167 development) are related to this greater plasticity. If true, these points of contrast between 

168 developmental  and  behavioral  changes  in  expression  would  suggest  the  existence  of 

169 corresponding  differences  in  regulatory  mechanisms  at  multiple  levels.  These  include 

170 transcriptional gene regulation in the GRNs (trans- and cis-elements), the architecture of gene 

171 regulatory circuits (feedback loops) within the bGRNs or dGRNS, and the control of GRN 

172 dynamics exerted by cell-cell interactions in the respective cell communities. 

173 

174 Differences between bGRNs and dGRNs 

175 The above analyses of similarities and differences between development and behavior in terms 

176 of cellular states and gene expression set the stage to compare their underlying GRNs directly. 

177 One possible difference between the two types of GRNs is that dGRNs have a greater connectivity 

178 (frequency of regulatory edges) among TFs than do bGRNs. To understand this, let us consider 

179 the space of all possible transcriptomic states achievable by a system (the cell), with transitions 

180 among states (gene expression profiles) being determined by the GRN. Most of these states are 

181 unstable because they violate gene regulatory interactions. However, a distinct subset of them 

182 satisfy all regulatory interactions, are stable (robust to molecular noise), and can perform 

183 important biological roles such as maintaining cell type identity. Such stable transcriptomic states 

184 are called the “attractors” of the space (24, 25). The term “attractor,” borrowed from dynamical 

185 systems theory, refers to a state toward which a system tends to evolve and revert to if perturbed, 

186 e.g., due to fluctuations arising from gene expression noise. Attractors may be conceptualized as 

187 valleys in a landscape that depicts the stability of all possible transcriptomic states (Figure 1B). 

188 A GRN with many TF-TF regulatory interactions is likely to have feedback loops, which are known 

189 to result in a transcriptomic landscape characterized by many “deep” attractors from which there 

190 is no escape other than experimentally induced cell type reprogramming (33). By contrast, a 

191 paucity of TF-TF regulatory interactions and feedback loops in a GRN is expected to result in 

192 more malleable gene expression profiles that can reversibly transition into each other, depicted 

193 by shallow valleys in the transcriptomic landscape (Figure 1C). Characteristics of gene 

194 expression changes associated with the greater plasticity of behavior, discussed above, thus 

195 suggest that bGRNs should have fewer TF-TF regulatory interactions than dGRNs. We expect 

196 that the continuing efforts at reconstructing genome-wide GRNs through identification of trans- 

197 and cis-regulatory connections between all gene loci will help to test this prediction. 

198 



199 Figure 1D illustrates one way to test the above prediction, by comparing a bGRN reconstructed 

200 from transcriptomic profiles of behavioral states in mouse (29) and a dGRN reconstructed from 

201 transcriptomic profiles associated with eye development in Drosophila (34). This comparison, 

202 which provides support for the prediction, is merely one suggestive example, guided largely by 

203 the limited availability of GRNs at scale. Future tests will need to account for the fact that GRN 

204 characteristics can differ depending on the specific behavior and developmental process under 

205 study. 

206 

207 We noted above that a transcriptomic landscape with shallow attractors enables frequent 

208 transitions between cellular states. Shallow attractors are also associated with greater fluctuations 

209 in gene expression, which translates to the prediction of more stochastic gene expression in 

210 transcriptomic states associated with a behavior. Similarly, experimental studies using single-cell 

211 transcriptomics have revealed a greater dispersion in expression during differentiation events (35, 

212 36), when deep attractors representing precursor cell types are destabilized and rendered 

213 shallower to facilitate state transition (25). Future work utilizing single-cell transcriptomics to 

214 analyze cells from the brain will help us test this hypothesis regarding behavior-associated cell 

215 states. 

216 

217 bGRNs and dGRNs in evolution 

218 In addition to the above mechanistic comparisons, an important insight into the parallels between 

219 behavioral and developmental gene regulation comes from evolutionary analysis. The rich 

220 literature on evolutionary developmental biology (“evo-devo”) (16, 37) has revealed genetic 

221 “toolkits” that have been deployed repeatedly in the independent evolutions of sometimes-parallel 

222 features of animal morphology, and these toolkits have been traced to the level of GRNs (17). 

223 Recent  behavioral  studies  have  undertaken  increasingly  comprehensive  cross-species 

224 comparisons at the transcriptomic level and also have reported the existence of toolkits of genes 

225 and gene modules underlying parallel behaviors (9, 38), loosely analogous to developmental 

226 toolkits  (16).  dGRNs  have  provided  a  systems-level  construct  at  which  similarities  of 

227 developmental regulation emerge across great evolutionary spans despite extensive sequence- 

228 level divergence (39, 40). Similarly, bGRNs and associated co-expression modules provide 

229 glimpses of shared mechanisms of behavior in different species even if such evolutionary toolkits 

230 are not apparent at the individual gene level (9, 41). In addition, such comparisons can also give 

231 insights  into  how  entirely  new  behaviors  might  evolve.  For  example,  analogous  to  the 

232 redeployment (and sometimes tweaking) of toolkits or dGRNs in the evolution of morphological 



233 novelties (42-44), a new behavior’s appearance might be facilitated (in an appropriate selective 

234 situation) by redeploying all or part of an existing bGRN in a new time, neural context, or in 

235 response to a different stimulus (19). Concepts and approaches developed in evo-devo for cross- 

236 species comparisons of dGRNs are already proving useful for similar cross-species comparisons 

237 of bGRNs (19). 

238 

239 Integrating gene regulatory networks and neuronal networks: multi-scale dynamics 

240 The recognition of the bGRN as an important molecular substrate of behavior raises exciting 

241 possibilities to consider the interplay of the bGRN with the network most directly related to 

242 behavior – the neuronal network (NN). Such interactions would integrate across two distinct levels 

243 of biological networks, resulting in increased complexity of network dynamics compared to either 

244 network alone. The NN is based on physical connections among neurons, and the messages 

245 transmitted through it may interface with the bGRN (45). For instance, the bGRN operating within 

246 a neuron may respond to the synaptic activity among the neurons in the NN (46), as well as 

247 hormones and other secreted mediators that bind to its receptors, resulting in changes in gene 

248 regulatory activity. In one study, the temporal kinetics of neuronal firing was found to be intimately 

249 linked to GRN activity in dorsal root ganglia neurons, suggesting that the patterning of neuronal 

250 activity is interpreted by the GRN (47). Similarly, in the mouse cortex, expression levels of a 

251 transcriptional switch, the TF Er81, are directly correlated with firing properties in a subtype of 

252 interneuron, and activation of these interneurons in the context of learning modulates Er81 

253 expression (48). Conversely, the bGRN indirectly controls NN activity via setting the production 

254 levels of neurotransmitter receptors, ion channels, axon outgrowths and dendritic arborizations, 

255 and other physico-chemical components of the NN (49-52). A case in point is the highly conserved 

256 TF Foxp2, a component of bGRNs in the basal ganglia song nucleus, Area X, that is associated 

257 with avian song learning (53). Knock-down of FoxP2 is known to impact vocal imitation and song 

258 variability. Mechanistic studies have shown Foxp2 to regulate genes that contribute to neurite 

259 outgrowth and NN formation (51), and to influence dopamine-modulated cortical circuits (54) in 

260 the mouse brain. Similarly, in the Drosophila brain, complex regulatory cascades of gene 

261 expression  establish  specific  features  of  Tv1  neurons  such  as  neurite  morphology  or 

262 neurotransmitter identity (55). GRNs have also been shown to constrain variability in neuron 

263 identity and function among similar neurons despite substantial variation in the expression of 

264 specific genes (56). bGRNs thus have the ability to directly influence the architecture and activity 

265 of NNs by modulating neuronal excitability and connectivity (57). Despite a fundamental difference 

266 between the two networks – the NN being an intercellular network and the GRN being an 



267 intracellular network (with signal transduction crossing between GRNs in different cells) – they 

268 clearly influence each other’s activities, presenting an exciting frontier of future research. 

269 Moreover, we also suggest that the wiring of NNs in the brain imparts a qualitatively different 

270 characteristic to the coordination of bGRNs across different spatial locations. 

271 

272 Spatiotemporal dimensions of bGRN-NN interplay 

273 The interactions between NNs and bGRNs play out at multiple spatial and temporal scales. In the 

274 spatial dimension (Figure 2), the activities of bGRNs differ across brain regions and cell types; 

275 each location may thus exhibit distinct gene expression changes during a specific behavior (29). 

276 bGRN  activities  at  different  locations  also  influence  each  other,  e.g.,  via  the  NN  and 

277 neuroendocrine signaling (58). Likewise, the NN is meshed across the entire nervous system, 

278 with even single neurons known to link distant regions (59). Thus, with both networks exhibiting 

279 spatial patterns of activity, their interplay will assume a level of complexity above and beyond that 

280 of either network alone. This may lead to an increased number of stable transcriptional states 

281 (attractors), as has been shown in computer simulations that connect each cell’s GRNs to a cell- 

282 cell interaction network (60). Such higher-level interactions can also influence the stability of, and 

283 transitions between, attractors. This results in more dynamic gene expression profiles, an 

284 important anticipated feature of bGRNs, as noted above. A key direction for future efforts must be 

285 the coupling of real-time neural activity measurements (61) with high resolution single-cell 

286 transcriptomics (62), in specific behavioral contexts. 

287 

288 There also are differences between the GRN and NN in temporal dimensions (Figure 2). The NN 

289 operates on the millisecond to second scales (for neuronal firing) and may induce the rapid 

290 activation of immediate early genes (IEGs) associated with behavior (57). By contrast, expression 

291 and epigenetic changes controlled by the GRN usually happen over a scale of minutes to hours 

292 or even days (63, 64). Aforementioned feedback from the GRN into the NN, such as modulation 

293 of neuronal connections via changes of receptor and transmitter levels, can take place over even 

294 longer time scales (65), and the GRN may serve the role of a temporal “integrator” of organismal 

295 experiences over such time scales. Back-and-forth interactions between bGRNs and NNs may 

296 prove to be an important mechanism for learning and memory and for past experiences to 

297 influence future behavior, possibly even across generations (66). In short, how this two-layered 

298 network architecture of the brain orchestrates behavioral responses almost certainly involves rich 

299 multi-scale spatiotemporal patterns and intricate phenomena that fall outside the realm of current 

300 knowledge. 



301 

302 Developmental mechanisms of bGRN-NN interplay 

303 The dGRN is important in the understanding of the molecular basis of behavior in its own right, 

304 and not just in comparison to the bGRN. Cross-talk between bGRNs and NNs can be mediated 

305 by developmental processes, thus bringing dGRNs into the fold and suggesting an intermeshing 

306 of three different networks with functional consequences for behavior. For instance, transcriptomic 

307 changes associated with behavior – the consequence of bGRN activity – often include genes 

308 involved in nervous system development (67). This suggests that developmental changes, which 

309 in the postnatal periods pertain to the phenomenon of brain plasticity, can be caused by bGRN 

310 activity. Also, it is known that hormonal signals operating at various time scales can reorganize 

311 brain morphology and NN structure or function (68). These changes are driven by a variety of 

312 factors including environmentally induced changes in sex, dominance hierarchy, and predation 

313 threat, and may span across generations. Developmental processes thus triggered by bGRNs 

314 may result in NN rewiring and growth (69) or changes of cell type proportions in the brain (70), 

315 serving as a major mechanism for feedback from bGRN to NN, and thus to future behavior. 

316 

317 There are different ways to consider the cycle of relationships from behavior to GRNs to 

318 development and back to NN and behavior (Figure 2). The possibility of three-way interactions 

319 between NNs, bGRNs and dGRNs is strong for developmental processes that are regulated in an 

320 experience-dependent manner. Notably, when the feedback from the bGRN to NN involves 

321 developmental processes (controlled by the dGRN), it is expected to have greater longevity than 

322 feedback mediated by changes in neurotransmitter levels. In addition, mechanisms that give rise 

323 to individual differences in behavior can be mapped to aspects of early brain or synapse structure 

324 that are set up during development. Drawing on the relatively mature concepts and tools of 

325 developmental biology, especially brain development (19), should therefore be very useful for 

326 future work that aims to elucidate the three-way network interactions that underlie behavior. 

327 

328 Environmental influences mediated by bGRNs and NNs 

329 The brain not only orchestrates behavior, it predicts what behavioral response would be most 

330 suited to environmental conditions and as mentioned above, the reciprocal interactions between 

331 bGRNs and NNs also mediate the influence of the environment on behavior. Developmental 

332 processes invoked by bGRNs provide a way for environmental changes to impact brain 

333 morphology and neuronal networks (71), which in turn bear upon future behavior. For some 

334 behaviors there are “critical” periods in behavioral development during which individuals are more 



335 receptive to environmental influence (72), and such periods may coincide with critical periods in 

336 morphological development such as expansion of particular brain regions. Recent work has 

337 identified some of the GRN components activated in these periods (73, 74). GRNs also have an 

338 intimate theoretical connection to critical periods: bifurcations of developmental trajectories (cell 

339 fate decisions) can be attributed to non-linear gene-gene interactions in the GRN, and a critical 

340 developmental period is the period just upstream of a bifurcation point, when an irreversible binary 

341 decision is made, mediated by the GRN and potentially influenced by environmental inputs. This 

342 concept has been demonstrated for cell fate decisions by cytokines in cell differentiation (25, 75) 

343 and we suggest that analogous dynamics also may play a role in brain development. 

344 

345 The role of experiences and environmental inputs during critical periods may thus result in the 

346 “fine-tuning” of behavioral development via NN- and GRN-mediated mechanisms. The relative 

347 extent to which the two types of networks are engaged in environmentally influenced modulation 

348 of behavior likely depends on the nature of the environmental input. For instance, an acute change 

349 in environment may act directly on the NN (76) or trigger specialized signal transduction pathways 

350 that modulate bGRN dynamics resulting in temporary modulation of the NN (77), and hence of 

351 behavior. By contrast, more permanent responses to chronic environmental change may be 

352 mediated by developmental processes and/or epigenetic mechanisms. For instance, early 

353 adverse experiences have been shown to prime the genome, via DNA methylation at specific loci 

354 related to stress-response pathways, so that the individual responds differently to future stressful 

355 events (78-80). Generally speaking, such responses may be thought to involve drastic changes 

356 in individual regulatory interactions of developmental genes so as to distort the topography of the 

357 transcriptional landscape, opening access to maladaptive developmental trajectories. Such 

358 “decanalization” of development results in lasting developmental anomalies with all the behavioral 

359 consequences of an improperly wired NN (81-83). This reciprocity between genes and neurons 

360 also depends on individual differences in temperament due to genotype and experience, and is 

361 the foundation for the brain’s ability to predict the future (84). 

362 

363 GRNs in social behavior 

364 A special focus of behavioral transcriptomics during its first two decades has been social behavior, 

365 from both mechanistic and evolutionary perspectives (85-87). Should we expect fundamental 

366 differences in bGRNs related to social behavior relative to those associated with other types of 

367 behaviors? Treating bGRNs as a mapping of inputs (cell communication signals and cellular 

368 context) to outputs (gene expression levels), a reasonable null hypothesis is that it should not 



369 matter whether the inputs were triggered by a social or non-social stimulus. According to this logic 

370 there is nothing special about social bGRNs relative to other types of bGRNs for behaviors that 

371 do not involve social interactions among conspecifics, such as food acquisition or nest 

372 construction in some species. On the other hand, there are also good reasons for anticipating 

373 differences between social bGRNs and other bGRNs. Social behavior involves repeated 

374 interactions between individuals, an iterative exchange of stimulus and response that is 

375 fundamentally different from a unidirectional intake of stimuli from abiotic sources. This adds yet 

376 another network layer – the social network – to the information-processing system, potentially 

377 leading to specialized patterns and dynamics in bGRN and NN activity, and hence to special 

378 structural properties of these networks. 

379 

380 The need for balance of stability and flexibility is ostensibly more acute in social behavior 

381 compared  to  non-social  behaviors.  This  is  because  social  behavior  involves  responding 

382 repeatedly to a greater variety of environmental (social) cues and must be adaptive yet stable 

383 within a range of variation of signals. Animals with busy social lives have to respond to all the 

384 same environmental stimuli as do less social animals (abiotic as well as biotic, such as predator- 

385 prey interactions) and in some cases also have to maintain a set of individual relationships with 

386 conspecifics. An alternative viewpoint is that animals living in social groups inhabit a less 

387 challenging world, as social groups might buffer against environmental noise and reduce 

388 pressures such as predation or lead to niche construction. Per this view, whether social behavior 

389 results in a more or less complex bGRN (e.g., by the above-mentioned aspects of GRN 

390 complexity) will depend on the stimuli that are encountered and how being in a social group 

391 impacts those stimuli and the potential behavioral responses to them. In light of the above 

392 considerations, the nature of social bGRNs and their special properties compared to bGRNs in 

393 general poses an intriguing open problem. 

394 

395 Evidence for a cis-regulatory code for social behavior: evolutionary perspectives 

396 One finding that supports the possibility that bGRNs for social behavior have distinct features 

397 relative to other bGRNs comes from a comparative genomics analysis of the genomes of ten 

398 species  of  bees  exhibiting  different  levels  of  social  organization.  Kapheim  et  al.  (88) 

399 bioinformatically detected greater TF binding site presence (reflecting stronger binding of TFs) in 

400 gene regulatory regions from social bees compared to orthologs from solitary bee species. This 

401 result suggested that gene regulation in social bees has increased capacity and complexity 

402 relative to non-social bees, encoded in the DNA. These finding and those in refs. (89-91)support 



403 the prediction that changes in gene regulation are key features of the evolutionary transition from 

404 solitary to social life, at least in the social insects. Perhaps this is related to the appearance of 

405 extreme behavioral states in species of social insects with division of labor and the performance 

406 of the same set of behaviors by individuals for an extended period of time. 

407 

408 The result from Kapheim et al. (88) gives the first glimpse of a special signature tied to GRNs for 

409 social behavior, but this is intriguingly reminiscent of a cis-regulatory signature seen in 

410 developmental studies in Drosophila. Li et al. (92) reported greater homotypic TF binding site 

411 clustering in blastoderm-stage (early) enhancers than in those for other developmental programs, 

412 possibly reflecting the greater complexity of cell fate decisions driven by positional information in 

413 the early Drosophila embryo. We speculate that just as the greater complexity of expression 

414 patterns achieved in the syncitial embryo is reflected in the complexity of associated enhancers, 

415 perhaps the increased phenotypic complexity of social behavior is achieved, in part, by increases 

416 in  the  complexity  of  cis-regulatory  architectures  and  GRNs.  The  cis-regulatory  basis  of 

417 evolutionary changes in social behavior was also investigated by York et al. (93), who studied 

418 divergence in bower-building behavior among Lake Malawi cichlid fishes. They identified 

419 behavior-associated genetic variants and reported allele-specific brain gene expression that 

420 depended on behavioral context. Their study provides a concrete example of the connection 

421 between cis-regulatory evolution and diversity of social behavior. 

422 

423 How might GRNs become more complex? With respect to cis-regulatory organization this could 

424 involve greater numbers of enhancers (94) or greater numbers of TFs regulating each enhancer 

425 (95). In the case of early embryonic developmental enhancers it is the latter, but it is not yet known 

426 which scenario accounts for the increased TF binding site presence observed for social bees. 

427 Improved methods for enhancer discovery, e.g., chromatin accessibility profiling via ATAC-seq, 

428 massively parallel activity assays such as STARR-seq, or effective insect-specific computational 

429 approaches should help to address this question (39, 96, 97). 

430 

431 For species with an extensive repertoire of social behavior, experience and exposure to specific 

432 social stimuli can be recorded quantitatively as changes in the gene expression profile (98), much 

433 like an odometer records distance. Principles of cis-regulatory organization associated with such 

434 a quantitative recording of temporal information may thus have similarities to those related to the 

435 precise spatial readout in early embryo body-plan development, offering another perspective on 

436 the observation by Kapheim et al. It is still too early to know conclusively whether social behavior 



437 involves unique features of GRNs and cis-regulatory sequences, but emerging evidence seems 

438 to point to an affirmative answer. The correlation of cis-regulatory potential and social complexity 

439 is remarkable given the large gap it bridges from genotype to behavioral phenotype and needs 

440 rigorous confirmation in the future. 

441 

442 The question of unique features of bGRNs for social behavior may also relate to unique aspects 

443 of the evolutionary dynamics of social behavior. The multi-layered network architecture underlying 

444 social behavior, including the social network layer, with spatially diverse and temporally dynamic 

445 cross-talk between layers, is likely to impose a range of evolutionary constraints, with parallels in 

446 the co-evolutionary dynamics of multiple signal transduction pathways that exhibit cross-talk (99). 

447 An interesting evolutionary perspective into social behavior also arises from the fact that the unit 

448 of selection lies, at least in cases of extreme sociality, above the individual and at the societal 

449 level (100). This special evolutionary status of certain social behaviors may be reflected in the 

450 molecular mechanisms evolved to implement them. A recent study has also examined the 

451 provocative idea that social organization can drive the evolution of GRNs by affecting genome 

452 structure (101). 

453 

454 Future directions 

455 This is a particularly exciting time for molecular explorations of behavior. Gene regulatory 

456 networks are a unifying construct today for scientists embarking on such explorations along 

457 diverse routes. Detailed analyses of bGRNs will not only break new ground in our understanding 

458 of behavior (8), but also provide broader insights into gene regulation, complementary to those 

459 obtained from developmental studies. 

460 

461 A number of emerging technologies will play key roles in future research on bGRNs. Perhaps 

462 leading this pack is the rapidly evolving technology of single-cell RNA sequencing (scRNA-seq) 

463 (35, 36), which allows transcriptomic profiling at cellular resolution, as well as single-cell 

464 epigenomic profiling (102). These new developments will help us bridge the existing gap between 

465 the true bGRNs operational within different cell types and the approximate reconstruction afforded 

466 by traditional “bulk” assays. They will also help solve a major mystery about bGRNs: that 

467 transcriptomic profiles of brain regions or even whole brains often show a striking correspondence 

468 with behaviors even though the GRNs underlying these profiles are properties of individual cells. 

469 That this relates to the fact that behavior is an emergent property of many cells seems intuitive, 

470 but  the  precise  mechanisms  of  integration  are  currently  unknown  (103).  By  contrast, 



471 developmental states do not present this mismatch of scales, since developmental phenotypes, 

472 whether at the cellular or tissue level, as well as the associated GRNs, are cellular properties, 

473 even if they are influenced by inter-cellular communication. Do bGRNs have a level of 

474 organization that transcends the cell, as theories of coupled GRNs have suggested (60)? The 

475 ability to tease apart transcriptomic profiles and GRNs at the individual cell level, especially in the 

476 face of extreme spatial diversity and cell type heterogeneity in the brain, will play a crucial role in 

477 finding answers to this and other pressing questions. Emerging technologies for “spatial 

478 transcriptomics” (104) and their combination with scRNA-seq will prove to be particularly 

479 noteworthy in this regard, and also allow the above cellular insights to begin to be connected to 

480 neural circuitry. 

481 

482 While our discussion focuses on mRNA levels as representing the regulatory processes in play, 

483 this is a simplification motivated by the current sparsity of data on other levels such as non-coding 

484 RNA  (e.g.,  microRNA  and  lncRNA),  exosomes,  epigenetics,  peptides,  proteins,  lipids, 

485 carbohydrates, and metabolites, all of which are part of what define a cell state and have been 

486 reported as being important in behavior (105-107). Various “omics” technologies are already 

487 available  and  will  soon  become  well-established  approaches  to  better  inform  these 

488 complementary  views  of  molecular  processes.  Powerful  new  techniques  to  control  and 

489 manipulate neural and gene activity, such as directed cell CRISPR (108) and optogenetics (109), 

490 as well as approaches such as 3D brain organoids (110) that facilitate controlled sample 

491 generation, are likely to be crucial in teasing apart cell type- and region- specific activities of 

492 bGRNs. In addition to more accurate reconstructions of GRNs, future investigations will have to 

493 map out the cross-talk between bGRNs, dGRNs and NNs in various behavioral contexts, and 

494 large-scale efforts in connectomics, such as the Human Connectome Project (4), and Brainbow 

495 (111), will provide a solid foundation for such studies. Information from all of these sources should 

496 enable the development of a comprehensive theory of behavior in molecular terms. 
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Figure Captions 

Figure 1. Transcriptomic states, stability and relation to Gene Regulatory Network 

connectivity. (A) Gene Regulatory Network (GRN) along with cellular environment determines 

the gene expression profiles (transcriptomic states) of cells, which in turn are surrogates of cellular 

states. Cellular states that are stable but flexible transitions between states are also possible, also 

under the influence of GRN. Cellular states in the brain have been found to be strongly predictive 

of behavioral states. (B) Landscape depicting stability of transcriptomic states, with the x-y axes 

representing all possible states (state space) and the z-axis representing their stability. Valleys in 

this transcriptomic landscape represent regions of stability, or attractors. Stable states correspond 

to attractors of the landscape. (C) GRN connection patterns shape stability in the transcriptomic 

landscape. GRNs with more edges between transcription factors (TFs) and feedback loops exhibit 

deep valleys (more stable attractors) in the landscape, while fewer TF-TF edges in a GRN are 

associated with shallow valleys. (D) Comparison of TF-TF connectivity between a behavioral GRN 

(bGRN) in mouse (Saul et al. 2017) and a developmental GRN (dGRN) in fruit fly (Potier et al. 

2014). The two GRNs were reconstructed from genome-wide expression data in the respective 

studies and consist of TF-gene edges. For each TF, we counted the number of its target genes 

that encode TFs and calculated the ratio of this count and the total number of target genes of that 

TF (since the GRN was constructed separately in each species, with different criteria for defining 

edges). We normalized this ratio further by the overall TF-to-gene count ratio in the species. 

Shown is the histogram of (normalized) TF-TF edge frequencies in each species, revealing that 

a TF typically had more TF targets in the dGRN relative to the bGRN. 

 
Figure 2: Neuronal Network-Gene Regulatory Network interactions. Spatial dimensions 

(bottom): Different cells (neurons), connected by the neuronal network (NN), may exhibit different 

Gene Regulatory Network (GRN) activities, even though the GRN itself is unchanged. GRN 

includes activating (green arrow) and repressive (red hammer) relationships between genes 

(circles). Gene expression is indicated by black or grey border, representing high and low 

expression, respectively. Signals carried by NN may influence gene expression in a cell (arrow 

labeled “neural signaling”) and activity of a GRN in one cell may influence gene expression in 



another cell, for instance via neuroendocrine signaling. Temporal dimensions (top right, thicker 

arrows indicate faster interactions): Fast (millisecond – second scale) message transmission by 

the NN (“neural firing”) can induce, via neural signaling, the activity of immediate early genes 

(IEGs) associated with behavior, setting off a cascade of slower transcriptional and epigenetic 

changes mediated by a behavioral GRN (bGRN) on the scale of seconds to days. These changes 

may feed back to the NN if levels of neuroreceptors or neurotransmitters are affected. In some 

cases, bGRN-mediated changes can lead to developmental changes, mediated by 

developmental GRNs, on a slow time scale of days, months or even across generations. These 

slow developmental changes may affect brain morphology and cause neuronal growth or rewiring, 

thus feeding back into the NN. 


