

Behavior-Related Gene Regulatory Networks: A New Level of Organization in the Brain

Saurabh Sinha^{1,2,†}, Beryl M. Jones^{2,3*}, Ian M. Traniello^{2,3,*}, Syed A. Bukhari^{2,5}, Marc S. Halfon⁶, Hans A. Hofmann⁷, Sui Huang⁸, Paul S. Katz⁹, Jason Keagy¹⁰, Vincent J. Lynch¹¹, Marla B. Sokolowski^{12,13}, Lisa J. Stubbs^{2,14}, Shayan Tabe-Bordbar¹, Mariana F. Wolfner¹⁵, Gene E. Robinson^{2,3,4,16†}

* These authors contributed equally

† Corresponding authors

¹Department of Computer Science, University of Illinois, Urbana-Champaign, IL, USA. ²Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL, USA.

³Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.

⁴Neuroscience Program, University of Illinois, Urbana-Champaign, IL, USA. ⁵Informatics Program, University of Illinois, Urbana-Champaign, IL, USA. ⁶Department of Biochemistry, University at Buffalo-State University of New York, NY, USA. ⁷The University of Texas at Austin, Department of Integrative Biology and Institute for Cellular and Molecular Biology, Center for Computational Biology & Bioinformatics, 2415 Speedway C-0990, Austin, TX 78712, USA. ⁸Institute for Systems Biology, Seattle, WA, USA. ⁹Department of Biology, University of Massachusetts Amherst, MA, USA. ¹⁰Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois, Urbana-Champaign, IL, USA. ¹¹Department of Biological Sciences, University at Buffalo-State University of New York, NY, USA. ¹²Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada. ¹³Program in Child and Brain Development, CIFAR, MaRS Centre, Toronto, ON, M5G 1M1, Canada. ¹⁴Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL, USA. ¹⁵Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA. ¹⁶Department of Entomology, University, University of Illinois, Urbana-Champaign, IL, USA.

1 **Abstract**

2

3 Neuronal networks are the standard heuristic model today for describing brain activity associated
4 with animal behavior. Recent studies have revealed an extensive role for a completely distinct
5 layer of networked activities in the brain – the gene regulatory network (GRN) – that orchestrates
6 expression levels of hundreds to thousands of genes in a behavior-related manner. We examine
7 emerging insights into the relationships between these two types of networks and discuss their
8 interplay in spatial as well as temporal dimensions, across multiple scales of organization. We
9 discuss properties expected of behavior-related GRNs by drawing inspiration from the rich
10 literature on GRNs related to animal development, comparing and contrasting these two broad
11 classes of GRNs as they relate to their respective phenotypic manifestations. Developmental
12 GRNs also represent a third layer of network biology, playing out over a third time scale, which is
13 believed to play a crucial mediatory role between neuronal networks and behavioral GRNs. We
14 end with a special emphasis on social behavior, discuss whether unique GRN organization and
15 cis-regulatory architecture underlies this special class of behavior, and review literature that
16 suggests an affirmative answer.

17

18

19 **Significance Statement**

20 Behavior is controlled by neural and molecular systems in the brain. Models of neuronal networks
21 (NNs) have proven to be useful to describe the electrochemical activities of brain cells, and
22 recently models of behaviorally related gene regulatory networks (bGRNs) have been developed
23 to describe the activities of genes inside these brain cells. This effort has been spurred by a
24 growing literature demonstrating strong and specific changes in brain gene expression associated
25 with specific behavioral responses. We compare and contrast NNs and bGRNs, aided by the
26 wealth of knowledge that exists for developmentally related GRNs (dGRNs). Considering these
27 three layers of network biology, operating over three time scales, provides intriguing new insights
28 into brain and behavior.

29

30 Animal behavior arises in large part from the coordinated activities of cells in the nervous system.
31 It is common to model this activity with neuronal networks (NNs) (1-4), which seek to describe
32 how circuits of neurons transmitting electrochemical signals from one neuron to the next control
33 sensory, integrative, and motor functions of an organism (5). NNs provide quantitative
34 representations of the signal processing activities that integrate perceptions of environmental
35 stimuli with internal physiological states to produce the neuronal signals that orchestrate adaptive
36 behavior (6).

37

38 A rich body of genetic and, more recently, genomic, studies have revealed that behavior is also
39 **associated with** the coordinated activities of genes that operate in brain cells. Many studies have
40 found significant, predictable, and specific changes in brain gene expression profiles associated
41 with behavioral responses to particular environmental stimuli (7-14). These findings suggest that
42 a second layer of network biology – that of gene regulatory networks (GRNs) – also underlies
43 behavior. Expression of thousands of genes in the genome must be coordinated in order to
44 generate the gene expression profiles that establish cell types, states and functions, and such
45 coordination is also necessary to induce the characteristic expression changes associated with
46 behavior. Orchestration of gene expression within a cell is achieved by regulatory interactions
47 through which genes influence one another's activity, often in response to extracellular signals,
48 jointly establishing the GRN. A GRN is a collection of regulatory relationships among genes that
49 helps us understand how “input” signals and cellular context map to “output” gene expression
50 levels. Applied to the brain, a GRN is thus a natural construct to help explain the observed
51 **behavior-associated changes** in gene expression profiles in mechanistic terms. **It is worth noting**
52 **that the GRN in our discussion refers to the regulatory relationships and interactions operative**
53 **within the cell, and not to the statistical relationships determined as part of GRN reconstruction**
54 **efforts (8).**

55

56 Which gene regulatory interactions most impact the expression changes associated with a
57 particular behavior? These interactions comprise a sub-network of the genome-wide GRN that
58 we will refer to as a “behavior-associated GRN” (“bGRN”). Models of bGRNs have only recently
59 been developed (8), and despite their usefulness, many questions remain unanswered regarding
60 their composition and structural/functional characteristics, as well as their relationship to NNs.

61

62 Here, we highlight emerging concepts and open questions related to bGRNs. We argue that
63 integrating both networks – NNs and bGRNs – holds great potential for a better understanding of

64 how neurons and the genes expressed within them together regulate organismal behavior and
65 channel its evolution (6, 15). While bGRNs are intracellular networks whose direct “outputs” are
66 changes in gene expression, these intracellular changes are influenced by behavioral context and
67 in turn feed back into NNs, with functional consequences in behavior. We also outline some paths
68 for future research, with a special focus on social behavior, a particularly active area of research
69 on bGRNs.

70

71 To guide our exploration of bGRNs we draw inspiration from the field of developmental biology,
72 because metazoan gene regulatory networks are perhaps best understood in the context of
73 development (16, 17). Developmental biology has already produced mature descriptions and
74 theories of developmental GRNs (“dGRNs”) and also have inspired other researchers studying
75 brain and behavior (18, 19). Moreover, there are deep connections between development and
76 behavior, as we discuss below, and this also provides a strong framework for comparative
77 analysis. We thus use dGRNs as a point of comparison and contrast for bGRNs. Even if we find,
78 upon pushing the comparison further, that dGRNs are in fact a poor model for understanding
79 behavioral regulation, the rich literature on dGRNs will have allowed us to frame baseline
80 expectations about bGRN characteristics, and identifying departures from this baseline will help
81 us appreciate unique aspects of behavioral gene regulation. In referring to developmental studies,
82 we focus on the development of new cell types from precursor cells (17, 20), rather than organ
83 development and other processes involving groups of cells. We do not claim to describe or
84 compare all the many ways in which behavior and development have been studied; rather, we
85 comment on salient properties vis-à-vis their associated networks and control mechanisms.

86

87 **Gene regulatory networks in development and behavior**

88 *Cellular states in development and behavior*

89 An important concept for mechanistic studies of development is the “cellular state” (21, 22).
90 Development of the various cell types in the metazoan body can be seen as a temporal
91 succession of cellular state transitions, operating in parallel on multiple cell lineages in the
92 organism. Gene expression profiles (measured as genome-wide transcript profiles or
93 “transcriptomes”) have emerged as a convenient yet powerful surrogate for cell states. GRNs,
94 which control these profiles, are the underlying systems that drive cell state transitions (23). For
95 instance, if a set of genes change expression as a cell transitions from one state to another, the
96 GRN may explain those changes as the effects of one or more transcription factors (TFs) that
97 were activated or deactivated in the transition (17). In fact, GRNs not only explain state transitions,

98 they also underlie the very existence of stable transcriptomic profiles representing cell states (24,
99 25) (**Figure 1A**).

100

101 Organisms also show transitions from one distinct behavior to another. In some cases, each
102 behavior is performed briefly, while in other cases each behavior is performed for a relatively long
103 period time, giving rise to “behavioral states” [7]. In species living in complex societies with
104 division of labor, social dominance hierarchies, alternative reproductive tactics, and other forms
105 of behavioral plasticity, some individuals perform the same set of behaviors repeatedly,
106 sometimes for days or longer, thus exhibiting extreme behavioral states (26). Gene expression
107 profiles in specific brain regions or even whole brains have proven useful as surrogates for
108 behavioral states (**Figure 1A**); in some cases the correspondence between brain gene expression
109 profile and behavior is strong enough to use the former to predict the latter (7, 27). This is similar
110 to how gene expression profiles serve as reliable signatures of developmental stages and
111 corresponding cellular states.

112

113 There are similarities and differences in the delicate balance between the stability and flexibility
114 (openness to transitions) of states in both development and behavior. Transcriptomic studies have
115 revealed not only that behavioral stimuli change brain gene expression profiles in brain tissues in
116 a predictable and reproducible manner, but also that the new expression profile is stable,
117 commensurate with the stability of the behavioral state. In other words, the brain or brain region
118 being profiled transitions from one stable molecular state to another in response to the stimulus,
119 and a sufficient number of cells apparently must undergo the same or similar cell state transitions
120 so that their measured aggregate expression profiles at the tissue level still reflect this transition.
121 This speculation suggests that individual cells in the brain switch states in a coordinated manner
122 – akin to cellular state transitions during development. However, behaviors are in general more
123 ephemeral than typical cellular states in development, so we would expect that the transcriptomic
124 correlates of behavior are correspondingly more fluid (28) than those of cells in a developmental
125 context. Both dGRNs and bGRNs govern cell state dynamics, but it is plausible that the dynamical
126 features of bGRNs are more skewed toward flexibility.

127

128 A second point of comparison between developmental and behavioral systems with implications
129 for underlying GRNs lies in the multi-scale organization of states and their coordinated transitions.
130 Development is the determination and differentiation of many different cell types through time.
131 Each cell type emerges by a transition from a precursor cell type, with multiple transitions

132 occurring in parallel across space that are coordinated by local as well as longer-range signaling.
133 Likewise, transcriptomic state transitions associated with behavior are manifested in multiple brain
134 regions simultaneously (29), presumably coordinated by neuronal connections as well as humoral
135 cell-cell communication involving hormones and neuromodulators. We therefore expect to see
136 common themes shared between development and behavior regarding how GRNs operate in
137 different spatial locations coordinate their activities.

138

139 *Gene expression changes during development and behavior*

140 Changes in brain gene expression associated with behavioral changes are generally of modest
141 magnitudes, with studies reporting statistically significant changes to be two-fold or less (29). As
142 a point of contrast, more dramatic expression changes are seen in early development (16, 17,
143 30), where transcriptomes first establish cell lineages that will give rise to a vast diversity of
144 tissues of the body. A simple explanation of this contrast may be differences in cellular
145 heterogeneity between tissues analyzed – the early embryo will give rise to tissues ranging from
146 gonads to brain, whereas in behavioral studies cells of a smaller range of similar lineages are
147 being studied. Additionally, most behavioral transcriptomics studies have so far relied on “bulk”
148 (whole brain region or even whole brain) rather than single-cell expression measurements, and
149 the relatively modest expression changes noted may be the consequence of only a subset of cells
150 in the bulk sample participating in the change. On the other hand, developmental studies often
151 make use of single cell sequencing (31) and/or spatial expression profiles such as those based
152 on *in situ* hybridization (32), allowing construction of higher resolution transcriptomic maps that
153 resolve cellular heterogeneity.

154

155 However, there may be a biological reason for observed differences in the magnitude of gene
156 expression differences between early development and behavior, related to differences in the
157 persistence of behavioral and developmental states. Behavioral changes, especially when
158 associated with an active stimulus, are generally more plastic than development; animals can
159 rapidly transition from one behavior to a variety of other behaviors, depending on the social and
160 ecological context. This stands in stark contrast to the typically unidirectional nature of
161 developmental progression, which ultimately establishes different cell types with distinct
162 expression profiles. Different behaviors are seen to induce different directions of change in brain
163 gene expression profiles (10), and by extrapolation we expect that the number of distinct
164 behaviorally related transcriptomic changes exceeds the diversity of paths normally taken from
165 any given developmental state. It is reasonable to speculate that the less pronounced

166 transcriptomic changes seen in behavioral contexts (compared to those noted in early
167 development) are related to this greater plasticity. If true, these points of contrast between
168 developmental and behavioral changes in expression would suggest the existence of
169 corresponding differences in regulatory mechanisms at multiple levels. These include
170 transcriptional gene regulation in the GRNs (trans- and cis-elements), the architecture of gene
171 regulatory circuits (feedback loops) within the bGRNs or dGRNs, and the control of GRN
172 dynamics exerted by cell-cell interactions in the respective cell communities.

173

174 *Differences between bGRNs and dGRNs*

175 The above analyses of similarities and differences between development and behavior in terms
176 of cellular states and gene expression set the stage to compare their underlying GRNs directly.
177 One possible difference between the two types of GRNs is that dGRNs have a greater connectivity
178 (frequency of regulatory edges) among TFs than do bGRNs. To understand this, let us consider
179 the space of all possible transcriptomic states achievable by a system (the cell), with transitions
180 among states (gene expression profiles) being determined by the GRN. Most of these states are
181 unstable because they violate gene regulatory interactions. However, a distinct subset of them
182 satisfy all regulatory interactions, are stable (robust to molecular noise), and can perform
183 important biological roles such as maintaining cell type identity. Such stable transcriptomic states
184 are called the “attractors” of the space (24, 25). The term “attractor,” borrowed from dynamical
185 systems theory, refers to a state toward which a system tends to evolve and revert to if perturbed,
186 e.g., due to fluctuations arising from gene expression noise. Attractors may be conceptualized as
187 valleys in a landscape that depicts the stability of all possible transcriptomic states (**Figure 1B**).
188 A GRN with many TF-TF regulatory interactions is likely to have feedback loops, which are known
189 to result in a transcriptomic landscape characterized by many “deep” attractors from which there
190 is no escape other than experimentally induced cell type reprogramming (33). By contrast, a
191 paucity of TF-TF regulatory interactions and feedback loops in a GRN is expected to result in
192 more malleable gene expression profiles that can reversibly transition into each other, depicted
193 by shallow valleys in the transcriptomic landscape (**Figure 1C**). Characteristics of gene
194 expression changes associated with the greater plasticity of behavior, discussed above, thus
195 suggest that bGRNs should have fewer TF-TF regulatory interactions than dGRNs. We expect
196 that the continuing efforts at reconstructing genome-wide GRNs through identification of trans-
197 and cis-regulatory connections between all gene loci will help to test this prediction.

198

199 **Figure 1D** illustrates one way to test the above prediction, by comparing a bGRN reconstructed
200 from transcriptomic profiles of behavioral states in mouse (29) and a dGRN reconstructed from
201 transcriptomic profiles associated with eye development in *Drosophila* (34). This comparison,
202 which provides support for the prediction, is merely one suggestive example, guided largely by
203 the limited availability of GRNs at scale. Future tests will need to account for the fact that GRN
204 characteristics can differ depending on the specific behavior and developmental process under
205 study.

206

207 We noted above that a transcriptomic landscape with shallow attractors enables frequent
208 transitions between cellular states. Shallow attractors are also associated with greater fluctuations
209 in gene expression, which translates to the prediction of more stochastic gene expression in
210 transcriptomic states associated with a behavior. Similarly, experimental studies using single-cell
211 transcriptomics have revealed a greater dispersion in expression during differentiation events (35,
212 36), when deep attractors representing precursor cell types are destabilized and rendered
213 shallower to facilitate state transition (25). Future work utilizing single-cell transcriptomics to
214 analyze cells from the brain will help us test this hypothesis regarding behavior-associated cell
215 states.

216

217 *bGRNs and dGRNs in evolution*

218 In addition to the above mechanistic comparisons, an important insight into the parallels between
219 behavioral and developmental gene regulation comes from evolutionary analysis. The rich
220 literature on evolutionary developmental biology (“evo-devo”) (16, 37) has revealed genetic
221 “toolkits” that have been deployed repeatedly in the independent evolutions of sometimes-parallel
222 features of animal morphology, and these toolkits have been traced to the level of GRNs (17).
223 Recent behavioral studies have undertaken increasingly comprehensive cross-species
224 comparisons at the transcriptomic level and also have reported the existence of toolkits of genes
225 and gene modules underlying parallel behaviors (9, 38), loosely analogous to developmental
226 toolkits (16). dGRNs have provided a systems-level construct at which similarities of
227 developmental regulation emerge across great evolutionary spans despite extensive sequence-
228 level divergence (39, 40). Similarly, bGRNs and associated co-expression modules provide
229 glimpses of shared mechanisms of behavior in different species even if such evolutionary toolkits
230 are not apparent at the individual gene level (9, 41). **In addition, such comparisons can also give**
231 **insights into how entirely new behaviors might evolve. For example, analogous to the**
232 **redeployment (and sometimes tweaking) of toolkits or dGRNs in the evolution of morphological**

233 novelties (42-44), a new behavior's appearance might be facilitated (in an appropriate selective
234 situation) by redeploying all or part of an existing bGRN in a new time, neural context, or in
235 response to a different stimulus (19). Concepts and approaches developed in evo-devo for cross-
236 species comparisons of dGRNs are already proving useful for similar cross-species comparisons
237 of bGRNs (19).

238

239 **Integrating gene regulatory networks and neuronal networks: multi-scale dynamics**

240 The recognition of the bGRN as an important molecular substrate of behavior raises exciting
241 possibilities to consider the interplay of the bGRN with the network most directly related to
242 behavior – the neuronal network (NN). Such interactions would integrate across two distinct levels
243 of biological networks, resulting in increased complexity of network dynamics compared to either
244 network alone. The NN is based on physical connections among neurons, and the messages
245 transmitted through it may interface with the bGRN (45). For instance, the bGRN operating within
246 a neuron may respond to the synaptic activity among the neurons in the NN (46), as well as
247 hormones and other secreted mediators that bind to its receptors, resulting in changes in gene
248 regulatory activity. In one study, the temporal kinetics of neuronal firing was found to be intimately
249 linked to GRN activity in dorsal root ganglia neurons, suggesting that the patterning of neuronal
250 activity is interpreted by the GRN (47). Similarly, in the mouse cortex, expression levels of a
251 transcriptional switch, the TF Er81, are directly correlated with firing properties in a subtype of
252 interneuron, and activation of these interneurons in the context of learning modulates Er81
253 expression (48). Conversely, the bGRN indirectly controls NN activity via setting the production
254 levels of neurotransmitter receptors, ion channels, axon outgrowths and dendritic arborizations,
255 and other physico-chemical components of the NN (49-52). A case in point is the highly conserved
256 TF Foxp2, a component of bGRNs in the basal ganglia song nucleus, Area X, that is associated
257 with avian song learning (53). Knock-down of FoxP2 is known to impact vocal imitation and song
258 variability. Mechanistic studies have shown Foxp2 to regulate genes that contribute to neurite
259 outgrowth and NN formation (51), and to influence dopamine-modulated cortical circuits (54) in
260 the mouse brain. Similarly, in the Drosophila brain, complex regulatory cascades of gene
261 expression establish specific features of Tv1 neurons such as neurite morphology or
262 neurotransmitter identity (55). GRNs have also been shown to constrain variability in neuron
263 identity and function among similar neurons despite substantial variation in the expression of
264 specific genes (56). bGRNs thus have the ability to directly influence the architecture and activity
265 of NNs by modulating neuronal excitability and connectivity (57). Despite a fundamental difference
266 between the two networks – the NN being an intercellular network and the GRN being an

267 intracellular network (with signal transduction crossing between GRNs in different cells) – they
268 clearly influence each other's activities, presenting an exciting frontier of future research.
269 Moreover, we also suggest that the wiring of NNs in the brain imparts a qualitatively different
270 characteristic to the coordination of bGRNs across different spatial locations.

271

272 *Spatiotemporal dimensions of bGRN-NN interplay*

273 The interactions between NNs and bGRNs play out at multiple spatial and temporal scales. In the
274 spatial dimension (**Figure 2**), the activities of bGRNs differ across brain regions and cell types;
275 each location may thus exhibit distinct gene expression changes during a specific behavior (29).
276 bGRN activities at different locations also influence each other, e.g., via the NN and
277 neuroendocrine signaling (58). Likewise, the NN is meshed across the entire nervous system,
278 with even single neurons known to link distant regions (59). Thus, with both networks exhibiting
279 spatial patterns of activity, their interplay will assume a level of complexity above and beyond that
280 of either network alone. This may lead to an increased number of stable transcriptional states
281 (attractors), as has been shown in computer simulations that connect each cell's GRNs to a cell-
282 cell interaction network (60). Such higher-level interactions can also influence the stability of, and
283 transitions between, attractors. This results in more dynamic gene expression profiles, an
284 important anticipated feature of bGRNs, as noted above. A key direction for future efforts must be
285 the coupling of real-time neural activity measurements (61) with high resolution single-cell
286 transcriptomics (62), in specific behavioral contexts.

287

288 There also are differences between the GRN and NN in temporal dimensions (**Figure 2**). The NN
289 operates on the millisecond to second scales (for neuronal firing) and may induce the rapid
290 activation of immediate early genes (IEGs) associated with behavior (57). By contrast, expression
291 and epigenetic changes controlled by the GRN usually happen over a scale of minutes to hours
292 or even days (63, 64). Aforementioned feedback from the GRN into the NN, such as modulation
293 of neuronal connections via changes of receptor and transmitter levels, can take place over even
294 longer time scales (65), and the GRN may serve the role of a temporal “integrator” of organismal
295 experiences over such time scales. Back-and-forth interactions between bGRNs and NNs may
296 prove to be an important mechanism for learning and memory and for past experiences to
297 influence future behavior, possibly even across generations (66). In short, how this two-layered
298 network architecture of the brain orchestrates behavioral responses almost certainly involves rich
299 multi-scale spatiotemporal patterns and intricate phenomena that fall outside the realm of current
300 knowledge.

301

302 *Developmental mechanisms of bGRN-NN interplay*

303 The dGRN is important in the understanding of the molecular basis of behavior in its own right,
304 and not just in comparison to the bGRN. Cross-talk between bGRNs and NNs can be mediated
305 by developmental processes, thus bringing dGRNs into the fold and suggesting an intermeshing
306 of three different networks with functional consequences for behavior. For instance, transcriptomic
307 changes associated with behavior – the consequence of bGRN activity – often include genes
308 involved in nervous system development (67). This suggests that developmental changes, which
309 in the postnatal periods pertain to the phenomenon of brain plasticity, can be caused by bGRN
310 activity. Also, it is known that hormonal signals operating at various time scales can reorganize
311 brain morphology and NN structure or function (68). These changes are driven by a variety of
312 factors including environmentally induced changes in sex, dominance hierarchy, and predation
313 threat, and may span across generations. Developmental processes thus triggered by bGRNs
314 may result in NN rewiring and growth (69) or changes of cell type proportions in the brain (70),
315 serving as a major mechanism for feedback from bGRN to NN, and thus to future behavior.

316

317 There are different ways to consider the cycle of relationships from behavior to GRNs to
318 development and back to NN and behavior (**Figure 2**). The possibility of three-way interactions
319 between NNs, bGRNs and dGRNs is strong for developmental processes that are regulated in an
320 experience-dependent manner. Notably, when the feedback from the bGRN to NN involves
321 developmental processes (controlled by the dGRN), it is expected to have greater longevity than
322 feedback mediated by changes in neurotransmitter levels. In addition, mechanisms that give rise
323 to individual differences in behavior can be mapped to aspects of early brain or synapse structure
324 that are set up during development. Drawing on the relatively mature concepts and tools of
325 developmental biology, especially brain development (19), should therefore be very useful for
326 future work that aims to elucidate the three-way network interactions that underlie behavior.

327

328 *Environmental influences mediated by bGRNs and NNs*

329 The brain not only orchestrates behavior, it predicts what behavioral response would be most
330 suited to environmental conditions and as mentioned above, the reciprocal interactions between
331 bGRNs and NNs also mediate the influence of the environment on behavior. Developmental
332 processes invoked by bGRNs provide a way for environmental changes to impact brain
333 morphology and neuronal networks (71), which in turn bear upon future behavior. For some
334 behaviors there are “critical” periods in behavioral development during which individuals are more

335 receptive to environmental influence (72), and such periods may coincide with critical periods in
336 morphological development such as expansion of particular brain regions. Recent work has
337 identified some of the GRN components activated in these periods (73, 74). GRNs also have an
338 intimate theoretical connection to critical periods: bifurcations of developmental trajectories (cell
339 fate decisions) can be attributed to non-linear gene-gene interactions in the GRN, and a critical
340 developmental period is the period just upstream of a bifurcation point, when an irreversible binary
341 decision is made, mediated by the GRN and potentially influenced by environmental inputs. This
342 concept has been demonstrated for cell fate decisions by cytokines in cell differentiation (25, 75)
343 and we suggest that analogous dynamics also may play a role in brain development.

344

345 The role of experiences and environmental inputs during critical periods may thus result in the
346 “fine-tuning” of behavioral development via NN- and GRN-mediated mechanisms. The relative
347 extent to which the two types of networks are engaged in environmentally influenced modulation
348 of behavior likely depends on the nature of the environmental input. For instance, an acute change
349 in environment may act directly on the NN (76) or trigger specialized signal transduction pathways
350 that modulate bGRN dynamics resulting in temporary modulation of the NN (77), and hence of
351 behavior. By contrast, more permanent responses to chronic environmental change may be
352 mediated by developmental processes and/or epigenetic mechanisms. For instance, early
353 adverse experiences have been shown to prime the genome, via DNA methylation at specific loci
354 related to stress-response pathways, so that the individual responds differently to future stressful
355 events (78-80). Generally speaking, such responses may be thought to involve drastic changes
356 in individual regulatory interactions of developmental genes so as to distort the topography of the
357 transcriptional landscape, opening access to maladaptive developmental trajectories. Such
358 “decanalization” of development results in lasting developmental anomalies with all the behavioral
359 consequences of an improperly wired NN (81-83). This reciprocity between genes and neurons
360 also depends on individual differences in temperament due to genotype and experience, and is
361 the foundation for the brain’s ability to predict the future (84).

362

363 **GRNs in social behavior**

364 A special focus of behavioral transcriptomics during its first two decades has been social behavior,
365 from both mechanistic and evolutionary perspectives (85-87). Should we expect fundamental
366 differences in bGRNs related to social behavior relative to those associated with other types of
367 behaviors? Treating bGRNs as a mapping of inputs (cell communication signals and cellular
368 context) to outputs (gene expression levels), a reasonable null hypothesis is that it should not

369 matter whether the inputs were triggered by a social or non-social stimulus. According to this logic
370 there is nothing special about social bGRNs relative to other types of bGRNs for behaviors that
371 do not involve social interactions among conspecifics, such as food acquisition or nest
372 construction in some species. On the other hand, there are also good reasons for anticipating
373 differences between social bGRNs and other bGRNs. Social behavior involves repeated
374 interactions between individuals, an iterative exchange of stimulus and response that is
375 fundamentally different from a unidirectional intake of stimuli from abiotic sources. This adds yet
376 another network layer – the social network – to the information-processing system, potentially
377 leading to specialized patterns and dynamics in bGRN and NN activity, and hence to special
378 structural properties of these networks.

379

380 The need for balance of stability and flexibility is ostensibly more acute in social behavior
381 compared to non-social behaviors. This is because social behavior involves responding
382 repeatedly to a greater variety of environmental (social) cues and must be adaptive yet stable
383 within a range of variation of signals. Animals with busy social lives have to respond to all the
384 same environmental stimuli as do less social animals (abiotic as well as biotic, such as predator-
385 prey interactions) and in some cases also have to maintain a set of individual relationships with
386 conspecifics. An alternative viewpoint is that animals living in social groups inhabit a less
387 challenging world, as social groups might buffer against environmental noise and reduce
388 pressures such as predation or lead to niche construction. Per this view, whether social behavior
389 results in a more or less complex bGRN (e.g., by the above-mentioned aspects of GRN
390 complexity) will depend on the stimuli that are encountered and how being in a social group
391 impacts those stimuli and the potential behavioral responses to them. In light of the above
392 considerations, the nature of social bGRNs and their special properties compared to bGRNs in
393 general poses an intriguing open problem.

394

395 *Evidence for a cis-regulatory code for social behavior: evolutionary perspectives*

396 One finding that supports the possibility that bGRNs for social behavior have distinct features
397 relative to other bGRNs comes from a comparative genomics analysis of the genomes of ten
398 species of bees exhibiting different levels of social organization. Kapheim et al. (88)
399 bioinformatically detected greater TF binding site presence (reflecting stronger binding of TFs) in
400 gene regulatory regions from social bees compared to orthologs from solitary bee species. This
401 result suggested that gene regulation in social bees has increased capacity and complexity
402 relative to non-social bees, encoded in the DNA. These finding and those in refs. (89-91) support

403 the prediction that changes in gene regulation are key features of the evolutionary transition from
404 solitary to social life, at least in the social insects. Perhaps this is related to the appearance of
405 extreme behavioral states in species of social insects with division of labor and the performance
406 of the same set of behaviors by individuals for an extended period of time.

407

408 The result from Kapheim et al. (88) gives the first glimpse of a special signature tied to GRNs for
409 social behavior, but this is intriguingly reminiscent of a cis-regulatory signature seen in
410 developmental studies in *Drosophila*. Li et al. (92) reported greater homotypic TF binding site
411 clustering in blastoderm-stage (early) enhancers than in those for other developmental programs,
412 possibly reflecting the greater complexity of cell fate decisions driven by positional information in
413 the early *Drosophila* embryo. We speculate that just as the greater complexity of expression
414 patterns achieved in the syncytial embryo is reflected in the complexity of associated enhancers,
415 perhaps the increased phenotypic complexity of social behavior is achieved, in part, by increases
416 in the complexity of cis-regulatory architectures and GRNs. The cis-regulatory basis of
417 evolutionary changes in social behavior was also investigated by York et al. (93), who studied
418 divergence in bower-building behavior among Lake Malawi cichlid fishes. They identified
419 behavior-associated genetic variants and reported allele-specific brain gene expression that
420 depended on behavioral context. Their study provides a concrete example of the connection
421 between cis-regulatory evolution and diversity of social behavior.

422

423 How might GRNs become more complex? With respect to cis-regulatory organization this could
424 involve greater numbers of enhancers (94) or greater numbers of TFs regulating each enhancer
425 (95). In the case of early embryonic developmental enhancers it is the latter, but it is not yet known
426 which scenario accounts for the increased TF binding site presence observed for social bees.
427 Improved methods for enhancer discovery, e.g., chromatin accessibility profiling via ATAC-seq,
428 massively parallel activity assays such as STARR-seq, or effective insect-specific computational
429 approaches should help to address this question (39, 96, 97).

430

431 For species with an extensive repertoire of social behavior, experience and exposure to specific
432 social stimuli can be recorded quantitatively as changes in the gene expression profile (98), much
433 like an odometer records distance. Principles of cis-regulatory organization associated with such
434 a quantitative recording of temporal information may thus have similarities to those related to the
435 precise spatial readout in early embryo body-plan development, offering another perspective on
436 the observation by Kapheim et al. It is still too early to know conclusively whether social behavior

437 involves unique features of GRNs and cis-regulatory sequences, but emerging evidence seems
438 to point to an affirmative answer. The correlation of cis-regulatory potential and social complexity
439 is remarkable given the large gap it bridges from genotype to behavioral phenotype and needs
440 rigorous confirmation in the future.

441

442 The question of unique features of bGRNs for social behavior may also relate to unique aspects
443 of the evolutionary dynamics of social behavior. The multi-layered network architecture underlying
444 social behavior, including the social network layer, with spatially diverse and temporally dynamic
445 cross-talk between layers, is likely to impose a range of evolutionary constraints, with parallels in
446 the co-evolutionary dynamics of multiple signal transduction pathways that exhibit cross-talk (99).
447 An interesting evolutionary perspective into social behavior also arises from the fact that the unit
448 of selection lies, at least in cases of extreme sociality, above the individual and at the societal
449 level (100). This special evolutionary status of certain social behaviors may be reflected in the
450 molecular mechanisms evolved to implement them. A recent study has also examined the
451 provocative idea that social organization can drive the evolution of GRNs by affecting genome
452 structure (101).

453

454 **Future directions**

455 This is a particularly exciting time for molecular explorations of behavior. Gene regulatory
456 networks are a unifying construct today for scientists embarking on such explorations along
457 diverse routes. Detailed analyses of bGRNs will not only break new ground in our understanding
458 of behavior (8), but also provide broader insights into gene regulation, complementary to those
459 obtained from developmental studies.

460

461 A number of emerging technologies will play key roles in future research on bGRNs. Perhaps
462 leading this pack is the rapidly evolving technology of single-cell RNA sequencing (scRNA-seq)
463 (35, 36), which allows transcriptomic profiling at cellular resolution, as well as single-cell
464 epigenomic profiling (102). These new developments will help us bridge the existing gap between
465 the true bGRNs operational within different cell types and the approximate reconstruction afforded
466 by traditional “bulk” assays. They will also help solve a major mystery about bGRNs: that
467 transcriptomic profiles of brain regions or even whole brains often show a striking correspondence
468 with behaviors even though the GRNs underlying these profiles are properties of individual cells.
469 That this relates to the fact that behavior is an emergent property of many cells seems intuitive,
470 but the precise mechanisms of integration are currently unknown (103). By contrast,

471 developmental states do not present this mismatch of scales, since developmental phenotypes,
472 whether at the cellular or tissue level, as well as the associated GRNs, are cellular properties,
473 even if they are influenced by inter-cellular communication. Do bGRNs have a level of
474 organization that transcends the cell, as theories of coupled GRNs have suggested (60)? The
475 ability to tease apart transcriptomic profiles and GRNs at the individual cell level, especially in the
476 face of extreme spatial diversity and cell type heterogeneity in the brain, will play a crucial role in
477 finding answers to this and other pressing questions. Emerging technologies for “spatial
478 transcriptomics” (104) and their combination with scRNA-seq will prove to be particularly
479 noteworthy in this regard, **and also allow the above cellular insights to begin to be connected to**
480 **neural circuitry.**

481

482 While our discussion focuses on mRNA levels as representing the regulatory processes in play,
483 this is a simplification motivated by the current sparsity of data on other levels such as non-coding
484 RNA (e.g., microRNA and lncRNA), exosomes, epigenetics, peptides, proteins, lipids,
485 carbohydrates, and metabolites, all of which are part of what define a cell state and have been
486 reported as being important in behavior (105-107). Various “omics” technologies are already
487 available and will soon become well-established approaches to better inform these
488 complementary views of molecular processes. Powerful new techniques to control and
489 manipulate neural and gene activity, such as directed cell CRISPR (108) and optogenetics (109),
490 as well as approaches such as 3D brain organoids (110) that facilitate controlled sample
491 generation, are likely to be crucial in teasing apart cell type- and region- specific activities of
492 bGRNs. In addition to more accurate reconstructions of GRNs, future investigations will have to
493 map out the cross-talk between bGRNs, dGRNs and NNs in various behavioral contexts, and
494 large-scale efforts in connectomics, such as the Human Connectome Project (4), and Brainbow
495 (111), will provide a solid foundation for such studies. Information from all of these sources should
496 enable the development of a comprehensive theory of behavior in molecular terms.

REFERENCES

1. Chiel HJ & Beer RD (1997) The brain has a body: adaptive behavior emerges from interactions of nervous system, body and environment. *Trends Neurosci* 20(12):553-557.
2. Laughlin SB & Sejnowski TJ (2003) Communication in neuronal networks. *Science* 301(5641):1870-1874.
3. Kohl J, et al. (2018) Functional circuit architecture underlying parental behaviour. *Nature* 556(7701):326-331.
4. Van Essen DC, et al. (2012) The Human Connectome Project: a data acquisition perspective. *Neuroimage* 62(4):2222-2231.
5. Sokolowski K & Corbin JG (2012) Wired for behaviors: from development to function of innate limbic system circuitry. *Front Mol Neurosci* 5:55.
6. Weitekamp CA & Hofmann HA (2017) Brain Systems Underlying Social Behavior. *Evolution of Nervous Systems*, ed Kaas J (Elsevier, Oxford), 2 Ed Vol 1, pp 327-334.
7. Whitfield CW, Cziko AM, & Robinson GE (2003) Gene expression profiles in the brain predict behavior in individual honey bees. *Science* 302(5643):296-299.
8. Chandrasekaran S, et al. (2011) Behavior-specific changes in transcriptional modules lead to distinct and predictable neurogenomic states. *Proc Natl Acad Sci U S A* 108(44):18020-18025.
9. Rittschof CC, et al. (2014) Neuromolecular responses to social challenge: common mechanisms across mouse, stickleback fish, and honey bee. *Proc Natl Acad Sci U S A* 111(50):17929-17934.
10. Mukherjee D, et al. (2018) Salient experiences are represented by unique transcriptional signatures in the mouse brain. *Elife* 7.
11. Ben-Shahar Y, Robichon A, Sokolowski MB, & Robinson GE (2002) Influence of gene action across different time scales on behavior. *Science* 296(5568):741-744.
12. Burmeister SS, Kailasanath V, & Fernald RD (2007) Social dominance regulates androgen and estrogen receptor gene expression. *Horm Behav* 51(1):164-170.
13. Kruse AA, Stripling R, & Clayton DF (2004) Context-specific habituation of the zenk gene response to song in adult zebra finches. *Neurobiol Learn Mem* 82(2):99-108.
14. Cummings ME, et al. (2008) Sexual and social stimuli elicit rapid and contrasting genomic responses. *Proc Biol Sci* 275(1633):393-402.
15. O'Connell LA & Hofmann HA (2011) The vertebrate mesolimbic reward system and social behavior network: a comparative synthesis. *J Comp Neurol* 519(18):3599-3639.
16. Carroll SB, Grenier JK, & Weatherbee SD (2005) *From DNA to diversity : molecular genetics and the evolution of animal design* (Blackwell Pub., Malden, MA) 2nd Ed pp ix, 258 p.
17. Davidson EH (2006) The regulatory genome : gene regulatory networks in development and evolution. (Academic Press,, Amsterdam Netherlands ; Boston Ma.), pp 1 online resource (xi, 289 pages).
18. Baran NM, McGrath PT, & Streelman JT (2017) Applying gene regulatory network logic to the evolution of social behavior. *Proc Natl Acad Sci U S A* 114(23):5886-5893.
19. Hoke KL, Adkins-Regan E, Bass AH, McCune AR, & Wolfner MF (2019) Co-opting evo-devo concepts for new insights into mechanisms of behavioural diversity. *J Exp Biol* 222(Pt 8).
20. Kazemian M, et al. (2010) Quantitative analysis of the Drosophila segmentation regulatory network using pattern generating potentials. *PLoS Biol* 8(8).
21. Brackston RD, Lakatos E, & Stumpf MPH (2018) Transition state characteristics during cell differentiation. *PLoS Comput Biol* 14(9):e1006405.

22. Huang S (2011) Systems biology of stem cells: three useful perspectives to help overcome the paradigm of linear pathways. *Philos Trans R Soc Lond B Biol Sci* 366(1575):2247-2259.

23. Marr C, Zhou JX, & Huang S (2016) Single-cell gene expression profiling and cell state dynamics: collecting data, correlating data points and connecting the dots. *Curr Opin Biotechnol* 39:207-214.

24. Huang S, Eichler G, Bar-Yam Y, & Ingber DE (2005) Cell fates as high-dimensional attractor states of a complex gene regulatory network. *Phys Rev Lett* 94(12):128701.

25. Mojtabaei M, et al. (2016) Cell Fate Decision as High-Dimensional Critical State Transition. *PLoS Biol* 14(12):e2000640.

26. Renn SC, Aubin-Horth N, & Hofmann HA (2008) Fish and chips: functional genomics of social plasticity in an African cichlid fish. *J Exp Biol* 211(Pt 18):3041-3056.

27. Liang ZS, et al. (2012) Molecular determinants of scouting behavior in honey bees. *Science* 335(6073):1225-1228.

28. Cash AC, Whitfield CW, Ismail N, & Robinson GE (2005) Behavior and the limits of genomic plasticity: power and replicability in microarray analysis of honeybee brains. *Genes Brain Behav* 4(4):267-271.

29. Saul MC, et al. (2017) Transcriptional regulatory dynamics drive coordinated metabolic and neural response to social challenge in mice. *Genome Res* 27(6):959-972.

30. Mbodj A, et al. (2016) Qualitative Dynamical Modelling Can Formally Explain Mesoderm Specification and Predict Novel Developmental Phenotypes. *PLoS Comput Biol* 12(9):e1005073.

31. Karaïkos N, et al. (2017) The Drosophila embryo at single-cell transcriptome resolution. *Science* 358(6360):194-199.

32. Fowlkes CC, et al. (2008) A quantitative spatiotemporal atlas of gene expression in the Drosophila blastoderm. *Cell* 133(2):364-374.

33. Tabula Muris C, et al. (2018) Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. *Nature* 562(7727):367-372.

34. Potier D, et al. (2014) Mapping gene regulatory networks in Drosophila eye development by large-scale transcriptome perturbations and motif inference. *Cell Rep* 9(6):2290-2303.

35. Islam S, et al. (2012) Highly multiplexed and strand-specific single-cell RNA 5' end sequencing. *Nat Protoc* 7(5):813-828.

36. Ramskold D, et al. (2012) Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. *Nat Biotechnol* 30(8):777-782.

37. Wilkins AS (2002) *The evolution of developmental pathways* (Sinauer Associates, Sunderland, Mass.) pp xvii, 603 p.

38. Young RL, et al. (2019) Conserved transcriptomic profiles underpin monogamy across vertebrates. *Proc Natl Acad Sci U S A* 116(4):1331-1336.

39. Kazemian M, et al. (2014) Evidence for deep regulatory similarities in early developmental programs across highly diverged insects. *Genome Biol Evol* 6(9):2301-2320.

40. Yuan X, et al. (2018) Heart enhancers with deeply conserved regulatory activity are established early in zebrafish development. *Nat Commun* 9(1):4977.

41. Saul MC, et al. (2019) Cross-species systems analysis of evolutionary toolkits of neurogenomic response to social challenge. *Genes Brain Behav* 18(1):e12502.

42. Keys DN, et al. (1999) Recruitment of a hedgehog regulatory circuit in butterfly eyespot evolution. *Science* 283(5401):532-534.

43. Mallarino R, et al. (2012) Closely related bird species demonstrate flexibility between beak morphology and underlying developmental programs. *Proc Natl Acad Sci U S A* 109(40):16222-16227.

44. Jeffery WR (2009) Chapter 8. Evolution and development in the cavefish *Astyanax*. *Curr Top Dev Biol* 86:191-221.

45. Yap EL & Greenberg ME (2018) Activity-Regulated Transcription: Bridging the Gap between Neural Activity and Behavior. *Neuron* 100(2):330-348.

46. Flavell SW & Greenberg ME (2008) Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system. *Annu Rev Neurosci* 31:563-590.

47. Lee PR, Cohen JE, Iacobas DA, Iacobas S, & Fields RD (2017) Gene networks activated by specific patterns of action potentials in dorsal root ganglia neurons. *Sci Rep* 7:43765.

48. Dehorter N, et al. (2015) Tuning of fast-spiking interneuron properties by an activity-dependent transcriptional switch. *Science* 349(6253):1216-1220.

49. Hobert O, Carrera I, & Stefanakis N (2010) The molecular and gene regulatory signature of a neuron. *Trends Neurosci* 33(10):435-445.

50. Imai KS, Stolfi A, Levine M, & Satou Y (2009) Gene regulatory networks underlying the compartmentalization of the Ciona central nervous system. *Development* 136(2):285-293.

51. Vernes SC, et al. (2011) Foxp2 regulates gene networks implicated in neurite outgrowth in the developing brain. *PLoS Genet* 7(7):e1002145.

52. Gao FB & Bogert BA (2003) Genetic control of dendritic morphogenesis in Drosophila. *Trends Neurosci* 26(5):262-268.

53. Haesler S, et al. (2007) Incomplete and inaccurate vocal imitation after knockdown of FoxP2 in songbird basal ganglia nucleus Area X. *PLoS Biol* 5(12):e321.

54. Co M, Hickey SL, Kulkarni A, Harper M, & Konopka G (2020) Cortical Foxp2 Supports Behavioral Flexibility and Developmental Dopamine D1 Receptor Expression. *Cereb Cortex* 30(3):1855-1870.

55. Stratmann J, Ekman H, & Thor S (2019) A branching gene regulatory network dictating different aspects of a neuronal cell identity. *Development* 146(6).

56. Schulz DJ, Goaillard JM, & Marder EE (2007) Quantitative expression profiling of identified neurons reveals cell-specific constraints on highly variable levels of gene expression. *Proc Natl Acad Sci U S A* 104(32):13187-13191.

57. Clayton DF (2000) The genomic action potential. *Neurobiol Learn Mem* 74(3):185-216.

58. Ulrich-Lai YM & Herman JP (2009) Neural regulation of endocrine and autonomic stress responses. *Nat Rev Neurosci* 10(6):397-409.

59. Ghosh S, et al. (2011) Sensory maps in the olfactory cortex defined by long-range viral tracing of single neurons. *Nature* 472(7342):217-220.

60. Damiani C, Serra R, Villani M, Kauffman SA, & Colacci A (2011) Cell-cell interaction and diversity of emergent behaviours. *IET Syst Biol* 5(2):137-144.

61. Wang JW, Wong AM, Flores J, Vosshall LB, & Axel R (2003) Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. *Cell* 112(2):271-282.

62. Satija R, Farrell JA, Gennert D, Schier AF, & Regev A (2015) Spatial reconstruction of single-cell gene expression data. *Nat Biotechnol* 33(5):495-502.

63. Yosef N & Regev A (2011) Impulse control: temporal dynamics in gene transcription. *Cell* 144(6):886-896.

64. Herb BR, Shook MS, Fields CJ, & Robinson GE (2018) Defense against territorial intrusion is associated with DNA methylation changes in the honey bee brain. *BMC Genomics* 19(1):216.

65. Gan WB, Kwon E, Feng G, Sanes JR, & Lichtman JW (2003) Synaptic dynamism measured over minutes to months: age-dependent decline in an autonomic ganglion. *Nat Neurosci* 6(9):956-960.

66. Dias BG & Ressler KJ (2014) Parental olfactory experience influences behavior and neural structure in subsequent generations. *Nat Neurosci* 17(1):89-96.

67. Sinha S, Ling X, Whitfield CW, Zhai C, & Robinson GE (2006) Genome scan for cis-regulatory DNA motifs associated with social behavior in honey bees. *Proc Natl Acad Sci U S A* 103(44):16352-16357.

68. Pfaff DW & Elsevier Science (Firm) (2009) Hormones, brain, and behavior. (Elsevier/Academic Press,, Amsterdam ; Boston), pp 1 online resource (xlvi, 3627 p.).

69. Farris SM, Robinson GE, & Fahrbach SE (2001) Experience- and age-related outgrowth of intrinsic neurons in the mushroom bodies of the adult worker honeybee. *J Neurosci* 21(16):6395-6404.

70. Fahrbach SE, Moore D, Capaldi EA, Farris SM, & Robinson GE (1998) Experience-expectant plasticity in the mushroom bodies of the honeybee. *Learn Mem* 5(1-2):115-123.

71. Kowianski P, et al. (2018) BDNF: A Key Factor with Multipotent Impact on Brain Signaling and Synaptic Plasticity. *Cell Mol Neurobiol* 38(3):579-593.

72. Hensch TK & Quinlan EM (2018) Critical periods in amblyopia. *Vis Neurosci* 35:E014.

73. Nagy C & Turecki G (2012) Sensitive periods in epigenetics: bringing us closer to complex behavioral phenotypes. *Epigenomics* 4(4):445-457.

74. Kelly TK, Ahmadiantehrani S, Blattler A, & London SE (2018) Epigenetic regulation of transcriptional plasticity associated with developmental song learning. *Proc Biol Sci* 285(1878).

75. Bargaje R, et al. (2017) Cell population structure prior to bifurcation predicts efficiency of directed differentiation in human induced pluripotent cells. *Proc Natl Acad Sci U S A* 114(9):2271-2276.

76. Hermans EJ, et al. (2011) Stress-related noradrenergic activity prompts large-scale neural network reconfiguration. *Science* 334(6059):1151-1153.

77. West AE & Greenberg ME (2011) Neuronal activity-regulated gene transcription in synapse development and cognitive function. *Cold Spring Harb Perspect Biol* 3(6).

78. Zannas AS, Wiechmann T, Gassen NC, & Binder EB (2016) Gene-Stress-Epigenetic Regulation of FKBP5: Clinical and Translational Implications. *Neuropsychopharmacology* 41(1):261-274.

79. Clayton DF, et al. (2019) The role of the genome in experience-dependent plasticity: Extending the analogy of the genomic action potential. *Proc Natl Acad Sci U S A*.

80. Roth TL, Lubin FD, Funk AJ, & Sweatt JD (2009) Lasting epigenetic influence of early-life adversity on the BDNF gene. *Biol Psychiatry* 65(9):760-769.

81. McGrath JJ, Hannan AJ, & Gibson G (2011) Decanalization, brain development and risk of schizophrenia. *Transl Psychiatry* 1:e14.

82. Burrows EL & Hannan AJ (2013) Decanalization mediating gene-environment interactions in schizophrenia and other psychiatric disorders with neurodevelopmental etiology. *Front Behav Neurosci* 7:157.

83. Szalisznyo K, Silverstein DN, Duffau H, & Smits A (2013) Pathological neural attractor dynamics in slowly growing gliomas supports an optimal time frame for white matter plasticity. *PLoS One* 8(7):e69798.

84. Drnevich J, et al. (2012) Impact of experience-dependent and -independent factors on gene expression in songbird brain. *Proc Natl Acad Sci U S A* 109 Suppl 2:17245-17252.

85. Robinson GE, Fernald RD, & Clayton DF (2008) Genes and social behavior. *Science* 322(5903):896-900.

86. Zayed A & Robinson GE (2012) Understanding the relationship between brain gene expression and social behavior: lessons from the honey bee. *Annu Rev Genet* 46:591-615.

87. Harris RM & Hofmann HA (2014) Neurogenomics of behavioral plasticity. *Adv Exp Med Biol* 781:149-168.

88. Kapheim KM, et al. (2015) Social evolution. Genomic signatures of evolutionary transitions from solitary to group living. *Science* 348(6239):1139-1143.

89. Woodard SH, et al. (2011) Genes involved in convergent evolution of eusociality in bees. *Proc Natl Acad Sci U S A* 108(18):7472-7477.

90. Harpur BA, *et al.* (2014) Population genomics of the honey bee reveals strong signatures of positive selection on worker traits. *Proc Natl Acad Sci U S A* 111(7):2614-2619.

91. Simola DF, *et al.* (2013) Social insect genomes exhibit dramatic evolution in gene composition and regulation while preserving regulatory features linked to sociality. *Genome Res* 23(8):1235-1247.

92. Li L, Zhu Q, He X, Sinha S, & Halfon MS (2007) Large-scale analysis of transcriptional cis-regulatory modules reveals both common features and distinct subclasses. *Genome Biol* 8(6):R101.

93. York RA, *et al.* (2018) Behavior-dependent cis regulation reveals genes and pathways associated with bower building in cichlid fishes. *Proc Natl Acad Sci U S A* 115(47):E11081-E11090.

94. Pott S & Lieb JD (2015) What are super-enhancers? *Nat Genet* 47(1):8-12.

95. Gotea V, *et al.* (2010) Homotypic clusters of transcription factor binding sites are a key component of human promoters and enhancers. *Genome Res* 20(5):565-577.

96. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, & Greenleaf WJ (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. *Nat Methods* 10(12):1213-1218.

97. Arnold CD, *et al.* (2013) Genome-wide quantitative enhancer activity maps identified by STARR-seq. *Science* 339(6123):1074-1077.

98. Shpigler HY, *et al.* (2019) Honey bee neurogenomic responses to affiliative and agonistic social interactions. *Genes Brain Behav* 18(1):e12509.

99. Tareen A, Wingreen NS, & Mukhopadhyay R (2018) Modeling evolution of crosstalk in noisy signal transduction networks. *Phys Rev E* 97(2-1):020402.

100. Hölldobler B & Wilson EO (2009) *The superorganism : the beauty, elegance, and strangeness of insect societies* (W.W. Norton, New York) 1st Ed pp xxi, 522 p.

101. Rubenstein DR, *et al.* (2019) Coevolution of Genome Architecture and Social Behavior. *Trends Ecol Evol* 34(9):844-855.

102. Buenrostro JD, *et al.* (2015) Single-cell chromatin accessibility reveals principles of regulatory variation. *Nature* 523(7561):486-490.

103. Nescent Working Group on Integrative Models of Vertebrate Sociality: Evolution M, *et al.* (2014) An evolutionary framework for studying mechanisms of social behavior. *Trends Ecol Evol* 29(10):581-589.

104. Moffitt JR & Zhuang X (2016) RNA Imaging with Multiplexed Error-Robust Fluorescence In Situ Hybridization (MERFISH). *Methods Enzymol* 572:1-49.

105. Spadaro PA, *et al.* (2015) Long Noncoding RNA-Directed Epigenetic Regulation of Gene Expression Is Associated With Anxiety-like Behavior in Mice. *Biol Psychiatry* 78(12):848-859.

106. McGowan PO, *et al.* (2009) Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. *Nat Neurosci* 12(3):342-348.

107. Brockmann A, *et al.* (2009) Quantitative peptidomics reveal brain peptide signatures of behavior. *Proc Natl Acad Sci U S A* 106(7):2383-2388.

108. Doudna JA & Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. *Science* 346(6213):1258096.

109. Deisseroth K (2011) Optogenetics. *Nat Methods* 8(1):26-29.

110. Clevers H (2016) Modeling Development and Disease with Organoids. *Cell* 165(7):1586-1597.

111. Livet J, *et al.* (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. *Nature* 450(7166):56-62.

Acknowledgements

The impetus for this paper came from a workshop on “*cis*-Regulatory Evolution in Development and Behavior,” sponsored by the National Science Foundation Research Coordination Network on Sociogenomics (W. Wilczynski, PI). Figures expertly prepared by E. Hadley.

Figure Captions

Figure 1. Transcriptomic states, stability and relation to Gene Regulatory Network connectivity. **(A)** Gene Regulatory Network (GRN) along with cellular environment determines the gene expression profiles (transcriptomic states) of cells, which in turn are surrogates of cellular states. Cellular states that are stable but flexible transitions between states are also possible, also under the influence of GRN. Cellular states in the brain have been found to be strongly predictive of behavioral states. **(B)** Landscape depicting stability of transcriptomic states, with the x-y axes representing all possible states (state space) and the z-axis representing their stability. Valleys in this transcriptomic landscape represent regions of stability, or attractors. Stable states correspond to attractors of the landscape. **(C)** GRN connection patterns shape stability in the transcriptomic landscape. GRNs with more edges between transcription factors (TFs) and feedback loops exhibit deep valleys (more stable attractors) in the landscape, while fewer TF-TF edges in a GRN are associated with shallow valleys. **(D)** Comparison of TF-TF connectivity between a behavioral GRN (bGRN) in mouse (Saul et al. 2017) and a developmental GRN (dGRN) in fruit fly (Potier et al. 2014). The two GRNs were reconstructed from genome-wide expression data in the respective studies and consist of TF-gene edges. For each TF, we counted the number of its target genes that encode TFs and calculated the ratio of this count and the total number of target genes of that TF (since the GRN was constructed separately in each species, with different criteria for defining edges). We normalized this ratio further by the overall TF-to-gene count ratio in the species. Shown is the histogram of (normalized) TF-TF edge frequencies in each species, revealing that a TF typically had more TF targets in the dGRN relative to the bGRN.

Figure 2: Neuronal Network-Gene Regulatory Network interactions. Spatial dimensions (bottom): Different cells (neurons), connected by the neuronal network (NN), may exhibit different Gene Regulatory Network (GRN) activities, even though the GRN itself is unchanged. GRN includes activating (green arrow) and repressive (red hammer) relationships between genes (circles). Gene expression is indicated by black or grey border, representing high and low expression, respectively. Signals carried by NN may influence gene expression in a cell (arrow labeled “neural signaling”) and activity of a GRN in one cell may influence gene expression in

another cell, for instance via neuroendocrine signaling. **Temporal dimensions** (top right, thicker arrows indicate faster interactions): Fast (millisecond – second scale) message transmission by the NN (“neural firing”) can induce, via neural signaling, the activity of immediate early genes (IEGs) associated with behavior, setting off a cascade of slower transcriptional and epigenetic changes mediated by a behavioral GRN (bGRN) on the scale of seconds to days. These changes may feed back to the NN if levels of neuroreceptors or neurotransmitters are affected. In some cases, bGRN-mediated changes can lead to developmental changes, mediated by developmental GRNs, on a slow time scale of days, months or even across generations. These slow developmental changes may affect brain morphology and cause neuronal growth or rewiring, thus feeding back into the NN.