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Abstract

Neuronal networks are the standard heuristic model today for describing brain activity associated
with animal behavior. Recent studies have revealed an extensive role for a completely distinct
layer of networked activities in the brain — the gene regulatory network (GRN) — that orchestrates
expression levels of hundreds to thousands of genes in a behavior-related manner. We examine
emerging insights into the relationships between these two types of networks and discuss their
interplay in spatial as well as temporal dimensions, across multiple scales of organization. We
discuss properties expected of behavior-related GRNs by drawing inspiration from the rich
literature on GRNs related to animal development, comparing and contrasting these two broad
classes of GRNs as they relate to their respective phenotypic manifestations. Developmental
GRNs also represent a third layer of network biology, playing out over a third time scale, which is
believed to play a crucial mediatory role between neuronal networks and behavioral GRNs. We
end with a special emphasis on social behavior, discuss whether unique GRN organization and
cis-regulatory architecture underlies this special class of behavior, and review literature that

suggests an affirmative answer.

Significance Statement

Behavior is controlled by neural and molecular systems in the brain. Models of neuronal networks
(NNs) have proven to be useful to describe the electrochemical activities of brain cells, and
recently models of behaviorally related gene regulatory networks (bGRNs) have been developed
to describe the activities of genes inside these brain cells. This effort has been spurred by a
growing literature demonstrating strong and specific changes in brain gene expression associated
with specific behavioral responses. We compare and contrast NNs and bGRNSs, aided by the
wealth of knowledge that exists for developmentally related GRNs (dGRNSs). Considering these
three layers of network biology, operating over three time scales, provides intriguing new insights

into brain and behavior.
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Animal behavior arises in large part from the coordinated activities of cells in the nervous system.
It is common to model this activity with neuronal networks (NNs) (1-4), which seek to describe
how circuits of neurons transmitting electrochemical signals from one neuron to the next control
sensory, integrative, and motor functions of an organism (5). NNs provide quantitative
representations of the signal processing activities that integrate perceptions of environmental
stimuli with internal physiological states to produce the neuronal signals that orchestrate adaptive
behavior (6).

A rich body of genetic and, more recently, genomic, studies have revealed that behavior is also
associated with the coordinated activities of genes that operate in brain cells. Many studies have
found significant, predictable, and specific changes in brain gene expression profiles associated
with behavioral responses to particular environmental stimuli (7-14). These findings suggest that
a second layer of network biology — that of gene regulatory networks (GRNs) — also underlies
behavior. Expression of thousands of genes in the genome must be coordinated in order to
generate the gene expression profiles that establish cell types, states and functions, and such
coordination is also necessary to induce the characteristic expression changes associated with
behavior. Orchestration of gene expression within a cell is achieved by regulatory interactions
through which genes influence one another’s activity, often in response to extracellular signals,
jointly establishing the GRN. A GRN is a collection of regulatory relationships among genes that
helps us understand how “input” signals and cellular context map to “output” gene expression
levels. Applied to the brain, a GRN is thus a natural construct to help explain the observed
behavior-associated changes in gene expression profiles in mechanistic terms. It is worth noting
that the GRN in our discussion refers to the regulatory relationships and interactions operative
within the cell, and not to the statistical relationships determined as part of GRN reconstruction
efforts (8).

Which gene regulatory interactions most impact the expression changes associated with a
particular behavior? These interactions comprise a sub-network of the genome-wide GRN that
we will refer to as a “behavior-associated GRN” (“0GRN”). Models of bGRNs have only recently
been developed (8), and despite their usefulness, many questions remain unanswered regarding

their composition and structural/functional characteristics, as well as their relationship to NNs.

Here, we highlight emerging concepts and open questions related to bGRNs. We argue that

integrating both networks — NNs and bGRNs — holds great potential for a better understanding of
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how neurons and the genes expressed within them together regulate organismal behavior and
channel its evolution (6, 15). While bGRNs are intracellular networks whose direct “outputs” are
changes in gene expression, these intracellular changes are influenced by behavioral context and
in turn feed back into NNs, with functional consequences in behavior. We also outline some paths
for future research, with a special focus on social behavior, a particularly active area of research
on bGRNs.

To guide our exploration of bGRNs we draw inspiration from the field of developmental biology,
because metazoan gene regulatory networks are perhaps best understood in the context of
development (16, 17). Developmental biology has already produced mature descriptions and
theories of developmental GRNs (“dGRNs”) and also have inspired other researchers studying
brain and behavior (18, 19). Moreover, there are deep connections between development and
behavior, as we discuss below, and this also provides a strong framework for comparative
analysis. We thus use dGRNs as a point of comparison and contrast for bGRNs. Even if we find,
upon pushing the comparison further, that dGRNs are in fact a poor model for understanding
behavioral regulation, the rich literature on dGRNs will have allowed us to frame baseline
expectations about bGRN characteristics, and identifying departures from this baseline will help
us appreciate unique aspects of behavioral gene regulation. In referring to developmental studies,
we focus on the development of new cell types from precursor cells (17, 20), rather than organ
development and other processes involving groups of cells. We do not claim to describe or
compare all the many ways in which behavior and development have been studied; rather, we

comment on salient properties vis-a-vis their associated networks and control mechanisms.

Gene regulatory networks in development and behavior

Cellular states in development and behavior

An important concept for mechanistic studies of development is the “cellular state” (21, 22).
Development of the various cell types in the metazoan body can be seen as a temporal
succession of cellular state transitions, operating in parallel on multiple cell lineages in the
organism. Gene expression profiles (measured as genome-wide transcript profiles or
“transcriptomes”) have emerged as a convenient yet powerful surrogate for cell states. GRNs,
which control these profiles, are the underlying systems that drive cell state transitions (23). For
instance, if a set of genes change expression as a cell transitions from one state to another, the
GRN may explain those changes as the effects of one or more transcription factors (TFs) that

were activated or deactivated in the transition (17). In fact, GRNs not only explain state transitions,
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they also underlie the very existence of stable transcriptomic profiles representing cell states (24,
25) (Figure 1A).

Organisms also show transitions from one distinct behavior to another. In some cases, each
behavior is performed briefly, while in other cases each behavior is performed for a relatively long
period time, giving rise to “behavioral states” [7]. In species living in complex societies with
division of labor, social dominance hierarchies, alternative reproductive tactics, and other forms
of behavioral plasticity, some individuals perform the same set of behaviors repeatedly,
sometimes for days or longer, thus exhibiting extreme behavioral states (26). Gene expression
profiles in specific brain regions or even whole brains have proven useful as surrogates for
behavioral states (Figure 1A); in some cases the correspondence between brain gene expression
profile and behavior is strong enough to use the former to predict the latter (7, 27). This is similar
to how gene expression profiles serve as reliable signatures of developmental stages and

corresponding cellular states.

There are similarities and differences in the delicate balance between the stability and flexibility
(openness to transitions) of states in both development and behavior. Transcriptomic studies have
revealed not only that behavioral stimuli change brain gene expression profiles in brain tissues in
a predictable and reproducible manner, but also that the new expression profile is stable,
commensurate with the stability of the behavioral state. In other words, the brain or brain region
being profiled transitions from one stable molecular state to another in response to the stimulus,
and a sufficient number of cells apparently must undergo the same or similar cell state transitions
so that their measured aggregate expression profiles at the tissue level still reflect this transition.
This speculation suggests that individual cells in the brain switch states in a coordinated manner
— akin to cellular state transitions during development. However, behaviors are in general more
ephemeral than typical cellular states in development, so we would expect that the transcriptomic
correlates of behavior are correspondingly more fluid (28) than those of cells in a developmental
context. Both dGRNs and bGRNs govern cell state dynamics, but it is plausible that the dynamical

features of bGRNs are more skewed toward flexibility.

A second point of comparison between developmental and behavioral systems with implications
for underlying GRNs lies in the multi-scale organization of states and their coordinated transitions.
Development is the determination and differentiation of many different cell types through time.

Each cell type emerges by a transition from a precursor cell type, with multiple transitions
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occurring in parallel across space that are coordinated by local as well as longer-range signaling.
Likewise, transcriptomic state transitions associated with behavior are manifested in multiple brain
regions simultaneously (29), presumably coordinated by neuronal connections as well as humoral
cell-cell communication involving hormones and neuromodulators. We therefore expect to see
common themes shared between development and behavior regarding how GRNs operate in

different spatial locations coordinate their activities.

Gene expression changes during development and behavior

Changes in brain gene expression associated with behavioral changes are generally of modest
magnitudes, with studies reporting statistically significant changes to be two-fold or less (29). As
a point of contrast, more dramatic expression changes are seen in early development (16, 17,
30), where transcriptomes first establish cell lineages that will give rise to a vast diversity of
tissues of the body. A simple explanation of this contrast may be differences in cellular
heterogeneity between tissues analyzed — the early embryo will give rise to tissues ranging from
gonads to brain, whereas in behavioral studies cells of a smaller range of similar lineages are
being studied. Additionally, most behavioral transcriptomics studies have so far relied on “bulk”
(whole brain region or even whole brain) rather than single-cell expression measurements, and
the relatively modest expression changes noted may be the consequence of only a subset of cells
in the bulk sample participating in the change. On the other hand, developmental studies often
make use of single cell sequencing (31) and/or spatial expression profiles such as those based
on in situ hybridization (32), allowing construction of higher resolution transcriptomic maps that

resolve cellular heterogeneity.

However, there may be a biological reason for observed differences in the magnitude of gene
expression differences between early development and behavior, related to differences in the
persistence of behavioral and developmental states. Behavioral changes, especially when
associated with an active stimulus, are generally more plastic than development; animals can
rapidly transition from one behavior to a variety of other behaviors, depending on the social and
ecological context. This stands in stark contrast to the typically unidirectional nature of
developmental progression, which ultimately establishes different cell types with distinct
expression profiles. Different behaviors are seen to induce different directions of change in brain
gene expression profiles (10), and by extrapolation we expect that the number of distinct
behaviorally related transcriptomic changes exceeds the diversity of paths normally taken from

any given developmental state. It is reasonable to speculate that the less pronounced
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transcriptomic changes seen in behavioral contexts (compared to those noted in early
development) are related to this greater plasticity. If true, these points of contrast between
developmental and behavioral changes in expression would suggest the existence of
corresponding differences in regulatory mechanisms at multiple levels. These include
transcriptional gene regulation in the GRNs (trans- and cis-elements), the architecture of gene
regulatory circuits (feedback loops) within the bGRNs or dGRNS, and the control of GRN

dynamics exerted by cell-cell interactions in the respective cell communities.

Differences between bGRNs and dGRNs

The above analyses of similarities and differences between development and behavior in terms
of cellular states and gene expression set the stage to compare their underlying GRNs directly.
One possible difference between the two types of GRNs is that dGRNs have a greater connectivity
(frequency of regulatory edges) among TFs than do bGRNs. To understand this, let us consider
the space of all possible transcriptomic states achievable by a system (the cell), with transitions
among states (gene expression profiles) being determined by the GRN. Most of these states are
unstable because they violate gene regulatory interactions. However, a distinct subset of them
satisfy all regulatory interactions, are stable (robust to molecular noise), and can perform
important biological roles such as maintaining cell type identity. Such stable transcriptomic states
are called the “attractors” of the space (24, 25). The term “attractor,” borrowed from dynamical
systems theory, refers to a state toward which a system tends to evolve and revert to if perturbed,
e.g., due to fluctuations arising from gene expression noise. Attractors may be conceptualized as
valleys in a landscape that depicts the stability of all possible transcriptomic states (Figure 1B).
A GRN with many TF-TF regulatory interactions is likely to have feedback loops, which are known
to result in a transcriptomic landscape characterized by many “deep” attractors from which there
is no escape other than experimentally induced cell type reprogramming (33). By contrast, a
paucity of TF-TF regulatory interactions and feedback loops in a GRN is expected to result in
more malleable gene expression profiles that can reversibly transition into each other, depicted
by shallow valleys in the transcriptomic landscape (Figure 1C). Characteristics of gene
expression changes associated with the greater plasticity of behavior, discussed above, thus
suggest that bGRNs should have fewer TF-TF regulatory interactions than dGRNs. We expect
that the continuing efforts at reconstructing genome-wide GRNs through identification of trans-

and cis-regulatory connections between all gene loci will help to test this prediction.
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Figure 1D llustrates one way to test the above prediction, by comparing a bGRN reconstructed
from transcriptomic profiles of behavioral states in mouse (29) and a dGRN reconstructed from
transcriptomic profiles associated with eye development in Drosophila (34). This comparison,
which provides support for the prediction, is merely one suggestive example, guided largely by
the limited availability of GRNs at scale. Future tests will need to account for the fact that GRN
characteristics can differ depending on the specific behavior and developmental process under
study.

We noted above that a transcriptomic landscape with shallow attractors enables frequent
transitions between cellular states. Shallow attractors are also associated with greater fluctuations
in gene expression, which translates to the prediction of more stochastic gene expression in
transcriptomic states associated with a behavior. Similarly, experimental studies using single-cell
transcriptomics have revealed a greater dispersion in expression during differentiation events (35,
36), when deep attractors representing precursor cell types are destabilized and rendered
shallower to facilitate state transition (25). Future work utilizing single-cell transcriptomics to
analyze cells from the brain will help us test this hypothesis regarding behavior-associated cell
states.

bGRNs and dGRNs in evolution

In addition to the above mechanistic comparisons, an important insight into the parallels between
behavioral and developmental gene regulation comes from evolutionary analysis. The rich
literature on evolutionary developmental biology (‘evo-devo”) (16, 37) has revealed genetic
“toolkits” that have been deployed repeatedly in the independent evolutions of sometimes-parallel
features of animal morphology, and these toolkits have been traced to the level of GRNs (17).
Recent behavioral studies have undertaken increasingly comprehensive cross-species
comparisons at the transcriptomic level and also have reported the existence of toolkits of genes
and gene modules underlying parallel behaviors (9, 38), loosely analogous to developmental
toolkits (16). dGRNs have provided a systems-level construct at which similarities of
developmental regulation emerge across great evolutionary spans despite extensive sequence-
level divergence (39, 40). Similarly, bGRNs and associated co-expression modules provide
glimpses of shared mechanisms of behavior in different species even if such evolutionary toolkits
are not apparent at the individual gene level (9, 41). In addition, such comparisons can also give
insights into how entirely new behaviors might evolve. For example, analogous to the

redeployment (and sometimes tweaking) of toolkits or dGRNs in the evolution of morphological
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novelties (42-44), a new behavior's appearance might be facilitated (in an appropriate selective
situation) by redeploying all or part of an existing bGRN in a new time, neural context, or in
response to a different stimulus (19). Concepts and approaches developed in evo-devo for cross-
species comparisons of dGRNs are already proving useful for similar cross-species comparisons
of bGRNs (19).

Integrating gene regulatory networks and neuronal networks: multi-scale dynamics

The recognition of the bGRN as an important molecular substrate of behavior raises exciting
possibilities to consider the interplay of the bGRN with the network most directly related to
behavior — the neuronal network (NN). Such interactions would integrate across two distinct levels
of biological networks, resulting in increased complexity of network dynamics compared to either
network alone. The NN is based on physical connections among neurons, and the messages
transmitted through it may interface with the bGRN (45). For instance, the bGRN operating within
a neuron may respond to the synaptic activity among the neurons in the NN (46), as well as
hormones and other secreted mediators that bind to its receptors, resulting in changes in gene
regulatory activity. In one study, the temporal kinetics of neuronal firing was found to be intimately
linked to GRN activity in dorsal root ganglia neurons, suggesting that the patterning of neuronal
activity is interpreted by the GRN (47). Similarly, in the mouse cortex, expression levels of a
transcriptional switch, the TF Er81, are directly correlated with firing properties in a subtype of
interneuron, and activation of these interneurons in the context of learning modulates Er81
expression (48). Conversely, the bGRN indirectly controls NN activity via setting the production
levels of neurotransmitter receptors, ion channels, axon outgrowths and dendritic arborizations,
and other physico-chemical components of the NN (49-52). A case in point is the highly conserved
TF Foxp2, a component of bGRNs in the basal ganglia song nucleus, Area X, that is associated
with avian song learning (53). Knock-down of FoxP2 is known to impact vocal imitation and song
variability. Mechanistic studies have shown Foxp2 to regulate genes that contribute to neurite
outgrowth and NN formation (51), and to influence dopamine-modulated cortical circuits (54) in
the mouse brain. Similarly, in the Drosophila brain, complex regulatory cascades of gene
expression establish specific features of Tv1 neurons such as neurite morphology or
neurotransmitter identity (55). GRNs have also been shown to constrain variability in neuron
identity and function among similar neurons despite substantial variation in the expression of
specific genes (56). bGRNs thus have the ability to directly influence the architecture and activity
of NNs by modulating neuronal excitability and connectivity (57). Despite a fundamental difference
between the two networks — the NN being an intercellular network and the GRN being an
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intracellular network (with signal transduction crossing between GRNs in different cells) — they
clearly influence each other's activities, presenting an exciting frontier of future research.
Moreover, we also suggest that the wiring of NNs in the brain imparts a qualitatively different

characteristic to the coordination of bGRNs across different spatial locations.

Spatiotemporal dimensions of bGRN-NN interplay

The interactions between NNs and bGRNs play out at multiple spatial and temporal scales. In the
spatial dimension (Figure 2), the activities of bGRNs differ across brain regions and cell types;
each location may thus exhibit distinct gene expression changes during a specific behavior (29).
bGRN activities at different locations also influence each other, e.g., via the NN and
neuroendocrine signaling (58). Likewise, the NN is meshed across the entire nervous system,
with even single neurons known to link distant regions (59). Thus, with both networks exhibiting
spatial patterns of activity, their interplay will assume a level of complexity above and beyond that
of either network alone. This may lead to an increased number of stable transcriptional states
(attractors), as has been shown in computer simulations that connect each cell’'s GRNs to a cell-
cell interaction network (60). Such higher-level interactions can also influence the stability of, and
transitions between, attractors. This results in more dynamic gene expression profiles, an
important anticipated feature of bGRNs, as noted above. A key direction for future efforts must be
the coupling of real-time neural activity measurements (61) with high resolution single-cell

transcriptomics (62), in specific behavioral contexts.

There also are differences between the GRN and NN in temporal dimensions (Figure 2). The NN
operates on the millisecond to second scales (for neuronal firing) and may induce the rapid
activation of immediate early genes (IEGs) associated with behavior (57). By contrast, expression
and epigenetic changes controlled by the GRN usually happen over a scale of minutes to hours
or even days (63, 64). Aforementioned feedback from the GRN into the NN, such as modulation
of neuronal connections via changes of receptor and transmitter levels, can take place over even
longer time scales (65), and the GRN may serve the role of a temporal “integrator” of organismal
experiences over such time scales. Back-and-forth interactions between bGRNs and NNs may
prove to be an important mechanism for learning and memory and for past experiences to
influence future behavior, possibly even across generations (66). In short, how this two-layered
network architecture of the brain orchestrates behavioral responses almost certainly involves rich
multi-scale spatiotemporal patterns and intricate phenomena that fall outside the realm of current

knowledge.
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Developmental mechanisms of bGRN-NN interplay

The dGRN is important in the understanding of the molecular basis of behavior in its own right,
and not just in comparison to the bGRN. Cross-talk between bGRNs and NNs can be mediated
by developmental processes, thus bringing dGRNs into the fold and suggesting an intermeshing
of three different networks with functional consequences for behavior. For instance, transcriptomic
changes associated with behavior — the consequence of bGRN activity — often include genes
involved in nervous system development (67). This suggests that developmental changes, which
in the postnatal periods pertain to the phenomenon of brain plasticity, can be caused by bGRN
activity. Also, it is known that hormonal signals operating at various time scales can reorganize
brain morphology and NN structure or function (68). These changes are driven by a variety of
factors including environmentally induced changes in sex, dominance hierarchy, and predation
threat, and may span across generations. Developmental processes thus triggered by bGRNs
may result in NN rewiring and growth (69) or changes of cell type proportions in the brain (70),

serving as a major mechanism for feedback from bGRN to NN, and thus to future behavior.

There are different ways to consider the cycle of relationships from behavior to GRNs to
development and back to NN and behavior (Figure 2). The possibility of three-way interactions
between NNs, bGRNs and dGRNs is strong for developmental processes that are regulated in an
experience-dependent manner. Notably, when the feedback from the bGRN to NN involves
developmental processes (controlled by the dGRN), it is expected to have greater longevity than
feedback mediated by changes in neurotransmitter levels. In addition, mechanisms that give rise
to individual differences in behavior can be mapped to aspects of early brain or synapse structure
that are set up during development. Drawing on the relatively mature concepts and tools of
developmental biology, especially brain development (19), should therefore be very useful for

future work that aims to elucidate the three-way network interactions that underlie behavior.

Environmental influences mediated by bGRNs and NNs

The brain not only orchestrates behavior, it predicts what behavioral response would be most
suited to environmental conditions and as mentioned above, the reciprocal interactions between
bGRNs and NNs also mediate the influence of the environment on behavior. Developmental
processes invoked by bGRNs provide a way for environmental changes to impact brain
morphology and neuronal networks (71), which in turn bear upon future behavior. For some

behaviors there are “critical” periods in behavioral development during which individuals are more
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receptive to environmental influence (72), and such periods may coincide with critical periods in
morphological development such as expansion of particular brain regions. Recent work has
identified some of the GRN components activated in these periods (73, 74). GRNs also have an
intimate theoretical connection to critical periods: bifurcations of developmental trajectories (cell
fate decisions) can be attributed to non-linear gene-gene interactions in the GRN, and a critical
developmental period is the period just upstream of a bifurcation point, when an irreversible binary
decision is made, mediated by the GRN and potentially influenced by environmental inputs. This
concept has been demonstrated for cell fate decisions by cytokines in cell differentiation (25, 75)

and we suggest that analogous dynamics also may play a role in brain development.

The role of experiences and environmental inputs during critical periods may thus result in the
“fine-tuning” of behavioral development via NN- and GRN-mediated mechanisms. The relative
extent to which the two types of networks are engaged in environmentally influenced modulation
of behavior likely depends on the nature of the environmental input. For instance, an acute change
in environment may act directly on the NN (76) or trigger specialized signal transduction pathways
that modulate bGRN dynamics resulting in temporary modulation of the NN (77), and hence of
behavior. By contrast, more permanent responses to chronic environmental change may be
mediated by developmental processes and/or epigenetic mechanisms. For instance, early
adverse experiences have been shown to prime the genome, via DNA methylation at specific loci
related to stress-response pathways, so that the individual responds differently to future stressful
events (78-80). Generally speaking, such responses may be thought to involve drastic changes
in individual regulatory interactions of developmental genes so as to distort the topography of the
transcriptional landscape, opening access to maladaptive developmental trajectories. Such
“decanalization” of development results in lasting developmental anomalies with all the behavioral
consequences of an improperly wired NN (81-83). This reciprocity between genes and neurons
also depends on individual differences in temperament due to genotype and experience, and is
the foundation for the brain’s ability to predict the future (84).

GRNs in social behavior

A special focus of behavioral transcriptomics during its first two decades has been social behavior,
from both mechanistic and evolutionary perspectives (85-87). Should we expect fundamental
differences in bGRNs related to social behavior relative to those associated with other types of
behaviors? Treating bGRNs as a mapping of inputs (cell communication signals and cellular

context) to outputs (gene expression levels), a reasonable null hypothesis is that it should not
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matter whether the inputs were triggered by a social or non-social stimulus. According to this logic
there is nothing special about social bGRNs relative to other types of bGRNs for behaviors that
do not involve social interactions among conspecifics, such as food acquisition or nest
construction in some species. On the other hand, there are also good reasons for anticipating
differences between social bGRNs and other bGRNs. Social behavior involves repeated
interactions between individuals, an iterative exchange of stimulus and response that is
fundamentally different from a unidirectional intake of stimuli from abiotic sources. This adds yet
another network layer — the social network — to the information-processing system, potentially
leading to specialized patterns and dynamics in bGRN and NN activity, and hence to special

structural properties of these networks.

The need for balance of stability and flexibility is ostensibly more acute in social behavior
compared to non-social behaviors. This is because social behavior involves responding
repeatedly to a greater variety of environmental (social) cues and must be adaptive yet stable
within a range of variation of signals. Animals with busy social lives have to respond to all the
same environmental stimuli as do less social animals (abiotic as well as biotic, such as predator-
prey interactions) and in some cases also have to maintain a set of individual relationships with
conspecifics. An alternative viewpoint is that animals living in social groups inhabit a less
challenging world, as social groups might buffer against environmental noise and reduce
pressures such as predation or lead to niche construction. Per this view, whether social behavior
results in a more or less complex bGRN (e.g., by the above-mentioned aspects of GRN
complexity) will depend on the stimuli that are encountered and how being in a social group
impacts those stimuli and the potential behavioral responses to them. In light of the above
considerations, the nature of social bGRNs and their special properties compared to bGRNSs in

general poses an intriguing open problem.

Evidence for a cis-regulatory code for social behavior: evolutionary perspectives

One finding that supports the possibility that bGRNs for social behavior have distinct features
relative to other bGRNs comes from a comparative genomics analysis of the genomes of ten
species of bees exhibiting different levels of social organization. Kapheim et al. (88)
bioinformatically detected greater TF binding site presence (reflecting stronger binding of TFs) in
gene regulatory regions from social bees compared to orthologs from solitary bee species. This
result suggested that gene regulation in social bees has increased capacity and complexity

relative to non-social bees, encoded in the DNA. These finding and those in refs. (89-91)support
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the prediction that changes in gene regulation are key features of the evolutionary transition from
solitary to social life, at least in the social insects. Perhaps this is related to the appearance of
extreme behavioral states in species of social insects with division of labor and the performance

of the same set of behaviors by individuals for an extended period of time.

The result from Kapheim et al. (88) gives the first glimpse of a special signature tied to GRNs for
social behavior, but this is intriguingly reminiscent of a cis-regulatory signature seen in
developmental studies in Drosophila. Li et al. (92) reported greater homotypic TF binding site
clustering in blastoderm-stage (early) enhancers than in those for other developmental programs,
possibly reflecting the greater complexity of cell fate decisions driven by positional information in
the early Drosophila embryo. We speculate that just as the greater complexity of expression
patterns achieved in the syncitial embryo is reflected in the complexity of associated enhancers,
perhaps the increased phenotypic complexity of social behavior is achieved, in part, by increases
in the complexity of cis-regulatory architectures and GRNs. The cis-regulatory basis of
evolutionary changes in social behavior was also investigated by York et al. (93), who studied
divergence in bower-building behavior among Lake Malawi cichlid fishes. They identified
behavior-associated genetic variants and reported allele-specific brain gene expression that
depended on behavioral context. Their study provides a concrete example of the connection

between cis-regulatory evolution and diversity of social behavior.

How might GRNs become more complex? With respect to cis-regulatory organization this could
involve greater numbers of enhancers (94) or greater numbers of TFs regulating each enhancer
(95). In the case of early embryonic developmental enhancers it is the latter, but it is not yet known
which scenario accounts for the increased TF binding site presence observed for social bees.
Improved methods for enhancer discovery, e.g., chromatin accessibility profiling via ATAC-seq,
massively parallel activity assays such as STARR-seq, or effective insect-specific computational

approaches should help to address this question (39, 96, 97).

For species with an extensive repertoire of social behavior, experience and exposure to specific
social stimuli can be recorded quantitatively as changes in the gene expression profile (98), much
like an odometer records distance. Principles of cis-regulatory organization associated with such
a quantitative recording of temporal information may thus have similarities to those related to the
precise spatial readout in early embryo body-plan development, offering another perspective on

the observation by Kapheim et al. It is still too early to know conclusively whether social behavior
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involves unique features of GRNs and cis-regulatory sequences, but emerging evidence seems
to point to an affirmative answer. The correlation of cis-regulatory potential and social complexity
is remarkable given the large gap it bridges from genotype to behavioral phenotype and needs

rigorous confirmation in the future.

The question of unique features of bGRNSs for social behavior may also relate to unique aspects
of the evolutionary dynamics of social behavior. The multi-layered network architecture underlying
social behavior, including the social network layer, with spatially diverse and temporally dynamic
cross-talk between layers, is likely to impose a range of evolutionary constraints, with parallels in
the co-evolutionary dynamics of multiple signal transduction pathways that exhibit cross-talk (99).
An interesting evolutionary perspective into social behavior also arises from the fact that the unit
of selection lies, at least in cases of extreme sociality, above the individual and at the societal
level (100). This special evolutionary status of certain social behaviors may be reflected in the
molecular mechanisms evolved to implement them. A recent study has also examined the
provocative idea that social organization can drive the evolution of GRNs by affecting genome
structure (101).

Future directions

This is a particularly exciting time for molecular explorations of behavior. Gene regulatory
networks are a unifying construct today for scientists embarking on such explorations along
diverse routes. Detailed analyses of bGRNs will not only break new ground in our understanding
of behavior (8), but also provide broader insights into gene regulation, complementary to those

obtained from developmental studies.

A number of emerging technologies will play key roles in future research on bGRNs. Perhaps
leading this pack is the rapidly evolving technology of single-cell RNA sequencing (scRNA-seq)
(35, 36), which allows transcriptomic profiling at cellular resolution, as well as single-cell
epigenomic profiling (102). These new developments will help us bridge the existing gap between
the true bGRNSs operational within different cell types and the approximate reconstruction afforded
by traditional “bulk” assays. They will also help solve a major mystery about bGRNSs: that
transcriptomic profiles of brain regions or even whole brains often show a striking correspondence
with behaviors even though the GRNs underlying these profiles are properties of individual cells.
That this relates to the fact that behavior is an emergent property of many cells seems intuitive,

but the precise mechanisms of integration are currently unknown (103). By contrast,
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developmental states do not present this mismatch of scales, since developmental phenotypes,
whether at the cellular or tissue level, as well as the associated GRNs, are cellular properties,
even if they are influenced by inter-cellular communication. Do bGRNs have a level of
organization that transcends the cell, as theories of coupled GRNs have suggested (60)? The
ability to tease apart transcriptomic profiles and GRNs at the individual cell level, especially in the
face of extreme spatial diversity and cell type heterogeneity in the brain, will play a crucial role in
finding answers to this and other pressing questions. Emerging technologies for “spatial
transcriptomics” (104) and their combination with scRNA-seq will prove to be particularly
noteworthy in this regard, and also allow the above cellular insights to begin to be connected to

neural circuitry.

While our discussion focuses on mRNA levels as representing the regulatory processes in play,
this is a simplification motivated by the current sparsity of data on other levels such as non-coding
RNA (e.g., microRNA and IncRNA), exosomes, epigenetics, peptides, proteins, lipids,
carbohydrates, and metabolites, all of which are part of what define a cell state and have been
reported as being important in behavior (105-107). Various “omics” technologies are already
available and will soon become well-established approaches to better inform these
complementary views of molecular processes. Powerful new techniques to control and
manipulate neural and gene activity, such as directed cell CRISPR (108) and optogenetics (109),
as well as approaches such as 3D brain organoids (110) that facilitate controlled sample
generation, are likely to be crucial in teasing apart cell type- and region- specific activities of
bGRNs. In addition to more accurate reconstructions of GRNs, future investigations will have to
map out the cross-talk between bGRNs, dGRNs and NNs in various behavioral contexts, and
large-scale efforts in connectomics, such as the Human Connectome Project (4), and Brainbow
(111), will provide a solid foundation for such studies. Information from all of these sources should

enable the development of a comprehensive theory of behavior in molecular terms.
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Figure Captions

Figure 1. Transcriptomic states, stability and relation to Gene Regulatory Network
connectivity. (A) Gene Regulatory Network (GRN) along with cellular environment determines
the gene expression profiles (transcriptomic states) of cells, which in turn are surrogates of cellular
states. Cellular states that are stable but flexible transitions between states are also possible, also
under the influence of GRN. Cellular states in the brain have been found to be strongly predictive
of behavioral states. (B) Landscape depicting stability of transcriptomic states, with the x-y axes
representing all possible states (state space) and the z-axis representing their stability. Valleys in
this transcriptomic landscape represent regions of stability, or attractors. Stable states correspond
to attractors of the landscape. (C) GRN connection patterns shape stability in the transcriptomic
landscape. GRNs with more edges between transcription factors (TFs) and feedback loops exhibit
deep valleys (more stable attractors) in the landscape, while fewer TF-TF edges in a GRN are
associated with shallow valleys. (D) Comparison of TF-TF connectivity between a behavioral GRN
(bGRN) in mouse (Saul et al. 2017) and a developmental GRN (dGRN) in fruit fly (Potier et al.
2014). The two GRNs were reconstructed from genome-wide expression data in the respective
studies and consist of TF-gene edges. For each TF, we counted the number of its target genes
that encode TFs and calculated the ratio of this count and the total number of target genes of that
TF (since the GRN was constructed separately in each species, with different criteria for defining
edges). We normalized this ratio further by the overall TF-to-gene count ratio in the species.
Shown is the histogram of (normalized) TF-TF edge frequencies in each species, revealing that
a TF typically had more TF targets in the dGRN relative to the bGRN.

Figure 2: Neuronal Network-Gene Regulatory Network interactions. Spatial dimensions
(bottom): Different cells (neurons), connected by the neuronal network (NN), may exhibit different
Gene Regulatory Network (GRN) activities, even though the GRN itself is unchanged. GRN
includes activating (green arrow) and repressive (red hammer) relationships between genes
(circles). Gene expression is indicated by black or grey border, representing high and low
expression, respectively. Signals carried by NN may influence gene expression in a cell (arrow

labeled “neural signaling”) and activity of a GRN in one cell may influence gene expression in



another cell, for instance via neuroendocrine signaling. Temporal dimensions (top right, thicker
arrows indicate faster interactions): Fast (millisecond — second scale) message transmission by
the NN (“neural firing”) can induce, via neural signaling, the activity of immediate early genes
(IEGs) associated with behavior, setting off a cascade of slower transcriptional and epigenetic
changes mediated by a behavioral GRN (bGRN) on the scale of seconds to days. These changes
may feed back to the NN if levels of neuroreceptors or neurotransmitters are affected. In some
cases, bGRN-mediated changes can Ilead to developmental changes, mediated by
developmental GRNs, on a slow time scale of days, months or even across generations. These
slow developmental changes may affect brain morphology and cause neuronal growth or rewiring,

thus feeding back into the NN.



