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Objectives 吀栀e traditional, instructor-led form of live coding has been extensively studied, with 昀椀ndings showing that this
form of live coding imparts similar learning to static-code examples. However, a concern with Traditional Live Coding is that
it can turn into a passive learning activity for students as they simply observe the instructor program. 吀栀erefore, this study
compares Active Live Coding—a form of live coding that leverages in-class coding activities and peer discussion—to Traditional
Live Coding on three outcomes: 1) students’ adherence to e昀昀ective programming processes, 2) students’ performance on
exams and in-lecture questions, and 3) students’ lecture experience.

Participants Roughly 530 students were enrolled in an advanced, CS1 course taught in Java at a large, public university in
North America. 吀栀e students were primarily 昀椀rst- and second-year undergraduate students with some prior programming
experience. 吀栀e student population was spread across two lecture sections—348 students in the Active Live Coding (ALC)
lecture and 185 students in the Traditional Live Coding (TLC) lecture.

Study Methods We used a mixed-methods approach to answer our‘ research questions. To compare students’ programming
processes, we applied process-oriented metrics related to incremental development and error frequencies. To measure
students’ learning outcomes, we compared students’ performance on major course components and used pre- and post-lecture
questionnaires to compare students’ learning gain during lectures. Finally, to understand students’ lecture experience, we
used a classroom observation protocol to measure and compare students’ behavioral engagement during the two lectures. We
also inductively coded open-ended survey questions to understand students’ perceptions of live coding.

Findings We did not 昀椀nd a statistically signi昀椀cant e昀昀ect of ALC on students’ programming processes or learning outcomes.
It seems that both ALC and TLC impart similar programming processes and result in similar student learning. However, our
昀椀ndings related to students’ lecture experience shows a persistent engagement e昀昀ect of ALC, where students’ behavioral
engagement peaks and remains elevated a昀琀er the in-class coding activity and peer discussion. Finally, we discuss the unique
a昀昀ordances and drawbacks of the lecture technique as well as students’ perceptions of ALC.

Conclusions Despite being motivated by well-established learning theories, Active Live Coding did not result in improved
student learning or programming processes. 吀栀is study is preceded by several prior works that showed that Traditional Live
Coding imparts similar student learning and programming skills as static-code examples. 吀栀ough potential reasons for the
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lack of observed learning bene昀椀ts are discussed in this work, multiple future analyses to further investigate Active Live
Coding may help the community understand the impacts (or lack thereof) of the instructional technique.

CCS Concepts: • Social and professional topics → Computing education; CS1.

Additional Key Words and Phrases: live coding, active learning, student engagement, programming processes, learning gain

1 INTRODUCTION
Live coding is an instructional technique in which the instructor programs in front of students while verbalizing
their thought process. 吀栀is instructor-led live coding, which we will call Traditional Live Coding (TLC), has
been the subject of extensive study in computing education research. Early works explored common student
perceptions of the lecture technique [4, 5, 18, 21], subsequent works evaluated the impact of live coding on student
grades and learning [25–27], and more recent works measured the e昀昀ect of live coding on students’ programming
processes [30, 33]. 吀栀e recent empirical work on live coding has compared the traditional, instructor-led form of
live coding to the use of static-code examples, which is a common alternative to live coding [29]. However, the
昀椀ndings of these recent works have not shown any improvement in student learning as a result of live coding
[25, 30, 33].

A common criticism of traditional live coding is that it can ultimately be a passive experience for students,
in which they observe the instructor without any active engagement [15]. Given the lack of observed learning
bene昀椀ts from Traditional Live Coding, a form of live coding that includes an active learning component may
o昀昀er the learning bene昀椀ts that were not seen in recent empirical evaluations of live coding [30, 33]. In the form
of live coding called Active Live Coding (ALC), the instructor uses Traditional Live Coding with several active
coding components in which students complete a small programming task, discuss with peers, and then see
a demonstration of the correct solution by the instructor. From a theoretical perspective, Active Live Coding
engages more Methods of Cognitive Apprenticeship [9]—a learning theory concerning the transfer of expertise
from expert to learner—and involves a higher level of engagement according to the ICAP Framework [8]—a
framework for classifying learning activities into a hierarchy based on student engagement.

In this study, we follow a similar experimental setup and data analysis to a recent empirical evaluation to
compare Traditional Live Coding to static-code examples by Shah et al. [33]. Our study implements a course-long
treatment of Active Live Coding in order to identify possible short-term and long-term impacts of the teaching
technique. Our analysis aims to evaluate Active Live Coding across three key dimensions: 1) students’ adherence to
programming processes, 2) students’ course outcomes and grades, and 3) students’ lecture experience. Speci昀椀cally,
we ask the following research questions:

• RQ1: How do students’ programming processes (in terms of incremental development and error frequency
metrics) di昀昀er between students in the traditional and active live coding groups?

• RQ2: How do course outcomes (such as performance on exams, code comprehension questions, program-
ming assignments, etc.) di昀昀er between students in the traditional and active live coding groups?

• RQ3: How does the student experience (in terms of engagement and perceptions of the live coding
technique) di昀昀er between students in the traditional and active live coding groups?

2 THEORETICAL FRAMEWORK
吀栀ere are two theories that we use to frame our study: Cognitive Apprenticeship and the ICAP Framework. We
昀椀nd it necessary to involve both theories given the di昀昀erence in how the two theories impact student learning.
Cognitive Apprenticeship is a learning theory that describes the instructor’s choice of learning activities while
the ICAP Framework describes how students engage with those learning activities.
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Method Description
Modeling Instructor demonstrates a task to learners while the in-

structor verbalizes their thought process.
Sca昀昀olding Instructor provides and fades targeted learning activities

for learners to practice a task with support.
Coaching Instructor provides feedback and guidance to students as

students complete tasks.
Articulation Learner explains their reasoning and justi昀椀es the strate-

gies they used.
Re昀氀ection Learner re昀氀ects on their own processes and compares

their strategies to the instructor’s strategies.
Exploration Learner completes tasks independently without sca昀昀olds

or support from the instructor.
Table 1. Methods in Cognitive Apprenticeship.

2.1 Cognitive Apprenticeship
吀栀e Cognitive Apprenticeship learning theory was outlined by Collins et al. and aims to bring the traditional
apprenticeship model—which is one of the oldest models of knowledge transfer—into the classroom [9]. A key
di昀昀erence between traditional apprenticeship and Cognitive Apprenticeship is that traditional apprenticeship
transfers knowledge of primarily physical tasks that can be learned through observation, such as blacksmithing
or tailoring [9]. By contrast, Cognitive Apprenticeship outlines a model for instructors to make their thinking
visible to facilitate the transfer of complex skills that require higher-order reasoning and thought processes. 吀栀e
initial work describing Cognitive Apprenticeship presents examples of teaching students about skills such as
reading comprehension, mathematical problem-solving, and writing [9].

吀栀e Cognitive Apprenticeship learning theory broadly describes four dimensions of a learning environment:
Content, Sequence, Sociology, and Methods [9]. Content refers to the types of knowledge that instructors should
teach students, such as domain knowledge, learning strategies, and heuristic strategies [9]. Sequence refers to the
ordering of learning activities to facilitate learning [9]. Sociology refers to the social characteristics of the learning
environment, such as cooperation and situated learning [9]. Finally, Methods, which is the relevant dimension for
the present study, refers to the instructional techniques to promote the development of expertise [9]. Table 1
outlines the six Methods of Cognitive Apprenticeship: modeling, sca昀昀olding, coaching, re昀氀ection, articulation,
and exploration.

Shah and Soosai Raj conducted a literature review of 143 papers that explicitly mentioned Cognitive Ap-
prenticeship in computing education research venues [34]. 吀栀e review aimed to understand which Cognitive
Apprenticeship Methods have been used and evaluated in computing education and what bene昀椀ts have generally
been a琀琀ributed to these Methods [34]. 吀栀e authors found that the majority of work discussed teaching strategies
that engaged the 昀椀rst three Methods of Cognitive Apprenticeship—modeling, sca昀昀olding, and coaching—while
signi昀椀cantly less work has mentioned the re昀氀ection, articulation, and exploration Methods of Cognitive Appren-
ticeship. One potential reason for this di昀昀erence is that instructors felt that implementing the last three Methods
of Cognitive Apprenticeship takes up too much lecture time [34]. Nonetheless, a key takeaway from the literature
review is that deeper empirical analyses into the impact of articulation, re昀氀ection, and exploration Methods of
Cognitive Apprenticeship are needed [34].
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Selvaraj et al. found that the theoretical construct most commonly cited with live coding is the modeling
Method of Cognitive Apprenticeship [29]. Although there are variations of live coding, the typical form of live
coding involves an instructor programming in front of their students while verbalizing their thought process
[29], just as prescribed in the modeling Method of Cognitive Apprenticeship [9]. In fact, the studies conducted
by Shah et al. were motivated by a desire to empirically detect whether live coding—through the lens of the
modeling Method—imparts implicit strategies such as incremental development and debugging techniques [33].
吀栀ese works, which compared live coding to static-code examples, are empirical evaluations of the modeling
Method, but they do not involve other Methods of Cognitive Apprenticeship. As Shah et al. point out in their
study, the modeling Method exposes learners to only the implicit processes and strategies used by experts, but
does not necessarily lead to learners being able to gain control over using these implicit processes. 吀栀e remaining
Methods, such as sca昀昀olding, re昀氀ection, and articulation, are vital for learners to not just observe but also apply
these implicit processes [9].

2.2 The ICAP Framework
Chi and Wylie developed the ICAP Framework, a theory related to active learning which outlines four “modes”
of engagement: Interactive, Constructive, Active, and Passive (creating the acronym “ICAP”) [7, 8]. A learning
activity can lead to students’ engagement behaviors being in one of these four modes [8]. 吀栀e Passive mode
occurs when learners simply observe and absorb information from the instructor without overtly engaging with
the materials, such as taking notes. 吀栀e Passive mode is characterized by a lack of student behavioral engagement
with the instruction. 吀栀e next mode of engagement is the Active mode, which is classi昀椀ed by “some form of
overt motoric action or physical manipulation” being undertaken by students [8]. A speci昀椀c example of Active
engagement provided by Chi and Wylie is students copying down solution steps while listening to a lecture
or taking verbatim notes [8]. Next, the Constructive mode of engagement is characterized by students creating
products that go beyond what was provided in the learning materials, such as asking questions, generating
predictions, or drawing diagrams [8]. Finally, the Interactive mode occurs when two students work together
and both students are being constructive in their contributions [8]. Chi and Wylie note that when one partner
is dominating the conversation and the other is primarily listening, then the behaviors are not interactive.
Instead, the student dominating the conversation is in a Constructive mode while the student that is listening
is in Passive mode (or Active if they are taking notes as they listen). Of course, an underlying assumption in
the ICAP framework is that learners enact the behaviors that are intended by the instructor [8]. For example,
in a Constructive activity where students have to write new code, they could engage with the activity only
Actively by copy-pasting existing code from the example or Passively by simply not working on the task. 吀栀is
assumption represents a limitation of engagement-based interventions in which students fail to engage with
learning activities.

吀栀e ICAP Framework has been extensively studied in various STEM Education disciplines [8, 41], such as
undergraduate biology [41], high-school science [42], and undergraduate physics education [10]. 吀栀e most similar
study to our present study comes from Deslauriers et al., who conducted an experiment to compare the impact of
traditional physics lecturing (which is Passive or Active) to a treatment condition where students are making
predictions, problem solving, and discussing with each other (which is Constructive or Interactive) [10]. Although
the study was only conducted in one week in the course, the results showed that students in the treatment
condition scored signi昀椀cantly higher on the exam for that week, a琀琀ended class more frequently during that week,
and also shared in surveys that they enjoyed the new teaching style [10]. 吀栀is study by Deslauriers et al. is highly
relevant to our study because of the similarity in the treatment and control groups to our study. Our similar
experimental setup, although spanning an entire term rather than one week, tests a similar set of conditions in
the computer science domain.
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CA Method Trad. Live Coding Active Live Coding
Modeling Ø Ø

Sca昀昀olding Ø

Coaching
Articulation Ø

Re昀氀ection Ø

Exploration
Table 2. Theoretical Framing of Traditional and Active Live Coding according to the Cognitive Apprenticeship Methods.

ICAP Level Trad. Live Coding Active Live Coding
Passive Ø (worst case)
Active Ø (best case)

Constructive Ø (worst case)
Interactive Ø (best case)

Table 3. Theoretical Framing of Traditional and Active Live Coding according to the ICAP Framework.

吀栀e ICAP Framework has also been cited in computing education research. In their work on subgoal learning
via self-explanation, Margulieux and Catrambone use the ICAP Framework to motivate the approach of using
self-explanation to learn since the “higher” engagement modes are associated with more student learning. For
example, a Constructive approach to self-explain lecture material o昀昀ers greater learning bene昀椀ts to students than
a Passive approach where students simply listen to the lecture material. Indeed, Margulieux and Catrambone
found that when students self-explain the subgoals of the problems they completed, they perform be琀琀er on future
tasks than if they did not self-explain at all [20].

吀栀e studies by Deslauriers et al. and Margulieux and Catrambone are only two of the many works that have
established an empirical foundation for the ICAP Framework. Given the signi昀椀cant body of work that has
found evidence in support of the ICAP Framework, we would expect that learning activities in the Constructive
or Interactive engagement modes will result in more student learning than activities in the Passive or Active
engagement modes. 吀栀erefore, the ICAP Framework would suggest that students in the Active Live Coding
lectures should perform be琀琀er on exams and assignments than those in the Traditional Live Coding lectures.

2.3 Theoretical Framing of Active vs Traditional Live Coding
Cognitive Apprenticeship is the primary learning theory cited with live coding [29]. We have not found any
work that discusses live coding through the lens of the ICAP Framework, likely because the most common
form of live coding in the literature is traditional, instructor-led live coding, which is mostly a passive learning
activity. However, some clear theoretical di昀昀erences arise between Traditional and Active Live Coding, which are
summarized in Tables 2 and 3.

In terms of the Cognitive ApprenticeshipMethods, ALC includesmodeling, since the instructor is demonstrating
the programming process while verbalizing their thoughts, sca昀昀olding, since the instructor provides a small
activity for students to complete, articulation, since students discuss their solutions with each other, and re昀氀ection,
since students have the chance to compare their own approach to a peer’s approach and the instructor’s approach.
We do not consider ALC to engage the coaching Method, since each student does not get direct feedback or
guidance on their own approach, or the exploration Method, since students are not independently completing
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open-ended tasks. In contrast, TLC only employs the modeling Method since students are only watching and
listening to what the instructor is doing. 吀栀ere is no opportunity for students to complete sca昀昀olded activities or
discuss with peers. 吀栀erefore, we would expect the students in the ALC group to exhibit be琀琀er programming
processes than students in the TLC group since they have an opportunity to complete sca昀昀olded activities,
articulate their approach, and re昀氀ect on their approach compared to peers.

In terms of the ICAP Framework, we classify Traditional Live Coding (TLC) as either an Active or Passive
learning activity. Traditional, instructor led live coding is a Passive activity in the sense that students can simply
watch and listen as the instructor programs rather than coding along [15]. Of course, students may also be copying
down the instructor’s code or take notes during TLC sessions, which would constitute an Active engagement
mode. Watkins et al. found that in live coding lectures, some students type the instructor’s code, but students
do not display any other engagement behaviors besides the Active engagement mode of typing along with the
instructor. [40]. On the other hand, Active Live Coding (ALC) at the very least reaches the Constructive mode
since students are required to write code and reaches the Interactive mode depending on the quality of discussion
between students. In fact, in their original paper presenting the ICAP Framework, Chi and Wylie noted that a
learning activity consisting of problem solving and peer discussion, which is very similar to ALC in our study,
constituted an Interactive activity. 吀栀e reason it is questionable for whether ALC is Interactive, however, is due to
the quality of peer discussion: when a discussion is dominated by one student and the other is only listening,
then neither student is experiencing Interactive engagement. Based on the higher engagement level associated
with Active Live Coding, we would expect the learning gains to be greater in the ALC group.

3 RELATED WORK
吀栀e related work discussed in this section is organized by the three research questions we ask in this study:
programming processes, student outcomes, and lecture experience. In general, the line of work related to live
coding has existed since the early 2000s, with much of the early work reporting on instructor and student
perceptions of live coding [29]. More recently, however, the studies related to live coding have also studied student
behavior and outcomes, with speci昀椀c empirical analyses dedicated to each of the three research questions in this
study.

3.1 Impact of Live Coding on Programming Processes
Much of the early work on live coding uncovered students’ and instructors’ perceptions of live coding [4, 5, 18, 21].
For example, Bennedsen and Caspersen discussed how live coding can reveal implicit programming processes to
students, such as how to use an IDE and how to use incremental development [4]. Further, Kölling and Barnes
presented live coding through the lens of “apprentice-based learning,” such as how the instructor 昀椀rst models
the process to students, then students apply what they have observed, and 昀椀nally design their own open-ended
programming task [18], invoking the theory of Cognitive Apprenticeship [9]. Finally, Paxton went a step beyond
discussing the goals and theory of live coding by collecting survey responses from students [21]. Direct statements
from students in Paxton’s study showed that students enjoyed seeing the debugging process and how an expert
solves a programming task [21]. Although these papers showed that live coding aims to reveal the programming
process and that students reported seeing aspects of the programming process, none of these papers empirically
tested whether live coding actually imparts adherence to e昀昀ective programming processes such as incremental
development, debugging, and testing.

In order to 昀椀ll this gap from prior work, Shah et al. conducted a series of experiments to compare a live coding
pedagogy with a static-code one. In these experiments, half of the students in a large, CS1 course were taught via
live coding during lectures and the other half of students were taught with static-code examples [33]. All other
course components were identical for the two groups of students, such as assignments, lab sections, and exams.
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One of the goals of these studies was to test whether students in the live coding group adhered to incremental
development, debugging, and testing more than the students in the static-code group [33]. In two separate studies,
the authors collected snapshots of students’ code on programming assignments and coding assessments each time
students ran their code. 吀栀ey applied a set of programming process metrics, such as the Measure of Incremental
Development (MID) [32] to measure adherence to incremental development, the Repeated Error Density (RED)
[3] to measure how quickly students debugged an error, and frequency of diagnostic print statements to measure
how students tested and veri昀椀ed their code [30, 33]. However, in both studies from Shah et al., the authors found
no signi昀椀cant di昀昀erences across any of the programming process metrics.

Like earlier papers, the studies from Shah et al. frame their experiments on live coding through the lens
of Cognitive Apprenticeship [9], speci昀椀cally noting that instructor-led live coding only engages the modeling
Method of Cognitive Apprenticeship [33]. 吀栀is has been presented as a potential reason for the lack of signi昀椀cant
昀椀ndings related to students’ programming processes. As a result, part of the motivation for the present study is
to evaluate whether a learning technique that involves more Methods of Cognitive Apprenticeship—Active Live
Coding—results in greater adherence to incremental development and debugging practices than a technique that
only involves the modeling Method.

3.2 Impact of Live Coding on Course Outcomes
吀栀e 昀椀rst empirical studies to evaluate live coding primarily compared students’ exam scores between a static-code
group and a live-coding group in introductory CS courses. Rubin conducted the 昀椀rst comparative, empirical study
between live coding and static-code examples. In a large introductory programming course with four lecture
sections, Rubin selected two lecture sections to be live-coding groups and used the other two lecture sections
as control groups that would learn via static-code examples. Rubin found that the groups scored similarly on
the programming assignments and course exams, indicating a similar amount of student learning from the two
lecture styles. One di昀昀erence, however, between the experimental and control groups was that the live coding
group scored higher on the 昀椀nal project at the end of the course, which was graded manually for correctness
and clarity [27]. Importantly, in their interpretation of results, Rubin notes that students may have scored be琀琀er
on the 昀椀nal project because students’ debugging skills would be be琀琀er in the live coding group a昀琀er seeing the
instructor debug. However, Rubin did not conduct any empirical analyses on the students’ debugging processes.

In a similar follow-on study conducted by Raj et al., the authors wanted to 1) measure the cognitive load
associated with static code examples and live coding via surveys and 2) compare students’ learning via a pre-test
and post-test [25]. In terms of cognitive load, the authors found that live coding was associated with signi昀椀cantly
less extraneous cognitive load compared to the static-code group. Extraneous load relates to the load on working
memory that gets in the way of student learning, such as being distracted by other students during lecture or
hearing disorganized lecture material [25]. 吀栀e authors found no signi昀椀cant di昀昀erences on learning gain between
the pre-test and post-test, although the static-code group showed slightly higher, though not signi昀椀cant, learning
gain than the live coding group [25].

吀栀e series of works by Shah et al. also investigated the impact of live coding compared to static code examples
on students’ performance on assignments and exams. In the two experiments conducted by Shah et al., both found
similar outcomes between live coding and static code groups on exams and assignments, with no statistically
signi昀椀cant di昀昀erences between the groups [30, 33]. Even a deeper analysis into student performance on code
tracing questions, code writing questions, and code explaining questions showed similar student performance
across these di昀昀erent types of questions [33]. In general, these works from Shah et al. con昀椀rmed the prior 昀椀ndings
that compared a static code pedagogy to a live coding pedagogy related to course outcomes—in general, there is
li琀琀le to no di昀昀erence in student performance on exams and assignments between the two types of code examples
[25, 27, 30, 33].
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3.3 Impact of Live Coding on Lecture Experience
A signi昀椀cant amount of work has concerned the impact of live coding on students’ lecture experience, revealing
a variety of bene昀椀ts and drawbacks of live coding.

吀栀e bene昀椀ts of live coding on students’ lecture experience includes, but is not limited to, revealing the
programming process to students [18, 21, 26, 33], reducing cognitive load during lecture [25], and potentially
engaging more students during lecture [6, 21, 26, 31]. Many early works related to live coding, as mentioned
before, touted live coding as a way to expose the implicit programming process to students [18, 21]. In fact,
Shah et al. conducted an open-ended survey to students in both the live coding and static code lecture groups
in their study to understand the main perceived bene昀椀ts from students’ point of view [33]. 吀栀e qualitative
analysis revealed that students in the live coding group mentioned observing some part of the programming
process at a higher rate than students in the static code group. 吀栀e opposite was true for “Code Comprehension,”
however, as more students in the static code group reported that seeing the static code examples improved their
understanding of the code’s purpose than students in the live coding group [33]. Another key perceived bene昀椀t
of live coding, which has not yet been empirically tested, is that live coding results in higher student engagement
[6, 21, 26] (the type of engagement—cognitive, behavioral, or emotional [13]—is not typically speci昀椀ed in these
works). For example, student feedback in Paxton’s work showed that students found it fun to see the output of
running code [21]. Similarly, students’ feedback in Raj et al.’s study showed that they tend to type along with the
instructor as they live code [26]. It seems intuitive that students may be more engaged watching an instructor
program dynamically during lecture, but this claim has not been empirically tested. In fact, this lack of empirical
evaluation motivates part of our third research question, which is to measure students’ behavioral engagement
in the Traditional Live Coding and Active Live Coding lecture sections.

吀栀e drawbacks of live coding have also been extensively identi昀椀ed, such as the di昀케culty for students to follow
along with the instructor [26, 33] and the limited time in a lecture that results in a rushed live coding example
[6, 33, 39]. Shah et al. also conducted an open-ended survey to ask students about the drawbacks of the code
examples in their lecture for both the static-code and live coding groups [33]. Nearly 20% of the students in the
live-coding group suggested that the instructor should slow down, whereas only 2% of students in the static-code
group suggested the same thing [33]. 吀栀is feeling of a rushed lecture pace is likely because live coding simply
takes more time than static-code examples [6]. Indeed, Watkins et al. conducted a comparative study of live
coding and static-code examples in a single lab session. 吀栀ey found that the live coding session, which covered
the same material as the static-code session, took more than twice as long to complete [39]. Although the study
by Watkins et al. was in a lab section with 昀氀exible timing, when an instructor is bound to a 昀椀xed-time lecture,
there certainly exists a time constraint to complete all the material. 吀栀e impact of this rushed lecture pace is that
students are unable to follow along as easily. Shah et al. included an analysis on a set of anonymous, end-of-course
feedback items that asked students whether the instructors’ lecture style facilitated note-taking and held students’
a琀琀ention. In both questions, there was a statistically signi昀椀cant di昀昀erence showing that students in the live coding
lectures had a harder time note-taking and paying a琀琀ention [33]. Given these downsides, instructors must be
careful to keep their live coding sessions to a reasonable pace and to ensure that the class is able to follow along
with the example. Indeed, there are many factors that determine the e昀昀ectiveness of a live coding lecture [29],
revealing the di昀케culty of using live coding.

4 STUDY CONTEXT

4.1 Course Setup
吀栀e study was conducted in the Fall 2023 term at UC San Diego—a large, public, research-focused university in
North America. 吀栀e course was an advanced CS1 course taught in Java. 吀栀e course content included basic data
types, basic data structures, and object-oriented programming, such as classes, inheritance, and generics. 吀栀e
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course enrollment was 600 total students, who were split into a 400-person Active Live Coding lecture section
taught at 9:30AM on Tuesdays and 吀栀ursdays and a 200-person Traditional Live Coding lecture section taught at
11AM on the same days. Both lecture sections were taught by the same instructor. When students registered
for the course, they only knew the instructor of the course and did not know about the di昀昀erence between the
lecture sections (i.e., that one would be Traditional Live Coding and one would be Active Live Coding).

In a typical week of the course, students a琀琀ended two lecture sections for 80 minutes each and a mandatory
discussion section for 50 minutes. Students also completed weekly programming assignments (PAs), worksheets,
and textbook activities in an online textbook hosted on Stepik [35]. 吀栀e frequency and description of the di昀昀erent
course components is provided in Table 4.

Table 4. Key course components of the CS1 course.

Component Frequency Description

Lectures Twice per
week

Each lecture is 80 minutes and covers the main course
material. 吀栀e treatment condition of Active Live Coding
only applies to the lectures. An examination of the lecture
structure is in Table 5.

Programming
Assignments

(PAs)

Once per
week

Students apply the material they learned in lecture in a
weekly programming assignment graded for correctness.
Assignments are hosted on the Edstem online IDE [12].

Worksheets Once per
week

Students independently complete a paper-based worksheet
with code tracing, writing, and explaining questions.

Reading
儀甀izzes

Once per
week

Students independently complete interactive programming
activities in an online textbook and can submit responses
unlimited times without penalty.

Midterm
Exam

Once per
term

Students independently complete an in-person, proctored
exam for 2 hours, covering the concepts taught in the 昀椀rst
half of the course.

Midterm
Coding

Challenge

Once per
term

Students complete a proctored coding task on Edstem [12].
Students have 45 minutes to complete the task, which is
graded based on correctness.

Final Exam Once per
term

Students independently complete an in-person, proctored
exam for 3 hours, covering all concepts taught in the course.

Final Coding
Challenge

Once per
term

Just like the Midterm Coding Challenge, students
independently complete a proctored coding task in 45
minutes and are graded based on correctness.

Discussion Once per
week

Students may a琀琀end an in-person, 50-minute session to
review the material covered in that week’s lectures and
preview the next programming assignment.

O昀케ce Hours Everyday
(optional)

Students may a琀琀end o昀케ce hours held by course sta昀昀 (TAs,
tutors, etc.) to receive help on course materials. O昀케ce hours
were hosted M-F from roughly 9 A.M. to 7 P.M.
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4.2 Lecture Structure
Both the TLC and ALC lectures covered the same material and featured similar instructional activities as seen
in Table 5. Before the lecture started, the course sta昀昀 handed out an in-class worksheet to each student. 吀栀is
worksheet included small code examples and simple questions related to the upcoming lecture material for
additional practice. Each lecture, the instructor either asked students to complete the worksheet during the
lecture or assigned the worksheet questions to be completed before next lecture. 吀栀e lectures always began with
roughly 5 minutes of course announcements, followed by a pre-lecture questionnaire that students submi琀琀ed via
Gradescope [16] within a 10-minute window for a琀琀endance. 吀栀ese pre-lecture questions were meant to capture
students’ understanding of the lecture material before the lecture began and provided a basis for measuring
learning gain by asking the same questions a昀琀er the lecture. Following the announcements and pre-lecture
questions, the instructor reviewed the in-class worksheet from the previous lecture, typically taking up to 10 to
15 minutes.

In both ALC and TLC lectures, the instructor then began teaching new material through Traditional Live
Coding, complemented by handwri琀琀en notes. During these live coding sessions, the instructor occasionally
posed questions to the students, asking them to predict missing code segments or the output of the code. In
the ALC lecture only, the professor then initiated an Active Live Coding segment, marking the point where
the two lectures diverge. In the active live coding segment, the instructor provided a sca昀昀olded Java 昀椀le for
students to complete, which was a result of the previous Traditional Live Coding segment. Students usually
had to write a simple method or implement the key logic of a method. During this phase, students forked the
instructor’s workspace on Edstem and spent 5 to 7 minutes completing missing code. Following this, they spent 3
to 5 minutes discussing their approach with peers, a process similar to peer instruction [22]. Finally, the professor
explained the solution using Traditional Live Coding and continued to cover the remainder of the new content.
Typically, the instructor used between 1 to 3 ALC components in each lecture. 吀栀e only di昀昀erence between the
TLC and ALC lectures was the active coding done by students and the peer discussion following the active coding.
Importantly, both lectures had traditional live coding components, but only the ALC lecture had the active live
coding component.

During the TLC section, the instructor used this time to live code the same material that students were asked
to write during the ALC lecture. However, given that the ALC components take signi昀椀cantly longer than simply
using TLC to show the same material, the instructor could slow down during parts of the TLC lecture or spend
more time explaining and debugging an error. 吀栀e lectures all ended with post-lecture questions that took
approximately 5 minutes. Students were free to leave once they 昀椀nished answering the questions.

4.3 Coding Challenges
An important part of the course setup and data collection for RQ1 were the Midterm and Final Coding Challenges.
In both coding challenges, students were given 45 minutes to 1) create new methods and classes and 2) write
accurate tests for their implementations. 吀栀ese summative assessments were developed by the research team
to evaluate how students create programs on their own in a controlled environment. In the Midterm Coding
Challenge (MCC), students were given a partially-complete class with 昀椀elds and a valid constructor and were
tasked with adding a method to the existing class, writing a new class and de昀椀ning some 昀椀elds, a constructor,
and methods for that class, and creating a tester class that tests both the given class and newly created class. 吀栀e
concepts in the MCC included string concatenation, conditionals, incrementing of variables, and testing. In the
Final Coding Challenge, students were tasked with writing two functions, one of which computed the average of
a given column in a 2-D array and the other returned a cropped version of the 2-D array. 吀栀e concepts on the FCC
included nested for-loops, array indexing, modifying the elements in an array, and testing edge cases. For both
coding challenges, students were graded on correctness based on the amount of test cases that their code passed.
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Table 5. The di昀昀erent instructional components used during the two lectures.

Activity Description
Course Announce-
ments

Instructor provides due date reminders and discusses
course logistics

Pre-Lecture 儀甀estions Students answer two multiple-choice questions on Grade-
scope for a琀琀endance credit

Worksheet Review Instructor solves a problem from an in-class worksheet
on a projector

Handwri琀琀en Notes Instructor handwrites notes on a blank piece of paper in
front of the class using a projector.

Traditional Live Cod-
ing

Instructor codes in front of students and prompts ques-
tions to the class

Active Live Coding Students extend the code from the instructor’s workspace
for a琀琀endance credit

Post-Lecture 儀甀estions Students answer two more questions on Gradescope for
a琀琀endance credit

4.4 Participants
In accordance with our human subjects protocol, students consented to release their data for research purposes
at the start of the course. At the start of the term, the members of the research team sent out a consent form to
all students in the class that described the general goals of the research project and asked students whether 1)
they were at least 18 years old and 2) consented to release their data for research purposes. 吀栀e instructor of
the course was not allowed to see the list of consenting students at any point in the research project. A total of
521 students across both lecture sections agreed to release their data. 吀栀is human subjects protocol and consent
process was only used to collect student data related to their programming processes.

At the start of the quarter, we distributed a survey to gather students’ demographics, con昀椀dence level, and
reason for taking the course. 吀栀e students’ information in each group is summarized in Table 6. 吀栀e students had
very similar distributions for school year and we also did not see any glaring di昀昀erences between the racial or
gender makeup of the two lecture sections. 吀栀ere was a slight di昀昀erence in the metrics related to con昀椀dence, as
more students in the ALC lecture responded with a “4” (con昀椀dent) and “5” (very con昀椀dent) on their con昀椀dence to
do well in the course. Similarly, more students in the ALC lecture would be satis昀椀ed with an “A” grade than TLC
students.

In terms of demographics among the consenting students, 61% of students in the ALC group identi昀椀ed with
he/him/his pronouns and 36% identi昀椀ed with she/her/hers pronouns compared to 62% and 34% of students in
the TLC group, respectively. Furthermore, the self-identi昀椀ed racial makeups for both groups consisted of about
70% Asian or Asian American students, 15% Chicanx or Latinx students, and 15% White or Caucasian students.
吀栀e remaining students self-identi昀椀ed into racial groups with less than 10 students and we do not disclose these
groups in accordance with our human subject protocol.

5 METHODS

5.1 RQ1 Methods: Programming Processes
To collect data regarding students’ programming processes, we conducted two coding challenges, as discussed in
Section 4.1. Before the experiment began, we reached out to Edstem [12] about obtaining snapshots of students’

ACM Trans. Comput. Educ.

 



12 • Shah et al.

Table 6. Comparison between Active Live Coding and Traditional Live Coding lecture sections.

School Year
First Second 吀栀ird Fourth Fi昀琀h

ALC 51.9% 24.4% 17.1% 5.1% 0.6%
TLC 48.4% 24.2% 18.5% 8.3% 0.6%

Con昀椀dence rating in ability to do well in the course
1 (low) 2 3 4 5 (high)

ALC 1.0% 4.8% 25.6% 47.5% 21.2%
TLC 1.9% 7.0% 31.2% 40.1% 19.8%

Minimum 昀椀nal grade that students would be satis昀椀ed with
A-range B-range C-range

ALC 70.1% 25.6% 3.2%
TLC 64.3% 32.5% 3.2%

code every time they compiled their code by clicking the “Run” bu琀琀on during a programming task. 吀栀e team
at Edstem agreed, provided that we show the Edstem sta昀昀 the consent form students agreed to at the start of
the term and the responses to the form showing which students consented. A昀琀er sending the list of consenting
students to Edstem, we obtained snapshots of students’ coding workspace each time they compiled and ran
their code in the coding challenges. Using this data, we analyzed students’ programming processes across three
dimensions: 1) adherence to incremental development, 2) error frequencies, and 3) programmer productivity.

5.1.1 Comparing Adherence to Incremental Development. Incremental development has been speci昀椀cally cited
as a perceived learning bene昀椀t of live coding [29]. Shah et al. already conducted an analysis using the Measure
of Incremental Development (MID) to compare students in a static-code pedagogy to a live-coding one [33].
吀栀erefore, we aimed to replicate this analysis for our experiment. We applied the language-agnostic metric to our
data since the MID has been tested on simple programming tasks between one to three functions long, which
precisely describes our coding challenges [32]. 吀栀e MID is publicly-available as a Python package1 and the source
code is freely available, allowing us to access the code and modify its functionality to 昀椀t the Java programming
language.

We computed MID values for all Midterm and Final Coding Challenge submissions. 吀栀e sample size for both
analyses was 345 students for the Active Live Coding group and 185 students for the Traditional Live Coding
group. Given this su昀케ciently large sample size, we conducted two-sample t-tests [24] to detect any di昀昀erences, if
any, between the two groups.

5.1.2 Comparing Error Frequencies and Debugging. For debugging and error-frequency measures, we applied the
Repeated Error Density (RED) developed by Becker [3]. 吀栀e RED uses the output of student code to track the
frequency of error messages and penalize students for consecutive errors of the same type [3]. For example, three
consecutive syntax errors in a row will result in a higher RED score than three syntax errors with at least one
compilation between each error [3]. A higher RED value indicates a greater frequency of a particular error.

To calculate the RED, we wrote a script to iterate through each students’ snapshots, compile the Java 昀椀le
for each snapshot, and capture the output of the program execution. We parsed the outputs to identify which
snapshots results in errors and which errors occurred. As with the MID analysis, we conducted two-sample t-tests
to compare the two lecture sections across the various error types on the Midterm and Final Coding Challenges.
1https://pypi.org/project/measure-incremental-development

ACM Trans. Comput. Educ.

 



An Empirical Evaluation of Active Live Coding in CS1 • 13

吀栀e most common errors that students encountered were Symbol Not Found, Missing Identi昀椀er, Syntax Error,
Type Mismatch, Non-Static Access, and Rede昀椀nition Con昀氀ict errors, described in Table 7.

Table 7. Description of the errors tracked for RED Analysis

Error Name Error Description

Symbol Not Found A reference to a variable or method cannot be located by the
compiler

Missing Identi昀椀er Compiler encounters a statement or expression that requires
an identi昀椀er but 昀椀nds something else instead

Syntax Error
Compiler encounters a statement or expression that requires
an syntactical token (such as a semicolon, parenthesis, etc.)
but does not 昀椀nd the token

Type Mismatch An a琀琀empt to assign or operate on a value of one data type
with another incompatible data type

Non-Static Access An a琀琀empt to access a non-static variable or method from
within a static context

Rede昀椀nition Con昀氀ict An a琀琀empt to de昀椀ne a variable, method, or class with the
same name as one that already exists in the current scope

5.1.3 Comparing Programmer Productivity. Finally, we collected data about programmer productivity on the
coding challenges in terms of the number of compilations that students conducted before their 昀椀nal submission
and the number of requirements correctly implemented. 吀栀e number of compilations is easily derived based on
the number of snapshots for each student in our dataset. To determine the number of requirements satis昀椀ed, we
used student grades on the MCC and FCC since these challenges were graded on whether or not they passed a set
of hidden test cases that were run only a昀琀er students made their 昀椀nal submission. As with the analyses related to
incremental development and error frequencies, We conducted two-sample t-tests across the comparisons for
programmer productivity.

吀栀ough we aimed to fully replicate the analysis from Shah et al., we were unable to collect data related to the
time to completion. 吀栀ough we had timestamps in the snapshot data from Edstem, we did not know the start
time for each student. As a result, we did not analyze time to completion in this study.

5.2 RQ2 Methods: Course Performance
Our second research question compares 1) course grades, including assignments, a琀琀endance, and exam scores,
and 2) performance across code tracing and code writing questions on the exams.

5.2.1 Comparing Student Grades. As discussed in Section 4.1, in a typical week, students completed a reading
quiz, a琀琀ended two lectures, a琀琀ended a discussion section, completed a programming assignment, and completed a
homework worksheet. Students also completed two exams during the term. Overall, students accumulated grades
the following categories: lecture a琀琀endance, programming assignments, exams, and worksheets. To compare
student grades, we compared 昀椀nal grades across these various course components using two-sample t-tests.

5.2.2 Comparing Student Performance on Code Tracing and Code Writing儀甀estions. Although overall course
grades is an important measure of students’ learning outcomes, it is a coarse measurement of students’ skills. As
a result, we aimed to compare student performance across various types of exam questions, as done by Shah et al.
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Table 8. Counts of each question type on the midterm and final exams.

儀甀estion Type Midterm Final
Basic 儀甀estions 2 1
Code Writing 4 4

Code Tracing (Loops) 0 4
Code Tracing (No Loops) 4 5

Code Explaining 1 0

[33]. For this, two members of the research team classi昀椀ed each question from the midterm and 昀椀nal exam into
the following question types, which were described by Venables et al. [38]:

• Code explaining questions involve students describing the purpose of a piece of code in plain English.
• Code writing questions involve students generating blocks or lines of code. 吀栀ese questions may ask

students to 昀椀ll in the blank of a nearly-completed program or even write an entire function.
• Code tracing (without loops) questions involve students predicting the output of a piece of code from a

given input, provided that the code does not include any loops. Venables et al. distinguish code tracing
questions based on whether or not there is a loop (while or for) in the provided code because of the
added complexity of the loop.

• Code tracing (with loops) are the same as the item above, except applies to code tracing questions
where the code includes a while or for loop.

• Basic questions involve more students’ answering conceptual or theoretical questions that do not fall
into the categories above.

吀栀e counts of each question type for each exam are outlined in Table 8.

5.2.3 Comparing Student Learning Gain During Lecture. A deeper description of the methods related to learning
gain during lecture can be found in previously-published work from this experiment [2]. To calculate learning
gain, we analyzed the pre- and post-lecture question results. At the start of the experiment, we aimed to have
the pre- and post-lecture questions be isomorphic [43], but a昀琀er 3 weeks, we made the pre- and post-lecture
questions to be the exact same due to concerns about whether the questions were truly isomorphic.

Our method for calculating learning gain is the same as Porter et al. in their study related to learning gain
in Peer Instruction [23]. In order to make the analysis agnostic to di昀昀erent correctness levels between the two
groups in the pre-lecture questions, the calculation of learning gain focuses only on the Potential Learner Group
(PLG)—the group who answered the pre-lecture questions incorrectly. 吀栀e learning gain metric for each question
is the percentage of PLG students that correctly answered the post-lecture question.

5.3 RQ3 Methods: Lecture Experience
Our third research question consists of 1) identifying student perceptions of Active Live Coding, 2) comparing
perceptions of the Traditional Live Coding components, which occurred in both lectures, and 3) comparing
student behavioral engagement during lectures.

5.3.1 Identifying Student Perceptions of Active Live Coding. In Week 4 of the course, we required students to
complete a re昀氀ection survey that counted for 1% of weekly programming assignment. 吀栀e survey was sent to all
students, but one section of the survey was speci昀椀cally for students who were part of the Active Live Coding
(ALC) lecture section. In total, 406 students responded to the survey out of the 531 total students that 昀椀nished the
course, resulting in a response rate of 76.5%. Of the 406 total responses, 271 were in the ALC group. One of the
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questions that we asked speci昀椀cally to ALC students was: “On a scale of 1 to 5, how helpful is the active coding
component of lectures in which you write a small part of the live coding example?” We also asked an open-ended,
follow-up question that read: “Please give a brief explanation of your rating on the active coding component.”

We conducted a bo琀琀om-up, thematic analysis (also called “open-coding”) of the 271 student responses [17]. In
this process, two members of the research team conducted several rounds of independently coding the data and
then deliberating together to create a 昀椀nal code book that includes the variety of themes seen in the student
responses. 吀栀e two coders could apply multiple labels to a single student response if appropriate. In the 昀椀rst
round, the two coders independently analyzed the 昀椀rst 30 responses from students and wrote down one or
multiple themes for each answer. For each theme, the coders wrote down a general description of the meaning of
that theme. A昀琀er the independent coding, the coders met to go over the themes they identi昀椀ed and come to a
consensus on the 昀椀rst iteration of the code book, which was only based on the 昀椀rst 30 student responses at the
time. During this deliberation phase, the coders not only decided on the themes and descriptions for the code
book but also came to a consensus on the theme(s) for each of the 昀椀rst 30 responses. In the second round of
coding, the coders analyzed the next 30 student responses. In the independent coding phase of the round, the
coders could apply an existing theme from the code book or could propose a new theme if an existing theme did
not 昀椀t. Further, the coders could modify or add to the existing description of the themes to more accurately re昀氀ect
the meaning of the theme. 吀栀e two coders then met again to create the second iteration of the code book and to
agree on codes for the 30 responses they individually reviewed. 吀栀is process continued for four more rounds,
with the coders completing 30 responses in the third round, 60 responses in the fourth round, 60 responses in the
昀椀昀琀h round, and the remaining 61 responses in the sixth round.

吀栀e 昀椀nal code book can be found in Table 19 in the Appendix.

5.3.2 Comparing Perceived Benefits of Traditional Live Coding. 吀栀ough the analysis above uncovers the percep-
tions of Active Live Coding (ALC), we wanted to compare student perceptions of the Traditional Live Coding
(TLC) components of the lectures, since both groups of students were exposed to this lecture technique. 吀栀e goal
of this analysis was not only to replicate the analysis conducted by Shah et al. [33] but also to determine whether
there is a di昀昀erence in student perceptions of TLC between students who have been exposed to ALC and who
have not. To make this comparison while also replicating the analysis from Shah et al., we included the same
survey question as Shah et al. in the Week 4 survey mentioned above. 吀栀e survey question reads: “What are some
speci昀椀c things about the live-coding examples that have been helpful for your learning?”. As mentioned above, 406
students responded to this survey.

Our open-coding process for this survey question relied on the same code book developed by Shah et al. for
the same question [33]. 吀栀erefore, we did not undergo the same open-coding process as the analysis for the
perceptions of ALC since the code book was already developed. Instead, two coders (the same two coders who
conducted the analysis of perceptions of ALC) studied the code book from Shah et al. and began the process
of independently coding the responses and then deliberating to resolve disagreements. 吀栀e coders could apply
multiple labels to a student response. 吀栀ough the code book was already created, we were concerned that there
may be responses in our data that did not 昀椀t the existing code book. 吀栀erefore, we instructed the coders to modify
or expand the code book if needed. Ultimately, however, our coders did not need to make any changes to the
original code book. 吀栀e coders analyzed the 406 responses across 昀椀ve rounds of analysis. 吀栀e coders analyzed 50
responses in the 昀椀rst round, 75 in the second round, 75 in the third round, 100 in the fourth round, and 106 in the
昀椀昀琀h round. 吀栀e 昀椀nal code book is the same as the code book presented in the appendix of the original work by
Shah et al. [33].

One unique situation arose with our analysis of this open-ended question, which was intended to ask students
about only the Traditional Live Coding portion of the lectures. Several students in the ALC group responded
to this question with a response that discussed their perception of Active Live Coding rather than Traditional
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Table 9. Condensed rubric used by classroom observers, developed by Lane and Harris [19].

Engaged Criteria Disengaged Criteria
Computer
Use

Student is taking notes or has in-
structor’s code open

Student is using the computer for
non-class purposes or is doing
homework for the class

Looking/
Listening

Student is looking at the instructor
and nodding along to demonstrate
a琀琀ention

Student is not looking at the pro-
jector and instead is distracted by
phone, laptop, etc.

Student
Interaction

Student is not talking to neighbors
during instruction

Student is talking or laughingwith
neighbors during instruction

Live Coding. 吀栀is likely occurred since students in the ALC group assumed that the active coding component
is simply part of a “live coding” pedagogy. 吀栀erefore, in our qualitative analysis, we instructed the two coders
to indicate when they felt that an answer was speci昀椀cally about Active Live Coding, such as mentioning the
process of coding themselves or forking the instructor’s workspace. In total, the coders identi昀椀ed 52 of the 406
responses that were speci昀椀c to Active Live Coding. We excluded these answers from the analysis to compare
perceptions of live coding. However, we still conducted an analysis of these 52 responses using the code book
developed for the Active Live Coding analysis (Figure 2).

Since students answered the question about their perceptions of Active Live Coding only in a later part of the
same survey, we did not include these 52 responses in the other analysis to avoid duplicate perspectives from
students. Instead, we conducted a separate qualitative analysis using the same code book from the Active Live
Coding perceptions analysis. 吀栀e goal of this extra analysis was to ensure that we did not miss additional, unique
perspectives of Active Live Coding.

吀栀e 昀椀nal code book that we created can be found in Table 20 in the Appendix.

5.3.3 Comparing Behavioral Engagement During Lecture. Our analysis on student behavioral engagement is part
of a previous publication [31].

To measure the behavioral engagement level of students during lectures, we used the Behavioral Engagement
Related to Instruction (BERI) protocol [19].吀栀e BERI protocol is an observation method created by Lane and Harris
that was speci昀椀cally designed to measure student engagement in large lecture halls that exceed one hundred
students [19]. 吀栀e method has been tested for validity and reliability and has been shown to accurately capture
student engagement levels of an entire lecture hall with just one classroom observer [19]. In the BERI protocol,
an observer with a clear understanding of the course material and knowledge of the BERI protocol positions
themselves in a seat among the students during the lecture. At the beginning of the lecture, the observer selects
10 students to observe throughout the lecture. 吀栀en, several times throughout the lecture, the observer spends
roughly 15 seconds observing each of the 10 students and applies a rubric, displayed in Table 9, to determine
whether each student is engaged or disengaged.

To apply the BERI protocol, we used two observers, even though Lane and Harris showed that one observer is
su昀케cient for reliable data collection [19]. Among the two observers, we had one primary observer who a琀琀ended
every lecture throughout the term and a secondary observer a琀琀ended roughly half of the lectures (one lecture per
week rather than both lectures per week). When the two observers were at the same lecture, they coordinated
their data collection times so that the observations happened at the same time. 吀栀e observers made sure to sit in
di昀昀erent parts of the classroom in the same lecture to cover a greater variety of seating locations. Furthermore,
to ensure consistency between lecture sections, the observers made sure to sit in the same relative area of the
classroom for the two lectures so that the data collected on a speci昀椀c day would be comparable between the
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Table 10. Comparison of Measure of Incremental Development (MID) on Midterm Coding Challenge (MCC) and Final
Coding Challenge (FCC). A lower MID value indicates more adherence to incremental development.

Item Group N Mean Std
dev t-stat p value Cohen’s

D

All MCC Submissions Active LC
Traditional LC

345
185

1.71
1.54

2.43
2.01 0.82 0.41 0.08

Perfect Scores on MCC Active LC
Traditional LC

223
123

1.21
1.08

1.74
1.29 0.76 0.45 0.08

All FCC Submissions Active LC
Traditional LC

338
184

1.73
2.04

2.30
2.39 -1.42 0.16 -0.13

Perfect Scores on FCC Active LC
Traditional LC

219
123

1.40
2.08

1.72
2.67 -2.87 <0.01* -0.32

two lectures. 吀栀e observers aimed to be as discrete as possible during lectures as to not cause students to act
di昀昀erently. Our observations happened roughly every 10 to 15 minutes during the lecture. 吀栀e observers ensured
that they collected data at least once per instructional activity (see Table 5). For each data collection moment, the
observers recorded how many of their 10 students were engaged. With this frequency of data collection, we were
able to create a representation of how student engagement changes throughout a lecture as the instructor shi昀琀s
between instructional activities.

6 RESULTS

6.1 RQ1 Results
6.1.1 Comparing Adherence to Incremental Development. Table 10 compares student adherence to incremental
development, measured via the Measure of Incremental Development [32], on the Midterm Coding Challenge
(MCC) and Final Coding Challenge (FCC). 吀栀e table compares MID scores, where a lower value indicates
more adherence to incremental development, across all submissions for the MCC and FCC. However, we also
wanted to see whether there was a di昀昀erence in MID scores between the students who correctly solved the
coding challenges, since students who struggle to get the correct answer may exhibit di昀昀erent programming
processes. Across all submissions, we found no statistically signi昀椀cant di昀昀erences in terms of adherence to
incremental development. However, when we isolated our analysis to only the perfect scores so that measurement
of incremental development did not include students who struggled to complete the task, we see that the Active
Live Coding group had a higher adherence to incremental development on the FCC.

6.1.2 Comparing Error Frequencies and Debugging. Tables 11 and 12 shows the comparison of students’ error
frequencies, measured via the Repeated Error Density [3], on the Midterm Coding Challenge and Final Coding
Challenge, respectively. To interpret the RED, a lower value indicates a lower error frequency. We ran the RED for
the errors described in Table 7. However, for the FCC, there was no Non-Static Access error because there were
no static methods involved in the FCC. 吀栀erefore, we exclude this error for our analysis on the FCC. As seen in
Tables 11 and 12, we found no statistically signi昀椀cant di昀昀erences in any of the error frequencies on the MCC or
FCC. Despite the lack of signi昀椀cance, the e昀昀ect sizes tended to favor the TLC group, who had lower average RED
values. However, the non-signi昀椀cance of the di昀昀erences ultimately points to a similar error frequency between
the groups, despite the trend in the small e昀昀ect sizes.
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Table 11. Comparison of Repeated Error Density (RED) on Midterm Coding Challenge (MCC). A lower RED value indicates
less frequent errors.

Item Group N Mean Std
dev t-stat p value Cohen’s

D

Symbol Not Found Active LC
Traditional LC

345
185

1.91
1.34

3.58
3.15 1.84 0.07 0.17

Missing Identi昀椀er Active LC
Traditional LC

345
185

0.10
0.15

0.6
0.76 -0.88 0.38 -0.08

Type Mismatch Active LC
Traditional LC

345
185

0.04
0.02

0.18
0.11 0.95 0.34 0.09

Syntax Error Active LC
Traditional LC

345
185

0.55
0.51

2.10
1.91 0.18 0.86 0.02

Non-Static Access Active LC
Traditional LC

345
185

0.05
0.05

0.42
0.42 0.07 0.95 0.01

Rede昀椀nition Con昀氀ict Active LC
Traditional LC

345
185

0.16
0.09

1.15
0.34 0.71 0.48 0.06

Table 12. Comparison of Repeated Error Density (RED) on Final Coding Challenge (FCC).

Item Group N Mean Std
dev t-stat p value Cohen’s

D

Symbol Not Found Active LC
Traditional LC

338
184

0.60
0.65

1.59
2.04 -0.3 0.77 -0.03

Missing Identi昀椀er Active LC
Traditional LC

338
184

0.02
0.03

0.19
0.34 -0.57 0.57 -0.05

Type Mismatch Active LC
Traditional LC

338
184

0.28
0.15

1.19
0.56 1.40 0.16 0.13

Syntax Error Active LC
Traditional LC

338
184

0.59
0.38

1.83
1.06 1.41 0.16 0.13

Rede昀椀nition Con昀氀ict Active LC
Traditional LC

338
184

0.03
0.04

0.17
0.25 -0.48 0.63 -0.04

6.1.3 Comparing Programmer Productivity. Tables 13 and 14 shows the two dimensions of programmer produc-
tivity that we collected: correctness on the coding challenges (Table 13) and the number of compilations until
submission (Table 14). We did not 昀椀nd any signi昀椀cant di昀昀erences in terms of p-values, though the small e昀昀ect
sizes favor the TLC group. Notably, as seen in Table 13, the TLC group scored 4 to 5 percentage points higher
than the ALC group in both coding challenges. Similarly, across both coding challenges and even among perfect
scores on coding challenges, there was no statistically signi昀椀cant di昀昀erent between the groups.

6.2 RQ2 Results
6.2.1 Comparing Student Grades. Table 15 compares scores on textbook activities, lecture a琀琀endance, discussion
a琀琀endance, programming assignment (PA) grades, worksheet grades, 昀椀nal exam score, and overall course grades
between the Active Live Coding and Traditional Live Coding groups. We did not detect any statistically signi昀椀cant
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Table 13. Comparison of correctness on Midterm and Final Coding Challenges.

Item Group N Mean Std
dev t-stat p value Cohen’s

D

MCC Correctness Active LC
Traditional LC

348
183

84.2
88.2

25.7
21.9 -1.79 0.07 -0.16

FCC Correctness Active LC
Traditional LC

348
183

78.4
83.2

34.1
32.4 -1.57 0.12 -0.14

Table 14. Comparison of number of compilations until final submission on Midterm Coding Challenge (MCC) and Final
Coding Challenge (FCC)

Item Group N Mean Std
dev t-stat p value Cohen’s

D

All MCC Submissions Active LC
Traditional LC

346
185

20.8
18.5

16.5
13.8 1.63 0.10 0.15

All FCC Submissions Active LC
Traditional LC

334
182

19.2
18.2

14.6
12.2 0.83 0.41 0.08

Perfect Scores on MCC Active LC
Traditional LC

223
123

15.6
14.3

12.3
10.3 1.03 0.30 0.12

Perfect Scores on FCC Active LC
Traditional LC

218
122

17.6
16.3

14.3
11.6 0.85 0.40 0.10

di昀昀erences except for the 昀椀nal exam scores, which showed the Traditional Live Coding group scoring higher
than the Active Live Coding group by 4 percentage points.

However, in order to more fully examine the factors that led to this di昀昀erence in 昀椀nal exam grades, we
conducted a Multiple Linear Regression (MLR) analysis [1] in order to determine the relative impact of the
di昀昀erent independent variables we collected—prior programming experience, university major, and year-in-
university. 吀栀e results of our MLR analysis is shown in Table 16. In Table 16, there is a baseline value in each
category: the baseline for Year is 昀椀rst-year, the baseline for Major is computer science, the baseline for Prior
Experience is no, and the baseline for Treatment is the Traditional Live Coding group. Each coe昀케cient value in
the table shows the relative e昀昀ect of that predictor compared to its baseline value. For example, to interpret the
Treatment grouping, we would say that all else being equal (such as Year, Major, and Prior Experience), a student
in the Active Live Coding condition is expected to score 0.53 percentage points lower on the 昀椀nal exam than if
they were a student in the Traditional Live Coding condition. However, the e昀昀ect of the ALC treatment is not
statistically signi昀椀cant, as seen from the right-most column with the p values. Each of the groupings besides the
Treatment condition had a predictor with a signi昀椀cant association with 昀椀nal exam grades: second-year, math
major, other major, and prior programming experience. 吀栀e results of this MLR analysis reveal that the signi昀椀cant
di昀昀erence shown in Table 15 is not due to the Treatment condition but rather can be explained through di昀昀erences
in Year, Major, and Prior Experience.

Finally, we conducted a Leave-One-Out analysis [37] to understand the relative impact of each grouping (Year,
Major, Prior Experience, and Treatment) on our model’s performance, which is shown in Table 17. 吀栀e results of
the Leave-One-Out analysis are shown in order of signi昀椀cance, where the Treatment condition has the lowest
impact on model performance, then Year, then Major, and 昀椀nally Prior Experience, which has the largest impact
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Table 15. Comparison of overall course performance between live-coding and static-code groups

Grade (out of 100)

Item Group N Mean Std
dev t-stat p value Cohen’s

D

Textbook Activities Active LC
Traditional LC

348
183

97.6
98.3

12.8
8.4 -0.69 0.49 -0.06

Lecture A琀琀endance Active LC
Traditional LC

348
183

95.4
95.2

14.5
15.4 0.12 0.9 0.01

Discussion A琀琀endance Active LC
Traditional LC

348
183

97.1
95.5

13.8
17.4 1.18 0.24 0.11

PA Grades Active LC
Traditional LC

348
183

95.9
94.3

9.2
12.2 1.66 0.1 0.15

Worksheet Grades Active LC
Traditional LC

348
183

92.2
92.8

8.9
9.6 -0.65 0.52 -0.06

Final Exam Active LC
Traditional LC

348
183

85.1
89.0

16.5
12.4 -2.8 0.01* -0.25

Overall Grade Active LC
Traditional LC

348
183

91.8
93.2

9.5
8.4 -1.71 0.09 -0.16

Table 16. Least squares regression model fi琀琀ed with students’ Year, Major, Prior Experience, and Treatment Condition as
independent variables and Final Exam Score as dependent variable.

Grouping coef N std err t p value

Y-intercept const 86.14 N/A 1.46 59.15 0.00

Year

Second-Year 2.75 199 0.97 2.84 <0.01*
吀栀ird-Year 2.21 146 1.13 1.96 0.05
Fourth-Year -1.13 57 1.51 -0.75 0.45
Transfer 4.46 1 8.59 0.52 0.60

Major
Elec. Engineer. -2.11 53 1.36 -1.56 0.12
Math -2.55 164 1.07 -2.38 0.02*
Other -3.68 160 1.17 -3.13 <0.01*

Prior Experience Yes 7.60 459 1.11 6.83 <0.01*
Treatment ALC -0.53 348 0.83 -0.64 0.52

Table 17. Impact of each predictor on adjusted r-squared value for final exam grades.

Model Adj. '2 Adj. '2 Di昀昀 from Full Model
Full Model 0.159 N/A

Full Model, NO Treatment 0.159 0.0
Full Model, NO Year 0.151 -0.008
Full Model, NO Major 0.144 -0.015

Full Model, NO Prior Experience 0.073 -0.086
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Fig. 1. A comparison of student grades on various types of questions on the Final Exam

on the model’s predictive power. Interestingly, there is no di昀昀erence in the Adjusted '2 value when we remove
Treatment from the model, showing the minimal impact of our treatment compared to the other groupings.

6.2.2 Comparing Student Performance on Code Tracing and Code Writing儀甀estions. Finally, just as Shah et al. had
done in their study, we compared student performance across code tracing, code writing, and basic, conceptual
questions between the two lecture styles. Figure 1 shows the comparison of student performance, which revealed
no statistically signi昀椀cant di昀昀erences between the two groups.

6.2.3 Comparing Student Learning Gain During Lecture. Our learning gain metric is the proportion of students
who incorrectly answered the pre-lecture question incorrectly but correctly answered the corresponding post-
lecture question. Since this metric is sensitive to the number of students in the Potential Learning Group (PLG),
we compared the rate of correctness of students on the pre-lecture questions for both lecture groups. 吀栀e rates of
correctness were similar throughout the term, with the ALC lecture having an average of 43.1% of students in the
PLG and the TLC lecture having 40.8% of students in the PLG.

Table 18. Comparison of students’ learning gain.

Lecture
Condition

Num
儀甀estions

Learning
Gain

z
stat

p
val

Cohen’s
H

ALC
TLC

2768
1323

50.7%
53.7% -1.85 0.06 0.06

Table 18 shows that there is a 3 percentage point di昀昀erence in the aggregate learning gain throughout the term.
吀栀e “Num 儀甀estions” column represents the total number of pairs of pre- and post-lecture questions we analyzed
during the quarter from the PLG. According to a z-test of proportions [28], this di昀昀erence is not statistically
signi昀椀cant. 吀栀e low Cohen’s H [11] e昀昀ect size implies a relatively small magnitude of the di昀昀erence in the learning
gain.
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Fig. 2. A comparison of student responses to the question “Please give a brief explanation of your rating on the active coding
component” for the Active Live Coding group (= = 271).

6.3 RQ3 Results
Our results for RQ3 can be divided into three parts. First, we conducted a thematic analysis on students’ perceptions
of Active Live Coding. Second, we compared students’ perceived bene昀椀ts of their respective lecture style to detect
di昀昀erences in student perceptions. 吀栀ird, we conducted an observational study to measure student behavioral
engagement during the di昀昀erent lecture styles throughout the term.

6.3.1 Identifying Student Perceptions of Active Live Coding. Figure 2 shows open-ended student responses to
the question: “Please give a brief explanation of your rating on the active coding component.” 吀栀e column titled
Label represents the codes that our research team generated during the coding process and the Category
column represents a post-analysis grouping of the labels. 吀栀e percentages do not sum to 100% because each
student response could have multiple labels. 吀栀e categories of perspectives include bene昀椀ts, such as helping with
performance on course components, helping students’ programming processes, improving student understanding
of concepts, and keeping students engaged with active learning, and drawbacks, such as the directions for the
active coding component being too vague and lectures being rushed due to Active Live Coding. 吀栀e most common
response students mentioned was that Active Live Coding “reinforces understanding” (33.6%) of key concepts,
which students typically mentioned was due to the “hands on experience” (16.6%) of coding themselves. Students
also appreciated that active live coding “applies lecture material” (23.7%) they just saw in class. We also saw
that students appreciated how Active Live Coding “provides immediate feedback” (10.0%) on their programming
solution since they see other students’ approaches and the instructor’s solution.
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Fig. 3. A comparison of student responses to the question “What are some specific things about the live-coding examples
that have been helpful for your learning?” for the TLC (= = 134) and ALC (= = 220) groups.

6.3.2 Comparing Perceived Benefits of Active and Traditional Live Coding. Figure 3 shows the comparison of
student responses to the question “What are some speci昀椀c things about the live-coding examples that have been
helpful for your learning?” A darker green color represents a higher frequency of students that mentioned that
label. We generally saw similar frequencies between the two groups, though one prominent di昀昀erence we noticed
was nearly 40% of students in the TLC lecture mentioned debugging as a bene昀椀t of the live coding examples,
whereas only 20% of students in the ALC lecture noted this. Both of these values are in stark contrast to the work
from Shah et al., who found that only 13% of students mentioned debugging as a bene昀椀t of live coding.

As mentioned before, one issue with this analysis was that 51 students in the ALC lecture gave a response
about active coding rather than Traditional Live Coding. 吀栀is explains the di昀昀erence in the responses for Figure 2
(n = 271) and Figure 3 (n = 220). Not only is an interesting 昀椀nding that 51 of the 271 students mentioned a quality
of Active Live Coding when answering a question about Traditional Live Coding, but we saw a new label emerge
from these responses. Speci昀椀cally, students mentioned that they appreciated the level of detail and clarity in the
comments and directions that the instructor gave before the active coding component. One student wrote: “[吀栀e
instructor] writing the comments of what we’re supposed to do before doing the code has also been helpful.”

6.3.3 Comparing Student Behavioral Engagement During Lecture. Figure 4 shows the comparison of student
behavioral engagement across all lecture activities throughout the term. Each percentage in one of the horizontal
bars represents the average percent of students that were engaged during that lecture activity during the term.
吀栀ere is no engagement rate for Active Live Coding for the TLC group since there was no active live coding
portion in the TLC lecture. In general, the engagement levels were relatively similar for the Pre-Lecture 儀甀estions
and Worksheet Review. Interestingly, students in the ALC lecture exhibited slightly higher engagement during
traditional live coding (which happens in both lecture groups) but lower engagement during the wri琀琀en notes
section.

Figure 5 represents the change in student engagement throughout a lecture based on speci昀椀c lecture activities.
For each ten minute increment into the lecture in Figure 5, we found the most common lecture activity from our
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Fig. 4. Comparison of behavioral engagement between the two lecture groups.

Fig. 5. Average engagement throughout lectures.

observations (i.e., for minutes 10 to 20 into the lecture, the most common lecture activity were the pre-lecture
questions; for minutes 20 to 30 into the lecture, the most common lecture activity was worksheet review, etc.).
We then calculated the average engagement for that lecture activity speci昀椀cally within that ten minute increment.
Traditional live coding, which occurred in both lectures, was the most common lecture activity for both lectures
30 to 50 minutes into the lecture. For the increment between 50 and 60 minutes the most common activity within
the ALC lecture was active live coding whereas the most common activity for the TLC lecture continued to be
traditional live coding. We see a strong peak for the ALC lecture during the active live coding component, which
is unsurprising given that the active coding portion was required for students to complete. Interestingly, the ten
minute increment following the active live coding component shows a higher engagement level for the ALC
group than the TLC group, potentially demonstrating a persistent engagement e昀昀ect of active live coding.
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Fig. 6. Student engagement during live coding before and a昀琀er active live coding in the ALC lecture.

To further explore this persistent engagement e昀昀ect, we compared student engagement before and a昀琀er the
Active Live Coding component in Figure 6. We speci昀椀cally compared the traditional live coding components
before and a昀琀er an active live coding component. Figure 6 shows that the engagement rate for traditional live
coding before ALC was only 61.5%, but this value increased to 77.7% a昀琀er ALC. A two-sample t-test [24] revealed
that the di昀昀erence between these values is signi昀椀cant, with ? < 0.001 and Cohen’s d of 1.16—a large e昀昀ect size
[14].

7 DISCUSSION

7.1 Interpretation of Results
Paragraphs within this subsection were re-ordered to provide be琀琀er structure for the interpretation of results.

7.1.1 Similar adherence to programming processes (RQ1) and student learning (RQ2). Our quantitative 昀椀ndings
related to students’ programming processes and learning outcomes generally showed no signi昀椀cant di昀昀erence
between the ALC and TLC groups. Students in both groups showed similar adherence to incremental development
(Table 10) and error frequencies (Tables 11 and 12), while being able to produce correct code at similar rates (Table
13). Further, students performed similarly across all major grading components in the course (Tables 15 and
16) and exhibited similar learning gain during lectures (Table 18). 吀栀ough there was one statistically signi昀椀cant
di昀昀erence from our analysis that showed the TLC students scoring higher on the 昀椀nal exam, our regression
analysis of the factors that explain the di昀昀erence between the two groups showed that the ALC treatment
condition had an insigni昀椀cant association with 昀椀nal exam scores. 吀栀ough we only showed the regression analysis
for the 昀椀nal exam scores, we repeated this analysis on all other comparison items in RQ1 and RQ2. A prevailing
theme in all of these analyses is that these other factors—students’ year in program, major, and prior programming
experience—contributed more to the model’s accuracy than our treatment condition. Our main takeaway for
RQ1 and RQ2 is that Active Live Coding resulted in similar programming processes and learning outcomes as
Traditional Live Coding. Several potential explanations exist for the lack of impact of Active Live Coding. One
hypothesis is that the e昀昀ect of roughly 30 to 40 minutes of active coding and peer discussion per week (i.e., one
ALC session in each of the two lectures per week) is marginal compared to the signi昀椀cant amount of course
components per week. As mentioned in Section 4.1, students’ a琀琀end 160 minutes of lecture and 50 minutes of
a discussion section per week and complete one programming assignment and worksheet per week. All these
other course components represent signi昀椀cant impacts to students’ learning beyond the moments of Active
Live Coding. Combined with demographic factors such as major, year-in-university, and prior programming
experience, these other activities represent a signi昀椀cant amount of learning experiences that may outweigh the
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e昀昀ect of Active Live Coding. A second hypothesis is that Active Live Coding takes up more lecture time than
Traditional Live Coding, resulting in less time for an instructor to explain the material. In the TLC lectures, the
instructor covered the same material as the Active Live Coding lectures, but had more time to go into more detail
in their lessons. 吀栀roughout the term, this may result in more time for instructors to answer student questions,
explain program errors, and share their thought process. 吀栀ough the ICAP Framework shows that students learn
the material be琀琀er by engaging with it more actively, the amount of time that a learner engages with material
may also impact learning gains. Indeed, one of the drawbacks of live coding mentioned by Bruhn and Burton is
the greater time commitment of live coding compared to static code examples [6]. A third potential reason for
the lack of signi昀椀cant 昀椀ndings is that the Traditional Live Coding lectures engaged students beyond a passive
engagement level. Since the instructor occasionally prompted the class with a verbal question (i.e., “what would
be printed if I ran the code now?”, students’ engagement level may have become active or constructive. 吀栀erefore,
the traditional live coding components may already be su昀케ciently engaging and informative for students.

7.1.2 Di昀昀erences in students’ lecture experience (RQ3). Our 昀椀ndings related to students’ lecture experience in
Active Live Coding revealed important di昀昀erences between ALC and TLC. In fact, student responses demonstrated
the multiple Cognitive Apprenticeship Methods being applied. Of course, the modeling Method is engaged by
Traditional Live Coding, and the responses in Figure 3 show how students’ in both lecture groups saw the
instructor’s programming process and heard the instructor’s thought process. Further, the open-ended question
related to students’ perceptions of ALC, shown in Figure 2, uncovered aspects speci昀椀c to Active Live Coding
that are not present in TLC. For example, students discussed how the active coding component “provides a
hands on experience” to students to code on their own. 吀栀is demonstrates the sca昀昀olding Method of Cognitive
Apprenticeship as students’ are able to complete a simple activity on their own in a low-stakes environment
that uses the concepts just taught in lecture. 吀栀en, students mentioned being able to discuss their solution with
peers, which is captured by the label “allows for group learning” in Figure 2. 吀栀is aspect of ALC leverages the
articulation Method of Cognitive Apprenticeship, as students discuss their approach with peers. Finally, students’
mentioned “seeing the instructor’s solution” to the coding activity, which speci昀椀cally engages the re昀氀ection
Method of Cognitive Apprenticeship, as students’ compare their own approach to the instructor’s approach. An
interesting set of responses from 9.96% of respondents mentioned that ALC “provides immediate feedback” on
their solution to the programming task—a mechanism that is simply not present in Traditional Live Coding. 吀栀e
tenet of providing immediate, individual feedback relates to the coaching Method of Cognitive Apprenticeship.
In Section 2.1, we did not mention coaching as a Method that is leveraged by Active Live Coding since there is no
one-to-one interaction between instructor and student. Instead, there is only a one-to-many feedback channel as
the instructor provides the solution to the coding activity. However, despite this limitation of Active Live Coding,
it seems students still felt that ALC achieved some of the bene昀椀ts of the coaching Method.

Another key 昀椀nding from RQ3 is that ALC improved student engagement but did not impact student learning.
A notable category of responses in Figure 2 discussed the engaging nature of Active Live Coding. Our analysis
using the BERI protocol revealed an interesting e昀昀ect of Active Live Coding. Speci昀椀cally, Figure 5 shows that
engagement starts and ends at a high rate, but we saw a lower engagement rate about 30 minutes into the lecture.
From about 30 minutes to 70 minutes in the Traditional Live Coding lecture, the engagement rate hovers between
60 to 70 percent as students observe the instructor live coding. However, the large spike due to Active Live Coding
resulted in a persistent engagement e昀昀ect where students had a heightened engagement rate even 20 minutes
a昀琀er Active Live Coding. A key reason for this heightened engagement e昀昀ect, which can be partially explained
by the 昀椀ndings in Figure 2, is that students can see the instructor’s solution and get immediate feedback about
whether their approach was correct. In other words, the 20 minutes following Active Live Coding are important
for students’ to identify whether they were correct and to compare their solution to the instructor’s solution.
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吀栀is persistent engagement e昀昀ect is highlighted by Figure 6, which showed a statistically signi昀椀cant di昀昀erence in
engagement levels before and a昀琀er Active Live Coding.

7.1.3 Theoretical implications of our results. Overall, our results are unexpected. Based on Cognitive Apprentice-
ship and the ICAP Framework, one may predict that students’ in the Active Live Coding group would exhibit
greater adherence to programming processes and learn more than their Traditional Live Coding counterparts.
Since Active Live Coding engages more Methods of Cognitive Apprenticeship, we would have expected students
in the ALC group to adhere to incremental development and debug errors more e昀케ciently than students in the
TLC group. However, the results of RQ1 and RQ2 showed that students exhibited similar programming processes
and course performance in the two groups despite their lectures engaging the articulation and re昀氀ection Methods
of Cognitive Apprenticeship. Previous work on active learning, such as Peer Instruction, in computing education
has shown empirical improvements to retention and learning gain [23] and failure rates [22]. 吀栀ese works by
Porter et al. showed that students bene昀椀ted from the peer discussion [23], which is also a critical component of
Active Live Coding. However, our results did not show similar results to the 昀椀ndings from Porter et al., motivating
a deeper investigation into whether Active Live Coding improves student learning.

Similarly, the ICAP Framework predicts that activities with a higher level of engagement will result in more
student learning. However, despite 昀椀nding a higher engagement rate in ALC, our results from RQ2 did not show
an increase in student learning as a result of this higher engagement. In fact, the most granular metric related to
student learning during lecture—the learning gain analysis shown in Table 18—showed no statistically signi昀椀cant
di昀昀erence in the learning gain during lecture between the two groups, although the TLC had a higher average
learning gain throughout the term.吀栀e comparison of learning gain via the pre- and post-lecture questions, which
are multiple-choice questions that are code tracing or conceptual questions, may not be the best way to assess
student learning for ALC, which asks students to write code. However, even the metrics related to correctness on
programming tasks in Table 13 do not show the ALC students outperforming the TLC students. Overall, we saw
almost no impact of ALC on student learning, raising questions about why the higher level of engagement did
not translate to higher student learning.

7.2 Threats and Limitations
吀栀e main factor that threatens the internal validity of our work is the experience of the instructor who taught
both groups. 吀栀e instructor has been an instructor for six years and has regularly used Traditional Live Coding
all six years. In contrast, this was the instructor’s 昀椀rst time ever using Active Live Coding. Upon re昀氀ection, the
instructor mentioned that the timing of the Active Live Coding lecture was di昀케cult to manage the active coding
and peer discussion portion takes roughly 10 of the 80 total minutes. As a result, the Traditional Live Coding
students may have bene昀椀ted from the instructor’s experience while the Active Live Coding students may have
su昀昀ered from the instructor’s lack of experience with the lecture style.

A second threat to internal validity is the di昀昀erence between the two lectures in terms of the time of day
and the student makeup. For example, one issue we noticed is that many more Math majors were enrolled in
the Traditional Live Coding lecture because a required Math course was o昀昀ered at 9:30am on Tuesdays and
吀栀ursdays—the same times as the Active Live Coding lecture. 吀栀ough our analysis took this speci昀椀c factor into
account, there could easily be other selection biases we did not detect. Although students did not know that there
would be any di昀昀erence between lecture sections or that the 9:30am lecture would be ALC while 11am would be
TLC, we were unable to randomly assign students to the lecture sections, as Raj et al. had done [25].

A third threat to internal validity is that we did not track whether students completed the active live coding
activity. While the classroom observer consistently saw high engagement during this part of lecture, we are
unable to 昀椀nd out how many students actually a琀琀empted the activity. Our results might be di昀昀erent if students
earned a grade for the active live coding activity, or if the activity was graded on correctness.

ACM Trans. Comput. Educ.

 



28 • Shah et al.

吀栀emain factor that threatens the external validity of this work is the instructor e昀昀ect. Di昀昀erent instructors may
see varying levels of student success. In fact, one of the takeaways from Porter et al.’s work on Peer Instruction is
that di昀昀erent instructors saw varying levels of bene昀椀ts of using Peer Instruction [22], which may also be the case
for Active Live Coding or even Traditional Live Coding. 吀栀erefore, replication studies with di昀昀erent instructors
can help create a solid basis of empirical 昀椀ndings related to the impact of Active Live Coding.

7.3 Future Work
吀栀is work has occurred a昀琀er a long line of prior work to evaluate traditional live coding [25, 27, 30, 33, 36, 39].
吀栀e overwhelming 昀椀nding from these works is that there has been no signi昀椀cant di昀昀erence between traditional
live coding and static-code examples. Similarly, our 昀椀ndings in this study indicate a similar e昀昀ect of Active and
Traditional Live Coding compared to Traditional Live Coding. A useful avenue of future work could investigate
why Traditional Live Coding and Active Live Coding do not result in improved student learning. It may be
the case that some factors during lecture, such as student engagement, distractions, cognitive load, or other
factors, may mitigate any potential learning gain from live coding. A qualitative approach to understanding
how students process a live coding example may help us understand why we have not seen bene昀椀ts from the
activity. Similarly, our experimental design considers a course-long intervention with programming process data
and course outcome data collected from summative assessments. Future work may consider alternative data to
analyze that may shed light on the di昀昀erences between the two pedagogical techniques.

We have not found any existing empirical evaluations of Active Live Coding. Our experiment only investigates
the impact of a single instructor using Active Live Coding throughout the term. As a result, future works may
use methods such as lab studies or term-long interventions with a di昀昀erent instructor to further investigate the
impact of Active Live Coding. Additional analyses on Active Live Coding may also explore other outcomes that
we did not analyze in our study, such as students’ sense of belonging in the course and in the computer science
major. A potential bene昀椀t of Active Live Coding, along with other active learning techniques that encourage peer
discussion, is that students have a stronger sense of community in the course, resulting in greater feelings of
belonging.

8 CONCLUSION
While our study is just a single data point in the broader literature related to live coding and active learning,
the 昀椀ndings of this study can help inform an instructor of the potential e昀昀ects of using Active Live Coding.
Speci昀椀cally, Active Live Coding seems to impart similar learning and adherence to programming processes as
Traditional Live Coding while also promoting student engagement and peer discussions. Students also mentioned
some unique a昀昀ordances of Active Live Coding, such as providing immediate feedback on the correctness of
their programming solution, which is not present in a Traditional Live Coding study. 吀栀erefore, although we did
not detect empirical bene昀椀ts of Active Live Coding compared to Traditional Live Coding, instructors may expect
students to have similar perceptions of and engagement with Active Live Coding should they choose to adopt
this pedagogy.
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Table 19. Final code book for perceptions of Active Live Coding.

Label Description
debugging 1. ALC helps with catching and 昀椀xing errors
hands on
experience

1. 吀栀e act of writing the code while still learning the concepts
2. How writing code helps them being engaged with the class material

reinforce
understanding

1. ALC helps with understanding or learning course material
2. How ALC helps reinforce the material through practice
3. check overall understanding

prior experience 1. When the student has previous knowledge of course material

engagement 1. feeling engaged in the class
2. Being more focused during lecture

thought process
1. Seeing/hearing instructor’s thought process + general breakdown of
the code
2. Student mentioning the instructor

application
1. Applying course material while writing code
2. When students get to see their execution of the code using the
material they just learned

community 1. feeling included, part of the community of the class

improves coding
skills

1. General statements on how it improves the ability to code for future
endeavors
2. When learning syntax
3. When it helps with overall coding skills

repetitive 1. When the student is ahead in course material (PA is already done)
2. When it’s too similar to other general coding they’ve done

helps with PA 1. ALC helps with preparing for the programming assignments
helps with
discussion 1. ALC helps with preparing for the discussion sections of the course

rushed

1. Feeling too overwhelmed with course material
2. 吀栀e allocated time for ALC feels too short
3. Feeling that the ALC section took time away from conceptual
explanation time

disrupts lecture 1. Breaks the 昀氀ow of the lecture
2. very similar to rushed (only one response)

gets stuck

1. Feeling furstrated on not being able to code
2. Not ge琀琀ing support when struggling due to feeling inadequate
3. When the student is behind in material so they aren’t able to code
properly

immediate
feedback

1. Ge琀琀ing immediate help of course sta昀昀 when confused
2. Students ge琀琀ing feedback on their code a昀琀er the ALC section is over

incremental
learning

1. Learning one step at a time
2. breakdown the challenge to more manageable pieces

helps with exams 1. ALC helps with preparing for the exams
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Table 20. Final code book for comparison of perceived benefits of Traditional Live Coding.

Label Description

part-by-part
breakdown

1. Explaining code line by line
2. Student mentions seeing individual parts of the code
3. Labeling or color coding separate components of a program
4. Breaking down a program
5. Making the program more simple to understand

reference of
correct code

1. Student mentions using it to guide other similar activities
2. See what code is supposed to look like
3. 吀栀inking about how this code could be modi昀椀ed to do something
similar
4. Examples of the correct code for a concept

general code
understanding

1. Understanding how the code works in general
2. Useful to review for understanding

thought process
while coding

1. Learning the problem solving process
2. Understanding why the professor writes certain lines of code

debugging/avoid-
ing errors

1. Identifying and understanding common errors
2. Process of 昀椀xing errors
3. Seeing errors/unexpected output
4. Showing where code can go wrong

code writing
1. Modeling the process of writing code
2. How to approach writing code from scratch
3. Seeing the step-by-step process

testing code
1. Learning how to test the correctness of code
2. Understanding why a test passed or failed
3. Seeing examples of test cases

instructor’s
explanation

1. Live commentary on code
2. Explanation of code
3. 吀栀orough answers to questions from students

variations of code 1. Showing di昀昀erent variations/changes in a code example
2. Showing trial and error process

predicting output 1. Student mentions enjoying trying to guess the output
2. 吀栀e instructor asking students to guess what the code will output

seeing output 1. Seeing output of code examples along with them
following along
with instructor 1. 吀栀e ability to follow along with code as it is wri琀琀en live

taking notes 1. Taking notes to reinforce understanding

group learning 1. Suggestions from classmates who have be琀琀er understanding
2. Students in class giving suggestions for next coding steps

application of
concepts 1. Seeing concepts immediately applied during lecture
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