Check for
Updates

An Empirical Evaluation of Active Live Coding in CS1

ANSHUL SHAH, University of California, San Diego, USA
THOMAS REXIN, University of California, San Diego, USA
FATIMAH ALHUMRANI, University of California, San Diego, USA
WILLIAM G. GRISWOLD, University of California, San Diego, USA
LEO PORTER, University of California, San Diego, USA

GERALD SOOSAI RAJ, University of California, San Diego, USA

Objectives The traditional, instructor-led form of live coding has been extensively studied, with findings showing that this
form of live coding imparts similar learning to static-code examples. However, a concern with Traditional Live Coding is that
it can turn into a passive learning activity for students as they simply observe the instructor program. Therefore, this study
compares Active Live Coding—a form of live coding that leverages in-class coding activities and peer discussion—to Traditional
Live Coding on three outcomes: 1) students’ adherence to effective programming processes, 2) students’ performance on
exams and in-lecture questions, and 3) students’ lecture experience.

Participants Roughly 530 students were enrolled in an advanced, CS1 course taught in Java at a large, public university in
North America. The students were primarily first- and second-year undergraduate students with some prior programming
experience. The student population was spread across two lecture sections—348 students in the Active Live Coding (ALC)
lecture and 185 students in the Traditional Live Coding (TLC) lecture.

Study Methods We used a mixed-methods approach to answer our research questions. To compare students’ programming
processes, we applied process-oriented metrics related to incremental development and error frequencies. To measure
students’ learning outcomes, we compared students’ performance on major course components and used pre- and post-lecture
questionnaires to compare students’ learning gain during lectures. Finally, to understand students’ lecture experience, we
used a classroom observation protocol to measure and compare students’ behavioral engagement during the two lectures. We
also inductively coded open-ended survey questions to understand students’ perceptions of live coding.

Findings We did not find a statistically significant effect of ALC on students’ programming processes or learning outcomes.
It seems that both ALC and TLC impart similar programming processes and result in similar student learning. However, our
findings related to students’ lecture experience shows a persistent engagement effect of ALC, where students’ behavioral
engagement peaks and remains elevated after the in-class coding activity and peer discussion. Finally, we discuss the unique
affordances and drawbacks of the lecture technique as well as students’ perceptions of ALC.

Conclusions Despite being motivated by well-established learning theories, Active Live Coding did not result in improved
student learning or programming processes. This study is preceded by several prior works that showed that Traditional Live
Coding imparts similar student learning and programming skills as static-code examples. Though potential reasons for the

Authors’ addresses: Anshul Shah, ayshah@ucsd.edu, University of California, San Diego, USA; Thomas Rexin, tjrexin@ucsd.edu, University
of California, San Diego, USA; Fatimah Alhumrani, falhumrani@ucsd.edu, University of California, San Diego, USA; William G. Griswold,
bgriswold@ucsd.edu, University of California, San Diego, USA; Leo Porter, leporter@ucsd.edu, University of California, San Diego, USA;
Gerald Soosai Raj, asoosairaj@ucsd.edu, University of California, San Diego, USA.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

© 2025 Copyright held by the owner/author(s).

ACM 1946-6226/2025/6-ART

https://doi.org/10.1145/3743686

ACM Trans. Comput. Educ.

2 « Shahetal.

lack of observed learning benefits are discussed in this work, multiple future analyses to further investigate Active Live
Coding may help the community understand the impacts (or lack thereof) of the instructional technique.

CCS Concepts: » Social and professional topics — Computing education; CS1.

Additional Key Words and Phrases: live coding, active learning, student engagement, programming processes, learning gain

1 INTRODUCTION

Live coding is an instructional technique in which the instructor programs in front of students while verbalizing
their thought process. This instructor-led live coding, which we will call Traditional Live Coding (TLC), has
been the subject of extensive study in computing education research. Early works explored common student
perceptions of the lecture technique [4, 5, 18, 21], subsequent works evaluated the impact of live coding on student
grades and learning [25-27], and more recent works measured the effect of live coding on students’ programming
processes [30, 33]. The recent empirical work on live coding has compared the traditional, instructor-led form of
live coding to the use of static-code examples, which is a common alternative to live coding [29]. However, the
findings of these recent works have not shown any improvement in student learning as aresult of live coding
[25, 30, 33].

A common criticism of traditional live coding is that it can ultimately be a passive experience for students,
in which they observe the instructor without any active engagement [15]. Given the lack of observed learning
benefits from Traditional Live Coding, a form of live coding that includes an active learning component may
offer the learning benefits that were not seen in recent empirical evaluations of live coding [30, 33]. In the form
of live coding called Active Live Coding (ALC), the instructor uses Traditional Live Coding with several active
coding components in which students complete a small programming task, discuss with peers, and then see
a demonstration of the correct solution by the instructor. From a theoretical perspective, Active Live Coding
engages more Methods of Cognitive Apprenticeship [9]—a learning theory concerning the transfer of expertise
from expert to learner—and involves a higher level of engagement according to the ICAP Framework [8]—a
framework for classifying learning activities into-a hierarchy based on student engagement.

In this study, we follow a similar experimental setup and data analysis to a recent empirical evaluation to
compare Traditional Live Coding to static-code examples by Shah et al. [33]. Our study implements a course-long
treatment of Active Live Coding in order to identify possible short-term and long-term impacts of the teaching
technique. Our analysis aims to evaluate Active Live Coding across three key dimensions: 1) students’ adherence to
programming processes, 2) students’ course outcomes and grades, and 3) students’ lecture experience. Specifically,
we ask the following research questions:

e RQ1: How do students” programming processes (in terms of incremental development and error frequency
metrics) differ between students in the traditional and active live coding groups?

e RQ2: How do course outcomes (such as performance on exams, code comprehension questions, program-
ming assignments, etc.) differ between students in the traditional and active live coding groups?

e RQ3: How does the student experience (in terms of engagement and perceptions of the live coding
technique) differ between students in the traditional and active live coding groups?

2 THEORETICAL FRAMEWORK

There are two theories that we use to frame our study: Cognitive Apprenticeship and the ICAP Framework. We
find it necessary to involve both theories given the difference in how the two theories impact student learning.
Cognitive Apprenticeship is a learning theory that describes the instructor’s choice of learning activities while
the ICAP Framework describes how students engage with those learning activities.

ACM Trans. Comput. Educ.

An Empirical Evaluation of Active Live Coding in CS1 « 3

Method | Description

Modeling | Instructor demonstrates a task to learners while the in-
structor verbalizes their thought process.

Scaffolding | Instructor provides and fades targeted learning activities
for learners to practice a task with support.

Coaching | Instructor provides feedback and guidance to students as
students complete tasks.

Articulation | Learner explains their reasoning and justifies the strate-
gies they used.

Reflection | Learner reflects on their own processes and compares
their strategies to the instructor’s strategies.
Exploration | Learner completes tasks independently without scaffolds
or support from the instructor.

Table 1. Methods in Cognitive Apprenticeship.

2.1 Cognitive Apprenticeship

The Cognitive Apprenticeship learning theory was outlined by Collins et al. and aims to bring the traditional
apprenticeship model—which is one of the oldest models of knowledge transfer—into the classroom [9]. A key
difference between traditional apprenticeship and Cognitive Apprenticeship is that traditional apprenticeship
transfers knowledge of primarily physical tasks that can be learned through observation, such as blacksmithing
or tailoring [9]. By contrast, Cognitive Apprenticeship outlines a model for instructors to make their thinking
visible to facilitate the transfer of complex skills that require higher-order reasoning and thought processes. The
initial work describing Cognitive Apprenticeship presents examples of teaching students about skills such as
reading comprehension, mathematical problem-solving, and writing [9].

The Cognitive Apprenticeship learning theory broadly describes four dimensions of a learning environment:
Content, Sequence, Sociology, and Methods [9]. Content refers to the types of knowledge that instructors should
teach students, such as domain knowledge, learning strategies, and heuristic strategies [9]. Sequence refers to the
ordering of learning activities to facilitate learning [9]. Sociology refers to the social characteristics of the learning
environment, such as cooperation and situated learning [9]. Finally, Methods, which is the relevant dimension for
the present study, refers to the instructional techniques to promote the development of expertise [9]. Table 1
outlines the six Methods of Cognitive Apprenticeship: modeling, scaffolding, coaching, reflection, articulation,
and exploration.

Shah and Soosai Raj conducted a literature review of 143 papers that explicitly mentioned Cognitive Ap-
prenticeship in computing education research venues [34]. The review aimed to understand which Cognitive
Apprenticeship Methods have been used and evaluated in computing education and what benefits have generally
been attributed to these Methods [34]. The authors found that the majority of work discussed teaching strategies
that engaged the first three Methods of Cognitive Apprenticeship—modeling, scaffolding, and coaching—while
significantly less work has mentioned the reflection, articulation, and exploration Methods of Cognitive Appren-
ticeship. One potential reason for this difference is that instructors felt that implementing the last three Methods
of Cognitive Apprenticeship takes up too much lecture time [34]. Nonetheless, a key takeaway from the literature
review is that deeper empirical analyses into the impact of articulation, reflection, and exploration Methods of
Cognitive Apprenticeship are needed [34].

ACM Trans. Comput. Educ.

4 « Shahetal.

Selvaraj et al. found that the theoretical construct most commonly cited with live coding is the modeling
Method of Cognitive Apprenticeship [29]. Although there are variations of live coding, the typical form of live
coding involves an instructor programming in front of their students while verbalizing their thought process
[29], just as prescribed in the modeling Method of Cognitive Apprenticeship [9]. In fact, the studies conducted
by Shah et al. were motivated by a desire to empirically detect whether live coding—through the lens of the
modeling Method—imparts implicit strategies such as incremental development and debugging techniques [33].
These works, which compared live coding to static-code examples, are empirical evaluations of the modeling
Method, but they do not involve other Methods of Cognitive Apprenticeship. As Shah et al. point out in their
study, the modeling Method exposes learners to only the implicit processes and strategies used by experts, but
does not necessarily lead to learners being able to gain control over using these implicit processes. The remaining
Methods, such as scaffolding, reflection, and articulation, are vital for learners to not just observe but also apply
these implicit processes [9].

2.2 The ICAP Framework

Chi and Wylie developed the ICAP Framework, a theory related to active learning which outlines four “modes”
of engagement: Interactive, Constructive, Active, and Passive (creating the acronym “ICAP”) [7, 8]. A learning
activity can lead to students’ engagement behaviors being in one of these four modes [8]. The Passive mode
occurs when learners simply observe and absorb information from the instructor without overtly engaging with
the materials, such as taking notes. The Passive mode is characterized by a lack of student behavioral engagement
with the instruction. The next mode of engagement is the Active mode, which is classified by “some form of
overt motoric action or physical manipulation” being undertaken by students [8]. A specific example of Active
engagement provided by Chi and Wylie is students copying down solution steps while listening to a lecture
or taking verbatim notes [8]. Next, the Constructive mode of engagement is characterized by students creating
products that go beyond what was provided in the learning materials, such as asking questions, generating
predictions, or drawing diagrams [8]. Finally, the Interactive mode occurs when two students work together
and both students are being constructive in their contributions [8]. Chi and Wylie note that when one partner
is dominating the conversation and the other is primarily listening, then the behaviors are not interactive.
Instead, the student dominating the conversation is in a Constructive mode while the student that is listening
is in Passive mode (or Active if they are taking notes as they listen). Of course, an underlying assumption in
the ICAP framework is that learners enact the behaviors that are intended by the instructor [8]. For example,
in a Constructive activity where students have to write new code, they could engage with the activity only
Actively by copy-pasting existing code from the example or Passively by simply not working on the task. This
assumption represents a limitation of engagement-based interventions in which students fail to engage with
learning activities.

The ICAP Framework has been extensively studied in various STEM Education disciplines [8, 41], such as
undergraduate biology [41], high-school science [42], and undergraduate physics education [10]. The most similar
study to our present study comes from Deslauriers et al., who conducted an experiment to compare the impact of
traditional physics lecturing (which is Passive or Active) to a treatment condition where students are making
predictions, problem solving, and discussing with each other (which is Constructive or Interactive) [10]. Although
the study was only conducted in one week in the course, the results showed that students in the treatment
condition scored significantly higher on the exam for that week, attended class more frequently during that week,
and also shared in surveys that they enjoyed the new teaching style [10]. This study by Deslauriers et al. is highly
relevant to our study because of the similarity in the treatment and control groups to our study. Our similar
experimental setup, although spanning an entire term rather than one week, tests a similar set of conditions in
the computer science domain.

ACM Trans. Comput. Educ.

An Empirical Evaluation of Active Live Coding in CS1 « 5

CA Method Trad. Live Coding | Active Live Coding
Modeling v v
Scaffolding v
Coaching

Articulation v
Reflection v

Exploration

Table 2. Theoretical Framing of Traditional and Active Live Coding according to the Cognitive Apprenticeship Methods.

ICAP Level Trad. Live Coding | Active Live Coding
Passive v (worst case)
Active v (best case)
Constructive v (worst case)
Interactive v (best case)

Table 3. Theoretical Framing of Traditional and Active Live Coding according to the ICAP Framework.

The ICAP Framework has also been cited in computing education research. In their work on subgoal learning
via self-explanation, Margulieux and Catrambone use the ICAP Framework to motivate the approach of using
self-explanation to learn since the “higher” engagement modes are associated with more student learning. For
example, a Constructive approach to self-explain lecture material offers greater learning benefits to students than
a Passive approach where students simply listen to the lecture material. Indeed, Margulieux and Catrambone
found that when students self-explain the subgoals of the problems they completed, they perform better on future
tasks than if they did not self-explain at all [20].

The studies by Deslauriers et al. and Margulieux and Catrambone are only two of the many works that have
established an empirical foundation for the ICAP Framework. Given the significant body of work that has
found evidence in support of the ICAP Framework, we would expect that learning activities in the Constructive
or Interactive engagement modes will result in more student learning than activities in the Passive or Active
engagement modes. Therefore, the ICAP Framework would suggest that students in the Active Live Coding
lectures should perform better on exams and assignments than those in the Traditional Live Coding lectures.

2.3 Theoretical Framing-of Active vs Traditional Live Coding

Cognitive Apprenticeship is the primary learning theory cited with live coding [29]. We have not found any
work that discusses live coding through the lens of the ICAP Framework, likely because the most common
form of live coding in the literature is traditional, instructor-led live coding, which is mostly a passive learning
activity. However, some clear theoretical differences arise between Traditional and Active Live Coding, which are
summarized in Tables 2 and 3.

In terms of the Cognitive Apprenticeship Methods, ALC includes modeling, since the instructor is demonstrating
the programming process while verbalizing their thoughts, scaffolding, since the instructor provides a small
activity for students to complete, articulation, since students discuss their solutions with each other, and reflection,
since students have the chance to compare their own approach to a peer’s approach and the instructor’s approach.
We do not consider ALC to engage the coaching Method, since each student does not get direct feedback or
guidance on their own approach, or the exploration Method, since students are not independently completing

ACM Trans. Comput. Educ.

6 « Shahetal.

open-ended tasks. In contrast, TLC only employs the modeling Method since students are only watching and
listening to what the instructor is doing. There is no opportunity for students to complete scaffolded activities or
discuss with peers. Therefore, we would expect the students in the ALC group to exhibit better programming
processes than students in the TLC group since they have an opportunity to complete scaffolded activities,
articulate their approach, and reflect on their approach compared to peers.

In terms of the ICAP Framework, we classify Traditional Live Coding (TLC) as either an Active or Passive
learning activity. Traditional, instructor led live coding is a Passive activity in the sense that students can simply
watch and listen as the instructor programs rather than coding along [15]. Of course, students may also be copying
down the instructor’s code or take notes during TLC sessions, which would constitute an Active engagement
mode. Watkins et al. found that in live coding lectures, some students type the instructor’s code, but students
do not display any other engagement behaviors besides the Active engagement mode of typing along with the
instructor. [40]. On the other hand, Active Live Coding (ALC) at the very least reaches the Constructive mode
since students are required to write code and reaches the Interactive mode depending on the quality of discussion
between students. In fact, in their original paper presenting the ICAP Framework, Chi and Wylie noted that a
learning activity consisting of problem solving and peer discussion, which is very similar to ALC in our study,
constituted an Interactive activity. The reason it is questionable for whether ALC is Interactive,however, is due to
the quality of peer discussion: when a discussion is dominated by one student and the other is only listening,
then neither student is experiencing Interactive engagement. Based on the higher engagement level associated
with Active Live Coding, we would expect the learning gains to be greater in the ALC group.

3 RELATED WORK

The related work discussed in this section is organized by the three research questions we ask in this study:
programming processes, student outcomes, and lecture experience. In general, the line of work related to live
coding has existed since the early 2000s, with much of the early work reporting on instructor and student
perceptions of live coding [29]. More recently, however, the studies related to live coding have also studied student
behavior and outcomes, with specific empirical analyses dedicated to each of the three research questions in this
study.

3.1 Impact of Live Coding on Programming Processes

Much of the early work on live coding uncovered students’ and instructors’ perceptions of live coding [4, 5, 18, 21].
For example, Bennedsen and Caspersen discussed how live coding can reveal implicit programming processes to
students, such as how to use an IDE and how to use incremental development [4]. Further, Kélling and Barnes
presented live coding through the lens of “apprentice-based learning,” such as how the instructor first models
the process to students, then students apply what they have observed, and finally design their own open-ended
programming task [18], invoking the theory of Cognitive Apprenticeship [9]. Finally, Paxton went a step beyond
discussing the goals and theory of live coding by collecting survey responses from students [21]. Direct statements
from students in Paxton’s study showed that students enjoyed seeing the debugging process and how an expert
solves a programming task [21]. Although these papers showed that live coding aims to reveal the programming
process and that students reported seeing aspects of the programming process, none of these papers empirically
tested whether live coding actually imparts adherence to effective programming processes such as incremental
development, debugging, and testing.

In order to fill this gap from prior work, Shah et al. conducted a series of experiments to compare a live coding
pedagogy with a static-code one. In these experiments, half of the students in a large, CS1 course were taught via
live coding during lectures and the other half of students were taught with static-code examples [33]. All other
course components were identical for the two groups of students, such as assignments, lab sections, and exams.

ACM Trans. Comput. Educ.

An Empirical Evaluation of Active Live Coding in CS1 « 7

One of the goals of these studies was to test whether students in the live coding group adhered to incremental
development, debugging, and testing more than the students in the static-code group [33]. In two separate studies,
the authors collected snapshots of students’ code on programming assignments and coding assessments each time
students ran their code. They applied a set of programming process metrics, such as the Measure of Incremental
Development (MID) [32] to measure adherence to incremental development, the Repeated Error Density (RED)
[3] to measure how quickly students debugged an error, and frequency of diagnostic print statements to measure
how students tested and verified their code [30, 33]. However, in both studies from Shah et al., the authors found
no significant differences across any of the programming process metrics.

Like earlier papers, the studies from Shah et al. frame their experiments on live coding through the lens
of Cognitive Apprenticeship [9], specifically noting that instructor-led live coding only engages the modeling
Method of Cognitive Apprenticeship [33]. This has been presented as a potential reason for the lack of significant
findings related to students’ programming processes. As a result, part of the motivation for the present study is
to evaluate whether a learning technique that involves more Methods of Cognitive Apprenticeship—Active Live
Coding—results in greater adherence to incremental development and debugging practices than a technique that
only involves the modeling Method.

3.2 Impact of Live Coding on Course Outcomes

The first empirical studies to evaluate live coding primarily compared students’ exam scores between a static-code
group and a live-coding group in introductory CS courses. Rubin conducted the first comparative, empirical study
between live coding and static-code examples. In a large introductory programming course with four lecture
sections, Rubin selected two lecture sections to be live-coding groups and used the other two lecture sections
as control groups that would learn via static-code examples. Rubin found that the groups scored similarly on
the programming assignments and course exams, indicating a similar amount of student learning from the two
lecture styles. One difference, however, between the experimental and control groups was that the live coding
group scored higher on the final project at the end of the course, which was graded manually for correctness
and clarity [27]. Importantly, in their interpretation of results, Rubin notes that students may have scored better
on the final project because students’ debugging skills would be better in the live coding group after seeing the
instructor debug. However, Rubin did not conduct any empirical analyses on the students’ debugging processes.

In a similar follow-on study conducted by Raj et al., the authors wanted to 1) measure the cognitive load
associated with static code examples and live coding via surveys and 2) compare students’ learning via a pre-test
and post-test [25]. In terms of cognitive load, the authors found that live coding was associated with significantly
less extraneous cognitive load compared to the static-code group. Extraneous load relates to the load on working
memory that gets in the way of student learning, such as being distracted by other students during lecture or
hearing disorganized lecture-material [25]. The authors found no significant differences on learning gain between
the pre-test and post-test, although the static-code group showed slightly higher, though not significant, learning
gain than the live coding group [25].

The series of works by Shah et al. also investigated the impact of live coding compared to static code examples
on students’ performance on assignments and exams. In the two experiments conducted by Shah et al., both found
similar outcomes between live coding and static code groups on exams and assignments, with no statistically
significant differences between the groups [30, 33]. Even a deeper analysis into student performance on code
tracing questions, code writing questions, and code explaining questions showed similar student performance
across these different types of questions [33]. In general, these works from Shah et al. confirmed the prior findings
that compared a static code pedagogy to a live coding pedagogy related to course outcomes—in general, there is
little to no difference in student performance on exams and assignments between the two types of code examples
[25, 27, 30, 33].

ACM Trans. Comput. Educ.

8 « Shahetal

3.3 Impact of Live Coding on Lecture Experience

A significant amount of work has concerned the impact of live coding on students’ lecture experience, revealing
a variety of benefits and drawbacks of live coding.

The benefits of live coding on students’ lecture experience includes, but is not limited to, revealing the
programming process to students [18, 21, 26, 33], reducing cognitive load during lecture [25], and potentially
engaging more students during lecture [6, 21, 26, 31]. Many early works related to live coding, as mentioned
before, touted live coding as a way to expose the implicit programming process to students [18, 21]. In fact,
Shah et al. conducted an open-ended survey to students in both the live coding and static code lecture groups
in their study to understand the main perceived benefits from students’ point of view [33]. The qualitative
analysis revealed that students in the live coding group mentioned observing some part of the programming
process at a higher rate than students in the static code group. The opposite was true for “Code Comprehension,”
however, as more students in the static code group reported that seeing the static code examples improved their
understanding of the code’s purpose than students in the live coding group [33]. Another key perceived benefit
of live coding, which has not yet been empirically tested, is that live coding results in higher student engagement
[6, 21, 26] (the type of engagement—cognitive, behavioral, or emotional [13]—is not typically specified in these
works). For example, student feedback in Paxton’s work showed that students found it fun to see the output of
running code [21]. Similarly, students’ feedback in Raj et al.’s study showed that they tend to type along with the
instructor as they live code [26]. It seems intuitive that students may be more engaged watching an instructor
program dynamically during lecture, but this claim has not been empirically tested. In fact, this lack of empirical
evaluation motivates part of our third research question, which is to measure students’ behavioral engagement
in the Traditional Live Coding and Active Live Coding lecture sections.

The drawbacks of live coding have also been extensively identified, such as the difficulty for students to follow
along with the instructor [26, 33] and the limited time in a lecture that results in a rushed live coding example
[6, 33, 39]. Shah et al. also conducted an open-ended survey to ask students about the drawbacks of the code
examples in their lecture for both the static-code and live coding groups [33]. Nearly 20% of the students in the
live-coding group suggested that the instructor should slow down, whereas only 2% of students in the static-code
group suggested the same thing [33]. This feeling of a rushed lecture pace is likely because live coding simply
takes more time than static-code examples [6]. Indeed, Watkins et al. conducted a comparative study of live
coding and static-code examples in a single lab session. They found that the live coding session, which covered
the same material as the static-code session, took more than twice as long to complete [39]. Although the study
by Watkins et al. was in a lab section with flexible timing, when an instructor is bound to a fixed-time lecture,
there certainly exists a time constraint to complete all the material. The impact of this rushed lecture pace is that
students are unable to follow along as easily. Shah et al. included an analysis on a set of anonymous, end-of-course
feedback items that asked students whether the instructors’ lecture style facilitated note-taking and held students’
attention. In both questions, there was a statistically significant difference showing that students in the live coding
lectures had a harder time note-taking and paying attention [33]. Given these downsides, instructors must be
careful to keep their live coding sessions to a reasonable pace and to ensure that the class is able to follow along
with the example. Indeed, there are many factors that determine the effectiveness of a live coding lecture [29],
revealing the difficulty of using live coding.

4 STUDY CONTEXT
4.1 Course Setup

The study was conducted in the Fall 2023 term at UC San Diego—a large, public, research-focused university in
North America. The course was an advanced CS1 course taught in Java. The course content included basic data
types, basic data structures, and object-oriented programming, such as classes, inheritance, and generics. The

ACM Trans. Comput. Educ.

An Empirical Evaluation of Active Live Coding in CS1 « 9

course enrollment was 600 total students, who were split into a 400-person Active Live Coding lecture section
taught at 9:30AM on Tuesdays and Thursdays and a 200-person Traditional Live Coding lecture section taught at
11AM on the same days. Both lecture sections were taught by the same instructor. When students registered
for the course, they only knew the instructor of the course and did not know about the difference between the
lecture sections (i.e., that one would be Traditional Live Coding and one would be Active Live Coding).

In a typical week of the course, students attended two lecture sections for 80 minutes each and a mandatory
discussion section for 50 minutes. Students also completed weekly programming assignments (PAs), worksheets,
and textbook activities in an online textbook hosted on Stepik [35]. The frequency and description of the different
course components is provided in Table 4.

Table 4. Key course components of the CS1 course.

Component | Frequency | Description
Each lecture is 80 minutes and covers the main course
Twice per | material. The treatment condition of Active Live Coding
Lectures . . ¥
week only applies to the lectures. An examination of the lecture
structure is in Table 5.
Programming Once per Students apply the material they learned in lecture in a
Assignments weei weekly programming assignment graded for correctness.
(PAs) Assignments are hosted on the Edstem online IDE [12].
Worksheets Once per Students independently complete a paper-based worksheet
week with code tracing, writing, and explaining questions.
Reading Once per Stu'de.I?tS i.ndepend'ently complete interactive Programming
. activities in an online textbook and can submit responses
Quizzes week . . .
unlimited times without penalty.
Midterm Once per Students independently.complete an in-person, Proctored
exam for 2 hours, covering the concepts taught in the first
Exam term
half of the course.
Midterm Students complete a proctored coding task on Edstem [12].
. Once per . S
Coding Students have 45 minutes to complete the task, which is
term
Challenge graded based on correctness.
. Once per Students independently complete an in-person, proctored
Final Exam . .
term exam for 3 hours, covering all concepts taught in the course.
final Coding Once per Just like the Midterm Coding Challenge,.students.
independently complete a proctored coding task in 45
Challenge term)
minutes and are graded based on correctness.
Once per Students may attend an in-person, 50-minute session to
Discussion weei review the material covered in that week’s lectures and
preview the next programming assignment.
Evervda Students may attend office hours held by course staff (TAs,
Office Hours (o tic}),nal}; tutors, etc.) to receive help on course materials. Office hours
P were hosted M-F from roughly 9 A.M. to 7 P.M.

ACM Trans. Comput. Educ.

10 « Shahetal

4.2 Lecture Structure

Both the TLC and ALC lectures covered the same material and featured similar instructional activities as seen
in Table 5. Before the lecture started, the course staff handed out an in-class worksheet to each student. This
worksheet included small code examples and simple questions related to the upcoming lecture material for
additional practice. Each lecture, the instructor either asked students to complete the worksheet during the
lecture or assigned the worksheet questions to be completed before next lecture. The lectures always began with
roughly 5 minutes of course announcements, followed by a pre-lecture questionnaire that students submitted via
Gradescope [16] within a 10-minute window for attendance. These pre-lecture questions were meant to capture
students’ understanding of the lecture material before the lecture began and provided a basis for measuring
learning gain by asking the same questions after the lecture. Following the announcements‘and pre-lecture
questions, the instructor reviewed the in-class worksheet from the previous lecture, typically taking up to 10 to
15 minutes.

In both ALC and TLC lectures, the instructor then began teaching new material through Traditional Live
Coding, complemented by handwritten notes. During these live coding sessions, the instructor occasionally
posed questions to the students, asking them to predict missing code segments or the output of the code. In
the ALC lecture only, the professor then initiated an Active Live Coding segment, marking the point where
the two lectures diverge. In the active live coding segment, the instructor provided a scaffolded Java file for
students to complete, which was a result of the previous Traditional Live Coding segment. Students usually
had to write a simple method or implement the key logic of a method. During this phase, students forked the
instructor’s workspace on Edstem and spent 5 to 7 minutes completing missing code. Following this, they spent 3
to 5 minutes discussing their approach with peers, a process similar to peer instruction [22]. Finally, the professor
explained the solution using Traditional Live Coding and continued to cover the remainder of the new content.
Typically, the instructor used between 1 to 3 ALC components in each lecture. The only difference between the
TLC and ALC lectures was the active coding done by students and the peer discussion following the active coding.
Importantly, both lectures had traditional live coding components, but only the ALC lecture had the active live
coding component.

During the TLC section, the instructor used this time to live code the same material that students were asked
to write during the ALC lecture. However, given that the ALC components take significantly longer than simply
using TLC to show the same material, the instructor could slow down during parts of the TLC lecture or spend
more time explaining and debugging an error. The lectures all ended with post-lecture questions that took
approximately 5 minutes. Students were free to leave once they finished answering the questions.

4.3 Coding Challenges

An important part of the course setup and data collection for RQ1 were the Midterm and Final Coding Challenges.
In both coding challenges, students were given 45 minutes to 1) create new methods and classes and 2) write
accurate tests for their implementations. These summative assessments were developed by the research team
to evaluate how students create programs on their own in a controlled environment. In the Midterm Coding
Challenge (MCC), students were given a partially-complete class with fields and a valid constructor and were
tasked with adding a method to the existing class, writing a new class and defining some fields, a constructor,
and methods for that class, and creating a tester class that tests both the given class and newly created class. The
concepts in the MCC included string concatenation, conditionals, incrementing of variables, and testing. In the
Final Coding Challenge, students were tasked with writing two functions, one of which computed the average of
a given column in a 2-D array and the other returned a cropped version of the 2-D array. The concepts on the FCC
included nested for-loops, array indexing, modifying the elements in an array, and testing edge cases. For both
coding challenges, students were graded on correctness based on the amount of test cases that their code passed.

ACM Trans. Comput. Educ.

An Empirical Evaluation of Active Live Coding in CS1 « 11

Table 5. The different instructional components used during the two lectures.

Activity Description
Course Announce- | Instructor provides due date reminders and discusses
ments course logistics

Pre-Lecture Questions | Students answer two multiple-choice questions on Grade-
scope for attendance credit

Worksheet Review Instructor solves a problem from an in-class worksheet
on a projector
Handwritten Notes Instructor handwrites notes on a blank piece of paper in

front of the class using a projector.

Traditional Live Cod- | Instructor codes in front of students and prompts ques-
ing tions to the class

Active Live Coding Students extend the code from the instructor’s workspace
for attendance credit

Post-Lecture Questions | Students answer two more questions on Gradescope for
attendance credit

4.4 Participants

In accordance with our human subjects protocol, students consented to release their data for research purposes
at the start of the course. At the start of the term, the members of the research team sent out a consent form to
all students in the class that described the general goals of the research project and asked students whether 1)
they were at least 18 years old and 2) consented to release their data for research purposes. The instructor of
the course was not allowed to see the list of consenting students at any point in the research project. A total of
521 students across both lecture sections agreed to release their data. This human subjects protocol and consent
process was only used to collect student data related to their programming processes.

At the start of the quarter, we distributed a survey to gather students’ demographics, confidence level, and
reason for taking the course. The students’ information in each group is summarized in Table 6. The students had
very similar distributions for school year and we also did not see any glaring differences between the racial or
gender makeup of the two lecture sections. There was a slight difference in the metrics related to confidence, as
more students in the ALC lecture responded with a “4” (confident) and “5” (very confident) on their confidence to
do well in the course. Similarly, more students in the ALC lecture would be satisfied with an “A” grade than TLC
students.

In terms of demographics among the consenting students, 61% of students in the ALC group identified with
he/him/his pronouns and 36% identified with she/her/hers pronouns compared to 62% and 34% of students in
the TLC group, respectively. Furthermore, the self-identified racial makeups for both groups consisted of about
70% Asian or Asian American students, 15% Chicanx or Latinx students, and 15% White or Caucasian students.
The remaining students self-identified into racial groups with less than 10 students and we do not disclose these
groups in accordance with our human subject protocol.

5 METHODS
5.1 RQ1 Methods: Programming Processes

To collect data regarding students’ programming processes, we conducted two coding challenges, as discussed in
Section 4.1. Before the experiment began, we reached out to Edstem [12] about obtaining snapshots of students’

ACM Trans. Comput. Educ.

12 « Shahetal

Table 6. Comparison between Active Live Coding and Traditional Live Coding lecture sections.

School Year
First Second Third Fourth Fifth
ALC 51.9% 24.4% 17.1% 5.1% 0.6%
TLC 48.4% 24.2% 18.5% 8.3% 0.6%
Confidence rating in ability to do well in the course
1 (low) 2 3 4 5 (high)
ALC 1.0% 4.8% 25.6% 47.5% 21.2%
TLC 1.9% 7.0% 31.2% 40.1% 19.8%
Minimum final grade that students would be satisfied with
A-range B-range C-range
ALC 70.1% 25.6% 3.2%
TLC 64.3% 32.5% 3.2%

code every time they compiled their code by clicking the “Run” button during a programming task. The team
at Edstem agreed, provided that we show the Edstem staff the consent form students agreed to at the start of
the term and the responses to the form showing which students consented. After sending the list of consenting
students to Edstem, we obtained snapshots of students’ coding workspace each time they compiled and ran
their code in the coding challenges. Using this data, we analyzed students’ programming processes across three
dimensions: 1) adherence to incremental development, 2) error frequencies, and 3) programmer productivity.

5.1.1 Comparing Adherence to Incremental Development. Incremental development has been specifically cited
as a perceived learning benefit of live coding [29]. Shah et al. already conducted an analysis using the Measure
of Incremental Development (MID) to compare students in a static-code pedagogy to a live-coding one [33].
Therefore, we aimed to replicate this analysis for our experiment. We applied the language-agnostic metric to our
data since the MID has been tested on simple programming tasks between one to three functions long, which
precisely describes our coding challenges [32]. The MID is publicly-available as a Python package! and the source
code is freely available, allowing us to access the code and modify its functionality to fit the Java programming
language.

We computed MID values for all Midterm and Final Coding Challenge submissions. The sample size for both
analyses was 345 students for the Active Live Coding group and 185 students for the Traditional Live Coding
group. Given this sufficiently large sample size, we conducted two-sample t-tests [24] to detect any differences, if
any, between the two groups:.

5.1.2 Comparing Error Frequencies and Debugging. For debugging and error-frequency measures, we applied the
Repeated Error Density (RED) developed by Becker [3]. The RED uses the output of student code to track the
frequency of error messages and penalize students for consecutive errors of the same type [3]. For example, three
consecutive syntax errors in a row will result in a higher RED score than three syntax errors with at least one
compilation between each error [3]. A higher RED value indicates a greater frequency of a particular error.

To calculate the RED, we wrote a script to iterate through each students’ snapshots, compile the Java file
for each snapshot, and capture the output of the program execution. We parsed the outputs to identify which
snapshots results in errors and which errors occurred. As with the MID analysis, we conducted two-sample t-tests
to compare the two lecture sections across the various error types on the Midterm and Final Coding Challenges.

Thttps://pypi.org/project/measure-incremental-development

ACM Trans. Comput. Educ.

An Empirical Evaluation of Active Live Coding in CS1 .« 13

The most common errors that students encountered were Symbol Not Found, Missing Identifier, Syntax Error,
Type Mismatch, Non-Static Access, and Redefinition Conflict errors, described in Table 7.

Table 7. Description of the errors tracked for RED Analysis

Error Name Error Description
Symbol Not Found A refgrence to a variable or method cannot be located by the
compiler

Compiler encounters a statement or expression that requires
an identifier but finds something else instead

Compiler encounters a statement or expression that requires
Syntax Error an syntactical token (such as a semicolon, parenthesis, etc.)
but does not find the token

An attempt to assign or operate on a value of one data type
with another incompatible data type

An attempt to access a non-static variable or method from
within a static context

An attempt to define a variable, method, or class with the
same name as one that already exists in the current scope

Missing Identifier

Type Mismatch

Non-Static Access

Redefinition Conflict

5.1.3 Comparing Programmer Productivity. Finally, we collected data about programmer productivity on the
coding challenges in terms of the number of compilations that students conducted before their final submission
and the number of requirements correctly implemented. The number of compilations is easily derived based on
the number of snapshots for each student in our dataset. To determine the number of requirements satisfied, we
used student grades on the MCC and FCC since these challenges were graded on whether or not they passed a set
of hidden test cases that were run only after students made their final submission. As with the analyses related to
incremental development and error frequencies, We conducted two-sample t-tests across the comparisons for
programmer productivity.

Though we aimed to fully replicate the analysis from Shah et al., we were unable to collect data related to the
time to completion. Though we had timestamps in the snapshot data from Edstem, we did not know the start
time for each student. As a result, we did not analyze time to completion in this study.

5.2 RQ2 Methods: Course Performance

Our second research question compares 1) course grades, including assignments, attendance, and exam scores,
and 2) performance across code tracing and code writing questions on the exams.

5.2.1 Comparing Student Grades. As discussed in Section 4.1, in a typical week, students completed a reading
quiz, attended two lectures, attended a discussion section, completed a programming assignment, and completed a
homework worksheet. Students also completed two exams during the term. Overall, students accumulated grades
the following categories: lecture attendance, programming assignments, exams, and worksheets. To compare
student grades, we compared final grades across these various course components using two-sample t-tests.

5.2.2 Comparing Student Performance on Code Tracing and Code Writing Questions. Although overall course
grades is an important measure of students’ learning outcomes, it is a coarse measurement of students’ skills. As
a result, we aimed to compare student performance across various types of exam questions, as done by Shah et al.

ACM Trans. Comput. Educ.

14 « Shahetal

Table 8. Counts of each question type on the midterm and final exams.

Question Type Midterm | Final
Basic Questions 2 1
Code Writing 4 4
Code Tracing (Loops) 0 4
Code Tracing (No Loops) 4 5
Code Explaining 1 0

[33]. For this, two members of the research team classified each question from the midterm and final exam into
the following question types, which were described by Venables et al. [38]:

e Code explaining questions involve students describing the purpose of a piece of code in plain English.

e Code writing questions involve students generating blocks or lines of code. These questions may ask
students to fill in the blank of a nearly-completed program or even write an entire function.

e Code tracing (without loops) questions involve students predicting the output of a piece of code from a
given input, provided that the code does not include any loops. Venables et al. distinguish code tracing
questions based on whether or not there is a loop (while or for) in the provided code because of the
added complexity of the loop.

e Code tracing (with loops) are the same as the item above, except applies to code tracing questions
where the code includes a while or for loop.

e Basic questions involve more students’ answering conceptual or theoretical questions that do not fall
into the categories above.

The counts of each question type for each exam are outlined in Table 8.

5.2.3 Comparing Student Learning Gain During Lecture. A deeper description of the methods related to learning
gain during lecture can be found in previously-published work from this experiment [2]. To calculate learning
gain, we analyzed the pre- and post-lecture question results. At the start of the experiment, we aimed to have
the pre- and post-lecture questions be isomorphic [43], but after 3 weeks, we made the pre- and post-lecture
questions to be the exact same due to concerns about whether the questions were truly isomorphic.

Our method for calculating learning gain is the same as Porter et al. in their study related to learning gain
in Peer Instruction [23]. In order to make the analysis agnostic to different correctness levels between the two
groups in the pre-lecture questions, the calculation of learning gain focuses only on the Potential Learner Group
(PLG)—the group who answered the pre-lecture questions incorrectly. The learning gain metric for each question
is the percentage of PLG students that correctly answered the post-lecture question.

5.3 RQ3 Methods: Lecture Experience

Our third research question consists of 1) identifying student perceptions of Active Live Coding, 2) comparing
perceptions of the Traditional Live Coding components, which occurred in both lectures, and 3) comparing
student behavioral engagement during lectures.

5.3.1 Identifying Student Perceptions of Active Live Coding. In Week 4 of the course, we required students to
complete a reflection survey that counted for 1% of weekly programming assignment. The survey was sent to all
students, but one section of the survey was specifically for students who were part of the Active Live Coding
(ALC) lecture section. In total, 406 students responded to the survey out of the 531 total students that finished the
course, resulting in a response rate of 76.5%. Of the 406 total responses, 271 were in the ALC group. One of the

ACM Trans. Comput. Educ.

An Empirical Evaluation of Active Live Coding in CS1 « 15

questions that we asked specifically to ALC students was: “On a scale of 1 to 5, how helpful is the active coding
component of lectures in which you write a small part of the live coding example?” We also asked an open-ended,
follow-up question that read: “Please give a brief explanation of your rating on the active coding component.”

We conducted a bottom-up, thematic analysis (also called “open-coding”) of the 271 student responses [17]. In
this process, two members of the research team conducted several rounds of independently coding the data and
then deliberating together to create a final code book that includes the variety of themes seen in the student
responses. The two coders could apply multiple labels to a single student response if appropriate. In the first
round, the two coders independently analyzed the first 30 responses from students and wrote down one or
multiple themes for each answer. For each theme, the coders wrote down a general description of the meaning of
that theme. After the independent coding, the coders met to go over the themes they identified and come to a
consensus on the first iteration of the code book, which was only based on the first 30 student responses at the
time. During this deliberation phase, the coders not only decided on the themes and descriptions for the code
book but also came to a consensus on the theme(s) for each of the first 30 responses. In the second round of
coding, the coders analyzed the next 30 student responses. In the independent coding phase of the round, the
coders could apply an existing theme from the code book or could propose a new theme if an existing theme did
not fit. Further, the coders could modify or add to the existing description of the themes to more accurately reflect
the meaning of the theme. The two coders then met again to create the second iteration of the code book and to
agree on codes for the 30 responses they individually reviewed. This process continued for four more rounds,
with the coders completing 30 responses in the third round, 60 responses in the fourth round, 60 responses in the
fifth round, and the remaining 61 responses in the sixth round.

The final code book can be found in Table 19 in the Appendix.

5.3.2 Comparing Perceived Benefits of Traditional Live Coding. Though the analysis above uncovers the percep-
tions of Active Live Coding (ALC), we wanted to compare student perceptions of the Traditional Live Coding
(TLC) components of the lectures, since both groups of students were exposed to this lecture technique. The goal
of this analysis was not only to replicate the analysis conducted by Shah et al. [33] but also to determine whether
there is a difference in student perceptions of TLC between students who have been exposed to ALC and who
have not. To make this comparison while also replicating the analysis from Shah et al., we included the same
survey question as Shah et al. in the Week 4 survey mentioned above. The survey question reads: “What are some
specific things about the live-coding examples that have been helpful for your learning?”. As mentioned above, 406
students responded to this survey.

Our open-coding process for this survey question relied on the same code book developed by Shah et al. for
the same question [33]. Therefore, we did not undergo the same open-coding process as the analysis for the
perceptions of ALCsince the code book was already developed. Instead, two coders (the same two coders who
conducted the analysis of perceptions of ALC) studied the code book from Shah et al. and began the process
of independently coding the responses and then deliberating to resolve disagreements. The coders could apply
multiple labels to a student response. Though the code book was already created, we were concerned that there
may be responses in our data that did not fit the existing code book. Therefore, we instructed the coders to modify
or expand the code book if needed. Ultimately, however, our coders did not need to make any changes to the
original code book. The coders analyzed the 406 responses across five rounds of analysis. The coders analyzed 50
responses in the first round, 75 in the second round, 75 in the third round, 100 in the fourth round, and 106 in the
fifth round. The final code book is the same as the code book presented in the appendix of the original work by
Shah et al. [33].

One unique situation arose with our analysis of this open-ended question, which was intended to ask students
about only the Traditional Live Coding portion of the lectures. Several students in the ALC group responded
to this question with a response that discussed their perception of Active Live Coding rather than Traditional

ACM Trans. Comput. Educ.

16 « Shahetal

Table 9. Condensed rubric used by classroom observers, developed by Lane and Harris [19].

Engaged Criteria Disengaged Criteria
Computer Student is taking notes or has in- | Student is using the computer for
Use structor’s code open non-class purposes or is doing

homework for the class

Looking/ Student is looking at the instructor | Student is not looking at the pro-
Listening and nodding along to demonstrate | jector and instead is distracted by

attention phone, laptop, etc.
Student Student is not talking to neighbors | Student is talking or laughing with
Interaction | during instruction neighbors during instruction

Live Coding. This likely occurred since students in the ALC group assumed that the active coding component
is simply part of a “live coding” pedagogy. Therefore, in our qualitative analysis, we instructed the two coders
to indicate when they felt that an answer was specifically about Active Live Coding, such as mentioning the
process of coding themselves or forking the instructor’s workspace. In total, the coders identified 52 of the 406
responses that were specific to Active Live Coding. We excluded these answers from the analysis to compare
perceptions of live coding. However, we still conducted an analysis of these 52 responses using the code book
developed for the Active Live Coding analysis (Figure 2).

Since students answered the question about their perceptions of Active Live Coding only in a later part of the
same survey, we did not include these 52 responses in the other analysis to avoid duplicate perspectives from
students. Instead, we conducted a separate qualitative analysis using the same code book from the Active Live
Coding perceptions analysis. The goal of this extra analysis was to ensure that we did not miss additional, unique
perspectives of Active Live Coding.

The final code book that we created can be found in Table 20 in the Appendix.

5.3.3 Comparing Behavioral Engagement During Lecture. Our analysis on student behavioral engagement is part
of a previous publication [31].

To measure the behavioral engagement level of students during lectures, we used the Behavioral Engagement
Related to Instruction (BERI) protocol [19]. The BERI protocol is an observation method created by Lane and Harris
that was specifically designed to measure student engagement in large lecture halls that exceed one hundred
students [19]. The method has been tested for validity and reliability and has been shown to accurately capture
student engagement levels of an entire lecture hall with just one classroom observer [19]. In the BERI protocol,
an observer with a clear understanding of the course material and knowledge of the BERI protocol positions
themselves in a seat among the students during the lecture. At the beginning of the lecture, the observer selects
10 students to observe throughout the lecture. Then, several times throughout the lecture, the observer spends
roughly 15 seconds observing each of the 10 students and applies a rubric, displayed in Table 9, to determine
whether each student is engaged or disengaged.

To apply the BERI protocol, we used two observers, even though Lane and Harris showed that one observer is
sufficient for reliable data collection [19]. Among the two observers, we had one primary observer who attended
every lecture throughout the term and a secondary observer attended roughly half of the lectures (one lecture per
week rather than both lectures per week). When the two observers were at the same lecture, they coordinated
their data collection times so that the observations happened at the same time. The observers made sure to sit in
different parts of the classroom in the same lecture to cover a greater variety of seating locations. Furthermore,
to ensure consistency between lecture sections, the observers made sure to sit in the same relative area of the
classroom for the two lectures so that the data collected on a specific day would be comparable between the

ACM Trans. Comput. Educ.

An Empirical Evaluation of Active Live Coding in CS1 « 17

Table 10. Comparison of Measure of Incremental Development (MID) on Midterm Coding Challenge (MCC) and Final
Coding Challenge (FCC). A lower MID value indicates more adherence to incremental development.

Item Group N | Mean fl:i t-stat p value gohen’s
All MCC Submissions ?:;ggfisfal Lo ?gg 1;11 Zfﬁ 082 041 0.08
Perfect Scores on MCC ?:;ii‘;:isr?al LC f;; 1(2); 1;3 0.76 0.45 0.08

All FCC Submissions ?:atgfufal L i:i ;(7)2 ;ig 142 0.16 -0.13
Perfect Scores on FCC ?rce;[gfii‘r?al LC ?;Z ;32 ;Z -2.87 <0.01* -0.32

two lectures. The observers aimed to be as discrete as possible during lectures as to not cause students to act
differently. Our observations happened roughly every 10 to 15 minutes during the lecture. The observers ensured
that they collected data at least once per instructional activity (see Table 5). For each data collection moment, the
observers recorded how many of their 10 students were engaged. With this frequency of data collection, we were
able to create a representation of how student engagement changes throughout a lecture as the instructor shifts
between instructional activities.

6 RESULTS
6.1 RQ1 Results

6.1.1 Comparing Adherence to Incremental Development. Table 10 compares student adherence to incremental
development, measured via the Measure of Incremental Development [32], on the Midterm Coding Challenge
(MCC) and Final Coding Challenge (FCC). The table compares MID scores, where a lower value indicates
more adherence to incremental development, across all submissions for the MCC and FCC. However, we also
wanted to see whether there was a difference in MID scores between the students who correctly solved the
coding challenges, since students who struggle to get the correct answer may exhibit different programming
processes. Across all submissions, we found no statistically significant differences in terms of adherence to
incremental development. However, when we isolated our analysis to only the perfect scores so that measurement
of incremental development did not include students who struggled to complete the task, we see that the Active
Live Coding group had a higher adherence to incremental development on the FCC.

6.1.2 Comparing Error Frequencies and Debugging. Tables 11 and 12 shows the comparison of students’ error
frequencies, measured via the Repeated Error Density [3], on the Midterm Coding Challenge and Final Coding
Challenge, respectively. To interpret the RED, a lower value indicates a lower error frequency. We ran the RED for
the errors described in Table 7. However, for the FCC, there was no Non-Static Access error because there were
no static methods involved in the FCC. Therefore, we exclude this error for our analysis on the FCC. As seen in
Tables 11 and 12, we found no statistically significant differences in any of the error frequencies on the MCC or
FCC. Despite the lack of significance, the effect sizes tended to favor the TLC group, who had lower average RED
values. However, the non-significance of the differences ultimately points to a similar error frequency between
the groups, despite the trend in the small effect sizes.

ACM Trans. Comput. Educ.

18 « Shahetal

Table 11. Comparison of Repeated Error Density (RED) on Midterm Coding Challenge (MCC). A lower RED value indicates
less frequent errors.

Item Group N | Mean fl:ir t-stat p value gohen’s
Symbol Not Found ?::ngisfamc ?gg 1; gii 184 007 0.17
Missing Identifier ?rcii‘;:icl;r?alLC ?gg gig 83 . 088 038 -0.08
R - 1 R TR
- I
Non-Static Access ?rcatil‘;:icl;falLC ?gg ggg gi; 0.07 0.95 0.01
Redefinition Conflict ?rczz(ii\:i(l)‘r?al LC i:g 8(1)2 (1);2 0.71 0.48 0.06

Table 12. Comparison of Repeated Error Density (RED) on Final Coding Challenge (FCC).

Item Group N | Mean (slfir t-stat p value gohen’s
symoroms Aol IR A9 0y o
Missing Identifier ?:;‘:ilfalm ?zi 8:32 8;2 0.57 057 -0.05
I
et QCASRIC] IO e e
Redefinition Conflict e LC 338 1 0.03 0.17 -0.48 0.63 -0.04

Traditional LC 184 | 0.04 0.25

6.1.3 Comparing Programmer Productivity. Tables 13 and 14 shows the two dimensions of programmer produc-
tivity that we collected: correctness on the coding challenges (Table 13) and the number of compilations until
submission (Table 14). We did not find any significant differences in terms of p-values, though the small effect
sizes favor the TLC group. Notably, as seen in Table 13, the TLC group scored 4 to 5 percentage points higher
than the ALC group in both coding challenges. Similarly, across both coding challenges and even among perfect
scores on coding challenges, there was no statistically significant different between the groups.

6.2 RQ2 Results

6.2.1 Comparing Student Grades. Table 15 compares scores on textbook activities, lecture attendance, discussion
attendance, programming assignment (PA) grades, worksheet grades, final exam score, and overall course grades
between the Active Live Coding and Traditional Live Coding groups. We did not detect any statistically significant

ACM Trans. Comput. Educ.

An Empirical Evaluation of Active Live Coding in CS1 « 19

Table 13. Comparison of correctness on Midterm and Final Coding Challenges.

Std Cohen’s
Item Group N Mean dev t-stat p value D
Active LC 348 | 84.2 25.7
MCC Correctness Traditional LC 183 | 8.2 91.9 -1.79 0.07 -0.16
Active LC 348 | 78.4 34.1
FCC Correctness Traditional LC 183 | 83.2 39.4 -1.57 0.12 -0.14

Table 14. Comparison of number of compilations until final submission on Midterm Coding Challenge (MCC) and Final
Coding Challenge (FCC)

Item Group N | Mean fl:i t-stat p value gohen’s
All MCC Submissions ?f:ggteiifal L ?gg fgi 122 163 0.10 0.15
All FCC Submissions ?:;Zteisfal Lo izg 123 13; 0.83 041 0.08
Perfect Scores on MCC ?rcii\:igr?al LC izz 122 1(2)2 1.03 0.30 0.12
Perfect Scores on FCC ?rce;[gfic[)fal LC f;i 122 1‘112 0.85 0.40 0.10

differences except for the final exam scores, which showed the Traditional Live Coding group scoring higher
than the Active Live Coding group by 4 percentage points.

However, in order to more fully examine the factors that led to this difference in final exam grades, we
conducted a Multiple Linear Regression (MLR) analysis [1] in order to determine the relative impact of the
different independent variables we collected—prior programming experience, university major, and year-in-
university. The results of our MLR analysis is shown in Table 16. In Table 16, there is a baseline value in each
category: the baseline for Year is first-year, the baseline for Major is computer science, the baseline for Prior
Experience is no, and the baseline for Treatment is the Traditional Live Coding group. Each coefficient value in
the table shows the relative effect of that predictor compared to its baseline value. For example, to interpret the
Treatment grouping, we would say that all else being equal (such as Year, Major, and Prior Experience), a student
in the Active Live Coding condition is expected to score 0.53 percentage points lower on the final exam than if
they were a student in the Traditional Live Coding condition. However, the effect of the ALC treatment is not
statistically significant, as seen from the right-most column with the p values. Each of the groupings besides the
Treatment condition had a predictor with a significant association with final exam grades: second-year, math
major, other major, and prior programming experience. The results of this MLR analysis reveal that the significant
difference shown in Table 15 is not due to the Treatment condition but rather can be explained through differences
in Year, Major, and Prior Experience.

Finally, we conducted a Leave-One-Out analysis [37] to understand the relative impact of each grouping (Year,
Major, Prior Experience, and Treatment) on our model’s performance, which is shown in Table 17. The results of
the Leave-One-Out analysis are shown in order of significance, where the Treatment condition has the lowest
impact on model performance, then Year, then Major, and finally Prior Experience, which has the largest impact

ACM Trans. Comput. Educ.

20 « Shahetal.

Table 15. Comparison of overall course performance between live-coding and static-code groups

Grade (out of 100)

Item Group N | Mean (Slte(i t-stat p value](;ohen’s
Textbook Activities ‘;‘f:gfi(fal Lo i’gi Z;g ;24'8 069 049 -0.06
Lecture Attendance ?rcaii‘;teiifal LC igg Zgg 1:2 0.12 0.9 0.01
Discussion Attendance ?:;ji‘;fisr?al LC igi ZZ; 133 1.18 0.24 0.11
oo dIe IS
Worksheet Grades ?rcaﬁi‘;ficl;ncal LC ?:2 Z;; 22 -0.65 0.52 -0.06
i Aele e
Overall Grade ?::gtelsfal Le i:i 3;2 z:z 171 0.09 -0.16

Table 16. Least squares regression model fitted with students’ Year, Major, Prior Experience, and Treatment Condition as
independent variables and Final Exam Score as dependent variable.

Grouping coef N stderr t p value
Y-intercept const 86.14 N/A 146 59.15 0.00
Second-Year 275 199 0.97 284 <0.01"
Year Third-Year 221 146 1.13 1.96 0.05
Fourth-Year -1.13 57 1.51 -0.75 0.45
Transfer 4.46 1 8.59 0.52 0.60
Elec. Engineer. -2.11 53 136 -1.56 0.12
Major Math -2.55 164 1.07 -2.38 0.02*
Other -3.68 160 1.17 -3.13 <0.01%
Prior Experience Yes 7.60 459 1.11 6.83 <0.01%
Treatment ALC -0.53 348 0.83 -0.64 0.52

Table 17. Impact of each predictor on adjusted r-squared value for final exam grades.

Model Adj. R? | Adj. R? Diff from Full Model
Full Model 0.159 N/A
Full Model, NO Treatment 0.159 0.0
Full Model, NO Year 0.151 -0.008
Full Model, NO Major 0.144 -0.015
Full Model, NO Prior Experience | 0.073 -0.086

ACM Trans. Comput. Educ.

An Empirical Evaluation of Active Live Coding in CS1 « 21

Comparison of Final Exam Questions

Active Live Coding = Traditional Live Coding

Tracing (no | 81.43%
loops) 84.83%
Tracing | 83.68%
(loops) 87.16%
.. 85.62%
Code Writing 87 28%
Basic 84.15%
Questions 86.71%
0.00% 25.00% 50.00% 75.00% 100.00%

Fig. 1. A comparison of student grades on various types of questions on the Final Exam

on the model’s predictive power. Interestingly, there is no difference in the Adjusted R? value when we remove
Treatment from the model, showing the minimal impact of our treatment compared to the other groupings.

6.2.2 Comparing Student Performance on Code Tracing and Code Writing Questions. Finally, just as Shah et al. had
done in their study, we compared student performance across code tracing, code writing, and basic, conceptual
questions between the two lecture styles. Figure 1 shows the comparison of student performance, which revealed
no statistically significant differences between the two groups.

6.2.3 Comparing Student Learning Gain During Lecture. Our learning gain metric is the proportion of students
who incorrectly answered the pre-lecture question incorrectly but correctly answered the corresponding post-
lecture question. Since this metric is sensitive to the number of students in the Potential Learning Group (PLG),
we compared the rate of correctness of students on the pre-lecture questions for both lecture groups. The rates of
correctness were similar throughout the term, with the ALC lecture having an average of 43.1% of students in the
PLG and the TLC lecture having 40.8% of students in the PLG.

Table 18. Comparison of students’ learning gain.

Lecture Num Learning z p Cohen’s
Condition | Questions Gain stat val H
ALC 2768 50.7%
TLC 1323 53.7%, -1.85 0.06 0.06

Table 18 shows that there is a 3 percentage point difference in the aggregate learning gain throughout the term.
The “Num Questions” column represents the total number of pairs of pre- and post-lecture questions we analyzed
during the quarter from the PLG. According to a z-test of proportions [28], this difference is not statistically
significant. The low Cohen’s H [11] effect size implies a relatively small magnitude of the difference in the learning
gain.

ACM Trans. Comput. Educ.

22 « Shahetal.

Category Label Frequency
helps with PAs 5.5%
Helps with course helps with exam review 1.1%
helps with discussion sections 0.4%
applies lecture material 25.1%
. shows instructor's solution 7.4%

Programming Process = =

helps with debugging 2.6%
improves coding skills 3.7%
reinforces understanding 33.6%
Understanding provides immediate feedback 10.0%
provides incremental learning 0.7%
provides hands on experience 16.6%
Active Learning promotes engagement 9.6%
allows for group learning 4.1%
rushes lecture 3.7%
Negatives student gets stuck 3.0%
repetitive examples 1.5%
Unclear vague 11.6%

Fig. 2. A comparison of student responses to the question “Please give a brief explanation of your rating on the active coding
component” for the Active Live Coding group (n = 271).

6.3 RQ3 Results

Our results for RQ3 can be divided into three parts. First, we conducted a thematic analysis on students’ perceptions
of Active Live Coding. Second, we compared students’ perceived benefits of their respective lecture style to detect
differences in student perceptions. Third, we conducted an observational study to measure student behavioral
engagement during the different lecture styles throughout the term.

6.3.1 ldentifying Student Perceptions of Active Live Coding. Figure 2 shows open-ended student responses to
the question: “Please give a brief explanation of your rating on the active coding component” The column titled
Label represents the codes that our research team generated during the coding process and the Category
column represents a post-analysis grouping of the labels. The percentages do not sum to 100% because each
student response could have multiple labels. The categories of perspectives include benefits, such as helping with
performance on course components, helping students’ programming processes, improving student understanding
of concepts, and keeping students engaged with active learning, and drawbacks, such as the directions for the
active coding component being too vague and lectures being rushed due to Active Live Coding. The most common
response students mentioned was that Active Live Coding “reinforces understanding” (33.6%) of key concepts,
which students typically mentioned was due to the “hands on experience” (16.6%) of coding themselves. Students
also appreciated that active live coding “applies lecture material” (23.7%) they just saw in class. We also saw
that students appreciated how Active Live Coding “provides immediate feedback” (10.0%) on their programming
solution since they see other students’ approaches and the instructor’s solution.

ACM Trans. Comput. Educ.

An Empirical Evaluation of Active Live Coding in CS1 .« 23

Category Label TLC | ALC
Code part-by-part breakdown 7.5% 5.0%
Comprehension |reference of correct code 25.4%| 26.4%
thought process while coding 7 9.0%| 11.4%
Programming debugging/avoiding errors 38.8%| 20.9%
Process code writing 82%| 14.1%
testing code 2.2% 1.8%
instructor's explanation 14.2% 9.5%
FeatEu;:rsn:Ife(s:ode variations of code 0.7% 1.8%
predicting output 6.0% 0.5%
following along with instructor 7.5% 3.6%
Lecture Experience |taking notes 1.5% 0.9%
group learning 0:7%| 0.5%
Application application of abstract concepts 9.0%| 13.6%

Fig. 3. A comparison of student responses to the question “What are some specific things about the live-coding examples
that have been helpful for your learning?” for the TLC (n = 134) and ALC (n.= 220) groups.

6.3.2 Comparing Perceived Benefits of Active and Traditional Live Coding. Figure 3 shows the comparison of
student responses to the question “What are some specific things about the live-coding examples that have been
helpful for your learning?” A darker green color represents a higher frequency of students that mentioned that
label. We generally saw similar frequencies between the two groups, though one prominent difference we noticed
was nearly 40% of students in the TLC lecture mentioned debugging as a benefit of the live coding examples,
whereas only 20% of students in the ALC lecture noted this. Both of these values are in stark contrast to the work
from Shah et al., who found that only 13% of students mentioned debugging as a benefit of live coding.

As mentioned before, one issue with this analysis was that 51 students in the ALC lecture gave a response
about active coding rather than Traditional Live Coding. This explains the difference in the responses for Figure 2
(n = 271) and Figure 3 (n = 220). Not only is an interesting finding that 51 of the 271 students mentioned a quality
of Active Live Coding when answering a question about Traditional Live Coding, but we saw a new label emerge
from these responses. Specifically, students mentioned that they appreciated the level of detail and clarity in the
comments and directions that the instructor gave before the active coding component. One student wrote: “[The
instructor] writing the comments of what we’re supposed to do before doing the code has also been helpful”

6.3.3 Comparing Student Behavioral Engagement During Lecture. Figure 4 shows the comparison of student
behavioral engagement across all lecture activities throughout the term. Each percentage in one of the horizontal
bars represents the average percent of students that were engaged during that lecture activity during the term.
There is no engagement rate for Active Live Coding for the TLC group since there was no active live coding
portion in the TLC lecture. In general, the engagement levels were relatively similar for the Pre-Lecture Questions
and Worksheet Review. Interestingly, students in the ALC lecture exhibited slightly higher engagement during
traditional live coding (which happens in both lecture groups) but lower engagement during the written notes
section.

Figure 5 represents the change in student engagement throughout a lecture based on specific lecture activities.
For each ten minute increment into the lecture in Figure 5, we found the most common lecture activity from our

ACM Trans. Comput. Educ.

24 « Shahetal.

Student Engagement During Lecture Activities
® Active LC Lecture ® Traditional LC Lecture

Pre-Lecture
Questions

Worksheet
Review

Traditional
Live Coding

Written
Notes

Active Live
Coding

Post-Lecture
Questions

0 20 40 60 80 100
Percentage of Students Engaged (out of 100)

Fig. 4. Comparison of behavioral engagement between the two lecture groups.

Average Student Engagement Throughout Lecture
® Active LC Lecture -- Traditional LC Lecture

100 95.0% s S 2 99.4%
oy 77.9% .7
9075%, 75.6% 70/0% > ,98.8%\. A
80 ~,,..: 70 661 0/. \., 944 0
oW, e, 60.0% 64.4%
60 72.0%Q CTHRNT T aeenene
65.4% A
40 ! | ! | ! | |
10-20 mins 20-30mins 30-40mins 40-50mins 50-60mins 60-70mins 70-80mins
PreLQ Wksht TLC TLC ALC/TLC TLC PostLQ

Time into Lecture

Fig. 5. Average engagement throughout lectures.

observations (i.e., for minutes 10 to 20 into the lecture, the most common lecture activity were the pre-lecture
questions; for minutes 20 to 30 into the lecture, the most common lecture activity was worksheet review, etc.).
We then calculated the average engagement for that lecture activity specifically within that ten minute increment.
Traditional live coding, which occurred in both lectures, was the most common lecture activity for both lectures
30 to 50 minutes into the lecture. For the increment between 50 and 60 minutes the most common activity within
the ALC lecture was active live coding whereas the most common activity for the TLC lecture continued to be
traditional live coding. We see a strong peak for the ALC lecture during the active live coding component, which
is unsurprising given that the active coding portion was required for students to complete. Interestingly, the ten
minute increment following the active live coding component shows a higher engagement level for the ALC
group than the TLC group, potentially demonstrating a persistent engagement effect of active live coding.

ACM Trans. Comput. Educ.

An Empirical Evaluation of Active Live Coding in CS1 « 25

Live Coding Engagement Pre- and Post-Active Learning

T s 61.5% (n=340)
Active Live 97.0% (n=21 0)
Coding (ALC) U7
Live Codi o
(PostALC) 77.7% (N=190)
0 20 40 60 80 100

Percent of Students Engaged (out of 100)

Fig. 6. Student engagement during live coding before and after active live coding in the ALC lecture.

To further explore this persistent engagement effect, we compared student engagement before and after the
Active Live Coding component in Figure 6. We specifically compared the traditional live coding components
before and after an active live coding component. Figure 6 shows that the engagement rate for traditional live
coding before ALC was only 61.5%, but this value increased to 77.7% after ALC. A two-sample t-test [24] revealed
that the difference between these values is significant, with p < 0.001 and Cohen’s d of 1.16—a large effect size
[14].

7 DISCUSSION
7.1 Interpretation of Results

Paragraphs within this subsection were re-ordered to provide better structure for the interpretation of results.

7.1.1 Similar adherence to programming processes (RQ1) and student learning (RQ2). Our quantitative findings
related to students’ programming processes and learning outcomes generally showed no significant difference
between the ALC and TLC groups. Students in both groups showed similar adherence to incremental development
(Table 10) and error frequencies (Tables 11 and 12), while being able to produce correct code at similar rates (Table
13). Further, students performed similarly across all major grading components in the course (Tables 15 and
16) and exhibited similar learning gain during lectures (Table 18). Though there was one statistically significant
difference from our analysis that showed the TLC students scoring higher on the final exam, our regression
analysis of the factors that explain the difference between the two groups showed that the ALC treatment
condition had an insignificant association with final exam scores. Though we only showed the regression analysis
for the final exam scores, we repeated this analysis on all other comparison items in RQ1 and RQ2. A prevailing
theme in'all of these analyses is that these other factors—students’ year in program, major, and prior programming
experience—contributed more to the model’s accuracy than our treatment condition. Our main takeaway for
RQ1 and RQ2 is that Active Live Coding resulted in similar programming processes and learning outcomes as
Traditional Live Coding. Several potential explanations exist for the lack of impact of Active Live Coding. One
hypothesis is that the effect of roughly 30 to 40 minutes of active coding and peer discussion per week (i.e., one
ALC session in each of the two lectures per week) is marginal compared to the significant amount of course
components per week. As mentioned in Section 4.1, students’ attend 160 minutes of lecture and 50 minutes of
a discussion section per week and complete one programming assignment and worksheet per week. All these
other course components represent significant impacts to students’ learning beyond the moments of Active
Live Coding. Combined with demographic factors such as major, year-in-university, and prior programming
experience, these other activities represent a significant amount of learning experiences that may outweigh the

ACM Trans. Comput. Educ.

26 + Shahetal.

effect of Active Live Coding. A second hypothesis is that Active Live Coding takes up more lecture time than
Traditional Live Coding, resulting in less time for an instructor to explain the material. In the TLC lectures, the
instructor covered the same material as the Active Live Coding lectures, but had more time to go into more detail
in their lessons. Throughout the term, this may result in more time for instructors to answer student questions,
explain program errors, and share their thought process. Though the ICAP Framework shows that students learn
the material better by engaging with it more actively, the amount of time that a learner engages with material
may also impact learning gains. Indeed, one of the drawbacks of live coding mentioned by Bruhn and Burton is
the greater time commitment of live coding compared to static code examples [6]. A third potential reason for
the lack of significant findings is that the Traditional Live Coding lectures engaged students beyond a passive
engagement level. Since the instructor occasionally prompted the class with a verbal question (ie., “what would
be printed if I ran the code now?”, students’ engagement level may have become active or constructive. Therefore,
the traditional live coding components may already be sufficiently engaging and informative for students.

7.1.2 Differences in students’ lecture experience (RQ3). Our findings related to students’ lecture experience in
Active Live Coding revealed important differences between ALC and TLC. In fact, student responses demonstrated
the multiple Cognitive Apprenticeship Methods being applied. Of course, the modeling Method is engaged by
Traditional Live Coding, and the responses in Figure 3 show how students’ in both lecture groups saw the
instructor’s programming process and heard the instructor’s thought process. Further, the open-ended question
related to students’ perceptions of ALC, shown in Figure 2, uncovered aspects specific to Active Live Coding
that are not present in TLC. For example, students discussed how the active coding component “provides a
hands on experience” to students to code on their own. This demonstrates the scaffolding Method of Cognitive
Apprenticeship as students’ are able to complete a simple activity on their own in a low-stakes environment
that uses the concepts just taught in lecture. Then, students mentioned being able to discuss their solution with
peers, which is captured by the label “allows for group learning” in Figure 2. This aspect of ALC leverages the
articulation Method of Cognitive Apprenticeship, as students discuss their approach with peers. Finally, students’
mentioned “seeing the instructor’s solution” to the coding activity, which specifically engages the reflection
Method of Cognitive Apprenticeship, as students’ compare their own approach to the instructor’s approach. An
interesting set of responses from 9.96% of respondents mentioned that ALC “provides immediate feedback” on
their solution to the programming task—a mechanism that is simply not present in Traditional Live Coding. The
tenet of providing immediate, individual feedback relates to the coaching Method of Cognitive Apprenticeship.
In Section 2.1, we did not mention coaching as a Method that is leveraged by Active Live Coding since there is no
one-to-one interaction between instructor and student. Instead, there is only a one-to-many feedback channel as
the instructor provides the solution to the coding activity. However, despite this limitation of Active Live Coding,
it seems students still felt that ALC achieved some of the benefits of the coaching Method.

Another key finding from RQ3 is that ALC improved student engagement but did not impact student learning.
A notable category of responses in Figure 2 discussed the engaging nature of Active Live Coding. Our analysis
using the BERI protocol revealed an interesting effect of Active Live Coding. Specifically, Figure 5 shows that
engagement starts and ends at a high rate, but we saw a lower engagement rate about 30 minutes into the lecture.
From about 30 minutes to 70 minutes in the Traditional Live Coding lecture, the engagement rate hovers between
60 to 70 percent as students observe the instructor live coding. However, the large spike due to Active Live Coding
resulted in a persistent engagement effect where students had a heightened engagement rate even 20 minutes
after Active Live Coding. A key reason for this heightened engagement effect, which can be partially explained
by the findings in Figure 2, is that students can see the instructor’s solution and get immediate feedback about
whether their approach was correct. In other words, the 20 minutes following Active Live Coding are important
for students’ to identify whether they were correct and to compare their solution to the instructor’s solution.

ACM Trans. Comput. Educ.

An Empirical Evaluation of Active Live Coding in CS1 .« 27

This persistent engagement effect is highlighted by Figure 6, which showed a statistically significant difference in
engagement levels before and after Active Live Coding.

7.1.3 Theoretical implications of our results. Overall, our results are unexpected. Based on Cognitive Apprentice-
ship and the ICAP Framework, one may predict that students’ in the Active Live Coding group would exhibit
greater adherence to programming processes and learn more than their Traditional Live Coding counterparts.
Since Active Live Coding engages more Methods of Cognitive Apprenticeship, we would have expected students
in the ALC group to adhere to incremental development and debug errors more efficiently than students in the
TLC group. However, the results of RQ1 and RQ2 showed that students exhibited similar programming processes
and course performance in the two groups despite their lectures engaging the articulation and reflection Methods
of Cognitive Apprenticeship. Previous work on active learning, such as Peer Instruction, in computing education
has shown empirical improvements to retention and learning gain [23] and failure rates [22]. These works by
Porter et al. showed that students benefited from the peer discussion [23], which is also a critical component of
Active Live Coding. However, our results did not show similar results to the findings from Porter et al., motivating
a deeper investigation into whether Active Live Coding improves student learning.

Similarly, the ICAP Framework predicts that activities with a higher level of engagement will result in more
student learning. However, despite finding a higher engagement rate in ALC, our results from RQ2 did not show
an increase in student learning as a result of this higher engagement. In fact, the most granular metric related to
student learning during lecture—the learning gain analysis shown in Table 18—showed no statistically significant
difference in the learning gain during lecture between the two groups, although the TLC had a higher average
learning gain throughout the term. The comparison of learning gain via the pre- and post-lecture questions, which
are multiple-choice questions that are code tracing or conceptual questions, may not be the best way to assess
student learning for ALC, which asks students to write code. However, even the metrics related to correctness on
programming tasks in Table 13 do not show the ALC students outperforming the TLC students. Overall, we saw
almost no impact of ALC on student learning, raising questions about why the higher level of engagement did
not translate to higher student learning.

7.2 Threats and Limitations

The main factor that threatens the internal validity of our work is the experience of the instructor who taught
both groups. The instructor has been an instructor for six years and has regularly used Traditional Live Coding
all six years. In contrast, this was the instructor’s first time ever using Active Live Coding. Upon reflection, the
instructor mentioned that the timing of the Active Live Coding lecture was difficult to manage the active coding
and peer discussion portion takes roughly 10 of the 80 total minutes. As a result, the Traditional Live Coding
students may have benefited from the instructor’s experience while the Active Live Coding students may have
suffered from the instructor’s lack of experience with the lecture style.

A second threat to internal validity is the difference between the two lectures in terms of the time of day
and the student makeup. For example, one issue we noticed is that many more Math majors were enrolled in
the Traditional Live Coding lecture because a required Math course was offered at 9:30am on Tuesdays and
Thursdays—the same times as the Active Live Coding lecture. Though our analysis took this specific factor into
account, there could easily be other selection biases we did not detect. Although students did not know that there
would be any difference between lecture sections or that the 9:30am lecture would be ALC while 11am would be
TLC, we were unable to randomly assign students to the lecture sections, as Raj et al. had done [25].

A third threat to internal validity is that we did not track whether students completed the active live coding
activity. While the classroom observer consistently saw high engagement during this part of lecture, we are
unable to find out how many students actually attempted the activity. Our results might be different if students
earned a grade for the active live coding activity, or if the activity was graded on correctness.

ACM Trans. Comput. Educ.

28 « Shahetal.

The main factor that threatens the external validity of this work is the instructor effect. Different instructors may
see varying levels of student success. In fact, one of the takeaways from Porter et al.’s work on Peer Instruction is
that different instructors saw varying levels of benefits of using Peer Instruction [22], which may also be the case
for Active Live Coding or even Traditional Live Coding. Therefore, replication studies with different instructors
can help create a solid basis of empirical findings related to the impact of Active Live Coding.

7.3 Future Work

This work has occurred after a long line of prior work to evaluate traditional live coding [25, 27, 30, 33, 36, 39].
The overwhelming finding from these works is that there has been no significant difference between traditional
live coding and static-code examples. Similarly, our findings in this study indicate a similar effect of Active and
Traditional Live Coding compared to Traditional Live Coding. A useful avenue of future work could investigate
why Traditional Live Coding and Active Live Coding do not result in improved student learning. It may be
the case that some factors during lecture, such as student engagement, distractions, cognitive load, or other
factors, may mitigate any potential learning gain from live coding. A qualitative approach to understanding
how students process a live coding example may help us understand why we have not seen benefits from the
activity. Similarly, our experimental design considers a course-long intervention with programming process data
and course outcome data collected from summative assessments. Future work may consider alternative data to
analyze that may shed light on the differences between the two pedagogical techniques.

We have not found any existing empirical evaluations of Active Live Coding. Our experiment only investigates
the impact of a single instructor using Active Live Coding throughout the term. As a result, future works may
use methods such as lab studies or term-long interventions with a different instructor to further investigate the
impact of Active Live Coding. Additional analyses on Active Live Coding may also explore other outcomes that
we did not analyze in our study, such as students’ sense of belonging in the course and in the computer science
major. A potential benefit of Active Live Coding, along with other active learning techniques that encourage peer
discussion, is that students have a stronger sense of community in the course, resulting in greater feelings of
belonging.

8 CONCLUSION

While our study is just a single data point in the broader literature related to live coding and active learning,
the findings of this study can help inform an instructor of the potential effects of using Active Live Coding.
Specifically, Active Live Coding seems to impart similar learning and adherence to programming processes as
Traditional Live Coding while also promoting student engagement and peer discussions. Students also mentioned
some unique affordances of Active Live Coding, such as providing immediate feedback on the correctness of
their programming solution;-which is not present in a Traditional Live Coding study. Therefore, although we did
not detect empirical benefits of Active Live Coding compared to Traditional Live Coding, instructors may expect
students to have similar perceptions of and engagement with Active Live Coding should they choose to adopt
this pedagogy.

REFERENCES

[1] Leona S. Aiken, Stephen G. West, and Steven C. Pitts. 2003. Multiple Linear Regression. John Wiley & Sons, Ltd, Chapter 19, 481-507.
https://doi.org/10.1002/0471264385.wei0219 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/0471264385.wei0219

[2] Anon Authors. [n. d.]. A Comparison of Student Behavioral Engagement in Traditional Live Coding and Active Live Coding Lectures.
In Proceedings (Anon). Anon, Location. https://bit.ly/anon-engagement-paper

[3] Brett A. Becker. 2016. A New Metric to Quantify Repeated Compiler Errors for Novice Programmers. In Proceedings of the 2016 ACM
Conference on Innovation and Technology in Computer Science Education (ITiCSE ’16). Association for Computing Machinery, New York,
NY, USA, 296-301. https://doi.org/10.1145/2899415.2899463

ACM Trans. Comput. Educ.

(4]

[24]

[25]

[26]

(27]

An Empirical Evaluation of Active Live Coding in CS1 « 29

Jens Bennedsen and Michael E. Caspersen. 2005. Revealing the Programming Process. SIGCSE Bull. 37, 1 (feb 2005), 186-190.
https://doi.org/10.1145/1047124.1047413

Naomi R. Boyer, Sara Langevin, and Alessio Gaspar. 2008. Self Direction & Constructivism in Programming Education. In Proceedings of
the 9th ACM SIGITE Conference on Information Technology Education (SIGITE "08). Association for Computing Machinery, New York, NY,
USA, 89-94. https://doi.org/10.1145/1414558.1414585

Russel E. Bruhn and Philip J. Burton. 2003. An Approach to Teaching Java Using Computers. SIGCSE Bull. 35, 4 (dec 2003), 94-99.
https://doi.org/10.1145/960492.960537

Michelene T. H. Chi. 2009. Active-Constructive-Interactive: A Conceptual Framework for Differentiating Learning Activities. Top-
ics in Cognitive Science 1, 1 (2009), 73-105. https://doi.org/10.1111/j.1756-8765.2008.01005.x arXiv:https://onlinelibrary.wiley.com/-
doi/pdf/10.1111/§.1756-8765.2008.01005.x

Michelene T. H. Chi and Ruth Wylie. 2014. The ICAP Framework: Linking Cognitive Engagement to Active Learn-
ing Outcomes. Educational Psychologist 49, 4 (2014), 219-243. https://doi.org/10.1080/00461520.2014.965823 arXiv:https://-
doi.org/10.1080/00461520.2014.965823

Allan M. Collins, John Seely Brown, and Susan E. Newman. 1988. Cognitive Apprenticeship: Teaching the Crafts of Reading, Writing,
and Mathematics. Knowing, Learning, and Instruction 8, 1 (1988), 2—10. https://doi.org/10.5840/thinking19888129

Louis Deslauriers, Ellen Schelew, and Carl Wieman. 2011. Improved Learning in a Large-Enrollment Physics Class. Science 332, 6031
(2011), 862-864. https://doi.org/10.1126/science.1201783 arXiv:https://www.science.org/doi/pdf/10.1126/science.1201783

Rajarshi Dey and Madhuri S. Mulekar. 2018. Effect Size as a Measure of Difference Between Two Populations. Springer New York, New
York, NY, 715-726. https://doi.org/10.1007/978-1-4939-7131-2_110195

Edstem. 2023. Edstem. https://edstem.org/

Jennifer A Fredricks, Phyllis C Blumenfeld, and Alison H Paris. 2004. School engagement: Potential of the concept, state of the evidence.
Review of educational research 74, 1 (2004), 59-109.

David C. Funder and Daniel J. Ozer. 2019. Evaluating Effect Size in Psychological Research: Sense and Nonsense. Advances in Methods
and Practices in Psychological Science 2, 2 (2019), 156-168. https://doi.org/10.1177/2515245919847202

Alessio Gaspar and Sarah Langevin. 2007. Active learning in introductory programming courses through Student-led “ live coding ” and
test-driven pair programming. https://api.semanticscholar.org/CorpusID:11945824

Gradescope. 2024. Gradescope. https://www.gradescope.com/

Gunnar Harboe, Jonas Minke, Ioana Ilea, and Elaine M. Huang. 2012. Computer support for collaborative data analysis: augmenting
paper affinity diagrams. In Proceedings of the ACM 2012 Conference on Computer Supported Cooperative Work (CSCW ’12). Association
for Computing Machinery, New York, NY, USA, 1179-1182. https://doi.org/10.1145/2145204.2145379

Michael Kolling and David J. Barnes. 2004. Enhancing Apprentice-Based Learning of Java. SIGCSE Bull. 36, 1 (mar 2004), 286-290.
https://doi.org/10.1145/1028174.971403

Erin S. Lane and Sara E. Harris. 2015. A New Tool for Measuring Student Behavioral Engagement in Large University Classes. Journal
of College Science Teaching 44, 6 (2015), 83-91. http://www.jstor.org/stable/43632000

Lauren E. Margulieux and Richard Catrambone. 2016. Using Subgoal Learning and Self-Explanation to Improve Programming Education.
Cognitive Science (2016). https://api.semanticscholar.org/CorpusID:9558170

John Paxton. 2002. Live Programming as a Lecture Technique. J. Comput. Sci. Coll. 18, 2 (dec 2002), 51-56.

Leo Porter, Cynthia Bailey Lee, and Beth Simon. 2013. Halving fail rates using peer instruction: a study of four computer science courses.
In Proceeding of the 44th ACM Technical Symposium on Computer Science Education (SIGCSE ’13). Association for Computing Machinery,
New York, NY, USA, 177-182. https://doi.org/10.1145/2445196.2445250

Leo Porter, Cynthia Bailey Lee, Beth Simon, and Daniel Zingaro. 2011. Peer instruction: do students really learn from peer discussion in
computing?. In Proceedings of the Seventh International Workshop on Computing Education Research (ICER ’11). Association for Computing
Machinery, New York, NY, USA, 45-52. https://doi.org/10.1145/2016911.2016923

Harry O. Posten. 1984. Robustness of the Two-Sample T-Test. In Robustness of Statistical Methods and Nonparametric Statistics, Dieter
Rasch and Moti Lal Tiku (Eds.). Springer Netherlands, Dordrecht, 92-99. https://doi.org/10.1007/978-94-009-6528-7_23

Adalbert Gerald Soosai Raj, Pan Gu, Eda Zhang, Arokia Xavier Annie R, Jim Williams, Richard Halverson, and Jignesh M. Patel. 2020.
Live-Coding vs Static Code Examples: Which is Better with Respect to Student Learning and Cognitive Load?. In Proceedings of the
Twenty-Second Australasian Computing Education Conference (ACE’20). Association for Computing Machinery, New York, NY, USA,
152-159. https://doi.org/10.1145/3373165.3373182

Adalbert Gerald Soosai Raj, Jignesh M. Patel, Richard Halverson, and Erica Rosenfeld Halverson. 2018. Role of Live-Coding in Learning
Introductory Programming. In Proceedings of the 18th Koli Calling International Conference on Computing Education Research (Koli
Calling ’18). Association for Computing Machinery, New York, NY, USA, Article 13, 8 pages. https://doi.org/10.1145/3279720.3279725
Marc J. Rubin. 2013. The Effectiveness of Live-Coding to Teach Introductory Programming. In Proceeding of the 44th ACM Technical
Symposium on Computer Science Education (SIGCSE ’13). Association for Computing Machinery, New York, NY, USA, 651-656. https:
//doi.org/10.1145/2445196.2445388

ACM Trans. Comput. Educ.

30

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

« Shah et al.

Randall E. Schumacker. 2023. Learning Statistics Using R. SAGE Publications, Inc., 55 City Road, London, Chapter 12. https:
//doi.org/10.4135/9781506300160

Ana Selvaraj, Eda Zhang, Leo Porter, and Adalbert Gerald Soosai Raj. 2021. Live Coding: A Review of the Literature. In Proceedings of
the 26th ACM Conference on Innovation and Technology in Computer Science Education V. 1 (ITiCSE °21). Association for Computing
Machinery, New York, NY, USA, 164-170. https://doi.org/10.1145/3430665.3456382

Anshul Shah, Vardhan Agarwal, Michael Granado, John Driscoll, Emma Hogan, Leo Porter, William Griswold, and Adalbert Gerald
Soosai Raj. 2023. The Impact of a Remote Live-Coding Pedagogy on Student Programming Processes, Grades, and Lecture Questions
Asked. In Proceedings of the 2023 Conference on Innovation and Technology in Computer Science Education V.1 (ITiCSE ’23). Association
for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/3587102.3588846

Anshul Shah, Fatimah Alhumrani, William G. Griswold, Leo Porter, and Adalbert Gerald Soosai Raj. 2024. A Comparison of Student
Behavioral Engagement in Traditional Live Coding and Active Live Coding Lectures. In Proceedings of the 2024 on Innovation and
Technology in Computer Science Education V. 1 (ITiCSE 2024). Association for Computing Machinery, New York, NY, USA, 513-519.
https://doi.org/10.1145/3649217.3653537

Anshul Shah, Michael Granado, Mrinal Sharma, John Driscoll, Leo Porter, William Griswold, and Adalbert Gerald Soosai Raj. 2023.
Understanding and Measuring Incremental Development in CS1. In Proceedings of the 53rd ACM Technical Symposium on Computer
Science Education (SIGCSE °23). Association for Computing Machinery, New York, NY, USA, 7. https://doi.org/10.1145/3545945.3569880
Anshul Shah, Emma Hogan, Vardhan Agarwal, John Driscoll, Leo Porter, William G. Griswold, and Adalbert Gerald Soosai Raj. 2023. An
Empirical Evaluation of Live Coding in CS1. In Proceedings of the 2023 ACM Conference on International Computing Education Research -
Volume 1 (ICER °23). Association for Computing Machinery, New York, NY, USA, 476-494. https://doi.org/10.1145/3568813.3600122
Anshul Shah and Adalbert Gerald Soosai Raj. 2024. A Review of Cognitive Apprenticeship Methods in Computing Education Research.
In Proceedings of the 55th ACM Technical Symposium on Computer Science Education V. 1 (SIGCSE 2024). Association for Computing
Machinery, New York, NY, USA, 1202-1208. https://doi.org/10.1145/3626252.3630769

Stepik. 2024. Stepik. https://stepik.org/

Sheng-Rong Tan, Yu-Tzu Lin, and Jia-Sin Liou. 2016. Teaching by demonstration: programming instruction by using live-coding videos.
In Proceedings of EdMedia + Innovate Learning 2016. Association for the Advancement of Computing in Education (AACE), Vancouver,
BC, Canada, 1294-1298. https://www learntechlib.org/p/173121

Aki Vehtari, Andrew Gelman, and Jonah Gabry. 2017. Practical Bayesian model evaluation using leave-one-out cross-validation and
WAIC. Statistics and Computing 27 (2017), 1413-1432. Issue 5. https://doi.org/10.1007/s11222-016-9696-4

Anne Venables, Grace Tan, and Raymond Lister. 2009. A Closer Look at Tracing, Explaining and Code Writing Skills in the Novice
Programmer. In Proceedings of the Fifth International Workshop on Computing Education Research Workshop (ICER °09). Association for
Computing Machinery, New York, NY, USA, 117-128. https://doi.org/10.1145/1584322.1584336

Andrea Watkins, Craig S. Miller, and Amber Settle. 2024. Comparing the Experiences of Live Coding versus Static Code Examples
for Students and Instructors. In Proceedings of the 2024 on Innovation and Technology in Computer Science Education V. 1 (ITiCSE 2024).
Association for Computing Machinery, New York, NY, USA, 506-512. https://doi.org/10.1145/3649217.3653562

Andrea Watkins, Amber Settle, Craig S. Miller, and Eric J. Schwabe. 2025. Live But Not Active: Minimal Effect with Passive Live Coding.
In Proceedings of the 56th ACM Technical Symposium on Computer Science Education V. 1 (SIGCSETS 2025). Association for Computing
Machinery, New York, NY, USA; 1190-1196. https://doi.org/10.1145/3641554.3701786

Benjamin L. Wiggins, Sarah L. Eddy, Daniel Z. Grunspan, and Alison J. Crowe. 2017. The ICAP Active Learning Framework Predicts the
Learning Gains Observed in Intensely Active Classroom Experiences. AERA Open 3, 2 (2017), 2332858417708567. https://doi.org/10.
1177/2332858417708567 arXiv:https://doi.org/10.1177/2332858417708567

Marvin Willerman and Richard A. Mac Harg. 1991. The concept map as an advance organizer. Journal of Research in Science Teaching
28, 8 (1991), 705-711. https://doi.org/10.1002/tea.3660280807 arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/tea.3660280807
Daniel Zingaro and Leo Porter. 2015. Tracking Student Learning from Class to Exam using Isomorphic Questions. In Proceedings of the
46th ACM Technical Symposium on Computer Science Education (SIGCSE ’15). Association for Computing Machinery, New York, NY,
USA, 356-361. https://doi.org/10.1145/2676723.2677239

ACM Trans. Comput. Educ.

An Empirical Evaluation of Active Live Coding in CS1

Table 19. Final code book for perceptions of Active Live Coding.

Label Description
debugging 1. ALC helps with catching and fixing errors
hands on 1. The act of writing the code while still learning the concepts
experience 2. How writing code helps them being engaged with the class material
. 1. ALC helps with understanding or learning course material
reinforce .) .
. 2. How ALC helps reinforce the material through practice

understanding .

3. check overall understanding
prior experience | 1. When the student has previous knowledge of course material
engagement 1. feeling engaged in the class

2. Being more focused during lecture

1. Seeing/hearing instructor’s thought process + general breakdown of
thought process | the code

2. Student mentioning the instructor

1. Applying course material while writing code
application 2. When students get to see their execution of the code using the

material they just learned
community 1. feeling included, part of the community of the class

improves coding
skills

1. General statements on how it improves the ability to code for future
endeavors
2. When learning syntax

3. When it helps with overall coding skills
repetitive 1. When the student is ahead in course material (PA is already done)
2. When it’s too similar to other general coding they’ve done
helps with PA 1. ALC helps with preparing for the programming assignments
h.elp S W.lth 1. ALC helps with preparing for the discussion sections of the course
discussion
1. Feeling too overwhelmed with course material
rushed 2. The allocated time for ALC feels too short

3. Feeling that the ALC section took time away from conceptual
explanation time

disrupts lecture

1. Breaks the flow of the lecture
2. very similar to rushed (only one response)

1. Feeling furstrated on not being able to code
2. Not getting support when struggling due to feeling inadequate

gets stuck 3. When the student is behind in material so they aren’t able to code
properly

immediate 1. Getting immediate help of course staff when confused

feedback 2. Students getting feedback on their code after the ALC section is over

incremental 1. Learning one step at a time

learning 2. breakdown the challenge to more manageable pieces

helps with exams

1. ALC helps with preparing for the exams

ACM Trans. Comput. Educ.

31

Shah et al.

Table 20. Final code book for comparison of perceived benefits of Traditional Live Coding.

Label

Description

part-by-part
breakdown

. Explaining code line by line

. Student mentions seeing individual parts of the code

. Labeling or color coding separate components of a program
. Breaking down a program

. Making the program more simple to understand

reference of
correct code

N =(U & W =

. Student mentions using it to guide other similar activities
. See what code is supposed to look like

3. Thinking about how this code could be modified to do something
similar

. Examples of the correct code for a concept

general code
understanding

. Understanding how the code works in general
. Useful to review for understanding

thought process
while coding

. Learning the problem solving process
. Understanding why the professor writes certain lines of code

debugging/avoid-

ing errors

. Identifying and understanding common errors
. Process of fixing errors

. Seeing errors/unexpected output

. Showing where code can go wrong

code writing

. Modeling the process of writing code
. How to approach writing code from scratch
. Seeing the step-by-step process

testing code

. Learning how to test the correctness of code
. Understanding why a test passed or failed
. Seeing examples of test cases

instructor’s
explanation

. Live commentary on code
. Explanation of code
. Thorough answers to questions from students

variations of code

. Showing different variations/changes in a code example
. Showing trial and error process

predicting output

. Student mentions enjoying trying to guess the output
. The instructor asking students to guess what the code will output

seeing output

IDN RN =W DN =W DN R[WDN RIERWDN RN RN R

. Seeing output of code examples along with them

following along
with instructor

. The ability to follow along with code as it is written live

taking notes

. Taking notes to reinforce understanding

group learning

. Suggestions from classmates who have better understanding
. Students in class giving suggestions for next coding steps

application of
concepts

. Seeing concepts immediately applied during lecture

ACM Trans. Comput. Educ.

	Abstract
	1 Introduction
	2 Theoretical Framework
	2.1 Cognitive Apprenticeship
	2.2 The ICAP Framework
	2.3 Theoretical Framing of Active vs Traditional Live Coding

	3 Related Work
	3.1 Impact of Live Coding on Programming Processes
	3.2 Impact of Live Coding on Course Outcomes
	3.3 Impact of Live Coding on Lecture Experience

	4 Study Context
	4.1 Course Setup
	4.2 Lecture Structure
	4.3 Coding Challenges
	4.4 Participants

	5 Methods
	5.1 RQ1 Methods: Programming Processes
	5.2 RQ2 Methods: Course Performance
	5.3 RQ3 Methods: Lecture Experience

	6 Results
	6.1 RQ1 Results
	6.2 RQ2 Results
	6.3 RQ3 Results

	7 Discussion
	7.1 Interpretation of Results
	7.2 Threats and Limitations
	7.3 Future Work

	8 Conclusion
	References

