
MapTune: Advancing ASIC Technology Mapping via
Reinforcement Learning Guided Library Tuning

Mingju Liu
University of Maryland, College Park

Maryland, USA
mliu9867@umd.edu

Daniel Robinson
Massachusetts Institute of Technology

Massachusetts, USA
daniel_r@mit.edu

Yingjie Li
University of Maryland, College Park

Maryland, USA
yingjiel@umd.edu

Cunxi Yu
University of Maryland, College Park

Maryland, USA
cunxiyu@umd.edu

Abstract
Technology mapping involves mapping logical circuits to a library
of cells. Traditionally, the full technology library is used, leading to
a large search space and potential overhead. Motivated by randomly
sampled technology mapping case studies, we propose MapTune
framework that addresses this challenge by utilizing reinforcement
learning to make design-speci�c choices during cell selection. By
learning from the environment, MapTune re�nes the cell selec-
tion process, resulting in a reduced search space and potentially
improved mapping quality.

The e�ectiveness of MapTune is evaluated on a wide range of
benchmarks, di�erent technology libraries and technology map-
pers. The experimental results demonstrate that MapTune achieves
highermapping accuracy and reducing delay/area across diverse cir-
cuit designs, technology libraries and mappers. The paper also dis-
cusses the Pareto-Optimal exploration and con�rms the perpetual
delay-area trade-o�. Conducted on benchmark suites ISCAS 85/89,
ITC/ISCAS 99, VTR8.0 and EPFL benchmarks, the post-technology
mapping and post-sizing quality-of-results (QoR) have been sig-
ni�cantly improved, with average Area-Delay Product (ADP) im-
provement of 22.54% among all di�erent exploration settings in
MapTune. The improvements are consistently remained for four
di�erent technologies (7nm, 45nm, 130nm, and 180 nm) and two
di�erent mappers.

1 Introduction
Targeted specialization of functionality in hardware has become ar-
guably the best means for enabling improved compute performance
and energy e�ciency. However, as the complexity of modern hard-
ware systems explodes, fast and e�ective hardware explorations
are hard to achieve due to the lack of guarantee in the existing in
electronic design automation (EDA) tool�ow. Several major lim-
itations prevent practical hardware explorations [1–3]. First, as
the hardware design and technology advance, the design space of

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICCAD ’24, October 27–31, 2024, Newark, NJ, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1077-3/24/10
https://doi.org/10.1145/3676536.3676762

modern EDA tools has increased dramatically. Besides, evaluating
a given design point is extremely time-consuming, such that only a
very small sub-space of the large design space can be explored. Last
but not least, while the initialization of design space exploration is
important for the �nal convergence, it is di�cult to initialize the
search for unseen designs e�ectively.

Recent years have seen increasing employment of decision in-
telligence in EDA, which aims to reduce the manual e�orts and
boost the design closure process in modern tool�ows [1, 2, 4–12].
For example, various of machine learning (ML) techniques have
been used to automatically con�gure the tool con�gurations of in-
dustrial FPGA tool�ow [1, 4, 5, 13–15] and ASIC tool�ow [2, 7? –9].
These works focus on end-to-end tool parameter space exploration,
which are guided by ML models trained based on either o�ine [2]
or online datasets [1, 4]. Moreover, exploring the sequence of syn-
thesis transformations (also called synthesis �ow) in EDA has been
studied in an iterative training-exploration fashion through Convo-
lutional Neural Networks (CNNs) [8] and reinforcement learning
[9]. While the design quality is very sensitive to the sequence of
transformations [8], these approaches are able to learn a sequen-
tial decision making strategy to achieve better quality-of-results
[8, 9]. Moreover, [15, 16] demonstrate the e�ectiveness of light-
weight Multi-Arm Bandit (MAB) models in identifying the optimal
synthesis �ow and it achieves a balance between exploring and
exploiting arms through multiple trials to maximize overall payo�s.
In addition, neural network based image classi�cation and image
construction techniques have been leveraged in placement and
route (PnR), in order to accelerate design closure in the physical
design stage [17–23]. As the design of digital circuits continues to
grow in complexity, technology mapping process faces an increas-
ingly large search space due to the vast number of cells contained in
modern technology libraries. Utilizing the entire technology library
as an input for technology mapping can result in excessive runtime
and sub-optimal results, which has been demonstrated with our
comprehensive case studies using 7nm ASAP library [24–26].

To address this issue, we argue that carefully calibrated partial
technology libraries that contain a subset of cells have been pro-
posed to mitigate the search space and reduce runtime. However,
the selection of an optimal subset of cells requires signi�cant ex-
pertise and experience to carefully consider the design goals, target
technology, and characteristics of each cell. This process is known
as cell selection and represents a signi�cant challenge for EDA

ar
X

iv
:2

40
7.

18
11

0v
1

 [c
s.A

R
]

25
 Ju

l 2
02

4

https://doi.org/10.1145/3676536.3676762

ICCAD ’24, October 27–31, 2024, Newark, NJ, USA Mingju Liu, Daniel Robinson, Yingjie Li, and Cunxi Yu

research. In addition, the optimal selection of cells process could
result in a new area-delay trade-o�. Thus, identifying whether
there exists new performance Pareto frontier from the technology
mapping during the exploration stage is of great interest.

Thus, this paper presents a novel Reinforcement Learning guided
sampling framework to explore the design space of partially se-
lected technology library in optimizing and exploring the technol-
ogy mapping performance, without changing the mapping algo-
rithms, namely MapTune. The main contributions of this work are
summarized as follows:

• We present a comprehensive case study utilizing the 7nm ASAP
library [24] to showcase the performance implications of various
partially random-sampled libraries. Our study reveals substantial
variations in delay (up to 40%) and area (up to 60%) across selected
designs.

• In this paper, we introduce a novel cell selection framework, Map-
Tune, based on Multi-Armed Bandit (MAB) and Q-Learning, seam-
lessly integrated within the ABC framework [27]. This framework
facilitates e�ective library tuning for technologymapping, wherein
timing evaluations are performed during the post-sizing stage us-
ing Static Timing Analysis (STA) techniques.

• We evaluate MapTune framework using designs from �ve distinct
benchmark suites: ISCAS 85/89 [28], ITC/ISCAS 99 [29], VTR8.0
[30], and EPFL benchmarks [31] mapped on four di�erent libraries:
7nm ASAP library [24], FreePDK45 45nm libary [32], SKYWATER
130nm library [33], GlobalFoundries 180nm MCU library [34]. The
results demonstrate average Area-Dealy Product (ADP) improve-
ments of 22.54% by solely tuning the libraries.

• MapTune will be released as open-source project in the integra-
tion of ABC [27] framework at https://github.com/Yu-Maryland/
MapTune.

2 Background
2.1 Technology Mapping and Library
Technology mapping is a critical phase in the logic synthesis pro-
cess, converting high-level circuit descriptions, such as those at the
Register Transfer Level (RTL), into technology-speci�c gate-level
netlists, particularly for Application-Speci�c Integrated Circuits
(ASIC) designs. It involves selecting appropriate cells from an EDA
library to realize a circuit in a chosen technology, e�ectively bridg-
ing high-level design with physical implementation. This step not
only follows logic optimization but is also essential for optimizing
Power, Performance, and Area (PPA), signi�cantly in�uencing the
cost, performance, and manufacturability of a circuit by determin-
ing the optimal gates and their interconnections.

Various algorithms have been developed to address the tech-
nology mapping problem, crucial in logic synthesis for ASIC de-
sign. These include tree-based approaches [35, 36], which focus on
mapping trees or sub-trees to speci�c gates, and Directed Acyclic
Graph (DAG)-based methods [37–39] that consider the entire cir-
cuit topology for enhanced optimization. Additionally, genetic al-
gorithms [40], inspired by natural selection, use a population of
solutions evolved over time to �nd optimal or near-optimal con�g-
urations for technology mapping. Recently, ML approaches have
also been involved in improving the technology mapping process,
either by correlating the technology-independent representation

to technology-dependent PPAs (prediction models) [25, 41], or by
directly optimizing the technology mapping algorithms [26]. These
techniques aim to optimize PPA by minimizing gate count and in-
terconnections, reducing power consumption, and meeting timing
constraints. Thus, technology mapping is essential for producing
e�cient, cost-e�ective, and high-performance circuits in modern
electronic systems.

Technology libraries are critical for technology mapping, as they
provide prede�ned gates and components optimized for speci�c
fabrication processes. Consequently, signi�cant e�orts have been
made to optimize or generate standard cell libraries to improve the
PPAs in the design �ow [42]. However, there has been no e�ort to
analyze the impact of these libraries on the technology mapping
procedure. Speci�cally, in this work, we observe and demonstrate
a counter-intuitive �nding: a partially selected set of cells from the
full technology library might signi�cantly improve the technology
mapping PPAs. The main intuition behind this is that the complexity
and algorithmic space of technology mapping algorithms increase
as the number of cells in the libraries increase, while most practi-
cal technology mappers in academic and industrial tool�ows are
heavily heuristic-based. Our comprehensive case studies in Section
3 will �rst discuss the impact of speci�c cell selection within a
full library on the technology mapping PPA results using the ABC
framework.

2.2 Learning-based techniques in EDA
Learning-based techniques have foundwidespread application across
various aspects of the EDA area, including synthesis, placement and
routing, and design space exploration for di�erent design stages.
Numerous studies have achieved substantial success in addressing
placement problems using reinforcement learning [20, 43–45]. Ad-
ditionally, various studies such as [46], [47], [48], have explored
di�erent learning techniques, including Convolutional Neural Net-
works (CNN) and Generative Adversarial Networks (GAN), during
the routing phase. Another notable application is Design Space
Exploration (DSE) for logic synthesis. The optimization of quality-
of-results (QoR) in logic synthesis often requires extensive tuning
runtime, making e�cient DSE a challenging task due to the expo-
nential number of potential design permutations. In response to
this challenge, [44, 49] have applied GAN and CNN techniques to
automate design space exploration and synthesis design �ow.

3 MapTune Case Studies
Technology mapping plays a crucial role in the logic synthesis
process within the domain of EDA. An excessively large technology
mapping library can impose signi�cant pressure on the exploration
of design space and make the search for optimal gate selection
challenging. Therefore, reducing the library size in a reasonable
manner presents opportunities for optimizing technology mapping.
Thus, to explore the impact of library sampling size on technology
mapping performance, we conduct a comprehensive case study that
involves random sampling from the 7nm ASAP library [24].

In particular, we use the complete 7nm ASAP technology library
with 161 cells as the baseline. This baseline approach represents the
conventional method that is widely employed in the industry. Then,

https://github.com/Yu-Maryland/MapTune
https://github.com/Yu-Maryland/MapTune

MapTune: Advancing ASIC Technology Mapping via Reinforcement Learning Guided Library Tuning ICCAD ’24, October 27–31, 2024, Newark, NJ, USA

we randomly sample the technology library space using three di�er-
ent sampling ranges: 1) 75 – 100 cells, 2) 100 – 125 cells, and 3) 125
– 150 cells, denoted as Sampling 1, Sampling 2, Sampling 3 in Figure
1, respectively. Note that all tests with di�erent random-sampled
partial libraries are conducted on synthesis framework ABC [50]
with mapping, gate sizing, and STA timing analysis commands1.
The case study results are presented in Figure 1.

By undertaking this case study, we aimed to investigate opti-
mization opportunities through various library sampling sizes. Our
analysis primarily focused on design-speci�c scenarios, aiming at
providing valuable insights into the selection of an appropriate
sampling size for e�cient technology mapping. Based on the exper-
imental results summarized in Figure 1, three critical observations
have been summarized as follows:

Observation 1 – The sampled partial libraries has signif-
icant impacts on QoR in the post-sizing stage. It is evident
that the results of the baseline, indicated by the red star, fall within
the distribution range of QoR obtained from the sampled partial
libraries. Consider design s13207 illustrated in Figure 1a as an
example. In terms of area, ⇠30% of the results from the sampled
libraries tend to outperform the baseline, while in terms of de-
lay, ⇠60% exhibit better performance. By reducing the number of
available components, technology mapping can focus on a re�ned
library of cells that aligns precisely with the speci�c design re-
quirements. This approach has demonstrated promising results,
facilitating �ne-grained optimizations and improved performance.

Observation 2 – QoR distributions vary signi�cantly with
di�erent sampling sizes. We discover that larger sampling sizes
tend to generate more clustered results, while smaller sampling
sizes reveal greater potential for optimization. Consider design
c2670 illustrated in Figure 1b. The results obtained from the three
di�erent sampling sizes exhibits various improvements in both
delay and area optimization compared to the baseline. Notably,
the smallest sampling range (75 - 100 cells), represented by the
blue dots, reveals a wider distribution of QoR than the two larger
sampling sizes. This disparity suggests that certain componentsmay
be underutilized when larger sampling sizes are employed, thereby
missing out on the opportunity to achieve better quality-of-results.
This observation provides us with insight into the importance of
reaching a balance between exploitation and exploration, which is
a key consideration in developing our framework.

Observation 3 – Technologymapping on partially sampled
libraries likely outperforms the baseline but not for all de-
signs. From the two aforementioned observations, we can draw
an initial conclusion that partially sampled libraries for technology
mapping are likely to achieve better results compared to using the
full library. However, it is important to note that there are excep-
tions that contradict this conclusion. For example, when examining
design b20 in Figure 1c, we observe that the baseline point falls
within the lower left corner of the range of results obtained from
the three sampled libraries. This suggests that narrowing down
the library size for this speci�c design does not entirely bene�t
technology mapping. Additionally, we must consider another po-
tential drawback of smaller sampling sizes: while smaller sizes o�er

1read library.lib;map;topo;upsize;dnsize;stime

greater potential for improved results, there is a risk of failed map-
ping due to the reduced number of available components, which
limits the ability to �nd a suitable mapping solution for certain
designs. Therefore, it is crucial to carefully evaluate the trade-o�
between optimization objectives and the probability of successful
mapping when determining the appropriate sampling size.

Through this case study, we have highlighted the impact of
partially sampled library on the the potential for achieving better
results, and the trade-o� between optimization and successful map-
ping. Our observations underscore the importance of tuning the
technology mapping library to meet design-speci�c requirements.
Furthermore, this study motivates us to explore a new framework
to address this speci�c problem iteratively by leveraging learning-
based techniques to hold promise for advancing technology map-
ping in design-speci�c applications.

4 Approach
Table 1: Notations of MapTune formulation.

Notation Description
L Set of all cell variants in the Library �le
N Number of cells variants in the Library �le
A Action space with a discrete and �nite set of actions
08 Action that select cell variant 8
S A state indicates which actions have been taken/which cell variants have been chosen

�⇡%S Normalized Area-Delay Product under current state S
?08 Probability of cell variant 8 minimizing Area-Delay Product

4.1 Formulation of MapTune
An overview of the MapTune framework is shown in Figure 2.
MapTune is dedicated to addressing a cell selection problem with
a pool of N candidates, denoted as L (LibSet). Each candidate in
L is associated with two performance metrics: ⇡4;0~ and �A40.
In this work, we use the Area-Delay Product (�⇡%) as a single
metric to assess overall circuit e�ciency. By de�nition, �⇡% =
⇡4;0~ ⇥�A40. In each decision iteration, a subset of = candidates is
selected from L, forming a potential solution. Each candidate 8 2 L
corresponds to a binary decision variable (8 2 {0, 1}. A solution
is then represented by a multi-hot encoded vector S 2 {0, 1}N ,
where S = [(0, (1, . . . , (N�1] and

ÕN�1
8=0 (8 = =. Each distinct S

represents a unique combination of candidates, each associated
with a speci�c reward.

Here are the essential model formulation con�gurations:
Action Space: The action space A consists of a discrete and

�nite set of actions, where each action corresponds to selecting a
speci�c cell to form a subset of cells from the technology library,
subsequently utilized for the technology mapping of a design. The
cardinality of this action space is equal to N , denoting the total
number of unique cells in the initial technology library. Here, we
de�ne each action as 08 : (8 = 1, 8 2 [0,N � 1],08 2 A, where
taking action 08 means selecting cell 8 from the original library.

State: During each iteration of forming a subset of cells from
the original library with all candidate cells, the state S represents
the current data collection condition, where S = [(0, (1, . . . , (N�1].
And when

ÕN�1
8=0 (8 = =, where = is the required subset size, it

refers to a complete state.
Reward: The reward function corresponds to the cell selections

made by the agent. It is de�ned asRS = ��⇡%S = �
⇣

⇡S
⇡⌫0B4

· �S
�⌫0B4

⌘
,

ICCAD ’24, October 27–31, 2024, Newark, NJ, USA Mingju Liu, Daniel Robinson, Yingjie Li, and Cunxi Yu

(a) s13207 (b) c2670 (c) b20

Figure 1: Technology mapping results of selected designs: Baseline: All 161 cells of ASAP7 library; Sampling 1: Randomly
sampling 75 - 100 cells; Sampling 2: Randomly sampling 100 - 125 cells; Sampling 3: Randomly sampling 125 - 150 cells.

where⇡S and�S are the metrics derived from the technology map-
ping of the design using the selected subset of cells indicated at
state S. The terms ⇡⌫0B4 and �⌫0B4 represent the baseline metrics,
established using all the cells in the original library for technology
mapping. In this case, �⇡%S is a product of normalized ⇡S and
�S . The negative function is employed to invert the metric, encour-
aging maximizing the reward by minimizing �⇡% , thus optimizing
both metrics concurrently.

Formally, we de�ne the probability vector as p = [?00 , ?01 , . . . ,
?0N�1]. The probability ?08 is de�ned as the likelihood of
selecting cell 8 for the sampled library can maximize the
reward. These vectors are updated at each decision epoch based
on the observed performance metric, i.e., �⇡% . The objective is to
iteratively re�ne p such that the probability of selecting candidates
that lead to minimizing �⇡% is maximized.

4.2 Implementation
In the realm of Reinforcement Learning, we choose two direc-
tions to formulate the MapTune Framework: Multi-Armed Bandit
(MapTune-MAB) and Q-Learning (MapTune-Q). More speci�cally,
our prominent MapTune-MAB algorithms are with n-greedy strat-
egy [51] and Upper Con�dence Bound strategy [52], denoted as
MapTune-n and MapTune-UCB, respectively. For MapTune-Q meth-
ods, we implement and compare both the Deep Q-Network (DQN)
[53] and the Double Deep Q-Network (DDQN) [54].

4.2.1 MapTune-MAB As for the bandit problem settings, we refer
to each cell 8 2 L in the library as an arm 8 , during each iteration,
if an action 08 is taken, this means arm 8 is selected for this action.

MapTune-n Agent. The MapTune-n agent utilizes n-greedy to
balance exploration and exploitation via a parameter n 2 [0, 1].
This parameter dictates the probability of random action selection
(exploration) vs. choosing the action with the highest probability
leads to higher reward based on historical data (exploitation). For-
mally, the agent selects action 08 2 A according to the following
rule:

08 =
⇢

argmax08 2A ?08 with parameter 1 � n
a random selection 08 2 A with parameter n

MapTune-UCB Agent. The MapTune-UCB agent integrates a
con�dence interval around the reward estimates based on historical

trial data to tackle the similar exploration-exploitation problem
e�ectively. Action selection is governed by the following formula:

08 = argmax
08 2A

(?08 + 2
s

log(C)
=08

) (1)

where C is the current iteration, =08 is the number of times that
action 08 is taken during C iterations , 2 is the coe�cient that mod-
ulates the extent of exploration.

Note that, for both MapTune-n and MapTune-UCB agents, the
probability vector p are updated as following:

?08 (C + 1) = ?08 (C)=08 (C) + RS (C)
=0 (C)

(2)

where ?0 (C) is the probability of action 08 at iteration C , =08 (C) is
the number of times that action 08 is taken during C iterations. In
this context, the probability of taking action 08 leads to minimizing
�⇡% is an average of the obtained reward during the data trial
process. Note that, we ensure every time when updating ?08 for
the next iteration (C + 1) at state S(C), a required number of arms
has been selected, so that the reward RS is in�uencing a subset of
arms during each iteration.

4.2.2 MapTune-Q Following the same action space, state and re-
ward setup, we can implement MapTune-Q Agent similarly. Instead
of in�uencing the probability of action decision directly from the
observed reward, our prominent MapTune-Q methods facilitate the
DQN to approximate the optimal state-action value function with
the associated reward. Both MapTune-DQN Agent and MapTune-
DDQN Agent are implemented as following by adapting the same
environment settings:

MapTune-DQN Agent.Given a state vector S and action 08 as
the input of the DQN, the model will predict a Q-value& (S,08). To
keep the consistency, we use the same probability ?08 = & (S,08) to
refer to the predicted Q-value of the taken action 08 . The model also
derives a target Q-value, denoted as ?C0A

08
through Bellman equation

as follows:
?C0A08 = R + W max

08
?08 (3)

where R is the current reward introduced by taking action 08 , and
W is the discount factor to emphasize the signi�cance of the future

MapTune: Advancing ASIC Technology Mapping via Reinforcement Learning Guided Library Tuning ICCAD ’24, October 27–31, 2024, Newark, NJ, USA

Original Technology Library

a0 a1 a𝒩−1

Initialize for each action pai ai

pa0 pa1 pa𝒩−1

MapTune

MapTune-ϵ

MapTune-
UCB

MapTune-
DQN

MapTune-
DDQN

ABC

Design
(.blif/.bench)

Delay-Only
mapper

Area-Only
mapper

Tuned Partial Library
based on probability pai

ADP

Update probability pai

Baseline

Figure 2: MapTune Framework Overview. Termination is
based on the user-de�ned number of iterations for ? update.

rewards. Note that, only after a certain number of actions have been
taken reaches the required selection size, the R will be re�ected as
the actual ��⇡% as aforementioned.

During each iteration, we use the DQN by parameter \ to calcu-
late the Q-function and choose the action with the highest proba-
bility (i.e., ?08) leads to maximizing the reward. For the trainable
parameters of DQN, we use Mean Squared Error (MSE) as the loss
function to calculate between the predicted Q-value (?08) and target
Q-value (?C0A

08
), then through backward propagation, the network

parameters are updated hence a�ecting further probabilities of
chosen actions. It can de�ned as follows:

!\ = "(⇢ (?08 , ?C0A08) (4)

MapTune-DDQN Agent. To mitigate the overestimation bias
in the DQN due to the maximization step in the Bellman Equation
3, we use DDQN to optimize this process. DDQN incorporates addi-
tional network, the target DQN (&C0A64C), which mirrors the online
DQN (&>=;8=4) in terms of number and con�gurations of layers
but with only periodically updated weights. When taking a state S
and action 08 , both &C0A64C and &>=;8=4 will produce a Q-value de-
noted as, ?08 = &>=;8=4 (S,08) and ?008 = &C0A64C (S, argmax08 ?08),
respectively. Consequently, we calculate the target Q-value ?C0A

08
as

following:
?C0A08 = R + W?008 (5)

While &>=;8=4 update the parameters using the same settings as
in MapTune-DQN Agent, the weight update of &C0A64C is under a
soft update rule as follows:

\C0A64C g\>=;8=4 + (1 � g)\C0A64C (6)

where g is a small coe�cient that controls the rate of the update
hence stabilizing the learning process.

5 Results
We demonstrate the proposed approach on designs from �ve bench-
mark suites: ISCAS 85, ISCAS 89, ITC/ISCAS 99, VTR8.0 and EPFL
benchmarks, to evaluate the performance of MapTune after technol-
ogy mapping and gate sizing are performed. Speci�cally, MapTune
explores the technology libraries and evaluates it by mapping on
the library using ABC with the same command as in Section 3.
Note that, by default, the ABC built-in map command is a Delay-
driven mapper. To provide more robustness to this work, we also
use map -a command in ABC which is an Area-driven mapper by

default for experiments. All experiments are conducted with an
Intel®Xeon®Gold 6418H CPU and NVIDIA RTX™A6000 GPU. We
evaluate the mapped results with di�erent sampling sizes in Map-
Tune, which searches for the best achievable results. Through the
observed results, we evaluate the design space exploration using
MapTune, which aims to search for Pareto Frontier in area-delay
trade-o�s. All experiments are conducted with the 7nm ASAP li-
brary [24], FreePDK45 45nm libary [32], SKYWATER 130nm library
[33], GlobalFoundries 180nm MCU library [34]. For simplicity, we
will refer to them as ASAP7, NAN45, SKY130, and GF180 respectively.

All results presented in this section are conducted with MapTune
framework given a one-hour timeout constraint. All MapTune-MAB
and MapTune-Q methods are implemented with a batch size of
10. Following the approach used in the motivating case studies,
MapTune is evaluated by �xing its sampling size range over the
same technology library among di�erent optimization methods. To
ensure a fair comparison, sampling sizes are set as follows: 1) 45 -
135 cells; 2) 35 - 75 cells; 3) 220 - 310 cells; and 4) 40 - 130 cells for
ASAP7, NAN45, SKY130, and GF180 library, respectively, with a step
size of 10 within the sampling range.

5.1 Technology Mapping Results
Due to the variations of the proposed approaches, we structure
the experimental results to answer the three following research
questions (RQ):
RQ1: How e�ective is MapTune in optimizing ADP?
MapTune shows a stable convergence rate regardless of meth-
ods/designs. In Section 4, we employ Normalized �⇡% as a single
metric to guide our MapTune framework. Here, we compare the
normalized �⇡% optimization trends across selected designs and
methods. Due to page limits, we choose nine representative designs
mapped on ASAP7 library with Delay-driven mapper, as depicted
in Figure 3. We focus on the �rst 1200 seconds time span to empha-
size the rapid convergence rates of the di�erent methods within
MapTune.

As illustrated in Figure 3, across nine selected designs, various
MapTune methods are able to converge to a lower achivable �⇡%
within the given optimization time span. Take design bar in Figure
3b as an example, all four MapTune methods can achieve at least
⇠15% ADP reduction within 300 seconds, while MapTune-UCB can
obtain an over 20% ADP reduction in the �rst 15 seconds which is
signi�cantly rapid.

Despite the rapid convergence feature among various methods
and their variational settings, we do notice MapTune-MABmethods
show a slight superiority than MapTune-Q methods in terms of
general convergence rates and lowest achievable�⇡% . For instance,
for design c880 as shown in Figure 3e, MapTune-n converges to
the lowest �⇡% within 160 seconds, while MapTune-DDQN even-
tually achieves a ⇠5% higher �⇡% despite a similar convergence
time. MapTune-DQN converges to a similar �⇡% as of MapTune-n
however su�ers more than 5⇥ convergence time.
RQ2: Are MapTune adaptive to di�erent technologies?
MapTune is e�ective regardless of various technology li-
braries. In Figure 4, we showcase the �nal converged �⇡% for
eight selected designs on four libraries tuned by MapTune. Note
that, in this �gure, we choose the one with the best �nal converged

ICCAD ’24, October 27–31, 2024, Newark, NJ, USA Mingju Liu, Daniel Robinson, Yingjie Li, and Cunxi Yu

(a) b14 (b) bar (c) c1238

(d) c1355 (e) c880 (f) ode

(g) s35932 (h) s838a (i) sin

Figure 3: Comparison of ADP convergence rates of nine selected designs mapped on ASAP7 library tuned by various MapTune-
MAB and MapTune-Q methods with ABC Delay-driven mapper. Baselines (constant one) are collected with the original
technology library. *The lower the better.

�⇡% within MapTune-MAB and MapTune-Q methods respectively,
denoted as Best MAB and Best QL.

As shown in Figure 4, for the same design mapped on di�er-
ent technologies, MapTune achieves at least a 4% �⇡% reduction
(as shown in Figure 4a, design b14 mapped on GF180 tuned by
MapTune-MAB with Delay-driven mapper) over the baseline (i.e.,
all cells retained in the original library, depicted by the red dashed
line). More speci�cally, for design s838a mapped on various tech-
nology libraries tuned by MapTune, an average of 36% �⇡% reduc-
tion can be obtained. This highlights e�ectiveness of MapTune on
diverse technology libraries.
RQ3: How e�ective is MapTune regarding di�erent technol-
ogy mappers?
MapTune is e�ective regardless of di�erent technology map-
pers. Besides various technology libraries are compared in Figure
4, both ABC built-in Delay-driven and Area-driven mappers are
also evaluated for MapTune framework. For the eight selected de-
signs with both mappers on di�erent technology libraries tuned by
MapTune, the �nal converged ADP are all brought to a lower level
comparing to the baseline. For example, for design s35932 shown

in Figure 4f, MapTune achives an average of 40.12% ADP reduc-
tion with Delay-driven mapper while an average of 40.00% ADP
reduction with Area-driven mapper highlighting that MapTune is
e�ective regardless of technology mappers.

5.2 Pareto-Optimal Exploration
While we have con�rmed that MapTune is able to identify design
point that signi�cantly improves the quality-of-results (QoR), we
want to see whether MapTune is able to identify Pareto frontier
of technology mapping. One of the key aspects in this domain is
the trade-o� between delay and area, two primary metrics that
dictate the e�ciency and compactness of a given solution. With the
results at hand, the focus lies on discussing how the algorithm has
managed to identify a new frontier that is superior to the baseline
and con�rming the perpetual trade-o� between delay and area.

We present the exact Delay and Area results in Table 2 and
Table 3 from the Delay-driven mapper, and Area-driven mapper,
respectively. For space constraints, we showcase results from 20
selected designs across the entire benchmark suites. The �nal map-
ping results for each method were obtained at the one-hour timeout,

MapTune: Advancing ASIC Technology Mapping via Reinforcement Learning Guided Library Tuning ICCAD ’24, October 27–31, 2024, Newark, NJ, USA

Table 2: Detailed delay/area comparison results between ABC (baseline) and MapTune in Delay-driven mapping. Our results
shows more than 20.34% delay improvements with slightly area increase (<2%) or simultaneous area reduction, on average.

Delay (?B)

Design ASAP7 NAN45 SKY130 GF180
Baseline Best MAB Best RL Baseline Best MAB Best RL Baseline Best MAB Best RL Baseline Best MAB Best RL

b10 55.03 42.94 (-21.97%) 45.69 (-16.97%) 241.39 175.88 (-27.14%) 173.1 (-28.29%) 1145.98 799.06 (-30.27%) 821.04 (-28.35%) 4603.08 3560.60 (-22.65%) 3589.27 (-22.02%)
b12 116.45 89.63 (-23.03%) 81.86 (-29.70%) 424.46 284.98 (-32.86%) 273.76 (-35.50%) 1549.49 1212.27 (-21.76%) 1287.23 (-16.93%) 8173.18 6058.64 (-25.87%) 6120.06 (-25.12%)
b14 1013.26 472.98 (-53.32%) 492.91 (-51.35%) 1429.50 1118.92 (-21.73%) 1203.23 (-15.83%) 6885.36 5707.95 (-17.10%) 6102.48 (-11.37%) 27208.01 25863.77 (-4.94%) 25577.95 (-5.99%)
b20_1 656.76 481.22 (-26.73%) 503.69 (-23.31%) 1573.15 1369.98 (-12.91%) 1394.64 (-11.35%) 6660.12 5800.71 (-12.90%) 6038.11 (-9.34%) 37376.29 27323.8 (-26.90%) 29971.08 (-19.81%)
bar 109.36 96.03 (-12.19%) 83.63 (-23.53%) 459.82 259.00 (-43.67%) 261.78 (-43.07%) 1716.51 1095.46 (-36.18%) 1166.22 (-32.06%) 10544.08 6152.74 (-41.65%) 6947.68 (-34.11%)

c1238 94.61 80.32 (-15.10%) 84.3 (-10.90%) 388.76 308.88 (-20.55%) 326.04 (-16.13%) 1764.11 1295.82 (-26.55%) 1349.81 (-23.48%) 8039.22 6302.22 (-21.61%) 6990.11 (-13.05%)
c1355 111.23 103.75 (-6.72%) 103.75 (-6.72%) 579.92 392.28 (-32.36%) 406.47 (-29.91%) 1976.14 1815.32 (-8.14%) 1832.60 (-7.26%) 11295.16 8955.87 (-20.71%) 8955.90 (-20.71%)
c5315 198.75 168.02 (-15.46%) 174.85 (-12.03%) 884.01 667.62 (-24.48%) 687.15 (-22.27%) 3262.46 2927.58 (-10.26%) 3019.47 (-7.45%) 18189.21 14338.69 (-21.17%) 13708.21 (-24.64%)
c880 118.43 107.99 (-8.82%) 112.94 (-4.64%) 362.81 342.43 (-5.62%) 342.43 (-5.62%) 1825.23 1652.25 (-9.48%) 1688.04 (-7.52%) 8526.98 6953.58 (-18.45%) 7051.45 (-17.30%)

multiplier 1598.54 1260.14 (-21.17%) 1267.93 (-20.68%) 4856.00 4216.85 (-13.16%) 4429.79 (-8.78%) 34431.54 20674.34 (-39.96%) 21196.68 (-38.44%) 99312.62 96962.83 (-2.37%) 92458.75 (-6.90%)
ode 906.43 590.64 (-34.84%) 626.32 (-30.90%) 2015.62 1763.65 (-12.50%) 1864.10 (-7.52%) 9918.08 8571.75 (-13.57%) 8591.19 (-13.38%) 43618.88 38601.39 (-11.50%) 38556.65 (-11.61%)

priority 1260.12 1055.66 (-16.23%) 1050.30 (-16.65%) 3659.98 3477.99 (-4.97%) 3477.99 (-4.97%) 22218.13 15721.45 (-29.24%) 15606.88 (-29.76%) 120522.85 76260.92 (-36.72%) 74356.55 (-38.31%)
s1488 50.46 47.15 (-6.56%) 46.71 (-7.43%) 230.23 163.86 (-28.83%) 166.30 (-27.77%) 978.64 800.39 (-18.21%) 814.95 (-16.73%) 4391.10 3533.09 (-19.54%) 3426.87 (-21.96%)
s1494 50.36 45.99 (-8.68%) 45.71 (-9.23%) 253.81 164.9 (-35.03%) 172.67 (-31.97%) 939.60 805.15 (-14.31%) 810.01 (-13.79%) 5039.91 3408.24 (-32.37%) 3372.47 (-33.08%)
s35932 87.11 43.75 (-49.78%) 44.65 (-48.74%) 265.45 166.4 (-37.31%) 178.06 (-32.92%) 1414.57 785.21 (-44.49%) 788.74 (-44.24%) 6968.70 3535.62 (-49.26%) 2956.22 (-57.58%)
s838a 106.92 63.02 (-41.06%) 75.51 (-29.38%) 447.68 249.14 (-44.35%) 253.98 (-43.27%) 1695.11 995.8 (-41.25%) 1071.75 (-36.77%) 7176.47 5116.82 (-28.70%) 4780.47 (-33.39%)
s9234 154.28 128.61 (-16.64%) 133.07 (-13.75%) 560.33 458.73 (-18.13%) 477.27 (-14.82%) 2242.39 1902.39 (-15.16%) 1915.98 (-14.56%) 12882.61 10049.83 (-21.99%) 10356.36 (-19.61%)
sin 1639.39 1068.69 (-34.81%) 1181.55 (-27.93%) 4170.50 3772.51 (-9.54%) 3627.14 (-13.03%) 23617.97 17100.18 (-27.60%) 18111.63 (-23.31%) 87953.53 78433.59 (-10.82%) 77112.08 (-12.33%)
sqrt 81597.74 61400.04 (-24.75%) 74079.97 (-9.21%) 147455.03 114225.2 (-22.54%) 116682.71 (-20.87%) 643198.38 482223.94 (-25.03%) 487509.94 (-24.21%) 3517744.75 2803110.25 (-20.32%) 2818643.00 (-19.87%)
voter 564.57 422.69 (-25.13%) 408.10 (-27.71%) 1625.70 1731.55 (6.51%) 1757.63 (8.12%) 6910.82 6307.93 (-8.72%) 6362.95 (-7.93%) 37259.50 31563.56 (-15.29%) 35214.18 (-5.49%)

Avg. Delay Change -23.15% -21.04% -22.06% -20.29% -22.51% -20.34% -22.64% -22.14%
Area (`<2)

b10 118.74 122.01 (2.75%) 117.34 (-1.18%) 136.19 146.03 (7.23%) 144.70 (6.25%) 648.12 624.35 (-3.67%) 615.59 (-5.02%) 2179.83 2283.01 (4.73%) 2228.13 (2.22%)
b12 629.39 577.06 (-8.31%) 633.82 (0.70%) 692.40 734.43 (6.07%) 754.38 (8.95%) 3400.76 3671.02 (7.95%) 3538.39 (4.05%) 11208.69 11676.27 (4.17%) 11733.34 (4.68%)
b14 2951.46 2861.88 (-3.04%) 2950.76 (-0.02%) 3643.40 4030.17 (10.62%) 3895.3 (6.91%) 18531.51 18950.68 (2.26%) 18964.44 (2.34%) 58690.87 59384.55 (1.18%) 59619.44 (1.58%)
b20_1 5034.18 5584.96 (10.94%) 5248.57 (4.26%) 6641.49 7037.83 (5.97%) 7017.88 (5.67%) 33651.02 34520.61 (2.58%) 34470.56 (2.44%) 103310.50 113142.8 (9.52%) 107670.17 (4.22%)
bar 1881.64 1622.46 (-13.77%) 1827.52 (-2.88%) 2075.33 1999.79 (-3.64%) 1988.08 (-4.20%) 15033.17 11781.30 (-21.63%) 11319.61 (-24.70%) 36782.77 27742.94 (-24.58%) 27960.26 (-23.99%)

c1238 265.94 275.5 (3.59%) 278.07 (4.56%) 367.88 386.23 (4.99%) 386.50 (5.06%) 1823.00 1816.74 (-0.34%) 1833.01 (0.55%) 5927.04 6499.99 (9.67%) 6039.00 (1.89%)
c1355 343.15 319.13 (-7.00%) 319.13 (-7.00%) 267.86 302.71 (13.01%) 298.98 (11.62%) 1919.34 1482.67 (-22.75%) 1512.70 (-21.19%) 4688.95 4757.00 (1.45%) 4717.48 (0.61%)
c5315 904.43 857.07 (-5.24%) 840.27 (-7.09%) 994.04 1055.49 (6.18%) 1053.63 (5.99%) 5277.56 5425.20 (2.80%) 5310.09 (0.62%) 15454.21 16593.52 (7.37%) 17673.55 (14.36%)
c880 224.65 190.82 (-15.06%) 193.16 (-14.02%) 240.73 233.28 (-3.09%) 234.08 (-2.76%) 1169.87 1146.10 (-2.03%) 1143.60 (-2.25%) 4030.39 3854.77 (-4.36%) 3826.23 (-5.07%)

multiplier 16728.51 16864.04 (0.81%) 16386.52 (-2.04%) 16237.97 17010.17 (4.76%) 16438.00 (1.23%) 78690.47 81863.52 (4.03%) 82953.30 (5.42%) 274606.34 272070.88 (-0.92%) 280667.28 (2.21%)
ode 9341.46 9678.79 (3.61%) 10084.69 (7.96%) 10211.47 10535.99 (3.18%) 10341.81 (1.28%) 49906.61 50335.77 (0.86%) 50922.59 (2.04%) 162034.30 166284.20 (2.62%) 167006.42 (3.07%)

priority 322.86 315.39 (-2.31%) 320.29 (-0.80%) 680.43 646.38 (-5.00%) 649.31 (-4.57%) 3663.51 2936.57 (-19.84%) 3016.64 (-17.66%) 10183.53 10791.60 (5.97%) 10776.24 (5.82%)
s1488 246.34 223.72 (-9.18%) 228.85 (-7.10%) 428.53 456.46 (6.52%) 445.55 (3.97%) 1951.87 1963.13 (0.58%) 1949.37 (-0.13%) 6258.52 6921.47 (10.59%) 7015.86 (12.10%)
s1494 246.11 228.15 (-7.30%) 237.01 (-3.70%) 408.04 474.54 (16.30%) 461.24 (13.04%) 2004.42 1979.40 (-1.25%) 2023.19 (0.94%) 6528.52 7272.70 (11.40%) 7310.02 (11.97%)
s35932 5688.3 5704.86 (0.29%) 5658.44 (-0.52%) 5885.78 6979.84 (18.59%) 6663.3 (13.21%) 32073.26 34531.87 (7.67%) 34396.74 (7.24%) 94316.77 112157.16 (18.92%) 106001.81 (12.39%)
s838a 225.58 266.41 (18.10%) 228.61 (1.34%) 231.95 254.83 (9.86%) 255.63 (10.21%) 1116.07 1154.86 (3.48%) 1178.63 (5.61%) 3758.18 3705.50 (-1.40%) 3938.19 (4.79%)
s9234 1080.55 1121.84 (3.82%) 1097.58 (1.58%) 1302.34 1318.56 (1.25%) 1331.86 (2.27%) 6632.61 6546.28 (-1.30%) 6816.54 (2.77%) 20105.84 20964.16 (4.27%) 20476.83 (1.85%)
sin 3567.78 3816.46 (6.97%) 3578.28 (0.29%) 4252.81 3996.38 (-6.03%) 4228.87 (-0.56%) 19977.91 20264.44 (1.43%) 20339.51 (1.81%) 63149.32 64347.90 (1.90%) 63814.46 (1.05%)
sqrt 4686.83 2913.67 (-37.83%) 2631.17 (-43.86%) 24080.18 17959.52 (-25.42%) 20780.19 (-13.70%) 98564.53 85310.57 (-13.45%) 84581.12 (-14.19%) 366113.25 252371.17 (-31.07%) 314102.38 (-14.21%)
voter 11340.67 10181.97 (-10.22%) 10391.69 (-8.37%) 16298.35 10402.2 (-36.18%) 10666.33 (-34.56%) 50180.62 49650.12 (-1.06%) 49891.60 (-0.58%) 195868.91 181044.73 (-7.57%) 170245.55 (-13.08%)
Avg. Area Change -3.42% -3.89% 1.76% 1.76% -2.68% -2.49% 1.19% 1.42%

Table 3: Detailed delay/area comparison results between ABC (baseline) and MapTune in Area-driven mapping. Our results
shows more than 20.85% delay improvements with slightly area increase or simultaneous area reduction, on average.

Delay (?B)

Design ASAP7 NAN45 SKY130 GF180
Baseline Best MAB Best RL Baseline Best MAB Best RL Baseline Best MAB Best RL Baseline Best MAB Best RL

b10 78.00 56.59 (-27.45%) 60.44 (-22.51%) 249.83 193.37 (-22.60%) 179.48 (-28.16%) 1076.14 755.82 (-29.77%) 815.00 (-24.27%) 5037.13 3932.94 (-21.92%) 4220.97 (-16.20%)
b12 133.02 107.70 (-19.03%) 105.85 (-20.43%) 392.13 312.97 (-20.19%) 316.54 (-19.28%) 1896.75 1311.05 (-30.88%) 1279.23 (-32.56%) 9132.96 6493.24 (-28.90%) 6806.19 (-25.48%)
b14 718.17 569.61 (-20.69%) 527.29 (-26.58%) 1558.66 1272.08 (-18.39%) 1249.09 (-19.86%) 7521.55 5973.44 (-20.58%) 5952.85 (-20.86%) 31771.41 29077.95 (-8.48%) 28262.66 (-11.04%)
b20_1 821.18 648.92 (-20.98%) 643.02 (-21.70%) 2129.22 1465.56 (-31.17%) 1515.98 (-28.80%) 8077.29 5949.87 (-26.34%) 6441.54 (-20.25%) 41607.07 30930.43 (-25.66%) 31001.52 (-25.49%)
bar 128.94 105.15 (-18.45%) 102.49 (-20.51%) 470.66 254.97 (-45.83%) 256.95 (-45.41%) 1541.36 1319.64 (-14.38%) 1364.77 (-11.46%) 10048.86 6095.23 (-39.34%) 6163.29 (-38.67%)

c1238 124.14 96.49 (-22.27%) 92.86 (-25.20%) 391.93 336.43 (-14.16%) 356.84 (-8.95%) 1871.51 1423.62 (-23.93%) 1426.17 (-23.80%) 9359.37 7142.81 (-23.68%) 7250.06 (-22.54%)
c1355 138.47 112.23 (-18.95%) 112.23 (-18.95%) 555.56 447.75 (-19.41%) 447.75 (-19.41%) 2039.63 1878.48 (-7.90%) 1822.67 (-10.64%) 12310.56 9675.28 (-21.41%) 9675.28 (-21.41%)
c5315 229.13 184.71 (-19.39%) 186.02 (-18.81%) 892.24 688.88 (-22.79%) 699.90 (-21.56%) 3228.29 3011.14 (-6.73%) 2912.83 (-9.77%) 19885.61 13224.56 (-33.50%) 13645.25 (-31.38%)
c880 152.27 119.03 (-21.83%) 112.72 (-25.97%) 438.36 360.19 (-17.83%) 357.32 (-18.49%) 2093.78 1462.71 (-30.14%) 1472.74 (-29.66%) 10432.21 7795.75 (-25.27%) 7553.17 (-27.60%)

multiplier 1730.96 1613.41 (-6.79%) 1472.71 (-14.92%) 5065.54 4735.58 (-6.51%) 4814.37 (-4.96%) 27388.50 19885.95 (-27.39%) 19934.38 (-27.22%) 128414.73 108910.55 (-15.19%) 98087.97 (-23.62%)
ode 805.92 706.92 (-12.28%) 699.14 (-13.25%) 2235.29 1883.13 (-15.75%) 1986.79 (-11.12%) 9189.29 8276.70 (-9.93%) 8448.82 (-8.06%) 44018.07 40538.12 (-7.91%) 39287.02 (-10.75%)

priority 1168.48 1178.5 (0.86%) 1143.62 (-2.13%) 4570.09 3492.89 (-23.57%) 3577.46 (-21.72%) 15662.87 13501.69 (-13.80%) 13467.05 (-14.02%) 119129.84 76262.34 (-35.98%) 76684.87 (-35.63%)
s1488 74.48 51.32 (-31.10%) 51.40 (-30.99%) 229.02 170.08 (-25.74%) 171.43 (-25.15%) 979.55 751.57 (-23.27%) 787.24 (-19.63%) 4348.27 3673.70 (-15.51%) 3659.24 (-15.85%)
s1494 58.68 49.39 (-15.83%) 48.85 (-16.75%) 254.51 174.14 (-31.58%) 181.60 (-28.65%) 1035.66 764.72 (-26.16%) 768.71 (-25.78%) 5321.30 3817.89 (-28.25%) 3800.43 (-28.58%)
s35932 201.3 48.59 (-75.86%) 49.00 (-75.66%) 242.91 194.31 (-20.01%) 178.06 (-26.70%) 1178.92 796.76 (-32.42%) 806.94 (-31.55%) 7884.46 4682.06 (-40.62%) 4681.56 (-40.62%)
s838a 174.36 79.58 (-54.36%) 76.84 (-55.93%) 448.87 316.57 (-29.47%) 310.30 (-30.87%) 2649.33 1230.48 (-53.56%) 1230.23 (-53.56%) 7944.43 5308.84 (-33.18%) 5801.50 (-26.97%)
s9234 190.33 154.52 (-18.81%) 156.32 (-17.87%) 622.95 498.10 (-20.04%) 524.48 (-15.81%) 2758.56 2060.54 (-25.30%) 2175.33 (-21.14%) 15761.50 10964.62 (-30.43%) 11589.27 (-26.47%)
sin 1428.39 1152.76 (-19.30%) 1197.45 (-16.17%) 4334.68 3931.06 (-9.31%) 3932.31 (-9.28%) 20230.89 16712.39 (-17.39%) 16284.0 (-19.51%) 86733.62 80945.42 (-6.67%) 80799.16 (-6.84%)
sqrt 79262.41 65561.55 (-17.29%) 68122.86 (-14.05%) 144198.16 109393.30 (-24.14%) 106396.55 (-26.22%) 702093.06 443822.59 (-36.79%) 451261.25 (-35.73%) 2651079.50 2684096.50 (1.25%) 2602480.00 (-1.83%)
voter 554.09 522.52 (-5.70%) 550.56 (-0.64%) 1652.92 1456.98 (-11.85%) 1543.13 (-6.64%) 6949.40 6328.38 (-8.94%) 6282.78 (-9.59%) 34664.91 32527.51 (-6.17%) 28732.47 (-17.11%)

Avg. Delay Change -22.27% -22.95% -21.52% -20.85% -23.28% -22.45% -22.34% -22.70%
Area (`<2)

b10 102.88 107.54 (4.53%) 97.98 (-4.76%) 152.15 138.59 (-8.91%) 153.75 (1.05%) 673.15 705.68 (4.83%) 648.12 (-3.72%) 2322.52 2243.49 (-3.40%) 2157.88 (-7.09%)
b12 546.34 543.31 (-0.55%) 567.80 (3.93%) 680.96 729.64 (7.15%) 714.48 (4.92%) 3271.89 3429.54 (4.82%) 3608.46 (10.29%) 10820.14 11559.92 (6.84%) 11169.18 (3.23%)
b14 2644.46 2647.03 (0.10%) 2802.86 (5.99%) 3583.82 3779.59 (5.46%) 3840.77 (7.17%) 17915.93 18217.47 (1.68%) 18296.30 (2.12%) 55988.57 56379.32 (0.70%) 57413.26 (2.54%)
b20_1 4720.89 4664.43 (-1.20%) 4654.64 (-1.40%) 6335.06 6750.02 (6.55%) 6656.65 (5.08%) 32595.01 35129.94 (7.78%) 33732.35 (3.49%) 98757.66 106605.49 (7.95%) 106533.05 (7.87%)
bar 1637.86 1437.0 (-12.26%) 1453.33 (-11.27%) 1854.55 2013.89 (8.59%) 2010.96 (8.43%) 11581.11 9203.83 (-20.53%) 9551.66 (-17.52%) 30502.30 27859.28 (-8.66%) 27637.57 (-9.39%)

c1238 270.14 265.24 (-1.81%) 273.87 (1.38%) 421.34 389.42 (-7.58%) 376.66 (-10.60%) 1762.94 1775.45 (0.71%) 1834.26 (4.05%) 5602.15 6260.71 (11.76%) 6229.98 (11.21%)
c1355 318.89 289.27 (-9.29%) 289.27 (-9.29%) 245.52 245.25 (-0.11%) 245.25 (-0.11%) 1291.24 1238.69 (-4.07%) 1292.49 (0.10%) 4034.78 4197.22 (4.03%) 4197.22 (4.03%)
c5315 852.64 823.71 (-3.39%) 808.78 (-5.14%) 990.05 1042.45 (5.29%) 1064.53 (7.52%) 5166.20 5144.93 (-0.41%) 5367.65 (3.90%) 15234.69 18696.52 (22.72%) 18678.96 (22.61%)
c880 202.72 183.12 (-9.67%) 196.66 (-2.99%) 242.06 238.17 (-1.61%) 247.65 (2.31%) 1269.97 1196.15 (-5.81%) 1203.65 (-5.22%) 3802.09 3723.06 (-2.08%) 3815.26 (0.35%)

multiplier 16125.25 14903.09 (-7.58%) 16071.59 (-0.33%) 15953.88 15417.09 (-3.36%) 15387.57 (-3.55%) 79746.48 80374.59 (0.79%) 79396.15 (-0.44%) 247087.31 245930.45 (-0.47%) 271576.97 (9.91%)
ode 8505.39 8722.81 (2.56%) 8935.32 (5.05%) 9867.80 10173.70 (3.10%) 9969.68 (1.03%) 48400.17 48915.66 (1.07%) 48889.39 (1.01%) 154263.28 158592.22 (2.81%) 164299.73 (6.51%)

priority 386.54 337.56 (-12.67%) 313.76 (-18.83%) 724.05 650.37 (-10.18%) 653.56 (-9.74%) 3065.44 3349.46 (9.27%) 3447.06 (12.45%) 10155.00 10916.73 (7.50%) 11162.59 (9.92%)
s1488 206.92 218.12 (5.41%) 220.22 (6.43%) 426.93 460.18 (7.79%) 453.80 (6.29%) 1951.87 2001.92 (2.56%) 2004.42 (2.69%) 6383.64 6892.93 (7.98%) 6996.10 (9.59%)
s1494 219.52 222.78 (1.49%) 227.91 (3.82%) 418.68 459.65 (9.79%) 461.51 (10.23%) 1940.61 2044.46 (5.35%) 2066.98 (6.51%) 6271.69 6903.90 (10.08%) 6798.53 (8.40%)
s35932 5626.95 5605.95 (-0.37%) 5596.85 (-0.53%) 5874.88 6054.43 (3.06%) 6646.28 (13.13%) 30548.05 32513.68 (6.43%) 31446.41 (2.94%) 92244.50 97231.99 (5.41%) 96740.27 (4.87%)
s838a 228.85 239.81 (4.79%) 256.37 (12.03%) 234.88 255.36 (8.72%) 260.95 (11.10%) 1117.32 1177.38 (5.38%) 1232.43 (10.30%) 3931.60 4133.56 (5.14%) 4105.02 (4.41%)
s9234 1031.33 1031.56 (0.02%) 1037.86 (0.63%) 1260.84 1320.42 (4.73%) 1301.27 (3.21%) 6373.61 6476.21 (1.61%) 6537.52 (2.57%) 19647.04 21256.12 (8.19%) 20044.37 (2.02%)
sin 3154.88 3668.09 (16.27%) 3537.46 (12.13%) 3733.84 3597.92 (-3.64%) 3626.11 (-2.89%) 18058.57 17909.68 (-0.82%) 18355.10 (1.64%) 59511.87 58047.67 (-2.46%) 57966.45 (-2.60%)
sqrt 4808.83 4522.13 (-5.96%) 4379.83 (-8.92%) 22275.64 16751.08 (-24.80%) 17262.07 (-22.51%) 107377.98 83705.28 (-22.05%) 79645.13 (-25.83%) 295388.31 251383.33 (-14.90%) 253400.72 (-14.21%)
voter 8316.90 7143.73 (-14.11%) 6764.19 (-18.67%) 10472.95 9996.81 (-4.55%) 9875.52 (-5.70%) 52048.67 45740.12 (-12.12%) 45150.80 (-13.25%) 168534.28 154517.94 (-8.32%) 173170.55 (2.75%)
Avg. Area Change -2.19% -1.54% 0.27% 1.32% -0.68% -0.10% 3.04% 3.85%

ICCAD ’24, October 27–31, 2024, Newark, NJ, USA Mingju Liu, Daniel Robinson, Yingjie Li, and Cunxi Yu

(a) b14 (b) bar

(c) c1238 (d) c880

(e) ode (f) s35932

(g) s838a (h) sin

Figure 4: Comparison of �nal converged ADP of eight selected designs mapped on various technology libraries tuned by
MapTune-MAB and MapTune-Q methods with ABC Delay-driven (D) and Area-driven (A) mappers. Baselines (constant one) are
collected with the original technology library. *The lower the better.

corresponding to the best achieved ADP for each MapTune-MAB
and MapTune-Q method.

Analyzing the tables reveals that MapTune emphasize on delay
optimization with both ABC technology mappers. Across designs,
libraries, and methods, we observe an average delay reduction of
21.77%, while area reductions average only 0.79% for Delay-driven
mapper. Similarly, for Area-driven mapper, the average delay reduc-
tion is 22.30%, but there exists an area penalty of 0.5% on average.
In fact, delay tends to bene�t more from the tuned technology li-
braries optimized by MapTune with modest area trade-o�s. This
is evident in cases such as the design multiplier mapped with
SKY130 library tuned by MapTune-MAB which achieves a substan-
tial 39.96% delay improvement with a 4.03% area penalty as shown
in Table 2. There still exists opposite cases that indicating trade-o�

delay for area optimization. As for design sqrt mapped on GF180
library tuned by MapTune-MAB with Area-driven Mapper shown
in Table 3, MapTune introduces 1.25% delay penalty resulting a
14.90% area reduction ultimately. Such Pareto-Optimal trade-o�s
are often desirable, as signi�cant delay/area reductions can poten-
tially bene�ts more throughout the design �ow than the introduced
modest area/delay penalty.

6 Conclusions
This paper explores the use of partially sampled technology libraries
to reduce the search space for better QoR in technology mapping.
Our case study empirically demonstrates the importance of this
process, given its potential impact on the trade-o� between area
and delay, as well as its capability to reveal new performance Pareto

MapTune: Advancing ASIC Technology Mapping via Reinforcement Learning Guided Library Tuning ICCAD ’24, October 27–31, 2024, Newark, NJ, USA

frontiers. In response to this challenge, we introduce MapTune, a
novel sampling framework based on Reinforcement Learning by
leveraging both MAB and Q-Learning and seamlessly integrated
within the ABC framework. Extensive evaluations using �ve dis-
tinct benchmark suites con�rmed the e�ectiveness of MapTune
framework for technology library tuning. By solely focusing on
library optimization, MapTune is able to achieve an average ADP
improvement of 22.54% and identify pareto-optimal results. Fu-
ture work will concentrate on cross-design library exploration and
integration with automatic library generation tools.

Acknowledgement
This work is funded by the National Science Foundation (NSF) under
awards NSF 2229562, 2349670, 2349461, 2403134, and University of
Maryland.

References
[1] Nachiket Kapre, Harnhua Ng, Kirvy Teo, and Jaco Naude. InTime: A Machine

Learning Approach for E�cient Selection of FPGA CAD Tool Parameters. Febru-
ary 2015.

[2] Matthew M. Ziegler, Ramon Bertran Monfort, Alper Buyuktosunoglu, and Pradip
Bose. Machine Learning Techniques for Taming the Complexity of Modern
Hardware Design. IBM Journal of Research and Development, 61(4):13, 2017.

[3] Cunxi Yu, Chau-Chin Huang, Gi-Joon Nam, Mihir Choudhury, Victor N Kravets,
Andrew Sullivan, Maciej Ciesielski, and Giovanni De Micheli. End-to-end indus-
trial study of retiming. In 2018 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), pages 203–208. IEEE, 2018.

[4] Ecenur Ustun, Shaojie Xiang, Jinny Gui, Cunxi Yu, and Zhiru Zhang. LAMDA:
Learning-Assisted Multi-stage Autotuning for FPGA Design Closure. In FCCM’19.

[5] Hung-Yi Liu and Luca P. Carloni. On Learning-based Methods for Design-space
Exploration with High-level Synthesis. June 2013.

[6] Ghasem Pasandi, Shahin Nazarian, and Massoud Pedram. Approximate logic
synthesis: A reinforcement learning-based technology mapping approach. In
20th International Symposium on Quality Electronic Design (ISQED), pages 26–32.
IEEE, 2019.

[7] Dandan Li, Shuzhen Yao, Yu-Hang Liu, Senzhang Wang, and Xian-He Sun. E�-
cient Design Space Exploration via Statistical Sampling and AdaBoost Learning.
June 2016.

[8] Cunxi Yu, Houping Xiao, and Giovanni De Micheli. Developing synthesis �ows
without human knowledge. In Proceedings of the 55th Annual Design Automation
Conference, DAC 2018, San Francisco, CA, USA, June 24-29, 2018, pages 50:1–50:6,
2018.

[9] Abdelrahman Hosny, Soheil Hashemi, Mohamed Shalan, and Sherief Reda. Drills:
Deep reinforcement learning for logic synthesis. arXiv preprint arXiv:1911.04021,
2019.

[10] Yuzhe Ma, Haoxing Ren, Brucek Khailany, Harbinder Sikka, Lijuan Luo,
Karthikeyan Natarajan, and Bei Yu. High performance graph convolutional
networks with applications in testability analysis. In Proceedings of the 56th
Annual Design Automation Conference 2019, pages 1–6, 2019.

[11] Cunxi Yu and Wang Zhou. Decision making in synthesis cross technologies
using lstms and transfer learning. In Proceedings of the 2020 ACM/IEEE Workshop
on Machine Learning for CAD, pages 55–60, 2020.

[12] Cunxi Yu. Flowtune: Practical multi-armed bandits in boolean optimization. In
Proceedings of the 39th International Conference on Computer-Aided Design, pages
1–9, 2020.

[13] Benjamin Carrion Schafer and Zi Wang. High-level synthesis design space
exploration: Past, present and future. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2019.

[14] Shuangnan Liu, Francis CM Lau, and Benjamin Carrion Schafer. Accelerating
fpga prototyping through predictive model-based hls design space exploration.
In 2019 56th ACM/IEEE Design Automation Conference (DAC), pages 1–6. IEEE,
2019.

[15] Walter Lau Neto, Yingjie Li, Pierre-Emmanuel Gaillardon, and Cunxi Yu. Flow-
tune: End-to-end automatic logic optimization exploration via domain-speci�c
multi-armed bandit. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2022.

[16] Fangzhou Liu, Zehua Pei, Ziyang Yu, Haisheng Zheng, Zhuolun He, Tinghuan
Chen, and Bei Yu. Cbtune: Contextual bandit tuning for logic synthesis. 2024.

[17] Zhiyao Xie, Yu-Hung Huang, Guan-Qi Fang, Haoxing Ren, Shao-Yun Fang, Yi-
ran Chen, et al. Routenet: routability prediction for mixed-size designs using
convolutional neural network. In ICCAD, page 80. ACM, 2018.

[18] Haoyu Yang, Shuhe Li, Yuzhe Ma, Bei Yu, and Evangeline FY Young. Gan-opc:
Mask optimization with lithography-guided generative adversarial nets. In DAC,
2018.

[19] Biying Xu, Yibo Lin, Xiyuan Tang, Shaolan Li, Linxiao Shen, Nan Sun, and David Z
Pan. WellGAN: Generative-Adversarial-Network-Guided Well Generation for
Analog/Mixed-Signal Circuit Layout. In Proceedings of the 56th Annual Design
Automation Conference 2019, page 66. ACM, 2019.

[20] Azalia Mirhoseini, Anna Goldie, Mustafa Yazgan, Joe Jiang, Ebrahim Songhori,
Shen Wang, Young-Joon Lee, Eric Johnson, Omkar Pathak, Sungmin Bae,
et al. Chip placement with deep reinforcement learning. arXiv preprint
arXiv:2004.10746, 2020.

[21] Cunxi Yu and Zhiru Zhang. Painting on placement: Forecasting routing con-
gestion using conditional generative adversarial nets. In Proceedings of the 56th
Annual Design Automation Conference 2019, pages 1–6, 2019.

[22] Haoyu Yang, Piyush Pathak, Frank Gennari, Ya-Chieh Lai, and Bei Yu. Deepattern:
Layout pattern generation with transforming convolutional auto-encoder. In
Proceedings of the 56th Annual Design Automation Conference 2019, pages 1–6,
2019.

[23] Wei Zhong, Shuxiang Hu, Yuzhe Ma, Haoyu Yang, Xiuyuan Ma, and Bei Yu. Deep
learning-driven simultaneous layout decomposition and mask optimization. 2020.

[24] Lawrence T Clark, Vinay Vashishtha, Lucian Shifren, Aditya Gujja, Saurabh
Sinha, Brian Cline, Chandarasekaran Ramamurthy, and Greg Yeric. Asap7: A
7-nm �nfet predictive process design kit. Microelectronics Journal, 53:105–115,
2016.

[25] Walter Lau Neto, Matheus Trevisan Moreira, Luca Amaru, Cunxi Yu, and Pierre-
Emmanuel Gaillardon. Read your circuit: leveraging word embedding to guide
logic optimization. In Proceedings of the 26th Asia and South Paci�c Design
Automation Conference, pages 530–535, 2021.

[26] Walter Lau Neto, Matheus T Moreira, Yingjie Li, Luca Amarù, Cunxi Yu, and
Pierre-Emmanuel Gaillardon. Slap: A supervised learning approach for priority
cuts technology mapping. In 2021 58th ACM/IEEE Design Automation Conference
(DAC), pages 859–864. IEEE, 2021.

[27] Robert Brayton and Alan Mishchenko. ABC: An Academic Industrial-strength
Veri�cation tool. In Computer Aided Veri�cation, pages 24–40. Springer, 2010.

[28] Franc Brglez, David Bryan, and Krzysztof Kozminski. Combinational pro�les of
sequential benchmark circuits. In 1989 IEEE International Symposium on Circuits
and Systems (ISCAS), pages 1929–1934. IEEE, 1989.

[29] Luis Basto. First results of itc’99 benchmark circuits. IEEE Design & Test of
Computers, 17(3):54–59, 2000.

[30] Jason Luu, Je�rey Goeders, Michael Wainberg, Andrew Somerville, Thien Yu,
Konstantin Nasartschuk, Miad Nasr, Sen Wang, Tim Liu, Nooruddin Ahmed,
et al. VTR 8.0: Next generation architecture and CAD system for FPGAs. ACM
Transactions on Recon�gurable Technology and Systems (TRETS), 7(2):6, 2014.

[31] Mathias Soeken, Heinz Riener, Winston Haaswijk, Eleonora Testa, Bruno Schmitt,
GiuliaMeuli, FereshteMozafari, and Giovanni DeMicheli. The ep� logic synthesis
libraries. arXiv preprint arXiv:1805.05121, 2018.

[32] NC State FreePDK45’s Documentation. https://eda.ncsu.edu/freepdk/freepdk45/.
[33] SkyWater SKY130 PDK’s Documentation. https://skywater-pdk.readthedocs.io/

en/main/.
[34] GlobalFoundries 0.18UM 3.3V/(5V)6V MCU PDK’s Documentation. https:

//gf180mcu-pdk.readthedocs.io/en/latest/.
[35] Peter Marwedel. Tree-based mapping of algorithms to prede�ned structures. In

Proceedings of 1993 International Conference on Computer Aided Design (ICCAD),
pages 586–593. IEEE, 1993.

[36] Jason Cong and Yuzheng Ding. Flowmap: An optimal technology mapping
algorithm for delay optimization in lookup-table based fpga designs. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, 13(1):1–12,
1994.

[37] Alan Mishchenko, Satrajit Chatterjee, and Robert Brayton. Improvements to
technology mapping for lut-based fpgas. In Proceedings of the 2006 ACM/SIGDA
14th international symposium on Field programmable gate arrays, pages 41–49,
2006.

[38] Alan Mishchenko, Satrajit Chatterjee, Robert Brayton, Xinning Wang, and Timo-
thy Kam. Technology Mapping with Boolean Matching, Supergates and Choices.
2005.

[39] Alan Mishchenko, Satrajit Chatterjee, and Robert K. Brayton. Dag-aware AIG
rewriting a fresh look at combinational logic synthesis. In Proceedings of the
43rd Design Automation Conference, DAC 2006, San Francisco, CA, USA, July 24-28,
2006, pages 532–535, 2006.

[40] Venkataramana Kommu and Irith Pomeranz. Gafpga: Genetic algorithm for
fpga technology mapping. In Proceedings of EURO-DAC 93 and EURO-VHDL
93-European Design Automation Conference, pages 300–305. IEEE, 1993.

[41] Yingjie Li, Anthony Agnesina, Yanqing Zhang, Haoxing Ren, and Cunxi Yu.
Boolgebra: Attributed graph-learning for boolean algebraic manipulation. In
2024 Design, Automation & Test in Europe Conference & Exhibition (DATE), pages
1–2. IEEE, 2024.

[42] Haoxing Ren and Matthew Fojtik. Nvcell: Standard cell layout in advanced
technology nodes with reinforcement learning. In 2021 58th ACM/IEEE Design

https://eda.ncsu.edu/freepdk/freepdk45/
https://skywater-pdk.readthedocs.io/en/main/
https://skywater-pdk.readthedocs.io/en/main/
https://gf180mcu-pdk.readthedocs.io/en/latest/
https://gf180mcu-pdk.readthedocs.io/en/latest/

ICCAD ’24, October 27–31, 2024, Newark, NJ, USA Mingju Liu, Daniel Robinson, Yingjie Li, and Cunxi Yu

Automation Conference (DAC), pages 1291–1294. IEEE, 2021.
[43] Mohamed A Elgammal, Kevin E Murray, and Vaughn Betz. Rlplace: Using

reinforcement learning and smart perturbations to optimize fpga placement.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
41(8):2532–2545, 2021.

[44] Cunxi Yu, Houping Xiao, and Giovanni De Micheli. Developing synthesis �ows
without human knowledge. In Proceedings of the 55th Annual Design Automation
Conference, pages 1–6, 2018.

[45] Haoxing Ren and Jiang Hu. Machine Learning Applications in Electronic Design
Automation. Springer Nature, 2023.

[46] Rongjian Liang, Hua Xiang, Diwesh Pandey, Lakshmi Reddy, Shyam Ramji, Gi-
Joon Nam, and Jiang Hu. Drc hotspot prediction at sub-10nm process nodes
using customized convolutional network. In Proceedings of the 2020 International
Symposium on Physical Design, pages 135–142, 2020.

[47] Yi-Chen Lu, Jeehyun Lee, Anthony Agnesina, Kambiz Samadi, and Sung Kyu
Lim. Gan-cts: A generative adversarial framework for clock tree prediction and
optimization. In 2019 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pages 1–8, 2019.

[48] Mohamed Baker Alawieh, Wuxi Li, Yibo Lin, Love Singhal, Mahesh A Iyer, and
David Z Pan. High-de�nition routing congestion prediction for large-scale fpgas.

In 2020 25th Asia and South Paci�c Design Automation Conference (ASP-DAC),
pages 26–31. IEEE, 2020.

[49] Winston Haaswijk, Edo Collins, Benoit Seguin, Mathias Soeken, Frédéric Kaplan,
Sabine Süsstrunk, and Giovanni De Micheli. Deep learning for logic optimization
algorithms. In 2018 IEEE International Symposium on Circuits and Systems (ISCAS),
pages 1–4. IEEE, 2018.

[50] Alan Mishchenko et al. Abc: A system for sequential synthesis and veri�cation.
http://www. eecs. berkeley. edu/alanmi/abc, 17, 2007.

[51] Volodymyr Kuleshov and Doina Precup. Algorithms for multi-armed bandit
problems. arXiv preprint arXiv:1402.6028, 2014.

[52] Wassim Jouini, Damien Ernst, Christophe Moy, and Jacques Palicot. Upper
con�dence bound based decision making strategies and dynamic spectrum access.
In 2010 IEEE International Conference on Communications, pages 1–5. IEEE, 2010.

[53] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. Human-level control through deep reinforcement learning.
nature, 518(7540):529–533, 2015.

[54] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learn-
ing with double q-learning. In Proceedings of the AAAI conference on arti�cial
intelligence, volume 30, 2016.

	Abstract
	1 Introduction
	2 Background
	2.1 Technology Mapping and Library
	2.2 Learning-based techniques in EDA

	3 MapTune Case Studies
	4 Approach
	4.1 Formulation of MapTune
	4.2 Implementation

	5 Results
	5.1 Technology Mapping Results
	5.2 Pareto-Optimal Exploration

	6 Conclusions
	References

