
Fine-Grained Optimality of Partially Dynamic Shortest Paths

and More

Barna Saha∗, Virginia Vassilevska Williams†, Yinzhan Xu‡, Christopher Ye§

July 16, 2024

Abstract

Single Source Shortest Paths (SSSP) is among the most well-studied problems in computer
science. In the incremental (resp. decremental) setting, the goal is to maintain distances from
a fixed source in a graph undergoing edge insertions (resp. deletions). A long line of research
culminated in a near-optimal deterministic (1 + ")-approximate data structure with m1+o(1)

total update time over all m updates by Bernstein, Probst Gutenberg and Saranurak [FOCS
2021]. However, there has been remarkably little progress on the exact SSSP problem beyond
Even and Shiloach’s algorithm [J. ACM 1981] for unweighted graphs. For weighted graphs,
there are no exact algorithms beyond recomputing SSSP from scratch in eO(m2

) total update
time, even for the simpler Single-Source Single-Target Shortest Path problem (stSP). Despite
this lack of progress, known (conditional) lower bounds only rule out algorithms with amortized
update time better than m1/2�o(1) in dense graphs.

In this paper, we give a tight (conditional) lower bound: any partially dynamic exact stSP
algorithm requires m2�o(1) total update time for any sparsity m. We thus resolve the complexity
of partially dynamic shortest paths, and separate the hardness of exact and approximate shortest
paths, giving evidence as to why no non-trivial exact algorithms have been obtained while fast
approximation algorithms are known.

Moreover, we give tight bounds on the complexity of combinatorial algorithms for several
path problems that have been studied in the static setting since early sixties: Node-weighted
shortest paths (studied alongside edge-weighted shortest paths), bottleneck paths (early work
dates back to 1960), and earliest arrivals (early work dates back to 1958). These bounds rule
out any nontrivial combinatorial algorithms for these problems in the partially dynamic setting.
Interestingly, for all of the above path-variant problems, we obtain faster partially dynamic
algorithms using fast matrix multiplication.

∗University of California San Diego. bsaha@ucsd.edu. Supported by NSF grants 1652303, 1909046, 2112533,
and HDR TRIPODS Phase II grant 2217058. This work was done in part while the author was visiting the Simons
Institute for the Theory of Computing.

†Massachusetts Institute of Technology. virgi@mit.edu. Supported by NSF Grant CCF-2330048, BSF Grant
2020356 and a Simons Investigator Award. This work was done in part while the author was visiting the Simons
Institute for the Theory of Computing.

‡Massachusetts Institute of Technology. xyzhan@mit.edu. Partially supported by NSF Grant CCF-2330048, BSF
Grant 2020356 and a Simons Investigator Award. This work was done in part while the author was visiting the Simons
Institute for the Theory of Computing, and the Institute for Emerging CORE Methods in Data Science (EnCORE).

§University of California San Diego. czye@ucsd.edu. Partially supported by NSF grants 1652303, 1909046,
2112533, and HDR TRIPODS Phase II grant 2217058. This work was done in part while the author was visiting the
Simons Institute for the Theory of Computing.

ar
X

iv
:2

40
7.

09
65

1v
1

 [c
s.D

S]
 1

2
Ju

l 2
02

4

1 Introduction

Computing shortest paths is one of the most fundamental tasks in computer science. Given an n-
node, m-edge directed graph1 G = (V,E) with nonnegative integer edge weights, the Single Source
Shortest Paths (SSSP) problem asks to compute the distance from a given node s to all v 2 V .
Dijkstra’s classical algorithm [Dij59, FT87] solves this problem in O(m + n log n) time. SSSP
(and its variants for undirected graphs and for graphs with negative weights) has been extensively
studied [Shi53, For56, Bel58, Moo59, Gab83, GT89, FW93, FW94, Gol95, Ram96, Tho96, Ram97,
Tho99, Hag00, Tho00, PR05, Tho04, vdBLN+20, AMV20, BNW22, CKL+22, Fin24]. The current
fastest SSSP algorithm runs in O(m+ n log log n) time [Tho04].

For the all-pairs version of the problem, All-Pairs Shortest Paths (APSP), one needs to compute
the distance between every pair of nodes in the given graph. One could run Dijkstra’s algorithm
n times to obtain an O(mn + n2

log n) running time. For a dense graph where m = ⇥(n2
), this

running time becomes O(n3
). An alternative classical algorithm, the Floyd–Warshall algorithm, also

achieves an O(n3
) running time. A long series of works (e.g. [Fre76, Dob90, Tak92, Tak98, Han04,

Pet04, Zwi04, Cha05, Han06, Cha10a, HT12, OV22]) improved poly-logarithmic factors over the
classic O(n3

) running time, culminating in the current fastest algorithm by Williams [Wil18] with
n3/2⇥(

p
logn) running time, a super poly-logarithmic improvement over the classic O(n3

) running
time. Due to the lack of polynomial improvements, the APSP hypothesis, stating that there is no
O(n3�"

) time algorithm for any " > 0 that computes APSP for n-node graphs, is among the most
popular hypotheses in Fine-Grained Complexity.

Shortest paths problems have also been extensively studied in dynamic graphs. The main focus of
our paper is the partially dynamic setting, where the dynamic graph only undergoes edge insertions
(incremental) or only undergoes edge deletions (decremental). Partially dynamic problems are often
easier than their fully-dynamic counterparts where both edge insertions and deletions are allowed.
We are interested in the total running time of the algorithms over all the operations (starting from an
empty graph in the incremental case, or deleting edges until the graph is empty in the decremental
case). A seminal algorithm of Demetrescu and Italiano [DI04] shows how to maintain APSP in
amortized eO(n2

) time,2 even for fully dynamic graphs. This amortized running time is essentially
optimal if our goal is to minimize the total running time, as the output size after each operation is
already n2 for APSP.3 Therefore, we will focus on partially dynamic SSSP.

For unweighted graphs, Even and Shiloach [ES81] gave a partially dynamic SSSP algorithm with
total time O(mn), a bound that has stood for more than 40 years. In the meantime, a long line
of work has studied (1 + ")-approximate SSSP, where the algorithm must maintain approximate
shortest paths after each update [BR11, HKN14a, HKN14b, BC16, Ber16, BC17, Ber17, HKN18,
CK19, BGS20, GVW20, GW20a, GW20b, BGS21].

However, there has been little progress on maintaining exact SSSP in partially dynamic weighted
graphs. The naive algorithm for partially dynamic SSSP is to rerun Dijkstra’s algorithm after
every update, which results in an eO(m2

) total running time, or eO(m) time per-update, even when
amortized over all m updates. For dense graphs, this running time is eO(n4

). This trivial re-
computation is essentially the best known for partially dynamic SSSP. Even for the simpler partially
dynamic stSP problem where we only need to maintain the distance between one source node s and
one sink node t, there are no better upper bounds.

1Throughout the paper, we will assume m � n� 1.
2 eO hides polylog(n) factors.
3It is still an active line of research to improve the worst-case time guarantee for fully dynamic APSP [Tho05,

ACK17, GW20c, CZ23, Mao24], and the current fastest algorithm is designed by Mao [Mao24] which runs in eO(n2.5)
time per operation.

1

Open Question 1. Can we solve partially dynamic stSP in O(m2�"
) total time for some " > 0,

for any sparsity m? In particular, can we solve partially dynamic stSP in O(n4�"
) total time for

some " > 0?

There has been partial progress towards answering Open Question 1. Roditty and Zwick [RZ11]
proved that under the APSP hypothesis, any partially dynamic SSSP algorithm handling n updates
requires total time n3�o(1), which is a factor of n away from the naive algorithm for dense graphs.
This lower bound was later strengthened by Abboud and Vassilevska Williams [AV14] to hold also
for partially dynamic stSP. While this lower bound rules out any algorithm improving upon re-
computation from scratch when amortized over only n updates, it only rules out algorithms with
m1/2�" amortized update time when amortizing over all m updates. In particular, previous lower
bounds do not rule out the possibility of an algorithm which has only n costly updates with the rest
of the updates being relatively fast, resulting in m1/2�o(1) amortized time when amortizing over all
m updates.

More partial progress was made by Gutenberg, Vassilevska Williams and Wein [GVW20], who
showed that in the special case of sparse graphs where m = n1+o(1), any algorithm solving partially
dynamic stSP requires total time m2�o(1), under the k-Cycle hypothesis from Fine-Grained Com-
plexity (see [LVW18, AHR+19]) which postulates that any algorithm that can detect whether a
graph contains a k-cycle (for every constant k � 3) requires m2�o(1) time. In terms of n, detecting
a k-cycle can be solved in O(n!

) time4 for all constants k (see e.g., [IR78]). When m = ⌦(n1+c
)

for some c > 0, O(n!
) can be faster than m2, e.g. in the optimistic case where ! = 2. Therefore,

the k-Cycle hypothesis is most reasonable for graphs with m = n1+o(1). Thus, the lower bound
in [GVW20] does not help with Open Question 1 for graphs with m = ⌦(n1+c

) for any c > 0.
Furthermore, their result is not meaningful for partially dynamic SSSP with m = n1+o(1), because
an ⌦(mn) = m2�o(1) lower bound is trivial, as mn is the total output size (n distances after each
update).

We remark that fully dynamic stSP was shown to require n2�o(1) amortized update time over
any (polynomial) number of updates for combinatorial5 algorithms by Jin and Xu [JX22]. Indeed,
any combinatorial algorithm requires n2�o(1) amortized update time even for the simpler (s, t)-
reachability problem in the fully dynamic setting.

Roditty and Zwick [RZ11] considered partially dynamic SSSP where instead of outputting the
distances from s to all nodes in V after each update, the data structure only needs to support
distance queries between s and any queried node v. They explicitly stated the following open
question:

Open Question 2. Is partially dynamic SSSP with m updates and n2 queries in eO(mn) time?

In particular, if the answer to Open Question 2 is affirmative, then one can solve partially
dynamic stSP in eO(mn) time, as the total number of queries for partially dynamic stSP is m  n2.
Therefore, if the answer to Open Question 2 is affirmative, then the answer to Open Question 1 is
also affirmative for m = ⌦(n1+c

) for c > 0. Neither of the previously mentioned lower bounds [AV14,
GVW20] can resolve Open Question 2. In the contrapositive, if one can resolve Open Question 1 in
the negative, then it would also imply a resolution of Open Question 2 in the negative.

4
! < 2.372 [DWZ23, VXXZ24] is the square matrix multiplication exponent. We will also use !(a, b, c) to denote

the exponent for multiplying an n
a ⇥ n

b matrix and an n
b ⇥ n

c matrix.
5“Combinatorial” algorithms are not well-defined, but the term has become synonomous with algorithms that do

not use the heavy algebraic techniques used in fast matrix multiplication algorithms. Hardness under the BMM
hypothesis essentially implies that fast algorithms can only exist if fast matrix multiplication is used.

2

Strong Hardness for Exact Partially Dynamic stSP. As the first main result of our paper,
we fully resolve Open Question 1 in the negative based on a popular fine-grained hypothesis. Thus,
the answer to Open Question 2 is (conditionally) negative as well, based on the above discussion. In
particular, we resolve the complexity of partially dynamic shortest paths, and separate the hardness
of exact and approximate shortest paths, giving evidence as to why no non-trivial exact algorithms
have been obtained while fast approximation algorithms are known.

Our lower bound is based on the Minimum-Weight 4-Clique hypothesis, which states that finding
the 4-clique with minimum total edge weights in an n-node graph requires n4�o(1) time. This
hypothesis is a special case of the Minimum-Weight k-Clique hypothesis, which has been used in,
e.g., [AVW14, BDT16, BT17, LVW18, ABDN18, BGMW20, GV21, BFvdH+24]. In particular, the
Minimum-Weight 3-Clique hypothesis is equivalent to the APSP hypothesis [VW18]. Our result
can be formally stated as follows:

Theorem 1.1. Under the Minimum Weight 4-Clique hypothesis, any algorithm computing incre-
mental/decremental stSP on n-node undirected graphs requires n4�o(1) total time.

Through a simple graph transformation, Theorem 1.1 implies that any partially dynamic stSP
algorithm requires m2�o(1) total time over m updates in an n-node m-edge undirected graph for
any sparsity m. In our work, we mostly consider directed graphs, but notably, Theorem 1.1 even
holds for undirected graphs.

1.1 Variants of Shortest Paths in the Dynamic Setting

In the static setting, there are several variants of shortest paths that have been studied extensively.
Examples include shortest paths on structured graphs such as node-weighted graphs [Cha10a], bot-
tleneck paths [Pol60, Hu61] (the bottleneck path between two nodes is the path whose minimum
weight edge is maximized), and earliest arrivals [Min58] (the earliest arrival between two nodes is
the minimum weight of the last edge among all paths whose edges are increasing in weight; ear-
liest arrivals is also known as nondecreasing paths). All these problems are extremely basic and
well-motivated: Node-weighted graphs naturally arise in applications for many problems related to
shortest paths [VW06, VWY06, CL09, SYZ07, DP09, VW13]. Bottleneck paths [GT88, CKT+16]
have many applications, from max-flow algorithms ([EK72], Chapter 7.3 in [AMO93]), to voting pro-
tocols [Sch11], to metabolic pathway analysis [ULH09] and more. Earliest arrivals has applications
to public transportation scheduling such as train and planes (see e.g. [Min58, Vas10]).

Modifications of Dijkstra’s algorithm can solve the single-source version of all three variants in
eO(m) time. Faster than Dijkstra’s algorithms exist for all of them: Single Source Shortest Paths
on node-weighted graphs (nw-SSSP) can be solved in O(m + n log log n) time [Tho04] similar to
SSSP, Single Source Earliest Arrival (SSEA) can be solved in O(m log log n) time in the addition-
comparison model and O(m + n) time on the word-RAM [Vas10], and Single Source Bottleneck
Paths (SSBP) can be solved in O(m

p
log n) time [DLX18] which is faster than Dijkstra’s algorithm

when m = o(n
p
log n).

In contrast to APSP, the all-pairs versions of these problems all have truly subcubic time al-
gorithms as first shown by [VWY09, Vas10, Cha10a]. The fastest algorithm to date for All-Pairs
Shortest Paths on node-weighted graphs (nw-APSP) runs in eO(n(9+!)/4

) = O(n2.843
) time [Cha10a].

Using rectangular matrix multiplication, this running time can be improved to O(n2.830
) [Yus09].

The fastest algorithms for All-Pairs Bottleneck Paths (APBP) [DP09] and All-Pairs Earliest Arrivals
(APEA) [DJW19] both run in eO(n(3+!)/2

) = O(n2.686
) time.

Notably, all of the aforementioned subcubic algorithms use fast matrix multiplication, and that
is for a good reason. Under the Boolean Matrix Multiplication (BMM) hypothesis, no combinatorial

3

algorithm for these problems can achieve O(n3�"
) for " > 0 time.

To the best of our knowledge, the dynamic versions of these natural variants of shortest paths
have not been explicitly studied before, despite the extensive study of their static versions. In this
paper, we initiate the study of the dynamic versions of node-weighted shortest paths, bottleneck
paths, and earliest arrivals, obtaining algorithms and conditional lower bounds.

New Partially Dynamic Algorithms. First, we give sub-quartic total time algorithms for the
partially dynamic versions of all three variants, setting them apart from partially dynamic SSSP.
In particular, for partially dynamic SSEA, our running time is near-linear. For node-weighted s-t
shortest paths (nw-stSP), we also give an algorithm that is faster than nw-SSSP. We give similar
faster algorithms for Single Source Bottleneck Paths (SSBP) and s-t Bottleneck Paths (stBP).

Theorem 1.2. For n-node m-edge graphs, there are algorithms for

• incremental nw-stSP in eO(n4��/3
) = O(n3.887

) total time;
• incremental nw-SSSP in eO(n4��/4

) = O(n3.915
) total time;

• incremental/decremental stBP in eO(n2+"1+"2 + n2+!(1,"1,"2)�"1 + n2+!(1,1,"2)�"2) = O(n3.405
)

total time;
• incremental SSBP in eO(n(5+!)/2

) = O(n3.686
) time;

• incremental or decremental SSEA in eO(m) total time,

where � is the solution to the equation !(1, 1, 1+�) = 3�� and "1, "2 are parameters to be optimized.

New Hardness Results. All algorithms except the one for SSEA in Theorem 1.2 use fast matrix
multiplication, and it is natural to ask whether fast matrix multiplication is necessary in order to
achieve O(n4�"

) running time for these problems. We show that this is indeed the case, under
the Combinatorial 4-Clique hypothesis, which states that any combinatorial algorithm detecting
whether a graph contains a 4-clique requires n4�o(1) time. This hypothesis is a natural generalization
of the BMM hypothesis, as the latter has been shown to be equivalent to the hypothesis that any
combinatorial algorithm for Triangle Detection in n-node graphs requires n3�o(1) time [VW18]. The
Combinatorial k-Clique hypothesis has been widely used in prior works (e.g, [Cha10b, BGL17, Li19,
AGI+19, GVW20, JX22, HLSW23]). In fact, the reductions for this result are adapted from the
reduction for Theorem 1.1, showcasing the versatility of our technique.

Theorem 1.3. Under the Combinatorial 4-Clique hypothesis, any combinatorial algorithm comput-
ing incremental/decremental stBP or nw-stSP requires n4�o(1) total time.

Similar to before, Theorem 1.3 implies an m2�o(1) lower bound for any sparsity m.
Even with fast matrix multiplication, the current best running time for detecting whether a

graph contains a 4-clique is O(n!(1,2,1)
) [EG04]. Notably, the current best bound [VXXZ24] on

!(1, 2, 1) is 3.251 > 3; if ! = 2, then !(1, 2, 1) = 3.
Our method implies that, unless we can improve this 4-clique running time, any algorithm (even

non-combinatorial ones) computing incremental/decremental stBP or nw-stSP requires n!(1,2,1)�o(1)

total time. We can further improve the exponent for the lower bound, under the hardness of the
OMv3 problem, proposed by [GVW20] as a generalization of the OMv problem [HKNS15], and the
Minimum-Witness 3-Product problem, which is a generalization of the Minimum-Witness Product
problem proposed in [KL22].

In the OMv3 problem, we need to preprocess an n⇥n Boolean matrix A, so that we can support
the following types of queries: Given three n-dimensional Boolean vectors u, v, w, determine whether
there exist i, j, k 2 [n], so that ui ^ vj ^ wk ^Aij ^Ajk ^Aki. A naive algorithm solves each query

4

in O(n!
) time, and it is hypothesized in [GVW20] that this is essentially the best algorithm among

all algorithms with polynomial preprocessing time.

Hypothesis 1.4 (OMv3 hypothesis [GVW20]). There is no algorithm with polynomial preprocessing
time and total update and query time O(n!+1�"

) solving the OMv3 problem, for any " > 0.

We show the following results under the OMv3 hypothesis:

Theorem 1.5. Under the OMv3 hypothesis, any algorithm computing incremental/decremental
stBP or nw-stSP requires n!+1�o(1) total time.

For nw-SSSP, we are able to show a higher lower bound, based on the hardness of a variant of
the Minimum-Witness Product problem.

In the Minimum-Witness Product problem, we are given two Boolean matrices A and B, and we
need to compute min{k 2 [n] : Ai,k^Bk,j} for every (i, j) 2 [n]⇥ [n]. The current best algorithm for
this problem runs in O(n2+�

) time [CKL07], where !(1,�, 1) = 1+2�. If ! = 2, this running time is
essentially O(n2.5

); the hypothesis that there is no O(n2.5�"
) time algorithm for Minimum-Witness

Product has been considered before [LPV20].
We consider the following natural generalization of Minimum-Witness Product to three matrices,

first proposed by [KL22], which we call Minimum-Witness 3-Product. In this problem, we are given
three n ⇥ n Boolean matrices A,B,C, and for every i1, i2, i3 2 [n], we need to find the minimum
value of j 2 [n] such that Ai1,j ^Bi2,j ^ Ci3,j .

[KL22] gave an O(n3.5
) time algorithm (when ! = 2) for Minimum-Witness 3-Product, which is

an adaptation of the existing algorithm for Min-Witness Product [CKL07]. As O(n3.5
) is the best

running time even when ! = 2, the following hypothesis is plausible. See Section 3.2.2 for more
discussion on why it is plausible.

Hypothesis 1.6 (Minimum-Witness 3-Product hypothesis). There is no O(n3.5�"
) time algorithm

for the Minimum-Witness 3-Product problem for " > 0.

We obtain a conditional lower bound based on the Minimum-Witness 3-Product hypothesis.

Theorem 1.7. Under the Minimum-Witness 3-Product hypothesis, any algorithm computing incre-
mental/decremental nw-SSSP requires n3.5�o(1) total time.

Weight-Dynamic Algorithms Typically, updates to dynamic graphs are considered in the con-
text of edge insertion and deletion. [HPS21] introduced weight-dynamic graphs, on which up-
dates can additionally modify the weight of an existing edge. Note that this generalizes the inser-
tion/deletion model, as edge insertions/deletions can be modeled by setting weights to 1 or �1
depending on the setting of the problem. In the partially dynamic versions of this model, one can
either only increase the edges weights, or only decrease the edge weights. In this more general model,
all our lower bounds hold, and we additionally show that combinatorial algorithms for stEA require
m2�o(1) time under the Combinatorial 4-Clique hypothesis, whereas in the insertion/deletion model
we obtain an eO(m) time algorithm for SSEA, exhibiting a separation between the two dynamic
models.

Fully Dynamic Algorithm The main focus of our paper is partially dynamic algorithms, but
we also show a fully dynamic algorithm for APBP. Namely, we show that fully dynamic APBP can
be solved in eO(n2

) amortized update time.

5

Problem Upper Bound Lower Bound Combinatorial
Lower Bound

Known Lower
Bound

Shortest Paths

(s, t) n
4

n
4�o(1) (Thm. 1.1) - n

3�o(1) [AV14]

single source n
4

n
4�o(1) (Thm. 1.1) - n

3�o(1) [RZ11]

Node-Weighted
Shortest Paths

inc. (s, t) n
3.887 [n3.834]

(Prop. 3.3)
n
!+1�o(1) [n3�o(1)]

(Thm. 3.8)
n
4�o(1) (Thm. 3.5) n

2

inc. single source n
3.915 [n3.875]

(Prop. 3.1)
n
3.5�o(1) (Thm.

3.13)
n
4�o(1) (Thm. 3.5) n

2.75�o(1) [RZ11]

Bottleneck Paths

(s, t) n
3.405 [n3.25]

(Thm. 4.2)
n
!+1�o(1) [n3�o(1)]

(Thm. 4.18)
n
4�o(1) (Thm.

4.16)
n
2

inc. single source n
3.686 [n3.5]

(Thm. 4.11)
n
!+1�o(1) [n3�o(1)]

(Thm. 4.18)
n
4�o(1) (Thm.

4.16)
n
2

Earliest Arrivals

single source n
2 (Thm. 5.4) n

2
n
2

n
2

Table 1: Summary of results for partially dynamic (s, t) and single source problems with respect
to number of nodes n. The table shows total update and query time. Unless otherwise stated, our
bounds hold for both incremental and decremental versions of the problem. Upper bounds are given
ignoring polylogarithmic factors. Bounds are given with respect to the current best upper bound
of (rectangular) matrix multiplication [VXXZ24] computed with [Bra]. Bounds within brackets
assume ! = 2.

Problem Lower Bound Combinatorial
Lower Bound

Known Lower Bound

Shortest Paths

(s, t) m
2�o(1) (Thm. 1.1) - m

2�o(1) if m = n
1+o(1) [GVW20]

Node-Weighted
Shortest Paths

(s, t) m
!+1
2 �o(1) [m1.5�o(1)]

(Thm. 3.8)
m

2�o(1) (Thm. 3.5) m

single source n
1.75�o(1) (Thm. 3.13) m

2�o(1) (Thm. 3.5) m
1.375�o(1) [RZ11]

Bottleneck Paths

(s, t) m
!+1
2 �o(1) [m1.5�o(1)]

(Thm. 4.18)
m

2�o(1) (Thm.
4.16)

m

Table 2: Summary of lower bounds for partially dynamic (s, t) and single source problems with
respect to number of edges m. The table shows total update and query time. Our bounds hold
for both incremental and decremental versions of the problem and all values of m  n2 (Prop
A.2). Bounds are given with respect to the current best upper bound ! [VXXZ24]. Bounds within
brackets assume ! = 2.

6

1.2 Preliminaries

Let [n] = {1, 2, . . . , n}. Let ~v[i] denote the i-th entry of vector ~v and A[i, j] denote the [i, j]-
th entry of A. Let N(v) denote the neighborhood of a vertex v. If P1, P2 are paths in G with
P1 = (a, . . . , b), P2 = (b . . . , c), let P1 � P2 denote the path concatenation (a, . . . , b, . . . , c).

In this work, we consider a dynamic edge update model. Concretely, an incremental algorithm
must handle edge insertions, a decremental must handle deletions, while a fully dynamic algorithm
must handle both insertions and deletions. Unless otherwise specified, our upper bounds obtain
algorithms that answer queries in O(1) time. When specified, we also consider the weight update
model. In this case, an incremental algorithm must handle weight increases, a decremental algorithm
must handle weight decreases, while a fully dynamic algorithm must handle arbitrary weight changes.

1.3 Organization

The remainder of the paper is organized as follows. Section 2 is dedicated to showing a tight lower
bound for partially dynamic shortest paths. Section 3, Section 4, and Section 5 delve into node-
weighted shortest paths, bottleneck paths, and the earliest-arrival problems respectively, giving both
lower bounds and faster algorithms in the partially dynamic setting.

2 A Tight Lower Bound for Partially Dynamic Shortest Paths

We now present our main result: a tight conditional lower bound for partially dynamic stSP. As
a warm-up, we prove a lower bound for graphs allowing parallel edges. Prior reductions have used
APSP, triangle detection as well as 4-Clique instances for dynamic shortest path lower bounds e.g.
as in [RZ11, AV14, JX22]. We extend these constructions with the addition of parallel edges with
carefully chosen weights and insertion sequence that allow for a partially dynamic lower bound.
This extension from previous works with parallel edges in the constructed graph is relatively simple
and it was also observed by [Pol24]. Later we explain how to remove the parallel edges, which is
the crux of our contribution.

Proposition 2.1. Under the Minimum-Weight 4-Clique hypothesis, any combinatorial algorithm
computing incremental/decremental stSP on undirected (not necessarily simple) graphs with n ver-
tices and m edges requires n4�o(1) total time.

Suppose we are given a Minimum-Weight 4-Clique instance. As is typical with k-clique prob-
lems,6 we may assume that the given graph is k-partite. Thus, let the Minimum-Weight 4-Clique
instance be a 4-partite graph G with V (G) = A [B [C [D, each part consisting of n nodes. We
identify the vertices of A,B,C,D with the integer set [n]. We can also assume that G is a complete
4-partite graph, as the non-edges can be replaced by edges of large enough weight (for example
6W + 1 where W is the maximum weight of any edge). For any tuple (a, b, c, d) 2 A⇥B ⇥C ⇥D,
let

wt(a, b, c, d) = wt(a, b) + wt(a, c) + wt(a, d) + wt(b, c) + wt(b, d) + wt(c, d)

denote the weight of the 4-clique (a, b, c, d). The Minimum-Weight 4-Clique problem asks to compute

min{wt(a, b, c, d) s.t. a 2 A, b 2 B, c 2 C, d 2 D}.
6For any k-clique instance G = (V,E) we can create a k-partite G

0 with vertex set containing k copies of V ,
V1, . . . , Vk, each an independent set, and for every two copies Vi and Vj we add an edge (ui, vj) for every edge (u, v)
in G, where ui 2 Vi, vj 2 Vj are the copies of u and v in Vi and Vj respectively. If G had weights, the vertices and
edges of G0 inherit the weights of the vertices and edges in G that they represent.

7

A simple algorithm enumerates all cliques in O(n4
) time. The Minimum-Weight 4-Clique hypothesis

states that this is essentially optimal.

Hypothesis 2.2 (Minimum-Weight k-Clique hypothesis). There is no O(nk�"
) algorithm for Minimum-

Weight k-Clique on n-node graphs with non-negative weights, for any " > 0.

Proof of Proposition 2.1. For simplicity, we consider the incremental case on directed graphs. Let
W be larger than the weight of any 4-clique in the graph (say larger than 6 times the maximum
weight in the graph). We construct an stSP instance as illustrated in Figures 1 and 2.

! "# $#%&

Figure 1: Overall structure of reduction of dynamic path problems. For each d 2 D, the A,B,C
and Â gadgets encode neighbors of d in A,B, and C. Edges between gadgets encode edges between
A,B, and C in the Minimum-Weight 4-Clique instance.

We build gadgets of O(n) vertices, with A, Â encoding the adjacency information between A
and D, B encoding adjacency between B and D; and C encoding adjacency between C and D.
The gadget construction is described in Figure 2. We describe only the B gadget, noting that all
gadgets are constructed analogously. The gadget consists of 2 layers B1, B2, each a copy of part
B ⇢ V (G) in the Minimum-Weight 4-Clique instance. For each b 2 B, we label the copy of b in Bi

as b(i), i = 1, 2. Note that copies of a in Âi are denoted â(i). We have thus constructed a layered
graph with vertex sets

{s} [A1 [A2 [B1 [B2 [C1 [C2 [Â1 [Â2 [{t}.

We use edges between gadgets to encode the adjacency information between A,B, and C.
Formally, for every edge between A,B (resp. B,C and A,C) we insert an edge with weight wt(a, b)
between (a(2), b(1)) (resp. wt(b, c) between (b(2), c(1)) and wt(a, c) between (c(2), â(1))). Finally, the
source s (resp. sink t) are connected to all nodes in the first layer A1 (resp. last layer Â2) with weight
0 edges. For the previous insertions, s cannot reach t and we do not need the stSP information in
the reduction.

Next, we will iterate over node pairs (d, a) in decreasing lexicographic order, and use the dynamic
stSP instance to compute the minimum weight 4-clique involving (d, a). We begin with the iteration
over a node d in the outer loop. For every neighbor b (resp. c) of d, we connect (b(1), b(2)) (resp.
(c(1), c(2))) with an edge of weight dW + wt(b, d) (resp. weight dW + wt(c, d)). Now, in the inner
loop, we iterate over nodes a 2 A (also in decreasing order). We connect (a(1), a(2)), (â(1), â(2)) with
edges of weight dnW + aW +

wt(a,d)
2 . Note that each gadget is a matching (with parallel edges).

Then, we claim that the construction of the graph ensures that if the minimum-weight 4-clique
involving (d, a) has weight w⇤, then the shortest path from s to t has length,

d(s, t) = 2dnW + (2a+ 2d)W + w⇤.

8

!!!"!#!$

"!"""#"$

#"###$
!!!"!#!$

"!"""#"$

(a) An example Minimum-Weight 4-Clique in-
stance. In the figure, we show only edges between
A,B and D.

!!!

"!(#)

"%(#)

!!
(!)

!$
(!)

!#

!%
(&)

!&
(&)

!!
(&)

"&(%)

""!

"%
(!)

"&
(!)

"!
(!)

"$
(!)

"#

"%
(&)

"&
(&)

"!
(&)

"$
(&)

(b) The A,B gadgets with multi-edges.

Figure 2: An example of encoding a Minimum-Weight 4-Clique instance into an incremental stSP
instance with parallel edges. Solid black edges encode edges A ⇥ B with weight wt(a, b). Edges
within gadgets are inserted in decreasing order of weight. Let n = 4. Solid red edges join neighbors
of d2 with weight 2W + wt(bj , d2) between (b(1)j , b(2)j) in B and weight 2nW + kW + wt(ak, d2)

between (a(1)k , a(2)k) in A. Dashed purple edges join neighbors of d1 with weight W + wt(bj , d1)

between (b(1)j , b(2)j) in B and weight nW + kW + wt(ak, d1) between (a(1)k , a(2)k) in A. Dotted blue
edges join neighbors of d0 with weight wt(bj , d0) between (b(1)j , b(2)j) in B and weight kW+wt(ak, d0)

between (a(1)k , a(2)k) in A. The (s, t)-distance is maintained after each insertion.

Consider the minimum-weight 4-clique (a, b, c, d) involving (d, a) with weight w⇤. Then by our
construction there is a path

(s, a(1), a(2), b(1), b(2), c(1), c(2), â(1), â(2), t)

with length
2dnW + (2a+ 2d)W + wt(a, b, c, d) = 2dnW + (2a+ 2d)W + w⇤.

We claim that there is no shorter path. Let P be the shortest path from s to t. Since each gadget is
a matching, the edges in the gadgets correspond to some node in the 4-Clique instance and P has
the form

P = (s, a(1)1 , a(2)1 , b(1), b(2), c(1), c(2), â(1)2 , â(2)2 , t).

Note that all paths from s to t in the graph must have length at least 2dnW + (2a+ 2d)W . Since
we iterate over d in decreasing order, if we take an edge between (b(1), b(2)) or (c(1), c(2)) inserted by
a previous iteration d0 > d over D, the path has length at least

2dnW + (2a+ d+ d0)W � 2dnW + (2a+ 2d+ 1)W > 2dnW + (2a+ 2d)W + w⇤,

so P cannot be a shortest path. Similarly, if we take an edge between (a(1), a(2)) or (â(1), â(2))
inserted in a previous iteration d0 > d, the path has length at least (2d + 1)nW + (2a + 2d)W .
Finally, since we iterate over a in decreasing order, if max{a1, a2} > a then the path has length at
least

2dnW + (a1 + a2 + 2d)W � 2dnW + (2a+ 2d+ 1)W.

Thus, if P is a shortest path, we may assume a = a1 = a2 and all edges in P within gadgets are
inserted in the current iteration d 2 D. Thus, if P is a shortest path, it must correspond to a
4-clique (a, b, c, d) involving (d, a) and furthermore the length of this path is

2dnW + (2a+ 2d)W + wt(a, b, c, d).

9

!!

!!
(#)

!%
(#)

!#
(#)

!&
(#)

!"

!!
(!)

!%
(!)

!#
(!)

!&
(!)

!#

!!
(%)

!%
(%)

!#
(%)

!&
(%)

!!!

!!
(#)

!%
(#)

!#
(#)

!&
(#)

!#

!!
(%)

!%
(%)

!#
(%)

!&
(%)

Figure 3: Removing parallel edges from the multi-edge gadget. On the left, solid red edges join
neighbors of d2 with weight 2W +wt(bj , d2). Dashed purple edges join neighbors of d1 with weight
W + wt(bj , d1). Dotted blue edges join neighbors of d0 with weight wt(bj , d0). On the right, we
insert an additional middle layer of n = 4 nodes. If bj is a neighbor of di, two edges of weight
iW +

wt(bj ,di)
2 join b(1)j , b(3)j via b(2)j+i mod n. Note that each b(2)j participates in at most one path of

weight < (2i+1)W , where di is the current smallest vertex of d. In particular, all paths with weight
in this range are node disjoint, and must enter and leave the gadget from the copies of the same
vertex b 2 B. Furthermore, the simple graph only has n additional nodes.

Since we assumed that w⇤ is the weight of the minimum-weight 4-clique involving (d, a), we conclude
that d(P) = 2dnW + (2a+ 2d)W + w⇤.

Thus, for each (d, a) we use the stSP distance to compute,

w⇤
= d(s, t)� 2dnW � (2a+ 2d)W.

The minimum-weight 4-clique of G is then computed by taking the minimum w⇤ over all (d, a). Thus,
if Minimum-Weight 4-Clique requires n4�o(1) time, then incremental stSP with O(n2

) parallel edges
requires n4�o(1) time. To conclude, we observe the proof generalizes to the decremental case by
running the reduction in reverse and to undirected graphs by adding a sufficiently large weight to
each edge.

Removing Parallel Edges. Proposition 2.1 has shown that partially dynamic stSP on graphs
with parallel edges requires total time n4�o(1). If we naively turn this into a simple graph (say by
turning each parallel edge into a two-edge path) or modify parallel edges into a path as in [GVW20],
this drastically increases the number of vertices to n2. The key idea behind our reduction is that we
can in fact modify Proposition 2.1 to a simple graph while only increasing the number of vertices
by a constant factor. This idea also crucially underlies the lower bounds shown in later sections.

First, we give some intuition of how to avoid parallel edges. Note that parallel edges only
occur within the gadgets A,B,C, and Â of the reduction. The parallel edges are inserted in the
matching between the two layers of a single gadget to encode edge weights between D and vertex
sets A,B, and C of G. Specifically, we use parallel edges to ensure that any path must enter and
leave a gadget from copies of the same vertex. We now describe how to construct these gadgets
without the use of parallel edges. Again, we describe only the B gadget, noting that the others are
constructed analogously. Consider a 3-layer gadget B1 [B2 [B3, with each copy of b 2 B denoted

10

by b(1), b(2), b(3). Fix an iteration over a vertex d in the outer loop. We join b(1), b(3) with a length
two path through ((b + d) mod n)(2) in the central layer with edges of weight dW +

wt(b,d)
2 . Thus,

there is a path from b(1) to b(3) through the gadget of the form

(b(1), ((b+ d) mod n)(2), b(3)) (1)

with weight 2dW + wt(b, d). We claim any other path through the B gadget has weight at least
(2d+ 1)W . Consider a path,

(b(1)1 , b(2)2 , b(3)3).

Since we iterate over d in decreasing order, b2 � b1 + d (and similarly b2 � b3 + d). If b2 > b1 + d
or b2 > b3 + d, then

wt(b(1)1 , b(2)2) + wt(b(2)2 , b(3)3) � (2b2 � b1 � b3)W � (2d+ 1)W,

since wt(b(1)1 , b(2)2) � (b2� b1)W and wt(b(2)2 , b(3)3) � (b2� b3)W . Thus, we conclude b1 = b3 = b2�d.
Indeed, any shortest path through the B gadget must entering and leave from copies of the same
b 2 B and this path has length 2dW + wt(b, d), just as in the parallel edge case.

Thus, we can construct a B gadget without parallel edges and the rest of the reduction follows
as above. Figure 3 illustrates the gadget transformation. We give a full formal proof below.

Proof. We describe the reduction for incremental stSP. For the decremental setting, we can execute
the reduction in reverse.

Suppose for contradiction there is an algorithm A for incremental stSP with O(n4�c
) total time.

Consider a Minimum Weight 4-Clique instance with vertex sets A,B,C,D of size n and integer
weights in [W � 1]. Throughout the reduction, assume that the vertex sets A,B,C,D are indexed
from 0 to n� 1. We design an algorithm for Minimum-Weight 4-Clique with total time O(n4�c

).
We construct a graph with vertices

{s} [(A1 [A2 [A3) [(B1 [B2 [B3) [(C1 [C2 [C3) [(Â1 [Â2 [Â3) [{t}.

Each vertex set A1, A2, A3, B1, B2, B3, C1, C2, C3, Â1, Â2 and Â3 has n vertices. For each a 2 A,
we create a copy a(i) 2 Ai and a copy â(i) 2 Âi for i 2 {1, 2, 3}. Similarly, for each b 2 B and
c 2 C, we create a copy b(i) 2 Bi and c(i) 2 Ci for i 2 {1, 2, 3}. Let W0 = 100n2W . Initially,
insert edges (s, a(1)) and (â(3), t) with weight W0 for all a 2 A. Furthermore, insert edges with
weight W0 + wt(a, b) between (a(3), b(1)) (resp. weight W0 + wt(b, c) between (b(3), c(1)) and weight
W0 + wt(c, a) between (c(3), â(1))) if and only if (a, b) 2 E (resp. if (b, c) 2 E and (c, a) 2 E).

This creates a graph with O(n) vertices. We now proceed to more edge insertions of the re-
duction. Initialize a variable M 1. In the outer loop we iterate over di 2 D in decreasing
order.

1. For each bj 2 N(di), insert edges
⇣
b(1)j , b(2)j+i mod n

⌘
and

⇣
b(2)j+i mod n, b

(3)
j

⌘
with weight W0 +

i ·W +
wt(bj ,di)

2 .
2. For each cj 2 N(di), insert edges

⇣
c(1)j , c(2)j+i mod n

⌘
and

⇣
c(2)j+i mod n, c

(3)
j

⌘
with weight W0 +

i ·W +
wt(cj ,di)

2 .
3. In the inner loop, we iterate over ak 2 A in decreasing order.

(a) If ak 2 N(di), insert the following edges of weight W0 + i · nW + k ·W +
wt(ak,di)

4 :
⇣
a(1)k , a(2)k+i mod n

⌘
,
⇣
a(2)k+i mod n, a

(3)
k

⌘
,
⇣
â(1)k , â(2)k+i mod n

⌘
,
⇣
â(2)k+i mod n, â

(3)
k

⌘
.

11

(b) Use A to compute d(s, t). If d(s, t) < 13 · W0 + 4i · nW + 4(k + i + 1)W then update
M min{M,d(s, t)� (13 ·W0 + 4i · nW + 4(k + i)W)}.

Finally, return M after all iterations. Clearly, the bottleneck of this algorithm is the total time of
algorithm A, so the running time of this algorithm is O(n4�c

).
To show the correctness of this algorithm, we first show the following lemma.

Lemma 2.3. Consider the graph after adding all edges when iterating over di and ak. There is a
one-to-one correspondence between:

1. paths P with length d(P) < 13 ·W0 + 4i · nW + 4(k + i+ 1)W
2. 4-cliques (ak, b, c, di) containing ak, di.

Furthermore, each such path P has length d(P) = 13 ·W0+4i ·nW +4(k+ i)W +wt(ak, b, c, di).

Proof. Suppose di, ak are in a 4-clique with vertices bj , c`. Then, the following (s, t)-path exists in
the graph and has weight 13 ·W0 + 4i · nW + 4(k + i)W + wt(ak, bj , c`, di):

⇣
s, a(1)k , a(2)k+i mod n, a

(3)
k , b(1)j , b(2)j+i mod n, b

(3)
j , c(1)` , c(2)`+i mod n, c

(3)
` , â(1)k , â(2)k+i mod n, â

(3)
k , t

⌘
.

Note that by our choice of W , wt(ak, bj , c`, di)  3W so this path has total weight less than the
threshold 13 ·W0 + 4i · nW + 4(k + i+ 1)W .

We verify that this path exists and has the required weight. The edge (s, a(1)k) has weight W0.
Each edge in the sub-path

⇣
a(1)k , a(2)k+i mod n, a

(3)
k

⌘
exists and has weight W0+i ·nW+kW+

wt(ak,di)
4 .

Then, (ak, bj) 2 E implies that the edge (a(3)k , b(1)j) exists with weight W0 + wt(a, c). A similar
argument shows that the remaining edges in the path exist. Summing over all 13 edges in the
path, we conclude the length of the path is 13 · W0 + 4i · nW + 4(k + i)W + wt(ak, bj , c`, di) <
4i · nW + 4(k + i+ 1)W .

Conversely, suppose there is some path of length < 13 ·W0 + 4i · nW + 4(k + i + 1)W . Recall
that all weights in the 4-Clique instance are non-negative. Since each edge in the graph has weight
at least W0 and we have chosen W0 so that

4i · nW + 4(k + i+ 1)W < W0,

any (s, t) path with the required length has at most 13 edges. Since we have a 14-layered graph,
with edges only between adjacent layers, any (s, t)-path with the required length must have the
following structure:

P =

⇣
s, a(1)i1

, a(2)i2
, a(3)i3

, b(1)i4
, b(2)i5

, b(3)i6
, c(1)i7

, c(2)i8
, c(3)i9

, â(1)i10
, â(2)i11

, â(3)i12
, t
⌘
.

At the time of the query in the i-th iteration over D and k-th iteration over A, the only edges
in (A1⇥A2)[(A2⇥A3)[(Â1⇥ Â2)[(Â2⇥ Â3) with weight less than W0+ i ·nW +(k+1)W are⇣
a(1)k , a(2)k+i mod n

⌘
,
⇣
a(2)k+i mod n, a

(3)
k

⌘
,
⇣
â(1)k , â(2)k+i mod n

⌘
, and

⇣
â(2)k+i mod n, â

(3)
k

⌘
for ak 2 N(di). If

P uses these edges, then k = i1 = i3 = i10 = i12. Similarly, the only edges in B1 ⇥B2 and B2 ⇥B3

with weight less than W0 + (i + 1) ·W are
⇣
b(1)j , b(2)j+i mod n

⌘
,
⇣
b(2)j+i mod n, b

(3)
j

⌘
for bj 2 N(di). If

P uses these edges, then i4 = i6 = j for some bj 2 N(di), since all paths of this form are vertex
disjoint. Similarly, the only edges in C1⇥C2 and C2⇥C3 with weight less than W0+(i+1) ·W are⇣
c(1)` , c(2)`+i mod n

⌘
,
⇣
c(2)`+i mod n, c

(3)
`

⌘
for c` 2 N(di). By a similar argument, if P uses these edges

then i7 = i9 = `. If any of the above edges do not exist in P , the (s, t)-path in question has length
at least 13 ·W0 + 4i · nW + 4(k + i+ 1)W , contradicting the assumption.

12

Finally, it remains to show ak, bj , c` form a triangle. Since the edge (a(3)k , b(1)j) exists, (ak, bj) 2 E.
A similar argument shows that (ak, c`), (bj , c`) 2 E.

Thus, we have shown paths of length less than 13 ·W0+4i ·nW +4(k+ i+1)W correspond to 4-
cliques containing di, ak. Furthermore, any such path has weight 4i ·nW+4(k+i)W+wt(ak, b, c, di)
for b, c in the clique.

From Lemma 2.3, at the time of computing d(s, t), each path P with length d(P) < 13 ·W0 +

4i · nW + 4(k + i+ 1)W corresponds to a 4-clique (ak, b, c, di) in the input graph containing di, ak
and furthermore

d(P) = 13 ·W0 + 4i · nW + 4(k + i)W + wt(ak, b, c, di),

where wt(ak, b, c, di) denotes the weight of the 4-clique. Thus, if d(s, t) < 13 ·W0 +4i · nW +4(k+
i+ 1)W (which must happen if ak and di are in any 4-clique), then d(s, t) � (13 ·W0 + 4i · nW +

4(k + i)W) is the minimum weight 4-clique containing ak, di. Since we iterate over all ak, di, the
above procedure solves the Minimum Weight 4-Clique problem, contradicting the Minimum-Weight
4-Clique hypothesis.

3 Node-Weighted Shortest Paths

In this section, we give our algorithms and lower bounds for partially dynamic shortest paths on
node-weighted graphs. We start the section with some simple algorithms that use fast matrix
multiplication (FMM) to beat the naive algorithm recomputing shortest paths with each update.
Next, we show that using FMM is in fact necessary by establishing a conditional lower bound
that rules out any nontrivial combinatorial partially dynamic algorithms for node-weighted shortest
paths. Finally, we show some nontrivial lower bounds that hold even for algebraic algorithms.

3.1 Faster Algebraic Algorithms for Partially Dynamic nw-SSSP

We prove the following result that utilizes fast matrix multiplication.

Proposition 3.1. There is an algorithm solving incremental nw-SSSP in eO
�
n2��/4

�
amortized

time where � is the solution to the equation !(1, 1, 1 + �) = 3� �.

To prove Proposition 3.1, we require the static node-weighted APSP algorithm of Yuster [Yus09].

Lemma 3.2 (Theorem 1.1 of [Yus09]). There is an algorithm computing nw-APSP in O
�
n3��/2

�
-

time, where � is the solution to the equation !(1, 1, 1 + �) = 3� �.

With this in hand, we prove Proposition 3.1. At a high level, we handle the updates to the
graph in batches. At the start of a batch, we compute nw-APSP on the current graph. Then, with
each edge insertion, we construct a layered graph with O(n1+t

) edges, by using either the inserted
edges or an edge encoding the shortest path computed by the nw-APSP instance, so that computing
SSSP on the layered graph finds the shortest paths in the updated graph (since any paths not using
edges inserted in this batch will use edges computed by the nw-APSP instance).

Proof of Proposition 3.1. Let t be a parameter to be fixed later. We will process updates in batches
of size nt. At the start of each batch, compute nw-APSP on the current graph using Lemma 3.2.
Let d0(u, v) denote the distances computed at the start of each batch. Then, after k updates
{(ui, vi)}ki=1, construct the following 4-layer graph with vertices

{s} [{ui}ki=1 [{vi}ki=1 [V,

13

with edge weights wt(s, ui) = d0(s, ui) for all i 2 [k], wt(ui, vi) = 0 (since the distances d0 include the
weights on endpoints) for all i 2 [k], wt(vi, uj) = d0(vi, uj) for all i, j 2 [k] and wt(vi, v) = d0(vi, v)
for all i 2 [k] and v 2 V . We also insert edge weights wt(s, v) = d0(s, v) for all v 2 V . On this
graph with O(n1+t

) edges, we compute SSSP in eO(n1+t
)-time. The amortized running time is

eO
⇣
n3��/2�t

+ n1+t
⌘
,

where � is the solution to the equation !(1, 1, 1 + �) = 3� �. Optimizing for parameter t = 1� �
4

gives an amortized running time of
eO
⇣
n2� �

4

⌘
.

We claim this computes incremental nw-SSSP. First, since every distance in the constructed
graph is realized by a path in the input graph, it suffices to show that the shortest path is encoded
into the constructed graph. After i updates in the batch, let (s = w0, w1, . . . , wd = v) be a shortest
path from s to v. If none of these edges are inserted during the batch, then they must have been
present during the nw-APSP computation, and therefore the constructed graph has a path of length
d0(s, v). Otherwise, let {(wij , wij+1)}j denote the edges inserted in this batch. Then, these edges
are present in our graph, while the remaining portions of the path are encoded in the graph using
the nw-APSP solution d0, so a path with length at most the distance exists in the constructed
graph.

Following a similar technique, we obtain an incremental algorithm for nw-stSP.

Proposition 3.3. There is an algorithm solving incremental nw-stSP in eO
�
n2��/3

�
amortized time

where � is the solution to the equation !(1, 1, 1 + �) = 3� �.

Proof. Let t be a parameter to be fixed later. We will process updates in batches of size nt. At the
start of each batch, compute nw-APSP on the current graph using Lemma 3.2. Let d0(u, v) denote
the distances computed at the start of each batch. Then, after k updates {(ui, vi)}ki=1, construct
the following 4-layer graph with vertices

{s} [{ui}ki=1 [{vi}ki=1 [{t},

with edge weights wt(s, ui) = d0(s, ui) for all i 2 [k], wt(ui, vi) = 0 for all i 2 [k] (again the distance
d0 include endpoints), wt(vi, uj) = d0(vi, uj) for all i, j 2 [k] and wt(vi, t) = d0(vi, t) for all i 2 [k].
We additionally insert edge weight wt(s, t) = d0(s, t). On this graph with O(n2t

) edges, we compute
stSP in eO(n2t

)-time. The amortized running time is

eO
⇣
n3��/2�t

+ n2t
⌘
,

where � is the solution to the equation !(1, 1, 1 + �) = 3� �. Optimizing for parameter t = 1� �
6

gives an amortized running time of
eO
⇣
n2� �

3

⌘
.

We claim this computes incremental nw-stSP. First, since every distance in the constructed
graph is realized by a path in the input graph, it suffices to show that the shortest path is encoded
into the constructed graph. After i updates in the batch, let (s = w0, w1, . . . , wd = t) be a shortest
path from s to t. If none of these edges are inserted during the batch, then they must have been
present during the nw-APSP computation, and therefore the constructed graph has a path of length
d0(s, t). Otherwise, let {(wij , wij+1)}j denote the edges inserted in this batch. Then, these edges
are present in our graph, while the remaining portions of the path are encoded in the graph using
the nw-APSP solution d0, so a path with length at most the distance exists in the constructed
graph.

14

3.2 Conditional Lower Bounds for Partially Dynamic nw-SSSP

We have exploited FMM to design algorithms faster than trivial recomputation. We show that
using FMM is in fact necessary: any combinatorial algorithm that can solve partially dynamic nw-
stSP requires total time n4�o(1). However, our previous graph simplification technique (Figure 3)
no longer suffices to produce vertex-disjoint paths. Instead, we construct a new gadget for each
multi-edge vertex set that ensures all short paths are vertex disjoint. The resulting simple graph is
node-weighted, and the number of vertices increases only by a constant factor.

Before stating the theorem, we state the relevant hardness conjecture.

Hypothesis 3.4 (Combinatorial k-Clique hypothesis). There is no O(nk�"
) combinatorial algo-

rithm for k-Clique Detection on n-node graphs, for any " > 0.

Theorem 3.5. Under the Combinatorial 4-Clique hypothesis, any combinatorial algorithm comput-
ing incremental/decremental nw-stSP on undirected graphs requires n4�o(1) total time.

Proof. For simplicity, we describe only the reduction for incremental nw-stSP. For the decremental
setting, we can execute the reduction in reverse.

Suppose for contradiction there is a combinatorial algorithm A for partially dynamic nw-stSP
with total time O(n4�c

) for some c > 0. Consider a 4-Clique instance with vertex sets A,B,C,D
of size n. Throughout the reduction, assume that the vertex sets A,B,C,D are indexed from 0

to n � 1. We design an algorithm with total time O(n4�c
), thus contradicting the Combinatorial

4-Clique hypothesis. In the following, let W = 100n.

Vertex Set Gadget Before describing the construction of the full graph, we describe the key
gadget in the reduction. First, consider vertex set B, and we construct the gadget GR(B). The
gadget construction is shown in Figure 4.

In our previous lower bounds, we used a 3-layer graph to ensure that at each stage, there are
vertex disjoint paths between b(1)j , b(3)j for all bj 2 N(di). This in turn ensured that the same vertex
bj was adjacent to both ak, c` (and di) in the 4-Clique instance. Crucially, we used edge weights
to ensure that through each middle vertex, there was only one path with edges of weight between
[W0 + i ·W,W0 + (i+ 1) ·W). In a node-weighted graph, we describe the following modification.

GR(B) consists of 4 layers of vertices

B1 [B2 [B3 [B4,

where |B1| = |B2| = |B4| = n and |B3| = 2n.7 For each b 2 B, we create a copy b(i) 2 Bi for
i 2 {1, 2, 4}. We index B3 = {b(3)0 , . . . , b(3)2n�1} and assign weights as follows,

wt
⇣
b(2)j

⌘
= wt

⇣
b(4)j

⌘
= W 4

+ j ·W 3

wt
⇣
b(3)j

⌘
= W 4

+ (4n� 2j) ·W 3

wt
⇣
b(1)j

⌘
= W 4

+ j ·W

We similarly define the vertex sets GR(C) =
S4

i=1Ci, GR(A) =
S4

i=1Ai and GR(Â) =
S4

i=1 Âi with
the same vertex set sizes. The weights are defined as follows,

wt(s) = wt(t) = W 4,

7For the current reduction, it suffices to construct a 3-layer gadget (B2 [B3 [B4), but we require the 4-layer
gadget for a later reduction (Theorem 3.13).

15

!!

!!
(#)

!%
(#)

!#
(#)

!&
(#)

!"

!!
(')

!%
(')

!#
(')

!&
(')

!#

!'
(!)

!!
(!)

!#
(!)

!&
(!)

!$

!!
(%)

!%
(%)

!#
(%)

!&
(%)

!%
(!)

!(
(!)

!!

!!
(#)

!%
(#)

!#
(#)

!&
(#)

!#

!!
(!)

!%
(!)

!#
(!)

!&
(!)

!$

!!
(%)

!%
(%)

!#
(%)

!&
(%)

Figure 4: Comparison of node-weighted gadget with an edge-weighted gadget. The gadget on the
left is the edge-weighted gadget from Theorem 1.1. We now create a 4-layer node-weighted graph
where the weight of b(i)j vertices in B1, B2, B4 are j · W for i 2 {1} and j · W 3 for i 2 {2, 4} and
the weight of b(3)j vertices are (4n � 2j) · W 3 for some large constant W . While the edges are no
longer weighted, we format the edges as before to illustrate corresponding paths. Note that each
b(3)j participates in at most one path of weight < (4n� 2i+1) ·W 3 where di is the current smallest
vertex of d. As in Figure 3, all paths with weight in this range are vertex disjoint, and must enter
and leave the gadget from copies of the same vertex b 2 B. Furthermore, the simple graph only has
4n additional vertices.

wt
⇣
c(1)`

⌘
= W 4

+ `,

wt
⇣
a(1)k

⌘
= wt

⇣
â(1)k

⌘
= W 4

+ k ·W 2,

wt
⇣
c(2)i

⌘
= wt

⇣
a(2)i

⌘
= wt

⇣
â(2)i

⌘
= W 4

+ i ·W 3,

wt
⇣
c(3)i

⌘
= wt

⇣
a(3)i

⌘
= wt

⇣
â(3)i

⌘
= W 4

+ (4n� 2i) ·W 3,

wt
⇣
c(4)i

⌘
= wt

⇣
a(4)i

⌘
= wt

⇣
â(4)i

⌘
= W 4

+ i ·W 3.

Note that all vertex weights are nonnegative.

Lower Bound Construction We construct a graph with the following vertices:

{s} [GR(A) [GR(B) [GR(C) [GR(Â) [{t},

with vertex weights described above.
Initially, insert edges (s, a(1)) and (â(4), t) for all a 2 A. Furthermore, insert edges between

(a(4), b(1)) (resp. between (b(4), c(1)), between (c(4), â(1))) if and only if (a, b) 2 E (resp. if (b, c) 2 E,
(c, a) 2 E). Insert edges (a(1), a(2)), (b(1), b(2)), (c(1), c(2)), (â(1), â(2)) for all a, b, c.

16

We now proceed to more edge insertions of the reduction. In the outer loop we iterate over
di 2 D in increasing order.

1. For each bj 2 N(di), insert edges,
⇣
b(2)j , b(3)j+i

⌘
and

⇣
b(3)j+i, b

(4)
j

⌘
.

2. For each cj 2 N(di), insert edges
⇣
c(2)j , c(3)j+i

⌘
and

⇣
c(3)j+i, c

(4)
j

⌘
.

3. In the inner loop, we iterate over ak 2 A in decreasing order.

(a) If ak 2 N(di), insert the following edges:
⇣
a(2)k , a(3)k+i

⌘
,
⇣
a(3)k+i, a

(4)
k

⌘
,
⇣
â(2)k , â(3)k+i

⌘
,
⇣
â(3)k+i, â

(4)
k

⌘
.

(b) Query d(s, t) from A. If d(s, t) < 18 ·W 4
+(16n�8i) ·W 3

+(2k+1) ·W 2 return TRUE.

Finally, after all iterations, return FALSE if no query satisfied the required distance constraint.
Clearly, the bottleneck of this algorithm is running A, so the total running time is O(n4�c

).
Here, emphasize that D is iterated over in increasing order while A is iterated over in decreasing
order.

To show correctness, we first prove the following lemma.

Lemma 3.6. Consider the query when iterating over di and ak. Then, there is a one-to-one
correspondence between:

1. paths P with d(P) < 18 ·W 4
+ (16n� 8i) ·W 3

+ (2k + 1) ·W 2

2. 4-cliques (ak, b, c, di) containing ak, di.

Furthermore, each such path P has length

d(P) = 18 ·W 4
+ (16n� 8i) ·W 3

+ 2k ·W 2
+ b ·W + c.

Proof. Suppose di, ak are in a 4-clique with vertices bj , c`. Then, the following (s, t)-path exists:
⇣
s, a(1)k , a(2)k , a(3)k+i, a

(4)
k , b(1)j , b(2)j , b(3)j+i, b

(4)
j , c(1)` , c(2)` , c(3)`+i, c

(4)
` , â(1)k , â(2)k , â(3)k+i, â

(4)
k , t

⌘
.

Furthermore, this path has length

18 ·W 4
+ (16n� 8i) ·W 3

+ 2k ·W 2
+ j ·W + `.

Note that by our choice of W , j ·W + ` < W 2, so this path satisfies the desired constraint. We
verify that this path exists and has the required length. Recall that the edge (s, a(1)k) exists. Since
ak 2 N(di), each edge in the sub-path

⇣
a(1)k , a(2)k , a(3)k+i, a

(4)
k

⌘
exists and the vertices have combined

weight

4 ·W 4
+ (4n� 2(k + i) + 2k) ·W 3

+ k ·W 2
= 4 ·W 4

+ (4n� 2i) ·W 3
+ k ·W 2.

Next, (ak, bj) 2 E implies that the edge (a(4)k , b(1)j) exists. Since bj 2 N(di), each edge in the

sub-path
⇣
b(1)j , b(2)j , b(3)j+i, b

(4)
j

⌘
exists and the vertices have combined weight

4 ·W 4
+ (4n� 2(j + i) + 2j) ·W 3

+ j ·W = 4 ·W 4
+ (4n� 2i) ·W 3

+ j ·W.

Then, (bj , c`) 2 E implies that the edge (b(4)j , c(1)`) exists. Since c` 2 N(di), each edge in the

sub-path
⇣
c(1)` , c(2)` , c(3)`+i, c

(4)
`

⌘
exists and the vertices have combined weight

4 ·W 4
+ (4n� 2(`+ i) + 2`) ·W 3

+ ` = 4 ·W 4
+ (4n� 2i) ·W 3

+ `.

17

Then, (c`, a) 2 E implies that the edge (c(4)` , â(1)k) exists. Finally, as ak 2 N(di), each edge in the
sub-path

⇣
â(1)k , â(2)k , â(3)k+i, â

(4)
k

⌘
exists and the vertices have combined weight

4 ·W 4
+ (4n� 2(k + i) + 2k) ·W 3

+ k ·W 2
= 4 ·W 4

+ (4n� 2i) ·W 3
+ k ·W 2.

We conclude by observing that edge (â(4)k , t) exists. Summing over all vertices in the path, we
conclude the length of the path is

18 ·W 4
+ (16n� 8i) ·W 3

+ 2k ·W 2
+ j ·W + `.

Conversely, suppose there is some path P of length

d(P) < 18 ·W 4
+ (16n� 8i) ·W 3

+ (2k + 1) ·W 2.

Since all vertices have weight at least W 4 and

(16n� 8i) ·W 3
+ (2k + 1) ·W 2 < W 4,

any (s, t)-path P satisfying the length constraint has at most 18 vertices. Since we have a layered
graph and edges only exist between adjacent layers, any such path P must have form

P =

⇣
s, a(1)i1

, a(2)i2
, a(3)i3

, a(4)i4
, b(1)i5

, b(2)i6
, b(3)i7

, b(4)i8
, c(1)i9

, c(2)i10
, c(3)i11

, c(4)i12
, â(1)i13

, â(2)i14
, â(3)i15

, â(4)i16
, t
⌘
.

At the time of the query in the i-th iteration over D and k-th iteration over A in the inner-loop,
the minimum weight of any path from A2 to A4 is 3 ·W 4

+ (4n� 2i) ·W 3, and this is attained only
by paths of the form ⇣

a(2)k0 , a
(3)
k0+i, a

(4)
k0

⌘
(2)

for k0 � k since we iterate over A in decreasing order. In fact, any other path from A2, A4 has
weight at least 3 ·W 4

+ (4n� 2i+1) ·W 3. This is because a(3)i3
is adjacent only to vertices a(2)i2

, a(4)i4
with i2, i4 � i3 � i. Thus, if either i2 or i4 is > i3 � i, the three vertices have weight at least

3 ·W 4
+ (4n� 2i3 + 2i3 � 2i+ 1) ·W 3

= 3 ·W 4
+ (4n� 2i+ 1) ·W 3.

By a similar argument, the minimum weight of any path from B2 to B4, C2 to C4, Â2 to Â4

is 3 · W 4
+ (4n � 2i) · W 3 and any path not satisfying the form of Eq. (2) has weight at least

3 ·W 4
+ (4n� 2i+ 1) ·W 3. Since

d(P) < 18 ·W 4
+ (16n� 8i) ·W 3

+ (2k + 1) ·W 2 < 18 ·W 4
+ (16n� 7i) ·W 3,

we conclude

0 = i2 � i4 = i6 � i8 = i10 � i12 = i14 � i16,

i = i3 � i2 = i7 � i6 = i11 � i10 = i15 � i14.

Next, observe that for all x 2 {a, b, c, â} and X 2 {A,B,C, Â}, x(2)j has a unique neighbor in
X1, namely x(1)j . In particular, there are indices k0, j0, `0, k̂0 such that

P =

⇣
s, a(1)k0 , a

(2)
k0 , a

(3)
k0+i, a

(4)
k0 , b

(1)
j0 , b

(2)
j0 , b

(3)
j0+i, b

(4)
j0 , c

(1)
`0 , c(2)`0 , c(3)`0+i, c

(4)
`0 , c(5)`0 , â(1)

k̂0
, â(2)

k̂0
, â(3)

k̂0+i
, â(4)

k̂0
, t
⌘
.

18

Next, we claim k = k0 = k̂0. Because we enumerate A in decreasing order, we know that
k0, k̂0 � k. If k0 > k, then

wt
⇣
a(1)k0

⌘
> k ·W 2.

Similarly, if k̂0 > k, then
wt
⇣
â(1)
k̂0

⌘
> k ·W 2.

If either condition holds, then d(P) � 18 ·W 4
+ (16n � 8i) ·W 3

+ (2k + 1) ·W 2, a contradiction.
Thus, k = k0 = k̂0.

In particular, we have ak, bj0 , c`0 2 N(di) and furthermore ak, bj0 , c`0 form a triangle as edges⇣
a(4)k , b(1)j0

⌘
,
⇣
b(4)j0 , c

(1)
`0

⌘
, and

⇣
c(4)`0 , â(1)k

⌘
exist, so that ak, di form a 4-clique with bj0 , c`0 . Note that

this path P has length

d(P) = 18 ·W 4
+ (16n� 8i) ·W 3

+ 2k ·W 2
+ j0 ·W + `0.

as desired.

From Lemma 3.6, at the time of the query, path P with length d(P) < 18 ·W 4
+ (16n � 8i) ·

W 3
+ (2k + 1) ·W 2 corresponds to 4-clique (ak, b, c, di) in the input graph containing di, ak. Since

we iterate over all ak, di, the above procedure solves the 4-Clique Detection instance in total time
O(n4�c

), contradicting the 4-Clique hypothesis.

3.2.1 Non-Combinatorial Lower Bounds

Using an essentially identical reduction, we show that under the OMv3 hypothesis, any algorithm
computing partially dynamic nw-stSP with polynomial preprocessing requires n!+1�o(1) total update
and query time. The OMv3 hypothesis, introduced by [GVW20] is a generalization of the OMv

hypothesis [HKNS15].

OMv3 hypothesis. Beyond its inability to deal with non-combinatorial algorithms, the Com-
binatorial k-Clique hypothesis (Hypothesis 3.4) has one further weakness: It does not rule out
algorithms with polynomially large preprocessing time. Conceptually, this may not be a large issue
in the incremental setting (since in the preprocessing phase the algorithm only has access to an
empty graph), it is not unreasonable to expect a decremental algorithm, given sufficient preprocess-
ing time, to handle updates and queries efficiently. In the k = 3 case, the OMv hypothesis [HKNS15]
strengthens conditional lower bounds based on the combinatorial BMM hypothesis [AV14], ruling
out arbitrary algorithms with polynomial preprocessing. The OMv3 hypothesis was introduced as
a natural generalization of the OMv hypothesis, ruling out arbitrary algorithms with polynomial
preprocessing time [GVW20].

Definition 3.7 (OMv3 Problem [GVW20]). During preprocessing, the algorithm is given an n⇥n
boolean matrix A. During the query phase, the algorithm receives n queries. Each query consist of
three n-dimensional boolean vectors ~u,~v, ~w and must output

_

i,j,k

(~ui ^ ~vj ^ ~wk ^Aij ^Ajk ^Aki)

before the next query is received.

Naturally, each OMv3 query can be answered in O(n!
) time using fast matrix multiplication.

The OMv3 hypothesis states that this is essentially optimal.

19

Hypothesis 1.4 (OMv3 hypothesis [GVW20]). There is no algorithm with polynomial preprocessing
time and total update and query time O(n!+1�"

) solving the OMv3 problem, for any " > 0.

Theorem 3.8. Under the OMv3 hypothesis, any algorithm computing incremental/decremental nw-
stSP on undirected graphs with polynomial preprocessing time requires n!+1�o(1) total update and
query time.

Proof. Suppose for contradiction there is an incremental stSP algorithm A with polynomial pre-
processing time and total update and query time O(n!+1�c

) for some c > 0. We will describe
appropriate modifications for the decremental case where necessary. We design an efficient algo-
rithm for OMv3.

In the preprocessing phase we receive a Boolean matrix A. We construct a graph with the same
vertex set as in Theorem 3.5:

{s} [GR(A) [GR(B) [GR(C) [ĜR(A) [{t}.

As before, insert edges (s, a(1)) and (â(4), t) for all a 2 A. Furthermore, insert edges between
(a(4), b(1)) (resp. (b(4), c(1)), (c(4), â(1))) if and only if A[a, b] = 1 (resp. A[b, c] = 1, A[a, c] = 1).
Insert edges (a(1), a(2)), (b(1), b(2)), (c(1), c(2)), (â(1), â(2)) for all a, b, c.

In the decremental case, we begin with a graph that additionally contains the following edges.

1. For all i, j, insert edges
⇣
b(2)j , b(3)j+i

⌘
and

⇣
b(3)j+i, b

(4)
j

⌘
.

2. For all i, j, insert edges
⇣
c(2)j , c(3)j+i

⌘
and

⇣
c(3)j+i, c

(4)
j

⌘
.

3. For all i, k, insert the following edges:
⇣
a(2)k , a(3)k+i

⌘
,
⇣
a(3)k+i, a

(4)
k

⌘
,
⇣
â(2)k , â(3)k+i

⌘
,
⇣
â(3)k+i, â

(4)
k

⌘
.

We then run the preprocessing step of A on this O(n)-vertex graph.
We now proceed to the dynamic phase of the reduction. Throughout, we assume that both

queries and coordinates are indexed starting at 0 (just as vertices are indexed from 0 in Theorem
3.5). Recall that in the vertex gadgets GR(A), GR(B) the third layer A3, B3 has 2n � 1 vertices.
Suppose we have received the i-th query, ~ui,~vi, ~wi.

1. If ~vi[j] = 1, insert edges
⇣
b(2)j , b(3)j+i

⌘
and

⇣
b(3)j+i, b

(4)
j

⌘
. In the decremental case, remove edges

(b(2)j , b(3)j+n�i) and (b(3)j+n�i, b
(4)
j) if ~vi[j] = 0.

2. If ~wi[j] = 1, insert edges
⇣
c(2)j , c(3)j+i

⌘
and

⇣
c(3)j+i, c

(4)
j

⌘
. In the decremental case, remove edges

(c(2)j , c(3)j+n�i) and (c(3)j+n�i, c
(4)
j) if ~wi[j] = 0.

3. Now, we iterate over the coordinates k of vector ~vi in decreasing order. In the decremental
case, we instead iterate over the coordinates k in increasing order.

(a) If ~ui[k] = 1, insert the edges
⇣
a(2)k , a(3)k+i

⌘
,
⇣
a(3)k+i, a

(4)
k

⌘
,
⇣
â(2)k , â(3)k+i

⌘
,
⇣
â(3)k+i, â

(4)
k

⌘
.

In the decremental case, remove the edges
⇣
a(2)k , a(3)k+n�i

⌘
,
⇣
a(3)k+n�i, a

(4)
k

⌘
,
⇣
â(2)k , â(3)k+n�i

⌘
,
⇣
â(3)k+n�i, â

(4)
k

⌘
,

whenever ~ui[k] = 0.

20

(b) Query d(s, t) from A. If d(s, t) < 18 ·W 4
+(16n�8i) ·W 3

+(2k+1) ·W 2 return TRUE.
(c) In the decremental case, we additionally remove all remaining edges

⇣
a(2)k , a(3)k+n�i

⌘
,
⇣
a(3)k+n�i, a

(4)
k

⌘
,
⇣
â(2)k , â(3)k+n�i

⌘
,
⇣
â(3)k+n�i, â

(4)
k

⌘
.

Otherwise, return FALSE if none of the queries satisfied the required distance constraint.
4. In the decremental case, we additionally remove all remaining edges

⇣
b(2)j , b(3)j+n�i

⌘
,
⇣
b(3)j+n�i, b

(4)
j

⌘
,
⇣
c(2)j , c(3)j+n�i

⌘
,
⇣
c(3)j+n�i, c

(4)
j

⌘
.

Clearly, the bottleneck of this algorithm is running A, so the total time over all n queries is
O(n!+1�c

).
Note that at the query after the i-th query and the k-th iteration of the inner loop, we have

constructed the same graph as in Theorem 3.5. In particular, we have the following lemma, whose
proof is deferred to Appendix A.1 as it is identical to the proof of Lemma 3.6.

The following lemma shows that stSP queries compute OMv3 correctly.

Lemma 3.9. Consider the query (~ui,~vi, ~wi) and the query after updating the k-th coordinate of ~ui.
The following are equivalent:

1. d(s, t) < 18 ·W 4
+ (16n� 8i) ·W 3

+ (2k + 1) ·W 2 ;
2.
W

j,` (~ui[k] ^ ~vi[j] ^ ~wi[`] ^A[k, j] ^A[j, `] ^A[`, k]) = TRUE.

In particular, Lemma 3.9 shows that this query returns true if and only if
_

j,`

(~ui[k] ^ ~vi[j] ^ ~wi[`] ^A[k, j] ^A[j, `] ^A[`, k]) .

Thus, if the above is satisfied for any k, we return TRUE. Otherwise, we return FALSE,
answering the query correctly in either case. Therefore, using A we have obtained an algorithm
for the OMv3 instance with polynomial preprocessing and total update and query time O(n!+1�c

),
contradicting the OMv3 hypothesis.

We prove that the stSP instance computes OMv3.

Proof of Lemma 3.9. We prove the equivalence in the incremental case, leaving the modifications
for the decremental case to the end of the proof. Suppose 2 is true and let j, ` index one clause that
is TRUE. Then, the following (s, t)-path exists

⇣
s, a(1)k , a(2)k , a(3)k+i, a

(4)
k , b(1)j , b(2)j , b(3)j+i, b

(4)
j , c(1)` , c(2)` , c(3)`+i, c

(4)
` , â(1)k , â(2)k , â(3)k+i, â

(4)
k , t

⌘
.

and has length

18 ·W 4
+ (16n� 8i) ·W 3

+ 2k ·W 2
+ j ·W + `.

Note that by our choice of W , j ·W + ` < W 2 so this path satisfies the desired constraint. We
verify that this path exists and has the required length. Recall that the edge (s, a(1)k) exists. Since
~ui[k] = 1, each edge in the sub-path

⇣
a(1)k , a(2)k , a(3)k+i, a

(4)
k

⌘
exists and the vertices have combined

weight,

4 ·W 4
+ (4n� 2(k + i) + 2k) ·W 3

+ k ·W 2
= 4 ·W 4

+ (4n� 2i) ·W 3
+ k ·W 2

21

Next, A[k, j] = 1 implies that the edge (a(4)k , b(1)j) exists. Since ~vi[k] = 1, each edge in the sub-path⇣
b(1)j , b(2)j , b(3)j+i, b

(4)
j

⌘
exists and the vertices have combined weight,

4 ·W 4
+ (4n� 2(j + i) + 2j) ·W 3

+ j ·W = 4 ·W 4
+ (4n� 2i) ·W 3

+ j ·W

Then, A[j, `] = 1 implies that the edge (b(4)j , c(1)`) exists. Since ~wi[`] = 1, each edge in the sub-path⇣
c(1)` , c(2)` , c(3)`+i, c

(4)
`

⌘
exists and the vertices have combined weight,

4 ·W 4
+ (4n� 2(`+ i) + 2`) ·W 3

+ ` = 4 ·W 4
+ (4n� 2i) ·W 3

+ `

Then, A[`, k] = 1 implies that the edge (c(4)` , â(1)k) exists. Finally, as ~ui[k] = 1, each edge in the
sub-path

⇣
â(1)k , â(2)k , â(3)k+i, â

(4)
k

⌘
exists and the vertices have combined weight,

4 ·W 4
+ (4n� 2(k + i) + 2k) ·W 3

+ k ·W 2
= 4 ·W 4

+ (4n� 2i) ·W 3
+ k ·W 2

We conclude by observing that edge (â(4)k , t) exists. Summing over all vertices in the path, we
conclude the length of the path is,

18 ·W 4
+ (16n� 8i) ·W 3

+ 2k ·W 2
+ j ·W + `

Conversely, suppose there is some path P of length

d(P) < 18 ·W 4
+ (16n� 8i) ·W 3

+ (2k + 1) ·W 2.

Since all vertices have weight at least W 4 and

(16n� 8i) ·W 3
+ (2k + 1) ·W 2 < W 4,

any (s, t)-path P satisfying the length constraint has at most 18 vertices. Since we have a layered
graph and only edges between adjacent layers, any such path P must have the form,

P =

⇣
s, a(1)i1

, a(2)i2
, a(3)i3

, a(4)i4
, b(1)i5

, b(2)i6
, b(3)i7

, b(4)i8
, c(1)i9

, c(2)i10
, c(3)i11

, c(4)i12
, â(1)i13

, â(2)i14
, â(3)i15

, â(4)i16
, t
⌘

At the time of the query after updating the k-th coordinate of ~u in the OMv3 query ~ui,~vi, ~wi,
the minimum weight of any path from A2 to A4 is 3 ·W 4

+(4n� 2i) ·W 3, and as argued in Lemma
3.6 this is attained only by paths of the form of Equation (2).

Similarly, the minimum weight of any path from B2 to B4, C2 to C4, Â2 to Â4 is 3·W 4
+(4n�2i)·

W 3 and any path not satisfying the form of Equation (2) has weight at least 3·W 4
+(4n�2i+1)·W 3.

Since

d(P) < 18 ·W 4
+ (16n� 8i) ·W 3

+ (2k + 1) ·W 2 < 18 ·W 4
+ (16n� 7i) ·W 3,

we conclude

0 = i2 � i4 = i6 � i8 = i10 � i12 = i14 � i16

i = i3 � i2 = i7 � i6 = i11 � i10 = i15 � i14.

Next, observe that for all x 2 {a, b, c, â} and X 2 {A,B,C, Â}, x(2)j has a unique neighbor in
X1, namely x(1)j . In particular, there are indices k0, j0, `0, k̂0 such that,

P =

⇣
s, a(1)k0 , a

(2)
k0 , a

(3)
k0+i, a

(4)
k0 , b

(1)
j0 , b

(2)
j0 , b

(3)
j0+i, b

(4)
j0 , c

(1)
`0 , c(2)`0 , c(3)`0+i, c

(4)
`0 , â(1)

k̂0
, â(2)

k̂0
, â(3)

k̂0+i
, â(4)

k̂0
, t
⌘

22

Next, we claim k = k0 = k̂0. As before, we have k0, k̂0 � k from Equation (4) since we iterate
over k in decreasing order. If k0 > k, then

wt
⇣
a(1)k0

⌘
> (k + 1) ·W 3.

Similarly, if k̂0 > k, then
wt
⇣
â(1)
k̂0

⌘
> (k + 1) ·W 2.

If either condition fails, then d(P) � 18 · W 4
+ (16n � 8i) · W 3

+ (2k + 1) · W 2, a contradiction.
Thus, k = k0 = k̂0.

In particular, we have ~ui[k] = ~vi[j0] = ~wi[`0] = 1 and furthermore A[k, j] = A[j, `] = A[`, k] = 1

as edges
⇣
a(4)k , b(1)j0

⌘
,
⇣
b(4)j0 , c

(1)
`0

⌘
, and

⇣
c(4)`0 , â(1)k

⌘
exist, so that

~ui[k] = ~vi[j
0
] = ~wi[`

0
] = A[k, j] = A[j, `] = A[`, k] = TRUE.

Correctness of Decremental Reduction We now describe the modifications for the decremen-
tal case. In the decremental case, we instead have the path

⇣
s, a(1)k , a(2)k , a(3)k+n�i, a

(4)
k , b(1)j , b(2)j , b(3)j+n�i, b

(4)
j , c(1)` , c(2)` , c(3)`+n�i, c

(4)
` , â(1)k , â(2)k , â(3)k+n�i, â

(4)
k , t

⌘
,

which has length
18 ·W 4

+ (8n+ 8i) ·W 3
+ 2k ·W 2

+ j ·W + `.

We verify that this path exists and has the required length. Since ~ui[k] = 1, each edge in the
sub-path

⇣
a(1)k , a(2)k , a(3)k+n�i, a

(4)
k

⌘
exists and the vertices have combined weight

4 ·W 4
+ (4n� 2(k + n� i) + 2k) ·W 3

+ k ·W 2
= 4 ·W 4

+ (2n+ 2i) ·W 3
+ k ·W 2.

Following similar arguments as above the path exists with the required length.
Conversely, suppose there is some path P of length

d(P) < 18 ·W 4
+ (8n+ 8i) ·W 3

+ (2k + 1) ·W 2.

As above, the path has at most 18 vertices and therefore has the form

P =

⇣
s, a(1)i1

, a(2)i2
, a(3)i3

, a(4)i4
, b(1)i5

, b(2)i6
, b(3)i7

, b(4)i8
, c(1)i9

, c(2)i10
, c(3)i11

, c(4)i12
, â(1)i13

, â(2)i14
, â(3)i15

, â(4)i16
, t
⌘
.

At the time of the query after updating the k-th coordinate of ~u in the OMv3 query ~ui,~vi, ~wi,
the minimum weight of any path from A2 to A4 is 3 ·W 4

+ (2n+ 2i) ·W 3 and this is attained only
by paths of the form of

(a(2)k0 , a
(3)
k0+n�i, a

(4)
k0), (3)

for k0 � k since we iterate over coordinates k in increasing order. In fact, any other path from A2

to A4 has weight at least 3 ·W 4
+(2n+2i+1) ·W 3. This is because a(3)i3

is adjacent only to vertices
a(2)i2

, a(4)i4
with i3  i2 + n � i or i2 � i3 � n + i. Thus, if either i2 or i4 is > i3 � n + i, the three

vertices have weight at least

3 ·W 4
+ (4n� 2i3 + 2i3 � 2n+ 2i+ 1) ·W 3

= 3 ·W 4
+ (2n+ 2i+ 1) ·W 3.

23

Similarly, the minimum weight of any path from B2 to B4, C2 to C4, Â2 to Â4 is 3·W 4
+(2n+2i)·

W 3 and any path not satisfying the form of Equation (3) has weight at least 3·W 4
+(2n+2i+1)·W 3.

Since
d(P) < 18 ·W 4

+ (8n+ 8i) ·W 3
+ (2k + 1) ·W 2 < 18 ·W 4

+ (8n+ 9i) ·W 3,

we conclude

0 = i2 � i4 = i6 � i8 = i10 � i12 = i14 � i16

i = i3 � i2 = i7 � i6 = i11 � i10 = i15 � i14.

Following previous arguments, there are indices k0, j0, `0, k̂0 such that,

P =

⇣
s, a(1)k0 , a

(2)
k0 , a

(3)
k0+i, a

(4)
k0 , b

(1)
j0 , b

(2)
j0 , b

(3)
j0+i, b

(4)
j0 , c

(1)
`0 , c(2)`0 , c(3)`0+i, c

(4)
`0 , â(1)

k̂0
, â(2)

k̂0
, â(3)

k̂0+i
, â(4)

k̂0
, t
⌘

Next, we claim k = k0 = k̂0. As before, we have k0, k̂0 � k from Equation (4) since we iterate
over k in increasing order. Thus, k = k0 = k̂0 as in the incremental case. Following an identical
proof as in the incremental case, we conclude

~ui[k] = ~vi[j
0
] = ~wi[`

0
] = A[k, j] = A[j, `] = A[`, k] = TRUE.

3.2.2 Lower Bounds under Minimum Witness Hypothesis

Under the Minimum-Witness 3-Product hypothesis (Hypothesis 1.6), we show a stronger lower
bound for the single source version of the problem. Before proving the lower bound, we provide
some further discussion on the Minimum-Witness hypothesis. The Minimum-Witness Product
problem is defined below.

Definition 3.10 (Min-Witness Product). Given two Boolean matrices A,B, their min-witness
product C is defined by Cij = min{k | Aik ^Bkj}.

[CKL07] computes the product in O(n2+�
) time , where !(1,�, 1) = 1 + 2�. If ! = 2, this

running time is essentially O(n2.5
). [LPV20] conjectures that this is essentially optimal.

Hypothesis 3.11 (Minimum-Witness Product hypothesis). There is no O(n2.5�"
) algorithm for

computing Minimum-Witness Product between two n⇥ n Boolean matrices, for any " > 0.

Minimum-Witness Product can also be generalized to a problem between k > 2 input Boolean
matrices [KL22]. In this work, we only need the following version where k = 3.

Definition 3.12 (Minimum-Witness 3-Product). Given three n⇥ n Boolean matrices A,B,C, for
every i1, i2, i3 2 [n], find the minimum value of j 2 [n] such that Ai1,j ^Bi2,j ^ Ci3,j .

The current best algorithm for Minimum-Witness 3-Product runs in O(n3.5
) time when ! =

2 [KL22], and it seems that new ideas are required in order to break this O(n3.5
) running time.

Below is some evidence, similar to [JX22]’s argument for why the so-called OuMvk hypothesis is
plausible. First, we observe that we can use the Minimum-Witness 3-Product problem to solve
4-Clique Detection. Given a 4-partite graph G = (V1 [V2 [V3 [V4, E), we can use the matrix A to
encode the edges between V1 and V4, matrix B to encode the edges between V2 and V4 and matrix C
to encode the edges between V3 and V4. Thus, the result of Minimum-Witness 3-Product can tell us,
for every triple (v1, v2, v3) 2 V1 ⇥ V2 ⇥ V3, whether there is some v4 2 V4 that is connected to all of

24

them. Then we can detect whether the graph has a 4-clique in O(n3
) time. Currently, the all truly

sub-quartic time algorithms for 4-Clique Detection essentially groups two node parts together, then
solves a Triangle Detection instance on an unbalanced tripartite graph. Therefore, assuming there
is no better framework for 4-Clique Detection, we also need to perform similar groupings for the
Minimum-Witness 3-Product problem, as it can be used to solve 4-Clique Detection. If we group
any two of the indices i1, i2, i3, j together, we obtain a Min-Witness Product instance between an
n⇥n2 matrix and an n2⇥n matrix, or between an n2⇥n matrix and an n⇥n matrix. Either way,
the current fastest algorithm for them has running time O(n3.5

) if ! = 2, which essentially follows
the same framework for the square inputs case [CKL07]. Therefore, in order to refute the following
hypothesis, it seems that one would need new ideas for either 4-Clique Detection or Min-Witness
Product.

Hypothesis 1.6 (Minimum-Witness 3-Product hypothesis). There is no O(n3.5�"
) time algorithm

for the Minimum-Witness 3-Product problem for " > 0.

3.2.3 Lower Bound for nw-SSSP

We now give our lower bound for nw-SSSP.

Theorem 3.13. Under the Minimum-Witness 3-Product hypothesis, any algorithm computing in-
cremental/decremental nw-SSSP on undirected graphs requires n3.5�o(1) total update and query time.

Proof. As before, we describe only the reduction for incremental stSP. For the decremental setting,
we can execute the reduction in reverse.

Suppose for contradiction there is an algorithm A for incremental nw-SSSP in O(n3.5�c
) total

time. Consider a Minimum-Witness 3-Product instance with matrices A,C,D of dimension n⇥ n.
Throughout the reduction, assume that the matrices A,C,D are indexed from 0 to n�1. We design
an algorithm computing min-witness 3-product with total time O(n3.5�c

), thus contradicting the
Minimum-Witness 3-Product hypothesis.

We construct a graph consisting of the gadgets

{s} [GR(A) [GR(B) [C1

of Theorem 3.5 with the following modifications. Whereas A was a vertex set of n nodes, think of
A now as a collection of n rows of the matrix A. Whereas B was a vertex set of n nodes, think of
B now as a collection of n columns. Whereas C1 = {c(1) : c 2 {0, . . . , n � 1}} was a copy of the
vertex set C in the 4-Clique instance, think of c(1) now as representing the c-th row of matrix C.

We describe the formal reduction below. Initially, insert edges (s, a(1)i) all i 2 {0, 1, . . . , n� 1}.
Next, insert edges between (a(4)i , b(1)j) (respectively between (b(4)j , c(1)i)) if and only if A[i, j] = TRUE

(respectively C[i, j] = TRUE). Insert edges (a(1), a(2)), (b(1), b(2)) for all a, b.
We now proceed to insert more edges in the reduction. In the outer loop we iterate over rows

i 2 {0, 1, . . . , n� 1} of D in increasing order.

1. For each D[i, j] = TRUE, insert edges
⇣
b(2)j , b(3)j+i

⌘
,
⇣
b(3)j+i, b

(4)
j

⌘
.

2. In the inner loop, we iterate over rows k 2 {0, 1, . . . , n� 1} of A in decreasing order.

(a) Insert edges between
⇣
a(2)k , a(3)k+i

⌘
and

⇣
a(3)k+i, a

(4)
k

⌘
.

(b) For each c(1)` 2 C1, query d(s, c(1)`) from A.
If d(s, c(1)`) < 10 ·W 4

+ (8n� 4i) ·W 3
+ (k + 1) ·W 2, let

d(s, c(1)`) = 10 ·W 4
+ (8n� 4i) ·W 3

+ k ·W 2
+ b0 ·W + `.

25

for some integer 0  b0 < W . Then, assign the minimum witness of (k, `, i) to be b0.
Otherwise, if the d(s, c) does not satisfy the required constraint, assign the minimum
witness to ?, or in other words there is no witness j such that A[k, j] = C[`, j] =

D[i, j] = TRUE.

Again, we emphasize that we iterate over D in increasing order and A in decreasing order.
Clearly, the bottleneck is running A, so the total time of this algorithm is O(n3.5�c

).
To show correctness, we first prove the following lemma.

Lemma 3.14. Consider the query when iterating over the i-th row of D and the k-th row of A. Let
` be a row of C. Then, there is a one-to-one correspondence between:

1. Paths P between s, c(1)` with d(P) < 10 ·W 4
+ (8n� 4i) ·W 3

+ (k + 1) ·W 2;
2. Witnesses j such that A[k, j] ^ C[`, j] ^D[i, j].

Furthermore, each such path P has length

d(P) = 10 ·W 4
+ (8n� 4i) ·W 3

+ k ·W 2
+ j ·W + `.

Proof. Suppose there is a witness j such that A[k, j] = C[`, j] = D[i, j] = 1. Then, the following
(s, c(1)`)-path exists :

⇣
s, a(1)k , a(2)k , a(3)k+i, a

(4)
k , b(1)j , b(2)j , b(3)j+i, b

(4)
j , c(1)`

⌘
.

Furthermore, this path has length

10 ·W 4
+ (8n� 4i) ·W 3

+ k ·W 2
+ j ·W + `.

Note that by our choice of W , j · W + ` < W 2 so this path satisfies the desired constraints.
We verify that this path exists and has the claimed length. Recall that the edge (s, a(1)k) exists.
Also, each edge in the sub-path

⇣
a(1)k , a(2)k , a(3)k+i, a

(4)
k

⌘
exists and the vertices have combined weight

4 · W 4
+ (4n � 2i) · W 3

+ k · W 2. Next, A[k, j] = TRUE implies that the edge (a(4)k , b(1)j) exists.

Since D[i, j] = TRUE, each edge in the sub-path
⇣
b(1)j , b(2)j , b(3)j+i, b

(4)
j

⌘
exists and the vertices have

combined weight 4 · W 4
+ (4n � 2i) · W 3

+ j · W . Then, C[`, j] = TRUE implies that the edge
(b(4)j , c(1)`) exists, thus verifying the existence of the path. Summing over all vertices in the path, we
conclude the length of the path is

10 ·W 4
+ (8n� 4i) ·W 3

+ k ·W 2
+ j ·W + `.

Conversely, suppose there is some path P of length

d(P) < 10 ·W 4
+ (8n� 4i) ·W 3

+ (k + 1) ·W 2.

Since all vertices have weight at least W 4 and

(8n� 4i) ·W 3
+ (k + 1) ·W 2 < W 4,

any (s, t)-path P satisfying the length constraint has at most 10 vertices. Since we have a layered
graph and edges only exist between adjacent layers, any such path P must have the form

P =

⇣
s, a(1)i1

, a(2)i2
, a(3)i3

, a(4)i4
, b(1)i5

, b(2)i6
, b(3)i7

, b(4)i8
, c(1)`

⌘
.

26

At the time of the query in the i-th iteration over D and k-th iteration over A in the inner-loop,
the minimum weight of any path from A2 to A4 is 3W 4

+ (4n� 2i) ·W 3, and this is attained only
by paths of the form ⇣

a(2)k , a(3)k+i, a
(4)
k

⌘
. (4)

As before, any other path from A2, A4 has weight at least 3 ·W 4
+ (4n� 2i+ 1) ·W 3. By a similar

argument, the minimum weight of any path from B2 to B4 is 3 ·W 4
+ (4n� 2i) ·W 3 and any path

not satisfying the form of Eq. (4) has weight at least 3 ·W 4
+ (4n� 2i+ 1) ·W 3. Since

d(P) < 10 ·W 4
+ (8n� 4i) ·W 3

+ (k + 1) ·W 2 < 12 ·W 4
+ (8n� 3i) ·W 3,

we conclude

0 = i2 � i4 = i6 � i8,

i = i3 � i2 = i7 � i6.

Next, observe that for all x 2 {a, b} and X 2 {A,B}, x(2)j has a unique neighbor in X1, namely
x(1)j . In particular, there are indices k0, j0 such that,

P =

⇣
s, a(1)k0 , a

(2)
k0 , a

(3)
k0+i, a

(4)
k0 , b

(1)
j0 , b

(2)
j0 , b

(3)
j0+i, b

(4)
j0 , c

(1)
`

⌘
.

Following a similar argument as Lemma 3.6, we see that k = k0. In particular, we have D[i, j0] =

TRUE and A[k, j0] = TRUE since (a(4)k , b(1)j0) is an edge, and C[`, j0] = TRUE since (b(4)j0 , c
(1)
`) is an

edge. In particular, j0 is a witness such that A[k, j0] = C[`, j0] = D[i, j0] = TRUE. Note that this
path P has length

d(P) = 10 ·W 4
+ (8n� 4i) ·W 3

+ k ·W 2
+ j0 ·W + `

as desired.

From Lemma 3.14, at the time of the query, each path P from s to c(1)` with length d(P) <
10 · W 4

+ (8n � 4i) · W 3
+ (k + 1) · W 2 corresponds to a witness j such that A[k, j] = C[`, j] =

D[i, j] = TRUE. Furthermore, Lemma 3.14 shows that

d(P) = 10 ·W 4
+ (8n� 4i) ·W 3

+ k ·W 2
+ j ·W + `,

so that the shortest path returns the minimum j such that A[k, j]^C[`, j]^D[i, j]. In particular it
computes the minimum-witness 3-product for this (k, `, i) triplet. If there is no path, then there is
no witness j such that A[k, j]^C[`, j]^D[i, j]. Thus, we compute the Minimum-Witness 3-Product
instance in O(n3.5�c

) time, contradicting the hypothesis.

4 Bottleneck Paths

In this section, we give our algorithms and lower bounds for partially dynamic bottleneck paths.
The bottleneck path problem is formally defined below.
Definition 4.1 (Bottleneck Paths). Let G = (V,E,wt) be a directed, weighted graph. For any
path P , let b(P) = mine2P wt(e) denote the bottleneck capacity of path P . For any pair of
nodes u, v, let bp(u, v) denote the bottleneck path (breaking ties arbitrarily), the path between
u, v maximizing b(P). Let b(u, v) = b(bp(u, v)).

The (s, t)-Bottleneck Path problem (stBP) asks to compute b(s, t) for fixed nodes s, t. The
Single Source Bottleneck Paths problem (SSBP) asks to compute b(s, v) for a single source s
and for all v 2 V . The All Pairs Bottleneck Paths problem (APBP) asks to compute b(u, v)
for all u, v 2 V .

27

4.1 Incremental/Decremental Algorithm for stBP

We begin with partially dynamic algorithms for bottleneck paths. First, we present a simple algo-
rithm using a fully dynamic (s, t)-reachability data structure to compute partially dynamic stBP,
in which we need to maintain an n-vertex graph undergoing arbitrary edge insertions and deletions,
and we need to support querying whether there is a path from s to t.

Proposition 4.2. The partially dynamic stBP can be solved in O(m · T (n)) time, where T (n) =
eO(n"1+"2 + n!(1,"1,"2)�"1 + n!(1,1,"2)�"2) = O(n1.405

) [vdBNS19] is the update/query time for fully
dynamic (s, t)-reachability in an n-node graph.

As it seems that [vdBNS19]’s algorithm works against oblivious, adaptive adversaries, our algo-
rithm also does.

Proof. We first consider the decremental setting. We initialize a fully dynamic (s, t)-reachability
data structure. We keep adding edges to the data structure from large weight to small, as long as
s cannot reach t. Once we remove an edge, if s and t are not connected anymore, we again add
more edges, from large weight to small, until s can reach t again. It is not difficult to see that the
last edge we add to the data structure has the weight equal to b(s, t). To bound the running time,
observe that each edge is inserted and deleted at most one time each.

The incremental setting can be solved similarly.

4.2 Incremental Algorithm for SSBP

Next, we will give an incremental SSBP algorithm. First, we formally define the relevant matrix
products below, for which there are known subcubic algorithms using FMM.

Definition 4.3 (Dominance and Equality Product). Given two matrices A,B over a totally ordered
set, their dominance product C = A # B is defined by Cij = |{k | Aik  Bkj}|.

Their equality product is defined by Cij = |{k | Aik = Bkj}|

Definition 4.4 ((min,)-Product and (max,)-Product). Given two matrices A,B over a totally
ordered set, their (min,) product C is defined by Cij = mink{Bkj | Aik  Bkj}. The (max,)
product C is defined by Cij = maxk{Aik | Aik  Bkj}.

Definition 4.5 ((max,min)-Product). Given two matrices A,B over a totally ordered set, their
(max,min) product C = A 6 B is defined by Cij = maxk min{Aik, Bkj}.

As observed in [VWY07], the (max,min) product can be computed by taking the entry-wise
maximum of two (max,) products, A,B and BT , AT .

Our SSBP algorithm requires the following lemma, which modified an existing algorithm for
computing the (max,min)-product [DP09, GIL+21]. Formally, we split the computation of the
(max,min)-product into a preprocessing phase and a query phase.

Lemma 4.6. Given an n⇥ nb matrix A and an nb ⇥ n matrix B, and a parameter 0  g  b, we
can preprocess in eO(n!(1,b,1)+b�g

) time, so that for every given i, we can output the i-th row of the
(max,min)-product between A and B in eO(n1+g

) time.
In particular, we can compute the (max,min)-product between A and B in eO(n(!(1,b,1)+2+b)/2

)

time, by setting g = (!(1, b, 1) + b� 2)/2 and perform n queries.

28

We recall the definition of row (resp. column) balancing [DP09], which constructs a matrix A0

given any matrix A ensuring that no row (resp. column) of A0 has too many finite elements.
Let A be an n ⇥ p matrix with m finite elements (the others are either all 1 or �1). The

row-balancing of A, denoted rb(A) is a pair of matrices (A0, A00
) each with at most k = dm/ne

finite elements in each row. The column-balancing of A, denoted cb(A) is the pair of matrices
(A0T , A00T

) where (A0, A00
) = rb(AT

).
The row-balancing of A is computed as follows. Assume that all non-finite elements are 1. For

each row i, sort the finite elements of row i in increasing order, and partition this list into parts
T 1
i , . . . , T

ai
i where the first ai � 1 parts have exactly k = dm/ne elements while the last part has

at most k elements. Now, define A0
[i, j] = A[i, j] if A[i, j] 2 T ai

i and 1 otherwise to be the matrix
containing all elements in the last part. Now, since there are at most m

k  n parts T q
i , we choose

an arbitrary injective mapping ⇢ : (i, q) 7! [n] so that the part T q
i is placed into the ⇢(i, q)-th row

of A00. In particular, A00
[i0, j] = A[i, j] if i0 = ⇢(i, q) and A[i, j] 2 T q

i . Otherwise, A00
[i, j] =1.

Given row and column balanced matrices, [DP09] give an efficient algorithm for computing the
dominance product (Definition 4.3) of sparse matrices. We repeat the proof for completeness.

Lemma 4.7 (Sparse Dominance Product [DP09]). Suppose A is an na⇥nb matrix with m1 entries
less than 1 and B is an nb ⇥ nc matrix with m2 entries greater than �1. The dominance product
A # B can be computed in time O

�
m1m2
nb + n!(a,b,c)

�
.

Proof. Let (A0, A00
) = cb(A) be the column-balancing of A. Note that A0, A00 have at most

⌃
m1
nb

⌥

finite entries per column. We construct the following two matrices

Â[i, k] =

(
1 A00

[i, k] <1
0 o/w

, B̂[k, j] =

(
1 B[k0, j] � maxT q0

k0 and ⇢(k0, q0) = k

0 o/w
.

We compute the matrix product ÂB̂. Â[i, k]B̂[k, j] = 1 implies that A00
[i, k] < 1 and B[k0, j] �

maxT q0

k0 where ⇢(k0, q0) = k. In other words, B[k0, j] is larger than all elements in column k of A00,
which is a subset of column k0 of A containing A00

[i, k] = A[i, k0]. Therefore, (ÂB̂)[i, j] counts the
number of k0 where A[i, k0]  B[k0, j] and A[i, k0] 2 T q0

k0 where q0 < ak and B[k0, j] dominates all of
T q0

k0 . It remains to check the following cases:

1. A[i, k0] 2 T
ak0
k0 . For every B[k0, j], there are most

⌃
m1
nb

⌥
rows i with A[i, k0] 2 T

ak0
k0 . We compare

B[k0, j] with elements A[i, k0] 2 T
ak0
k0 and increment (A # B)[i, j] if A[i, k0]  B[k0, j]. This

takes O(m2 · m1
nb) time.

2. B[k0, j] dominates some elements but not all in T q0

k0 . For every B[k0, j], this condition can
only hold for one set T q0

k0 as the parts are sorted in increasing order. We compare B[k0, j]

with elements A[i, k0] 2 T q0

k0 and increment (A # B)[i, j] if A[i, k0]  B[k0, j]. This takes
O(m2 · m1

nb) time.

The overall time complexity is O(
m1m2
nb + n!(a,b,c)

).

Given that we hope to construct a data structure for the (max,min)-product, we modify the
computation of the sparse dominance product to compute a data structure separating the compu-
tation into preprocessing and query stages.

Lemma 4.8 (Sparse Dominance Product Data Structure). Suppose A is an n⇥nb matrix with m1

entries less than 1 and B is an nb ⇥ n matrix with m2 entries greater than �1. There is a data
structure with O(n!(1,b,1)

) preprocessing time, answering column queries of the dominance product
A # B in O

�
cj

m2
n

�
time where the j-th column of B contains cj finite elements.

29

Proof. In the preprocessing phase, compute the row-balancing (A0, A00
) = cb(A) as in Lemma 4.7.

Similarly, construct matrices Â, B̂, and compute the matrix product ÂB̂. This requires n!(1,b,1)

time.
Now, suppose there is a query for the j-th column of A # B. By assumption, the j-th colum of

B has cj finite elements <1. Our goal is to answer the column query i.e. output (A # B)[i, j] for
all i. As in Lemma 4.7, (ÂB̂)[i, j] counts the number of k0 where A[i, k0]  B[k0, j] and A[i, k0] 2 T q0

k0

where q0 < ak and B[k0, j] dominates all of T q0

k0 . It remains to check the following cases:

1. A[i, k0] 2 T
ak0
k0 . For every finite B[k0, j], there are most

⌃
m1
nb

⌥
rows i with A[i, k0] 2 T

ak0
k0 .

We compare B[k0, j] with elements A[i, k0] 2 T
ak0
k0 and increment (A # B)[i, j] if A[i, k0] 

B[k0, j]. This requires O
�
cj · m1

nb

�
time.

2. B[k0, j] dominates some elements but not all in T q0

k0 . For every finite B[k0, j], this condition
can only hold for one set T q0

k0 as the parts are sorted in increasing order. We compare B[k0, j]

with elements A[i, k0] 2 T q0

k0 and increment (A # B)[i, j] if A[i, k0]  B[k0, j]. This requires
O
�
cj · m1

nb

�
time.

The query time complexity is therefore O
�
cj · m1

nb

�
.

Using a similar argument, we can also construct a data structure answering row queries.

Corollary 4.9. Suppose A is an n ⇥ nb matrix with m1 entries less than 1 and B is an nb ⇥ n
matrix with m2 entries greater than �1. There is a data structure with O(n!(1,b,1)

) preprocessing
answering row queries of the dominance product A # B in O

�
ri

m2
n

�
time where the i-th row of A

contains ri finite elements.

Now, we prove Lemma 4.6.

Proof of Lemma 4.6. We modify the (max,)-Product algorithm of [DP09], since the (max,min)-
Product can be reduced to two (max,)-Product instances. Fix a parameter 0  g  b. Let L be a
sorted list of all entries in A,B and partition L into G groups, L1, . . . , LG such that the first G� 1

parts have
l
2n1+b

G

m
elements and the final part has the remaining elements. For each r 2 [G], define

the following matrices

Ar[i, j] =

(
A[i, j] A[i, j] 2 Lr

1 o/w
, Br[i, j] =

(
B[i, j] B[i, j] 2 Lr

�1 o/w
.

Compute the row-balancing (A0
r, A

00
r) = rb(Ar) and dominance products Ar # B,A0

r # B,A00
r #

B as follows. For the dominance product, we do not fully compute them, only preprocessing the
input as in Lemma 4.8.

1. To compute Ar # B, construct Boolean matrices Âr[i, k] = 1 if A[i, k] 2 Lr and B̂r[k, j] = 1

if B[k, j] 2
Sg

i=r+1 Li. Compute ÂrB̂r and the preprocess Ar # Br according to Lemma 4.8.
This takes O

�
n!(1,b,1)

�
time.

2. To compute A0
r # B, construct Boolean matrices Â0

r[i, k] = 1 if A0
[i, k] 2 Lr and B̂r

identically. Then, preprocess A0
r # Br and compute Â0

rB̂r in O
�
n!(1,b,1)

�
time.

3. To compute A00
r # B, construct Boolean matrices Â00

r[i, k] = 1 if A00
[i, k] 2 Lr and B̂r

identically. Then, preprocess A00
r # Br and compute Â00

rB̂r in O
�
n!(1,b,1)

�
time.

30

We have computed ÂrB̂r, Â0
rB̂r, Â00

rB̂r and preprocessed Ar # Br and A0
r # Br for all

r 2 [G]. This concludes the preprocessing phase which has overall time complexity

O
⇣
Gn!(1,b,1)

⌘
.

Then, in the query phase, we hope to compute the i-th row of the (max,) product. We begin
by computing the i-th row of the preprocessed dominance products. For each r 2 [G], let cr denote
the number of finite elements in the i-th row of Ar. First, we observe

Ar # B = Ar # Br + ÂrB̂r,

since the first term counts dominance pairs where both entries are in Lr while the second counts
dominance pairs where B[k, j] 2 Li for i > r. By Lemma 4.9, we can compute the i-th row of
Ar # Br in time O

⇣
cr · n1+b

Gn

⌘
= O

⇣
crnb

G

⌘
since Br has O

⇣
n1+b

G

⌘
finite elements. Adding this to

ÂrB̂r computes Ar # B. Similarly, we use the following identities to compute A0
r # B,A00

r # Br

in O
⇣
crnb

G

⌘
time:

A0
r # B = A0

r # Br + Â0
rB̂r,

A00
r # B = A00

r # Br + Â00
rB̂r.

We will in fact need to compute all rows of A00
r # Br indexed by i0 = ⇢(i, q) for q 2 [ai � 1],

accounting for
⌃
crG
nb

⌥
rows in (A00

r # Br). However, each of these rows contains at most O
⇣
nb

G

⌘

finite elements (and this is also true of the single i-th row in A0
r. Thus, querying all such rows takes

time O
⇣
cr

nb

G

⌘
time. Overall computing the rows of these dominance products takes time

O

GX

r=1

crnb

G

!
= O

✓
n1+b

G

◆
.

For each entry (i, j) we find the largest r such that (Ar # B)[i, j] > 0. Let C denote the
(max,) product of A,B. There are now two cases:

1. Suppose (A0
r # B)[i, j] > 0. Then, since the i-th row of A0

r consists of the largest entries of
the ith row of Ar, we have C[i, j] 2 A0

r[i]. By brute-force search over the elements of A0
r, we

obtain C[i, j] in O
⇣
nb

G

⌘
time.

2. Otherwise, find the largest q such that (A00
r # B)[⇢(i, q), j] > 0 (this is in fact computed in

the row-querying phase above) so that C[i, j] 2 T q
i . We compute C[i, j] by brute force search

in O
⇣
nb

G

⌘
time.

Since we compute this for all j, the row query requires O
�
n1+bG

�
time. To complete the proof,

choose G = ⇥(nb�g
) so that ng

= ⇥

⇣
nb

G

⌘
.

We now present our incremental algorithm for SSBP, which improves upon the simple frame-
work used for our incremental nw-SSSP algorithms. Recall that we processed updates in batches,
recomputing nw-APSP on the graph at the start of each batch. However, this is wasteful: We do not
need every distance in the all-pairs solution, only the distances involving endpoints of the inserted
edges. For bottleneck paths, we showed that the corresponding (max,min)-product is amenable to
a data structure with a preprocessing phase and a query phase. Thus, at the end of each batch,

31

we preprocess the (max,min)-product on the current graph. Then, in future batches, whenever the
capacity between a pair of vertices is required, we can simply query the relevant data structure.
Since we do not need to query every single pair of vertices, this should save time over a complete
APBP computation.

In the following, let 0  g  t  1 be parameters. Consider the whole sequence of updates in
incremental SSBP, and consider all intervals of the sequence of the form (2

` · (s� 1) · nt, 2` · s · nt
],

for ` � 0, s > 0. These are essentially dyadic intervals with endpoints multiplied by nt.

Lemma 4.10. For every interval L of length nT 0
= 2

`nt described above, we can create a data
structure in eO(n1+T+g

+ nT ·(3+!)/2
+ n(1+2T+!(1,T,T))/2

+ n!(1,T,1)+T�g
) preprocessing time where

T = min{1, T 0}, so that given any vertex v, we can compute in eO(n1+g
) time SSBP to/from v

among paths whose latest updated edge is in L.

Proof. We can prove the lemma by induction, and assume that the data structures have been created
for all intervals strictly before L.

Let U ✓ V be the set of vertices that are among the endpoints of all updated edges in L. Clearly,
|U | = O(nT

). For each u 2 U , we query the previous data structures to find out SSBP to/from
u among paths whose latest updated edge is strictly before L. As the intervals are like dyadic
intervals, we can find O(log n) intervals that cover all updates before L, so we only need to query
O(log n) previous data structures. Therefore, the total time for this step is eO(n1+T+g

). We use
b<(u, v) to denote bottleneck distances among paths whose latest updated edge is strictly before L.

We create a V ⇥ U matrix A, a U ⇥ U matrix S, and a U ⇥ V matrix B. All entries of A,S,B
correspond to the b< distances. Additionally, for entries of S, we also update it with the updated
edge weights in the interval L. Then it is not difficult to see that (A6(S)6n6B)i,j is the bottleneck
distance from i to j among paths whose latest updated edge is in L. Thus, we can do the following:

1. Compute (S)6n in eO(nT ·(3+!)/2
) time.

2. Compute A 6 (S)6n in eO(n(1+2T+!(1,T,T))/2
) time using Lemma 4.6.

3. Finally, use the data structure part of 4.6 to preprocess between (A 6 (S)6n
) and B in

eO(n!(1,T,1)+T�g
) time, so that we can later support row-queries of (A6(S)6n

)6B in eO(n1+g
)

time.

Summing over all terms obtains the desired time complexity.

We are now ready to give the incremental SSBP algorithm.

Proposition 4.11. Incremental SSBP can be solved in eO(n(1+!)/2
) amortized time per update.

Proof. Besides the data structures in Lemma 4.10, we also perform the followings after each edge
insertion.

1. Let the new edge be (u, v), and let ⌧ be the previous timestamp that is a multiple of nt.
2. Use the data structures in Lemma 4.10 to compute the SSBP to/from u, v and s among paths

whose latest updated edge is on or before ⌧ . This can be done in eO(n1+g
) time. Now, it

suffices to compute SSBP from s among paths whose latest updated edge is after ⌧ .
3. Create the following “three-layer” graph. The first layer is {s}, the second layer consists of all

vertices that are endpoints of some edge updated after ⌧ , and the third layer is V . From the
first layer to the second layer, the second layer to the third layer, and within the second layer,
we add edges using distances computed in the previous bullet point (all these distances have
been computed, either in this update or an earlier update). Between vertices in the second
layer, we also add edges updated after ⌧ (if there was an edge before, we keep the edge with
larger weight). Then we compute SSBP of this graph in eO(n1+t

) time (because the number

32

of updates after ⌧ is O(nt
), so the number of vertices in the second layer is O(nt

), and the
total number of edges is O(n1+t

)).

Runtime analysis. The amortized running time of the preprocessing of the data structures in
Lemma 4.10 is

max
T2[t,1]

eO(n1+g
+ nT ·(1+!)/2

+ n(1+!(1,T,T))/2
+ n!(1,T,1)�g

) = eO(n1+g
+ n(1+!)/2

+ n!�g
)

and the running time of the remaining parts described above is

eO(n1+g
+ n1+t

).

Taking t = g =
!�1
2 gives the claimed eO(n(1+!)/2

) running time.

Remark 4.12 (Efficient Algorithm for Fully Dynamic Bottleneck Path in Undirected Graphs).
Given an undirected graph G, it was known how to compute the weights of the bottleneck paths
using a maximum spanning tree T of G [Hu61]: The weight of the bottleneck path between two
vertices u and v is exactly the weight of the smallest edge on the tree path between u and v in T .
Therefore, in order to maintain the bottleneck paths for a dynamic graph, it suffices to maintain its
maximum spanning tree, and to support minimum weight queries on tree paths. For instance, we
can use [HRWN15] to maintain the maximum spanning tree, and use link-cut tree [ST83] to support
minimum weight queries on tree paths, to get a deterministic algorithm with O(log

4 n/ log log n)
amortized update time, and O(log n) amortized query time.

4.3 Partially Dynamic Algorithm for SSBP

Our lower bound in Theorems 4.16 and 4.18 crucially uses n2 distinct weights in the constructed
graph. The following proposition shows that this is necessary. In particular, by an appropriate
modification of ES-Trees [ES81], partially dynamic SSBP can be computed efficiently on graphs
with fewer distinct weights. Moreover, this algorithm is combinatorial.

Proposition 4.13. There is an algorithm solving incremental/decremental SSBP in eO (mW) total-
time update time, where W is the number of distinct weights. Furthermore, the algorithm answers
queries b(s, v) in O(logW) time. This algorithm holds against oblivious, adaptive adversaries.

Proof. We begin by describing the decremental setting. Let G denote the initial graph. For every
distinct weight w, consider the graph Gw = {e s.t. wt(e) � w}. Given graph G, we initialize a
decremental SSR algorithm of [BPW19] on Gw for each w. Given an edge deletion, we delete e from
every instance that contains w.

Given a query b(s, v), we proceed by binary search to find the maximum w where v is reachable
from s on Gw and return the maximum such w as the bottleneck capacity between s, v.

Since the decremental SSR instance of [BPW19] answers queries in O(1) time, we can answer
queries in O(logW) time via binary search. Since there are at most W instances, the total time
required by the algorithm is eO(mW).

Note that we can handle the incremental setting since incremental SSR can also be solved in
total time eO(m).

33

4.4 Fully Dynamic All-Pairs Bottleneck Paths

We present our fully dynamic APBP algorithm.

Proposition 4.14. Fully dynamic APBP can be solved in eO(n2
) amortized time per update deter-

ministically.

Proof. We first describe the intuition of our algorithm. Suppose all the edge weights are integers
from [1, 2n2

]. Let M be some sufficiently large integer, and we replace the weight w of an edge by
M2n2�w. Consider a path from u to v where the edge weights on the path are w1, . . . , w`, then the
total length of the path under the new weight is

P
iM

2n2�wi , which is dominated by the edge with
the smallest value of wi. Thus, the shortest path from u to v under the new weight will maximize
the minimum old edge weight, i.e., it will correspond to a bottleneck path. Intuitively, we could run
Demetrescu and Italiano’s dynamic APSP algorithm [DI04] under the new weight to achieve eO(n2

)

amortized running time, assuming we can perform arithmetic operations between the new (huge)
weights in constant time. Below, we describe algorithm in more details and the way to remove the
assumptions.

We first use online list labelling to remove the assumption that all edge weights are from [1, 2n2
].

Theorem 4.15 ([IKR81]). We can deterministically store a set of t dynamically-changing items in
an array of length 2t, so that the sorted orders of the items are preserved, and we only move eO(1)

items per operation in amortization.

We use Theorem 4.15 to store the original edge weights of the graph as the items, and use the
indices of the items stored in the arrays as their new weights. As the orders of indices of the items
preserve the order of the items, this is without loss of generality for bottleneck paths. Now for every
edge update in the graph, we might need to perform up to eO(1) weight updates in amortization,
which is affordable. From now on, we assume all the edge weights are integers from [1, n2

].
Next, we aim to use Demetrescu and Italiano’s dynamic APSP algorithm [DI04] in a white-box

way. In particular, if we simply store the path weights as described in the intuition, it would be too
costly. Instead, we use some data structure to maintain the path weights.

The weight of any path in our graph (under the new weights described in the intuition) can be
represented as a length 2n2 array, where the value on the i-th entry of the array equals the number
of times the path use an edge of weight i. Therefore, say this array is (ai)2n

2

i=1, then the weight of
the path is

P2n2

i=1 aiM
2n2�i, for some large integer M . We use a persistent segment tree [DSST89]

to maintain such arrays efficiently.
Next, we run Demetrescu and Italiano’s dynamic APSP algorithm [DI04] that has eO(n2

) amor-
tized running time per operation, but we use the data structure to support all operations their
algorithm performs on path weights. Initially, we create a persistent segment tree maintaining the
all-zero array, representing the empty path. Then, our data structure needs to support the followings
efficiently (i.e., in eO(1) time per operation).

1. Concatenate one edge to an existing path. Say the new edge has weight w, and the
array corresponding to the existing path is a, then the array corresponding to the new path is
a, with aw incremented by 1. Therefore, we can simply copy the segment tree for the existing
path (as we maintain persistent segment trees, this takes eO(1) time), and then update the
w-th entry of the new segment tree in eO(1) time.

2. Compare the weight of two paths. For two paths whose weight correspond to arrays a

and b respectively, their weights are
P2n2

i=1 aiM
2n2�i and

P2n2

i=1 biM
2n2�i, for some large integer

M . To compare these two weights, it suffices to find the longest common prefix of the arrays
a and b, and then compare the first differing position of a and b.

34

Then similar to Aho, Hopcroft and Ullman’s algorithm for Tree Isomorphism [AH74], we
assign all subtrees of all persistent segment tree an identifying number, so that isomorphic
trees will have the same identifying number while distinct trees will have a different number.
We maintain a perfect hash function H that maps integers or pairs of identifying numbers to
identifying numbers, and we can maintain this hash function using a binary search tree. Leaf
nodes in the segment trees represent an entry of an array, so it is associated with an integer.
If this integer is c, then its identifying number would be H(c). For internal nodes whose
left subtree and right subtree have identifying numbers L and R respectively, its identifying
number would be H((L,R)).
Then, we can perform binary search on two persistent segment trees augmented with identi-
fying numbers to find the longest common prefix of the underlying arrays: To find the longest
common prefix between two nodes N1 and N2, we first compare the identifying numbers of
their left subtrees. If these two numbers are different, we know that there must be a different
array entry corresponding to the left subtree, so we recursively compare the left subtrees;
otherwise, we recursively compare the right subtrees. As the height of the segment trees is
eO(1), this takes eO(1) time.

4.5 Conditional Lower Bounds for Bottleneck Paths

We now present our conditional lower bound for partially dynamic bottleneck paths. We observe
that due to Remark 4.12, our lower bounds hold only for directed graphs. In contrast, our lower
bounds for shortest paths hold for undirected graphs as well.

Theorem 4.16. Under the Combinatorial 4-Clique hypothesis, any combinatorial algorithm com-
puting incremental/decremental stBP on directed graphs requires n4�o(1) total update and query
time.

Proof. We describe the reduction for incremental stBP, noting that in the decremental case we can
simply run the reduction in reverse.

Suppose for contradiction there is an algorithm A for incremental stBP with total time O(n4�c
)

for some c > 0. Consider a 4-Clique Detection instance with vertex sets A,B,C,D of size n.
Throughout the reduction, assume that the vertex sets A,B,C,D are indexed from 0 to n� 1. We
design an algorithm with total time O(n4�c

) for some positive c > 0, contradicting the Combinatorial
4-Clique hypothesis.

We construct a graph with vertices

{s} [(A1 [A2 [A3) [(B1 [B2 [B3) [(C1 [C2 [C3) [(Â1 [Â2 [Â3) [{t}.

Each vertex set A1, A2, A3, B1, B2, B3, C1, C2, C3, Â1, Â2 and Â3 has n vertices. For each a 2 A, we
create a copy a(i) 2 Ai and a copy â(i) 2 Âi for i 2 {1, 2, 3}. Similarly, for each b 2 B and c 2 C,
we create a copy b(i) 2 Bi and c(i) 2 Ci for i 2 {1, 2, 3}. Initially, insert edges (s, a(1)) and (â(3), t)
with 1 weight for all a 2 A. Furthermore, insert edges with 1 weight between (a(3), b(1)) (resp.
(b(3), c(1)), (c(3), â(1))) if and only if (a, b) 2 E (resp. if (b, c) 2 E, (c, a) 2 E). This creates a graph
with O(n) vertices

We now proceed to more edge insertions of the reduction. In the outer loop we iterate over
di 2 D in increasing order.

1. For each bj 2 N(di), insert edges
⇣
b(1)j , b(2)j+i mod n

⌘
and

⇣
b(2)j+i mod n, b

(3)
j

⌘
with weight (i+1)·n.

35

2. For each cj 2 N(di), insert edges
⇣
c(1)j , c(2)j+i mod n

⌘
and

⇣
c(2)j+i mod n, c

(3)
j

⌘
with weight (i+1)·n.

3. In the inner loop, we iterate over ak 2 A in increasing order.

(a) If ak 2 N(di), insert the following edges of weight i · n+ (k + 1):
⇣
a(1)k , a(2)k+i mod n

⌘
,
⇣
a(2)k+i mod n, a

(3)
k

⌘
,
⇣
â(1)k , â(2)k+i mod n

⌘
,
⇣
â(2)k+i mod n, â

(3)
k

⌘
.

(b) Query A to get b(s, t). If b(s, t) � i · n+ (k + 1), return TRUE.

Then, return FALSE after all iterations.
Clearly, the bottleneck of this algorithm is to run A, so the running time is O(n4�c

).
We show the following lemma in order to show correctness:

Lemma 4.17. Consider the query when iterating over di and ak. The result of the query is b(s, t) �
i · n+ (k + 1) if and only if (di, ak) are in a 4-clique.

Proof. Suppose di, ak are in a 4-clique with vertices bj , c`. Then, the following (s, t)-bottleneck path
exists in the graph and has capacity i · n+ (k + 1):

⇣
s, a(1)k , a(2)k+i mod n, a

(3)
k , b(1)j , b(2)j+i mod n, b

(3)
j , c(1)` , c(2)`+i mod n, c

(3)
` , â(1)k , â(2)k+i mod n, â

(3)
k , t

⌘
.

We verify that this path exists and has the required capacity. (s, a(1)k) has capacity 1. Since
ak 2 N(di), each edge in the sub-path

⇣
a(1)k , a(2)k+i mod n, a

(3)
k

⌘
exists and has capacity i ·n+(k+1).

Next, (ak, bj) 2 E implies that the edge (a(3)k , b(1)j) exists with 1 capacity. Since bj 2 N(di), each

edge in the sub-path
⇣
b(1)j , b(2)j+i mod n, b

(3)
j

⌘
exists and has capacity (i + 1) · n. Then, (bj , c`) 2 E

implies that the edge (b(3)j , c(1)`) exists with 1 capacity. Since c` 2 N(di), each edge in the

sub-path
⇣
c(1)` , c(2)`+i mod n, c

(3)
`

⌘
exists and has capacity (i + 1) · n. Then, (c`, a) 2 E implies

that the edge (c(3)` , â(1)k) exists with 1 capacity. Finally, as ak 2 N(di), we have the sub-path⇣
â(1)k , â(2)k+i mod n, â

(3)
k

⌘
with capacity i ·n+(k+1). We conclude by observing that the edge (â(3)k , t)

has 1 capacity.
Conversely, suppose b(s, t) � i · n + (k + 1). Then, since edges are directed left to right, there

is a path of the form
⇣
s, a(1)i1

, a(2)i2
, a(3)i3

, b(1)i4
, b(2)i5

, b(3)i6
, c(1)i7

, c(2)i8
, c(3)i9

, â(1)i10
, â(2)i11

, â(3)i12
, t
⌘

achieving this capacity. At the time of the query in the i-th iteration over D and k-th iteration
over A in the inner-loop, the maximum weight of any edge between A1⇥A2, A2⇥A3, Â1⇥ Â2, and
Â2 ⇥ Â3 is i · n+ (k+ 1). Furthermore, the only edges attaining this weight are

⇣
a(1)k , a(2)k+i mod n

⌘
,

⇣
a(2)k+i mod n, a

(3)
k

⌘
,
⇣
â(1)k , â(2)k+i mod n

⌘
, and

⇣
â(2)k+i mod n, â

(3)
k

⌘
. If these edges exist, then (ak, di) 2 E

and k = i1 = i3 = i10 = i12. The maximum weight of any edge between B1 ⇥ B2 and B2 ⇥ B3 is
(i+1)·n. Furthermore, the only edges attaining this weight are

⇣
b(1)j , b(2)j+i mod n

⌘
,
⇣
b(2)j+i mod n, b

(3)
j

⌘

for bj 2 N(di). In particular, we have i4 = i6 = j for some bj 2 N(di). By a similar argument,
i7 = i9 = ` for some c` 2 N(di).

Finally, it remains to show ak, bj , c` form a triangle. Since wt(a(3)k , b(1)j) =1 we have (ak, bj) 2 E.
A similar argument shows that (ak, c`), (bj , c`) 2 E.

36

From Lemma 4.17, the above procedure solves the 4-Clique Detection instance, contradicting
the Combinatorial 4-Clique hypothesis.

Using an essentially identical reduction, we show that under the OMv3 hypothesis, any algorithm
computing stBP with polynomial preprocessing requires n!+1�o(1) total update time.

Theorem 4.18. Under the OMv3 hypothesis, any algorithm computing incremental/decremental
stBP on directed graphs with polynomial preprocessing time requires n!+1�o(1) total update time.

Proof. Suppose for contradiction there is an incremental stBP algorithm A with polynomial pre-
processing time and total update time O(n!+1�c

) for some c > 0. The decremental case can be
handled using similar modifications as Theorem 3.8. We design an efficient algorithm for OMv3.

In the preprocessing phase we receive a Boolean matrix A. We construct a graph with vertices

{s} [(A1 [A2 [A3) [(B1 [B2 [B3) [(C1 [C2 [C3) [(Â1 [Â2 [Â3) [{t}.

Each vertex set A1, A2, A3, B1, B2, B3, C1, C2, C3, Â1, Â2, Â3 has n vertices, each indexed by [n].
Insert edges (s, a(1)) and (â(3), t) with 1 weight for all a 2 A. Furthermore, insert edges with 1
weight between (a(3), b(1)) (resp. (b(3), c(1)), (c(3), â(1))) if and only if A[a, b] = TRUE (resp. if
A[b, c] = TRUE, A[a, c] = TRUE). We then run the preprocessing step of A on this O(n)-vertex
graph.

We now proceed to the dynamic phase of the reduction. Throughout, we assume that both
queries and coordinates are indexed starting at 0 (just as vertices as indexed from 0 in Theorem
4.16). Suppose we have received the i-th query, ~ui,~vi, ~wi.

1. For all j with ~vi[j] = TRUE, insert edges
⇣
b(1)j , b(2)j+i mod n

⌘
and

⇣
b(2)j+i mod n, b

(3)
j

⌘
with weight

(i+ 1) · n.
2. For all j with ~wi[j] = TRUE, insert edges

⇣
c(1)j , c(2)j+i mod n

⌘
and

⇣
c(2)j+i mod n, c

(3)
j

⌘
with weight

(i+ 1) · n.
3. Now, we iterate over the coordinates k of vector ~vi in increasing order.

(a) If ~ui[k] = TRUE, insert edges of weight i · n+ (k + 1) between
⇣
a(1)k , a(2)k+i mod n

⌘
,
⇣
a(2)k+i mod n, a

(3)
k

⌘
,
⇣
â(1)k , â(2)k+i mod n

⌘
,
⇣
â(2)k+i mod n, â

(3)
k

⌘
.

(b) Compute b(s, t) by querying A. If b(s, t) � i · n+ (k + 1), return TRUE.

Otherwise, return FALSE if none of the queries return TRUE.

During the dynamic phase, the bottleneck of the algorithm is running A, so the total update
and query time is O(n!+1�c

).
The following lemma shows that our algorithm correctly computes each OMv3 query.

Lemma 4.19. Consider the query (~ui,~vi, ~wi) and the query after updating the k-th coordinate of ~u.
The result of the query is b(s, t) � i · n+ (k + 1) if and only if

_

j,`

(~ui[k] ^ ~vi[j] ^ ~wi[`] ^A[k, j] ^A[j, `] ^A[`, k]) = TRUE.

Since this lemma is essentially identical to Lemma 4.17, we defer the proof to Appendix A.1.

37

Note that at the query after the i-th query and the k-th iteration of the inner loop, we have
constructed the same graph as in Theorem 4.16. In particular, Lemma 4.19 shows that this query
returns true if and only if

_

j,`

(~ui[k] ^ ~vi[j] ^ ~wi[`] ^A[k, j] ^A[j, `] ^A[`, k]) = TRUE.

Thus, if the above is satisfied for any k, we return TRUE. Otherwise, we return FALSE, answering
the query correctly in either case. Therefore, using A we have obtained an algorithm for the OMv3

instance with polynomial preprocessing and total update and query time O(n!+1�c
), contradicting

the OMv3 hypothesis.

Furthermore, we show that any partially dynamic SSBP algorithm computes the min-witness
matrix product with n updates. In particular, the following reduction shows that any algorithm
with amortized update time O(n1.5�c

) for c > 0 gives an improved algorithm for computing the
min-witness product when ! = 2. We leave as an interesting open question how to extend the
following lower bound to n2 updates.

Theorem 4.20. Under the Minimum-Witness Product hypothesis, any algorithm computing incre-
mental/decremental SSBP on directed graphs requires n2.5�o(1) total update time over n updates.
Equivalently, any algorithm computing SSBP on directed graphs requires n1.5�o(1) amortized update
time over n updates.

Proof. Suppose for contradiction there is an incremental SSBP algorithm with pre-processing time
O(n2.5�c

) and amortized update time O(n1.5�c
) for some c > 0, describing modifications for the

decremental version as necessary. We design an algorithm computing a min-witness product of n⇥n
matrices A,B in O(n2.5�c

) time.
Construct a 4 layered graph

{s} [U [V [W,

where |U | = |V | = |W | = n and index each vertex set from 1 to n. We initialize the graph as
follows. For every entry A[i, k] = TRUE, add an edge (ui, vk) with weight i · n � (k � 1). For
every entry B[k, j] = TRUE, add an edge (vk, wj) with weight 1. In the decremental reduction,
we additionally add edges (s, vi) of weight 1 for all i. This creates a graph with n vertices, so we
can preprocess in O(n2.5�c

) time.
We now proceed to the dynamic phase. We iterate over i 2 [n] in increasing order. For each i,

we add an edge (s, ui) of weight 1 and query SSBP. Suppose b(s, wj) > (i� 1) · n. Then, we note
the minimum witness of i, j as i · n+ 1� b(s, wj). Otherwise, we note that there is no witness for
i, j. In the decremental setting, we iterate over [n] in decreasing order and instead delete the edge
(s, ui) before each query.

We argue that this correctly computes the minimum-witness product. Consider the query after
inserting edge (s, ui). We claim b(s, wj) > (i � 1) · n if and only if there is some k for which
A[i, k] = B[k, j] = TRUE, and furthermore this path has bottleneck capacity i · n � (k � 1). In
particular, this shows that i ·n+1�b(s, wj) is precisely the minimum such k (if such a path exists)
and otherwise there is no witness.

Suppose there is some k for which A[i, k] = B[k, j] = TRUE. Then, there is the path
(s, ui, vk, wj) with bottleneck capacity i · n + k. Conversely, if there is a path with bottleneck
capacity at least (i � 1) · n, then it must have the form (s, ui, vk, wj) for some k since the graph
is directed and there are no edges from si0 for i0 > i. Thus, for this k it must be the case that
A[i, k] = B[k, j] = TRUE, as desired.

38

The overall reduction makes n updates and computes the minimum-witness product in O(n2.5�c
),

contradicting the Minimum-Witness Product hypothesis.

5 Earliest Arrivals (or Non-decreasing Paths)

For the earliest arrivals problem, we obtain a simple, efficient algorithm for the incremental single-
source problem via a reduction to reachability (Theorem 5.4). In contrast, under the weight dynamic
model, we show that any partially dynamic algorithm can be reduced from 4-Clique Detection. The
earliest arrivals problem (sometimes also called non-decreasing paths problem) is defined below.

Definition 5.1 (Earliest Arrivals). Let G = (V,E,wt) be a directed, weighted graph. For any
path P is a valid itinerary if the edges on the path are non-decreasing in weight. For a valid
itinerary, let a(P) = maxe2P wt(e) be the weight of the final edge. For any pair of nodes u, v, let
ap(u, v) denote the earliest arrival, the valid itinerary between u, v minimizing a(P) (breaking
ties arbitrarily). Let a(u, v) = a(ap(u, v)).

The (s, t)-Earliest Arrival problem (stEA) asks to compute a(s, t) for fixed nodes s, t. The
Single Source Earliest Arrivals problem (SSEA) asks to compute a(s, v) for for a single source
s and all v 2 V . The All Pairs Earliest Arrivals problem (APEA) asks to compute a(u, v) for
all u, v 2 V .

5.1 Decremental Algorithm for SSEA

We give a simple near-linear total time algorithm for partially dynamic SSEA using a reduction
from SSEA to Single-Source Reachability (SSR) in sparse graphs:

Lemma 5.2 (Reduction from SSEA to SSR). We can reduce an instance of SSEA in n-vertex
m-edge graph G to an instance of SSR in an O(m)-vertex O(m)-edge graph. The reduction runs in
near-linear time.

Proof. Let G = (V,E,wt) be the graph for SSEA. We create the following graph for SSR.

1. For every e 2 E, we create two vertices pe and qe. The vertex set of the SSR instance is
{s} [{pe, qe}e2E .

2. For every e 2 E, we add an edge from pe to qe.
3. For every v 2 E, let i1, i2, . . . , ix be the set of incoming edges, and let o1, o2, . . . , oy be the set

of outgoing edges. We sort the vertices qi1 , qi2 , . . . , qix , po1 , po2 , . . . , poy based on the weights
of their corresponding edges (if there is a tie, we rank incoming edges before outgoing edges
since we require the path to be non-decreasing), and add a chain from the smallest to the
largest. This way, qia can reach pob if and only if wt(ia)  wt(ob).

4. For every (s, v) 2 E, we add an edge from s to p(s,v).

We observe that the reduction satisfies the following property.

Claim 5.3. Let e1, e2, . . . , ex be the set of incoming edges of v. Then

a(s, v) = min{wt(ei) s.t. pei is reachable from s}.

Then, to answer a query it suffices to keep track of the minimum ei such that pei is reachable
from s. To bound the run-time, note that the set of reachable pei can only increase/decrease, so
maintaining all the relevant heaps requires only eO(m) total time.

39

Proof of Claim 5.3. Suppose pei is reachable from s. Then, there is a valid itinerary (non-decreasing
path) from s to the origin of ei in the SSEA instance, since every edge (pe, qe) taken is an edge in
the graph and they must be taken in non-decreasing order by the chain construction. In particular,
qei is reachable from s so that v is reachable from s via a non-decreasing path ending at ei, or
a(s, v)  wt(ei).

Otherwise, let P = ap(s, v) to be the earliest arrival path with final edge ej . We claim pej is
reachable from s. This follows easily as the path is a valid itinerary (non-decreasing path) so that
there is a path in the constructed graph that follows the appropriate edges (pe, qe) as well as edges
within the chain.

By maintaining the reduction dynamically, we can obtain a faster algorithm for partially dynamic
SSEA.

Theorem 5.4. There is an algorithm for incremental/decremental SSEA in eO(m) total time. This
algorithm holds against an oblivious, adaptive adversary.

Proof. We can maintain the reduction in Lemma 5.2 dynamically: For inserting e, we need to insert
the edge from pe to qe, and appropriately insert pe and qe to the chains (note that we do not need
to delete edges that are already on the chain, i.e., if we have a chain 1 ! 2 ! 4 ! 5, and need to
insert 3, we just add (2, 3) and (3, 4) and do not need to delete (2, 4)). For deleting e, we only need
to delete the edge from pe to qe, and do not need to update the chain.

Incremental SSR can be solved (easily) in O(m) total time. Decremental SSR can be solved in
eO(m) total time [BPW19].

5.2 Conditional Lower Bound for Weight Dynamic Earliest Arrivals

Theorem 5.5. Under the Combinatorial 4-Clique hypothesis, any combinatorial algorithm comput-
ing stEA with incremental/decremental weights requires n2�o(1) amortized update time. Further-
more, each edge weight is modified only once.

Proof. We describe the reduction for incremental stEA (weight non-decreasing), noting that the
decremental reduction can be obtained by reversing the reduction.

Suppose for contradiction there is an algorithm A with O(n2�c
) amortized update time for some

c > 0. Consider a 4-Clique Detection instance with vertex sets A,B,C,D of size n. Throughout
the reduction, assume that the vertex sets A,B,C,D are indexed from 1 to n. We design an
algorithm with total time O(n4�c

) for some positive c > 0, contradicting the Combinatorial 4-
Clique hypothesis.

We construct a graph with vertices

{s} [(A1 [A2 [A3) [(B1 [B2 [B3) [(C1 [C2 [C3) [(Â1 [Â2 [Â3) [{t}.

Each vertex set A1, A2, A3, B1, B2, B3, C1, C2, C3, Â1, Â2 and Â3 has n vertices. For each a 2 A, we
create a copy a(i) 2 Ai and a copy â(i) 2 Âi for i 2 {1, 2, 3}. Similarly, for each b 2 B and c 2 C,
we create a copy b(i) 2 Bi and c(i) 2 Ci for i 2 {1, 2, 3}. Initially, insert edges (s, a(1)) with weight
1 and edges (â(3), t) with weight 9 for all a 2 A. Furthermore, insert edges with weight 3 between
(a(3), b(1)) (resp. weight 5 between (b(3), c(1)), weight 7 between (c(3), â(1))) if and only if (a, b) 2 E
(resp. (b, c) 2 E, (c, a) 2 E). We also insert all edges between A1 ⇥ A2, A2 ⇥ A3, B1 ⇥ B2, B2 ⇥
B3, C1 ⇥ C2, C2 ⇥ C3, Â1 ⇥ Â2, Â2 ⇥ Â3 with weight 0. This creates a graph with O(n) vertices.

We now proceed to the more updates of the reduction. In the outer loop we iterate over di 2 D
in increasing order.

40

1. For each bj 2 N(di), increase the weights of
⇣
b(1)j , b(2)j+i mod n

⌘
and

⇣
b(2)j+i mod n, b

(3)
j

⌘
to 4.

2. For each cj 2 N(di), increase the weights of
⇣
c(1)j , c(2)j+i mod n

⌘
and

⇣
c(2)j+i mod n, c

(3)
j

⌘
to 6.

3. In the inner loop, we iterate over ak 2 A in increasing order.

(a) If ak 2 N(di), increase the weights of
⇣
a(1)k , a(2)k+i mod n

⌘
,
⇣
a(2)k+i mod n, a

(3)
k

⌘

to 2 and increase the weights of
⇣
â(1)k , â(2)k+i mod n

⌘
,
⇣
â(2)k+i mod n, â

(3)
k

⌘

to 8.
(b) Computing a(s, t) by querying A. If a(s, t) = 9, return TRUE.
(c) After the query, increase the weights of

⇣
a(1)k , a(2)k+i mod n

⌘
,
⇣
a(2)k+i mod n, a

(3)
k

⌘
,
⇣
â(1)k , â(2)k+i mod n

⌘
,
⇣
â(2)k+i mod n, â

(3)
k

⌘

to 10.

4. After all queries of this round, increase the weights of
⇣
b(1)j , b(2)j+i mod n

⌘
,
⇣
b(2)j+i mod n, b

(3)
j

⌘
,
⇣
c(1)j , c(2)j+i mod n

⌘
,
⇣
c(2)j+i mod n, c

(3)
j

⌘

for all bj , cj 2 N(di) to 10.

Then, return FALSE after all iterations.
For each d, we increase/decrease the weights of at most 16n edges, so the total number of updates

is O(n2
). The bottleneck of this algorithm is to run A, so the running time is O(n4�c

).

Lemma 5.6. Consider the query when iterating over di and ak. The result of the query is a(s, t) = 9

if and only if (di, ak) are in a 4-clique.

Proof. Note that all edges into t have weight 9. Thus, the arrival time a(s, t) 2 {9,1}, and
a(s, t) = 9 if and only if there is a valid itinerary from s to t.

Suppose di, ak are in a 4-clique with vertices bj , c`. Then, the following valid itinerary exists in
the graph

⇣
s, a(1)k , a(2)k+i mod n, a

(3)
k , b(1)j , b(2)j+i mod n, b

(3)
j , c(1)` , c(2)`+i mod n, c

(3)
` , â(1)k , â(2)k+i mod n, â

(3)
k , t

⌘
.

We verify that this path exists and is valid (i.e. has non-decreasing weights). (s, a(1)k) has
weight 1. Since ak 2 N(di), each edge in the sub-path

⇣
a(1)k , a(2)k+i mod n, a

(3)
k

⌘
has weight 2. Next,

(ak, bj) 2 E implies that the edge (a(3)k , b(1)j) exists with weight 3. Since bj 2 N(di), each edge in

the sub-path
⇣
b(1)j , b(2)j+i mod n, b

(3)
j

⌘
has weight 4. Then, (bj , c`) 2 E implies that the edge (b(3)j , c(1)`)

exists with weight 5. Since c` 2 N(di), each edge in the sub-path
⇣
c(1)` , c(2)`+i mod n, c

(3)
`

⌘
has weight

6. Then, (c`, a) 2 E implies that the edge (c(3)` , â(1)k) exists with weight 7. Finally, as ak 2 N(di),
we have the sub-path

⇣
â(1)k , â(2)k+i mod n, â

(3)
k

⌘
with weight 8. We conclude by observing that edge

(â(3)k , t) has weight 9.

41

Conversely, suppose a(s, t) = 9. Then, since edges are directed left to right, there is a path of
the form ⇣

s, a(1)i1
, a(2)i2

, a(3)i3
, b(1)i4

, b(2)i5
, b(3)i6

, c(1)i7
, c(2)i8

, c(3)i9
, â(1)i10

, â(2)i11
, â(3)i12

, t
⌘

and is a valid itinerary.
At the time of the query in the i-th iteration over D and k-th iteration over A in the inner-

loop, the only edges in A1 ⇥ A2, A2 ⇥ A3, Â1 ⇥ Â2, Â2 ⇥ Â3 with weight 2 are
⇣
a(1)k , a(2)k+i mod n

⌘
,

⇣
a(2)k+i mod n, a

(3)
k

⌘
,
⇣
â(1)k , â(2)k+i mod n

⌘
, and

⇣
â(2)k+i mod n, â

(3)
k

⌘
. Note that all other weights have

weight either 0 or 10, and thus cannot participate in any valid itinerary (since edges into A1 have
weight 1 and edges out of A3 have weight 3). If these edges exist with weight 2, then (ak, di) 2 E
and k = i1 = i3 = i10 = i12. The only valid edges between B1 ⇥B2 and B2 ⇥B3 with weight 4 are⇣
b(1)j , b(2)j+i mod n

⌘
,
⇣
b(2)j+i mod n, b

(3)
j

⌘
for bj 2 N(di) (and no other edges can participate in a valid

itinerary since edges into B1 have weight 3 and edges out of B3 have weight 5). Since these paths
are vertex disjoint, we have i4 = i6 = j for some bj 2 N(di). By a similar argument, i7 = i9 = ` for
some c` 2 N(di).

Finally, it remains to show ak, bj , c` form a triangle. Since (a(3)k , b(1)j) form an edge, we ahve
(ak, bj) 2 E. A similar argument shows that (ak, c`), (bj , c`) 2 E.

From Lemma 5.6, the above procedure solves the 4-Clique Detection instance, contradicting the
Combinatorial 4-Clique hypothesis.

Again, using an essentially identical reduction we obtain a lower bound for arbitrary algorithms
under the OMv3 hypothesis.

Theorem 5.7. Under the OMv3 hypothesis, any algorithm computing incremental/decremental
stEA on directed graphs with polynomial preprocessing time requires n!�1�o(1) amortized update
and query time. Furthermore, each edge weight is incremented only once.

We defer the proof to Appendix A.1. In particular, for stEA, we have shown that modifying
edge weights and inserting/removing edges lead to different complexities in the partially dynamic
model. Specifically, while edge insertions/deletions can be handled efficiently, it is hard to maintain
earliest arrivals under weight modifications. Since the weight-dynamic is more general than the
insertion/deletion model, our lower bounds for both shortest paths and bottleneck paths continue
to hold in the weight-dynamic model.

Remark 5.8. In both Theorems 5.5 and 5.7, we have restricted the lower bound to only modify
each edge weight once. We can extend our lower bound to handle many increases per edge as follows.
After modifying each edge weight once, increase all edge weights by some large enough constant
(e.g. 10) so that all edges that started at weight 0 are now weight 10, all weights that started at
weight 1 are weight 11, and so on, and run the reduction again. Using this modification, we can
compute Unbalanced 4-Clique, or OMv3 with arbitrarily (polynomially) many queries. Note that
this maintains the fact that all weight modifications are increase only.

References

[ABDN18] Amir Abboud, Karl Bringmann, Holger Dell, and Jesper Nederlof. More consequences
of falsifying SETH and the orthogonal vectors conjecture. In 50th Annual ACM
SIGACT Symposium on Theory of Computing, STOC, 2018. 3

42

[ACK17] Ittai Abraham, Shiri Chechik, and Sebastian Krinninger. Fully dynamic all-pairs
shortest paths with worst-case update-time revisited. In 28th Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA, 2017. 1

[AGI+19] Amir Abboud, Loukas Georgiadis, Giuseppe F. Italiano, Robert Krauthgamer, Nikos
Parotsidis, Ohad Trabelsi, Przemyslaw Uznanski, and Daniel Wolleb-Graf. Faster algo-
rithms for all-pairs bounded min-cuts. In 46th International Colloquium on Automata,
Languages, and Programming, ICALP, 2019. 4

[AH74] Alfred V. Aho and John E. Hopcroft. The design and analysis of computer algorithms.
Pearson Education India, 1974. 35

[AHR+19] Bertie Ancona, Monika Henzinger, Liam Roditty, Virginia Vassilevska Williams, and
Nicole Wein. Algorithms and hardness for diameter in dynamic graphs. In 46th
International Colloquium on Automata, Languages, and Programming, ICALP, 2019.
2

[AMO93] Ravindra K. Ahujia, Thomas L. Magnanti, and James B. Orlin. Network flows: Theory,
algorithms and applications. New Jersey: Rentice-Hall, 1993. 3

[AMV20] Kyriakos Axiotis, Aleksander Madry, and Adrian Vladu. Circulation control for faster
minimum cost flow in unit-capacity graphs. In 61st IEEE Annual Symposium on
Foundations of Computer Science, FOCS, 2020. 1

[AV14] Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong
lower bounds for dynamic problems. In 55th Annual Symposium on Foundations of
Computer Science, FOCS, 2014. 2, 6, 7, 19

[AVW14] Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of
faster alignment of sequences. In 41st International Colloquium on Automata, Lan-
guages, and Programming, ICALP, 2014. 3

[BC16] Aaron Bernstein and Shiri Chechik. Deterministic decremental single source shortest
paths: beyond the o(mn) bound. In 48th Annual ACM SIGACT Symposium on Theory
of Computing, STOC, 2016. 1

[BC17] Aaron Bernstein and Shiri Chechik. Deterministic partially dynamic single source
shortest paths for sparse graphs. In 28th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA, 2017. 1

[BDT16] Arturs Backurs, Nishanth Dikkala, and Christos Tzamos. Tight hardness results for
maximum weight rectangles. In 43rd International Colloquium on Automata, Lan-
guages, and Programming, ICALP, 2016. 3

[Bel58] Richard Bellman. On a routing problem. Quarterly of applied mathematics, 16(1):87–
90, 1958. 1

[Ber16] Aaron Bernstein. Maintaining shortest paths under deletions in weighted directed
graphs. SIAM J. Comput., 45(2), 2016. 1

[Ber17] Aaron Bernstein. Deterministic partially dynamic single source shortest paths in
weighted graphs. In 44th International Colloquium on Automata, Languages, and
Programming, ICALP, 2017. 1

43

[BFvdH+24] Karl Bringmann, Nick Fischer, Ivor van der Hoog, Evangelos Kipouridis, Tomasz
Kociumaka, and Eva Rotenberg. Dynamic dynamic time warping. In 2024 Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 208–242, 2024. 3

[BGL17] Karl Bringmann, Allan Grønlund, and Kasper Green Larsen. A dichotomy for regular
expression membership testing. In 58th IEEE Annual Symposium on Foundations of
Computer Science, FOCS, 2017. 4

[BGMW20] Karl Bringmann, Pawel Gawrychowski, Shay Mozes, and Oren Weimann. Tree edit
distance cannot be computed in strongly subcubic time (unless APSP can). ACM
Trans. Algorithms, 16(4):48:1–48:22, 2020. 3

[BGS20] Aaron Bernstein, Maximilian Probst Gutenberg, and Thatchaphol Saranurak. Deter-
ministic decremental reachability, scc, and shortest paths via directed expanders and
congestion balancing. In 61st IEEE Annual Symposium on Foundations of Computer
Science, FOCS, 2020. 1

[BGS21] Aaron Bernstein, Maximilian Probst Gutenberg, and Thatchaphol Saranurak. Deter-
ministic decremental SSSP and approximate min-cost flow in almost-linear time. In
62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS, 2021. 1

[BNW22] Aaron Bernstein, Danupon Nanongkai, and Christian Wulff-Nilsen. Negative-weight
single-source shortest paths in near-linear time. In 63rd IEEE Annual Symposium on
Foundations of Computer Science, FOCS, 2022. 1

[BPW19] Aaron Bernstein, Maximilian Probst, and Christian Wulff-Nilsen. Decremental
strongly-connected components and single-source reachability in near-linear time. In
51st Annual ACM SIGACT Symposium on Theory of Computing, STOC, 2019. 33, 40

[BR11] Aaron Bernstein and Liam Roditty. Improved dynamic algorithms for maintaining
approximate shortest paths under deletions. In 22nd Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA, 2011. 1

[Bra] Jan van den Brand. Complexity term balancer. www.ocf.berkeley.edu/~vdbrand/
complexity/. Tool to balance complexity terms depending on fast matrix multiplica-
tion. 6

[BT17] Arturs Backurs and Christos Tzamos. Improving viterbi is hard: Better runtimes
imply faster clique algorithms. In 34th International Conference on Machine Learning,
ICML, 2017. 3

[Cha05] Timothy M. Chan. All-pairs shortest paths with real weights in O(n3/ log n) time. In
9th International Workshop on Algorithms and Data Structures, WADS, 2005. 1

[Cha10a] Timothy M. Chan. More algorithms for all-pairs shortest paths in weighted graphs.
SIAM J. Comput., 39(5), 2010. 1, 3

[Cha10b] Timothy M. Chan. A (slightly) faster algorithm for klee’s measure problem. Comput.
Geom., 43(3):243–250, 2010. 4

[CK19] Julia Chuzhoy and Sanjeev Khanna. A new algorithm for decremental single-source
shortest paths with applications to vertex-capacitated flow and cut problems. In 51st
Annual ACM SIGACT Symposium on Theory of Computing, STOC, 2019. 1

44

www.ocf.berkeley.edu/~vdbrand/complexity/
www.ocf.berkeley.edu/~vdbrand/complexity/

[CKL07] Artur Czumaj, Miroslaw Kowaluk, and Andrzej Lingas. Faster algorithms for finding
lowest common ancestors in directed acyclic graphs. Theor. Comput. Sci., 380(1-2),
2007. 5, 24, 25

[CKL+22] Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg,
and Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-linear time.
In 63rd IEEE Annual Symposium on Foundations of Computer Science, FOCS, 2022.
1

[CKT+16] Shiri Chechik, Haim Kaplan, Mikkel Thorup, Or Zamir, and Uri Zwick. Bottleneck
paths and trees and deterministic graphical games. In 33rd Symposium on Theoretical
Aspects of Computer Science (STACS 2016). Schloss-Dagstuhl-Leibniz Zentrum für
Informatik, 2016. 3

[CL09] Artur Czumaj and Andrzej Lingas. Finding a heaviest vertex-weighted triangle is not
harder than matrix multiplication. SIAM J. Comput., 39(2), 2009. 3

[CZ23] Shiri Chechik and Tianyi Zhang. Faster deterministic worst-case fully dynamic all-
pairs shortest paths via decremental hop-restricted shortest paths. In ACM-SIAM
Symposium on Discrete Algorithms, SODA, 2023. 1

[DI04] Camil Demetrescu and Giuseppe F. Italiano. A new approach to dynamic all pairs
shortest paths. J. ACM, 51(6), 2004. 1, 34

[Dij59] Edsger W. Dijkstra. A note on two problems in connexion with graphs. Numer. Math.,
50:269–271, 1959. 1

[DJW19] Ran Duan, Ce Jin, and Hongxun Wu. Faster algorithms for all pairs non-decreasing
paths problem. In 46th International Colloquium on Automata, Languages, and Pro-
gramming, ICALP, 2019. 3

[DLX18] Ran Duan, Kaifeng Lyu, and Yuanhang Xie. Single-source bottleneck path algorithm
faster than sorting for sparse graphs. In 45th International Colloquium on Automata,
Languages, and Programming, ICALP, 2018. 3

[Dob90] Wlodzimierz Dobosiewicz. A more efficient algorithm for the min-plus multiplication.
Int. J. Computer Math., 32, 1990. 1

[DP09] Ran Duan and Seth Pettie. Fast algorithms for (max, min)-matrix multiplication
and bottleneck shortest paths. In 20th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA, 2009. 3, 28, 29, 30

[DSST89] James R. Driscoll, Neil Sarnak, Daniel Dominic Sleator, and Robert Endre Tarjan.
Making data structures persistent. J. Comput. Syst. Sci., 38(1):86–124, 1989. 34

[DWZ23] Ran Duan, Hongxun Wu, and Renfei Zhou. Faster matrix multiplication via asymmet-
ric hashing. In 64th IEEE Annual Symposium on Foundations of Computer Science,
FOCS, 2023. 2

[EG04] Friedrich Eisenbrand and Fabrizio Grandoni. On the complexity of fixed parameter
clique and dominating set. Theor. Comput. Sci., 326(1-3), 2004. 4

45

[EK72] Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic effi-
ciency for network flow problems. J. ACM, 19(2):248–264, 1972. 3

[ES81] Shimon Even and Yossi Shiloach. An on-line edge-deletion problem. J. ACM, 28(1):1–
4, 1981. 1, 33

[Fin24] Jeremy T. Fineman. Single-source shortest paths with negative real weights in
Õ(mn8/9

) time. In the 56th Annual ACM Symposium on Theory of Computing, STOC,
page to appear, 2024. 1

[For56] Jr Ford. Lr network flow theory. Paper P-923, The RAND Corporation, Santa Monica,
California, 1956. 1

[Fre76] Michael L. Fredman. New bounds on the complexity of the shortest path problem.
SIAM J. Comput., 5(1):83–89, 1976. 1

[FT87] Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in
improved network optimization algorithms. J. ACM, 34(3):596–615, 1987. 1

[FW93] Michael L. Fredman and Dan E. Willard. Surpassing the information theoretic bound
with fusion trees. J. Comput. Syst. Sci., 47(3):424–436, 1993. 1

[FW94] Michael L. Fredman and Dan E. Willard. Trans-dichotomous algorithms for minimum
spanning trees and shortest paths. J. Comput. Syst. Sci., 48(3):533–551, 1994. 1

[Gab83] Harold N. Gabow. Scaling algorithms for network problems. In 24th Annual Sympo-
sium on Foundations of Computer Science, FOCS, 1983. 1

[GIL+21] Fabrizio Grandoni, Giuseppe F. Italiano, Aleksander Lukasiewicz, Nikos Parotsidis,
and Przemyslaw Uznanski. All-pairs LCA in dags: Breaking through the O(n2.5)
barrier. In 2021 Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, 2021.
28

[Gol95] Andrew V. Goldberg. Scaling algorithms for the shortest paths problem. SIAM J.
Comput., 24(3):494–504, 1995. 1

[GT88] Harold N Gabow and Robert E Tarjan. Algorithms for two bottleneck optimization
problems. Journal of Algorithms, 9(3):411–417, 1988. 3

[GT89] Harold N. Gabow and Robert Endre Tarjan. Faster scaling algorithms for network
problems. SIAM J. Comput., 18(5):1013–1036, 1989. 1

[GV21] Aparna Gupte and Vinod Vaikuntanathan. The fine-grained hardness of sparse linear
regression. CoRR, abs/2106.03131, 2021. 3

[GVW20] Maximilian Probst Gutenberg, Virginia Vassilevska Williams, and Nicole Wein. New
algorithms and hardness for incremental single-source shortest paths in directed
graphs. In 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC,
2020. 1, 2, 4, 5, 6, 10, 19, 20

[GW20a] Maximilian Probst Gutenberg and Christian Wulff-Nilsen. Decremental SSSP in
weighted digraphs: Faster and against an adaptive adversary. In 31st ACM-SIAM
Symposium on Discrete Algorithms, SODA, 2020. 1

46

[GW20b] Maximilian Probst Gutenberg and Christian Wulff-Nilsen. Deterministic algorithms
for decremental approximate shortest paths: Faster and simpler. In 31st Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA, 2020. 1

[GW20c] Maximilian Probst Gutenberg and Christian Wulff-Nilsen. Fully-dynamic all-pairs
shortest paths: Improved worst-case time and space bounds. In 2020 ACM-SIAM
Symposium on Discrete Algorithms, SODA, 2020. 1

[Hag00] Torben Hagerup. Improved shortest paths on the word RAM. In 27th International
Colloquium on Automata, Languages and Programming, ICALP, pages 61–72, 2000. 1

[Han04] Yijie Han. Improved algorithm for all pairs shortest paths. Inf. Process. Lett., 91(5),
2004. 1

[Han06] Yijie Han. Achieving O(n3/ log n) time for all pairs shortest paths by using a smaller
table. In 21st International Conference on Computers and Their Applications, CATA,
2006. 1

[HKN14a] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Sublinear-time
decremental algorithms for single-source reachability and shortest paths on directed
graphs. In 46th Annual Symposium on the Theory of Computing, STOC, 2014. 1

[HKN14b] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. A subquadratic-
time algorithm for decremental single-source shortest paths. In 25th Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA, 2014. 1

[HKN18] Monika Henzinger, Sebastian Krinninger, and Danupon Nanongkai. Decremental
single-source shortest paths on undirected graphs in near-linear total update time.
J. ACM, 65(6), 2018. 1

[HKNS15] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Sara-
nurak. Unifying and strengthening hardness for dynamic problems via the online
matrix-vector multiplication conjecture. In 47th Annual ACM on Symposium on The-
ory of Computing, STOC, 2015. 4, 19

[HLSW23] Zhiyi Huang, Yaowei Long, Thatchaphol Saranurak, and Benyu Wang. Tight con-
ditional lower bounds for vertex connectivity problems. In Proceedings of the 55th
Annual ACM Symposium on Theory of Computing, pages 1384–1395, 2023. 4

[HPS21] Monika Henzinger, Ami Paz, and Stefan Schmid. On the complexity of weight-dynamic
network algorithms. In IFIP Networking Conference, IFIP Networking, 2021. 5

[HRWN15] Jacob Holm, Eva Rotenberg, and Christian Wulff-Nilsen. Faster fully-dynamic mini-
mum spanning forest. In Algorithms-ESA 2015: 23rd Annual European Symposium.
Springer, 2015. 33

[HT12] Yijie Han and Tadao Takaoka. An O(n3
log log n/ log2 n) time algorithm for all pairs

shortest paths. In 13th Scandinavian Workshop on Algorithm Theory, SWAT, 2012. 1

[Hu61] TC Hu. The maximum capacity route problem. Oper. Res., 9(6), 1961. 3, 33

[IKR81] Alon Itai, Alan G Konheim, and Michael Rodeh. A sparse table implementation
of priority queues. In 8th Colloquium on Automata, Languages and Programming,
ICALP. Springer, 1981. 34

47

[IR78] Alon Itai and Michael Rodeh. Finding a minimum circuit in a graph. SIAM J.
Comput., 7(4), 1978. 2

[JX22] Ce Jin and Yinzhan Xu. Tight dynamic problem lower bounds from generalized BMM
and OMv. In 54th Annual ACM SIGACT Symposium on Theory of Computing, STOC,
2022. 2, 4, 7, 24

[KL22] Miroslaw Kowaluk and Andrzej Lingas. A multi-dimensional matrix product - A
natural tool for parameterized graph algorithms. Algorithms, 15(12):448, 2022. 4, 5,
24

[Li19] Jason Li. Faster minimum k-cut of a simple graph. In 60th IEEE Annual Symposium
on Foundations of Computer Science, FOCS, 2019. 4

[LPV20] Andrea Lincoln, Adam Polak, and Virginia Vassilevska Williams. Monochromatic
triangles, intermediate matrix products, and convolutions. In 11th Innovations in
Theoretical Computer Science Conference, ITCS, 2020. 5, 24

[LVW18] Andrea Lincoln, Virginia Vassilevska Williams, and R. Ryan Williams. Tight hardness
for shortest cycles and paths in sparse graphs. In 29th Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA, 2018. 2, 3

[Mao24] Xiao Mao. Fully-dynamic all-pairs shortest paths: Likely optimal worst-case update
time. In 56th Annual ACM SIGACT Symposium on Theory of Computing, STOC,
page to appear, 2024. 1

[Min58] George J. Minty. A variant on the shortest-route problem. Operations Research,
6(6):882–883, 1958. 3

[Moo59] Edward F. Moore. The shortest path through a maze. In International Symposium on
the Theory of Switching, pages 285–292. Harvard University Press, 1959. 1

[OV22] James B Orlin and László Végh. Directed shortest paths via approximate cost balanc-
ing. Journal of the ACM, 70(1):1–33, 2022. 1

[Pet04] Seth Pettie. A new approach to all-pairs shortest paths on real-weighted graphs.
Theoretical Computer Science, 312(1):47–74, 2004. 1

[Pol60] Maurice Pollack. The maximum capacity through a network. Oper. Res., 8, 1960. 3

[Pol24] Adam Polak. Personal communication, 2024. 7

[PR05] Seth Pettie and Vijaya Ramachandran. A shortest path algorithm for real-weighted
undirected graphs. SIAM J. Comput., 34(6):1398–1431, 2005. 1

[Ram96] Rajeev Raman. Priority queues: Small, monotone and trans-dichotomous. In 4th
Annual European Symposium on Algorithms, ESA, 1996. 1

[Ram97] Rajeev Raman. Recent results on the single-source shortest paths problem. SIGACT
News, 28(2):81–87, 1997. 1

[RZ11] Liam Roditty and Uri Zwick. On dynamic shortest paths problems. Algorithmica,
61(2), 2011. 2, 6, 7

48

[Sch11] Markus Schulze. A New Monotonic, Clone-Independent, Reversal Symmetric, and
Condorcet-Consistent Single-Winner Election Method. Soc. Choice Welf., 36(2):267–
303, 2011. 3

[Shi53] Alfonso Shimbel. Structural parameters of communication networks. Bull. Math. Biol.,
15:501–507, 1953. 1

[ST83] Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees. J.
Comput. Syst. Sci., 26(3), 1983. 33

[SYZ07] Asaf Shapira, Raphael Yuster, and Uri Zwick. All-pairs bottleneck paths in vertex
weighted graphs. In 18th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA, 2007. 3

[Tak92] Tadao Takaoka. A new upper bound on the complexity of the all pairs shortest path
problem. Inf. Process. Lett., 43(4), 1992. 1

[Tak98] Tadao Takaoka. Subcubic cost algorithms for the all pairs shortest path problem.
Algorithmica, 20(3), 1998. 1

[Tho96] Mikkel Thorup. On RAM priority queues. In 7th Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA, 1996. 1

[Tho99] Mikkel Thorup. Undirected single-source shortest paths with positive integer weights
in linear time. J. ACM, 46(3):362–394, 1999. 1

[Tho00] Mikkel Thorup. Floats, integers, and single source shortest paths. J. Algorithms,
35(2):189–201, 2000. 1

[Tho04] Mikkel Thorup. Integer priority queues with decrease key in constant time and the
single source shortest paths problem. J. Comput. Syst. Sci., 69(3), 2004. 1, 3

[Tho05] Mikkel Thorup. Worst-case update times for fully-dynamic all-pairs shortest paths. In
37th Annual ACM Symposium on Theory of Computing, STOC, 2005. 1

[ULH09] Ehsan Ullah, Kyongbum Lee, and Soha Hassoun. An algorithm for identifying
dominant-edge metabolic pathways. In International Conference on Computer-Aided
Design, ICCAD, 2009. 3

[Vas10] Virginia Vassilevska Williams. Nondecreasing paths in a weighted graph or: How to
optimally read a train schedule. ACM Trans. Algorithms, 6(4), 2010. 3

[vdBLN+20] Jan van den Brand, Yin Tat Lee, Danupon Nanongkai, Richard Peng, Thatchaphol
Saranurak, Aaron Sidford, Zhao Song, and Di Wang. Bipartite matching in nearly-
linear time on moderately dense graphs. In 61st IEEE Annual Symposium on Foun-
dations of Computer Science, FOCS, 2020. 1

[vdBNS19] Jan van den Brand, Danupon Nanongkai, and Thatchaphol Saranurak. Dynamic ma-
trix inverse: Improved algorithms and matching conditional lower bounds. In 60th
IEEE Annual Symposium on Foundations of Computer Science, FOCS, 2019. 28

[VW06] Virginia Vassilevska and Ryan Williams. Finding a maximum weight triangle in n3��

time, with applications. In 38th Annual ACM Symposium on Theory of Computing,
STOC, 2006. 3

49

[VW13] Virginia Vassilevska Williams and Ryan Williams. Finding, minimizing, and counting
weighted subgraphs. SIAM J. Comput., 42(3), 2013. 3

[VW18] Virginia Vassilevska Williams and R. Ryan Williams. Subcubic equivalences between
path, matrix, and triangle problems. J. ACM, 65(5), 2018. 3, 4

[VWY06] Virginia Vassilevska, Ryan Williams, and Raphael Yuster. Finding the smallest H -
subgraph in real weighted graphs and related problems. In 33rd International Collo-
quium on Automata, Languages and Programming, ICALP, 2006. 3

[VWY07] Virginia Vassilevska Williams, Ryan Williams, and Raphael Yuster. All-pairs bottle-
neck paths for general graphs in truly sub-cubic time. In 39th Annual ACM Symposium
on Theory of Computing, STOC, 2007. 28

[VWY09] Virginia Vassilevska, Ryan Williams, and Raphael Yuster. All pairs bottleneck paths
and max-min matrix products in truly subcubic time. Theory Comput., 5(1):173–189,
2009. 3

[VXXZ24] Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, and Renfei Zhou. New bounds
for matrix multiplication: from alpha to omega. In 2024 Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, SODA, 2024. 2, 4, 6

[Wil18] R. Ryan Williams. Faster all-pairs shortest paths via circuit complexity. SIAM J.
Comput., 47(5), 2018. 1

[Yus09] Raphael Yuster. Efficient algorithms on sets of permutations, dominance, and real-
weighted APSP. In 20th Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA, 2009. 3, 13

[Zwi04] Uri Zwick. A slightly improved sub-cubic algorithm for the all pairs shortest paths
problem with real edge lengths. In 15th International Symposium on Algorithms and
Computation, ISAAC, 2004. 1

50

A Omitted Proofs for Partially Dynamic Lower Bounds

In this appendix, we provide several omitted lower bounds for partially dynamic path problems.

A.1 Lower Bounds from the OMv3 Hypothesis

First, we show that bottleneck queries have the desired equivalence with OMv3.

Lemma 4.19. Consider the query (~ui,~vi, ~wi) and the query after updating the k-th coordinate of ~u.
The result of the query is b(s, t) � i · n+ (k + 1) if and only if

_

j,`

(~ui[k] ^ ~vi[j] ^ ~wi[`] ^A[k, j] ^A[j, `] ^A[`, k]) = TRUE.

Proof of Lemma 4.19. First, consider the converse direction. Let j, ` denote the indices such that
the statement is true. We claim the following (s, t)-bottleneck path exists in the graph and has
capacity i · n+ (k + 1),

⇣
s, a(1)k , a(2)k+i mod n, a

(3)
k , b(1)j , b(2)j+i mod n, b

(3)
j , c(1)` , c(2)`+i mod n, c

(3)
` , â(1)k , â(2)k+i mod n, â

(3)
k , t

⌘

We verify that this path exists and has the required capacity. (s, a(1)k) has capacity 1. Since
~ui[k] = TRUE, each edge in the sub-path

⇣
a(1)k , a(2)k+i mod n, a

(3)
k

⌘
exists and has capacity i·n+(k+1).

Next, A[k, j] = TRUE implies that the edge (a(3)k , b(1)j) exists with1 capacity. Since ~vi[j] = TRUE,

each edge in the sub-path
⇣
b(1)j , b(2)j+i mod n, b

(3)
j

⌘
exists and has capacity (i+ 1) · n. Then, A[j, `] =

TRUE implies that the edge (b(3)j , c(1)`) exists with 1 capacity. Since ~wi[`] = TRUE, each edge

in the sub-path
⇣
c(1)` , c(2)`+i mod n, c

(3)
`

⌘
exists and has capacity (i + 1) · n. Then, A[`, k] = TRUE

implies that the edge (c(3)` , â(1)k) exists with 1 capacity. Finally, as ~ui[k] = TRUE, we have the
sub-path

⇣
â(1)k , â(2)k+i mod n, â

(3)
k

⌘
with capacity i · n+ (k + 1). We conclude by observing that edge

(â(3)k , t) has 1 capacity.
Conversely, suppose b(s, t) � i · n + (k + 1). Then, since edges are directed left to right, there

is a path of the form,
⇣
s, a(1)i1

, a(2)i2
, a(3)i3

, b(1)i4
, b(2)i5

, b(3)i6
, c(1)i7

, c(2)i8
, c(3)i9

, â(1)i10
, â(2)i11

, â(3)i12
, t
⌘

achieving this capacity. In both incremental and decremental cases, at the time of the query after
updating k-th coordinate of ~ui during the OMv3 query ~ui,~vi, ~wi, the maximum weight of any edge
between A1⇥A2, A2⇥A3, Â1⇥Â2, and Â2⇥Â3 is i·n+(k+1). Furthermore, the only edges attaining
this weight are

⇣
a(1)k , a(2)k+i mod n

⌘
,
⇣
a(2)k+i mod n, a

(3)
k

⌘
,
⇣
â(1)k , â(2)k+i mod n

⌘
, and

⇣
â(2)k+i mod n, â

(3)
k

⌘
. If

these edges exist, then ~ui[k] = TRUE and k = i1 = i3 = i10 = i12. Note also that i2 = i11 = k + i
mod n.

During this query, in both incremental and decremental cases, the maximum weight of any edge
between B1 ⇥B2 and B2 ⇥B3 is (i+ 1) · n. Furthermore, the only edges attaining this weight are⇣
b(1)j , b(2)j+i mod n

⌘
,
⇣
b(2)j+i mod n, b

(3)
j

⌘
for bj 2 N(di). In particular, we have i4 = i6 = j and i5 = j+i

mod n for some ~vi[j] = TRUE. By a similar argument, i7 = i9 = ` and i8 = `+ i mod n for some
~wi[`] = TRUE.

Finally, it remains to show A[k, j] = A[j, `] = A[`, j] = TRUE. Since wt(a(3)k , b(1)j) =1 we have
A[k, j] = TRUE. A similar argument shows that A[j, `] = A[`, k] = TRUE.

51

Finally, we prove the lower bound for partially weight dynamic stEA under the OMv3 hypothesis.

Theorem 5.7. Under the OMv3 hypothesis, any algorithm computing incremental/decremental
stEA on directed graphs with polynomial preprocessing time requires n!�1�o(1) amortized update
and query time. Furthermore, each edge weight is incremented only once.

Proof of Theorem 5.7. We describe the reduction for incremental stEA (weight increasing), noting
that the decremental reduction can be obtained by modifying the reduction as in Theorem 3.8.

Suppose for contradiction there is an algorithm A with polynomial preprocessing time and total
update and query time O(n!+1�c

) for some c > 0. Consider an OMv3 instance with matrix A
and queries (~ui,~vi, ~wi)

n
i=1. Throughout the lower bound, assume that the matrices and vectors are

indexed 1 to n. We design an algorithm with polynomial preprocessing time and total update and
query time O(n!+1�c

), contradicting the OMv3 hypothesis.
We construct a graph with vertices,

{s} [(A1 [A2 [A3) [(B1 [B2 [B3) [(C1 [C2 [C3) [(Â1 [Â2 [Â3) [{t}

Each vertex set A1, A2, A3, B1, B2, B3, C1, C2, C3, Â1, Â2 and Â3 has n vertices. For each a 2 A, we
create a copy a(i) 2 Ai and a copy â(i) 2 Âi for i 2 {1, 2, 3}. Similarly, for each b 2 B and c 2 C,
we create a copy b(i) 2 Bi and c(i) 2 Ci for i 2 {1, 2, 3}. Initially, insert edges (s, a(1)) with weight
1 and edges (â(3), t) with weight 9 for all a 2 A. Furthermore, insert edges with 3 weight between
(a(3), b(1)) (respectively weight 5 between (b(3), c(1)) and weight 7 between (c(3), â(1))) if and only
if A[a, b] = TRUE (respectively if A[b, c] = TRUE and A[c, a] = TRUE). We also insert all edges
between A1 ⇥A2, A2 ⇥A3, B1 ⇥B2, B2 ⇥B3, C1 ⇥ C2, C2 ⇥ C3, Â1 ⇥ Â2, Â2 ⇥ Â3 with weight 0.

This creates a graph with O(n) vertices, so that by running A we can preprocess the graph in
polynomial time. We now proceed to the dynamic phase of the reduction.

Consider an OMv3 query ~ui,~vi, ~wi.

1. For each ~vi[j] = TRUE, increase the weights of
⇣
b(1)j , b(2)j+i mod n

⌘
and

⇣
b(2)j+i mod n, b

(3)
j

⌘
to 4.

2. For each ~wi[j] = TRUE, increase the weights of
⇣
c(1)j , c(2)j+i mod n

⌘
and

⇣
c(2)j+i mod n, c

(3)
j

⌘
to 6.

3. In the inner loop, we iterate over coordinates k of ~u in increasing order.

(a) If ~ui[k] = TRUE, increase the weights of
⇣
a(1)k , a(2)k+i mod n

⌘
,
⇣
a(2)k+i mod n, a

(3)
k

⌘

to 2 and increase the weights of,
⇣
â(1)k , â(2)k+i mod n

⌘
,
⇣
â(2)k+i mod n, â

(3)
k

⌘

to 8.
(b) Compute a(s, t) by querying A. If a(s, t) = 9, return TRUE.
(c) After the query, increase the weights of

⇣
a(1)k , a(2)k+i mod n

⌘
,
⇣
a(2)k+i mod n, a

(3)
k

⌘
,
⇣
â(1)k , â(2)k+i mod n

⌘
,
⇣
â(2)k+i mod n, â

(3)
k

⌘

to 10.

4. After all queries of this round, increase all weights of
⇣
b(1)j , b(2)j+i mod n

⌘
,
⇣
b(2)j+i mod n, b

(3)
j

⌘
,
⇣
c(1)j , c(2)j+i mod n

⌘
,
⇣
c(2)j+i mod n, c

(3)
j

⌘

for all ~ui[k] = ~wi[k] = TRUE to 10. Then, return FALSE.

52

The bottleneck of this algorithm is to run A, so the total query time is O(n2 · n!�1�c
) =

O(n!+1�c
).

Lemma A.1. Consider the query when iterating over di and ak. The result of the query is a(s, t) = 9

if and only if, _

j,`

(~ui[k] ^ ~vi[j] ^ ~wi[`] ^A[k, j] ^A[j, `] ^A[`, k]) = TRUE

Proof. Note that all edges into t have weight 9. Thus, the arrival time a(s, t) 2 {9,1}, and
a(s, t) = 9 if and only if there is a valid arrival path from s to t.

Suppose there is clause indexed by j, ` that is TRUE. Then, the following arrival path exists in
the graph,

⇣
s, a(1)k , a(2)k+i mod n, a

(3)
k , b(1)j , b(2)j+i mod n, b

(3)
j , c(1)` , c(2)`+i mod n, c

(3)
` , â(1)k , â(2)k+i mod n, â

(3)
k , t

⌘

We verify that this path exists and is valid. (s, a(1)k) has weight 1. Since ~ui[k] = TRUE,
each edge in the sub-path

⇣
a(1)k , a(2)k+i mod n, a

(3)
k

⌘
has weight 2. Next, A[k, j] = TRUE implies

that the edge (a(3)k , b(1)j) exists with weight 3. Since ~vi[j] = TRUE, each edge in the sub-path⇣
b(1)j , b(2)j+i mod n, b

(3)
j

⌘
has weight 4. Then, A[j, `] = TRUE implies that the edge (b(3)j , c(1)`) exists

with weight 5. Since ~wi[`] = TRUE, each edge in the sub-path
⇣
c(1)` , c(2)`+i mod n, c

(3)
`

⌘
has weight

6. Then, A[`, k] = TRUE implies that the edge (c(3)` , â(1)k) exists with weight 7. Finally, as ~ui[k] =

TRUE, we have the sub-path
⇣
â(1)k , â(2)k+i mod n, â

(3)
k

⌘
with weight 8. We conclude by observing that

edge (â(3)k , t) has weight 9.
Conversely, suppose a(s, t) = 9. Then, since edges are directed left to right, there is a path of

the form, ⇣
s, a(1)i1

, a(2)i2
, a(3)i3

, b(1)i4
, b(2)i5

, b(3)i6
, c(1)i7

, c(2)i8
, c(3)i9

, â(1)i10
, â(2)i11

, â(3)i12
, t
⌘

and is a valid arrival path.
In both incremental and decremental cases, at the time of the query after updating the k-th

coordinate of the i-th OMv3 query ~ui,~vi, ~wi, the only edges in A1 ⇥A2, A2 ⇥A3, Â1 ⇥ Â2, Â2 ⇥ Â3

with weight 2 are
⇣
a(1)k , a(2)k+i mod n

⌘
,
⇣
a(2)k+i mod n, a

(3)
k

⌘
,
⇣
â(1)k , â(2)k+i mod n

⌘
, and

⇣
â(2)k+i mod n, â

(3)
k

⌘
.

Note that all other weights have weight either 0 or 10, and thus cannot participate in any valid
arrival path (since edges into A1 have weight 1 and edges out of A3 have weight 3). If these edges
exist with weight 2, then ~ui[k] = TRUE and k = i1 = i3 = i10 = i12. The only valid edges between
B1⇥B2 and B2⇥B3 with weight 4 are

⇣
b(1)j , b(2)j+i mod n

⌘
,
⇣
b(2)j+i mod n, b

(3)
j

⌘
for ~vi[j] = TRUE (and

no other edges can participate in an arrival path since edges into B1 have weight 3 and edges out of
B3 have weight 5). Since these paths are vertex disjoint, we have i4 = i6 = j for some ~vi[j] = TRUE.
By a similar argument, i7 = i9 = ` for some ~wi[`] = TRUE.

Finally, it remains to show A[k, j] = A[j, `] = A[`, k] = TRUE. Since (a(3)k , b(1)j) form an edge,
we have A[k, j] = TRUE. A similar argument shows that A[j, `] = A[`, k] = TRUE.

From Lemma A.1, the above procedure solves the OMv3 instance, contradicting the OMv3

hypothesis.

53

A.2 Lower Bounds for Sparse Graphs

We have given strong conditional lower bounds for a variety of partially dynamic problems on dense
graphs, where m = ⇥(n2

). The following lemma shows that our lower bounds similarly apply to
graphs with all sparsties. In fact, we obtain a simple reduction for any graph problem where the
solution does not change when adding isolated vertices.

Proposition A.2 (Graph Sparsification). For each of the following problems:

1. stSP, SSSP on undirected, weighted graphs
2. nw-stSP, nw-SSSP on undirected, node-weighted graphs
3. stBP, SSBP on directed, weighted graphs

Suppose any incremental/decremental algorithm for the given problem requires nt�o(1) total up-
date time on n-vertex graphs.

Then, for any m 
�n
2

�
, any incremental/decremental algorithm for P requires mt/2�o(1) total

update time on n-vertex graphs with m edges.

Proof. Let m 
�n
2

�
and set n0 = b

p
mc  n. By assumption, any incremental/decremental

algorithm requires nt�o(1)
0 total time on n0-vertex graphs. Given any instance of a partially dynamic

n0-vertex graph we can construct a partially dynamic n-vertex graph by adding n � n0 isolated
vertices, which we will never add edges to. Suppose for contradiction there is an algorithm with
O(mt/2�c

) total time on the augmented graph for some c > 0. Then, we obtain an algorithm for
the n0-vertex graph simply by outputting the queries on the n0-vertex sub-graph of the augmented
n-vertex graph, obtaining an O(mt/2�c

) = O(nt�2c
0) total time algorithm, a contradiction.

54

	Introduction
	Variants of Shortest Paths in the Dynamic Setting
	Preliminaries
	Organization

	A Tight Lower Bound for Partially Dynamic Shortest Paths
	Node-Weighted Shortest Paths
	Faster Algebraic Algorithms for Partially Dynamic nwSSSP
	Conditional Lower Bounds for Partially Dynamic nwSSSP
	Non-Combinatorial Lower Bounds
	Lower Bounds under Minimum Witness Hypothesis
	Lower Bound for nw-SSSP

	Bottleneck Paths
	Incremental/Decremental Algorithm for stBP
	Incremental Algorithm for SSBP
	Partially Dynamic Algorithm for SSBP
	Fully Dynamic All-Pairs Bottleneck Paths
	Conditional Lower Bounds for Bottleneck Paths

	Earliest Arrivals (or Non-decreasing Paths)
	Decremental Algorithm for SSEA
	Conditional Lower Bound for Weight Dynamic Earliest Arrivals

	Omitted Proofs for Partially Dynamic Lower Bounds
	Lower Bounds from the OMv3 Hypothesis
	Lower Bounds for Sparse Graphs

