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Abstract In David and Toro (Calc Var 54(1):455-524, 2015) and David et al. (Adv
Math 350:1109-1192, 2019), the authors studied almost minimizers for functionals
of the type first studied by Alt and Caffarelli (J Reine Angew Math325:105—
144, 1981) and Alt, Caffarelli and Friedman (Trans Am Math Soc 282:431-461,
1984). In this chapter, we study the regularity of almost minimizers to energy
functionals with variable coefficients (as opposed to Alt and Caffarelli (J Reine
Angew Math325:105-144, 1981), Alt, Caffarelli and Friedman (Trans Am Math
Soc 282:431-461, 1984), David et al. (Adv Math 350:1109-1192, 2019), and David
and Toro (Calc Var 54(1):455-524, 2015) that deal only with the “Laplacian”
setting). We prove Lipschitz regularity up to, and across, the free boundary, fully
generalizing the results of David and Toro (Calc Var 54(1):455-524, 2015) to the
variable coefficient setting.
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1 Introduction

In this chapter, we provide an overview of almost minimizers of Bernoulli-type
functionals, with a focus on the results addressing the variable coefficient setting in
[10]. We start Sect. 2 with a history of the minimizing problems that inspired the
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study of almost minimizers, following the ground-breaking papers of Alt—Caffarelli
and Alt—Caffarelli-Friedman, [3, 4]: given a domain 2 C R" and functions g+ €
L°°(2), one minimizes

5 = [ (198 + 2000010 + 02 (00 () d

among allu € {u € LIIOC(SZ) : Vu e LQ(Q)} with u = ug on 0€2, for a given uy.
An overview of such minimizers and important results concerning them is described
in Sect. 2.1.

In Sect. 2.2, we introduce almost minimizers, first in the context of the Laplacian,
as considered by Anzellotti in [1], and then in the context of Bernoulli-type
functionals. We also mention related literature concerning almost minimizers to
other energy functionals and quasi-minimizers. We discuss in more detail the
papers of De Silva—Savin [14, 15], along with the work of David—Toro and David—
Engelstein—Toro [9, 17], which more directly relate to the work [10].

In Sect. 2.3, we introduce and motivate almost minimizers to a variable coeffi-
cient version of the Bernoulli-type functional previously described: one considers

almost minimizers to
Jaw) = /Q ({ACVa (), V() + g3 00 X101 () + 42 (0 <0y () v,

where A(x) = (a;j(x)) witha;; € C 02 (), A(x) symmetric, uniformly elliptic,
and g+ € L°°(2). In Sect. 2.3 we discuss related literature, in particular the papers
[25], which considers almost minimizers to a related variable coefficient energy,
[30], which assumes a priori Lipschitz regularity of almost minimizers to prove free
boundary regularity, [24], where the notion of w-almost minimizers is adapted to the
framework of multiple-valued functions in the sense of Almgren, and [31], where
the author considers vectorial “quasi-minimizers.”

In Sect. 3, we introduce our precise notions of almost minimizers in the variable
coefficient setting. In Sect.3.1, we address basic facts regarding the change of
coordinates that are used throughout [10]; in Sect. 3.2, we address the connection
between the “multiplicative” almost minimizers used in [9, 17, 25] and the “addi-
tive” almost minimizers introduced in [10]. In Sect. 4, we briefly discuss how the
continuity of almost minimizers is obtained in [10], and in Sect.5, we discuss
the C1-# regularity of almost minimizers in {# > 0} and {# < 0}. In Sect. 6, we
discuss the bulk of the technical results needed to obtain local Lipschitz regularity
for both the one-phase and two-phase problems. In Sect. 7, we discuss the first main
result of [10]: the local Lipschitz continuity of almost minimizers of the one-phase
problem. A sketch of the proof is provided. In Sect. 8, we discuss an analogue of
the Alt—Caffarelli-Friedman monotonicity formula for variable coefficient almost
minimizers. Finally, in Sect. 9, we provide a sketch of the proof of the second main
result of [10], the local Lipschitz continuity for two-phase almost minimizers.
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2 History

2.1 Minimizers

Before we discuss almost minimizers of Bernoulli-type functionals, let us first
introduce the minimizing problems from which they arose. Let 2 C R" be a
bounded, connected, Lipschitz domain, g+ € L°°(£2), and define the following set
of admissible functions:

K@ ={uell@ : Vuer’@].

In [3] and [4], the authors considered the problem of minimizing

Jw) = /Q (IVu (P + g3 () =0y (00 + 6% () ) () ) dx

among all u € K () with u = ug on 92, where ug € K(2). When g_ = 0
and up > 0, one obtains a so-called one-phase problem; otherwise, one obtains a
two-phase problem.

One-Phase Problem The paper [3] proved very important results, opening the way
to the study of more general Bernoulli-type functionals. First, minimizers of the one-
phase problem were proved to exist. Moreover, if # is such a minimizer, then u > 0,
u is subharmonic in €2, and Au = 0 in {# > 0}. In terms of optimal regularity, it
was proved in [3] that u € C 0’1(52). It was also shown that if 3¢ > 0 such that

loc
q+ > c4, then given x € {u > 0},

u(x) N
dist(x, 3{u > 0})

Furthermore, {# > 0} N Q is a set of locally finite perimeter, and d{u > 0} N Q is
(n — 1)-rectifiable.

Two-Phase Problem The ground-breaking paper [4] introduced several important
ideas. First, the authors proved that minimizers of the two-phase problem exist.
Moreover, it was shown that if u is a minimizer of the two-phase problem, then u®
are subharmonic in 2 and Au = 0 in {# > 0} U {# < 0}. As in the case of the one-
phase problem, minimizers of the two phase have the optimal regularity Cloo’cl (),

and if there exist c+ > 0 such that g+ > c4, then for any x € {ui > 0},

u*(x) N
dist(x, 3{u® > 0})

Furthermore, the positive and negative phases {u™ > 0} N Q are of locally finite
perimeter.
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Free Boundary In the case of the one-phase problem, the free boundary is defined
as I' = d{u > 0}. In terms of its regularity, one can show (see [3, 4, 7, 22, 32]) that
ifg, € CO7(Q)and g4 > c; > 0, then:

o Ifn=2,3,4:TisaC"# (n — 1)-dimensional submanifold.
o Ifn>5,then = RUS, where Risa C# (n — 1)-dimensional submanifold,
and S is a closed set of Hausdorff dimension less than or equal to n — 5.

In the case of the two-phase problem, the free boundary is defined as I' = d{u >
0} U o{u < 0}. In this case, one can show (see [3, 4, 7, 22, 32]) that:

e fn=234:TisaC"? (n — 1)-dimensional submanifold.

loc
e Ifn>5thenl’ =R US, where R is a Cllo’c’g (n — 1)-dimensional submanifold,
and S is a closed set of Hausdorff dimension less than or equal to n — 5.

Moreover, a very interesting result De Silva—Jerison [12] shows the existence of a
non-smooth minimizer for J in R’ such that I" is a cone. Consequently, S # @ when
n=>717.

Intimately connected to the energy functionals studied by Alt and Caffarelli [3],
Alt et al. [4] is [13]. Here, the authors consider local minimizers of

/ <|VM|2 + in{u>0} + q%X{u<0}) dx.
Q

We say that xg € I' is a two-phase point if xo € d{u > 0} N d{u < 0} N Q.
The collection of all two-phase free boundary points is called the two-phase free
boundary.

Assuming xo € I is a two-phase point, the authors of [13] proved that Jry > 0
such that

o{u > 0} N B(xo, r0), d{u < 0} N B(xg, ro)

are C1- graphs for some 7 > 0.
Moreover, o{u > 0} N Q = Reg(d{u > 0}) U Sing(d{u > 0}), where:

* Reg(d{u > 0}) is a relatively open subset of d{u > 0} N  and is locally C!-"
for some 1 > 0. Also, the two-phase free boundary is regular.

* Sing(d{u > 0}) is a closed subset of d{u > 0} N Q of Hausdorff dimension at
most n — 5. Also, In* € [5, 7] such that:

— Ifn < n*, then Sing(3{u > 0}) = 0.

— If n = n*, then Sing(d{u > 0}) is locally finite in 2.

— If n > n*, then Sing(d{u > 0}) is a closed (n — n*)-rectifiable subset of
d{u > 0} N , with locally finite H""" measure.
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2.2 Almost Minimizers

Having discussed motivating minimizing problems, we start our discussion of
almost minimizers with the simplest type of almost minimizers, considered in the
context of the Laplacian. For this, we need to first introduce local minimizers.

Let © C R" be a bounded domain. Given u € W12(Q), consider its Dirichlet
energy

Jo(u) = / |Vu(x)|?dx.
Q

Definition 2.1 We say u € W,,2(Q) is a local minimizer of Jg if for any ball
B(xg,r) € 2, we have

JB(xo,r)(u) =< JB(xo,r)(U) 2.1)

forany v € u + WOI’Z(B(XO, r)).

Notice that local minimality implies the Laplacian is equal to zero.

In [2], Anzellotti introduced the concept of almost minimizers for energy
functionals. Intuitively, a function is an almost minimizer for Jq if certain types
of error that depend on r are allowed to be present in (2.1). To formalize this, let us
specify what we require of the error:

Definition 2.2 Given ryp > 0, a function w : (0,r9) — [0, co) is a modulus of
continuity, or gauge function, if w(r) is monotone non-decreasing and w(0+) =
lim w() =0.

r—0+

Definition 2.3 Let Q2 C R” be an open set. Given rp > 0 and a gauge function w (r)
defined on (0, r9), we say u € WIL’CZ(Q) is a multiplicative almost minimizer, or w-
multiplicative almost minimizer for the functional Jg, if for any ball B(xg,r) € Q
with 0 < r < rg, we have

TGy @) < (1 + @ () Iy (V) forany v e u+ Wy 2(B(xo,r)).  (2:2)

Heuristically, the energy of u on B(xp,r) might not be minimal among all
competitors v € u + W(}’Z(B (xo, 1)), but almost minimal.

Almost minimizers have been receiving increasing attention, due to three
important facts. First, they can be viewed as perturbations of minimizers: they are
natural to consider once the presence of noise or lower order terms in a problem
is taken into account. Second, minimizers with certain constraints, for example,
with fixed volume, or solutions of the obstacle problem, can be realized as almost
minimizers of unconstrained problems [2]. Third, the study of almost minimizers
requires an analysis from a different point of view, leading to the development of
different techniques that also lead to results about minimizers.
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Almost minimizers of energy functionals of the type

/ f(x,u, Du)dx
Q

were studied in [16, 18, 23, 29]. Related notions were also studied in the context
of geometric measure theory in [1, 5, 6, 24]. It is also worth mentioning that the
concept of almost minimizers is related to that of quasi-minimizers, introduced in
[26, 27], see also the quasi-minimizers from [31].

For energy functionals exhibiting free boundaries, almost minimizers have been
addressed only more recently in [9, 10, 14, 15, 17,25, 30], and in the case of obstacle-
type problems, in [19] (for the thin obstacle problem), [20] (for the fractional
obstacle problem), and [21] (for the variable coefficient thin obstacle problem).

We briefly describe the results of [9, 14, 15, 17], as this will enlighten their
differences to [10], which we will describe in more detail in the rest of this chapter.

In [14], the authors considered thin one-phase almost minimizers, that is, almost
minimizers of the energy

Eqo(u) :/Q|Vu(x)|2dx+7-["({(x,0) €Q : u(x,0) > 0}.

1
The authors prove optimal Cloo’f (£2) regularity of almost minimizers, along with
partial regularity of the free boundary. More precisely, they show that the free
boundary I'(u) = d{u > 0} is C'* regular outside a closed singular set of
Hausdorff dimension n — 3. This allows them to prove the C1'% regularity of
Lipschitz free boundaries.

In [15], the authors addressed almost minimizers of the one-phase free boundary
problem given by the Alt—Caffarelli functional. That is, they studied almost

minimizers of the energy
Jow) = / (IVu(x)I2 + X{u>o}(x)) dx foru > 0.
Q

Their first main theorem proves the optimal Cl(())c1 (€2) Lipschitz regularity of
almost minimizers. Regarding the free boundary I'(«) = d{u > 0}, the authors
prove an improvement of flatness result that leads them to showing the free boundary
is locally C!¢ regular outside a closed singular set of Hausdorff dimension n — 5,
also allowing them to prove the C* regularity of Lipschitz free boundaries.

In the case of [17] and [9], the authors considered the following energy:

Ja(u) = /Q (Va2 + g3 ) xu=0) (00 + 42 (@) <oy ) i,

where g+ € L°°(2). In [17], the authors proved optimal regularity CO’I(Q) of

loc
almost minimizers. To understand the challenges involved in the proof of optimal

regularity for almost minimizers, it is important to notice that in [3, 4], the following
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0,1

facts were key ingredients in the proof of the optimal Cj .

minimizers:

(2) regularity for

(a) If u is a minimizer, then u™ are subharmonic in €.

(b) If u is a minimizer, then u is harmonic in {® > 0}.
(c) In the case of the two-phase problem, one uses the Alt—Caffarelli monotonicity
formula. This formula says that the functional

1 |Vut(y)|? |Vu=(y)|?
CD(I‘) = 4 / n—Zdy / n—Zdy
r B (x) X — ¥l B (x) X — ¥l

is monotone non-decreasing as a function of r.

In contrast, when working with almost minimizers, one does not have (a), (b), or
(c), as almost minimizers do not solve partial differential equations as minimizers
do. To bypass this challenge, the use of good comparison functions is required. As

the goal is to prove CIOO’C1 (£2) regularity of almost minimizers, it suffices to control,
1

in a careful way, w(x, 5) = (fB(x’S) |w|2)2 fors € (0, ) if B(x,r) C Q.

Through comparisons with harmonic replacements and an iteration scheme, the
authors proved in [17] the optimal regularity for almost minimizers of the one-phase
problem. In the case of the two-phase problem, more was needed. First, the authors
of [17] analyzed the interplay between

1

1 1 2
mix, r) = —][ u, n(r.r)= —][ ul, o) = 7[ vul?)
r dB(x,r) r dB(x,r) B(x,r)

(2.3)

This analysis, together with an almost Alt—Caffarelli-Friedman monotonicity for-
mula, allowed them to prove the optimal regularity of almost minimizers of the two-
phase problem. More precisely, the almost Alt—Caffarelli-Friedman monotonicity
formula proved in [17] states that if u is an almost minimizer for J in €2, then
35 > 0 such that for K € Q,drg > 0, Cx > 0 such that for all x € I'(u) N K, for
all0<s <r <rg,

D(s) < ®(r) + Ckr?,

where ®(r) is defined as in [4].

In terms of the free boundary of almost minimizers, in [17], the authors first
proved a non-degeneracy result. Assuming # is an almost minimizer of the one-
phase problem, g4 € L°°(2) N C(2) and g+ > c4 > 0, [17] proved that there

exists n > 0 so that if xo € T" and B(xg, 2rg) C 2, then for 0 < r < r,

1
—][ ut =n
r JaB(xy,r)
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and u(x) > gdist(x, ofu > 0}), for x € B(xg,rg) N {u > 0}. Under the same
assumptions, [17] also show {# > 0} C Q2 is “locally” NTA. Moreover, if xo € T’
with B(xp, 2rg) C €2, then there exists an Ahlfors regular measure (o supported in
B(xg, ro) N T'. Furthermore, I' is (n — 1)-uniformly rectifiable, and {# > 0} N Q is
a set of locally finite perimeter.

With respect to the two-phase problem, assume g+ € L>®(22) N C(Q) and g+ >
co > 0. In [9], the authors proved that I' is locally Ahlfors regular and uniformly
rectifiable. In the case of the one-phase problem, [9] assumed g+ € L°*°NC? (£2) and
g+ > c; > 0. They proved that I' = R US, where R is a C'-# (n — 1)-dimensional
submanifold and S is a closed set with H"~'(S) = 0, following the result for
minimizers. Furthermore, S = ¢ when n = 2, 3, 4. In terms of the dimension of
the singular set, let k* be the smallest natural number such that there exists a stable
one-homogeneous globally defined minimizer u : R¥" — R that is not the half-
plane solution. From the work of Caffarelli-Jerison—Kenig, Jerison—Savin, and De
Silva—Jerison, one knows that 4 < k* < 7. Let u be an almost minimizer of J+
in Q, with g1 € L® N CY () and g+ > ¢4 > 0. David et al. [9] proved that if
s>n—k¥* then ST+t \R) =0.

We also mention the recent preprint [11], where the authors construct a family
of minimizers to an Alt—Caffarelli-Friedman-type functional whose free boundaries
contain branch points in the strict interior of the domain. They also give an example
showing that branch points in the free boundary of almost minimizers of the same
functional can have very little structure.

2.3 Almost Minimizers with Variable Coefficients

In contrast to the energy considered in [9, 15, 17], and [10] dealt with a variable
coefficient version of this energy:

Jo(u) = /Q ((A(X)VM(X), Vu(x)) + g3 () x>0y (x) +613(X)X{u<0}(X)> dx,

where A(x) = (a;j(x)) with a;; € C 0.¢(Q), A(x) symmetric, uniformly elliptic,
and g+ € L°°(Q). The point of this generalization is to allow anisotropic energies
that depend mildly on the point of the domain, so that in particular the classes of
minimizers considered in [10] are essentially invariant by C'*¢ diffeomorphisms.

Almost minimizers to functionals of Alt—Caffarelli or Alt—Caffarelli-Friedman
type with variable coefficients arise naturally in measure-penalized minimization
problems for Dirichlet eigenvalues of elliptic operators (e.g., the Laplace—Beltrami
operator on a manifold; see [28] for a treatment of the analogous measure-
constrained problem).

In the following sections, we describe the developments in [10]. These address
the regularity of almost minimizers to energy functionals with variable coefficients
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(as opposed to [3, 4, 9, 15, 17], which deal only with the “Laplacian” setting). First,
we discuss the connection of [10] to other literature.

Variable coefficient problems have been studied before: Caffarelli, in [8], proved
regularity for solutions to a more general free boundary problem. De Queiroz and
Tavares, in [25], provided the first results for almost minimizers with variable
coefficients: the authors proved regularity away from the free boundary for almost
minimizers to the same functionals considered in [10] (they considered a slightly
broader class of functionals, of which the functionals from [10] are a limiting case).
More precisely, the authors prove in [17] regularity away from the free boundary
I'(u) = 0{u > 0} U {u < 0} for almost minimizers of

Ja(u) = /Q ({AC) V), V(@) + g+ ()@ @) +q-(0) ™ () ) dx,

where A(x) = (a;;(x)) with g;; € Cloo’g (2), A(x) is symmetric, uniformly elliptic,
and g+ € L®°(Q) for0 < y < 1 and g+ > g9 > 0. The work of [10] differs
from that of [25] in two ways: first, the definition of almost minimizing in [10] is, a
priori, broader than that considered in [9, 14, 15, 17, 19, 25] (for more discussion,
see Sect. 3.2 below). Second, and more significantly, [10] prove Lipschitz regularity
up to, and across, the free boundary, in contrast to [25], thus fully generalizing the
results of [17] to the variable coefficient setting.

Another connected paper is [30]. There, the authors assume a priori Lipschitz
regularity of almost minimizers to the functionals studied in [10]. With this
assumption, they prove C1¢ regularity of the free boundary, in dimension two,
for almost minimizers of the constrained one-phase Alt—Caffarelli and the two-
phase Alt—Caffarelli-Friedman functionals for an energy with variable coefficients.
The paper [10] shows (as alluded to in their paper) that the a priori Lipschitz
assumption is redundant. Note that the class of almost minimizers considered in
[30] is equivalent to the one considered in [10].

Besides including the notion of almost minimizers from [9, 14, 17, 25], or [15],
the definition of almost minimizers from [10] also connects to the work of [24].
There, the authors extend the notion of w-minimizers introduced by Anzellotti in
[1], to the framework of multiple-valued functions in the sense of Almgren, and
prove Holder regularity of Dirichlet multiple-valued (c, o)-almost minimizers.

Finally, in [31], the author studies the regularity of shape optimizers for variable
coefficient divergence form elliptic operators (e.g., the domain of area one that
minimizes the sum of the first £ Dirichlet eigenvalues of a given operator). In
particular, Trey adapts the approach of [17] to prove results of similar flavor to the
ones from [10], but for vectorial “quasi-minimizers” of (3.2), with the additional
property that they are solutions of a divergence form elliptic PDE with right-hand
side. The results from [10] neither imply nor are implied by those of [31, Theorem
1.2], due to the different notions of “minimization” used and to the presence of an
underlying PDE in [31].
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3 Preliminaries

As in [10], consider a bounded domain 2 C R”, n > 2, and study the regularity of
almost minimizers of the functional

J(u)=/Q(A(x)Vu(x),Vu(x))+qi(X)X{u>0}(x)+q3(X)X{u<0}(X), (3.1

where ¢, g— € L°°(2) are bounded real-valued functions and A € C O (Q: R
is a Holder continuous function with values in symmetric, uniformly positive
definite matrices. Let 0 < A < A < oo be such that 1|£]? < A(x)& - £ < A|€|? for
all x € Q.

We will also consider the situation where u > 0 and g_ = 0, and

T = /Q (AVit, Vi) + 02 ()Xo, (32)

where ¢+ and A are as above.

Definition 3.1 (Definition 1 of Almost Minimizers, with Balls) Set

Kioe(Q) = {u €Ll (Q) VB r) € Vue LXBx, r))} , (3.3)
K.(2) = {u € Kioe(Q) : u(x) > 0 almost everywhere on Q} , (3.4)

and let constants k € (0, +00) and @ € (0, 1] be given.

We say that u is a (k, «)-almost minimizer for J; in Q if u € K, (Q) and
VB(x,r) € Qand Yv € L'(B(x,r)) such that Vv € L2(B(x, r)) and v = u on
dB(x,r),

Jg ) < Jg () +er" (3.5)

where
Ji ) = /B . ((A0Vee), Vo) + 62 (@) xp=00) dx. (36)

Similarly, we say that u is a (x, @)-almost minimizer for Jp in Q if u € Kjoc(€2)
and VB(x,r) € Qand Vv € L' (B(x, r)) such that Vv € L?(B(x, r)) and v = u on
dB(x,r),

JB,x,r(u) < JB,x,r(v) + Krn+a’ 3.7

where
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Iner@= [ (AU, Vo) + 4 D000+ W01 d
’ (3.8)

This definition differs from the one found in [17] (or [25]), even when A = [
(see Sect.3.2). Let us already comment that the definition given by (3.7) is more
general than that of [17].

When working with variable coefficients, it is very convenient to work with a
definition of almost minimizers that considers ellipsoids instead of balls. For this
effect, we define

T,(») = A2 -0 +x, T7'0)=AY200 - x) +x,

E (x,r) =T ' (B(x,r)). (3.9)
Note that
Ex(x,r) C B(x, AY?r) and B(x,r) C Ex(x,2"12p). (3.10)

For completeness, we include here what it means to be an almost minimizer with
respect to ellipsoids.

Definition 3.2 (Definition 2 of Almost Minimizers, with Ellipsoids) Let
Kioc(Q, E) = [u € Ll (Q) : Vu € L*(Ey(x, 1)) for Ex(x,7) C sz} G.11)
and
Kl‘gc(Q, E) = {u € Kioc(2, E) : u(x) > 0 almost everywhere on Q} . (3.12)

We say that u is a («, «)-almost minimizer for JZ: inQifu e K’ (Q,E)and

loc

Jg o ) < TE () + e (3.13)

for every ellipsoid such that E,(x,r) € Q and every v € LY(E,(x, r)) such that
Vv e L%(E,(x,r)) and v = u on dE, (x, r), where

Jr ) = /E o ((A(x)Vv(x), Vv(x))+qi(x)x{v>o}(x)) dx. (3.14)

Similarly, we say that u is a (x, @)-almost minimizer for Jg in Q if u €
Kioc(£2, E) and

JEx, W) < Jg (V) + &t (3.15)
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for every ellipsoid with E,(x,r) € Q and every v € L' (E,(x, r)) such that Vv €
Lz(Ex(x, r))and v =u on 0 E,(x, r), where

JExr(v) = /E ( )((A(va(x),vU(x))+qi(x>X{v>0}<x>+q3(x)xw<0}(x)).
e (3.16)

Remark 3.1 The following summarizes the relationship between Definitions 3.1
and 3.2:

e When A = I, both definitions coincide.

* For a general matrix A, if u is a (k, o)-almost minimizer for Jp in €2 according to
Definition 3.1, then it satisfies (3.13) in Definition 3.2 (with constant A *+®)/2
and exponent «) whenever x and r are such that B(x, AY?r) c Q.

e If u is a (k, a)-almost minimizer for Jg in © according to Definition 3.2, then
it satisfies (3.5) in Definition 3.1 (with constant A~"*®1/2x and exponent o)
whenever x and r are such that B(x, A/20~12r) c Q.

Given that we are mostly interested in the regularity of almost minimizers away
from 9€2, these definitions are essentially equivalent. Bearing this in mind, we work
with almost minimizers according to Definition 3.2, recalling that such functions
satisfy (3.5) when B(x, A/?A~1/2r) ¢ Q. We will most often not write “(, c)-
almost minimizer,” but only “almost minimizer,” and we will drop the subscripts B
and E from the energy functional.

Notation We write B(x,r) ={y e R" : |y —x| <r}and 0B(x,r) ={y e R" :
ly — x| = r}. We will consider A € C%%(Q; R"*") a Holder continuous function
with values in symmetric, uniformly positive definite matrices, and 0 < A < A <
oo such that A|E|> < A(x)E - & < A|&|? for all x € Q. Additionally, g+ € L®(Q)
will be bounded real-valued functions. We also refer to

Te(y) = AP0 —x) +x, T () = A2y —x) +x,

Ex(x,r) = T, (B(x,r)). (3.17)
Moreover, we will write

uy(y) = u(Tx_l(y)), (gx)+(y) = qi(Tx_l(y)),
Ac(y) = ATV2) AT ) AT (x). (3.18)

Notice that T, (x) = x and A, (x) = I.
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3.1 Coordinate Changes

Compared to [17] and [9], the proofs of [10] use two new ingredients: the good
invariance properties of our notion with respect to bijective affine transformations,
and the fact that the slow variations of A allow us to make approximations by
freezing the coefficients. We take care of the first part in this subsection.

Many of our proofs use the affine mapping 7 to transform our almost minimizer
u into another one u,, which corresponds to a new matrix function A, (y) that
coincides with the identity at x. In this subsection, we check that our notion of
almost minimizer behaves well under bijective affine transformations. Our second
definition, with ellipsoids, is more adapted to this.

Lemma 3.1 Let u be a (k, «)-almost minimizer for Jg (or J;) in Q C R". Let
T : R" — R”" be an injective affine mapping, and denote by S the linear map
corresponding to T (i.e., Tx = Sx + zo for some zg € R"). Alsolet0 < a < b <
+00 be such that a|&| < |S&| < bl&| for & € R". Then define functions ur, qr,+,
qr,— on Qr =T () by

ur(y) = u(T~1(y)) and qr +(y) = g=(T~'(y)) fory € Qr, (3.19)
and a matrix-valued function At by
Ar(y) = SAT'y)S" fory e Qr, (3.20)

where S' is the transposed matrix of S.
Then ur is a (k,a)-almost minimizer of Jg T (or J;T) in Qr, according to
Definition 3.2, where Jg s (or Jl;f ) is defined in terms of At and the qr ., Le.,

Jp.s(v) = / (Ar()T00). To0)) + @ o D xiv=0) () + 22— (D xio<01 ) .
(3.21)
and k = k|detT|.

This lemma says that under an affine change of variables, almost minimizers
are transformed to almost minimizers for a modified functional. Its proof (see [10])
shows why Definition 3.2 is natural. Lemma 3.1 is applied almost exclusively in the
following circumstances: let x € €2, and take S = AV 2(x). In this case, T (y) =
x 4+ S(y — x), we recognize the affine mapping 7, from (3.17), and then ur = u,
and A7(y) = Ax(y) (from (3.18)). The advantage is that A7 (x9) = I, and simpler
competitors can be used in the definition of almost minimizer.
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3.2 “Additive” Almost Minimizers

Let us now address the differences between the definition of almost minimizers
used in [10] under (3.7) or (3.15) and the definition of an almost minimizer in [17]
(similarly used in [9, 14, 25]). Recall that when A = I, being an almost minimizer
for Jg is equivalent to being an almost minimizer for Jp, and that in [17] (with
A = I), u was an almost minimizer for Jg if, instead of satisfying (3.15) for all
admissible v, it satisfied

JExr(u) < (L +kr®) g« r (V) (3.22)

(and similarly for Jl;f). Here A is variable, and we stick to Jg (Jg would work
the same way). Let almost minimizers in the sense of (3.15) be additive almost
minimizers, whereas almost minimizers in the sense of (3.22) are multiplicative
almost minimizers.

In [10], we prove results for additive minimizers, first showing that multiplicative
almost minimizers are also additive almost minimizers. To conclude this, we first
need to show that multiplicative almost minimizers, in the variable coefficient
setting, obey a certain decay property. This is done through the next Lemma (see the
proof in [10]). With this result in hand, we showed in [10] that every multiplicative
almost minimizer is actually an additive almost minimizer, reducing our study to the
case of additive minimizers, see Lemma 3.3 below.

Lemma 3.2 Let u be a multiplicative almost minimizer for Jg in 2. Then 3C > 0
such that if x € Q and r > 0 are such that Ex(x,r) C Q, then for0 < s <r,

1/2 1/2
(][ |Vu|2) <C (f |Vu|2> + Clog(r/s). (3.23)
Ey(x,s) Ey(x,r)

Lemma 3.3 Let u be a multiplicative almost minimizer of Jg in Q2 with constant k
and exponent o, and let Qcc Qbean open subset of 2 whose closure is a compact
subset of Q. Then u is an additive almost minimizer of Jg in Q, with exponent o /2
and a constant K that depends on the constants for J, u, and Q.

Given this result, we restrict ourselves to working with additive almost minimiz-
ers and refer to them simply as almost minimizers.

4 Continuity of Almost Minimizers

Given the equivalence between almost minimizers of Jp and Jg, we omit the
subscript. Inspired by the ideas of [17], we first prove in [10] the continuity of almost
minimizers for J and JT:
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Theorem 4.1 Almost minimizers of J are continuous in Q. Moreover, if u is an
almost minimizer for J and B(xg, 2rg) C K2, then there exists a constant C > 0
such that for x, y € B(xg, ro)

lu(x) — u(y)| < Clx — y| 1+log< 270 ) . (4.1)
[x — |

A simple consequence of Theorem 4.1 is:

Corollary 4.1 If u is an almost minimizer for J, then for each compact K C €,
there exists a constant Cg > 0 such that for x,y € K,

lu(x) —u(y)| = Cxlx =yl (1 +

log : . 4.2)
lx — ¥l

5 Almost Minimizers are C1*f in {u > 0} and in {z < 0}

While our final goal is to prove Lipschitz regularity also across the free boundary,
we first prove in [10] Lipschitz bounds away from the free boundary. Note that since
u is continuous, {# > 0} and {u < 0} are open sets.

Theorem 5.1 Let u be an almost minimizer for J (or J*) in Q. Then u is locally
Lipschitz in {u > 0} and in {u < 0}.

This is done by estimating the energy of the almost minimizer # in comparison
to that of the harmonic replacements of u on B(x, r), first under the assumption
that A(x) = I, together with careful iterations. Finally, a careful analysis of how to
address the case A(x) # I, which involves applying the previous case to u, (defined
in 3.18), completes the proof.

We then improve Theorem 5.1 and prove that u is C'*# away from the free
boundary. Initially, we wanted bounds on averages of |Vu|?, and now we want to
be more precise and control the variations of Vu. Our main tool is a (more careful)
comparison with the harmonic approximation (u,)}, where u, was defined in 3.18
and (u,)} denotes the harmonic function on B(x, r) with boundary data u,.

Theorem 5.2 Let u be an almost minimizer for J in 2 and set B = =5 Then u

is of class CVP locally in {u > 0} and in {u < O}.
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6 Estimates Toward Lipschitz Continuity

In this section, we discuss some technical results needed to obtain local Lipschitz
regularity for both the one-phase and two-phase problems.
Define the quantities

b(x,r) :][ uy and bT(x,r) :][ iy, (6.1)
dB(x,r) 0B(x,r)

where we recall that uy = u o TX_1 and T, is the affine mapping from (3.17). We
sometimes write b(uy, x, r) and b (uy, x, r) to stress the dependence on u.

One has to distinguish two types of pairs (x, r), for which we have to use different
estimates. For constants 7 € (0, 10_2), Co > 1,Cy = 3,and ro > 0, we study the
class G(z, Co, Cy, ro) of pairs (x,r) € Q x (0, ro] such that

E (x,2r) C Q, (6.2)
Cot ™" (1 + r%w(uy, x, )2 < r 'b(x, r)| (6.3)

(recall the definition of w from (2.3)) and
bt (x,r) < Ci|b(x,r)|. (6.4)

We force r < rg to have uniform estimates. We end up choosing T very small,
50 (6.3) says that the quantity r ! |b(x, )| is as large as we want. This quantity has
the same dimensionality of the expected variation of # on B(x, r). In addition, (6.4)
says that b accounts for a significant part of b=, which measures the average size of
|u|. We mostly expect this to happen only far from the free boundary, and the next
lemmas go in that direction.

One of the challenges of the variable coefficient setting stems from the fact that
one has to consider different centers x and at the same time also consider various
ellipsoids E,(z, p), with z near x, with different orientations. Set

1
k= 6,\1/2/\—1/2, (6.5)

which we choose like this so that

E.(z,kr) C B(z, Al/zkr) C Ex(x,r/2) whenever x € Qand z € E,(x,r/3).
(6.6)
We start with a self-improvement lemma.

Lemma 6.1 Assume u is an almost minimizer for J in Q. For each choice of
constants C; > 3 and ry, there is a constant 11 € (0, 10_2) (which depends
only on n,k,a,rg, Ci, A and A), such that if (x,r) € G(z, Co, C1, ro) for some
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choice of T € (0,711) and Cy > 1, then for each z € Ex(x,tr/3), we can find
p; € (tkr/2, tkr) such that (z, p;) € G(t, 10Cy, 3, ro). Here k is defined as in
(6.5) and satisfies (6.6).

Lemma 6.2 Let u, x, r satisfy the hypothesis of Lemma 6.1; in particular (x,r) €
G(z, Cy, Cy, 1) for some Cy > 1, C1 > 3, and t < 11. Recall that b(x, r) # 0 by
(6.3). If b(x,r) > 0, then

u>0onE.;(x,tr/3) and u > 0 almost everywhere on Ey(x, tr/3). (6.7)
Similarly, if b(x,r) < 0O, then
u <0on E(x,tr/3) and u < 0 almost everywhere on E,(x, tr/3). (6.8)

For the next lemma, we use Lemma 6.2 to get some regularity for u near a point x
such that (x, r) € G(z, Cy, Cy, rp), with the same method as for the local regularity
of u away from the free boundary.

Lemma 6.3 There exist constants k1 € (0, k/2), depending only on A and A, and
7y € (0, 71), with t1 as in Lemmas 6.1 and 6.2 with the following properties. Let u be
an almost minimizer for J in Q. Let (x,r) € G(t, Co, C1, ro) for some t € (0, 12)
and Cy > 1. Then for z € B(x, tr/10) and s € (0, k1tr),

w,z,5) < C (r_%w(ux,x,r) +r%), 6.9)
and fory,z € B(x, tr/10),
) —u@| = € (v 2o x,r) +r%) Iy =z, (6.10)

Here C = C(n,k,a, M, A, ro). Finally, there is a constant C(t,r) depending on
n,K,o,rg, T,r, A, A, such that

IVu(y) — Vu@)| < C(r, r)((ux, x,r) + D]y — 2/, (6.11)
forany y, z € B(x, tr/10), where as before = ﬁ
The next lemma allows us to conclude that (x, p) € G(z, Cy, 3, ro), provided we

have certain estimates on b(uy, x, r), and w (i, x, ).

Lemma 6.4 Let u be an almost minimizer for J in Q. There exists Ko =
Ko(A, A) = 2 such that for each choice of y € (0,1), T > 0, and Cy > 1, we
can find ry, n small and K > 1 with the following property: if x € Q andr > 0 are
such that 0 < r <rg, B(x, Kor) C Qand

|b(’/lx,x,r)|277(1+w(ux,x,r)), (612)
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and
oy, x,r) = K, (6.13)

then there exists p € (%, nr) such that (x, p) € G(z, Co, 3, ro).

7 Local Lipschitz Regularity for One-phase Almost
Minimizers

The last intermediate result needed to obtain optimal regularity is the following:

Lemma 7.1 Let u be an almost minimizer for J* in Q. Let 6 € (0, 1/2). There
existy >0, Ky > 1, € (0,1), and r; > 0 such that if x € Q and0 < r < ry are
such that B(x,r) C Qy,

b(uy,x,r) <yr(l+w(uy, x,r)), (7.1)

and
oy, x,r) = Ky, (7.2)

then
oy, x,0r) < Bw(uy, x,1). (7.3)

We are ready to combine all of the previous lemmas to obtain our main result for
almost minimizers of the one-phase problem:

Theorem 7.1 Let u be an almost minimizer for J* in Q. Then u is locally Lipschitz
in 2.

We want to show that there exist r, > 0 and C, > 1 (depending on n, «, &, A, A)
such that for each choice of xg € 2 and ry > 0 such that ry < rp and B(xg, K2rg) C
2, where K> is as in Lemma 6.4,

lu(x) — u(y)l = Ca(w(uxy, X0, 2r0) + Dlx — y| for x, y € B(xo, ro). (7.4)

Sketch of the Proof Let (x, r) be such that B(x, Kor) C Q. We want to use the
different lemmas above to find a pair (x, p) that allows us to control u. Pick 6 = 1/3,
and let 8, y, K1, r1 be as in Lemma 7.1.

Let t = 12/2, where 12 € (0, t1), and 77 is the constant that we get in Lemma 6.1
applied with C; = 3 and rp = 1. Here 17 is the corresponding constant that appears
in Lemma 6.3. Let now rg, 1, K be as in Lemma 6.4 applied to Co = 10, and to t
and y as above. From Lemma 6.4, we get a small r,,. Set
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K3 > max(Ky, K), and r; < min(ry, ry). (7.5)

Let r < rp. The proof of the theorem then relies on the analysis of three cases:

Case 1:
w(uxvxar)2K3 (76)
b(uy,x,r) = yr(l +w(uy, x,r))
Case 2:
w(”x»xar) EK?’ (77)
b(uyx,x,r) <yr(l+ow(uy,x,r))
Case 3:
w(uy, x,r) < Kj. (7.8)

Case 1 ends up yielding additional regularity, as by Lemma 6.3 we know that u is
C!# in a neighborhood of x.
In the two remaining cases, we set
re =0 =375 k>0.
Our task is to control w(uy, x, r). If the pair (x, ry) ever satisfies (7.6), we denote
kstop the smallest integer such that (x, ry) satisfies (7.6) (notice that k > 1, since we
are not in Case 1). Otherwise, set ksgop = 00.

Let k < ksiop be given. If (x, ) satisfies (7.7), we can apply Lemma 7.1 to it.
Therefore,

@y, X, Thr1) < Bo(uy, X, 1g). (7.9)
Otherwise, (x, i) satisfies (7.8) (since k < kgop). Then
1/2
oy, X, Ijy1) = f Vur?) <320y x, ) <32K3. (7.10)
B(x,rk+1)
By (7.9) and (7.10), we obtain that for 0 < k < kstop,
oy, x, 1) < max (B (ur, x, 1), 39 K3)

If kgtop = 00, this implies that lim supy_, o, @ (uyx, x, 1) < 31K 3. In particular, if
x is a Lebesgue point of Vu, (hence a Lebesgue point for Vu), |Vu, (x)| < 3M/2K5.
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This implies
|Vu(x)| < C3"?Ks. (7.11)

If ksop < 00, we apply our argument from Case 1 to the pair (x, ri,,,) and get
that u is C'-# in a neighborhood of x. We end up concluding

|Vu(x)| < C'w(uy, x,r)+ C’, (7.12)

where C’ depends on n, k, a, A, A. We actually still have (7.12) in Case 1. Since
(7.11) is better than (7.12), we proved that if r < rp, (7.12) holds for almost every
x € Q with B(x, Kor) C Q.

Now let xo € © and ro < r be such that B(xg, K2rg) C 2. For almost every
x € B(xo, r0), (7.12) holds with r = rg/2 (so that B(x, K>r) C B(xg, K2rg)) and
o}

IVux)| < C'ouy, x,r) + C' < 2"*C'w(uy, xo, 2ro) + C'. (7.13)

Since we already know that u is in the Sobolev space ng’cz(B (x0, r0)), we deduce
from (7.13) that u is Lipschitz in B(xg, o) and (7.4) holds, proving Theorem 7.1.

8 Almost Monotonicity

In this section, we describe an analogue of the Alt—Caffarelli-Friedman [4] mono-
tonicity formula for variable coefficient almost minimizers, which we obtained in
[10]. Recall, for the remainder of this section, the notation f = = max{£ f, 0}. In
[4], it was shown that the quantity

o= ([ A / A
, V. ) = — ——dz — 2 dz
r* \Jpo.n lz = yI"2 By 12— yI"2

1
—4CI>+(f,y,r)d>,(f,y,r)
r

(8.1)

is monotone increasing in 7 as long as f(y) = 0 and f is harmonic. While we cannot
expect to get the same monotonicity, we proved an almost-monotonicity result in the
style of [17].

We first proved the following estimate in [10].

Lemma 8.1 Let u be an almost minimizer for J in Q, and assume that B(x, 2r) C
Q, where x is such that A(x) = 1. Let ¢ € WL2(Q) N C(Q) be such that e(y) >0
everywhere, ¢(y) = 0 on Q\B(x,r), and let A € R be such that
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[Ap(»)| <1, on Q. (8.2)

Then, for each choice of sign, =+,

0 < CroJe,(u) + Crotm + 25, / <p|wi|2+/ ui<wi, V(p>
B(x,r) B(x,r)

+ 22 |:/ (,02|Vui|2 + (ui)2|Vg0|2 + 2<pui <Vui, V(p>i| ,
B(x,r)

(8.3)
where C < o0 is a constant that depends only on k,n, A, A and the C% norm of
A.

The following are the variable coefficient analogues of Lemmas 6.2, 6.3, and 6.4
in [17]. The proofs in [17] use Lemma 6.1, the continuity of almost minimizers,
and the logarithmic growth of w (x, r). In particular, the proofs go through virtually
unchanged for almost minimizers with variable coefficients.

Lemma 8.2 Still assume that n > 3. Let u be an almost minimizer for J in Q
and assume that B(xo, 4rg) C Q2 and that u(xg) = 0 and A(xg) = I. Then, for
0 < r < min(1l, ro) and for each choice of sign, +,

1 1 *
C—;Cbi(u,xo,r)—— |Vui|2__][ £
r n(n —2) B(xq,r) 2 9B(xq,r) r

< Crmtt 1+][ |Vu?| +log?(ro/r) + log>(1/r) | .
B(x0,Cro)

8.4)

Again, ¢, = (n(n — 2)w,)~" and C > 0 depending only on n, A, X, Al coo and
the almost-minimizing constants of u.

Lemma 8.3 Let u be an almost minimizer for J in 2, and assume that B(xo, 4rg) C
Q with u(xg) = 0 and A(xg) = 1. For0 < r < %min(l,ro), sett = t(r) =
roz/4

(1 - W) r. Then for 0 < r < min(1/2, ro) and each choice of sign, =+,

r r aui
][ / V() Py | ds — ][ / =0 g
1) \J B(xo,5) 1) \J9B(xo,s) 0N

< e/t +][ IVul? +10g 2 ) .
B(x0,Cro) r

Here, du™/dn denotes the radial derivative of u* and C > 0 depend only on
lg+lloo, 1y A, A, [|Allco.e, and the almost-minimization constants.

(8.5)
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Finally, we obtain an Alt—Caffarelli-Friedman almost-monotonicity type result.

Theorem 8.1 Let u be an almost minimizer for J in Q and let § be such that 0 <
8 < a/4(n + 1). Let B(xo,4rg) C Q with u(xo) = 0 and A(xg) = I. Then there
exists C > 0, depending on the usual parameters such that for 0 < s < r <
1 .

5 min(1, rop),

®(u, x0,5) < ®(u, x0, ) + C(xo, ro)r’, (8.6)

where

2
Clxo.rp)=C +C f Vul?) + Cllogro))*. 87)
B(x0,2r¢)

9 Local Lipschitz Continuity for Two-phase Almost
Minimizers

The proof of two-phase Lipschitz continuity follows the same blueprint as the one-
phase case. We start with Lemma 9.1 that is an analogue of Lemma 7.1. However,
the proof of Lemma 9.1 is a bit more involved as it requires the use of the two-phase
almost-monotonicity formula, (8.6), to control oscillations. We state the appropriate
version of that lemma here.

Lemma 9.1 Let u be an almost minimizer for J in Q and let By =
B(xo, A" 2rg) C Q be given. Let € (0,1/3) and B € (0,1). Then there
exists y > 0,Ky > 1 and ri > 0 (which may depend on 6 and B) such that if
x € B(xg, rg) and 0 < r < ry satisfy

ux(y) =0 for some y € B(x, 2r/3), 9.1
|b(uy, x,r)| < yr(1 +w(uy, x,r)), and 9.2)
w(u)ﬁxvr)zKl' (9.3)

Then,

oy, x,0r) < Bo(ux, x,r). 9.4)
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We are now ready to prove our main result.

Theorem 9.1 Let u be an almost minimizer for J in Q2. Then u is locally Lipschitz
in Q.

The goal is actually to show a more precise estimate: that there exist rp > 0 and
C> > 1 (depending on n, k, o, A, A) such that for each choice of xg € Q andrg > 0
such that rg < rp and B(xo, Kprg) C 2 (with K, as in Lemma 6.4), then

lu(x) —u(y)| = Co2(@(ux,, X0, 2r0) + Dx — y| forx, y € B(xo, ro). 9.5)

Idea of the Proof Let (x,r) be such that B(x, Kor) C 2. We want to use the
different lemmas above to find a pair (x, p) that allows us to control u. Pick
0 = 1/3,8 = 1/2 (smaller values would work as well), and let y, K1, r; be as
in Lemma 9.1.

Pick T = 1/2, where 1 € (0, 71), where 77 is the constant that we get in
Lemma 6.1 applied with C; = 3 and ry = r1. Here 17 is the corresponding constant
that appears in Lemma 6.3. Let now rp, n, K be as in Lemma 6.4 applied to Cyp = 10,
and to T and y as above. From Lemma 6.4, we get a small r,. Set

K3 > max(Ky, K), and r; < min(ry,ry). (9.6)

Let r < r;. In the case of the two-phase problem, one has to consider four cases:

Case 0:
uy(z) #0, Vz € B(x,2r/3). 9.7)

Case 1: u,(z) = 0 for some z € B(x, 2r/3) and

oy, x,r) > K3

(9.8)
b(ux,x,r) = yr(1 + w(uy, x, r)).
Case 2: u,(z) = 0 for some z € B(x, 2r/3) and
C()(uxa .X,r) Z K3 (99)
b(uy,x,r) < yr(l +w(uy, x,r)).
Case 3: u, (z) = 0 for some z € B(x, 2r/3) and
oy, x,r) < Kj. (9.10)

The proof now follows the same general strategy of that of Theorem 7.1.
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