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Abstract In David and Toro (Calc Var 54(1):455–524, 2015) and David et al. (Adv 
Math 350:1109–1192, 2019), the authors studied almost minimizers for functionals 
of the type first studied by Alt and Caffarelli (J Reine Angew Math325:105– 
144, 1981) and Alt, Caffarelli and Friedman (Trans Am Math Soc 282:431–461, 
1984). In this chapter, we study the regularity of almost minimizers to energy 
functionals with variable coefficients (as opposed to Alt and Caffarelli (J Reine 
Angew Math325:105–144, 1981), Alt, Caffarelli and Friedman (Trans Am Math 
Soc 282:431–461, 1984), David et al. (Adv Math 350:1109–1192, 2019), and David 
and Toro (Calc Var 54(1):455–524, 2015) that deal only with the “Laplacian” 
setting). We prove Lipschitz regularity up to, and across, the free boundary, fully 
generalizing the results of David and Toro (Calc Var 54(1):455–524, 2015) to the 
variable coefficient setting. 
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1 Introduction 

In this chapter, we provide an overview of almost minimizers of Bernoulli-type 
functionals, with a focus on the results addressing the variable coefficient setting in 
[10]. We start Sect. 2 with a history of the minimizing problems that inspired the 
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study of almost minimizers, following the ground-breaking papers of Alt–Caffarelli 
and Alt–Caffarelli–Friedman, [3, 4]: given a domain .! ⊂ Rn and functions . q± ∈
L∞(!), one minimizes 

. J (u) =
ˆ

!

(
|∇u(x)|2 + q2

+(x)χ{u>0}(x)+ q2
−(x)χ{u≤0}(x)

)
dx

among all .u ∈ {u ∈ L1
loc(!) : ∇u ∈ L2(!)} with .u = u0 on . ∂!, for a given . u0. 

An overview of such minimizers and important results concerning them is described 
in Sect. 2.1. 

In Sect. 2.2, we introduce almost minimizers, first in the context of the Laplacian, 
as considered by Anzellotti in [1], and then in the context of Bernoulli-type 
functionals. We also mention related literature concerning almost minimizers to 
other energy functionals and quasi-minimizers. We discuss in more detail the 
papers of De Silva–Savin [14, 15], along with the work of David–Toro and David– 
Engelstein–Toro [9, 17], which more directly relate to the work [10]. 

In Sect. 2.3, we introduce and motivate almost minimizers to a variable coeffi-
cient version of the Bernoulli-type functional previously described: one considers 
almost minimizers to 

. J!(u) =
ˆ

!

(
〈A(x)∇u(x),∇u(x)〉 + q2

+(x)χ{u>0}(x)+ q2
−(x)χ{u<0}(x)

)
dx,

where .A(x) = (aij (x)) with .aij ∈ C0,α(!), .A(x) symmetric, uniformly elliptic, 
and .q± ∈ L∞(!). In Sect. 2.3 we discuss related literature, in particular the papers 
[25], which considers almost minimizers to a related variable coefficient energy, 
[30], which assumes a priori Lipschitz regularity of almost minimizers to prove free 
boundary regularity, [24], where the notion of .ω-almost minimizers is adapted to the 
framework of multiple-valued functions in the sense of Almgren, and [31], where 
the author considers vectorial “quasi-minimizers.” 

In Sect. 3, we introduce our precise notions of almost minimizers in the variable 
coefficient setting. In Sect. 3.1, we address basic facts regarding the change of 
coordinates that are used throughout [10]; in Sect. 3.2, we address the connection 
between the “multiplicative” almost minimizers used in [9, 17, 25] and the “addi-
tive” almost minimizers introduced in [10]. In Sect. 4, we briefly discuss how the 
continuity of almost minimizers is obtained in [10], and in Sect. 5, we discuss 
the .C1,β regularity of almost minimizers in .{u > 0} and .{u < 0}. In Sect. 6, we  
discuss the bulk of the technical results needed to obtain local Lipschitz regularity 
for both the one-phase and two-phase problems. In Sect. 7, we discuss the first main 
result of [10]: the local Lipschitz continuity of almost minimizers of the one-phase 
problem. A sketch of the proof is provided. In Sect. 8, we discuss an analogue of 
the Alt–Caffarelli–Friedman monotonicity formula for variable coefficient almost 
minimizers. Finally, in Sect. 9, we provide a sketch of the proof of the second main 
result of [10], the local Lipschitz continuity for two-phase almost minimizers.
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2 History 

2.1 Minimizers 

Before we discuss almost minimizers of Bernoulli-type functionals, let us first 
introduce the minimizing problems from which they arose. Let .! ⊂ Rn be a 
bounded, connected, Lipschitz domain, .q± ∈ L∞(!), and define the following set 
of admissible functions: 

. K(!) =
{
u ∈ L1

loc(!) : ∇u ∈ L2(!)
}
.

In [3] and [4], the authors considered the problem of minimizing 

. J (u) =
ˆ

!

(
|∇u(x)|2 + q2

+(x)χ{u>0}(x)+ q2
−(x)χ{u≤0}(x)

)
dx

among all .u ∈ K(!) with .u = u0 on . ∂!, where .u0 ∈ K(!). When . q− ≡ 0
and .u0 ≥ 0, one obtains a so-called one-phase problem; otherwise, one obtains a 
two-phase problem. 

One-Phase Problem The paper [3] proved very important results, opening the way 
to the study of more general Bernoulli-type functionals. First, minimizers of the one-
phase problem were proved to exist. Moreover, if u is such a minimizer, then .u ≥ 0, 
u is subharmonic in . !, and .'u = 0 in .{u > 0}. In terms of optimal regularity, it 
was proved in [3] that .u ∈ C0,1

loc (!). It was also shown that if .+c+ > 0 such that 
.q+ ≥ c+, then given .x ∈ {u > 0}, 

. 
u(x)

dist(x, ∂{u > 0}) ≈ 1.

Furthermore, .{u > 0} ∩ ! is a set of locally finite perimeter, and .∂{u > 0} ∩ ! is 
.(n − 1)-rectifiable. 

Two-Phase Problem The ground-breaking paper [4] introduced several important 
ideas. First, the authors proved that minimizers of the two-phase problem exist. 
Moreover, it was shown that if u is a minimizer of the two-phase problem, then . u±

are subharmonic in . ! and .'u = 0 in .{u > 0} ∪ {u < 0}. As in the case of the one-
phase problem, minimizers of the two phase have the optimal regularity .C0,1

loc (!), 
and if there exist .c± > 0 such that .q± ≥ c±, then for any . x ∈ {u± > 0},

. 
u±(x)

dist(x, ∂{u± > 0}) ≈ 1.

Furthermore, the positive and negative phases .{u± > 0} ∩ ! are of locally finite 
perimeter.
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Free Boundary In the case of the one-phase problem, the free boundary is defined 
as .( = ∂{u > 0}. In terms of its regularity, one can show (see [3, 4, 7, 22, 32]) that 
if .q+ ∈ C0,) (!) and .q+ ≥ c+ > 0, then:

• If .n = 2, 3, 4 : . ( is a .C1,β .(n − 1)-dimensional submanifold.
• If .n ≥ 5, then .( = R ∪ S, where . R is a .C1,β .(n − 1)-dimensional submanifold, 

and . S is a closed set of Hausdorff dimension less than or equal to .n − 5. 

In the case of the two-phase problem, the free boundary is defined as . ( = ∂{u >

0} ∪ ∂{u < 0}. In this case, one can show (see [3, 4, 7, 22, 32]) that:

• If .n = 2, 3, 4 : . ( is a .C1,β
loc .(n − 1)-dimensional submanifold.

• If .n ≥ 5, then .( = R ∪ S, where . R is a .C1,β
loc .(n − 1)-dimensional submanifold, 

and . S is a closed set of Hausdorff dimension less than or equal to .n − 5. 

Moreover, a very interesting result De Silva–Jerison [12] shows the existence of a 
non-smooth minimizer for J in . R7 such that . ( is a cone. Consequently, .S /= ∅ when 
.n ≥ 7. 

Intimately connected to the energy functionals studied by Alt and Caffarelli [3], 
Alt et al. [4] is [13]. Here, the authors consider local minimizers of 

. 

ˆ
!

(
|∇u|2 + q2

+χ{u>0} + q2
−χ{u<0}

)
dx.

We say that .x0 ∈ ( is a two-phase point if .x0 ∈ ∂{u > 0} ∩ ∂{u < 0} ∩ !. 
The collection of all two-phase free boundary points is called the two-phase free 
boundary. 

Assuming .x0 ∈ ( is a two-phase point, the authors of [13] proved that . +r0 > 0
such that 

. ∂{u > 0} ∩ B(x0, r0), ∂{u < 0} ∩ B(x0, r0)

are .C1,η graphs for some .η > 0. 
Moreover, .∂{u > 0} ∩ ! = Reg(∂{u > 0}) ∪ Sing(∂{u > 0}), where:

• .Reg(∂{u > 0}) is a relatively open subset of .∂{u > 0} ∩ ! and is locally . C1,η

for some .η > 0. Also, the two-phase free boundary is regular.
• .Sing(∂{u > 0}) is a closed subset of .∂{u > 0} ∩ ! of Hausdorff dimension at 

most . n − 5. Also, .+n∗ ∈ [5, 7] such that: 

– If .n < n∗, then .Sing(∂{u > 0}) = ∅. 
– If .n = n∗, then .Sing(∂{u > 0}) is locally finite in . !. 
– If .n > n∗, then .Sing(∂{u > 0}) is a closed .(n − n∗)-rectifiable subset of 

.∂{u > 0} ∩ !, with locally finite .Hn−n∗
measure.
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2.2 Almost Minimizers 

Having discussed motivating minimizing problems, we start our discussion of 
almost minimizers with the simplest type of almost minimizers, considered in the 
context of the Laplacian. For this, we need to first introduce local minimizers. 

Let .! ⊂ Rn be a bounded domain. Given .u ∈ W 1,2(!), consider its Dirichlet 
energy 

. J!(u) =
ˆ

!
|∇u(x)|2dx.

Definition 2.1 We say .u ∈ W 1,2
loc (!) is a local minimizer of .J! if for any ball 

.B(x0, r) ! !, we have  

.JB(x0,r)(u) ≤ JB(x0,r)(v) (2.1) 

for any .v ∈ u+W 1,2
0 (B(x0, r)). 

Notice that local minimality implies the Laplacian is equal to zero. 
In [2], Anzellotti introduced the concept of almost minimizers for energy 

functionals. Intuitively, a function is an almost minimizer for .J! if certain types 
of error that depend on r are allowed to be present in (2.1). To formalize this, let us 
specify what we require of the error: 

Definition 2.2 Given .r0 > 0, a function .ω : (0, r0) → [0,∞) is a modulus of 
continuity, or gauge function, if .ω(r) is monotone non-decreasing and . ω(0+) =
lim

r→0+
ω(r) = 0. 

Definition 2.3 Let .! ⊂ Rn be an open set. Given .r0 > 0 and a gauge function . ω(r)

defined on . (0, r0), we say .u ∈ W 1,2
loc (!) is a multiplicative almost minimizer, or .ω-

multiplicative almost minimizer for the functional . J!, if for any ball . B(x0, r) ! !

with .0 < r < r0, we have  

.JB(x0,r)(u) ≤ (1 + ω(r))JB(x0,r)(v) for any v ∈ u+W 1,2
0 (B(x0, r)). (2.2) 

Heuristically, the energy of u on .B(x0, r) might not be minimal among all 
competitors .v ∈ u+W 1,2

0 (B(x0, r)), but  almost minimal. 
Almost minimizers have been receiving increasing attention, due to three 

important facts. First, they can be viewed as perturbations of minimizers: they are 
natural to consider once the presence of noise or lower order terms in a problem 
is taken into account. Second, minimizers with certain constraints, for example, 
with fixed volume, or solutions of the obstacle problem, can be realized as almost 
minimizers of unconstrained problems [2]. Third, the study of almost minimizers 
requires an analysis from a different point of view, leading to the development of 
different techniques that also lead to results about minimizers.
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Almost minimizers of energy functionals of the type 

. 

ˆ
!
f (x, u,Du)dx

were studied in [16, 18, 23, 29]. Related notions were also studied in the context 
of geometric measure theory in [1, 5, 6, 24]. It is also worth mentioning that the 
concept of almost minimizers is related to that of quasi-minimizers, introduced in 
[26, 27], see also the quasi-minimizers from [31]. 

For energy functionals exhibiting free boundaries, almost minimizers have been 
addressed only more recently in [9, 10, 14, 15, 17, 25, 30], and in the case of obstacle-
type problems, in [19] (for the thin obstacle problem), [20] (for the fractional 
obstacle problem), and [21] (for the variable coefficient thin obstacle problem). 

We briefly describe the results of [9, 14, 15, 17], as this will enlighten their 
differences to [10], which we will describe in more detail in the rest of this chapter. 

In [14], the authors considered thin one-phase almost minimizers, that is, almost 
minimizers of the energy 

. E!(u) =
ˆ

!
|∇u(x)|2dx +Hn({(x, 0) ∈ ! : u(x, 0) > 0}).

The authors prove optimal .C
0, 1

2
loc (!) regularity of almost minimizers, along with 

partial regularity of the free boundary. More precisely, they show that the free 
boundary .((u) = ∂{u > 0} is .C1,α regular outside a closed singular set of 
Hausdorff dimension .n − 3. This allows them to prove the .C1,α regularity of 
Lipschitz free boundaries. 

In [15], the authors addressed almost minimizers of the one-phase free boundary 
problem given by the Alt–Caffarelli functional. That is, they studied almost 
minimizers of the energy 

. J!(u) =
ˆ

!

(
|∇u(x)|2 + χ{u>0}(x)

)
dx for u ≥ 0.

Their first main theorem proves the optimal .C0,1
loc (!) Lipschitz regularity of 

almost minimizers. Regarding the free boundary .((u) = ∂{u > 0}, the authors 
prove an improvement of flatness result that leads them to showing the free boundary 
is locally .C1,α regular outside a closed singular set of Hausdorff dimension .n − 5, 
also allowing them to prove the .C1,α regularity of Lipschitz free boundaries. 

In the case of [17] and [9], the authors considered the following energy: 

. J!(u) =
ˆ

!

(
|∇u(x)|2 + q2

+(x)χ{u>0}(x)+ q2
−(x)χ{u<0}

)
dx,

where .q± ∈ L∞(!). In [17], the authors proved optimal regularity .C0,1
loc (!) of 

almost minimizers. To understand the challenges involved in the proof of optimal 
regularity for almost minimizers, it is important to notice that in [3, 4], the following
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facts were key ingredients in the proof of the optimal .C0,1
loc (!) regularity for 

minimizers: 

(a) If u is a minimizer, then . u± are subharmonic in . !. 
(b) If u is a minimizer, then u is harmonic in .{u± > 0}. 
(c) In the case of the two-phase problem, one uses the Alt–Caffarelli monotonicity 

formula. This formula says that the functional 

. +(r) = 1
r4

(ˆ
Br(x)

|∇u+(y)|2
|x − y|n−2 dy

) (ˆ
Br(x)

|∇u−(y)|2
|x − y|n−2 dy

)

is monotone non-decreasing as a function of r . 

In contrast, when working with almost minimizers, one does not have (a), (b), or 
(c), as almost minimizers do not solve partial differential equations as minimizers 
do. To bypass this challenge, the use of good comparison functions is required. As 
the goal is to prove .C0,1

loc (!) regularity of almost minimizers, it suffices to control, 

in a careful way, .ω(x, s) =
(ffl

B(x,s) |∇u|2
) 1

2 for .s ∈ (0, r) if .B(x, r) ⊂ !. 
Through comparisons with harmonic replacements and an iteration scheme, the 

authors proved in [17] the optimal regularity for almost minimizers of the one-phase 
problem. In the case of the two-phase problem, more was needed. First, the authors 
of [17] analyzed the interplay between 

. m(x, r) = 1
r

 
∂B(x,r)

u, n(x, r) = 1
r

 
∂B(x,r)

|u|, ω(x, r) =
( 

B(x,r)
|∇u|2

) 1
2

.

(2.3) 

This analysis, together with an almost Alt–Caffarelli–Friedman monotonicity for-
mula, allowed them to prove the optimal regularity of almost minimizers of the two-
phase problem. More precisely, the almost Alt–Caffarelli–Friedman monotonicity 
formula proved in [17] states that if u is an almost minimizer for J in . !, then 
.+, > 0 such that for .K ! !, +rK > 0, CK > 0 such that for all .x ∈ ((u) ∩ K , for  
all . 0 < s < r < rK,

. +(s) ≤ +(r)+ CKr
,,

where .+(r) is defined as in [4]. 
In terms of the free boundary of almost minimizers, in [17], the authors first 

proved a non-degeneracy result. Assuming u is an almost minimizer of the one-
phase problem, .q+ ∈ L∞(!) ∩ C(!) and .q+ ≥ c+ > 0, [17] proved that there 
exists .η > 0 so that if .x0 ∈ ( and .B(x0, 2r0) ⊂ !, then for .0 < r < r0, 

.
1
r

 
∂B(x0,r)

u+ ≥ η
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and .u(x) ≥ η
4 dist(x, ∂{u > 0}), for .x ∈ B(x0, r0) ∩ {u > 0}. Under the same 

assumptions, [17] also show .{u > 0} ⊂ ! is “locally” NTA. Moreover, if . x0 ∈ (

with .B(x0, 2r0) ⊂ !, then there exists an Ahlfors regular measure . µ0 supported in 
.B(x0, r0) ∩ (. Furthermore, . ( is .(n − 1)-uniformly rectifiable, and .{u > 0} ∩ ! is 
a set of locally finite perimeter. 

With respect to the two-phase problem, assume .q± ∈ L∞(!) ∩ C(!) and . q± ≥
c0 > 0. In [9], the authors proved that . ( is locally Ahlfors regular and uniformly 
rectifiable. In the case of the one-phase problem, [9] assumed .q+ ∈ L∞∩C) (!) and 
.q+ ≥ c+ > 0. They proved that .( = R∪S, where . R is a .C1,β .(n− 1)-dimensional 
submanifold and . S is a closed set with .Hn−1(S) = 0, following the result for 
minimizers. Furthermore, .S = ∅ when .n = 2, 3, 4. In terms of the dimension of 
the singular set, let . k∗ be the smallest natural number such that there exists a stable 
one-homogeneous globally defined minimizer .u : Rk∗ → R that is not the half-
plane solution. From the work of Caffarelli–Jerison–Kenig, Jerison–Savin, and De 
Silva–Jerison, one knows that .4 < k∗ ≤ 7. Let  u be an almost minimizer of . J+

in . !, with .q+ ∈ L∞ ∩ C) (!) and .q+ ≥ c+ > 0. David et al. [9] proved that if 
.s > n − k∗, then .Hs((+ \R) = 0. 

We also mention the recent preprint [11], where the authors construct a family 
of minimizers to an Alt–Caffarelli–Friedman-type functional whose free boundaries 
contain branch points in the strict interior of the domain. They also give an example 
showing that branch points in the free boundary of almost minimizers of the same 
functional can have very little structure. 

2.3 Almost Minimizers with Variable Coefficients 

In contrast to the energy considered in [9, 15, 17], and [10] dealt with a variable 
coefficient version of this energy: 

. J!(u) =
ˆ

!

(
〈A(x)∇u(x),∇u(x)〉 + q2

+(x)χ{u>0}(x)+ q2
−(x)χ{u<0}(x)

)
dx,

where .A(x) = (aij (x)) with .aij ∈ C0,α(!), .A(x) symmetric, uniformly elliptic, 
and .q± ∈ L∞(!). The point of this generalization is to allow anisotropic energies 
that depend mildly on the point of the domain, so that in particular the classes of 
minimizers considered in [10] are essentially invariant by .C1+α diffeomorphisms. 

Almost minimizers to functionals of Alt–Caffarelli or Alt–Caffarelli–Friedman 
type with variable coefficients arise naturally in measure-penalized minimization 
problems for Dirichlet eigenvalues of elliptic operators (e.g., the Laplace–Beltrami 
operator on a manifold; see [28] for a treatment of the analogous measure-
constrained problem). 

In the following sections, we describe the developments in [10]. These address 
the regularity of almost minimizers to energy functionals with variable coefficients
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(as opposed to [3, 4, 9, 15, 17], which deal only with the “Laplacian” setting). First, 
we discuss the connection of [10] to other literature. 

Variable coefficient problems have been studied before: Caffarelli, in [8], proved 
regularity for solutions to a more general free boundary problem. De Queiroz and 
Tavares, in [25], provided the first results for almost minimizers with variable 
coefficients: the authors proved regularity away from the free boundary for almost 
minimizers to the same functionals considered in [10] (they considered a slightly 
broader class of functionals, of which the functionals from [10] are a limiting case). 
More precisely, the authors prove in [17] regularity away from the free boundary 
.((u) = ∂{u > 0} ∪ {u < 0} for almost minimizers of 

. J!(u) =
ˆ

!

(
〈A(x)∇u(x),∇u(x)〉 + q+(x)(u+(x))) + q−(x)(u−(x)))

)
dx,

where .A(x) = (aij (x)) with .aij ∈ C0,α
loc (!), .A(x) is symmetric, uniformly elliptic, 

and .q± ∈ L∞(!) for .0 ≤ ) ≤ 1 and .q± ≥ q0 > 0. The work of [10] differs  
from that of [25] in two ways: first, the definition of almost minimizing in [10] is, a  
priori, broader than that considered in [9, 14, 15, 17, 19, 25] (for more discussion, 
see Sect. 3.2 below). Second, and more significantly, [10] prove Lipschitz regularity 
up to, and across, the free boundary, in contrast to [25], thus fully generalizing the 
results of [17] to the variable coefficient setting. 

Another connected paper is [30]. There, the authors assume a priori Lipschitz 
regularity of almost minimizers to the functionals studied in [10]. With this 
assumption, they prove .C1,α regularity of the free boundary, in dimension two, 
for almost minimizers of the constrained one-phase Alt–Caffarelli and the two-
phase Alt–Caffarelli–Friedman functionals for an energy with variable coefficients. 
The paper [10] shows (as alluded to in their paper) that the a priori Lipschitz 
assumption is redundant. Note that the class of almost minimizers considered in 
[30] is equivalent to the one considered in [10]. 

Besides including the notion of almost minimizers from [9, 14, 17, 25], or [15], 
the definition of almost minimizers from [10] also connects to the work of [24]. 
There, the authors extend the notion of .ω-minimizers introduced by Anzellotti in 
[1], to the framework of multiple-valued functions in the sense of Almgren, and 
prove Hölder regularity of Dirichlet multiple-valued .(c,α)-almost minimizers. 

Finally, in [31], the author studies the regularity of shape optimizers for variable 
coefficient divergence form elliptic operators (e.g., the domain of area one that 
minimizes the sum of the first k Dirichlet eigenvalues of a given operator). In 
particular, Trey adapts the approach of [17] to prove results of similar flavor to the 
ones from [10], but for vectorial “quasi-minimizers” of (3.2), with the additional 
property that they are solutions of a divergence form elliptic PDE with right-hand 
side. The results from [10] neither imply nor are implied by those of [31, Theorem 
1.2], due to the different notions of “minimization” used and to the presence of an 
underlying PDE in [31].
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3 Preliminaries 

As in [10], consider a bounded domain .! ⊂ Rn, .n ≥ 2, and study the regularity of 
almost minimizers of the functional 

.J (u) =
ˆ

!

〈
A(x)∇u(x),∇u(x)

〉
+ q2

+(x)χ{u>0}(x)+ q2
−(x)χ{u<0}(x), (3.1) 

where .q+, q− ∈ L∞(!) are bounded real-valued functions and . A ∈ C0,α(!;Rn×n)

is a Hölder continuous function with values in symmetric, uniformly positive 
definite matrices. Let .0 < λ ≤ . < ∞ be such that .λ|/ |2 ≤ A(x)/ · / ≤ .|/ |2 for 
all .x ∈ !. 

We will also consider the situation where .u ≥ 0 and .q− ≡ 0, and 

.J+(u) =
ˆ

!

〈A∇u,∇u〉 + q2
+(x)χ{u>0}, (3.2) 

where . q+ and A are as above. 

Definition 3.1 (Definition 1 of Almost Minimizers, with Balls) Set 

.Kloc(!) =
{
u ∈ L1

loc(!) : ∀ B(x, r) ! !, ∇u ∈ L2(B(x, r))
}
, (3.3) 

.K+
loc(!) =

{
u ∈ Kloc(!) : u(x) ≥ 0 almost everywhere on !

}
, (3.4) 

and let constants .κ ∈ (0,+∞) and .α ∈ (0, 1] be given. 
We say that u is a .(κ,α)-almost minimizer for .J+

B in . ! if .u ∈ K+
loc(!) and 

.∀B(x, r) ! ! and .∀v ∈ L1(B(x, r)) such that .∇v ∈ L2(B(x, r)) and .v = u on 

.∂B(x, r), 

.J+
B,x,r (u) ≤ J+

B,x,r (v)+ κrn+α, (3.5) 

where 

.J+
B,x,r (v) =

ˆ
B(x,r)

(〈
A(x)∇v(x),∇v(x)

〉
+ q2

+(x)χ{v>0}(x)
)
dx. (3.6) 

Similarly, we say that u is a .(κ,α)-almost minimizer for . JB in . ! if . u ∈ Kloc(!)

and .∀B(x, r) ! ! and .∀v ∈ L1(B(x, r)) such that .∇v ∈ L2(B(x, r)) and .v = u on 
.∂B(x, r), 

.JB,x,r (u) ≤ JB,x,r (v)+ κrn+α, (3.7) 

where



Almost Minimizers of Bernoulli-Type Functionals 305

. JB,x,r (v)=
ˆ
B(x,r)

(〈
A(x)∇v(x),∇v(x)

〉
+ q2

+(x)χ{v>0}(x)+q2
−(x)χ{v<0}(x)

)
dx.

(3.8) 

This definition differs from the one found in [17] (or [25]), even when . A = I

(see Sect. 3.2). Let us already comment that the definition given by (3.7) is more 
general than that of [17]. 

When working with variable coefficients, it is very convenient to work with a 
definition of almost minimizers that considers ellipsoids instead of balls. For this 
effect, we define 

. Tx(y) = A−1/2(x)(y − x)+ x, T −1
x (y) = A1/2(x)(y − x)+ x,

Ex(x, r) = T −1
x (B(x, r)). (3.9) 

Note that 

.Ex(x, r) ⊂ B(x,.1/2r) and B(x, r) ⊂ Ex(x, λ
−1/2r). (3.10) 

For completeness, we include here what it means to be an almost minimizer with 
respect to ellipsoids. 

Definition 3.2 (Definition 2 of Almost Minimizers, with Ellipsoids) Let 

.Kloc(!, E) =
{
u ∈ L1

loc(!) : ∇u ∈ L2(Ex(x, r)) for Ex(x, r) ⊂ !
}

(3.11) 

and 

.K+
loc(!, E) =

{
u ∈ Kloc(!, E) : u(x) ≥ 0 almost everywhere on !

}
. (3.12) 

We say that u is a .(κ,α)-almost minimizer for .J+
E in . ! if .u ∈ K+

loc(!, E) and 

.J+
E,x,r (u) ≤ J+

E,x,r (v)+ κrn+α (3.13) 

for every ellipsoid such that .Ex(x, r) ! ! and every .v ∈ L1(Ex(x, r)) such that 
.∇v ∈ L2(Ex(x, r)) and .v = u on .∂Ex(x, r), where 

.J+
E,x,r (v) =

ˆ
Ex(x,r)

(〈
A(x)∇v(x),∇v(x)

〉
+ q2

+(x)χ{v>0}(x)
)
dx. (3.14) 

Similarly, we say that u is a .(κ,α)-almost minimizer for .JE in . ! if . u ∈
Kloc(!, E) and 

.JE,x,r (u) ≤ JE,x,r (v)+ κrn+α (3.15)



306 M. Smit Vega Garcia

for every ellipsoid with .Ex(x, r) ! ! and every .v ∈ L1(Ex(x, r)) such that . ∇v ∈
L2(Ex(x, r)) and .v = u on .∂Ex(x, r), where 

. JE,x,r (v) =
ˆ
Ex(x,r)

(〈
A(x)∇v(x),∇v(x)

〉
+ q2

+(x)χ{v>0}(x)+ q2
−(x)χ{v<0}(x)

)
.

(3.16) 

Remark 3.1 The following summarizes the relationship between Definitions 3.1 
and 3.2:

• When .A = I , both definitions coincide.
• For a general matrix A, if u is a .(κ,α)-almost minimizer for . JB in . ! according to 

Definition 3.1, then it satisfies (3.13) in Definition 3.2 (with constant . .(n+α)/2κ

and exponent . α) whenever x and r are such that .B(x,.1/2r) ⊂ !.
• If u is a .(κ,α)-almost minimizer for . JE in . ! according to Definition 3.2, then 

it satisfies (3.5) in Definition 3.1 (with constant .λ−(n+α)1/2κ and exponent . α) 
whenever x and r are such that .B(x,.1/2λ−1/2r) ⊂ !. 

Given that we are mostly interested in the regularity of almost minimizers away 
from . ∂!, these definitions are essentially equivalent. Bearing this in mind, we work 
with almost minimizers according to Definition 3.2, recalling that such functions 
satisfy (3.5) when .B(x,.1/2λ−1/2r) ⊂ !. We will most often not write “.(κ,α)-
almost minimizer,” but only “almost minimizer,” and we will drop the subscripts B 
and E from the energy functional. 

Notation We write .B(x, r) = {y ∈ Rn : |y − x| < r} and . ∂B(x, r) = {y ∈ Rn :
|y − x| = r}. We will consider .A ∈ C0,α(!;Rn×n) a Hölder continuous function 
with values in symmetric, uniformly positive definite matrices, and . 0 < λ ≤ . <

∞ such that .λ|/ |2 ≤ A(x)/ · / ≤ .|/ |2 for all .x ∈ !. Additionally, . q± ∈ L∞(!)

will be bounded real-valued functions. We also refer to 

. Tx(y) = A−1/2(x)(y − x)+ x, T −1
x (y) = A1/2(x)(y − x)+ x,

Ex(x, r) = T −1
x (B(x, r)). (3.17) 

Moreover, we will write 

. ux(y) = u(T −1
x (y)), (qx)±(y) = q±(T −1

x (y)),

Ax(y) = A−1/2(x)A(T −1
x (y))A−1/2(x). (3.18) 

Notice that .Tx(x) = x and .Ax(x) = I .
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3.1 Coordinate Changes 

Compared to [17] and [9], the proofs of [10] use two new ingredients: the good 
invariance properties of our notion with respect to bijective affine transformations, 
and the fact that the slow variations of A allow us to make approximations by 
freezing the coefficients. We take care of the first part in this subsection. 

Many of our proofs use the affine mapping . Tx to transform our almost minimizer 
u into another one . ux , which corresponds to a new matrix function .Ax(y) that 
coincides with the identity at x. In this subsection, we check that our notion of 
almost minimizer behaves well under bijective affine transformations. Our second 
definition, with ellipsoids, is more adapted to this. 

Lemma 3.1 Let u be a .(κ,α)-almost minimizer for . JE (or . J+
E ) in .! ⊂ Rn. Let 

.T : Rn → Rn be an injective affine mapping, and denote by S the linear map 
corresponding to T (i.e., .T x = Sx + z0 for some .z0 ∈ Rn). Also let . 0 < a ≤ b <

+∞ be such that .a|/ | ≤ |S/ | ≤ b|/ | for ./ ∈ Rn. Then define functions . uT , .qT,+, 
.qT,− on .!T = T (!) by 

.uT (y) = u(T −1(y)) and qT,±(y) = q±(T −1(y)) for y ∈ !T , (3.19) 

and a matrix-valued function .AT by 

.AT (y) = SA(T −1y)St for y ∈ !T , (3.20) 

where . St is the transposed matrix of S. 
Then .uT is a .(κ̃,α)-almost minimizer of .JE,T (or . J+

E,T ) in . !T , according to 
Definition 3.2, where .JE,S (or .J+

E,S) is defined in terms of .AT and the .qT,±, i.e., 

. JE,S(v) =
ˆ 〈

AT (y)∇v(y),∇v(y)
〉
+ q2

T ,+(y)χ{v>0}(y)+ q2
T ,−(y)χ{v<0}(y) dy,

(3.21) 

and .κ̃ = κ| det T |. 
This lemma says that under an affine change of variables, almost minimizers 

are transformed to almost minimizers for a modified functional. Its proof (see [10]) 
shows why Definition 3.2 is natural. Lemma 3.1 is applied almost exclusively in the 
following circumstances: let .x ∈ !, and take .S = A−1/2(x). In this case, . T (y) =
x + S(y − x), we recognize the affine mapping . Tx from (3.17), and then . uT = ux
and .AT (y) = Ax(y) (from (3.18)). The advantage is that .AT (x0) = I , and simpler 
competitors can be used in the definition of almost minimizer.
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3.2 “Additive” Almost Minimizers 

Let us now address the differences between the definition of almost minimizers 
used in [10] under (3.7) or (3.15) and the definition of an almost minimizer in [17] 
(similarly used in [9, 14, 25]). Recall that when .A = I , being an almost minimizer 
for .JE is equivalent to being an almost minimizer for . JB , and that in [17] (with 
.A = I ), u was an almost minimizer for . JE if, instead of satisfying (3.15) for all 
admissible v, it satisfied 

.JE,x,r (u) ≤ (1 + κrα)JE,x,r (v) (3.22) 

(and similarly for . J+
E ). Here A is variable, and we stick to .JE (.JB would work 

the same way). Let almost minimizers in the sense of (3.15) be additive almost 
minimizers, whereas almost minimizers in the sense of (3.22) are multiplicative 
almost minimizers. 

In [10], we prove results for additive minimizers, first showing that multiplicative 
almost minimizers are also additive almost minimizers. To conclude this, we first 
need to show that multiplicative almost minimizers, in the variable coefficient 
setting, obey a certain decay property. This is done through the next Lemma (see the 
proof in [10]). With this result in hand, we showed in [10] that every multiplicative 
almost minimizer is actually an additive almost minimizer, reducing our study to the 
case of additive minimizers, see Lemma 3.3 below. 

Lemma 3.2 Let u be a multiplicative almost minimizer for . JE in . !. Then . +C > 0
such that if .x ∈ ! and .r > 0 are such that .Ex(x, r) ⊂ !, then for .0 < s ≤ r , 

.

( 
Ex(x,s)

|∇u|2
)1/2

≤ C

( 
Ex(x,r)

|∇u|2
)1/2

+ C log(r/s). (3.23) 

Lemma 3.3 Let u be a multiplicative almost minimizer of . JE in . ! with constant . κ
and exponent . α, and let .!̃ ⊂⊂ ! be an open subset of . ! whose closure is a compact 
subset of . !. Then u is an additive almost minimizer of . JE in . ̃!, with exponent . α/2
and a constant . ̃κ that depends on the constants for J , u, and . ̃!. 

Given this result, we restrict ourselves to working with additive almost minimiz-
ers and refer to them simply as almost minimizers. 

4 Continuity of Almost Minimizers 

Given the equivalence between almost minimizers of .JB and . JE , we omit the  
subscript. Inspired by the ideas of [17], we first prove in [10] the continuity of almost 
minimizers for J and . J+:
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Theorem 4.1 Almost minimizers of J are continuous in . !. Moreover, if u is an 
almost minimizer for J and .B(x0, 2r0) ⊂ !, then there exists a constant . C > 0
such that for . x, y ∈ B(x0, r0)

.|u(x) − u(y)| ≤ C|x − y|
(

1 + log
(

2r0

|x − y|

))

. (4.1) 

A simple consequence of Theorem 4.1 is: 

Corollary 4.1 If u is an almost minimizer for J , then for each compact .K ⊂ !, 
there exists a constant .CK > 0 such that for .x, y ∈ K , 

.|u(x) − u(y)| ≤ CK |x − y|
(

1 +
∣∣∣∣log

1
|x − y|

∣∣∣∣

)

. (4.2) 

5 Almost Minimizers are C1,β in {u >  0} and in {u <  0} 

While our final goal is to prove Lipschitz regularity also across the free boundary, 
we first prove in [10] Lipschitz bounds away from the free boundary. Note that since 
u is continuous, .{u > 0} and .{u < 0} are open sets. 

Theorem 5.1 Let u be an almost minimizer for J (or . J+) in . !. Then u is locally 
Lipschitz in .{u > 0} and in .{u < 0}. 

This is done by estimating the energy of the almost minimizer u in comparison 
to that of the harmonic replacements of u on .B(x, r), first under the assumption 
that .A(x) = I , together with careful iterations. Finally, a careful analysis of how to 
address the case .A(x) /= I, which involves applying the previous case to . ux (defined 
in 3.18), completes the proof. 

We then improve Theorem 5.1 and prove that u is .C1,β away from the free 
boundary. Initially, we wanted bounds on averages of .|∇u|2, and now we want to 
be more precise and control the variations of . ∇u. Our main tool is a (more careful) 
comparison with the harmonic approximation .(ux)∗r , where . ux was defined in 3.18 
and .(ux)∗r denotes the harmonic function on .B(x, r) with boundary data . ux . 

Theorem 5.2 Let u be an almost minimizer for J in . ! and set .β = α
n+2+α . Then u 

is of class .C1,β locally in .{u > 0} and in .{u < 0}.
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6 Estimates Toward Lipschitz Continuity 

In this section, we discuss some technical results needed to obtain local Lipschitz 
regularity for both the one-phase and two-phase problems. 

Define the quantities 

.b(x, r) =
 

∂B(x,r)
ux and b+(x, r) =

 
∂B(x,r)

|ux |, (6.1) 

where we recall that .ux = u ◦ T −1
x and . Tx is the affine mapping from (3.17). We  

sometimes write .b(ux, x, r) and .b+(ux, x, r) to stress the dependence on . ux . 
One has to distinguish two types of pairs .(x, r), for which we have to use different 

estimates. For constants .τ ∈ (0, 10−2), C0 ≥ 1, .C1 ≥ 3, and .r0 > 0, we study the 
class .G(τ, C0, C1, r0) of pairs .(x, r) ∈ ! × (0, r0] such that 

.Ex(x, 2r) ⊂ !, (6.2) 

.C0τ
−n(1 + rαω(ux, x, r)

2)1/2 ≤ r−1|b(x, r)| (6.3) 

(recall the definition of . ω from (2.3)) and 

.b+(x, r) ≤ C1|b(x, r)|. (6.4) 

We force .r ≤ r0 to have uniform estimates. We end up choosing . τ very small, 
so (6.3) says that the quantity .r−1|b(x, r)| is as large as we want. This quantity has 
the same dimensionality of the expected variation of u on .B(x, r). In addition, (6.4) 
says that b accounts for a significant part of . b+, which measures the average size of 
. |u|. We mostly expect this to happen only far from the free boundary, and the next 
lemmas go in that direction. 

One of the challenges of the variable coefficient setting stems from the fact that 
one has to consider different centers x and at the same time also consider various 
ellipsoids .Ez(z, ρ), with z near x, with different orientations. Set 

.k = 1
6
λ1/2.−1/2, (6.5) 

which we choose like this so that 

. Ez(z, kr) ⊂ B(z,.1/2kr) ⊂ Ex(x, r/2) whenever x ∈ ! and z ∈ Ex(x, r/3).
(6.6) 

We start with a self-improvement lemma. 

Lemma 6.1 Assume u is an almost minimizer for J in . !. For each choice of 
constants .C1 ≥ 3 and . r0, there is a constant .τ1 ∈ (0, 10−2) (which depends 
only on .n, κ,α, r0, C1, λ and . .), such that if .(x, r) ∈ G(τ, C0, C1, r0) for some



Almost Minimizers of Bernoulli-Type Functionals 311

choice of .τ ∈ (0, τ1) and .C0 ≥ 1, then for each .z ∈ Ex(x, τ r/3), we can find 
.ρz ∈ (τkr/2, τkr) such that .(z, ρz) ∈ G(τ, 10C0, 3, r0). Here  k is defined as in 
(6.5) and satisfies (6.6). 

Lemma 6.2 Let .u, x, r satisfy the hypothesis of Lemma 6.1; in particular . (x, r) ∈
G(τ, C0, C1, r0) for some .C0 ≥ 1, .C1 ≥ 3, and .τ ≤ τ1. Recall that .b(x, r) /= 0 by 
(6.3). If .b(x, r) > 0, then 

.u ≥ 0 on Ex(x, τ r/3) and u > 0 almost everywhere on Ex(x, τ r/3). (6.7) 

Similarly, if .b(x, r) < 0, then 

.u ≤ 0 on Ex(x, τ r/3) and u < 0 almost everywhere on Ex(x, τ r/3). (6.8) 

For the next lemma, we use Lemma 6.2 to get some regularity for u near a point x 
such that .(x, r) ∈ G(τ, C0, C1, r0), with the same method as for the local regularity 
of u away from the free boundary. 

Lemma 6.3 There exist constants .k1 ∈ (0, k/2), depending only on . λ and . ., and 
.τ2 ∈ (0, τ1), with . τ1 as in Lemmas 6.1 and 6.2 with the following properties. Let u be 
an almost minimizer for J in . !. Let .(x, r) ∈ G(τ, C0, C1, r0) for some . τ ∈ (0, τ2)

and .C0 ≥ 1. Then for .z ∈ B(x, τ r/10) and .s ∈ (0, k1τ r), 

.ω(u, z, s) ≤ C
(
τ− n

2 ω(ux, x, r)+ r
α
2

)
, (6.9) 

and for .y, z ∈ B(x, τ r/10), 

.|u(y) − u(z)| ≤ C
(
τ− n

2 ω(ux, x, r)+ r
α
2

)
|y − z|. (6.10) 

Here .C = C(n, κ,α, λ,., r0). Finally, there is a constant .C(τ, r) depending on 
.n, κ,α, r0, τ, r, λ,., such that 

.|∇u(y) − ∇u(z)| ≤ C(τ, r)(ω(ux, x, r)+ 1)|y − z|β , (6.11) 

for any .y, z ∈ B(x, τ r/10), where as before .β = α
n+2+α . 

The next lemma allows us to conclude that .(x, ρ) ∈ G(τ, C0, 3, r0), provided we 
have certain estimates on .b(ux, x, r), and .ω(ux, x, r). 

Lemma 6.4 Let u be an almost minimizer for J in . !. There exists . K2 =
K2(λ,.) ≥ 2 such that for each choice of .) ∈ (0, 1), .τ > 0, and . C0 ≥ 1, we  
can find .r0, η small and .K ≥ 1 with the following property: if .x ∈ ! and .r > 0 are 
such that .0 < r ≤ r0, .B(x,K2r) ⊂ ! and 

.|b(ux, x, r)| ≥ ) r(1 + ω(ux, x, r)), (6.12)
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and 

.ω(ux, x, r) ≥ K, (6.13) 

then there exists .ρ ∈
(

ηr
2 , ηr

)
such that .(x, ρ) ∈ G(τ, C0, 3, r0). 

7 Local Lipschitz Regularity for One-phase Almost 
Minimizers 

The last intermediate result needed to obtain optimal regularity is the following: 

Lemma 7.1 Let u be an almost minimizer for .J+ in . !. Let .θ ∈ (0, 1/2). There 
exist .) > 0, .K1 > 1, .β ∈ (0, 1), and .r1 > 0 such that if .x ∈ ! and .0 < r ≤ r1 are 
such that .B(x, r) ⊂ !x , 

.b(ux, x, r) ≤ ) r(1 + ω(ux, x, r)), (7.1) 

and 

.ω(ux, x, r) ≥ K1, (7.2) 

then 

.ω(ux, x, θr) ≤ βω(ux, x, r). (7.3) 

We are ready to combine all of the previous lemmas to obtain our main result for 
almost minimizers of the one-phase problem: 

Theorem 7.1 Let u be an almost minimizer for .J+ in . !. Then u is locally Lipschitz 
in . !. 

We want to show that there exist .r2 > 0 and .C2 ≥ 1 (depending on . n, κ,α, λ,.)

such that for each choice of .x0 ∈ ! and .r0 > 0 such that .r0 ≤ r2 and . B(x0,K2r0) ⊂
!, where . K2 is as in Lemma 6.4, 

.|u(x) − u(y)| ≤ C2(ω(ux0 , x0, 2r0)+ 1)|x − y| for x, y ∈ B(x0, r0). (7.4) 

Sketch of the Proof Let .(x, r) be such that .B(x,K2r) ⊂ !. We want to use the 
different lemmas above to find a pair .(x, ρ) that allows us to control u. Pick .θ = 1/3, 
and let .β, ) ,K1, r1 be as in Lemma 7.1. 

Let .τ = τ2/2, where .τ2 ∈ (0, τ1), and . τ1 is the constant that we get in Lemma 6.1 
applied with .C1 = 3 and .r0 = r1. Here . τ2 is the corresponding constant that appears 
in Lemma 6.3. Let now .r0, η,K be as in Lemma 6.4 applied to .C0 = 10, and to . τ
and . ) as above. From Lemma 6.4, we get a small . r) . Set
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.K3 ≥ max(K1,K), and r2 ≤ min(r1, r) ). (7.5) 

Let .r ≤ r2. The proof of the theorem then relies on the analysis of three cases: 

Case 1: 

.





ω(ux, x, r) ≥ K3

b(ux, x, r) ≥ ) r(1 + ω(ux, x, r))
. (7.6) 

Case 2: 

.





ω(ux, x, r) ≥ K3

b(ux, x, r) < ) r(1 + ω(ux, x, r))
. (7.7) 

Case 3: 

.ω(ux, x, r) < K3. (7.8) 

Case 1 ends up yielding additional regularity, as by Lemma 6.3 we know that u is 
.C1,β in a neighborhood of x. 

In the two remaining cases, we set 

. rk = θkr = 3−kr, k ≥ 0.

Our task is to control .ω(ux, x, rk). If the pair .(x, rk) ever satisfies (7.6), we denote 
.kstop the smallest integer such that .(x, rk) satisfies (7.6) (notice that .k ≥ 1, since we 
are not in Case 1). Otherwise, set .kstop = ∞. 

Let .k < kstop be given. If .(x, rk) satisfies (7.7), we can apply Lemma 7.1 to it. 
Therefore, 

.ω(ux, x, rk+1) ≤ βω(ux, x, rk). (7.9) 

Otherwise, .(x, rk) satisfies (7.8) (since .k < kstop). Then 

.ω(ux, x, rk+1) =
( 

B(x,rk+1)
|∇ux |2

)1/2

≤ 3
n
2 ω(ux, x, rk) ≤ 3

n
2 K3. (7.10) 

By (7.9) and (7.10), we obtain that for .0 ≤ k ≤ kstop, 

. ω(ux, x, rk) ≤ max
(
βkω(ux, x, r), 3

n
2 K3

)
.

If .kstop = ∞, this implies that .lim supk→∞ ω(ux, x, rk) ≤ 3
n
2 K3. In particular, if 

x is a Lebesgue point of .∇ux (hence a Lebesgue point for . ∇u), .|∇ux(x)| ≤ 3n/2K3.
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This implies 

.|∇u(x)| ≤ C3n/2K3. (7.11) 

If .kstop < ∞, we apply our argument from Case 1 to the pair .(x, rkstop) and get 
that u is .C1,β in a neighborhood of x. We end up concluding 

.|∇u(x)| ≤ C′ω(ux, x, r)+ C′, (7.12) 

where . C′ depends on .n, κ,α, λ,.. We actually still have (7.12) in Case 1. Since 
(7.11) is better than (7.12), we proved that if .r ≤ r2, (7.12) holds for almost every 
.x ∈ ! with .B(x,K2r) ⊂ !. 

Now let .x0 ∈ ! and .r0 < r2 be such that .B(x0,K2r0) ⊂ !. For almost every 
.x ∈ B(x0, r0), (7.12) holds with .r = r0/2 (so that .B(x,K2r) ⊂ B(x0,K2r0)) and 
so 

.|∇u(x)| ≤ C′ω(ux, x, r)+ C′ ≤ 2n/2C′ω(ux, x0, 2r0)+ C′. (7.13) 

Since we already know that u is in the Sobolev space .W 1,2
loc (B(x0, r0)), we deduce 

from (7.13) that u is Lipschitz in .B(x0, r0) and (7.4) holds, proving Theorem 7.1. 

8 Almost Monotonicity 

In this section, we describe an analogue of the Alt–Caffarelli–Friedman [4] mono-
tonicity formula for variable coefficient almost minimizers, which we obtained in 
[10]. Recall, for the remainder of this section, the notation .f± = max{±f, 0}. In  
[4], it was shown that the quantity 

.

+(f, y, r) ≡ 1
r4

(ˆ
B(y,r)

|∇f+|2
|z − y|n−2 dz

) (ˆ
B(y,r)

|∇f−|2
|z − y|n−2 dz

)

≡ 1
r4 ++(f, y, r)+−(f, y, r)

. (8.1) 

is monotone increasing in r as long as .f (y) = 0 and f is harmonic. While we cannot 
expect to get the same monotonicity, we proved an almost-monotonicity result in the 
style of [17]. 

We first proved the following estimate in [10]. 

Lemma 8.1 Let u be an almost minimizer for J in . !, and assume that . B(x, 2r) ⊂
!, where x is such that .A(x) = I . Let .ϕ ∈ W 1,2(!) ∩ C(!) be such that . ϕ(y) ≥ 0
everywhere, .ϕ(y) = 0 on .!\B(x, r), and let .λ ∈ R be such that
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.|λϕ(y)| < 1, on !. (8.2) 

Then, for each choice of sign, . ±, 

. 

0 ≤ CrαJx,r (u)+ Crα+n + 2λ

[ˆ
B(x,r)

ϕ|∇u±|2 +
ˆ
B(x,r)

u±
〈
∇u±,∇ϕ

〉]

+ λ2

[ˆ
B(x,r)

ϕ2|∇u±|2 + (u±)2|∇ϕ|2 + 2ϕu±
〈
∇u±,∇ϕ

〉]

,

(8.3) 
where .C < ∞ is a constant that depends only on .κ, n,., λ and the .C0,α norm of 
A. 

The following are the variable coefficient analogues of Lemmas 6.2, 6.3, and 6.4 
in [17]. The proofs in [17] use Lemma 6.1, the continuity of almost minimizers, 
and the logarithmic growth of .ω(x, r). In particular, the proofs go through virtually 
unchanged for almost minimizers with variable coefficients. 

Lemma 8.2 Still assume that .n ≥ 3. Let u be an almost minimizer for J in . !
and assume that .B(x0, 4r0) ⊂ ! and that .u(x0) = 0 and .A(x0) = I . Then, for 
.0 < r < min(1, r0) and for each choice of sign, . ±, 

.

∣∣∣∣∣∣
cn

r2 +±(u, x0, r) − 1
n(n − 2)

 
B(x0,r)

|∇u±|2 − 1
2

 
∂B(x0,r)

(
u±

r

)2
∣∣∣∣∣∣

≤ Cr
α

n+1

(

1 +
 
B(x0,C̃r0)

|∇u2| + log2(r0/r)+ log2(1/r)

)

.

(8.4) 

Again, .cn = (n(n − 2)ωn)
−1 and .C > 0 depending only on .n,., λ, ‖A‖C0,α and 

the almost-minimizing constants of u. 

Lemma 8.3 Let u be an almost minimizer for J in . !, and assume that . B(x0, 4r0) ⊂
! with .u(x0) = 0 and .A(x0) = I . For .0 < r < 1

2 min(1, r0), set . t ≡ t (r) ≡(
1 − rα/4

10

)
r . Then for .0 < r < min(1/2, r0) and each choice of sign, . ±, 

.

∣∣∣∣∣∣

 r

t (r)

(ˆ
B(x0,s)

|∇u±(y)|2dy
)

ds −
 r

t (r)

(ˆ
∂B(x0,s)

u±
∂u±

∂n

)

ds

∣∣∣∣∣∣

≤ Crn+α/4

(

1 +
 
B(x0,C̃r0)

|∇u|2 + log2 r0

r

)

.

(8.5) 

Here, .∂u±/∂n denotes the radial derivative of .u± and .C > 0 depend only on 
.‖q±‖∞, n,., .λ, ‖A‖C0,α , and the almost-minimization constants.
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Finally, we obtain an Alt–Caffarelli–Friedman almost-monotonicity type result. 

Theorem 8.1 Let u be an almost minimizer for J in . ! and let . , be such that . 0 <

, < α/4(n + 1). Let .B(x0, 4r0) ⊂ ! with .u(x0) = 0 and .A(x0) = I . Then there 
exists .C > 0, depending on the usual parameters such that for . 0 < s < r <
1
2 min(1, r0), 

.+(u, x0, s) ≤ +(u, x0, r)+ C(x0, r0)r
,, (8.6) 

where 

.C(x0, r0) ≡ C + C

( 
B(x0,2r0)

|∇u|2
)2

+ C((log r0)+)4. (8.7) 

9 Local Lipschitz Continuity for Two-phase Almost 
Minimizers 

The proof of two-phase Lipschitz continuity follows the same blueprint as the one-
phase case. We start with Lemma 9.1 that is an analogue of Lemma 7.1. However, 
the proof of Lemma 9.1 is a bit more involved as it requires the use of the two-phase 
almost-monotonicity formula, (8.6), to control oscillations. We state the appropriate 
version of that lemma here. 

Lemma 9.1 Let u be an almost minimizer for J in . ! and let . B0 ≡
B(x0, λ

−1/2r0) ⊂ ! be given. Let .θ ∈ (0, 1/3) and .β ∈ (0, 1). Then there 
exists .) > 0,K1 > 1 and .r1 > 0 (which may depend on . θ and . β) such that if 
.x ∈ B(x0, r0) and .0 < r ≤ r1 satisfy 

.ux(y) = 0 for some y ∈ B(x, 2r/3), (9.1) 

.|b(ux, x, r)| ≤ ) r(1 + ω(ux, x, r)), and (9.2) 

.ω(ux, x, r) ≥ K1. (9.3) 

Then, 

.ω(ux, x, θr) ≤ βω(ux, x, r). (9.4)
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We are now ready to prove our main result. 

Theorem 9.1 Let u be an almost minimizer for J in . !. Then u is locally Lipschitz 
in . !. 

The goal is actually to show a more precise estimate: that there exist .r2 > 0 and 
.C2 ≥ 1 (depending on .n, κ,α, λ,.) such that for each choice of .x0 ∈ ! and . r0 > 0
such that .r0 ≤ r2 and .B(x0,K2r0) ⊂ ! (with . K2 as in Lemma 6.4), then 

.|u(x) − u(y)| ≤ C2(ω(ux0 , x0, 2r0)+ 1)|x − y| for x, y ∈ B(x0, r0). (9.5) 

Idea of the Proof Let .(x, r) be such that .B(x,K2r) ⊂ !. We want to use the 
different lemmas above to find a pair .(x, ρ) that allows us to control u. Pick  
.θ = 1/3,β = 1/2 (smaller values would work as well), and let .) ,K1, r1 be as 
in Lemma 9.1. 

Pick .τ = τ2/2, where .τ2 ∈ (0, τ1), where . τ1 is the constant that we get in 
Lemma 6.1 applied with .C1 = 3 and .r0 = r1. Here . τ2 is the corresponding constant 
that appears in Lemma 6.3. Let now .r0, η,K be as in Lemma 6.4 applied to .C0 = 10, 
and to . τ and . ) as above. From Lemma 6.4, we get a small . r) . Set 

.K3 ≥ max(K1,K), and r2 ≤ min(r1, r) ). (9.6) 

Let .r ≤ r2. In the case of the two-phase problem, one has to consider four cases: 

Case 0: 

.ux(z) /= 0, ∀z ∈ B(x, 2r/3). (9.7) 

Case 1: .ux(z) = 0 for some .z ∈ B(x, 2r/3) and 

.





ω(ux, x, r) ≥ K3

b(ux, x, r) ≥ ) r(1 + ω(ux, x, r)).
(9.8) 

Case 2: .ux(z) = 0 for some .z ∈ B(x, 2r/3) and 

.





ω(ux, x, r) ≥ K3

b(ux, x, r) < ) r(1 + ω(ux, x, r)).
(9.9) 

Case 3: .ux(z) = 0 for some .z ∈ B(x, 2r/3) and 

.ω(ux, x, r) < K3. (9.10) 

The proof now follows the same general strategy of that of Theorem 7.1.
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