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SUMMARY STATEMENT 

Here we examine the contractile properties of the jaw muscle of the southern alligator lizard used 

in long-lasting mate-holding behaviors and show that while it generally has slow contractile 

properties, in accordance with the speed-endurance trade-off, it retains somewhat faster 

activation kinetics potentially allow it to meet the conflicting demand of the capture of fast prey.   
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ABSTRACT 1 

The jaw muscles of the southern alligator lizard, Elgaria multicarinata, are used in prolonged 2 

mate-holding behavior, and also to catch fast prey. In both males and females, these muscles 3 

exhibit an unusual type of high endurance known as sustained force in which contractile force does 4 

not return to baseline between subsequent contractions. This phenomenon is assumed to facilitate 5 

the prolonged mate-holding observed in this species. Skeletal muscle is often subject to a speed-6 

endurance trade off. Here we determine the isometric twitch, tetanic, and isotonic force-velocity 7 

properties of the jaw muscles at ~24°C as metrics of contractile speed and compare these properties 8 

to a more typical thigh locomotory muscle, to determine whether endurance by sustained force 9 

allows for circumvention of the speed-endurance trade-off. The specialized jaw muscle is generally 10 

slower than the more typical thigh muscle; time to peak twitch force, twitch 90% relaxation time 11 

(p<0.01), and tetanic 90% and 50% relaxation times (p<0.001) are significantly longer, and force-12 

velocity properties are significantly slower (p<0.001), in the jaw than the thigh muscle. However, 13 

there seem to be greater effects on relaxation rates and shortening velocity that on force rise times; 14 

there was no effect of muscle on time to peak, or 50% of tetanic force. Hence, the jaw muscle of 15 

the southern alligator lizard does not seem to circumvent the speed-endurance trade-off. However, 16 

the maintenance of force rise times despite slow relaxation, potentially enabled by the presence of 17 

hybrid fibers, may allow this muscle to meet the functional demand of prey capture.  18 

  19 
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INTRODUCTION 20 

Skeletal muscles produce the mechanical output required for organisms to interact with their 21 

environment, and thus are an important determinant of fitness (Husak et al., 2006; Lappin and 22 

Husak, 2005). This mechanical output is achieved through the calcium-mediated interactions 23 

between the contractile proteins: actin, myosin (Gordon et al., 2000; Kuo and Ehrlick, 2015) and 24 

titin (Dutta et al., 2018; Nishikawa et al., 2019). However, despite this common mechanism of 25 

contraction, considerable variation in muscle and organismal performance is observed across 26 

muscles and species (Hoyle, 1967; Rome et al., 1988; Biewener, 1998; Wilson and Lichtwark, 27 

2011; Mendoza et al. 2023). The long pectoralis muscle fibers of birds allows them to meet the 28 

substantial work demands of flight (Biewener, 1998), the slow red and fast white myotomal muscle 29 

of fish allows for both endurance and sprint swimming (Rome et al., 1988), and the sustained force 30 

produced by the amplexus muscle of frogs (Peters and Aulner, 2000; Navas and James, 2007) and 31 

the jaw muscles of the southern alligator lizard (Elgaria multicarinata) (Nguyen et al., 2020) is 32 

thought to facilitate prolonged mating-holding. However, this variation in muscle performance 33 

may be constrained by trade-offs, particularly the speed-endurance trade-off (Schmidt-Nielsen 34 

1984; Garland, 2014; Castro et al., 2022; Garland et al., 2022).  35 

Much of the variation in skeletal muscle performance (Rome et al., 1988; William et al., 1997; 36 

Hyatt et al., 2009; Kohn et al., 2011; Spainhower et al., 2018), and the often-observed speed-37 

endurance trade-off (Vanhooydonck et al., 2001; Bonine et al., 2005), is attributed to variation in 38 

the proportion of muscle fiber types (Schiaffino and Reggiani, 2011). Muscle fiber types are 39 

defined as the stereotyped covariation of myosin isoforms, sarcoplasmic reticulum (SR) 40 

morphology, and metabolic enzymes (Schiaffino and Reggiani, 2011). Typical vertebrate twitch 41 

muscle fibers are categorized as type I, IIa, IIb or IIx. Type I fibers have slow myosin isoforms, a 42 

less-developed SR, and oxidative metabolism. Type IIb or IIx fibers have faster myosin isoforms, 43 

a more developed SR, and glycolytic metabolism. And type IIa fibers are intermediate between 44 

type I and IIb/x. The forelimb of slow-moving sloths contains many I fibers while fast moving 45 

cheetahs have more type IIb fibers. The stereotyped covariation of myosin isoforms, SR 46 

morphology, and metabolic enzymes is thought to underpin the speed-endurance trade-off 47 

(Garland, 1988; Vanhooydonck et al., 2001; Bonine et al., 2005).  48 
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Some muscles and species exhibit a broader range of muscle fiber types than this typical I/IIa/IIb 49 

system including tonic fibers, masticatory fibers (Philippi and Sillau, 1994; Hoh, 2002; Schiaffino 50 

and Reggiani, 2011; Talbot and Maves, 2016), and hybrid fibers in which more than one myosin 51 

isoform is expressed (Larsson and Moss, 1993; Bottinelli and Reggiani, 2000; Korfage et al., 2005; 52 

Curry et al., 2012; Medler, 2019; Kohn, 2014; Nguyen et al., 2020). Masticatory fibers are twitch 53 

fibers that have rapid calcium sequestration from the SR and contain fast masticatory myosin 54 

isoforms (IIm) (Taylor et al., 1973; Hoh, 2002; Rowlerson et al., 1981; Bárány, 1967; Toniolo et 55 

al., 2008). Tonic fibers are a categorically different type of muscle fiber than twitch fibers. They 56 

have a minimal SR morphology (Hess, 1965; Franzini-Armstrong, 1984), are metabolically similar 57 

to slow twitch fibers (Wilkinson and Nemeth, 1989), and can produce sustained contracture 58 

(Guttman, 1966; Millman, 1967; Hess, 1970; Cochrane et al., 1972; Bormioli et al., 1979; 59 

Bormioli et al., 1980; Walrond and Reese, 1985; Fisher, 2010). These more specialized fibers and 60 

hybrid fibers may expand the function range of muscles and could allow for the circumvention of 61 

trade-offs.  62 

The sustained force produced by the amplexus muscle of various frog species (Eberstein and 63 

Sandow; 1961; Rubenstein et al., 1983; Peters, 1994; Peters and Aulner, 2000; Peters, 2001; Clark 64 

and Peters; 2006; Navas and James, 2007; Ishii and Tsuchiya; 2010; Bowcock et al., 2019) and the 65 

jaw muscles of the southern alligator lizard (Nguyen et al., 2020) may be explained by the presence 66 

of these less commonly considered fiber types, and the properties of these fibers and the presence 67 

hybrid fibers may allow for the circumvention of trade-offs (Larsson and Moss, 1993; Bottinelli 68 

and Reggiani, 2000; Korfage et al., 2005; Curry et al., 2012; Medler, 2019; Kohn, 2014; Nguyen 69 

et al., 2020). In sustained force, active muscle force stops returning to baseline between repeated 70 

contractions (Shamarina, 1962; Kirby, 1983; Rubenstein et al., 1983; Peters, 1994; Peters and 71 

Aulner, 2000; Peters, 2001; Clark and Peters; 2006; Navas and James, 2007; Ishii and Tsuchiya; 72 

2010; Nguyen et al., 2020). In the frog forelimb muscles, this production of sustained force is 73 

sexually dimorphic and seasonal, observed only by the males during the breeding season where it 74 

likely functions as a form of high endurance when constant rather than cyclical force is required 75 

and enables male frogs to grasp onto the female with their forelimbs for up to two weeks (Eberstein 76 

and Sandow; 1961; Rubenstein et al., 1983; Peters, 1994; Peters and Aulner, 2000; Peters, 2001; 77 

Clark and Peters; 2006; Navas and James, 2007; Ishii and Tsuchiya; 2010; Bowcock et al., 2019). 78 

Prolonged mating behavior (Pauly, 2019) and sustained force (Figure 1; Nguyen et al., 2020) has 79 
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also been demonstrated in the jaw muscles of the southern alligator lizard (Elgaria multicarinata) 80 

however its function here is a little less clear as sustained force is exhibited both by the jaw muscles 81 

of both males and females year-round. Regardless, in addition to high-endurance mate-holding the 82 

jaw muscles are also involved in faster behaviors such as prey capture and so may need to 83 

circumvent the speed-endurance trade-off. The amplexus muscles of male frogs have been shown 84 

to contain both fast and tonic fibers (Melichna et al., 1972; Oka et al., 1984), and the jaw muscle 85 

of the southern alligator lizard are made up of hybrid fibers containing both tonic and masticatory 86 

myosins (Nguyen et al., 2020). Hence, it seems plausible that tonic fibers or myosins produce 87 

sustained force while faster fibers or myosins allow for more rapid movements (Peters and Aulner, 88 

2000). 89 

 90 

Figure 1. (A) Image of E. multicarinata performing mating behavior. (B) Representative fatigue 91 

profile from Nguyen et al. (2020) showing zoomed in portion of rising baseline force in black box 92 

from 60 to 120 seconds. 93 

In more typical muscles, contractile speed and endurance would simply reflect the balance of fiber 94 

types, and a speed-endurance trade-off would likely be visible under strong selection for speed or 95 

endurance (Andersen and Henriksson, 1977; Rivero et al., 1993; Bonine et al., 2005; Lacerda de 96 

Albuquerque et al., 2015; Scales and Butler 2016; Castro et al., 2024). However, sustained force 97 

is an unusual form of endurance whereby, rather than relying on oxidative metabolism to allow for 98 

many repeated contractions, force is instead maintained between contractions. Hence, it may be 99 

that a relatively low fraction of tonic myosins are able to sustain some force while masticatory 100 

myosins may allow for rapid contraction so circumventing the speed-endurance trade-off and 101 

potentially allowing organisms to fulfil other functions such as the processing of fast prey. To 102 
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address this question, we examined the rates of isometric force development and relaxation, and 103 

force-velocity (FV) properties, of the jaw muscles of E. multicarinata as metrics of contractile 104 

speed (Hill, 1983; Alcazar et al 2019; Mendoza et al 2023) and compared these to a more typical 105 

locomotor muscle in the thigh, the iliotibialis 2 (IT2). If the jaw muscles of E. multicarinata are 106 

subject to the speed-endurance trade-off, we expect that they would have much slower velocities 107 

than the thigh muscle. However, if sustained force and hybrid fiber types allow these muscles to 108 

circumvent this speed-endurance trade-off we expect to see more broadly similar contractile speeds 109 

in E. multicarinata jaw and thigh muscles, as has been observed across species of anoles (Anderson 110 

and Roberts, 2020), despite the high endurance conferred by sustained force in the jaw muscle.  111 

 112 

MATERIALS AND METHODS 113 

Study animals 114 

Adult E. multicarinata from various counties across the state of California were wild-caught and 115 

used in these experiments (n=8, jaw; n=8, thigh; Specific Use Permit ID: S-203040004-20328-116 

001). Lizards were maintained in the vivarium at the University of California, Riverside, kept in 117 

terraria under controlled temperature and light conditions (24±2°C; 12h:12h light:dark) with cover 118 

objects for hiding, fed calcium-dusted and vitamin-supplemented crickets three days per week, and 119 

provided with water ad libitum. All procedures in the study were approved by the Institutional 120 

Animal Care and Use Committees at the University of California, Riverside. 121 

Muscle preparations 122 

Before beginning experiments, animals were deeply anesthetized with isoflurane (SomnoSuite 123 

Low-flow Anesthesia System, Kent Scientific, Torrington, CT, USA), followed by euthanasia 124 

using a double-pithing protocol (Gebhart et al., 1992). Then either the jaw adductor complex or 125 

the thigh, IT2, muscle was isolated and subjected to in situ or in vitro testing, respectively.  126 

Jaw muscle 127 

The jaw-adductor complex was exposed by removing the integument overlying the lateral 128 

temporal fenestration on one side of the head. The mandible was cut, freeing the insertion of this 129 

muscle complex, and tied with Kevlar. The trigeminal nerve was exposed ventrally by reflecting 130 
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jaw-adductor complex (Robison and Tanner; 1962; Haas, 1973). Nerve branches were freed from 131 

the musculature using fine tip forceps and the nerve was tied off with 6-0 silk proximally. A bipolar 132 

hook electrode was place on the nerve to allow for stimulation. Nerve, rather than plate electrode, 133 

stimulation was chosen to avoid potential issues with tonic fibers not conducting action potentials 134 

(Miledi et al., 1971). The lizard’s head and neck were clamped in a customized stereotaxic platform 135 

to anchor the origin of the muscle complex, and the distal end of the muscle was connected to the 136 

force and length transducer with Kevlar thread (Aurora Scientific 305C-LR Dual Mode Lever 137 

System, Aurora, ON, Canada), allowing for measurements of muscle force, length, and velocity 138 

(Castro et al., 2022). The exposed muscles were frequently irrigated with Ringer’s solution (NaCl 139 

6.545g, KCl 0.246g, CaCl2 0.277g, MgCl2 0.095g, HEPES 4.766g, glucose 0.901g per 1L of DI 140 

water) during the experiments (Jayasinghe and Launikonis, 2013). All experiments were 141 

conducted at ~24C. The complex architecture of this muscle, the need for nerve rather than plate 142 

stimulation, and preliminary experiments suggesting that fiber bundles extracted from this muscle 143 

are relatively fragile and do not survive well in vitro necessitated the use of in situ muscle 144 

preparation in which the whole muscle and nerve could be kept intact and a blood supply 145 

maintained. At the end of the in situ experiments the thoracic cavity was exposed to confirm that 146 

the heart was still beating and a blood supply to the muscle had been maintained. Amphibian and 147 

reptilian hearts can beat for hours after brain death, much longer than mammalian hearts (Leary et 148 

al., 2013). 149 

Thigh muscle 150 

The IT2 muscle, a knee extensor (Anzai et al., 2015; James et al., 2015), was isolated, the proximal 151 

tendon tied tightly with Kevlar thread, and the tendon cut proximally. The tibia and femur were 152 

cut, freeing the distal end of the muscle and a small piece of bone. The distal bone was clamped, 153 

and the proximal end of the muscle connected to the force and length transducer with Kevlar thread 154 

(Aurora Scientific 305C-LR Dual Mode Lever System, Aurora, ON, Canada), allowing for 155 

measurements of muscle force, length, and velocity (Castro et al., 2022). The muscle was then 156 

immersed in a bath containing oxygenated Ringer’s solution (as described previously) with 157 

platinum plate electrodes on either side of the muscle to allow for stimulation. All experiments 158 

were conducted at ~24C. 159 

Determination of contractile properties 160 
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Muscle stimulation 161 

For the jaw muscle, square wave pulses of pulse duration 0.1 ms and sufficient amplitude to elicit 162 

maximum muscle force were delivered (IgorPro 9, WaveMetric, Lake Oswego, OR, USA) to the 163 

trigeminal nerve via hook electrodes (CompactDAQ, National Instruments, Austin, TX, USA; A-164 

M Systems Isolated Pules Stimulator Model 2100, Carlsborg, WA, USA). Single pulses were used 165 

for all twitch contractions, whereas 400ms trains of pulses were delivered at 50Hz to elicit tetanic 166 

contractions. Preliminary experiments indicated that this was the lowest stimulation frequency that 167 

reliably resulted in fused contractions and so, maximum force. 168 

For the thigh muscle, square wave pulses of pulse duration 0.1 ms and sufficient amplitude to elicit 169 

maximum muscle force delivered (IgorPro 9, WaveMetric, Lake Oswego, OR, USA) to the muscle 170 

via plate electrodes (CompactDAQ, National Instruments, Austin, TX, USA; High-Power, Biphase 171 

Stimulator, Aurora Scientific). The use of plate electrodes required the use of a stimulator that 172 

could deliver a higher voltage/current than used for nerve stimulation. Single pulses were used for 173 

all twitch contractions, whereas 400ms trains of pulses were delivered at 80Hz to elicit tetanic 174 

contractions. Preliminary experiments indicated that this was the lowest stimulation frequency that 175 

reliably resulted in fused contractions and so, maximum force. 176 

Muscle isometric contractile properties 177 

Muscle force and length during contractions were logged at 1000Hz for the jaw muscle and 178 

10,000Hz for the thigh muscle (IgorPro 9, WaveMetric, Lake Oswego, OR, USA; CompactDAQ, 179 

National Instruments, Austin, TX, USA). The need to construct stimulus outputs for the high-180 

power stimulator used for the thigh muscle in vitro necessitated this higher sampling frequency. 181 

We began each experimental session with a series of twitch contractions at increasing voltages to 182 

establish maximal voltage. The lowest stimulus voltage giving peak twitch force was used for all 183 

subsequent contractions (1-3V for jaw and 7-20V for thigh). Twitch contractions were then 184 

performed at varying lengths to establish the muscle length resulting in the maximum force output. 185 

This length was defined as optimum length (L0), and all subsequent contractions were performed 186 

at this length. While twitch and tetanic optimum lengths vary slightly (Askew and Marsh, 1997; 187 

Holt and Azizi, 2014), twitch contractions were used in order to preserve the integrity of the muscle 188 

while allowing measurements to be made at consistent relative lengths across individuals and 189 

muscles. Twitch optimum length is typically slightly longer than tetanic optimum length, hence 190 
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the use of this length means that the muscle shortens across the plateau of the tetanic force-length 191 

relationship during shortening (Askew and Marsh, 1997; Holt and Askew, 2012).  192 

An additional twitch contraction was performed at L0 to allow for determination of twitch times at 193 

a comparable length and point in the experiment across subjects. Isometric tetanic contractions 194 

were then performed, first to establish peak force and later to check the viability of the muscle 195 

throughout the experiment. Isometric tetanic contractions were performed after every three to four 196 

isotonic contractions during the FV protocol, and the maximum force output was compared to the 197 

original isometric tetanus contraction (Holt and Azizi, 2014). If force had dropped by ~30% of the 198 

first control isometric tetani, the experiment was terminated. This permitted force drop is greater 199 

than is typical (10-20%) (Cairns et al., 2008; Nocella et al., 2011). The jaw muscle appears to be 200 

unusually fragile, and it has previously been demonstrated that there is no effect of allowing more 201 

fatigue provided the declining maximum performance is accounted for (Bahlman et al., 2020), and 202 

so this approach may allow for the study of these more fragile muscles. To account for fatigue, 203 

predicted isometric force was calculated for each isotonic contraction assuming a linear decline 204 

between control tetanic contractions, and normalized isotonic force was calculated relative to this 205 

predicted isometric force. 206 

Muscle force-velocity properties 207 

Isotonic tetanic contractions were performed in which the resistive force the muscle experience 208 

was varied (~0.05-0.8% of maximum isometric force) and the muscle allowed to shorten. The 209 

shortening velocity that could be achieved at these forces was then determined from muscle length 210 

recordings.   211 

Morphological measurements 212 

At the conclusion of the experiments, muscle length, body mass, and muscle mass were 213 

recorded. The muscle was pinned at optimal length on an agar coated Petri dish and placed under 214 

a dissection scope (Leica MZ125 Dissection Stereomicroscope) to measure muscle fiber length 215 

with calipers (Kynup Digital Caliper). Data are mean ± standard error of the mean (SEM). Once 216 

the mass and muscle fiber length were obtained, the physiological cross-sectional area 217 

(PCSA=
M

𝜌·L𝑓
; M=muscle mass, ρ=muscle density, Lf=fiber length) was calculated assuming a 218 

density of 1,060 kg m-3 (Mendez and Keys, 1960). For the jaw experiments, the lizard’s thoracic 219 
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girdle region was exposed to confirm that the heart was still beating to ensure that the jaw 220 

muscles were supplied with blood for the duration of the experiment. Lastly, to determine the sex 221 

of the animal, a midline laparotomy was performed to reveal the reproductive organs (oviducts 222 

and testes). 223 

Data analysis 224 

Twitch and tetanic rise and relaxation times were recorded from the representative isometric twitch 225 

and tetanic contractions performed. Peak force was determined and time series data were used to 226 

calculate the time from onset of muscle force production to peak tension, the time from onset of 227 

muscle force production to 90% of peak tension, the time from peak tension to 50% relaxation, 228 

and the time from peak tension to 90% relaxation (Marsh and Bennett, 1986; Bennett et al., 1989; 229 

Askew and Marsh, 1997; Syme et al., 2005; Nguyen et al., 2020; Castro et al., 2022). We 230 

calculated the peak isometric, tetanic stress (stress=F0/PCSA) of the muscles (Askew and Marsh, 231 

1997; Zhan et al., 1999; Syme et al., 2005; Holt et al., 2016). Twitch/tetanic force ratios were 232 

calculated for jaw and thigh muscles (Celichowski and Grottel, 1993; Askew and Marsh, 1997).  233 

For isotonic FV contractions, velocity (V) was normalized to L0 to yield relative velocity (L0 s-1). 234 

Force (F) was normalized to peak isometric, tetanic force of the muscle (F0) to yield relative 235 

isometric force F/𝐹0 (Castro et al., 2022).  Fatigue was determined as the decline in force between 236 

subsequent isometric control contractions and only data points before the muscle reached 30% 237 

fatigue were included (Bahlman et al., 2020). The fragility of this muscle meant that sufficient 238 

number of points to construct a complete FV curve could not be obtained on all individuals . Hence, 239 

the normalized FV data points from all individuals were collated (Holt et al., 2014) and fit with a 240 

Marsh-Bennett hyperbolic-linear equation (1986) (equation 1; constants B and C have dimensions 241 

of velocity, and constant A is dimensionless), and predicted maximum unloaded shortening 242 

velocity (Vmax) was obtained (Marsh and Bennett, 1986; Bennett et al., 1989; Askew and Marsh, 243 

1997; Zhan et al., 1999; Syme et al., 2005; Holt et al., 2016; Alcazar et al., 2019; Javidi et al., 244 

2020; Castro et al., 2022).  245 

𝑉 =  
𝐵 (1 − 𝐹

𝐹0
⁄ )

𝐴 + 𝐹
𝐹0

⁄
+ 𝐶 (1 − 𝐹

𝐹0
⁄ ) 246 

(1) 247 
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Power curves were calculated from the force and velocity points from the FV data fit with the 248 

Marsh-Bennett equation (Power=F*V; F=force (N); V=velocity (m/s)). Peak power was collected 249 

for each of the curves. The power ratio defined in Marsh and Bennett (1896) was used to determine 250 

curvature of the FV relationships (𝑉 =
𝑊𝑚𝑎𝑥

𝑉𝑚𝑎𝑥𝐹0
; 𝑊𝑚𝑎𝑥 = maximum power output). Faster muscles 251 

are associated with higher power ratios and greater curvature and vice versa for slower muscles 252 

(Marsh and Bennett, 1896; Mendoza et al., 2023). 253 

Statistical analysis  254 

All analyses were performed in RStudio (Integrated Development Environment for R Posit 255 

Software, PBC, Boston, MA). The significance levels used to test for differences between the jaw 256 

and thigh muscle contractile times was 0.05.  257 

Data were tested for normality using Shapiro-Wilk’s test and for equal variances using F-tests. 258 

Twitch time from onset of muscle force production to 90% of peak tension and time from peak 259 

tension to 90% relaxation and tetanic time from onset of muscle force production to 90% of peak 260 

tension were normally distributed, and so a parametric, unpaired two sample t-test was used to 261 

compare these variables between the jaw and thigh muscles. Twitch time from onset of muscle 262 

force production to peak tension and time from peak tension to 50% relaxation and tetanic time 263 

from onset of muscle force production to peak tension, time from peak tension to 50% relaxation, 264 

and time from peak tension to 90% relaxation data, in contrast, were non-normally distributed. 265 

Box cox, logarithmic, and square root transformations were attempted to normalize these data. 266 

However, the transformed data remained non-normally distributed and the nonparametric, Mann-267 

Whitney U test was used to compare these variables between the jaw and thigh muscles. 268 

The FV data were modeled with a mixed effects model using a gamma distriution and a log-link 269 

function with a 95% confidence interval (see supplemental materials, Figure S1). Our study 270 

contains multiple measurements per individual thus a mixed model analysis was necessary. 271 

Relative velocity was the dependent variable as it was measured at different set forces, and the 272 

independent variables were relative force and muscle type (fixed effects) and individual (random 273 

effect). 274 

 275 
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RESULTS 276 

Body size and muscle dimensions 277 

The average body mass for individuals used for the jaw and thigh measurements, and muscle fiber 278 

length, muscle mass, PCSA for the jaw and thigh muscles used in the experiments are summarized 279 

in Table 1.  280 

Table 1. Mean ± SEM of body metrics and muscle dimensions. 281 

 Jaw (n=8) Thigh (n=8) 

Body mass (g) 39.72±3.72 49.72±3.43 

Muscle fiber length (mm) 11.5±0.26 6.17±0.55 

Muscle mass (g) 0.44±0.043 0.08±0.014 

PCSA (cm2) 0.37±0.039 0.12±0.025 

 282 

Isometric properties 283 

The average stress value for the tetanic contractions for the jaw muscle was 7.43±1.32N/m2 (n=8) 284 

and for the thigh muscle was 16.2±3.67N/m2 (n=8), and stress was significantly different between 285 

the jaw and the thigh muscle (p=0.04163, t=-2.2426, df=14). The twitch/tetanus force ratio was 286 

lower for the jaw muscle (0.157±0.378) than for the thigh muscle (0.213±0.165), but there was no 287 

significant difference (p=0.708, t=-0.383, df=14). 288 

Representative normalized isometric twitch and tetanic contractions time courses are shown 289 

(Figure 2A and 2B). Twitch contraction times for the jaw muscle show that time from onset of 290 

muscle force production to peak tension was 63.3±4.32ms, time from onset of muscle force 291 

production to 90% of peak tension was 46.4±3.28ms, time from peak tension to 50% relaxation 292 

was 51±3.85ms, and the time from peak tension to 90% relaxation was 136.1±10.5ms (Figure 2C; 293 

n=8). For the thigh muscle, twitch time from onset of muscle force production to peak tension was 294 

48.5±2.97ms, twitch time from onset of muscle force production to 90% of peak tension was 295 

33.7±2.03ms, twitch time from peak tension to 50% relaxation was 40.7±3.48ms, and twitch time 296 

from peak tension to 90% relaxation was 95.7±8.2ms (Figure 2C; n=8). Twitch time from onset of 297 

muscle force production to peak tension was significantly longer in the jaw than the thigh muscle 298 
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(p=0.01359, W=56), but twitch time from onset of muscle force production to 90% of peak tension 299 

was not significantly different between the two muscles (p=0.2589, t=1.1767, df=14). Twitch time 300 

from peak tension to 90% relaxation was significantly longer in the jaw than the thigh (p=0.009, 301 

t=3.0293, df =14), but twitch time from peak tension to 50% relaxation was not significantly 302 

different between the two muscles (p=0.1036, W=48).  303 

Tetanic contraction times for the jaw show that time from onset of muscle force production to peak 304 

tension was 363.8±37.5ms, time from onset of muscle force production to 90% of peak tension 305 

was 203.6±20.9ms, time from peak tension to 50% relaxation was 348.3±48.6ms, and time from 306 

peak tension to 90% relaxation was 536.5±59.2ms (Figure 2D; n=8). For the thigh muscle, tetanic 307 

time from onset of muscle force production to peak tension was 364.2± 128.8ms, tetanic time from 308 

onset of muscle force production to 90% of peak tension was 206.7±17.6ms, tetanic time from 309 

peak tension to 50% relaxation was 98.2±34.7ms, and tetanic the time from peak tension to 90% 310 

relaxation was 139.6±19.1ms (Figure 2D; n=8). The tetanic time from onset of muscle force 311 

production to peak tension (p=0.3184, W=42) and tetanic time from onset of muscle force 312 

production to 90% of peak tension (p=0.9116, t=-0.11302, df=14) were not significantly different 313 

between the jaw and thigh muscles. Tetanic RT50 (p=0.0009391, W=64) and tetanic the time from 314 

peak tension to 90% relaxation (p=0.000931, W=64) were significantly longer in the jaw than the 315 

thigh muscle.   316 

Force-velocity properties 317 

There is a significant effect of muscle type (i.e., jaw vs. thigh) on velocity (Figures 3 + S1; 318 

p=9.661343e-07), with the jaw muscle (n=8; Vmax=2.44±0.24 L s-1; peak power=20.4W/kg; power 319 

ratio=0.12) being slower than the thigh ( n=8; Vmax=6.95±1.03 L s-1; peak power=80.8W/kg; power 320 

ratio=0.11). However, while there was an effect of muscle type on shortening velocity, it does not 321 

appear as though there is an effect on the shape of the force-velocity relationship as there is no 322 

significant interactive effect of force and muscle type on velocity (Figures 3 + S1; p=3.683). This 323 

is reflected in the very similar power ratios for the two muscle types.  324 
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 325 

Figure 2. Representative twitch (A) and tetanic (B) contraction traces and corresponding summary 326 

boxplots of twitch (C) and tetanic (D) contraction times of the jaw (black; n=8) and thigh muscle 327 
(grey; n=8) of Elgaria multicarinata. (TPT: time to peak tension; TP90: time to 90% of peak 328 

tension; RT50: time to 50% relaxation, measured from peak to 50% relaxation; RT90: time to 90% 329 

relaxation, measured from peak to 90% relaxation). *Indicates statistically significant difference 330 
(p<0.05). There was a significant effect of muscle on twitch TPT  (p=0.01359, W=56), twitch 331 

RT90 (p=0.009012, t=3.0293, df=14) (C), tetanic RT50 (p=0.0009391, W=64), and tetanic RT90 332 

(p=0.000931, W=64) (D).  333 

 334 
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335 
Figure 3. (A) Force-velocity data points normalized to muscle length fitted with Marsh-Bennett 336 
curve fit for the jaw (n=8; black markers; Vmax=2.44±0.24 L s-1) and thigh (n=8; grey markers; 337 

Vmax=6.95±1.03 L s-1) muscle of Elgaria multicarinata. (B) Power-velocity curves and fits 338 
constructed using raw force and velocity points and Marsh Bennett curve fit for jaw (peak 339 

power=20.4W/kg; power ratio=0.12; black) and thigh (peak power=80.8W/kg; peak ratio=0.11; 340 

grey). 341 

 342 

DISCUSSION 343 

This study addresses the question of whether the sustained force developed by the “specialized” 344 

jaw muscle of E. multicarinata, potentially to facilitate the long-lasting mate-holding behavior, 345 

represents a means by which the speed-endurance trade-off commonly thought to occur in skeletal 346 

muscle (Komi, 1984; Esbjörnsson et al. 1993; Wilson et al., 2002; Castro et al., 2022; Garland et 347 
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al., 2022) can be circumvented. We determined the contractile speed of these jaw muscles, both in 348 

terms of their rate of force development and relaxation and their shortening velocity, then 349 

compared these properties to a more typical thigh muscle used in locomotion (James et al., 2015). 350 

If these muscles are subject to the typical speed-endurance trade-off, the jaw muscles would exhibit 351 

slow contractile properties compared to the thigh muscle. Twitch time to peak twitch tension, 352 

twitch time to 90% relaxation, tetanic time to 50% relaxation, and tetanic time to 90% relaxation 353 

were significantly slower in the jaw muscle than the thigh (Figure 2). However, tetanic force rise 354 

times were not significantly different between these muscles and in general, the two muscles 355 

appear to be less different in force rise than force relaxation times (Figure 2). The jaw muscle also 356 

had a significantly lower maximum relative shortening velocity (Vmax=2.44±0.24 L s-1) and peak 357 

power (peak power=20.4W/kg) (Figure 3). However, there did not appear to be any interactive 358 

effect of force and muscle type (p=3.683) and the power ratios, a metric of the shape of the force-359 

velocity relationship (Marsh and Bennet, 1986), were very similar in the two muscle being 0.12 in 360 

the jaw and 0.11 in the thigh. This is slightly surprising as slower muscles are often though to 361 

exhibit a greater degree of curvature in their force-velocity relationship (Schiaffino and Reggiani, 362 

2011). However, the factors determining this shape in whole muscles and in situ preparations, as 363 

opposed to single fibers, are poorly understood and likely to be multifactorial (Holt et al., 2014; 364 

Alcazar et al., 2019).  365 

Our data suggest that the jaw muscle of E. multicarinata is slow compared to the thigh muscle. 366 

However, a range of contractile velocities has been observed across the phylogeny and with 367 

ecology (Mendoza et al., 2023). Here we compare the jaw muscle of E. multicarinata both to the 368 

classic model of fast and slow muscles, mouse (Mus musculus) soleus and extensor digitorum 369 

longus (EDL), as well as representative literature for a comparison between a feeding muscle and 370 

locomotor in Anolis (Anderson and Roberts, 2020), to other “specialized” slow muscles used in 371 

mating behavior and known to exhibit sustained force, and the most extreme slow muscles found 372 

in the literature. However, this comparison is complicated by the effects of temperature, with 373 

experimental temperature varying widely and having a major effect on contraction speed. To 374 

account for this, we give both values as reported in the literature and corrected to match our 375 

experimental temperature of 24ºC assuming a Q10 of 2 (Bennett, 1985; Woledge and Rall, 1990; 376 

Anderson and Deban, 2010). Any comparisons discussed throughout will be between the data 377 

presented here and the values converted to 24ºC.378 
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The twitch rise time of the jaw muscle (TPT=63.3±4.32ms at 24ºC) is at least three-times slower 379 

than the fast mammalian M. musculus EDL muscle (TPT=7.3±0.2ms at 37ºC; TPT≈18.42ms at 380 

24ºC) and at least one and a half-times slower than the slow mammalian M. musculus soleus 381 

muscle (TPT=16.2±0.4ms at 37ºC; TPT≈40.8ms at 24ºC). Twitch half relaxation time for E. 382 

multicarinata’s jaw muscle (RT50=51±3.85ms at 24ºC) is more than two-times slower than the M. 383 

musculus EDL (RT50=9.1±0.4ms at 37ºC; RT50≈22.9ms at 24ºC) but slightly faster than the M. 384 

musculus soleus (RT50=23.0±1.0ms at 37ºC; RT50≈58ms at 24ºC). The tetanic half relaxation 385 

time for the jaw muscle of E. multicarinata (RT50=348.3±48.6ms at 24ºC) was at least eleven-386 

times slower than the mouse EDL muscle (RT50=12.5±4ms at 37ºC; RT50≈31.5ms at 24ºC) and 387 

at least three-times slower than that of the M. musculus soleus (RT50=41.6±2.3ms at 37ºC; 388 

RT50≈104.9ms at 24ºC) (Askew and Marsh, 1997). E. multicarinata’s jaw Vmax value (Figure 3; 389 

Vmax=2.4±0.24 L s-1 at 24ºC) was at least two-times lower than the mouse EDL muscle 390 

(Vmax=14.1±0.8 L s-1 at 37ºC; Vmax≈5.6 L s-1 at 24ºC) and the same as the soleus muscle of the M. 391 

musculus (Vmax of 6.0±0.3 L s-1 at 37ºC; Vmax≈2.4 L s-1 at 24ºC) (Askew and Marsh, 1997). If 392 

compared to Anolis species, the jaw muscle of E. multicarinata is slower than the jaw and thigh 393 

muscles measured at 28.2–33.4°C depending on the species (TPT=19.8±0.7ms–55.6±1.5ms; 394 

Vmax=6.0±0.5 L s-1–14.2±1.0  L s-1) (Anderson and Roberts, 2020). This study wanted to compare 395 

muscles with different functional demands, similarly to our study. 396 

The “specialized” slow jaw muscle of E. multicarinata is slow in comparison to the locomotor 397 

muscles used as representative comparisons in the previous paragraphs, with the exception of for 398 

some metrics of speed in comparison to the slow soleus. If compared to more specialized slow 399 

muscles it does not appear to be exceptionally slow. For example, when comparing to the 400 

iliofibularis (IF) hindlimb muscle of the slow-moving chameleon (Chamaeleo senegalensis) 401 

(TPT=122±35ms at 23ºC; TPT≈113ms at 24ºC), the twitch rise times of E. multicarinata’s jaw 402 

muscles (TPT=63.3±4.32ms at 24ºC; Vmax=2.4±0.24 L s-1 at 24ºC) are almost two-times faster, but 403 

the Vmax values are similar (Vmax of 2.5±1.1 L s-1 at 23ºC; Vmax≈2.68 L s-1 at 24ºC) (Abu-Ghalyun 404 

et al., 1988). The twitch rise time of the E. multicarinata’s jaw muscles (TPT=63.3±4.32ms at 405 

24ºC) is at least twelve-times faster, and its Vmax is at least two-times higher, than the slowest 406 

muscle measured, that of the tortoise (Testudo graeca or T. hermanni) rectus femoris (RF) hindlimb 407 

muscle (TPT=4000ms at 0ºC; TPT≈757ms at 24ºC; Vmax=0.23±0.03 L s-1 at 0ºC; Vmax≈1.2 L s-1 at 408 

24ºC) (Woledge et al., 1968).  409 
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This slow phenotype of the jaw muscle of E. multicarinata is comparable to other muscles that are 410 

used in mate-holding behavior and exhibit sustained force. The flexor carpi radialis muscle 411 

(FCRM) of the frog (Rana temporaria), which is used in amplexus (Thibert and Nicolet, 1975) 412 

and also exhibits the sustained force observed in E. multicarinata’s jaw muscle (Nguyen et al., 413 

2020). The FCRM twitch rise time (TPT=44.2±1.40ms at 20ºC; TPT≈33.4ms at 24ºC) is about 414 

two-times faster than E. multicarinata’s jaw muscle (TPT=63.3±4.32ms at 24ºC) and the twitch 415 

half relaxation time is a fraction faster (RT50=60.6±3.4ms; RT50≈45.7ms at 24ºC) than E. 416 

multicarinata’s jaw muscle (RT50=51±3.85ms at 24ºC). Both the forelimb muscles of frogs and 417 

the jaw muscles of E. multicarinata contain both tonic fibers and twitch fibers (Eberstein and 418 

Sandow; 1961; Thibert and Nicolet, 1974; Kirby, 1983, Rubenstein et al., 1983; Peters and Aulner, 419 

2000; Nguyen and Stephenson, 2002; Navas and James, 2007; Ishii and Tsuchiya; 2010; Nguyen 420 

et al., 2020), with the jaw muscles of E. multicarinata (Nguyen et al., 2020) and various frog limb 421 

muscles (Thibert and Nicolet, 1975; Nguyen and Stephenson, 2002) having been demonstrated to 422 

have “hybrid” fiber types containing both slow tonic and fast masticatory myosin heavy chain 423 

isoforms. This combination of slow tonic and fast masticatory myosin heavy chain isoforms likely 424 

results in the slow, but not exceptionally slow, contractile properties observed here. The relatively 425 

fast rise times compared to very slow relaxation times seen in the jaw muscle of E. multicarinata 426 

(Figure 2) might be interpreted as force initially rising relatively rapidly due to the rapid force 427 

generation by masticatory myosin and the slower force generation of tonic myosin that then remain 428 

active and sustain force (Figure 2A and 2B) (Thibert and Nicolet, 1975; Kirby, 1983). Moreover, 429 

if the fast masticatory myosins are driving the fast rise in force development, and tonic fibers are 430 

not activating in response to a single twitch stimulus, then we would predict the lower 431 

twitch/tetanic force ratio that we observed in the jaw muscle (0.157±0.378) compared to the thigh 432 

muscle (0.213±0.165) (Thibert and Nicolet, 1975; Celichowski and Grottel, 1993).  433 

Here we show that the jaw muscle of E. multicarinata, which exhibits unusual endurance in the 434 

form of sustained force, has slow contractile properties relative to the more typical thigh muscle 435 

of this species, and other common locomotor muscles. It is important to note that there is a general 436 

lack of published data on the jaw musculature, and that the different developmental origins of the 437 

jaw and locomotor muscles raise questions about whether observed differences are developmental 438 

or are adaptive or due to physiological constraints to adaptation (English, 1985; Tokita and 439 

Schneider, 2009; Woronowicz and Schneider, 2019; Granatosky and Ross, 2020). Hence the jaw 440 
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musculature in general is an area that would benefit from further study. However, when compared 441 

to the similarity in the contractile speed of the jaw and the thigh across several species of anoles 442 

(Anderson and Roberts, 2020), the differences observed between the jaw and thigh here suggests 443 

that the relatively slow contractile properties of the jaw muscle we observe are due to a speed-444 

endurance trade-off. 445 

Despite the apparent inability to entirely circumvent the speed-endurance trade-off, it is possible 446 

that the combination of slow tonic and fast masticatory myosin may enable the jaw muscles of E. 447 

multicarinata, and the forelimb muscles of frogs used in amplexus, to meet the conflicting physical 448 

demands placed on these muscles. In general, there seems to be less of an effect on activation 449 

compared to deactivation, especially in tetanic contractions. This relatively rapid rise in force, 450 

presumably due to the activation of masticatory myosin, may allow for them to quickly grasp onto 451 

their targets, whether it be prey or their mates, while the prolonged force production, presumably 452 

due to tonic myosins, may give rise to sustained force and the ability to perform this long-lasting 453 

mating holding behaviors.  454 
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