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Generalizing from previous work on the integer quantum Hall effect, we construct the effective action for
the analog of Laughlin states for the fractional quantum Hall effect in higher dimensions. The formalism is
a generalization of the parton picture used in two spatial dimensions, the crucial ingredient being the
cancellation of anomalies for the gauge fields binding the partons together. Some subtleties which exist
even in two dimensions are pointed out. The effective action is obtained from a combination of the
Dolbeault and Dirac index theorems. We also present expressions for some transport coefficients such as
Hall conductivity and Hall viscosity for the fractional states.
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I. INTRODUCTION

The phenomenon of the quantum Hall effect (QHE)
hardly needs any stress on its importance as it has been the
topic of intense investigations, both theoretically and
experimentally, over the last several decades [1]. While
most of the research has focused on two dimensions,
already several years ago, the enticing mathematical
structure of QHE prompted suggestions on generalizations
to higher dimensions. Even though these seemed to be
mathematical curiosities initially, it is interesting that QHE
in higher dimensions may in fact be experimentally
realizable using the idea of synthetic dimensions [2,3].
The initial proposal for higher dimensional QHE consid-
ered space as a 4-sphere S4 [4]. Shortly after this, QHE on
complex manifolds of arbitrary dimensions were analyzed.
The explicit solution of the Landau problem, the con-
struction of integer quantum Hall states, the analysis of the
edge excitations, etc. were carried out leading to a uniform
extension to all higher even dimensions [5–7], see also
[8,9]. A specific case of odd dimensions was also inves-
tigated [10]. To a large extent, the problem is defined by
topological considerations. Since the lowest Landau level
obeys a certain holomorphicity condition, the Dolbeault

index theorem can be used to analyze many features of the
phenomenon [11]. It is then possible to show that a Chern-
Simons action associated to the Dolbeault index density
describes the bulk dynamics of a QHE droplet of fermions
(for integer filling fractions), including fluctuations of
gauge and gravitational fields, as well as Abelian and
non-Abelian background magnetic fields [12]. Needless to
say, the specialization of this general effective action to
2þ 1 dimensions agrees with explicit derivations based on
wave functions carried out by many authors [13–17].
Higher dimensions also allow for an enlarged set of
transport coefficients. Some of these were recently worked
out in [18], where it was also explained how the band
structures of the electrons could be incorporated in the
effective action.
All the higher dimensional generalizations considered so

far have been for the integer QHE. In 2þ 1 dimensions, we
also have a wealth of information regarding the fractional
QHE, including the wave functions for many of the
experimentally realized states (such as the Laughlin,
Jain, and Moore-Read states), effective actions for the bulk
and boundary dynamics of a droplet of fermions, various
transport coefficients, etc. In this paper, we consider the
question of how quantum Hall states can be defined in
higher dimensions for fractional filling, in particular higher
dimensional analogs of the ν ¼ 1=m Laughlin states in
2þ 1 dimensions, where m is an odd integer. This is a
natural next step for QHE and can be particularly relevant
in the light of potential experimental realizations in higher
dimensions. In 2þ 1 dimensions, a variety of methods exist
to map the fundamental excitations, namely electrons, to
composite particles whose known states map to fractional
excitations for the electrons. One standard approach is that
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of flux attachment; see Ref. [19] for pedagogical intro-
ductions to the topic of flux attachment, and [20,21] for
reviews of aspects of flux attachment applied to various
contemporary issues. A complementary approach available
in 2þ 1 dimensions is that of the parton construction of the
fundamental electrons [22,23].
While flux attachment is very natural in two spatial

dimensions, so far we have not been able to find a workable
extension to higher dimensions. Therefore in this paper we
will consider the generalization of the parton picture. In this
scenario, the fundamental fermion, i.e., the electron is
viewed as a composite particle made of m partons, one
parton each of m species. If ψ denotes the electron field,
and qi, i ¼ 1; 2;…; m, denote the parton fields, then this is
equivalent to the statement

ψ ∼ q1q2 # # # qm: ð1Þ

The partons themselves are taken to be fermions of charge
e=m and m is taken to be an odd positive integer, i.e.,
m ¼ 2lþ 1, l ¼ 0; 1;…, to obtain fermionic statistics for
the composite particle. (We hasten to add that the partons
themselves are not viewed as physical entities, rather this
construction is a convenient mathematical device that
encodes some of the multiparticle strong coupling effects,
in a way that is not yet fully understood.) One then con-
structs a state where the partons, in the external magnetic
field, form an integer quantum Hall state, say, with filling
fraction equal to 1, i.e., ν ¼ 1, for simplicity. In terms of the
electrons this state may be viewed as a state of filling
fraction ν ¼ 1=m. For this strategy to be consistent, the
occupation number in the given ν ¼ 1 state for each species
of partons should be the same, i.e., n1 ¼ n2 ¼ # # # ¼
nm ≡ n, so that we have n electrons, with one parton of
each kind for each electron. The equality of the nis is
enforced by use of a set ofUð1Þ gauge fields, which wewill
refer to as the b fields in this paper. The same fields can also
be taken to be the agency binding the partons to form the
electron as in (1).
The use of the b fields to bind the partons and the use of

the equations of motion for time components of the b fields
to obtain the equality of the nis show clearly that they are
dynamical fields, unlike the external magnetic field or
geometrical characteristics such as the metric and spin
connection of the manifold. In a functional integral
approach, they are therefore to be integrated out. This
can be formally carried out in 2þ 1 dimensions, where,
because the action is a Chern-Simons 3-form and quadratic
in the Abelian b fields, the integration can be done in closed
form, leading to a framing anomaly [16]. In the resulting
effective action, this is equivalent to a gravitational Chern-
Simons term, and hence to an additional gravitational
anomaly for the edge modes of a quantum Hall droplet.
The generalization of the framing anomaly calculation to
higher dimensions is not straightforward, but, as we shall

now argue, there is an alternate way of viewing the
procedure of integrating out the b fields.
If we consider a quantum Hall droplet, then the bulk

Chern-Simons action is not gauge invariant. The complete
effective action is gauge invariant because there are edge
modes on the boundary of the droplet which cancel the
variation of the bulk terms under gauge transformation of
the electromagnetic field A and the spin connection ω.
In the case of integer QHE this cancellation helps to
identify the nature of the edge excitations. When we
consider partons coupled to the b fields, again, the bulk
action is not gauge invariant. This will lead to nonzero
terms on the edge under the gauge transformation of the b
fields as well. While physical edge excitations, as before,
can cancel the terms due to the gauge variation of A, ω,
physical excitations should not carry b-charges since the
partons and the b-fields constitute only a theoretical trick to
incorporate certain nonperturbative effects. Therefore, we
consider a set of auxiliary fields, which we will refer to as
the spectator fields (using the terminology of ’t Hooft),
which have an anomaly on the edge that can cancel the
variation of the parton bulk action under the gauge trans-
formation of the b fields. (As we shall see shortly, the
spectator fields will be chiral spinors.) With this “anomaly
cancellation,” the dynamics of b fields is made consistent
with no leftover Chern-Simons (CS)-type terms for the b
fields and one can integrate out the b fields without
worrying about a framing anomaly. However, the spectator
fields can contribute to the gravitational anomaly and this
indeed captures the effect of framing anomaly calculations.
This strategy of anomaly cancellation provides a way to
bypass the intricacies of deriving the framing anomaly even
for 2þ 1 dimensions. Further, it can be generalized to
higher dimensions.
We emphasize that the spectator fields are defined on the

boundary. But we can associate a bulk action with the
spectators, since their anomaly (which is on the edge), via
the standard descent procedure, can be expressed as the
gauge variation of a bulk Chern-Simons term. This bulk
term is a convenient way to encode the anomaly of the
spectator fields. The bulk action due to the partons plus the
bulk term associated with the spectator fields will then give
the bulk effective action for the fractional quantum Hall
state of interest, but the cancellation of anomalies is really
implemented on the boundary of the droplet.
Our strategy for generalization of fractional QHE to

higher dimensions will thus be as follows. We will consider
the electron or the fundamental fermion to be made of m
partons. These partons will be coupled to a set of Uð1Þ b
fields. The parton fields obey a holomorphicity condition
since we restrict them to a particular Landau level.
Therefore we can use the Dolbeault index theorem to
obtain the bulk action of the partons, along the lines of our
earlier work [12].
The spectator fields do not couple to the electromagnetic

field and so do not fall into Landau levels. Therefore, the
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anomaly for such fields must arise as in standard field
theory. We will take the spectators to be chiral spinor fields
as they are the ones which can generate a gauge anomaly.1

The anomaly due to the spectators can then be calculated
using the Dirac index theorem.
We emphasize that there is a distinction in the use of

the index theorem for the partons and the spectators. The
Dolbeault index theorem leads to the bulk action for the
partons because they obey a holomorphicity condition.
The Dirac index theorem for the spectators is used to
calculate a gauge anomaly.
Once the anomaly cancellation has been ensured, the

remaining Chern-Simons terms, involving the external
magnetic field and the spin connections, can be assembled
to give the effective action for the fractional quantum Hall
state. This is basically made of the leftover terms in the
parton bulk action plus the bulk action which encodes the
anomaly due to the spectators. Transport coefficients such
as the Hall conductivity, the Hall viscosity, etc. can then be
read off this effective action.
In the next section we will give a brief summary of how

the Dolbeault index theorem can be used to derive the bulk
effective action for integer QHE. This is to help set the
stage for the subsequent analysis. We also indicate how the
anomaly due to the spectator fields can be identified. In
Sec. III we will consider the Laughlin states (of filling
fraction ν ¼ 1=m) in 2þ 1 dimensions. Primarily this is to
show how our modified parton picture recovers known
results in 2þ 1 dimensions. However, it will also highlight
some subtleties in the application of the parton picture,
even in 2þ 1 dimensions, to states with other values for the
filling fraction. Further it will lay out the necessary
mathematical steps for generalization to higher dimensions
and the subtleties to be aware of. In Sec. IV we will
consider the construction of Laughlin-type states in 4þ 1
dimensions. Anomaly cancellation for the dynamical b
fields will again be the guiding principle. The effective
action, valid for generic four-dimensional spatial mani-
folds, is worked out, see (56), (57). The electromagnetic
current and the energy-momentum tensor can then be read
off, they are given in (58), (61), (62). It is then straightfor-
ward to write down the Hall conductivity and Hall
viscosity, which are the primary response functions of
interest. A key point worthy of remark is that the leading
term of the Hall conductivity has a factor 1=m2 in four
dimensions, rather than 1=m as in two dimensions. We
analyze fractional quantum Hall effect (FQHE) on the
complex manifold S2 × S2, as a special case of our general

result, and comment on the dimensional reduction of the
(4þ 1)-dimensional results to 2þ 1 dimensions. Section V
gives a brief recapitulation of the key steps in our analysis
as well as the key results. We conclude with a number of
remarks on possible extensions of the present results.
Before we embark on the details of our construction, we

note that there have been other attempts at generalizing the
fractional quantum Hall effect to higher dimensions [25].
The effective action in 2þ 1 dimensions can be obtained
from a set of Chern-Simons actions involving 1-form fields,
put together using a so-called K matrix. Elimination of
some of the fields via their equations of motion leads to the
effective action in terms of the electromagnetic field. In
higher dimensions, a similar possibility is to consider
Chern-Simons-like actions again, but using higher forms
as the basic fields. This can then lead to an effective action
for fractional QHE. However, in this approach the basic
constituents will be extended objects of suitable dimension
coupling to the higher form fields, while, in our case, the
basic constituents are particles coupling to the usual
electromagnetic field. Thus the two generalizations are
a priori different; it would indeed be interesting to see if
there is any way to relate them.

II. THE EFFECTIVE ACTION
FROM AN INDEX THEOREM

In this section we give a brief resume of the derivation of
the bulk effective action from the index theorem for integer
QHE in arbitrary even spatial dimensions [12]. We consider
the case where the spatial manifold is a complex manifold
and thus we will be using the Dolbeault index theorem
which is the relevant one for such cases. However, once we
obtain the effective action, it can be extended to include
small but arbitrary perturbations of the metric and spin
connection which do not necessarily preserve the complex
structure. This will be relevant for deriving the Hall
viscosity, for example.
The single particle Hamiltonian is of the form − 1

2DiD̄ī,
where Di and D̄ī are the holomorphic and antiholomorphic
covariant derivatives. These include both gauge and gravi-
tational fields; for the present work, the gauge fields will
include the b fields mentioned in the introduction as well as
the external electromagnetic vector potential. Ignoring the
spin of the fermion (which can be the electron or the parton),
its wave function is a complex function of the coordinates.
For the lowest Landau level the wave functions obey the
holomorphicity condition

D̄īΦ ¼ 0: ð2Þ

The number of normalizable solutions to this equation is
given by the index theorem for the twisted Dolbeault
complex as

1A chiral boson in two dimensions can generate an anomaly,
but, via fermionization, this is equivalent to a chiral spinor. A self-
dual field in 4kþ 2 dimensions can generate gravitational
anomalies, but this is not relevant for the present paper since
we consider (2þ 1) and (4þ 1)-dimensional cases only [24]. In
two dimensions, a self-dual field is again equivalent to a chiral
boson.
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IndexðD̄Þ ¼
Z

M
I ¼

Z

M
tdðTcMÞ ∧ chðVÞ; ð3Þ

where tdðTcMÞ is the Todd class on the complex tangent
space of the spatial manifold M and chðVÞ is the Chern
character of the relevant vector bundle [11]. The for-
mula (3) is rather cryptic, so we will give a brief
explanation of how it can be used to construct the
effective action.
For a real manifold of dimension equal to 2k, the

holonomy group, which is the group corresponding to
parallel transport, is SOð2kÞ. This means that the spin
connections and curvatures take values in the Lie algebra
of SOð2kÞ. However, for a complex manifold, we only
allow coordinate transformations which preserve the
complex structure, so that the notion of holomorphicity
is preserved. This restricts the holonomy group to
UðkÞ ⊂ SOð2kÞ. The frame fields, viewed as 1-forms,
separate into holomorphic forms and antiholomorphic
forms. These are combinations of the real ones given
by the complex structure. A corresponding set of combi-
nations can be made for the tangent space, which is, after
all, dual to the forms. This leads to TcM. The Todd class in
(3) is given in terms of the curvature 2-form for TcM. For
any vector bundle with curvature F , the Chern classes are
defined by2

det
!
1þ iF

2π
t
"

¼
X

i

citi: ð4Þ

One can then give an expansion of the Todd class in terms
of the Chern classes as [11]

td ¼ 1þ 1

2
c1 þ

1

12
ðc21 þ c2Þ þ

1

24
c1c2

þ 1

720
ð−c4 þ c1c3 þ 3c22 þ 4c21c2 − c41Þ þ # # # : ð5Þ

A general expression for the Todd class valid for all
dimensions (and hence including higher rank differential
forms) is given in [11,24]. It is best expressed in terms
of what is known as the splitting principle. We do not
quote it here, since, for the present purpose, Eq. (5) will
suffice.
The field F in (4) is given by the curvature 2-form R for

TcK. Explicit formulas for the first few Chern classes are
then as follows:

c1ðTcKÞ¼Tr
iR
2π

;

c2ðTcKÞ¼1

2

#!
Tr

iR
2π

"
2

−Tr
!
iR
2π

"
2
$
;

c3ðTcKÞ¼ 1

3!

#!
Tr

iR
2π

"
3

−3Tr
iR
2π

Tr
!
iR
2π

"
2

þ2Tr
!
iR
2π

"
3
$
;

c4ðTcKÞ¼ 1

4!

#!
Tr

iR
2π

"
4

−6

!
Tr

iR
2π

"
2

Tr
!
iR
2π

"
2

þ8Tr
iR
2π

Tr
!
iR
2π

"
3

þ3Tr
!
iR
2π

"
2

Tr
!
iR
2π

"
2

−6Tr
!
iR
2π

"
4
$
: ð6Þ

Since the curvatures R take values in the Lie algebra of
UðkÞ, the traces in the above formulas are over this algebra.
Explicitly, we can write iR ¼ dω01þ Rata, where 1 and ta
form a Hermitian basis for the UðkÞ algebra and ta are
normalized so that TrðtatbÞ ¼ 1

2 δ
ab. ω0 is the Abelian part

of the UðkÞ spin connection.
The Chern character chðVÞ in the index formula (3)

involves the gauge fields with the trace defined over the
representations of the gauge group to which the matter
fields belong. It is given by

chðVÞ ¼ TrðeiF=2πÞ ¼ dimV þ Tr
iF
2π

þ 1

2!
Tr

iF ∧ iF
ð2πÞ2

þ # # # ; ð7Þ

where dimV is the dimension of the bundle V, i.e., the
number of matter fields. F is the gauge field strength, it
includes the external magnetic field and the b fields in the
present case. (We will also be considering only Abelian
gauge fields in this paper, for simplicity, although the
methodology is applicable to non-Abelian fields as well.)
Since the Dolbeault index gives the degeneracy of the

lowest Landau level (LLL), it is also the charge of the ν ¼ 1
state if we assign unit charge to the particles. Taking the
charge density of the LLL as J0, we may then identify

δSeff
δA0

¼ J0 ¼ Index density; ð8Þ

where the “index density” in the above expression is the
integrand of (3). We can then “integrate up” from this
formula to identify most of the terms in Seff . This was the
strategy used in [12]. The leading term in Seff will be a
Chern-Simons term CSðAÞ whose variational derivative
with respect to A0 is the index density. There can be
subleading terms which correspond to dipole and higher
multipole terms in J0, which can lead to terms involving
derivatives of the fields in the effective action; such terms
are nontopological in nature. We will focus here on the

2We start with connections and curvatures in an anti-Hermitian
basis since they are natural allowing us to write F ¼ dAþ AA,
etc. This leads to some factors of i in various expressions at this
stage, since the Hermitian fields are iF , iR. Later we will move to
a Hermitian basis.
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topological terms. We have also discussed in [12] how
purely gravitational terms can be added to this procedure.
The end result is the following.
We start from the term in the Dolbeault index density

in (3) corresponding to the (2kþ 2)-form, say, I2kþ2. We
can then obtain an associated Chern-Simons form ðΛÞ2kþ1

by writing

I2kþ2 ¼
1

2π
dðΛÞ2kþ1: ð9Þ

The effective action is then given by the integral of ðΛÞ2kþ1

over the manifold M ×R, where M is the 2k-dimensional
spatial manifold and R denotes the time direction. Written
out, this is of the form

Seff ¼
Z

Λ2kþ1 ¼
Z #

tdðTcMÞ ∧
X

p

ðCSÞ2pþ1ðAÞ
$

2kþ1

þ 2π
Z

Ωgrav
2kþ1: ð10Þ

The integrand on the right-hand side of this equation
identifies the explicit form of Λ2kþ1. Here ðCSÞ2pþ1ðAÞ
is the Chern-Simons term associated with just the gauge
part and is defined by

1

2π
dðCSÞ2pþ1 ¼

1

ðpþ 1Þ!
Tr
!
iF
2π

"
pþ1

: ð11Þ

One should expand the terms in the square brackets in (10)
in powers of curvatures and F and pick out the term
corresponding to the (2kþ 1)-form. The subscript 2kþ 1
for the square brackets is meant to signify this. The purely
gravitational term Ωgrav

2kþ1 in (10) is defined by

½tdðTcMÞ'2kþ2 ¼ dΩgrav
2kþ1: ð12Þ

This method of constructing the effective action can be
extended to include higher Landau levels for some special
cases. It is equivalent to considering fields of nonzero spin
in the lowest Landau level. However, since we do not need
it for this article, we refer the interested reader to [12] for
details.
Turning to the spectator fields, note that anomalies in 2k

dimensions are obtained from the index density (or index
polynomial) in (2kþ 2) dimensions via the descent pro-
cedure. (See Ref. [24] for a general discussion of the descent
procedure.) For the spectator fields, which are chiral spinors,
we will need the Dirac index. This is given by

Dirac Index ¼
Z

ÂðMÞ ∧ chðVÞ ¼
Z

ÂðMÞ ∧ TrðeiF
2πÞ:

ð13Þ

Here ÂðMÞ is the Â genus which has the expansion

ÂðMÞ ¼ 1 −
1

24
ðc21 − 2c2Þ þ # # # ; ð14Þ

where the ellipsis denotes higher forms. Also the gauge field
will be justmade of theb fields, so that iF ¼ QðnÞdbðnÞ,QðnÞ

being the charge for coupling tobðnÞ for the spinor of interest.

III. THE PARTON CONSTRUCTION IN 2 + 1
DIMENSIONS AND ANOMALY CANCELLATION

We now turn to the construction of the Laughlin
states of filling fraction ν ¼ 1=m in 2þ 1 dimensions
using the parton picture. We consider m parton fields
qi, i ¼ 1; 2;…; m. The partons are coupled to the external
electromagnetic field with charge 1=m; we absorb e into the
gauge field Aμ. In addition, the partons couple to a set of b
fields. We will need at least (m − 1) Uð1Þ gauge fields to
ensure the equality of all the parton occupation numbers. It
is convenient to choose the charges for their coupling to the
partons as proportional to the set of diagonal matrices hðnÞ,
n ¼ 1; 2;…; ðm − 1Þ, in the fundamental m ×m matrix
representation of SUðmÞ. In particular the hðnÞ matrices can
be written as

hðnÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2nðnþ 1Þ

p diagf1; 1;…; 1|fflfflfflfflffl{zfflfflfflfflffl}
n

;−n; 0;…; 0g;

n ¼ 1; 2;…; ðm − 1Þ: ð15Þ

The matrices hðnÞ are traceless and are normalized as
TrðhðnÞhðn0ÞÞ ¼ 1

2 δ
nn0 . Although we use this language, we

do not have an SUðmÞ gauge theory, we are only using the
diagonal matrices, i.e., the Cartan subalgebra, so the gauge
group for the b fields isUð1Þm−1. [A generalization to using
an SUðmÞ gauge theory is possible, but not particularly
useful in this context.]
Turning to the effective action, note that in 2þ 1

dimensions, we need the term I4 corresponding to the
4-form in the Dolbeault index density from (3) with

iF ¼ dA
m

1þ
Xm−1

n¼1

dbðnÞhðnÞ: ð16Þ

It is straightforward to see that I4 is given by

I4 ¼
1

2!
Tr

iF ∧ iF
ð2πÞ2

þ c1
2
Tr

iF
ð2πÞ

þ c21 þ c2
12

dimV;

¼ 1

2π

#
1

4πm
dAdAþ 1

4π
dAdωþ m

24π
dωdω

þ 1

8π

Xm−1

n¼1

dbðnÞdbðnÞ
$
: ð17Þ
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We have used c1, c2 from (6) with the simplifications
appropriate to 2þ 1 dimensions, i.e., c2 ¼ 0, c1 ¼ dω0=
2π ≡ dω=2π. The contribution to the bulk effective action
from the partons is thus

SeffðqÞ ¼
Z

1

4π

#
AdA
m

þ Adω
$
þ m
24π

ωdω

þ 1

8π

Xm−1

n¼1

bðnÞdbðnÞ: ð18Þ

The last term is what gives rise to the anomaly for the b
fields on the boundary of the droplet.

A. A solution for anomaly cancellation

We now turn to the cancellation of the b anomaly. In
(2þ 1) dimensions the direct integration of the Chern-
Simons action for the b fields leads to the so-called
framing anomaly [16]. Effectively, this introduces an
additional gravitational Chern-Simons term. As mentioned
in the Introduction, we shall follow a different strategy.
Integration over the b fields is straightforward, as in any
gauge theory without gauge anomalies, if we cancel out the
anomaly for the b fields. This can be done by introducing a
set of auxiliary fields coupled to b fields but not to the
electromagnetic fields. This method of anomaly cancella-
tion has the advantage of being generalizable to higher
dimensions where integrating out higher Chern-Simons
forms for the b fields in a nontrivial gravitational back-
ground is not straightforward.
We will first give a particular solution and then discuss in

what sense this would be the minimal solution. Consider
(m − 1) spectator spinors denoted by χi, i ¼ 1; 2;…;
ðm − 1Þ, which are of right-handed chirality (i.e., of
opposite chirality compared to the partons) and couple
only to the b fields. They have the same charges as the
partons for the bðnÞ gauge fields, n ¼ 1; 2;…; ðm − 2Þ and
a charge Q=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðm − 1Þ

p
for bðm−1Þ. The χ fields do not

couple to the electromagnetic field. Therefore the corre-
sponding F in (13) is of the form

iF ¼
Xm−2

n¼1

dbðnÞh̃ðnÞ þ Qdbðm−1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðm − 1Þ

p 1; ð19Þ

where h̃ are traceless ðm − 1Þ × ðm − 1Þ matrices, such that
Trðh̃ðnÞh̃ðn0ÞÞ ¼ 1

2 δ
nn0 . They are as in (15)withn ranging from

1 to (m − 2). [In otherwords they are identical tohðnÞwith the
range of n truncated at (m − 2).] Using this, we find that the
four-dimensional Dirac index density for this case is

Dirac I4 ¼
1

2ð2πÞ2

#Xm−2

n¼1

1

2
dbðnÞdbðnÞ þQ2

2m
dbðm−1Þdbðm−1Þ

$

−
ðm− 1Þ

24

dωdω
ð2πÞ2

ð20Þ

and the corresponding effective action for the χ fields is

SeffðχÞ ¼ −
Z #

1

8π

Xm−2

n¼1

bðnÞdbðnÞ þ Q2

8πm
bðm−1Þdbðm−1Þ

$

þ ðm − 1Þ
Z

ωdω
48π

: ð21Þ

The last term in this expression is the purely gravitational
contribution from ÂðMÞ.
Notice that the anomalous terms for bðnÞ for

n ¼ 1; 2;…; ðm − 2Þ, cancels out between (18) and (21).
In order to cancel the anomalous term for bðm−1Þ we
introduce two additional spinors, one of left chirality
denoted by χ0 and one of right chirality denoted by χ00.
These fields couple to bðm−1Þ and gravity. Their bðm−1Þ

charges will be α=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðm − 1Þ

p
for χ0 and β=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðm − 1Þ

p

for χ00. Since we have one of each chirality, the gravitational
contribution from ÂðMÞ will cancel out and we find

Seffðχ0; χ00Þ ¼
Z

α2 − β2

2mðm − 1Þ
1

4π
bðm−1Þdbðm−1Þ: ð22Þ

Combining terms (18), (21), and (22) we find the anomaly
cancellation condition

1

8π
bðm−1Þdbðm−1Þ

#
1 −

Q2

m
þ α2

mðm − 1Þ
−

β2

mðm − 1Þ

$
¼ 0:

ð23Þ

This has the solution

Q ¼ (ð2lþ 1Þ; α ¼ (2lðlþ 1Þ;
β ¼ (2l2; m ¼ 2lþ 1; ð24Þ

where we write m ¼ 2lþ 1, since it is an odd integer.
The choice of a particular sign for α, β in this solution

can be motivated by consideration of possible composite
fields. The electron or the physical fermion is made up of
the partons, so it can be represented by the composite field

ψ ∼ q1q2 # # # qm: ð25Þ

This field ψ has the correct electric charge, and zero charge
for all the b fields, i.e., for bðnÞ, n ¼ 1; 2;…; ðm − 1Þ. The b
fields could bind the spectator fields as well; for example,
one could make a composite from all the χs of the form

Ξ ∼ Cr1r2###rm−1
χ̄r1 χ̄r2 # # # χ̄rm−1χ0sχ̄00s ð26Þ

for a suitable choice of coefficients Cr1r2###rm−1
. This field has

zero charge for all bðnÞ, n ¼ 1; 2;…; ðm − 2Þ. The charge
carried by Ξ for the bðm−1Þ field is
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QΞ
m−1 ¼

α − β −Qðm − 1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðm − 1Þ

p : ð27Þ

If we require this to be zero as well, then a consistent choice
of signs in the solution (24) is

Q ¼ 2lþ 1; α ¼ 2lðlþ 1Þ; β ¼ −2l2: ð28Þ

The spectator fields are thus χi, χ0, χ00 with the charges for
coupling to bðm−1Þ as given in this equation.
We can now collect all the remaining terms in the

effective action from (18), (21), and (22) as

Seff ¼
Z

1

4π

#
AdA
m

þ Adωþ
!
m
4
−

1

12

"
ωdω

$
;

¼
Z

1

4πm

!
Aþ 1

2
mω

"
d
!
Aþ 1

2
mω

"
−

1

48π

Z
ωdω:

ð29Þ

This result agrees with what has been calculated for the
ν ¼ 1=m Laughlin states [16,17]. Notice that the Hall
conductivity (defined by the functional derivative of Seff
with respect to Ai) has the expected ν ¼ 1=m behavior. The
Wen-Zee term is the same as for the ν ¼ 1 case. The
gravitational term is often split as shown in the second line
of (29), with the last term of the second line referred to as
the “pure gravitational anomaly” or even just the “gravi-
tational anomaly.” Our calculation shows the precise
mathematical sense in which this distinction is to be made.
As shown in [26], the Dolbeault index can be written as

IndexðD̄Þ ¼
Z

M
tdðTcMÞ ∧ chðVÞ ¼

Z

M
ÂðMÞ ∧ TrðeiF

2πþ
iR
4πÞ:

ð30Þ

Since

iF
2π

þ iR
4π

¼ 1

m
d
!
Aþ 1

2
mω

"
; ð31Þ

the Chern character shows how the combination of the
gauge fields and the spin connection as ðAþ 1

2mωÞ arises
in a natural way. For the partons we get m times the
contribution from the Â genus, while the χ fields give
−ðm − 1Þ times the same contribution, leading to the last
term in the second line of (29). Thus the “pure gravitational
anomaly” can be understood as the contribution of the
Â genus.
An alternative solution for anomaly cancellation would

be to takem Dirac spinors for the spectators with b charges
which are identical to the charges of the m partons. This
would obviously cancel the b anomalies but would give a
different value for the purely gravitational term in the final

effective action. In particular, the action will not agree with
the action for the integer QHE when we set m ¼ 1. Recall
that the action for the integer case does not require
spectators (or partons) and is unambiguously determined
by the Dolbeault index density. Requiring that the anomaly
cancellation should be consistent with that result (upon
setting m ¼ 1) rules out this alternative cancellation
solution.

B. Transport coefficients

We can now read off the transport coefficients, the Hall
conductivity and the Hall viscosity, from the effective
action (29). The variations of the effective action with
respect to the electromagnetic field A and the metric gml
give the current Ji and the energy-momentum tensor Tml as

δSeff ¼
Z

d2kþ1x
ffiffiffiffiffiffiffiffiffi
det g

p #
JiδAi −

1

2
Tmlδgml

$
: ð32Þ

In the present case, the Hall current is given by

Ji ¼ ϵij
#
Ej

2πm
þ
Rj0

4π

$
; ð33Þ

where Ei ¼ Fi0. The Hall conductivity is σH ¼ ν
2π. An

interesting feature of (33), which is also valid in all higher
dimensions [18], is that a Hall current can be generated
from time variation of the metric even if there is no external
electric field applied to the system.
In order to identify the Hall viscosity we have to derive

the energy-momentum tensor from the effective action (29)
and further identify the term involving the time derivative
of the metric. A detailed calculation for the Hall viscosity in
two and four dimensions for ν ¼ 1 was done in [18]. It is
straightforward to modify those results for m ≠ 1. We then
find

Tml ¼ 1

8π
ffiffiffiffiffiffiffiffiffi
det g

p ðgmiϵlk þ gliϵmkÞ

×
'#

B
2
þ
!
m
4
−

1

12

"!
R
2
−∇2

"$
ġki

þ 1

2

!
m
4
−

1

12

"
∇i∇kðgrnġrnÞ

(
; ð34Þ

where R is the Ricci scalar curvature and the magnetic field
B given by

Fij ¼ ϵijB
ffiffiffiffiffiffiffiffiffi
det g

p
: ð35Þ

Comparing (34) with the expression of the energy-momen-
tum tensor in terms of the Hall viscosity, we see that we can
write
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ffiffiffiffiffiffiffiffiffi
det g

p
Tml ¼ 1

2
ηHðgmiϵlk þ gliϵmkÞġki

þ 1

2
ηð2ÞH ðgmiϵlk þ gliϵmkÞ∇i∇kðgrnġrnÞ; ð36Þ

where the coefficients ηH and ηð2ÞH can be read off as

ηH ¼ 1

4π

#
B
2
þ
!
m
4
−

1

12

"!
R
2
þ k⃗2

"$
;

ηð2ÞH ¼ 1

8π

!
m
4
−

1

12

"
: ð37Þ

We will close this subsection with a few clarifying
remarks. Although we have focused on the effective action
and anomaly cancellation, it is important to consider the
occupation numbers for the partons. In the case of a two-
dimensional spatial manifold, this will be given by the
integral of the 2-form from the index polynomial (which
will also be the variation of the action with respect to A0).
The occupation number for the fully filled LLL for each

of the partons then takes the form

ni ¼
Z #

F
2πm

þ R
4π

$
þ
Z

ðhðnÞÞi
dbðnÞ

2π
; ð38Þ

where we have separated out the part depending on the b
fields. Notice that this means that bð1Þ couples to q1 and q2,
with charges( 1

2, but not to the other partons. Similarly, bð2Þ

couples to q1, q2, and q3 (with charges 1ffiffiffiffi
12

p , 1ffiffiffiffi
12

p , − 2ffiffiffiffi
12

p ), but

not to others, etc. For equality of the ni, we therefore need
to require that

Z
dbðnÞ ¼ 0 ð39Þ

for all n. This does not in any way come into the question
of the anomaly cancellation since (39) does not implyR
bðnÞdbðnÞ ¼ 0.
Our second remark relates to the nature of the composite

field Ξ in (26). While the spectator fields are introduced
for anomaly cancellation, composites like Ξ have zero
electric charge. So there is no measurable response for them
from changes in external electromagnetic fields. They do
respond to gravitational perturbations, but this is already
captured by the effective action. Thus, beyond effects
derivable from the effective action in (29), composites of
the spectator fields such as Ξ are more or less irrelevant.

C. A concern for other values of ν

Finally, we point out a difficulty with the parton picture
for states with filling fractions different from ν ¼ 1=m
when one deals with curved manifolds. This can be
illustrated by a simple example, say, for ν ¼ 2=5. The
usual parton picture for this uses three partons, with charge
2=5 for q1, q2 and charge 1=5 for q3. The partons q1, q2 fill
the LLL, ν ¼ 1, while q3 fills the LLL and the first excited
level, ν ¼ 2. With the b-charge assignments as in (15), (16),
we find [12,15]

SeffðqÞ ¼
1

4π

'!
2

5
Aþ bð1Þ

2
þ bð2Þffiffiffiffiffi

12
p þ ω

2

"
d
!
2

5
Aþ bð1Þ

2
þ bð2Þffiffiffiffiffi

12
p þ ω

2

"
−

1

12
ωdω

þ
!
2

5
A −

bð1Þ

2
þ bð2Þffiffiffiffiffi

12
p þ ω

2

"
d
!
2

5
A −

bð1Þ

2
þ bð2Þffiffiffiffiffi

12
p þ ω

2

"
−

1

12
ωdω

þ
!
1

5
A − 2

bð2Þffiffiffiffiffi
12

p þ ω
2

"
d
!
1

5
A − 2

bð2Þffiffiffiffiffi
12

p þ ω
2

"
−

1

12
ωdω

þ
!
1

5
A − 2

bð2Þffiffiffiffiffi
12

p þ 3ω
2

"
d
!
1

5
A − 2

bð2Þffiffiffiffiffi
12

p þ 3ω
2

"
−

1

12
ωdω

(

¼ 1

4π

'
2

5
AdAþ 8

5
Adωþ 8

3
ωdω −

6ffiffiffiffiffi
12

p bð2Þdωþ 1

2
bð1Þdbð1Þ þ 5

6
bð2Þdbð2Þ

(
: ð40Þ

The AdA and Adω terms agree with the corresponding
terms in the effective action for ν ¼ 2=5 in [16]. There is a
discrepancy for the ωdω term, but there will be similar
terms from the χ fields after the anomaly cancellation, so
this is not yet important. However a problem with this
choice of partons is already apparent at this stage, before we
even consider anomaly cancellation. For the number of
partons of each kind, we find

n1 ¼
1

2π

Z #
2

5
dAþ 1

2
dωþ dbð1Þ

2
þ dbð2Þffiffiffiffiffi

12
p

$
;

n2 ¼
1

2π

Z #
2

5
dAþ 1

2
dω −

dbð1Þ

2
þ dbð2Þffiffiffiffiffi

12
p

$
;

n3 ¼
1

2π

Z #
2

5
dAþ 4

2
dω − 4

dbð2Þffiffiffiffiffi
12

p
$
: ð41Þ
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These are given by varying the action (40) with respect to
ð2=5ÞA0 for q1, q2 and with respect to ð1=5ÞA0 for q3.
Alternatively, these can be obtained directly from the two-
dimensional index theorem.
As should be clear from (41), for curved spaces, such as

the sphere for example, the occupation numbers for the
partons will not be equal to each other, which will be
problematic in writing down the many-body electron wave
function in terms of partons. This is true for all cases whereR
dω ≠ 0, although we can still use the action (40) for

manifolds with small perturbations of the metric around a
background with

R
dω ¼ 0. Another possibility is to

choose nontrivial backgrounds with db ≠ 0 so as to match
the numbers in (41). We do not pursue these issues in detail
here, our aim is to point out that there are subtleties in
extending a parton picture to manifolds of nontrivial

geometry and topology. The case of ν ¼ 1=m discussed
above is not affected by this issue.

IV. THE PARTON CONSTRUCTION
IN 4 + 1 DIMENSIONS

A. Anomaly cancellation and the effective action

The construction for the fractional states in 4þ 1
dimensions is fairly straightforward since the method is
clear from the (2þ 1)-dimensional case worked out in
detail in the last section. Towards this, we again considerm
partons, each of charge 1=m, and coupled to b fields with
charges as given in (15). Each type of parton will be in a
ν ¼ 1 state.
The 6-form Dolbeault index density can be identified

from (3), where iF ¼ ðdA=mÞ1þ
Pm−1

n¼1 db
ðnÞhðnÞ

I6 ¼
1

3!
Tr

iF ∧ iF ∧ iF
ð2πÞ3

þ c1
4
Tr

iF ∧ iF
ð2πÞ2

þ c21 þ c2
12

Tr
iF
2π

þ c1c2
24

dimV: ð42Þ

The corresponding effective action for the partons is then

SeffðqÞ ¼
1

24π2m2
AF2 þ c1

8πm
AF þ c21 þ c2

12
Aþ m

192π2
Trω½ðTrdωÞ2 − TrðRRÞ'

þ
#

1

16π2m
F þ c1

16π

$Xm−1

n¼1

bðnÞdbðnÞ þ 1

24π2
Xm−1

n;n0;n00¼1

bðnÞdbðn
0Þdbðn

00ÞTrðhðnÞhðn0Þhðn00ÞÞ: ð43Þ

For ease of working out the anomaly cancellation, it is useful to separate out the term involving the bðm−1Þ field in the last
term of this expression. We find

1

24π2
Xm−1

n;n0;n00¼1

bðnÞdbðn
0Þdbðn

00ÞTrðhðnÞhðn0Þhðn00ÞÞ

¼ 1

24π2

' Xm−2

n;n0;n00
bðnÞdbðn

0Þdbðn
00ÞTrðhðnÞhðn0Þhðn00ÞÞ

þ 3

2

bðm−1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðm2 −mÞ

p
Xm−2

n¼1

bðnÞdbðnÞ −mðm − 1Þðm − 2Þ b
ðm−1Þdbðm−1Þdbðm−1Þ

ð2ðm2 −mÞÞ32

(
: ð44Þ

Turning to the cancellation of anomalies, we consider (m − 1) right-chiral spinors χ with b charges as in (19) for
n ¼ 1; 2;…; ðm − 2Þ. As in the two-dimensional case the χ spinors carry a charge ofQ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðm2 −mÞ

p
for coupling to bðm−1Þ

and they do not couple to electromagnetism (i.e., have zero electromagnetic charge).
The relevant Dirac index density in six dimensions is

Dirac index ¼ 1

3!
Tr

iF ∧ iF ∧ iF
ð2πÞ3

−
c21 − 2c2

24
Tr

iF
2π

; ð45Þ

where iF ¼
Pm−2

n¼1 db
ðnÞh̃ðnÞ þ Qffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2mðm−1Þ
p dbðm−1Þ1 and h̃ are traceless ðm − 1Þ × ðm − 1Þ matrices, such that

Trðh̃ðnÞh̃ðn0ÞÞ ¼ 1
2 δ

nn0 , as in (19).

FRACTIONAL QUANTUM HALL EFFECT IN HIGHER … PHYS. REV. D 111, 025002 (2025)

025002-9



The corresponding effective action for χ is

SðχÞ ¼ −
1

24π2

' Xm−2

n;n0;n00
bðnÞdbðn

0Þdbðn
00ÞTrðhðnÞhðn0Þhðn00ÞÞ þ 3Q

2

bðm−1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðm2 −mÞ

p
Xm−2

n¼1

dbðnÞdbðnÞ

þ ðm − 1ÞQ3 b
ðm−1Þdbðm−1Þdbðm−1Þ

ð2ðm2 −mÞÞ32

(
þQ

m − 1

24
ðc21 − 2c2Þ

bðm−1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðm2 −mÞ

p : ð46Þ

We will also introduce N left-chiral spinors, denoted by χ0, coupled to bðm−1Þ with charge αffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðm−1Þ

p and M right-chiral

spinors χ00 coupled to bðm−1Þ with charge βffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðm−1Þ

p . The contribution of these will be

Sðχ0Þ ¼ 1

24π2
Nα3

bðm−1Þdbðm−1Þdbðm−1Þ

ð2ðm2 −mÞÞ32
−

1

24
ðc21 − 2c2ÞNα

bðm−1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðm2 −mÞ

p ;

Sðχ00Þ ¼ −
1

24π2
Mβ3

bðm−1Þdbðm−1Þdbðm−1Þ

ð2ðm2 −mÞÞ32
þ 1

24
ðc21 − 2c2ÞMβ

bðm−1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðm2 −mÞ

p : ð47Þ

Combining (43)–(47), we see that the leading anomaly, the cubic b term, cancels if

Q − 1 ¼ 0

−mðm − 1Þðm − 2Þ þ Nα3 − ðm − 1ÞQ3 −Mβ3 ¼ 0: ð48Þ

Further the linear b term, as well as the total bðm−1Þ charge, cancels if

Nα − ðm − 1ÞQ −Mβ ¼ 0: ð49Þ

We will consider two possible solutions to (48), (49), given by

I: Q ¼ 1; N ¼ 0; M ¼ 1; β ¼ −ðm − 1Þ: ð50Þ

II: Q ¼ 1; N ¼ 1; M ¼ 1; α ¼ 0; β ¼ −ðm − 1Þ: ð51Þ

For the first solution, the m spectator fields χ, χ00 have b charges which are identical to the b charges for the partons (and
there is no χ0 field). The second solution is essentially what we had in 2þ 1 dimensions, with one χ0 and one χ00 field in
addition to (m − 1) χs. Notice that, as far as b anomalies are concerned, these two solutions have the same content, since
α ¼ 0 for the second solution. In principle, we could also add an equal number of left and right chirality fields whose
anomalies will cancel against each other, but (50), (51) represent the minimal choice.
As in the case of two dimensions, the electron will correspond to a composite field

ψ ∼ q1q2 # # # qm: ð52Þ

There can also be composites made of the spectator fields, but, for reasons given after (39), these are not important for us.
Adding the action for the partons (43) and the action for the right chiral spinors χ; χ00 (46), (47) we find an effective action

where the leading anomalous term, the cubic-b term, is canceled. (Notice that χ0 with α ¼ 0 does not contribute to the
action.) The resulting effective action takes the form

Seff ¼
1

24π2m2
AF2 þ c1

8πm
AF þ c21 þ c2

12
Aþ m

192π2
Trω½ðTrdωÞ2 − TrðRRÞ' þ

#
1

16π2m
F þ c1

16π

$Xm−1

n¼1

bðnÞdbðnÞ: ð53Þ

The expression above is the bulk effective action for fractional Hall states in 4þ 1 dimensions. The expression still involves
the b fields. Unlike in 2þ 1 dimensions, we cannot resort to known framing-anomaly-type results to integrate them out.
However, we can still eliminate them as follows.
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The final term in the effective action can be rewritten as

#
1

16π2m
F þ c1

16π

$Xm−1

n¼1

bðnÞdbðnÞ ¼
#

1

16π2

!
A
m
þ Trω

2

"X
dbðnÞdbðnÞ

$
þ d

#
1

16π2

!
A
m
þ Trω

2

"X
bðnÞdbðnÞ

$
: ð54Þ

The second term on the right-hand side is a total derivative and integrates to a term on the boundary. Since it is a local term
involving the gauge fields on the boundary, it can be removed by a choice of regularization when the spectator fields are
integrated out. The bulk term is thus invariant under gauge transformations of the b fields, so there are no more obstructions
to integrating out the b fields. Notice also that A and ω are coupled to a current which is conserved in the bulk. In fact, the
first term on the right hand side of (54) can be written as

1

16π2

!
A
m
þ Trω

2

"X
dbðnÞdbðnÞ ¼

!
Aμ

m
þ
Trωμ

2

"
J μ; ð55Þ

where J μ is the dual of 1
16π2

P
dbðnÞdbðnÞ. By construction J μ is a conserved current. When the b fields are integrated out,

this term will produce powers of A and ω coupled to correlators of the current J μ. In general, such correlators are not
topological but since J μ is conserved, they will have appropriate transversality properties so that the result will involve only
dAs and dωs. Further, the expectation value of just one power of the current should be zero, indicating that the monopole
moment of the charge should be zero on average. Thus we expect that these nontopological terms are of the dipole or higher
multipole nature. Setting aside these nontopological terms, the effective action is thus reduced to

Seff ¼
1

24π2m2
AF2 þ c1

8πm
AF þ c21 þ c2

12
Aþ m

192π2
Trω½ðTrdωÞ2 − TrðRRÞ': ð56Þ

Using (6) we can rewrite (56) as

Seff ¼
1

ð2πÞ2

Z '
1

3!m2
ðAþmω0Þ½dðAþmω0Þ'2 − 1

12
ðAþmω0Þ

#
ðdω0Þ2 þ 1

4
Ra ∧ Ra

$(
; ð57Þ

where, for a complex manifold with holonomy UðkÞ, we
can write R in terms of the Uð1Þ and SUðkÞ components as
R ¼ dω01þ Rata.

B. Transport coefficients

We now turn to the transport coefficients. Form ¼ 1, the
(4þ 1)-dimensional action (57) describing the bulk
dynamics of the integer QHE and its corresponding trans-
port coefficients were studied in detail in [18]. Here we
quote those results appropriately modified for the m ≠ 1
case. The Hall current takes the form

Ji ¼ 1

2

1

ð2πÞ2
ϵijkl

Ej

m2

!
Fkl þm

TrRkl

2

"
; ð58Þ

wherewe have neglected terms involving time derivatives of
the metric. The Hall conductivity, defined by the term pro-
portional to the electric field Ej ¼ Fj0, can be identified as

σijH ¼ 1

8πm2
ϵijkl

!
Fkl þm

TrRkl

2

"
: ð59Þ

In order to identify the Hall viscosity one has to obtain
the energy-momentum tensor. The coefficient of the term

proportional to the time derivative of the metric in the
expression for Tij will give the Hall viscosity. Following
the calculation done in [18] and extending it to the case
where m ≠ 1, we find that the energy momentum tensor
derived from (56) involves two terms,

Tml ¼ Tml
1 þ Tml

2 ; ð60Þ

where

Tml
1 ¼ 1

8ð2πÞ2
ðgmnðJ0Þlj þ glnðJ0ÞmjÞġnjK0

þ # # # ;

d4x
ffiffiffiffiffiffiffiffiffi
det g

p
K0 ¼

#
1

2m
dAdAþ dAdω0 þm

2
dω0dω0

þ m
48

RαβRβα

$
; ð61Þ

where ω0 ¼ 1
4 ϵ

αβωαβ, RαβRβα ¼ −4R0R0 − RaRa and

Tml
2 ¼−

1

96ð2πÞ2
ðgmnðRrsÞljþglnðRrsÞmjÞġnj∂pðAqþmω0

qÞ

×
ϵrspqffiffiffiffiffiffiffiffiffi
detg

p þ### : ð62Þ

FRACTIONAL QUANTUM HALL EFFECT IN HIGHER … PHYS. REV. D 111, 025002 (2025)

025002-11



The ellipsis in (61) and (62) refers to momentum-dependent
terms of the form ∂ġ. The antisymmetric tensor ðJ0Þlj in
(61) is defined in terms of the inverse frame fields e−1lα and
the antisymmetric tensor ϵαβ

ðJ0Þlj ¼ e−1lαe−1jβϵαβ: ð63Þ

The antisymmetric tensor ϵαβ is defined so that ϵ12 ¼
ϵ34 ¼ 1; ϵ13 ¼ ϵ24 ¼ 0.
Expressions (61) and (62) give the momentum-

independent terms of the Hall viscosity in 4D. As should
be clear from these expressions, the tensorial structure in
the case of a curved manifold is rather involved. However,
there is simplification for zero curvature. In the flat limit,
the 4D complex manifold decomposes into C × C, corre-
sponding to the planes (1, 2) and (3, 4) where there is a
constant magnetic field B1, B2 for each plane. Since the
curvature terms vanish in this limit the contribution from
Tml
2 is zero. Further, we can write ðJ0Þlj → ϵij and the

contribution from Tml
1 is of the form

Tml ¼ 1

8ð2πÞ2
ðgmiϵlk þ gliϵmkÞB1B2

m
ġki: ð64Þ

Comparing with (36) we find that the Hall viscosity in this
limit is

ηH ¼ 1

4m
B1B2

ð2πÞ2
: ð65Þ

Notice that the leading term in the Hall conductivity in (59)
behaves as 1=m2 while the leading term of the Hall
viscosity in (65) behaves as 1=m.

C. FQHE on S2 × S2 and dimensional reduction

An interesting special case to consider is the complex
manifold S2 × S2. In that case the curvature and spin
connection decompose in terms of the appropriate quan-
tities on each sphere, i.e.,

!
dω1 0

0 dω2

"
¼ dω01þ Rata; ð66Þ

where dω0 ¼ 1
2 ðdω1 þ dω2Þ and R3 ¼ dω1 − dω2,

R1 ¼ R2 ¼ 0.
Given the above expressions we find that for S2 × S2

c1 ¼
TrR
2π

¼ dω1 þ dω2

2π
;

c2 ¼
ðTrRÞ2 − TrR ∧ R

2ð2πÞ2
¼ dω1dω2

ð2πÞ2
: ð67Þ

It is interesting to notice that, if we assume that the
electromagnetic interactions reside only on the first sphere,

the ð4þ 1ÞD bulk action (56) for m ¼ 1 (noninteracting
case) dimensionally reduces to the ð2þ 1ÞD bulk action
(29) for m ¼ 1. This is obtained by integrating over the
second sphere using

Z

S2

dω2

2π
¼ 2: ð68Þ

Similarly form ≠ 1, if we assume that the gauge fields such
as A and bs reside only on the first sphere, the ð4þ 1ÞD
parton effective action (43) (partons are at ν ¼ 1) dimen-
sionally reduces to the ð2þ 1ÞD parton effective action
(18). The dimensional reduction however does not go
through at the level of the m ≠ 1 total effective actions
(57) and (29) since the gravitational contribution of the
chiral edge spinors is very different in ð2þ 1ÞD and
ð4þ 1ÞD. This is understandable since interparticle (inter-
parton) interactions are important for FQHE, in particular
between the two spheres in the present case of S2 × S2, so a
naive reduction to FQHE on one of the spheres is not to be
expected.
One can further calculate the corresponding transport

coefficients on S2 × S2. The Hall conductivity is as in (59).
Regarding the Hall viscosity and keeping only the
momentum-independent terms, we find the following con-
tributions from the energy momentum tensors T12

1 and T12
2 ,

ηH;1 ¼
1

4ð2πÞ2

#
B1B2

m
þ 1

4
ðB1R2 þ B2R1Þ þ

m
16

R1R2

$
;

ηH;2 ¼ −
1

4ð2πÞ2
1

24

!
R1B2 þ

m
2
R1R2

"
; ð69Þ

where R1;2 are Ricci scalars. The calculation of the Hall
viscosity from the T34

1 and T34
2 will give similar expressions

with R1 ↔ R2.
The total contribution for the Hall viscosity from

ðT12
1 þ T12

2 Þ is

ηH ¼ 1

4ð2πÞ2

#
B1B2

m
þ 1

4
ðB1R2 þ B2R1Þ −

1

24
B2R1

þ m
24

R1R2

$
: ð70Þ

For m ¼ 1, it is straightforward to check that the limit
where B2 ¼ 0 and

R
R2 ¼ 8π indeed produces the

ð2þ 1ÞD expression for the Hall viscosity for m ¼ 1,
Eq. (37), confirming the dimensional reduction situation
for m ¼ 1 mentioned earlier.

V. CONCLUDING REMARKS

It is useful to recapitulate briefly the arguments and
results of this paper, since a number of necessary but
ancillary comments were made along the way and the main
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thread of logic may not have been easy to follow. The
basic idea is to generalize the parton picture which has
been used to construct fractional quantum Hall states in
two spatial dimensions. The electron is viewed as a
composite particle made of several partons with auxiliary
gauge fields (the b fields) binding them together. The
partons are in quantum Hall states of integer filling
fraction; this state, viewed in terms of the electron, is a
fractional quantum Hall state. The action for the b fields
involves terms of the Chern-Simons type in 2þ 1
dimensions. One can integrate them out to get a gravi-
tational CS term, the action for the so-called framing
anomaly. While this is fairly straightforward in 2þ 1
dimensions, a similar procedure in higher dimensions
would lead to higher CS forms and this leads to an
impasse since integrating out CS theories in higher
dimensions is still not well understood. However, we
notice that one can introduce a set of auxiliary fields to
cancel out any gauge anomaly for the b fields on the
boundary of a quantum Hall droplet, thereby eliminating
CS type (potentially anomaly-generating) terms in the
bulk. We showed that this does lead to the same results in
2þ 1 dimensions, same as integrating out the b fields
and as obtained in various explicit calculations. Anomaly
cancellation thus constitutes an alternate formulation of
the key idea of the parton picture and this is indeed
generalizable to higher dimensions.
We worked out the parton picture in 4þ 1 dimensions in

Sec. IV. The effective action for the partons can be obtained
as the Chern-Simons term corresponding to the twisted
Dolbeault index density in 2kþ 2 dimensions, for QHE in
2kþ 1 dimensions. The reason for the use of this index is
the same as for the integer QHE, namely, because of the
holomorphicity condition for the fields in the lowest
Landau level. The spectator fields are chiral spinors.
Their anomaly can be obtained by the standard descent
procedure starting with the Dirac index density in 2kþ 2
dimensions. The resulting effective actions are given in (56)
and (57).
The Hall current is given by deriving this action with

respect to the electromagnetic field. Likewise, the variation
of the action with respect to the metric gives the energy-
momentum tensor. From the current and the energy-
momentum tensor, we obtained the Hall conductivity
and the Hall viscosity, given in (59) and (65). The m
dependence for the leading term for the Hall conductivity is
1=m2 while it is 1=m for Hall viscosity.
A related point worthy of comment is about the case of

QHE on S4 studied by Hu and Zhang in [4]. The authors
argue that the filling fraction for the corresponding
Laughlin-type wave functions is 1=m3, based on the
analysis of the degeneracy and the spectrum of the lowest
Landau level. While this is different from the 1=m2

behavior of the Hall current for a complex 4D manifold,
it is easy to see how this arises. We have shown in [5] that

QHE on S4 with SUð2Þ magnetic background can be
understood in terms of QHE on CP3 with an Abelian
magnetic field. This arises from the fact that CP3 is an S2

bundle over S4. The filling fraction of the corresponding
Laughlin-type wave functions on CP3 is also ν ¼ 1=m3. In
terms of the effective action approach, the leading term of
the CS action for the electromagnetic field A will be
proportional to 1=m3 for CP3; this is in accordance
with [4].
In fact we expect that for a general complex manifold of

dimension 2k for which we can construct an effective
action for Laughlin type states as described in this paper,
the leading term for the Hall conductivity will be propor-
tional to ν ¼ 1

mk while the Hall viscosity will scale as 1
mk−1,

up to curvature corrections. This is because the dominant
term in the effective action for the Hall current is the CS
term

R
AðdA=mÞk, while the dominant term for the deri-

vation of the Hall conductivity is the next order term of the
form

R
AðdA=mÞk−1R, involving one power of the curva-

ture and hence one less power of A.
We have only considered states which are the higher

dimensional analogs of the Laughlin states, i.e., of the ν ¼
1=mk type. For other fractional values of ν, ensuring that
each species of partons has the same degeneracy (over the
integer Landau levels they fill) is nontrivial even in 2þ 1
dimensions for spaces of nontrivial topology, as argued at
the end of Sec. III.
Another point worth emphasizing is about the use of

the spectator fields. It is important that the picture of the
electron as a composite particle made of partons is to be
viewed only as a theoretical technique highlighting
certain nonperturbative features of the mutually interact-
ing electrons in a magnetic field. While it is useful and
seems to work well in 2þ 1 dimensions, the ultimate
reason for its success is still unclear. In reality, the only
physical particle involved is just the electron. So while
response functions derivable from the effective action are
to be viewed as physical, possible composites of the
spectator fields are to be viewed as artifacts of the
technique. For this reason, we do not think the excita-
tions of Ξ in (26), or similar fields in 4þ 1 dimensions,
are to be viewed as physical.
Obviously, the generalization of the present work to

arbitrary even dimensions and to non-Abelian gauge field
backgrounds will be very interesting. In envisaging such
prospects, we note that the issue of anomaly cancellation
becomes more involved. In 4þ 1 dimensions, in (53), we
encountered a term corresponding to a mixed gauge-
gravitational anomaly. In even higher dimensions, there
are additional terms corresponding to mixed gauge-
gravitational anomalies generated by the index density.
A consistent anomaly cancellation scenario incorporating
these elements is beyond the scope of this first attempt,
but nevertheless it remains a worthwhile avenue to
explore.
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