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There are two sets of orbits of the Virasoro group which admit a Kéahler structure. We consider
the construction of coherent states for the orbit diff ST /U(1) which furnishes unitary repre-
sentations of the group. The procedure is analogous to geometric quantization using a holo-
morphic polarization. We also give an explicit formula for the Kéhler potential for this orbit and
comment on normalization of the coherent states. We further explore some of the properties of
these states, including the definition of symbols corresponding to operators and their star
products. Some comments which touch upon the possibility of applying this to gravity in (2 + 1)
dimensions are also given.
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1. Introduction

It has been well known for a long time that one can construct coherent states which
realize unitary representations of a Lie group via the method of geometric
quantization.'® For this one considers coadjoint orbits of the Lie group G which are
of the form G/H for a suitable subgroup H such that the coset space has a Kahler
structure. For the general case, one chooses H to be the maximal torus in G, with the
Kihler two-form given by — > 7 w;Tr(h;g 'dg A g~'dg) where g denotes a general
group element in the fundamental representation (viewed as a matrix), h; are the
generators of the maximal torus in a suitable basis and (wy,ws,...,w,) defines the
highest weight state of some unitary representation of G, and r denotes the rank of
the group. The result of the quantization will be a Hilbert space H corresponding to
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the carrier space of the representation with the highest weight indicated. One can
assign wave functions to the states of this Hilbert space; they obey a holomorphicity
condition depending on the Kéhler potential. Orthonormality conditions, symbols
corresponding to operators on H, star products, the diagonal coherent state repre-
sentation, etc. can then be defined in a straightforward way.

In this paper, we consider a similar construction of coherent states, star products,
etc. for the Virasoro group, which will be identified as the centrally extended version
of diffeomorphisms of a circle, denoted diff ST. This problem is clearly of some in-
trinsic mathematical interest, but there are several motivating factors from physics
as well. After all, the Virasoro algebra is one of the foundational ingredients for the
formulation of string theory. Partly motivated by this, coadjoint orbits of diff ST
were classified and some of their properties analyzed many years ago.”'° Another
context in which diff ST emerges is (2 + 1)-dimensional gravity. The action for this
theory (with a cosmological constant) is given as the difference of two SL(2,R)
Chern-Simons actions, with the connection forms A;, Ap given as combinations of
the frame fields and spin connection. Witten’s analysis of the partition function of
this theory shows that the inclusion of the BTZ black holes will require Virasoro
representations in the relevant sum over states.!!'2 The construction of the coherent
states is useful for such analyses. Further, the semiclassical limit of this analysis
corresponds to taking the central charge c to be large, a limit which is suitable for a
star-product expansion for observables.

In the case of finite dimensional Lie groups, the Hilbert space H can be used as
a model for a description of the noncommutative version of the manifold G/H.
Coherent states are then useful in defining symbols corresponding to operators on H
and the star products give the (noncommutative) algebra of functions on G/H.
Given the appearance of Virasoro representations in (2 + 1)-dimensional gravity, if
we envisage a noncommutative antecedent for gravity, then coherent states for the
Virasoro algebra become important in defining symbols and star products and
obtaining a continuous manifold description in the large c limit.

In the case of (2 + 1)-dimensional gravity on asymptotically anti-de Sitter space,
the asymptotic symmetries also lead to a Virasoro algebra.'? Some of the issues of
gravity may thus be cast in terms of holography or the AdS/CFT correspondence,
which is a different facet of string theory. Combined with the observations in the
previous paragraphs, this suggests a way to bring together ideas of string theory
and/or gravity and noncommutative geometry. The coherent states for the Virasoro
group will also be central to any such attempt.

Among the coadjoint orbits of the Virasoro group, there are two which admit
Kéhler structures and hence are amenable to defining coherent states satisfying
appropriate holomorphicity conditions. These orbits correspond to diff ST /St and
diff ST /SL(2,R). The Kihler potentials for these cases are characterized by two
numbers, the central charge ¢, which must be viewed as the eigenvalue of the central
element of the algebra, and h, which may be viewed as the eigenvalue of the generator
Ly on the highest weight state of the representation. For most purposes, the
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quantization of diff ST /SL(2,R) may be considered as a special case of the quanti-
zation of diff ST /S, so we will focus on the latter space. Some of the other orbits are
relevant for representations which contain null vectors and can lead to unitary
representations for ¢ < 1. We will not discuss these here.

Not surprisingly, there have been many discussions in the literature which touch
upon various aspects of coherent states for the Virasoro group. Many of the papers
we have cited contain some implicit statements about such states. Representations of
the Virasoro algebra as differential operators on functions of a suitable set of vari-
ables occur in the context of the KP hierarchy and the so-called string equation.” A
different, but related, representation has been used in discussions of the stochastic
Loewner equation.!> These do not directly lead to coherent states. The group
manifold approach to quantization, discussed in Ref. 16, is a generalization of the
idea of the coadjoint orbit quantization and as such is closer to our discussion. This
approach starts with the formal group law and imposes polarization conditions on
functions on the group to obtain irreducible representations. In Ref. 16, the com-
position laws for the Virasoro group parameters, including the central parameter
relevant to the central extension, have been constructed. Our approach is more
traditional, but clearly there are some points of overlap; we will briefly comment on
this later. For us holomorphicity is important as it provides a simple way to con-
struct a suitable star product. (The Kontsevich formula for star products does not
need coherent states per se, but it does need more information about the symplectic
structure on the space.'” In turn, this would require an analysis similar to what we do
in this paper, so it does not seem like our analysis can be evaded.) Standard coherent
states for the bosonic operators obeying the Heisenberg algebra in the mode ex-
pansion for the target space coordinate in string theory have also been considered in
the literature.'® While these can be useful for certain applications, the states we are
concerned with are not these; we are interested in directly quantizing the Virasoro
orbits.

This paper is organized as follows. In Sec. 2, we will briefly discuss coherent states
for SL(2,R)/U(1). The results here are well-known, but it helps to set the stage for a
similar analysis for the Virasoro case, which is taken up in Sec. 3. The key steps are
the following. We first construct an expression for the Kéhler potential for the orbit
of interest. This will give a functional version of the coherent states and it will also
inform the issues of normalization discussed later. We then define an operator U and
show that it is possible to choose coordinates on the Virasoro orbit such that U~1dU
can be split into holomorphic and antiholomorphic forms corresponding to the
Virasoro generator L_, and its conjugate. This naturally leads to a set of wave
functions associated with the states of the Verma module and which obey a certain
holomorphicity condition. The normalization of these wave functions will involve the
Kéhler potential. The normalization integral with the appropriate measure of inte-
gration is then discussed. Symbols and star products are considered in Sec. 4. In
the limit of large central charge, the star products reduce to those on SL(2,R)/U(1),
i.e. on a noncommutative version of AdS,. The paper concludes with a short
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discussion in Sec. 5. There is also an Appendix A which gives details of some of the
assertions made in Sec. 3.

2. Coherent States for SL(2,R)/U(1)

In this section, we will briefly consider the construction of coherent states for
SL(2,R). While these results are well known, our presentation will help to highlight
certain points which can help to clarify the lines of argument employed later for the
Virasoro case.

The generators of the Lie algebra can be taken as Ly, L., with the commutation
rules

(Lo, Liy] = FLiy, [L1, L] =2L. (1)
The highest weight state is defined by
Ly|0) =0, Lg|0) = h|0). (2)

We will consider representations with h > % which are the simplest for exemplifying
the arguments used for the Virasoro case. Other states are obtained by the action of
powers of L_; on |0). The normalized states are given by
1 I'(n+1)I'(2h +
n) = ——L1,J0), N(w) = O EDEERER)
V/N(n) I'(2h)

where I'(u) is Eulerian gamma function for the argument u. The state |n) corre-
sponds to a value of L, equal to h + n, so the representation we are considering is
bounded below. Now we introduce the unitary operator®

(3)

U=exp(wL_, —wLy), U'=exp(wL; —wL_,), (4)
where w, w are functions of some complex coordinates s, § which parametrize
SL(2,R)/U(1). We now define the coherent states by the wave functions

v, = (0|U"|n) = (0[UL"4]0). (5)

1
VN(n)
(A similar definition will be used later for the Virasoro case.)

For the case of SL(2,R), a general element of the group can be written in the 2 x 2
matrix representation as

1 1 s\ [e¥? 0
_ 1.
! m(—z‘sf 1)( 0 ew)’ ol < ©

The correspondence of the Lie algebra elements in this representation is given by
Ly =140y, Ly =% (0y —ioy), L_y =% (0y + i0y), in terms of the standard Pauli ma-
trices. The group parameters s, § provide local coordinates (for a patch around

*The coordinates w, w correspond to what we later call w, w; in the context of the Virasoro algebra; we
drop the subscripts for this section to avoid clutter.
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s =0) for the coset space SL(2,R)/U(1). For this parametrization, the standard
Kihler one-form Tr(o39~'dg) will contain a term dyp, which will drop out in the two-
form d(Tr(o39'dg)). So, for the quantization of the orbit corresponding to the
chosen h-value on SL(2,R/U(1), we can drop ¢ on the local coordinate patch. The
parametrization also shows a singularity at |s| = 1; this is integrable for k> 3, and
will not affect results below.

For the parametrization in (6), for a unitary representation of g as U, we get

ds —5d ds d
dUTUT71 = (S 5 5 SLO + il L1 5 L1>,

1-—35s 1—35s 1-—3s
sds — 5ds ds ds
— L — L, -1 -
1-—35s 1—35s

(7)

From the first of these relations, and using (2), we get the holomorphicity conditions
for the coherent states as

Utldut = (— o
1—5s

0 hs
— v, =0. 8
(65 + 1-— §5> " (®)
The second equation in (7) also gives
0 hs
— Uy =0.
(6§+1—§s> 0=0 ©)

For ¥, we can solve these equations to find (0|U|0) = (1 — 5s)". The possible
arbitrary multiplicative constant is set to one, since UT = 1 at s = 0. For the higher
states, we can develop a recursion rule using (8) as follows.

1

U, = ey (O|UfL_,L"7'|0)
_ ;(n) (0| (—(1 — 5s) aa—? T UTsL0>L";1|o>
= %(—(l—ss)%—ks(h—i-n—l))%ll. (10)
This can be solved to write
g, = JLCRED) 0o (11)

T(n+ 1)T(2h)

The Kéhler potential may be identified from the symplectic form or from the
holomorphicity condition written as (9, +%85K YU, =0. We can also identify K
from the relation (0|U~'dU|0) =1 (9K — OK). The Kahler potential and the sym-
plectic form can be worked out as

dsds
(1-35s)?"
We will use a slightly different normalization for the phase volume defined by w (with
a prefactor 2h — 1 rather than 2h) which makes the ¥,, orthonormal. It is easy to

K = —2hlog(l — 3s), w=1i00K = 2hi (12)
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verify that

(2h — 1)/L\1}*xy . (13)
m(l—35s)2 " " nm

The range of integration is over the disk |s| < 1; the singularity at |s| = 1 is inte-

grable for h > %, so the inner product is well-defined.

In Egs. (8), (11) and (13), we have reproduced the standard and well-known
results for coherent states on SL(2,R)/U(1). For SL(2,R) we have the advantage of
a parametrization for the coset space given as in (6); for the Virasoro case, we have to
rely on a power series expansion for w, w. We will determine the expressions for w, w
as a series in s, § relying on the Kéhler property and requiring that the coefficient of
L_; be a holomorphic one-form. We will briefly illustrate the strategy here. Note
that, using (4), we can write

1
deU :/ do e*(¥<U’L71*’U«'L1)(de_1 _ dﬂ)Ll)ea(U’Lq*a’Ll)
0

1 1 1 1
~ [dw(l +§ww) — dwng] L, — [dw (1 +§ww) — dwng]Ll
+ (wdw — wdw) Ly + - - - . (14)

We take w to be given in terms of the local coordinates as
w=s+w?(s,5) +w(s,5) 4. (15)

Setting the coefficient of d5L_; to zero we find w(®) = s25/3. Using this, we can
simplify dUTU = —UTdU as

dU'U = ds(1 + 8s)L; — ds(1 + 8s)L_; + (sd5 — §ds)Lo+ - - - . (16)

This matches with the expression in (7) to first order in the expansion in powers of §s.
We have checked that the process can be continued by developing w as a series in s, § and
requiring that the coefficient of L_; is a holomorphic one-form, to reproduce the results
in (7). We will use a similar strategy for the Virasoro group, developing a series expansion
for w,,, w,, as worked out in Appendix A. Since the procedure is exactly parallel, the
results we obtain in that case will revert to the discussion in the present section when
restricted to the coordinates wy, w,, and to Ly, L4, setting w,,, w, =0, n > 2.

In the case of SL(2,R), one can also directly use the Baker—Campbell-Hausdorff
(BCH) formula

wL_—wL; _ ,sL_; log(1—5§s)Ly,—SL
e 1 1 —e le g( ) e 1’

w
s = — tanh |w]|. (17)
|wl

Since the BCH formula is determined by the commutator algebra of Ly, L., the

matrix representation Ly = 03/2, Ly =i(0; 2 i09)/2 can be used to verify (17).
Writing win terms of s we get w = (s/|s|)arctanh|s| &~ s + s25/3 + - - -, in agreement
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with the series expansion in (15). Further, by taking the expectation value of the first
equation in (17) for the highest weight state |0), we find

<0|UT|0> _ <0|e—sL,1elog(l—gs)Loe—ng|0> _ e}zlog(l—.§s) = e—K/Q7 (18)

which agrees with the expression for the Kahler potential in (12).
Finally, we also note that K — oo at the boundary of the region of integration,
which is |s| — 1. This corresponds to |w| — oo if we use the coordinates w, w.

3. Construction of the States for the Virasoro Case

As mentioned in the Introduction, unitary representations of the Virasoro group, for
¢ > 1, are obtained by quantizing diff ST /St and diff ST /SL(2,R). Further, these
orbits have a Kahler structure.”!© We will focus on diff ST /S! for reasons mentioned
earlier. This manifold can be described by complex coordinates s, and 5, where k
takes integer values from 1 to infinity. The basic generators of the Virasoro algebra
are L,, n € Z, with the commutator algebra

(L, L] = (n—m) Ly 4+ —

E 3 — n)6n+m,0 1. (19)

(n
Here 1 is the identity operator; the central charge may be viewed as the eigenvalue of
a central charge operator ¢ which is proportional to the identity. This is necessary to
view the algebra (19) as having a closed Lie algebra structure. Thus, there is a slight
abuse of notation in writing (19) directly in terms of the eigenvalue; this will be
immaterial for what we want to do. We are interested in highest weight repre-
sentations, with the highest weight state obeying

Lol0) = hl0), L,J0y=0, n>1. (20)

Further, we will be interested in the case of ¢ > 1 and h > 0, so that we will not have
null vectors in the associated Verma module. From now on we will use the notation
Ly, L,, L_,,, with n > 1 explicitly distinguishing the three sets of operators. The

subgroup S in diff ST /S is generated by the action of Ly, with L,,, L_,, forming the
translation operators on the coset diff S/S?.

3.1. The Kahler potential

Some considerations on the nature of the Kiahler potential will be useful before
embarking on constructing explicit formulae for the coherent states. An expression
for the symplectic two-form relevant for diff ST /SL(2,R) was given by Stanford and
Witten in Ref. 19 as®

w

Lo[r e 89 0 (89
12 ¢ or

C /
=4 W) Eégbéqﬁ} (21)

"While we use the expression as given in Ref. 19, we note that it is also related to expressions given in
Refs. 20 and 21, in addition to Refs. 9 and 10.
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Here ¢(7) may be considered as a field on the circle parametrized by 0 < 7 < 27.
The prime denotes differentiation with respect to 7, Explicitly, ¢ is of the form
H(r)=T+o+P+X+X,

p==se", =51,

o0

00
x = Z Snemr’ X = ; gne—i'm—' (22)

2

Further, 6 in (21) denotes exterior derivative on the space of the fields ¢ and wedge
products for the ¢’s is understood. The two-form w has zero modes corresponding to
Ly, Li1,i.e. forn = 0,+1. This is in accordance with the fact that w is the symplectic
form for diff ST /SL(2,R). The zero modes, as argued in Ref. 19, correspond to the
vector fields

. )
V, = / dre™T) — — n=0,+1. 23
’ 50(7) >

The zero modes can be removed by a suitable gauge-fixing condition to obtain an w
which is invertible. In Ref. 19, this was chosen as ¢(0) = 0, ¢/(0) = 1 and ¢"(0) = 0.
For us, it will be convenient to make a different choice. Under the action of V,,, with
parameters (3, B+1, the field ¢ transforms as

¢ — o+ B+ 5+16i¢ + B_je7®
=T+ @+ @+ 0+ 87 4§ e e )
RT+o+ o+ By + Bi€e +Bge T+, (24)

where, in the last line, we have expanded out e*!¥+%), This shows that the coordi-
nates s, 57 shift by 5,1, 8_; for a neighborhood around s,, = 0. Even though the full
transformation will be nonlinear, this shows that a suitable gauge-fixing for V. is to
set s; = 51 = 0. The gauge-fixing for V}, is taken care of by setting ¢ = 7 for s,, = 0.
Thus, a gauge-fixed version of w is given by the same expression as in (21), but with

¢=T+X+X; (25)
omitting the s;, 5; terms.

We now note that diff ST /U (1) can be regarded as a bundle over diffS'/SL(2,R)
with SL(2,R/U(1) as the fiber. (This is a refinement of regarding diffS! as an
SL(2,R)-bundle over diffS'/SL(2,R).) The gauge-fixing thus provides a local sec-
tion of diff ST/U(1) in the form diff ST/U(1) ~ diffS'/SL(2,R) x SL(2,R/U(1).
Therefore, for the symplectic form on diff ST /U(1), we have to modify w to take care
of the term corresponding to SL(2,R)/(U(1). A suitable modification is given by

R Y o O ¢ ' 69’6

We have made two changes compared to (21). We have added the contribution
due to sy, §; which is the part due to SL(2,R)/(U(1). Secondly, recall that the
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n3-term in the central term of the algebra (19) is the cohomologically nontrivial term.
This corresponds to the first term in w. The term linear in n, which corresponds to the
integral of 6¢pd¢’, can be modified by changing the value of L. Accordingly, to take
account of the h-dependence for the modes s, 5,, n > 2, we have added a term
proportional to 2h8¢d¢’.

If we substitute from (25) into (26), w will have terms of the form 6x’'6x” and its
conjugate, i.e. of the (2,0) and (0, 2) types of differential forms. We can separate out
the terms which correspond to the (1, 1)-type as

w=wg + F,
B 1 27 c (5)_(/(5)(//—5)_(”6)(/ (>—<//_X//)6>—</5X/
WK = — drq— — —
Ar Jo 121 (14X +X) (I+Xx'+X)
A 6@ by
4h — —)bxbx' — dh—————— 27
+( 6) Xox (1—i<p/<p)2}’ 27)
1 2T 5 /6 7 6*/6*// ! " 5*/5 !/
P [Carfi [P EOCHT o B XINE ay
47 J, 120 1+x+X) (1+x"+X')
It is also easy to see that we can write F' = dA = (6 + 6) A, where
1 27 "5y Y5y
A ¢ 2 XX+ X"x (29)

CAr12 )y (A X))

The two-form F in (27) can be removed by a coordinate transformation. This is
essentially the idea of Moser’s lemma. Even though we have an infinite number of
modes in x, X, Moser’s argument should apply since w is invertible. We define
w; = wg + tF. The condition that w;,, — w; is given by an infinitesimal coordinate
transformation by the vector field X; becomes

dy

dt - £ert - d(itht), (30)

where £ denotes the Lie derivative. This equation reduces to
d(A —ix,w) =0. (31)

In terms of the components corresponding to s, §,,, the solution is given by
X = ()4, (32)

There are no zero modes for w;, so the inverse should exist, albeit it is an infinite
dimensional matrix. This shows how the required coordinate transformation can
be constructed. Effectively, we can connect wy (which is w; at ¢ = 0) to w (which is w;
at t = 1) by a series of coordinate transformations. (A series expansion around s,,,
5, = 0 may be needed for constructing the explicit formulae for the required coordinate
transformation.) The key point is that w in (27) is thus symplectomorphic to wy
which is of the (1,1)-type. We can therefore choose wy as the symplectic form for our
problem.
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It is now easy to work out the Kidhler potential for wy. It is given by
1 2m c ()—<// _ X//) c
K=— dri— |—1————- 2 <4h——) —ixx') — 4hlog(1l — i’
47T/0 7{12[ BT + 5 (=ixx') og(1l —ip'p)

:i ZﬁdT{£|: i _ ( X//X_/ B X//x/ )]
4z J, 20+ +x)\1+%x) (1+x)

+ (4h - g) (—ixy') — 4hlog(1 — i@’gp)}. (33)

In passing to the second line of this equation, we used the fact that the integral of
expressions which are purely holomorphic in the fields, i.e. depending only on y (or
antiholomorphic involving only %) vanish upon 7-integration. Using (33), it is
straightforward to check that wy = i66K. The expansion of this expression for small
Sp, 5, will also agree with the alternate derivation of K, as will be clear from the
discussion in Subsec. 3.2, Eq. (42). Also, if we restrict to just the modes s;, 5y,
corresponding to SL(2,R), it coincides with the expression for Kin (12). If we restrict
to s,,, §, for fixed choice of n, corresponding to the subgroup defined by L, L., the
resulting expression is not of the same form as for s;, §;. A further coordinate
transformation will be needed to bring it to the form of the Kéahler potential for
SL(2,R)/U(1) with s1,5; — s,, 5,.

Once we have the explicit form of the Kahler potential, one can construct coherent
states as is usually done for any Kahler manifold. In the functional form, these are
given by

V[p] = Ne 7 ®[p, X). (34)
We will now construct another expression for the coherent states in terms of the
states of the Verma module, the final result being (51). We expect that (34) will
coincide with (51), up to a possible coordinate transformation, or, equivalently, a
redefinition of fields, once it is projected to the states of the Verma module.
3.2. The operator U and the choice of complex coordinates

While (34) is formally a definition of the coherent states, a more explicit formula in
terms of the states of the Verma module, similar to the construction of the SL(2,R)/
U(1) states in Sec. 2, will also be useful. As a first step towards this, we define a
unitary operator U by

o0
U =exp (Z w,, L, — wnL_n> . (35)
n=1

We will be considering unitary highest weight representations, so U will be unitary.
In (35), w, and w, are functions of the coordinates s, s,. Generally, from the
commutation rules, we can see that we can write

UTdU =Y ("L, — E"L_,) + (£ = E°)Ly + (£ - €)1, (36)
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where the coefficients £7, £9, £ and their conjugates are one-forms on the coset space,
with components which are functions of the coordinates. In other words, we can write

£ = (Efdsy, + Efdsy), "= (Erds,+ Epdsy). (37)
k k
As for the coefficients of L, and 1, we take £9, £ to be holomorphic one-forms, with
&', & being the conjugates.

Our construction of the coherent states will follow the steps we outlined for the
case of SL(2,R). We will first show that £" can be chosen to be a holomorphic one-
form and £" as an antiholomorphic one-form. We can then define coherent states
which will obey an antiholomorphicity condition. We will then set up and analyze the
normalization of the wave functions for the coherent states. This will give us the
ingredients for the symbols and star products taken up in the next section.

The first key result we will need is that it is possible to choose w,,, w,, as functions
of the coordinates in such a way that Y ;£1ds, =0 and Y ;& ds; = 0.° In other
words, £" is a holomorphic one-form and £" is an antiholomorphic one-form,

£ =Y Eids,, &= Eids, Ef=Ep=0. (38)
k k

This result can be established by expansion around the origin and then using ho-
mogeneity of the orbit. The key point is that we can consider w,, and w,, to be defined
by a power series expansion in terms of the coordinates s, 5}, the coeflicients of the
expansion can be fixed by requiring £7d5, = 0 and &ds;, = 0. To the quadratic
order in the coordinates, we find

_ 1 _
Wy = Sp — 5 Z(n + 2'rn)sn-',-m,sm +oee (39)
m
with w,, given by the complex conjugate. (The details of the required calculations are
given in Appendix A.) Thus, for a small neighborhood around the origin in the
chosen coordinates we can see that we do obtain the holomorphicity conditions (38).
To this order, we then find

_ _ 1 c .
0_ 20 . _ 5
(5 -& )LU + (8 - g)]l - _5 En (Sndsn - Sndsn) |:2nLU + E (n - ’I’L)} +- (40)
If we evaluate this on the highest weight state, we find

_ _ 1 ow ow _
((50 _ 50)LU el (e 6)]1)|0> =3 zk: (Edsk - W‘kdsk) |0)

(OW —aW)|0). (41)

¢ An issue with notation: To distinguish the holomorphic and antiholomorphic pieces of the one-forms £7,
E", we use subscripts with an overbar. Once we argue that £} and £ % are zero, we will drop this distinction
to avoid the notational clutter of writing 5%, etc.
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Here 0 and 0 are the (1,0) and (0, 1) components of the exterior derivative. We show
in Appendix A that £ = 19W?, £ = L0W for some functions W° and Wand W =
WOoh + W in (41). As we will see from the Kihler two-form given later, the Kéhler
potenial is given by K = % (W + W). To the order we have evaluated these functions
in (40),

K =

N =

) ~ 5 B
W4+W) ~ ; SpSn [th + B (n®—mn)| +---. (42)

The fact that the Kéhler potential K is characterized by two numbers A and c¢ has
been observed and commented on before.” ' In Appendix A, we give the expansion of
£" and £" to the next order in the coordinates.

To go beyond the small neighborhood around the origin, we will use the homo-
geneity of the coset space. Assume that we have obtained the result (38) in some
neighborhood of the origin. We then consider translations of Uas UV, where Vis of
the form

V =exp (i gnLn - gnL—n> (43)
n=1

for infinitesimal &,, &,,. Writing out (UV)~'d(UV) to first order in &, £,, the holo-
morphicity conditions (38) become differential equations for these quantities. The
integrability conditions for these equations are satisfied by virtue of the Maur-
er-Cartan identities for U~'dU. Therefore, one can extend the neighborhood where
the holomorphicity conditions are obtained. The detailed calculations supporting
these statements are given in Appendix A.

3.3. Coherent states

We will now move to the next step in the construction of the coherent states.
Starting from the highest weight state |0), we can define the states in the Verma
module of the form

{a}) = LB L" L™ 0), (44)

where we can use the Virasoro algebra to order the L_,’s in increasing level number
to the left. (We use {n} with a tilde over n to denote the unnormalized states; for the
normalized states, given below, we will write {n}.) The matrix of inner products for
the (unnormalized) states of the Verma module is given as

This has a block-diagonal form, with the inner product between states of different
level number being zero. The properly normalized states are then

[{n}) = (M )y gy -+~ LTSL5L™1(0). (46)
{m}
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We can now define the coherent state wave function corresponding to the state

[{n}) by
Uiy = (0[UT[{n})e’®, (47)

where © is a phase to be specified shortly. Using UTdU = —dUU and (36), write!

dUT = | —&pdsiL, + EfdsiL_, — (" = E") Ly — (€ - &)1) |UT. (48)
n,k
This shows that the wave functions (47) obey the antiholomorphicity condition

(8 1ow 00

— - i)W, =0, 4
88k+2 88k+zask> {n} 0 (9)

We now choose © = i(W — W) /2, so that this equation becomes

0 1 0K
(88}{ + 3 ag}f) \If{"} =0, (50)

where K = %(W + W) is the Kahler potential. This equation can be solved for the
coherent state wave functions to write

Uiy = (U [{n})e’® = 73K, (5), (51)

where @, (5) depend only on the antiholomorphic coordinates 5j.

3.4. The Kahler two-form and the phase volume

Our next step is to write down the Kahler two-form and the Kahler potential in terms
of U, for the purpose of setting up the normalization integrals for the states (51).

Going back to (36), note that it defines a left-invariant one-form U~'dU, since
(ViU)Ld(V,U) = U~1dU for constant V;. Further,

0|U~dU0) = = (OW — OW). (52)

N | =

4We expect that the one-form UTdU is closely related to a similar quantity in reference 9, which develops
and uses the group manifold approach to quantization of the Virasoro group. In this approach, the group
law is first obtained recursively starting from the commutation rules. Left and right group actions can then
be obtained on functions on the group manifold. The resulting representations are reducible in general.
Subsidiary conditions, the polarization conditions, are chosen to obtain irreducible representations. The
approach is more general than, but closely related to, the standard geometric quantization. From the
group law, the so-called quantization one-form is constructed, Eq. (3.4) of that paper. Holomorphicity is
not a priori important, since one is using the group law. However, the two cases of “complete polarization”
considered in Ref. 16 do reduce to the two orbits with Kéhler structure, m/U(l) and m/SL(Q, R).
We expect that there is a transformation of the coordinates [, used in Ref. 16 to our s, 5;, by which the
one-form in (3.4) of that paper reduces to our result (48), up to a total differential. For us holomorphicity is
important in developing the star product, so we have chosen to separate the coordinates into holomorphic
and antiholomorphic ones from the beginning so that we have holomorphicity for the one-forms .
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This leads to a left-invariant two-form, which is the Kéhler two-form and which can
serve as the symplectic structure of interest, given by

— id(0|U~1dU0) = %88(1/\} + W) = i90K. (53)

We also note that the existence of a left-invariant symplectic structure has been
emphasized by Witten.? Since d(U~1dU) = —U'~dUU~'dU, we can use (48) to obtain
another useful expression for w,
w= —i{0|UdUU1dU|0)
= =iy (O[(E"L, — &L, + (£ = E")Ly + (£ — £)1)
n,k
A(é’ka L 4 (E — ENLy + (6 - E)ﬂ)] 10)

=iy E" NENOIL,L_40)

n,k

= Z Z Sn A g” (ZTlh + (n — n)) = 'LQk]dgk AN dSl, (54)

Oy = 25 &y (2nh+—(n - n))
The Kihler one-form A corresponding to this is given by (52) as
Az%(@W—éW) :%(61(—5[() +d(©/2). (55)

The antiholomorphicity condition (50) may be viewed as the polarization condition
for geometric quantization of w in (53) or (54). The exact term in A is removed by a
phase transformation of the wave functions, as we have already done in defining ¥,
n (47).

The Kéhler two-form defines a phase-space volume dyu or an integration measure
which is invariant under constant left translations of U. This may be written as

dp = (detQ) [ [ dsyds. (56)
k

Since there are an infinite number of coordinates, any integration carried out using
this must be understood in a regularized sense, as defined over a finite set of modes,
taking the limit of the total number of modes becoming infinite at the end. The
determinant of Q2 must be understood in a similar regularized way.

3.5. Normalization of wave functions

With the understanding of the left-invariant measure as given above, we can now
show that the coherent states (47) can be normalized. We will first show the rea-
soning for the orthonormality of the wave functions, assuming the existence of the
relevant integrals. The latter issue will be taken up subsequently. We start by
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considering the normalization integral

Ninyim) :/du(U) Uiy (U)W (U) = /du(U)<{n}|U|0>(0\U'r\{m}>
= ({n}INKm}), (57)
where N denotes the operator

N = /du(U)U|0><0|UT. (58)

Complex conjugation of this equation shows that Ny, is a hermitian matrix or it
can be viewed as a hermitian operator on the states (46) of the Verma module.
Further, by translational invariance of the integration measure we have

Ny = [ dn(Vi) () VLU 10) 010"V )
— [ @) n}VUI0) 01UV ). (59)

We take V7, to be of the form
VL = exp [Z ékLk — GkLk] s (60)
k

where 6, 0. are infinitesimal parameters which are constant, i.e. independent of s;,
;. To linear order in 6, Eq. (59) then leads to

/du(U)[<{N}|L7kU|0><0|U+I{m}> — ({nHUI0)OIUT L [{m})] =0.  (61)

Since we can write ({n}|L_ = (L_j){nygmy({m}], this translates to [L_j, N] = 0.
Similarly, from the coefficient of 8,,, we also get [L;,, N] = 0. It is also easy to see that
[Ly, N] = 0. Since N commutes with all L, for all states of the form (46), and since
these states form a basis, we can write Ny,j1 = Adg,yqm), Where A is a constant
independent of the state labels {n}, {m}. But A can depend on ¢ and h which
characterize the representation. This constant A can be absorbed into the definition
of the measure du; we will do this from now on, so that we have the result

Given the definition of the wave functions (47), this can also be viewed as the
completeness relation

/ du(U)U10) 00" = 1. (63)

We now come to the question of whether A is finite, i.e. whether the normali-
zation integrals exist. From the discussion given above, A is given by the integral
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of e K,

A:/du<0|U\o><0|U*|o> :/due‘K. (64)

There are two issues one needs to address here. There are an infinite number of
coordinates, so a suitable regularization has to be used, as is the case for the func-
tional integral in any field theory. We have to assume the existence of such a reg-
ularization to make the question well-defined. The simplest possibility would be to
truncate the integral to a finite number of variables, say N, taking the limit N — oo
after the expectation values of operators have been evaluated. Even after truncation
to a finite set of modes, there is still the question of whether the integration over each
coordinate is convergent. In other words, does the factor e ¥
damping for large magnitudes for the coordinates? We will now present three sets of
arguments pointing out features of K relevant to these questions.

First of all, we note that in the SL(2,R) case, the integral of e=* does exist, with
the restriction h > %, as indicated in Sec. 2. In particular, K — oo,e % — 0 as |w| —
oo (which is equivalent to the limit |s| — 1). Therefore, as the first step towards

provide sufficient

analyzing the asymptotic behavior of K, we can use SL(2,R) subalgebras, defined by
Ly, L.,,, for fixed m. If we consider all (w,,,w,) to be zero except for one pair, say,
(W, W), then K will reduce to the Kahler potential for SL(2,R) and hence we get
K — o0, e 8 — 0 as |w,,| — oo. Thus, for every plane in the orbit space, K — oo for
large |w|’s. This property also holds if we take |w,,| — oo holding all other w's fixed
and finite, but not necessarily zero. Towards this, note that U involves the combi-
nation w, L,, — w,L_,,. We then write

1 w,, L
Zﬂ]nLn =V2W,Ly, Ly = 2 <L2 + Zw;—;> (65)
n#2

This is for the case where we plan to take |w,| — oo keeping other w’s fixed. The
Virasoro algebra leads to the commutation rules

(Lo, L 5] =2L, + X,
(Lo, Lo] = —2L5 - Y, (66)
(Lo, Loo] = 2L, + YT,

where £y, = Ly + (¢/8) and

1 n + 2)w, n + 2)w,, c w,w,
X_Z[( ) /L2—71+( 7) an—2+_+(n37n)

2 w2 Wo ) Wy 12 WolW9y
1 (n+m)w,w,
5 ——— L —m
+ 5 n;ﬁ F nm (67)

n+2
Y = ”L,,
>
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The terms X, Y vanish as |wy| — oo keeping other coordinates finite, leading to an
SL(2,R) subalgebra of Ly, L.,. Note also that we can write

U = exp (Z W, L, — wnLn> = exp (V2(WyLy — wol_s)). (68)

In calculating (0|U10), (0|UT|0), we use the Baker—Campbell-Hausdorff formula to
rearrange U' as

Ut = efalone=3WOLoAW) of oLy (69)

This rearrangement only uses the commutation rules. Since the structure constants
in the commutation rules (66) become those of SL(2,R) as |w,| — oo, keeping all
other w,,’s fixed, we get the result

K= KSL(2,R)(\/§U)2, V2is) + -+ (70)

where the ellipsis indicates terms which vanish in the limit. It then follows that e %
vanishes in the limit |wy| — oo, keeping all other w,’s fixed. A similar argument
holds for any |w,,| — oo keeping all other w’s fixed.

Our second observation relates to the behavior of K under scaling, i.e. how it
behaves as we go to large |w,,| uniformly for all n. We can see that a common scaling
up of the w’s will increase K. Writing U = ¢'C in terms of the hermitian operator
C=-iy,(w,L, —w,L_,), we find

exp [K((1 + €)w, (1 + e)w)] = (0]~ +9%|0) (0]’ +970)
=exp [~ K (w, w)] — i€(0]e~“C|0) (0]’ |0)
+ i€(0[e“C[0)(0]eC|0) 4 - - . (71)
This leads to
> Jw, 9 . w, O |k = 2eX[(0] cos C]0)(0|C sin C|0)
0 ow,,

n n

— (0] sin C0){0|C cos C|0}], (72)

where, for brevity, we use (cos C) = (0| cos C|0), (C'sin C) = (0|C'sin C|0), etc. Since
C is hermitian, we can diagonalize it. If |a) denote the states which diagonalize C,
with eigenvalues c,, we can write

{cos CY{C'sin C) — (sin C){C cos C) = Z PaPpcslcos ¢, sin ¢z — sin ¢, cos )

- anpﬁcﬂ sin(c, — ¢5)
1

= 52]%27/1(% — ¢g)sin(c, — ¢p), (73)

where p, = |(0|a)|%. This shows that the right-hand side of (72) is always positive.
Therefore, K will continually increase with A under scaling (w,,, w,) — (Aw,, A\w,),
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A > 0. The limits of integration for the w’s should be defined by the vanishing of e~ %
in (64), and we see that, with the two properties of K given above, we can expect
convergence for integration over each mode.

Our third observation is about regularizing the integration over the infinite
number of modes. As mentioned before, a regularization truncating to a finite
number of coordinates, say N, is needed, with the limit N — oo eventually. Ulti-
mately, this will require treating K as if it is the action for a quantum field theory.
Regularization by truncation to a finite number of modes is familiar from field
theory. This is also somewhat similar to what is done in Ref. 19, which presents the
calculation of the integral f du e ¥, where du is the symplectic measure on
m/SL(Z R) and H is the Hamiltonian for translations on S, i.e. for the action
of Ly. The result up to two loops is obtained; regularization is implicit as in
standard field theory calculations. It is also argued that a similar result holds for
m/U(l), which is the orbit we are interested in. For the present situation, it is
not the integral of e~ we need, but note that we do have a field theoretic way of
understanding the normalization integral (64). The action is not defined by the
Hamiltonian corresponding to the action of L, but rather it is given by the Kahler
potential K. From (33) we see that K can indeed be viewed as an action for a
complex field y. In particular, if we consider the large ¢ limit, then we can scale
X — x/+/c for all the modes s, 5,, n > 2. The set of terms in K which are pro-
portional to ¢ do not involve s, §1, so this scaling does not affect those modes. For
large ¢, we then get

) , ,
K=~ —/dT {L (XX = X"X) + = XX — dhlog(1 - 5,51)

4 12 6
1
=1 (n® —n)5,s, — 2hlog(l — 515,). (74)

We get a Gaussian integral for s, n # 1 and the SL(2,R) integral for the s; mode.
The determinant arising from the Gaussian term can be regularized as is done in
any field theory, for example, using a cutoff or using the {-function. We see that the
integral does exist in the sense of quantum field theory, at least for large ¢ (and for
h > %) The expression given above suggests that K may be viewed as a deformation
of the Fubini-Study potential. It is related to the central extension. A different
choice of coordinates which can make this a little more transparent would involve
embedding m/U(l) in the Siegel disk, see Eq. (31) of Ref. 21.

Another observation of relevance would be that, just based on algebraic con-
siderations, the states of the Verma module do have a finite norm, and this, in our
language, is related to to the integral in (57). Further, Virasoro representations occur

11,12 Defining such partition

in the partition function for (2 + 1)-dimensional gravity.
functions is, in an indirect way, equivalent to the existence of A.
We also note that, bypassing the normalization integral in (57), it may be possible

to obtain a resolution of identity by suitable restrictions, either by going to a
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quotient space,?? or by considering a family of coadjoint orbits,?? or by considering a
subset of coherent states.?0:

4. Symbols and Star Products

We are now in a position to define the symbols associated to an operator and the
corresponding star products.! We consider operators AB, etc. acting on the states
(46). We may also view them as matrices with elements of the form A,y 101, B gm)»
etc. The symbols corresponding to these operators will be defined as

(A= > U {n}Apym ({m}|U]0) = (O[UTAU0),

{n}{m}

(B) = (0|UTBU|0). (75)

The symbol corresponding to a product of two operators takes the form
(AB) = (0|UTABU|0). (76)

This can be written in terms of the symbols of the individual operators and their

derivatives which will constitute the star product. For this, we first note that the
completeness relation for the states (44) takes the form

Y HAHM )y i} = 1. (77)
{n} {m}

We can now rewrite the symbol of the operator product in (76) by using the com-
pleteness relation as

(AB) = (0|UT AULUT BU|0)
= Y (OUTAU A} (M) gy oy {2} UTBU0)

{n},{m}
= Y (O[UTAU - L™ L™ |0) (M) gy gy OIL T L5 - - UTBU|0)
{n}.{m}
1 .
= (0|UT AU|0)(0|UT BU|0) + <0|UTAUL,1|0>ﬁ (0|L,UT BU|0) +
= (A) * (B). (78)

Terms of the form (0|UTAUL_;L_,|0) can be simplified using the following relations
which are a consequence of Egs. (36) and (41):
o _
6Sk B

= ERUL, + U(EXLy + &1,
= ELL U — (E3Ly + £ DU
3sk n

(79)

°I thank a reviewer of an early version of this paper for pointing this out and bringing the relevant papers
to my attention.

In the terminology often used in the context of Berezin-Toeplitz quantization,”® these are covariant
symbols.
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oUu —n - 5

55~ Z ERUL, — U(E Ly + &),

aU+ on o0 Fa (80)
o > ERL U+ (ErLy + E DU,

n
We now define covariant derivatives D,,, D,, by

0
_ —1\ k o 0
Dn - Ek (5 ) n |:88k g[)gk:| )

_ _ 0 _
Dn = - Z (571)51 |:—+ E()£2:|7

7 05y,

(81)

where ¢, denotes the eigenvalue of L for the expression on which these covariant
derivatives act; i.e. it is the level number of the expression to the right of these
derivatives. Using (79) and (80), it is easy to check that we can write

D{n} (A) = D7L2D7L1 (A) = <O|U+AU t L—'ngL—nl ‘O>a

- " (82)
Dyy(B)=---D,,D, (B) = (0|L,, L,, - UtBU|0).
The star product can thus be rewritten as
(A) * (B) = Z D{n}(A)(Mfl){n}{m}b{m}(B)' (83)

{n},{m}

The symbols themselves have a value of zero for ¢,; we also have ¢, = £n for D,, and
D,,, respectively.

The second term on the right-hand side in the expansion in (78), which involves
only L1, comes from the SL(2,R) subalgebra. In fact, as argued below, if we con-
sider just the states generated by powers of L_;, the star product in (83) will become
the star product for SL(2,R) states defined in Sec. 2.

It is useful to work out the next term which is at level 2. The matrix of inner
products and its inverse are given by

8h% + 4h 6h

1
dh 4+ = _
L.l Mﬁlzdth b " (84)
6h At ¢ _6h  Sh?+4h
det M = 2h(2h + 1)(c — 1) + 2h(4h — 1)%

M:

ar Here the matrix elements refer to the states |1) = L2,]0), |2) = L_,|0). Explicitly,
to this order, we get

4h +1c ) N LA
*deiM [((5 Mg, (€ )’152>(5 s
(e - rer) e S
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6 (gt 0 oien) iyt 2A) gy O(B)
e | (€ - e ted) e o €T

HEns G (@t g - @ ek e 5]

8Sk 85
2
Lze:ﬂjh {(5 oY 5(;4) & )gaa%)%..._ (85)

There is summation over &, &/, [, I’ in various expressions in this equation.

If we take the large c limit at fixed h, the matrix M~! reduces to its (1,1)-com-
ponent M ~ (8h% 4 4h)~! with all other elements zero. The corresponding term,
along with the terms with first derivatives of (A) and (B) given in the first line, give
the first two terms of the star-product for the orbit SL(2,R)/U(1) labeled by the
highest weight L, = h.

It is easy to see that this property is obtained for higher terms as well. For this,
counsider the matrix M at level n. The element M, arises from L",|0), so this term is
exactly what it is for SL(2,R). Further, terms arising from L_,L"7%|0), L_sL"7%|0),
L_4L_,L"7°|0), etc. will all have powers of c, since we get the central terms for
(0| Ly L_1]0). The principal minor or cofactor corresponding to M;; thus dominates
the determinant as ¢ — oo, and is order ¢"~!, while the cofactors corresponding to
the other elements will have smaller powers of ¢. As a result, in the inverse of M, the
element (M~1);; dominates as ¢ — oo, with the limiting value 1/M;,;, while other
elements tend to zero. Since 1/M;; corresponds to SL(2,R), we get the result that
the star product for the Virasoro group characterized by h, ¢ becomes the star
product for the SL(2,R)/U(1) orbit labeled by h; i.e.

(A) * (B)}Virasoro,hﬁ - (A) * (B)}SL<2,]R)JL as ¢ — 0. (86)

This reduction also conforms to what is expected from the large ¢ behavior discussed in
connection with (74). In the context of this result, it may be interesting to recall that
the ¢ — oo limit is important in the context of semiclassical limits of partition functions
for (2 + 1)-dimensional gravity.*® The coset SL(2,R)/U(1) with the star product
n (86), is the noncommutative version of AdS,. For more on this space, see Ref. 26.

5. Discussion

We have worked out the construction of coherent states for the Virasoro group using
a class of orbits with ¢ > 1, h > % The basic results are in Sec. 3. The wave functions
for the coherent states are given in (47). They satisfy a certain antiholomorphicity
property, as is evident from (51). We also give an explicit formula for the Kahler
potential K in terms of complex fields defined on the circle. We consider some of the
key properties of K and also discuss the normalization integral for the wave functions
as the partition function for the one-dimensional field theory corresponding to this K.

In the case of the well-known coherent states on orbits of compact groups as well
as the historically first case of the oscillator, one can define reproducing kernels via
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the overlap of coherent state wave functions. It would be interesting to explore the
properties of such kernels in the Virasoro case.

Also, we have restricted ourselves to ¢ > 1, since we were partly motivated
by possible applications to (2 + 1)-dimensional gravity. However, the discrete set
of unitary ¢ < 1 representations are also very interesting from a physics point of
view, since they are relevant to the so-called minimal models in CFT. Coherent states
for such cases are also worth exploring, but are obviously beyond the scope of
this work.

Turning to the more physical side of things, our results can be viewed as fur-
nishing a noncommutative version of the infinite dimensional Kihler space
diff ST /S*. The star product (83) gives the noncommutative algebra for functions. As
mentioned in the Introduction, this analysis was partially motivated by potential
application to (2 + 1)-dimensional gravity. In the spirit of noncommutative geome-
try, one can use a Hilbert space of states to model the spatial manifold.?”>® We have
recently argued for elaborating this framework, with a doubling of the Hilbert space
as in thermofield dynamics, with the gauge fields for gravity, i.e. the frame fields and
the spin connection, coupling to the two Hilbert spaces in parity-conjugate ways.?’
In this framework, it is possible to obtain the Einstein—Hilbert action for gravity
in (2+1) dimensions (with a nonzero cosmological constant), upon taking the
commutative limit. The explicit calculations were done using quantization of the
orbits SU(2)/U(1) or SL(2,R)/U(1) to model the corresponding noncommutative
spaces. However, since the partition function for gravity naturally involves repre-
sentations of the Virasoro algebra due to the contributions from black holes,'!:'2 one
can ask whether it is possible to extend the analysis and use the carrier space of the
representation as the Hilbert space of interest modeling the noncommutative space.
The coherent states discussed here provide a way to define symbols and star products
for such a formulation. We should expect that the commutative limit, which is the
large (¢, h) limit, will then lead to the Einstein—Hilbert action.

Our results may also be interpreted in terms of a mock quantum Hall system. We
have analyzed the quantum Hall problem in arbitrary dimensions in a series of papers
and argued that the lowest Landau level of such systems model the corresponding
noncommutative spaces.? Effective actions, edge states, etc. were analyzed in such
cases. The present discussion may be viewed as another example of this, now applied
to an infinite-dimensional case.

As noted before, the Kéhler potential defines an interesting one-dimensional field
theory in its own right, given by

Z = /due‘K

h= ﬁ/d{ﬁ [(1 T ((f_i);) - <1XF>;/>>} (&7)

+ (4h - %) (—ixx’) — 4hlog(l — iw)}.
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This should prove to be an interesting theory since it is closely tied to the Virasoro
group. We propose to investigate this further in future.
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Appendix A

In this appendix, we will go over some of the details of the results mentioned in Sec. 3.

Analysis near the origin
The quantities w,,, w,, in U will be chosen as functions of the coordinates s,
S, l.e.

=5+l v+, (A1)

where w ,(f) is of order rin powers of s,,, 5,,. Our strategy is to write down U~'dU and
choose these functions such that £” is a holomorphic differential and £" is an anti-
holomorphic differential. For an operator X, a real number «, and for a variation of

X, we have the identity

0
% [efaXé[ea’XH — efaXé [% eaX:| + % (670)()6[6&)(}
=e X[ XeN] — e X X§[e™N]
=e X5 XX, (A.2)
Integrating over « from zero to one, we get
1
e Xo[eX] = / doe™ X Xe X, (A.3)
0

Using this equation, from the definition of U in (35), we can write
1
U~ldU = Z / dae Y (dw, L, — dw,L_,)e"~
e Jo
X= Z (ﬂ)mLm - mefm)' (A4)
m
Expanding the exponential, we can write out the first two terms as

Term 1 = Zdﬂ)nLn —dw,L_,,
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1
Term 2 = — o7 2 [X,dw, L, — dw,L_,]
1 L
= - 5 [(TTL - n)w7ndwan+n - (m - n)wmdwanmfn

m,n

+ (m + n) (wndﬂjﬂl - ﬁ]mdwn)men + i

13 (n® — n)(w,dw,, — fvndwn)} .

(A.5)
The L,,_, can have terms of the form L, and L_;, k> 0, as well as L, terms.

Separating these out we find

1
Term 2 = T (w,dw,, — w,dw,) (QnLO +— 5 (n? — n)]l)

n

1 —
_ E [C /(QQ)L]? - C;gQ)L—kr]a
R (A.6)
C«;f) — Z (k — 2n)@k7ndﬂ}n®(k - 3)
n=1

- Z (k + 2”)(ﬂjk+ndwn - wrbdwk+'rL)®(k - 1)

with C being the complex conjugate of C ). Also O(k —a) =1for k > a and zero
0therw1se From the expression for C ;C >, we see that there is one term in the coef-
ficient of L;, which has dw,,. We rewrite this term using

(k20w = d[ S0+ 2m)ivg e | = 3k + 2wy (AT)

Thus, we find
1 =
Coefficient of L :d[wk +§Z(k‘ + 2n) Wy w n} - 52 (k —2n)w;,_,dw,0(k — 3)
=Y (k+ 2n)w,di;., Ok — 1), (A.8)

We now define w;,, w;, as functions of complex coordinates s;,, §j, with an expansion
around the origin as

1 _ _ (3
Wy = Sk — 5 Z(k + Qn)Sk:-&-nSn + w](g) +eey (AQ)

n

_ @3 . . _ .
where wg ) denote terms which are cubic in Sy 8y The coeflicient of L;, now becomes

=
Coefficient of L; =d5;, — 52 (k —2n)s;_,ds,0(k — 3)
1

= > (k+2n)s,ds;., Ok — 1) + - -

1
=ds, 5 Y D@ds; + - . (A.10)
l
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We see that, to this order, there are no ds,-terms in the coeflicient of L;, k > 0; i.e. it
is an antiholomorphic one-form. To the same approximation, the coefficient of the L
and central terms become

1 o
(Lg, 1) — terms = ~5 (s,ds, — §,ds,) (QnLO + 1 (n?® — n)]l) (A.11)

n

The next term in the expansion of (A.4), corresponding to the double commutator
of X with Y dw, L, — dw,L_, is of the form

Term 3 zé {Z(w,LC',E?) —w,C%) [QnLO +— 1 (n®—n } + ZC’ L, — C’< >L,k]
(A12)

We can use w,, ~ s,,, W, ~ §, in working out the cubic terms in thls expression, to
get expressions valid to the third order in s,,, 5,,. To this order, C’ ) is given by

~ Z 2kn(snd§n - gndSn)gk + Z 6k,m+n(m - n)gmég)

+ Z 616,777,771 (m + n)[snégz) - gmcr(LZ)]' (A13)

In this expression, a term like §,5,ds, (which is a holomorphic form and hence not
what we want) can be removed by a term like 55,5, in the expression for @, ) The
simplification of the expression for C is straightforward but long. With some
rearrangements of terms, it can be brought to the form

= (3 3) - 3 3 _
CEC ) — ZDI(c,l)dsl - dXi: ) 5 Z Opres—n(r+s+n)(n—s)5,s,ds;. (A.14)
1
The expression for D;jl) d3; is long and not important for our argument (since it is an
antiholomorphic form anyway), but we give it here for the sake of completeness,

Z D](j’l>d§l = Z [5,5kd5,, + 2kns,s,dsy, + Ok 00 is(m — n)(r — $)5,,5,d5,
]

+ 20510 Ons—s(m —n)(r+ 5)5,s.ds,
+ Ok minOnr—s(m —n)(r+s)5,.5,d5,,
+ Opm—nOmyrs(m +n)(r —s)s,5,.d5,
+ Okm-nOmr—s(m +n)(r + 5)s,5,ds,

+ %5,67,_57,10(7“, 5,1)5,55d5, + 204 ;y_pOp r—s(m +n)(r + 5)5,,5,d5,
+ Ok mnOnr—s(m+n)(r+ 5)5557«d§m] . (A.15)
Also x;, is given by
X;(f) = Z [angnsksn + Ok minOnr—s(m —n)(r + 8)5,,5,5,

1
+ 5 0'(7’, S, n)ék’,r—s—ngmsnss + 6k;m—n5n,r—s (m + TL) (T + S)gm 7587' . (A16)
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n (A.15) and (A.16), o(r, s,n) is given by

1
o(r,s,n) = 5 (217 — s —n? +r(n+ s) + 2ns). (A.17)

(3)

This is symmetric in n, s. In Term 3, x. (3)

can be removed by a suitable choice of W,
making the coeflicient of L, to be an antiholomorphic form, except for the last term
n (A.14). We also note that there are cublc terms arising from the use of ! k ) as

n (A.10), in Term 2. For this, we rewrite Ck as

Z ki dgl_dX§<12> +ék )
]

= (2) 1 - _
C k= 5 |:Z [5k,m+nén,rfs (m - n) (T + s)sm(dsrss + Srdss)]

+ Z m—+ n) (T + 5)[6k,mfném,rfssn(d§r35 + S_rdss) + 6k,mfn6n,rfs§rssd5_m

- 6k:,m7n6n,rfs‘§m (dgrss + grdss) - 5k,m7n(sm,7’fs‘§rssdsn] . (Alg)

In this expression, terms of the form §5ds can be written as d[55s] — d55s — 5d3s; the
total derivative adds to the expression for X;f) and is removed by choice of ﬂ)g;).
What is left will be an antiholomorphic form. This does not work for the two terms
in (A.18) which have the §sds combination. These potentially problematic terms can

be simplified as

~ (2 ]_
Problematic terms imC’,(C o 52 Opres—n(r —s+n)(r+s5)5,.(s,ds; — s.ds,,)

1
— 52 Opr—s—n(n+s+r+(n—s)5.8,ds,, (A.19)

where, in the second line, we have used the antisymmetry of the first term in n, s to
simplify the result. Comparing the contribution of the last term in (A.14) to (1/3!)
C'( ) and the contrlbutlon of (A.19) to —(1/21)C; ), we see that they cancel out

exactly. After removal of X k ) terms via choice of wé ), we see that what is left of C'\* k
is an antiholomorphic form.
The coefficient of L; can thus be written as

~ 1 1
Coefficient of L, = & = ds;; — 5 » ‘DY ds, +3 > DEds;+---.  (A.20)
l Col

We have thus verified, in an expansion around the origin to cubic order in the
coordinates, that there is a choice of w,,, w,, as a function of the coordinates s,,, §; for
which £" is an antiholomorphic one-form.

Maurer—Cartan relations

The analysis given above for small values of s, 5, shows that one can choose £” to
be an antiholomorphic one-form in an infinitesimal neighborhood of the origin. Our
aim is now to extend this to larger and larger regions by a sequence of translations,
U — UV, where Vis as in (43). For this, we will also need to use the Maurer—Cartan

2450149-26



A note on coherent states for Virasoro orbits
identity for U, so we will first work this out. From (36), assuming that we have
already obtained the holomorphicity properties for £* and £", we can write

UtOU = =Y €L, + 'Ly + €1,

_ _ _ A.21
Utou =y €L, — 'Ly — €1. (A.21)

Taking the holomorphic exterior derivative of the first of these equations, we get one
of the Maurer—Cartan identities as

1
Z {—agnLn + 0Ly + 01 + 5 (m—n)E"NEML_p_py —nENE'L_, | = 0.

(A.22)
This yields three sets of relations corresponding to the coefficients of L_,,, L, and 1.
These are
1
—(8E" +nEONE™) + 5 D (5= )0l NE =0, (A.23)
7,8

08" =0, 0£=0. (A.24)

The last two relations tell us that we can write

1 1

Note that the Kihler potential is related to these as K = WY + W. We can now use
these expressions for £, £ to write (A.23) as

=N 1 T =S
—08" +5 > (s =18 NE =0, (A.26)

T,

where £" = Eexp (nW?/2). This is the key identity we will need for extending the
previous result.

Extending the result by use of translational invariance
Now consider defining £’s and &’s after translation by V. To first order in
S €L, — &,L_,, this leads to

(OUV)d(UV) =v-lav + VL (U LUV

~ UﬁldU + Z [dEnLn - dfann, - [gnLn, - €7LL77L7 UﬁldUH . (A27)
We want to show that the coefficient of L,, n > 0 is an antiholomorphic one-
form; i.e. one can choose £, such that the holomorphic differential part vanishes.

The condition for this, upon using (36) and evaluating the commutator term,
becomes

S [0,L, + €€ (m 4 1)L, ., — E"€"L,] = 0 (A.28)
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with n > m. Rewriting this by isolating the coefficient of L, we get
08 — kE°E+ Y _(2m + k)1 E™ = 0. (A.29)
Defining E p = Epexp (—kW0/2), we can further write these conditions as

OEx+ D (2m+ K)E €™ =0, (A.30)
These are to be regarded as a set of equations which can be solved for £,. However,
there are integrability conditions for these equations. They correspond to taking
another holomorphic exterior derivative of (A.30), and upon using (A.30) again,
become

Z(Qm + k) [ngrka‘z:m - 2(27” +m + kj)ngr/H»rér A :c/'m] =0. (A31)

r

Because of the wedge product, we can antisymmetrize the coefficient of £ A E™ in

r,m. For this, we can use
%[(Qm FE)2s 4 m k) — (m o s)] = %(m C9R(mts)tH. (A32)

Further, we take m — n in the first term and m — s, m + r — n in the second term.
Equation (A.31) can then be written as

= =n 1 =r =5
> @n+ k)G |08 — 5 D (s =1)6,15u AE| =0, (A.33)

rs
These are obviously satisfied as a result of the Maurer—Cartan identity (A.26).
What we have shown is that if we have U with a choice of w,,, w,, as functions of
Sk, 55, for which £ is a holomorphic one-form and £" is an antiholomorphic one-form,
then we can find &,, £, such that (UV)~'d(UV) will have a holomorphic one-form as
the coefficient of L_,, and an antiholomorphic one-form as the coefficient of L,,. This
result, combined with the previous result that this property can be obtained in an
infinitesimal neighborhood of the origin, as shown by explicit power series expansion,
shows we can find coordinates such that £ is a (1,0)-form and £" is a (0, 1)-form.
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