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There are two sets of orbits of the Virasoro group which admit a Kähler structure. We consider
the construction of coherent states for the orbitcdiff S1=U!1Þ which furnishes unitary repre-
sentations of the group. The procedure is analogous to geometric quantization using a holo-
morphic polarization. We also give an explicit formula for the Kähler potential for this orbit and
comment on normalization of the coherent states. We further explore some of the properties of
these states, including the de¯nition of symbols corresponding to operators and their star
products. Some comments which touch upon the possibility of applying this to gravity in !2þ 1Þ
dimensions are also given.
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1. Introduction

It has been well known for a long time that one can construct coherent states which
realize unitary representations of a Lie group via the method of geometric
quantization.1{8 For this one considers coadjoint orbits of the Lie group G which are
of the form G=H for a suitable subgroup H such that the coset space has a Kähler
structure. For the general case, one chooses H to be the maximal torus in G, with the
Kähler two-form given by $

P r
1 wiTr!hig$1dg ^ g$1dgÞ where g denotes a general

group element in the fundamental representation (viewed as a matrix), hi are the
generators of the maximal torus in a suitable basis and !w1;w2; . . . ;wrÞ de¯nes the
highest weight state of some unitary representation of G, and r denotes the rank of
the group. The result of the quantization will be a Hilbert space H corresponding to
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the carrier space of the representation with the highest weight indicated. One can
assign wave functions to the states of this Hilbert space; they obey a holomorphicity
condition depending on the Kähler potential. Orthonormality conditions, symbols
corresponding to operators on H, star products, the diagonal coherent state repre-
sentation, etc. can then be de¯ned in a straightforward way.

In this paper, we consider a similar construction of coherent states, star products,
etc. for the Virasoro group, which will be identi¯ed as the centrally extended version
of di®eomorphisms of a circle, denotedcdiff S1. This problem is clearly of some in-
trinsic mathematical interest, but there are several motivating factors from physics
as well. After all, the Virasoro algebra is one of the foundational ingredients for the
formulation of string theory. Partly motivated by this, coadjoint orbits ofcdiff S1

were classi¯ed and some of their properties analyzed many years ago.9,10 Another
context in whichcdiff S1 emerges is !2þ 1Þ-dimensional gravity. The action for this
theory (with a cosmological constant) is given as the di®erence of two SL!2;RÞ
Chern-Simons actions, with the connection forms AL, AR given as combinations of
the frame ¯elds and spin connection. Witten's analysis of the partition function of
this theory shows that the inclusion of the BTZ black holes will require Virasoro
representations in the relevant sum over states.11,12 The construction of the coherent
states is useful for such analyses. Further, the semiclassical limit of this analysis
corresponds to taking the central charge c to be large, a limit which is suitable for a
star-product expansion for observables.

In the case of ¯nite dimensional Lie groups, the Hilbert space H can be used as
a model for a description of the noncommutative version of the manifold G=H.
Coherent states are then useful in de¯ning symbols corresponding to operators on H
and the star products give the (noncommutative) algebra of functions on G=H.
Given the appearance of Virasoro representations in !2þ 1Þ-dimensional gravity, if
we envisage a noncommutative antecedent for gravity, then coherent states for the
Virasoro algebra become important in de¯ning symbols and star products and
obtaining a continuous manifold description in the large c limit.

In the case of !2þ 1Þ-dimensional gravity on asymptotically anti-de Sitter space,
the asymptotic symmetries also lead to a Virasoro algebra.13 Some of the issues of
gravity may thus be cast in terms of holography or the AdS/CFT correspondence,
which is a di®erent facet of string theory. Combined with the observations in the
previous paragraphs, this suggests a way to bring together ideas of string theory
and/or gravity and noncommutative geometry. The coherent states for the Virasoro
group will also be central to any such attempt.

Among the coadjoint orbits of the Virasoro group, there are two which admit
Kähler structures and hence are amenable to de¯ning coherent states satisfying
appropriate holomorphicity conditions. These orbits correspond tocdiff S1=S1 and
cdiff S1=SL!2;RÞ. The Kähler potentials for these cases are characterized by two
numbers, the central charge c, which must be viewed as the eigenvalue of the central
element of the algebra, and h, which may be viewed as the eigenvalue of the generator
L0 on the highest weight state of the representation. For most purposes, the
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quantization ofcdiff S1=SL!2;RÞ may be considered as a special case of the quanti-
zation ofcdiff S1=S1, so we will focus on the latter space. Some of the other orbits are
relevant for representations which contain null vectors and can lead to unitary
representations for c < 1. We will not discuss these here.

Not surprisingly, there have been many discussions in the literature which touch
upon various aspects of coherent states for the Virasoro group. Many of the papers
we have cited contain some implicit statements about such states. Representations of
the Virasoro algebra as di®erential operators on functions of a suitable set of vari-
ables occur in the context of the KP hierarchy and the so-called string equation.7 A
di®erent, but related, representation has been used in discussions of the stochastic
Loewner equation.15 These do not directly lead to coherent states. The group
manifold approach to quantization, discussed in Ref. 16, is a generalization of the
idea of the coadjoint orbit quantization and as such is closer to our discussion. This
approach starts with the formal group law and imposes polarization conditions on
functions on the group to obtain irreducible representations. In Ref. 16, the com-
position laws for the Virasoro group parameters, including the central parameter
relevant to the central extension, have been constructed. Our approach is more
traditional, but clearly there are some points of overlap; we will brie°y comment on
this later. For us holomorphicity is important as it provides a simple way to con-
struct a suitable star product. (The Kontsevich formula for star products does not
need coherent states per se, but it does need more information about the symplectic
structure on the space.17 In turn, this would require an analysis similar to what we do
in this paper, so it does not seem like our analysis can be evaded.) Standard coherent
states for the bosonic operators obeying the Heisenberg algebra in the mode ex-
pansion for the target space coordinate in string theory have also been considered in
the literature.18 While these can be useful for certain applications, the states we are
concerned with are not these; we are interested in directly quantizing the Virasoro
orbits.

This paper is organized as follows. In Sec. 2, we will brie°y discuss coherent states
for SL!2;RÞ=U!1Þ. The results here are well-known, but it helps to set the stage for a
similar analysis for the Virasoro case, which is taken up in Sec. 3. The key steps are
the following. We ¯rst construct an expression for the Kähler potential for the orbit
of interest. This will give a functional version of the coherent states and it will also
inform the issues of normalization discussed later. We then de¯ne an operator U and
show that it is possible to choose coordinates on the Virasoro orbit such that U$1dU
can be split into holomorphic and antiholomorphic forms corresponding to the
Virasoro generator L$n and its conjugate. This naturally leads to a set of wave
functions associated with the states of the Verma module and which obey a certain
holomorphicity condition. The normalization of these wave functions will involve the
Kähler potential. The normalization integral with the appropriate measure of inte-
gration is then discussed. Symbols and star products are considered in Sec. 4. In
the limit of large central charge, the star products reduce to those on SL!2;RÞ=U!1Þ,
i.e. on a noncommutative version of AdS2. The paper concludes with a short
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discussion in Sec. 5. There is also an Appendix A which gives details of some of the
assertions made in Sec. 3.

2. Coherent States for SL!!2;RÞÞ/U!!1ÞÞ

In this section, we will brie°y consider the construction of coherent states for
SL!2;RÞ. While these results are well known, our presentation will help to highlight
certain points which can help to clarify the lines of argument employed later for the
Virasoro case.

The generators of the Lie algebra can be taken as L0, L%1 with the commutation
rules

½L0;L%1' ¼ )L%1; ½L1;L$1' ¼ 2L0: !1Þ

The highest weight state is de¯ned by

L1j0i ¼ 0; L0j0i ¼ hj0i: !2Þ

We will consider representations with h > 1
2 which are the simplest for exemplifying

the arguments used for the Virasoro case. Other states are obtained by the action of
powers of L$1 on j0i. The normalized states are given by

jni ¼ 1!!!!!!!!!!!
N!nÞ

p Ln
$1j0i; N!nÞ ¼ !!nþ 1Þ!!2hþ nÞ

!!2hÞ
; !3Þ

where !!uÞ is Eulerian gamma function for the argument u. The state jni corre-
sponds to a value of L0 equal to hþ n, so the representation we are considering is
bounded below. Now we introduce the unitary operatora

U ¼ exp !wL$1 $ "wL1Þ; U† ¼ exp !"wL1 $ wL$1Þ; !4Þ

where w; "w are functions of some complex coordinates s, "s which parametrize
SL!2;RÞ=U!1Þ. We now de¯ne the coherent states by the wave functions

#n ¼ h0jU†jni ¼ 1!!!!!!!!!!!
N!nÞ

p h0jU†Ln
$1j0i: !5Þ

(A similar de¯nition will be used later for the Virasoro case.)
For the case of SL!2;RÞ, a general element of the group can be written in the 2* 2

matrix representation as

g ¼ 1!!!!!!!!!!!!!
1$ "ss

p 1 is

$i"s 1

" #
ei’=2 0

0 e$i’=2

 !

; jsj < 1: !6Þ

The correspondence of the Lie algebra elements in this representation is given by
L0 ¼ 1

2 !3, L1 ¼ i
2 !!1 $ i!2Þ, L$1 ¼ i

2 !!1 þ i!2Þ, in terms of the standard Pauli ma-
trices. The group parameters s, "s provide local coordinates (for a patch around

aThe coordinates w, "w correspond to what we later call w1, "w1 in the context of the Virasoro algebra; we
drop the subscripts for this section to avoid clutter.
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s ¼ 0) for the coset space SL!2;RÞ=U!1Þ. For this parametrization, the standard
Kähler one-form Tr!!3g$1dgÞ will contain a term d’, which will drop out in the two-
form d!Tr!!3g$1dgÞÞ. So, for the quantization of the orbit corresponding to the
chosen h-value on SL!2;R=U!1Þ, we can drop ’ on the local coordinate patch. The
parametrization also shows a singularity at jsj ¼ 1; this is integrable for h > 1

2, and
will not a®ect results below.

For the parametrization in (6), for a unitary representation of g as U, we get

dU†U†$1 ¼ sd"s $ "sds

1$ "ss
L0 þ

d"s

1$ "ss
L1 $

ds

1$ "ss
L$1

" #
;

U†$1dU† ¼ $ sd"s $ "sds

1$ "ss
L0 þ

d"s

1$ "ss
L1 $

ds

1$ "ss
L$1

" #
: !7Þ

From the ¯rst of these relations, and using (2), we get the holomorphicity conditions
for the coherent states as

@

@s
þ h"s

1$ "ss

" #
#n ¼ 0: !8Þ

The second equation in (7) also gives

@

@"s
þ hs

1$ "ss

" #
#0 ¼ 0: !9Þ

For #0 we can solve these equations to ¯nd h0jU†j0i ¼ !1$ "ssÞh. The possible
arbitrary multiplicative constant is set to one, since U† ¼ 1 at s ¼ 0. For the higher
states, we can develop a recursion rule using (8) as follows.

#n ¼ 1!!!!!!!!!!!
N!nÞ

p h0jU†L$1L
n$1
$1 j0i

¼ 1!!!!!!!!!!!
N!nÞ

p h0j $!1$ "ssÞ @U
†

@s
þ U†"sL0

" #
Ln$1

$1 j0i

¼

!!!!!!!!!!!!!!!!!!!!
N!n$ 1Þ
N!nÞ

s

$!1$ "ssÞ @

@s
þ "s!hþ n$ 1Þ

" #
#n$1: !10Þ

This can be solved to write

#n ¼

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
!!2hþ nÞ

!!nþ 1Þ!!2hÞ

s

"s n!1$ "ssÞh: !11Þ

The Kähler potential may be identi¯ed from the symplectic form or from the
holomorphicity condition written as !@s þ 1

2 @sKÞ#n ¼ 0. We can also identify K
from the relation h0jU$1dU j0i ¼ 1

2 !@K $ "@KÞ. The Kähler potential and the sym-
plectic form can be worked out as

K ¼ $2h log!1$ "ssÞ; ! ¼ i@"@K ¼ 2hi
d"sds

!1$ "ssÞ2
: !12Þ

We will use a slightly di®erent normalization for the phase volume de¯ned by ! (with
a prefactor 2h$ 1 rather than 2h) which makes the #n orthonormal. It is easy to
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verify that

!2h$ 1Þ
Z

d2s

"!1$ "ssÞ2
#+

n#m ¼ #nm: !13Þ

The range of integration is over the disk jsj , 1; the singularity at jsj ¼ 1 is inte-
grable for h > 1

2, so the inner product is well-de¯ned.
In Eqs. (8), (11) and (13), we have reproduced the standard and well-known

results for coherent states on SL!2;RÞ=U!1Þ. For SL!2;RÞ we have the advantage of
a parametrization for the coset space given as in (6); for the Virasoro case, we have to
rely on a power series expansion for w, "w. We will determine the expressions for w, "w
as a series in s, "s relying on the Kähler property and requiring that the coe±cient of
L$1 be a holomorphic one-form. We will brie°y illustrate the strategy here. Note
that, using (4), we can write

U†dU ¼
Z 1

0
d$ e$$!wL$1$"wL1Þ!dwL$1 $ d"wL1Þe$!wL$1$"wL1Þ

- dw 1þ 1

3
"ww

" #
$ d"w

1

3
w2

$ %
L$1 $ d"w 1þ 1

3
"ww

" #
$ dw

1

3
"w2

$ %
L1

þ !"wdw$ wd"wÞL0 þ . . . : !14Þ

We take w to be given in terms of the local coordinates as

w ¼ sþ w!2Þ!s; "sÞ þ w!3Þ!s; "sÞ þ . . . : !15Þ

Setting the coe±cient of d"sL$1 to zero we ¯nd w!2Þ ¼ s2"s=3. Using this, we can
simplify dU†U ¼ $U†dU as

dU†U ¼ d"s!1þ "ssÞL1 $ ds!1þ "ssÞL$1 þ !sd"s $ "sdsÞL0 þ . . . : !16Þ

This matches with the expression in (7) to ¯rst order in the expansion in powers of "ss.
We have checked that the process can be continued by developingw as a series in s, "s and
requiring that the coe±cient of L$1 is a holomorphic one-form, to reproduce the results
in (7).We will use a similar strategy for the Virasoro group, developing a series expansion
for wn, "wn, as worked out in Appendix A. Since the procedure is exactly parallel, the
results we obtain in that case will revert to the discussion in the present section when
restricted to the coordinates w1, "w1, and to L0;L%1, setting wn, "wn ¼ 0, n / 2.

In the case of SL!2;RÞ, one can also directly use the Baker{Campbell{Hausdor®
(BCH) formula

ewL$1$"wL1 ¼ esL$1elog!1$"ssÞL0e$"sL1 ;

s ¼ w

jwj
tanh jwj: !17Þ

Since the BCH formula is determined by the commutator algebra of L0, L%1, the
matrix representation L0 ¼ !3=2, L%1 ¼ i!!1 % i!2Þ=2 can be used to verify (17).
Writing w in terms of s we get w ¼ !s=jsjÞarctanhjsj - sþ s2"s=3þ . . . , in agreement
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with the series expansion in (15). Further, by taking the expectation value of the ¯rst
equation in (17) for the highest weight state j0i, we ¯nd

h0jU†j0i ¼ h0je$sL$1elog!1$"ssÞL0e$"sL1 j0i ¼ eh log!1$"ssÞ 0 e$K=2; !18Þ

which agrees with the expression for the Kähler potential in (12).
Finally, we also note that K ! 1 at the boundary of the region of integration,

which is jsj ! 1. This corresponds to jwj ! 1 if we use the coordinates w; "w.

3. Construction of the States for the Virasoro Case

As mentioned in the Introduction, unitary representations of the Virasoro group, for
c > 1, are obtained by quantizingcdiff S1=S1 andcdiff S1=SL!2;RÞ. Further, these
orbits have a Kähler structure.9,10 We will focus oncdiff S1=S1 for reasons mentioned
earlier. This manifold can be described by complex coordinates sk and "sk, where k
takes integer values from 1 to in¯nity. The basic generators of the Virasoro algebra
are Ln, n 2 Z, with the commutator algebra

½Ln;Lm' ¼ !n$mÞLnþm þ c

12
!n3 $ nÞ#nþm;0 1: !19Þ

Here 1 is the identity operator; the central charge may be viewed as the eigenvalue of
a central charge operator ĉ which is proportional to the identity. This is necessary to
view the algebra (19) as having a closed Lie algebra structure. Thus, there is a slight
abuse of notation in writing (19) directly in terms of the eigenvalue; this will be
immaterial for what we want to do. We are interested in highest weight repre-
sentations, with the highest weight state obeying

L0j0i ¼ hj0i; Lnj0i ¼ 0; n / 1: !20Þ

Further, we will be interested in the case of c > 1 and h > 0, so that we will not have
null vectors in the associated Verma module. From now on we will use the notation
L0, Ln, L$n, with n / 1 explicitly distinguishing the three sets of operators. The
subgroup S1 incdiff S1=S1 is generated by the action of L0, with Ln, L$n forming the
translation operators on the cosetcdiff S1=S1.

3.1. The K€ahler potential

Some considerations on the nature of the Kähler potential will be useful before
embarking on constructing explicit formulae for the coherent states. An expression
for the symplectic two-form relevant forcdiff S1=SL!2;RÞ was given by Stanford and
Witten in Ref. 19 asb

! ¼ 1

4"

Z 2"

0
d%

c

12

#&0

&0
@

@%

#&0

&0

" #
$ c

12
#&#&0

$ %
: !21Þ

bWhile we use the expression as given in Ref. 19, we note that it is also related to expressions given in
Refs. 20 and 21, in addition to Refs. 9 and 10.
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Here &!%Þ may be considered as a ¯eld on the circle parametrized by 0 , % , 2".
The prime denotes di®erentiation with respect to % , Explicitly, & is of the form

&!%Þ ¼ % þ ’þ "’ þ 'þ "';

’ ¼ ¼ s1e
i% ; "’ ¼ "s1e

$i% ;

' ¼
X1

2

sne
in% ; "' ¼

X1

2

"sne
$in% : !22Þ

Further, # in (21) denotes exterior derivative on the space of the ¯elds & and wedge
products for the #'s is understood. The two-form ! has zero modes corresponding to
L0, L%1, i.e. for n ¼ 0;%1. This is in accordance with the fact that ! is the symplectic
form forcdiff S1=SL!2;RÞ. The zero modes, as argued in Ref. 19, correspond to the
vector ¯elds

Vn ¼
Z

d%ein&!%Þ
#

#&!%Þ
; n ¼ 0;%1: !23Þ

The zero modes can be removed by a suitable gauge-¯xing condition to obtain an !
which is invertible. In Ref. 19, this was chosen as &!0Þ ¼ 0, &0!0Þ ¼ 1 and &00!0Þ ¼ 0.
For us, it will be convenient to make a di®erent choice. Under the action of Vn, with
parameters (0;(%1, the ¯eld & transforms as

& !&þ (0 þ (þ1e
i& þ ($1e

$i&

¼ % þ ’þ "’ þ (0 þ (þ1e
i%ei!’þ"’Þ þ ($1e

$i%e$i!’þ"’Þ

- % þ ’þ "’ þ (0 þ (þ1e
i% þ ($1e

$i% þ . . . ; !24Þ

where, in the last line, we have expanded out e%i!’þ"’Þ. This shows that the coordi-
nates s1, "s1 shift by (þ1, ($1 for a neighborhood around sn ¼ 0. Even though the full
transformation will be nonlinear, this shows that a suitable gauge-¯xing for V%1 is to
set s1 ¼ "s1 ¼ 0. The gauge-¯xing for V0 is taken care of by setting & ¼ % for sn ¼ 0.
Thus, a gauge-¯xed version of ! is given by the same expression as in (21), but with

& ¼ % þ 'þ "'; !25Þ

omitting the s1, "s1 terms.

We now note thatcdiff S1=U!1Þ can be regarded as a bundle over diffS1=SL!2;RÞ
with SL!2;R=U!1Þ as the ¯ber. (This is a re¯nement of regarding diffS1 as an

SL!2;RÞ-bundle over diffS1=SL!2;RÞ.) The gauge-¯xing thus provides a local sec-

tion ofcdiff S1=U!1Þ in the formcdiff S1=U!1Þ 1 diffS1=SL!2;RÞ * SL!2;R=U!1Þ.
Therefore, for the symplectic form oncdiff S1=U!1Þ, we have to modify ! to take care

of the term corresponding to SL!2;RÞ=!U!1Þ. A suitable modi¯cation is given by

! ¼ 1

4"

Z 2"

0
d%

c

12

#&0

&0
@

@%

#&0

&0

" #
þ 2h$ c

12

& '
#&#&0 $ 4h

#"’0#’

!1$ i"’0’Þ2

$ %
: !26Þ

We have made two changes compared to (21). We have added the contribution
due to s1, "s1 which is the part due to SL!2;RÞ=!U!1Þ. Secondly, recall that the
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n3-term in the central term of the algebra (19) is the cohomologically nontrivial term.
This corresponds to the ¯rst term in !. The term linear in n, which corresponds to the
integral of #&#&0, can be modi¯ed by changing the value of L0. Accordingly, to take
account of the h-dependence for the modes sn, "sn, n / 2, we have added a term
proportional to 2h#&#&0.

If we substitute from (25) into (26), ! will have terms of the form #'0#'00 and its
conjugate, i.e. of the !2; 0Þ and !0; 2Þ types of di®erential forms. We can separate out
the terms which correspond to the !1; 1Þ-type as

! ¼!K þ F ;

!K ¼ 1

4"

Z 2"

0
d%

c

12

#"'0#'00 $ #"'00#'0

!1þ '0 þ "'0Þ2
þ 2

!"'00 $ '00Þ#"'0#'0

!1þ '0 þ "'0Þ3

$ %(

þ 4h$ c

6

& '
#"'#'0 $ 4h

#"’0#’

!1$ i"’0’Þ2

)
; !27Þ

F ¼ 1

4"

Z 2"

0
d%

c

12

#'0#'00 þ #"'0#"'00

!1þ '0 þ "'0Þ2
$ 2

!"'00 $ '00Þ#"'0#'0

!1þ '0 þ "'0Þ3

$ %( )
: !28Þ

It is also easy to see that we can write F ¼ dA ¼ !# þ "#ÞA, where

A ¼ $ 1

4"

c

12

Z 2"

0
d%

'00#'0 þ "'00#"'0

!1þ '0 þ "'0Þ2
: !29Þ

The two-form F in (27) can be removed by a coordinate transformation. This is
essentially the idea of Moser's lemma. Even though we have an in¯nite number of
modes in ', "', Moser's argument should apply since ! is invertible. We de¯ne
!t ¼ !K þ tF . The condition that !tþ) $ !t is given by an in¯nitesimal coordinate
transformation by the vector ¯eld Xt becomes

d!t

dt
¼ LXt

!t ¼ d!iXt
!tÞ; !30Þ

where L denotes the Lie derivative. This equation reduces to

d!A$ iXt
!tÞ ¼ 0: !31Þ

In terms of the components corresponding to sn, "sn, the solution is given by

Xk
t ¼ !!tÞklAl: !32Þ

There are no zero modes for !t, so the inverse should exist, albeit it is an in¯nite
dimensional matrix. This shows how the required coordinate transformation can
be constructed. E®ectively, we can connect !K (which is !t at t ¼ 0) to ! (which is !t

at t ¼ 1) by a series of coordinate transformations. (A series expansion around sn;
"sn ¼ 0may be needed for constructing the explicit formulae for the required coordinate
transformation.) The key point is that ! in (27) is thus symplectomorphic to !K

which is of the !1; 1Þ-type. We can therefore choose !K as the symplectic form for our
problem.
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It is now easy to work out the Kähler potential for !K. It is given by

K ¼ 1

4"

Z 2"

0
d%

c

12
$i

!"'00 $ '00Þ
!1þ '0 þ "'0Þ

$ %
þ 4h$ c

6

& '
!$i"''0Þ $ 4h log!1$ i"’0’Þ

( )

¼ 1

4"

Z 2"

0
d%

c

12

i

!1þ '0 þ "'0Þ
"'00'0

!1þ "'0Þ $
'00"'0

!1þ '0Þ

" #$ %(

þ 4h$ c

6

& '
!$i"''0Þ $ 4h log!1$ i"’0’Þ

)
: !33Þ

In passing to the second line of this equation, we used the fact that the integral of
expressions which are purely holomorphic in the ¯elds, i.e. depending only on ' (or
antiholomorphic involving only "') vanish upon %-integration. Using (33), it is
straightforward to check that !K ¼ i"##K. The expansion of this expression for small
sn; "sn will also agree with the alternate derivation of K, as will be clear from the
discussion in Subsec. 3.2, Eq. (42). Also, if we restrict to just the modes s1, "s1,
corresponding to SL!2;RÞ, it coincides with the expression for K in (12). If we restrict
to sn, "sn for ¯xed choice of n, corresponding to the subgroup de¯ned by L0, L%n, the
resulting expression is not of the same form as for s1, "s1. A further coordinate
transformation will be needed to bring it to the form of the Kähler potential for
SL!2;RÞ=U!1Þ with s1; "s1 ! sn; "sn.

Once we have the explicit form of the Kähler potential, one can construct coherent
states as is usually done for any Kähler manifold. In the functional form, these are
given by

#½"’' ¼ N e$
1
2K%½"’; "'': !34Þ

We will now construct another expression for the coherent states in terms of the
states of the Verma module, the ¯nal result being (51). We expect that (34) will
coincide with (51), up to a possible coordinate transformation, or, equivalently, a
rede¯nition of ¯elds, once it is projected to the states of the Verma module.

3.2. The operator U and the choice of complex coordinates

While (34) is formally a de¯nition of the coherent states, a more explicit formula in
terms of the states of the Verma module, similar to the construction of the SL!2;RÞ=
U!1Þ states in Sec. 2, will also be useful. As a ¯rst step towards this, we de¯ne a
unitary operator U by

U ¼ exp
X1

n¼1

"wnLn $ wnL$n

 !

: !35Þ

We will be considering unitary highest weight representations, so U will be unitary.
In (35), wn and "wn are functions of the coordinates sk; "sk. Generally, from the
commutation rules, we can see that we can write

U$1dU ¼
X

n

!"EnLn $ EnL$nÞ þ !E0 $ "E0ÞL0 þ !E $ "EÞ1; !36Þ

V. P. Nair
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where the coe±cients En, E0, E and their conjugates are one-forms on the coset space,
with components which are functions of the coordinates. In other words, we can write

En ¼
X

k

!E n
kdsk þ E n

"kd"skÞ; "En ¼
X

k

!"E n
kdsk þ "E n

"kd"skÞ: !37Þ

As for the coe±cients of L0 and 1, we take E0, E to be holomorphic one-forms, with
"E0, "E being the conjugates.

Our construction of the coherent states will follow the steps we outlined for the
case of SL!2;RÞ. We will ¯rst show that En can be chosen to be a holomorphic one-
form and "En as an antiholomorphic one-form. We can then de¯ne coherent states
which will obey an antiholomorphicity condition. We will then set up and analyze the
normalization of the wave functions for the coherent states. This will give us the
ingredients for the symbols and star products taken up in the next section.

The ¯rst key result we will need is that it is possible to choose wn, "wn as functions
of the coordinates in such a way that

P
kE n

"kd"sk ¼ 0 and
P

k
"E n
kdsk ¼ 0.c In other

words, En is a holomorphic one-form and "En is an antiholomorphic one-form,

En ¼
X

k

E n
kdsk; "En ¼

X

k

"E n
kd"sk; E n

"k ¼ "E n
k ¼ 0: !38Þ

This result can be established by expansion around the origin and then using ho-
mogeneity of the orbit. The key point is that we can consider wn and "wn to be de¯ned
by a power series expansion in terms of the coordinates sk, "sk, the coe±cients of the
expansion can be ¯xed by requiring E n

kd"sk ¼ 0 and "E n
kdsk ¼ 0. To the quadratic

order in the coordinates, we ¯nd

"wn ¼ "sn $
1

2

X

m

!nþ 2mÞ"snþmsm þ . . . !39Þ

with wn given by the complex conjugate. (The details of the required calculations are
given in Appendix A.) Thus, for a small neighborhood around the origin in the
chosen coordinates we can see that we do obtain the holomorphicity conditions (38).
To this order, we then ¯nd

!E0 $ "E 0ÞL0 þ !E $ "EÞ1¼$ 1

2

X

n

!snd"sn $ "sndsnÞ 2nL0 þ
c

12
!n3 $nÞ

h i
þ . . . : !40Þ

If we evaluate this on the highest weight state, we ¯nd

!E0 $ "E0ÞL0 þ !E $ "EÞ1
* +

j0i ¼ 1

2

X

k

@W
@sk

dsk $
@W
@"sk

d"sk

" #
j0i

¼ 1

2
!@W $ "@WÞj0i: !41Þ

cAn issue with notation: To distinguish the holomorphic and antiholomorphic pieces of the one-forms En,
"En, we use subscripts with an overbar. Once we argue that E n

"k and "E n
k are zero, we will drop this distinction

to avoid the notational clutter of writing "s "k , etc.

A note on coherent states for Virasoro orbits
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Here @ and "@ are the !1; 0Þ and !0; 1Þ components of the exterior derivative. We show
in Appendix A that E0 ¼ 1

2 @W
0, E ¼ 1

2 @W for some functions W 0 and W and W ¼
W 0hþW in (41). As we will see from the Kähler two-form given later, the Kähler
potenial is given byK ¼ 1

2 !W þ WÞ. To the order we have evaluated these functions
in (40),

K ¼ 1

2
!W þ "WÞ -

X

n

sn"sn 2nhþ c

12
!n3 $ nÞ

h i
þ . . . : !42Þ

The fact that the Kähler potential K is characterized by two numbers h and c has
been observed and commented on before.9,10 In Appendix A, we give the expansion of
En and "En to the next order in the coordinates.

To go beyond the small neighborhood around the origin, we will use the homo-
geneity of the coset space. Assume that we have obtained the result (38) in some
neighborhood of the origin. We then consider translations of U as UV , where V is of
the form

V ¼ exp
X1

n¼1

"*nLn $ *nL$n

 !

!43Þ

for in¯nitesimal *n, "*n. Writing out !UV Þ$1d!UV Þ to ¯rst order in *n, "*n, the holo-
morphicity conditions (38) become di®erential equations for these quantities. The
integrability conditions for these equations are satis¯ed by virtue of the Maur-
er{Cartan identities for U$1dU . Therefore, one can extend the neighborhood where
the holomorphicity conditions are obtained. The detailed calculations supporting
these statements are given in Appendix A.

3.3. Coherent states

We will now move to the next step in the construction of the coherent states.
Starting from the highest weight state j0i, we can de¯ne the states in the Verma
module of the form

jf~ngi ¼ . . .Ln3
$3L

n2
$2L

n1
$1j0i; !44Þ

where we can use the Virasoro algebra to order the L$n's in increasing level number
to the left. (We use f~ng with a tilde over n to denote the unnormalized states; for the
normalized states, given below, we will write fng.) The matrix of inner products for
the (unnormalized) states of the Verma module is given as

Mfng;fmg ¼ hf~ngjf ~mgj ¼ h0jLn1
1 Ln2

2 Ln3
3 . . .Lm3

$3L
m2
$2L

m1
$1j0i: !45Þ

This has a block-diagonal form, with the inner product between states of di®erent
level number being zero. The properly normalized states are then

jfngi ¼
X

fmg
!M$ 1

2Þfng;fmg . . .L
m3
$3L

m2
$2L

m1
$1j0i: !46Þ

V. P. Nair
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We can now de¯ne the coherent state wave function corresponding to the state
jfngi by

#fng ¼ h0jU†jfngiei&; !47Þ

where & is a phase to be speci¯ed shortly. Using U†dU ¼ $dU†U and (36), writed

dU† ¼
X

n;k

$"E n
kd"skLn þ E n

kdskL$n $ !E0 $ "E0ÞL0 $ !E $ "EÞ1
* +

" #

U†: !48Þ

This shows that the wave functions (47) obey the antiholomorphicity condition

@

@sk
þ 1

2

@W
@sk

þ i
@&

@sk

" #
#fng ¼ 0: !49Þ

We now choose & ¼ i!W $ "WÞ=2, so that this equation becomes

@

@sk
þ 1

2

@K

@sk

" #
#fng ¼ 0; !50Þ

where K ¼ 1
2 !W þ "WÞ is the Kähler potential. This equation can be solved for the

coherent state wave functions to write

#fng ¼ h0jU†jfngiei& ¼ e$
1
2K%fng!"sÞ; !51Þ

where %fng!"sÞ depend only on the antiholomorphic coordinates "sk.

3.4. The K€ahler two-form and the phase volume

Our next step is to write down the Kähler two-form and the Kähler potential in terms
of U, for the purpose of setting up the normalization integrals for the states (51).

Going back to (36), note that it de¯nes a left-invariant one-form U$1dU , since
!VLUÞ$1d!VLUÞ ¼ U$1dU for constant VL. Further,

h0jU$1dU j0i ¼ 1

2
!@W $ "@WÞ: !52Þ

dWe expect that the one-form U†dU is closely related to a similar quantity in reference 9, which develops
and uses the group manifold approach to quantization of the Virasoro group. In this approach, the group
law is ¯rst obtained recursively starting from the commutation rules. Left and right group actions can then
be obtained on functions on the group manifold. The resulting representations are reducible in general.
Subsidiary conditions, the polarization conditions, are chosen to obtain irreducible representations. The
approach is more general than, but closely related to, the standard geometric quantization. From the
group law, the so-called quantization one-form is constructed, Eq. (3.4) of that paper. Holomorphicity is
not a priori important, since one is using the group law. However, the two cases of \complete polarization"
considered in Ref. 16 do reduce to the two orbits with Kähler structure,cdiff S1=U!1Þ andcdiff S1=SL!2;RÞ.
We expect that there is a transformation of the coordinates lk used in Ref. 16 to our sk; "sk, by which the
one-form in (3.4) of that paper reduces to our result (48), up to a total di®erential. For us holomorphicity is
important in developing the star product, so we have chosen to separate the coordinates into holomorphic
and antiholomorphic ones from the beginning so that we have holomorphicity for the one-forms E.

A note on coherent states for Virasoro orbits
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This leads to a left-invariant two-form, which is the Kähler two-form and which can
serve as the symplectic structure of interest, given by

! ¼ idh0jU$1dU j0i ¼ i

2
"@@!W þ WÞ ¼ i"@@K: !53Þ

We also note that the existence of a left-invariant symplectic structure has been
emphasized by Witten.9 Since d!U$1dUÞ ¼ $U1$dUU$1dU , we can use (48) to obtain
another useful expression for !,

! ¼ $ ih0jU1$dUU$1dU j0i
¼ $ i

X

n;k

h0j "EnLn $ EnL$n þ !E0 $ "E 0ÞL0 þ !E $ "EÞ1
* +,

^ "EkLk $ EkL$k þ !E0 $ "E0ÞL0 þ !E $ "EÞ1
& 'i

j0i

¼ i
X

n;k

"En ^ Ekh0jLnL$kj0i

¼ i
X

n

"En ^ En 2nhþ c

12
!n3 $ nÞ

& '
0 i'kld"sk ^ dsl; !54Þ

'kl ¼
X

n

"E n
kE n

l 2nhþ c

12
!n3 $ nÞ

& '
:

The Kähler one-form A corresponding to this is given by (52) as

A ¼ i

2
!@W $ "@WÞ ¼ i

2
!@K $ "@KÞ þ d!&=2Þ: !55Þ

The antiholomorphicity condition (50) may be viewed as the polarization condition
for geometric quantization of ! in (53) or (54). The exact term in A is removed by a
phase transformation of the wave functions, as we have already done in de¯ning #n

in (47).
The Kähler two-form de¯nes a phase-space volume d+ or an integration measure

which is invariant under constant left translations of U. This may be written as

d+ ¼ !det'Þ
Y

k

d"skdsk: !56Þ

Since there are an in¯nite number of coordinates, any integration carried out using
this must be understood in a regularized sense, as de¯ned over a ¯nite set of modes,
taking the limit of the total number of modes becoming in¯nite at the end. The
determinant of ' must be understood in a similar regularized way.

3.5. Normalization of wave functions

With the understanding of the left-invariant measure as given above, we can now
show that the coherent states (47) can be normalized. We will ¯rst show the rea-
soning for the orthonormality of the wave functions, assuming the existence of the
relevant integrals. The latter issue will be taken up subsequently. We start by

V. P. Nair

2450149-14



considering the normalization integral

Nfngfmg ¼
Z

d+!UÞ #+
fng!UÞ#fmg!UÞ ¼

Z
d+!UÞhfngjU j0ih0jU†jfmgi

0 hfngjNjfmgi; !57Þ

where N denotes the operator

N ¼
Z

d+!UÞU j0ih0jU†: !58Þ

Complex conjugation of this equation shows that Nfngfmg is a hermitian matrix or it
can be viewed as a hermitian operator on the states (46) of the Verma module.
Further, by translational invariance of the integration measure we have

Nfngfmg ¼
Z

d+!VLUÞhfngjVLU j0ih0jU†V †
L jfmgi

¼
Z

d+!UÞhfngjVLU j0ih0jU†V †
L jfmgi: !59Þ

We take VL to be of the form

VL ¼ exp
X

k

",kLk $ ,kL$k

" #

; !60Þ

where ,k, ",k are in¯nitesimal parameters which are constant, i.e. independent of sl,
"sl. To linear order in ,k, Eq. (59) then leads to

Z
d+!UÞ hfngjL$kU j0ih0jU†jfmgi$ hfngjU j0ih0jU†L$kjfmgi

, -
¼ 0: !61Þ

Since we can write hfngjL$k ¼ !L$kÞfngfmghfmgj, this translates to ½L$k;N' ¼ 0.
Similarly, from the coe±cient of ","n , we also get ½Lk;N' ¼ 0. It is also easy to see that
½L0;N ' ¼ 0. Since N commutes with all Lk for all states of the form (46), and since
these states form a basis, we can write Nfngfmg ¼ (#fngfmg, where ( is a constant
independent of the state labels fng, fmg. But ( can depend on c and h which
characterize the representation. This constant ( can be absorbed into the de¯nition
of the measure d+; we will do this from now on, so that we have the result

Z
d+!UÞ#+

fng!UÞ#fmg!UÞ ¼ #fngfmg: !62Þ

Given the de¯nition of the wave functions (47), this can also be viewed as the
completeness relation

Z
d+!UÞU j0ih0jU† ¼ 1: !63Þ

We now come to the question of whether ( is ¯nite, i.e. whether the normali-
zation integrals exist. From the discussion given above, ( is given by the integral
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of e$K,

( ¼
Z

d+h0jU j0ih0jU†j0i ¼
Z

d+e$K: !64Þ

There are two issues one needs to address here. There are an in¯nite number of
coordinates, so a suitable regularization has to be used, as is the case for the func-
tional integral in any ¯eld theory. We have to assume the existence of such a reg-
ularization to make the question well-de¯ned. The simplest possibility would be to
truncate the integral to a ¯nite number of variables, say N, taking the limit N ! 1
after the expectation values of operators have been evaluated. Even after truncation
to a ¯nite set of modes, there is still the question of whether the integration over each
coordinate is convergent. In other words, does the factor e$K provide su±cient
damping for large magnitudes for the coordinates? We will now present three sets of
arguments pointing out features of K relevant to these questions.

First of all, we note that in the SL!2;RÞ case, the integral of e$K does exist, with
the restriction h > 1

2, as indicated in Sec. 2. In particular, K ! 1; e$K ! 0 as jwj !
1 (which is equivalent to the limit jsj ! 1). Therefore, as the ¯rst step towards
analyzing the asymptotic behavior of K, we can use SL!2;RÞ subalgebras, de¯ned by
L0;L%m, for ¯xed m. If we consider all !wn; "wnÞ to be zero except for one pair, say,
!wm; "wmÞ, then K will reduce to the Kähler potential for SL!2;RÞ and hence we get
K ! 1, e$K ! 0 as jwmj ! 1. Thus, for every plane in the orbit space,K ! 1 for
large jwj's. This property also holds if we take jwmj ! 1 holding all other w's ¯xed
and ¯nite, but not necessarily zero. Towards this, note that U involves the combi-
nation "wnLn $ wnL$n. We then write

X
"wnLn ¼

!!!
2

p
"w2L2; L2 ¼

1!!!
2

p L2 þ
X

n 6¼2

"wnLn

"w2

 !

: !65Þ

This is for the case where we plan to take jw2j ! 1 keeping other w's ¯xed. The
Virasoro algebra leads to the commutation rules

½L2;L$2' ¼ 2L0 þ X;
½L0;L2' ¼ $2L2 $ Y;
½L0;L$2' ¼ 2L$2 þ Y†;

!66Þ

where L0 ¼ L0 þ !c=8Þ and

X ¼ 1

2

X

n 6¼2

!nþ 2Þwn

w2
L2$n þ

!nþ 2Þ"wn

"w2
Ln$2 þ

c

12

"wnwn

"w2w2
!n3 $ nÞ

$ %

þ 1

2

X

n;m 6¼2

!nþmÞ"wnwm

"w2w2
Ln$m

Y ¼
X

n6¼2

!nþ 2Þ"wn!!!
2

p
"w2

Ln:

!67Þ
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The terms X, Y vanish as jw2j ! 1 keeping other coordinates ¯nite, leading to an
SL!2;RÞ subalgebra of L0, L%2. Note also that we can write

U ¼ exp
X

n

"wnLn $ wnL$n

 !

¼ exp !
!!!
2

p
!"w2L2 $ w2L$2ÞÞ: !68Þ

In calculating h0jU j0i, h0jU†j0i, we use the Baker{Campbell{Hausdor® formula to
rearrange U† as

U† ¼ efnL$ne$
1
2!W0L0þWÞe

"f nLn : !69Þ

This rearrangement only uses the commutation rules. Since the structure constants
in the commutation rules (66) become those of SL!2;RÞ as jw2j ! 1, keeping all
other wn's ¯xed, we get the result

K ¼ KSL!2;RÞ!
!!!
2

p
w2;

!!!
2

p
"w2Þ þ . . . ; !70Þ

where the ellipsis indicates terms which vanish in the limit. It then follows that e$K

vanishes in the limit jw2j ! 1, keeping all other wn's ¯xed. A similar argument
holds for any jwmj ! 1 keeping all other w's ¯xed.

Our second observation relates to the behavior of K under scaling, i.e. how it
behaves as we go to large jwnj uniformly for all n. We can see that a common scaling
up of the w's will increase K. Writing U ¼ eiC in terms of the hermitian operator
C ¼ $i

P
n!"wnLn $ wnL$nÞ, we ¯nd

exp ½$K!!1þ )Þw; !1þ )Þ"wÞ' ¼ h0je$i!1þ)ÞC j0ih0jei!1þ)ÞC j0i
¼ exp ½$K!w; "wÞ' $ i)h0je$iCCj0ih0jeiC j0i

þ i)h0jeiCCj0ih0je$iC j0iþ . . . : !71Þ

This leads to

X

n

wn
@

@wn
þ "wn

@

@ "wn

$ %
K ¼ 2eK h0j cosCj0ih0jC sinCj0i½

$ h0j sinCj0ih0jC cosCj0i'; !72Þ

where, for brevity, we use hcosCi ¼ h0j cosCj0i, hC sinCi ¼ h0jC sinCj0i, etc. Since
C is hermitian, we can diagonalize it. If j$i denote the states which diagonalize C,
with eigenvalues c$, we can write

hcosCihC sinCi$ hsinCihC cosCi ¼
X

p$p(c(½cos c$ sin c( $ sin c$ cos c('

¼ $
X

p$p(c( sin!c$ $ c(Þ

¼ 1

2

X
p$p(!c$ $ c(Þ sin!c$ $ c(Þ; !73Þ

where p$ ¼ jh0j$ij2. This shows that the right-hand side of (72) is always positive.
Therefore, K will continually increase with - under scaling !wn; "wnÞ ! !-wn;-"wnÞ,
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- > 0. The limits of integration for the w's should be de¯ned by the vanishing of e$K

in (64), and we see that, with the two properties of K given above, we can expect
convergence for integration over each mode.

Our third observation is about regularizing the integration over the in¯nite
number of modes. As mentioned before, a regularization truncating to a ¯nite
number of coordinates, say N, is needed, with the limit N ! 1 eventually. Ulti-
mately, this will require treating K as if it is the action for a quantum ¯eld theory.
Regularization by truncation to a ¯nite number of modes is familiar from ¯eld
theory. This is also somewhat similar to what is done in Ref. 19, which presents the
calculation of the integral

R
d+ e$H , where d+ is the symplectic measure on

cdiff S1/SL!2;RÞ and H is the Hamiltonian for translations on S1, i.e. for the action
of L0. The result up to two loops is obtained; regularization is implicit as in
standard ¯eld theory calculations. It is also argued that a similar result holds for
cdiff S1/U!1Þ, which is the orbit we are interested in. For the present situation, it is
not the integral of e$H we need, but note that we do have a ¯eld theoretic way of
understanding the normalization integral (64). The action is not de¯ned by the
Hamiltonian corresponding to the action of L0, but rather it is given by the Kähler
potential K. From (33) we see that K can indeed be viewed as an action for a
complex ¯eld '. In particular, if we consider the large c limit, then we can scale
' ! '=

!!!
c

p
for all the modes sn, "sn, n / 2. The set of terms in K which are pro-

portional to c do not involve s1, "s1, so this scaling does not a®ect those modes. For
large c, we then get

K - 1

4"

Z
d%

i

12
!"'00'0 $ '00"'0Þ þ i

6
"''0 $ 4h log!1$ "s1s1Þ

$ %

¼ 1

12

X

n

!n3 $ nÞ"snsn $ 2h log!1$ "s1s1Þ: !74Þ

We get a Gaussian integral for sn, n 6¼ 1 and the SL!2;RÞ integral for the s1 mode.
The determinant arising from the Gaussian term can be regularized as is done in
any ¯eld theory, for example, using a cuto® or using the .-function. We see that the
integral does exist in the sense of quantum ¯eld theory, at least for large c (and for
h > 1

2). The expression given above suggests thatKmay be viewed as a deformation
of the Fubini-Study potential. It is related to the central extension. A di®erent
choice of coordinates which can make this a little more transparent would involve
embeddingcdiff S1/U!1Þ in the Siegel disk, see Eq. (31) of Ref. 21.

Another observation of relevance would be that, just based on algebraic con-
siderations, the states of the Verma module do have a ¯nite norm, and this, in our
language, is related to to the integral in (57). Further, Virasoro representations occur
in the partition function for !2þ 1Þ-dimensional gravity.11,12 De¯ning such partition
functions is, in an indirect way, equivalent to the existence of (.

We also note that, bypassing the normalization integral in (57), it may be possible
to obtain a resolution of identity by suitable restrictions, either by going to a
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quotient space,22 or by considering a family of coadjoint orbits,23 or by considering a
subset of coherent states.20;e

4. Symbols and Star Products

We are now in a position to de¯ne the symbols associated to an operator and the
corresponding star products.f We consider operators AB, etc. acting on the states
(46). We may also view them as matrices with elements of the form Afngfmg, Bfngfmg,
etc. The symbols corresponding to these operators will be de¯ned as

!AÞ ¼
X

fng;fmg
h0jU†jfngiAfngfmghfmgjU j0i ¼ h0jU†AU j0i;

!BÞ ¼ h0jU†BU j0i: !75Þ

The symbol corresponding to a product of two operators takes the form

!ABÞ ¼ h0jU†ABU j0i: !76Þ

This can be written in terms of the symbols of the individual operators and their
derivatives which will constitute the star product. For this, we ¯rst note that the
completeness relation for the states (44) takes the form

X

fng;fmg
jf~ngi!M$1Þfng;fmghf ~mgj ¼ 1: !77Þ

We can now rewrite the symbol of the operator product in (76) by using the com-
pleteness relation as

!ABÞ ¼ h0jU†AU1U†BU j0i
¼

X

fng;fmg
h0jU†AU jf~ngi!M$1Þfng;fmghf ~mgjU†BU j0i

¼
X

fng;fmg
h0jU†AU . . .Ln2

$2L
n1
$1j0i!M$1Þfng;fmgh0jL

m1
1 Lm2

2 . . .U†BU j0i

¼ h0jU†AU j0ih0jU†BU j0iþ h0jU†AUL$1j0i
1

2h
h0jL1U

†BU j0iþ . . .

0 !AÞ + !BÞ: !78Þ

Terms of the form h0jU†AUL$kL$nj0i can be simpli¯ed using the following relations
which are a consequence of Eqs. (36) and (41):

@U

@sk
¼ $

X

n

E n
kUL$n þ U!E 0

kL0 þ Ek1Þ;

@U†

@sk
¼
X

n

E n
kL$nU

† $ !E 0
kL0 þ Ek1ÞU†;

!79Þ

e I thank a reviewer of an early version of this paper for pointing this out and bringing the relevant papers
to my attention.
f In the terminology often used in the context of Berezin{Toeplitz quantization,25 these are covariant
symbols.
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@U

@"sk
¼
X

n

"E n
kULn $ U!"E 0

kL0 þ "Ek1Þ;

@U†

@"sk
¼ $

X

n

"E n
kLnU

† þ !"E 0
kL0 þ "Ek1ÞU†:

!80Þ

We now de¯ne covariant derivatives Dn, "Dn by

Dn ¼ $
X

k

!E$1Þkn
@

@sk
$ ‘0E 0

k

$ %
;

"Dn ¼ $
X

k

!"E$1Þkn
@

@"sk
þ ‘0"E

0
k

$ %
;

!81Þ

where ‘0 denotes the eigenvalue of L0 for the expression on which these covariant
derivatives act; i.e. it is the level number of the expression to the right of these
derivatives. Using (79) and (80), it is easy to check that we can write

Dfng!AÞ 0 . . .Dn2
Dn1

!AÞ ¼ h0jU†AU . . .L$n2
L$n1

j0i;
"Dfng!BÞ 0 . . . "Dn2

"Dn1
!BÞ ¼ h0jLn1

Ln2
. . .U†BU j0i:

!82Þ

The star product can thus be rewritten as

!AÞ + !BÞ ¼
X

fng;fmg
Dfng!AÞ!M$1Þfng;fmg "Dfmg!BÞ: !83Þ

The symbols themselves have a value of zero for ‘0; we also have ‘0 ¼ %n for Dn and
"Dn, respectively.

The second term on the right-hand side in the expansion in (78), which involves
only L%1, comes from the SL!2;RÞ subalgebra. In fact, as argued below, if we con-
sider just the states generated by powers of L$1, the star product in (83) will become
the star product for SL!2;RÞ states de¯ned in Sec. 2.

It is useful to work out the next term which is at level 2. The matrix of inner
products and its inverse are given by

M ¼
8h2 þ 4h 6h

6h 4hþ 1

2
c

2

4

3

5; M$1 ¼ 1

detM
4hþ 1

2
c $6h

$6h 8h2 þ 4h

2

4

3

5;

det M ¼ 2h!2hþ 1Þ!c$ 1Þ þ 2h!4h$ 1Þ2:

!84Þ

ar Here the matrix elements refer to the states j1i ¼ L2
$1j0i, j2i ¼ L$2j0i. Explicitly,

to this order, we get

!AÞ + !BÞ ¼ !AÞ!BÞ þ 1

2h
!E$1Þk1

@!AÞ
@sk

!"E$1Þk 0
1
@!BÞ
@"sk0

þ
4hþ 1

2 c

detM
!E$1Þk1

@

@sk
$ !E$1Þk1E 0

k

" #
!E$1Þ l1

@!AÞ
@sl

$

* !"E$1Þk 0

1
@

@"sk0
$ !"E$1Þk 0

1
"E 0
k0

" #
!"E$1Þ l01

@!BÞ
@"sl0

%
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þ 6h

detM !E$1Þk1
@

@sk
$ !E$1Þk1E 0

k

" #
!E$1Þ l1

@!AÞ
@sl

!"E$1Þ l02
@!BÞ
@"sl0

$

þ!E$1Þk2
@!AÞ
@sk

!"E$1Þk01
@

@"sk0
$ !"E$1Þk01 "E

0
k0

" #
!E$1Þ l01

@!BÞ
@"sl0

%

þ 8h2 þ 4h

detM !E$1Þk2
@!AÞ
@sk

!"E$1Þ l02
@!BÞ
@"sl0

$ %
þ . . . : !85Þ

There is summation over k, k0, l, l0 in various expressions in this equation.
If we take the large c limit at ¯xed h, the matrix M$1 reduces to its !1; 1Þ-com-

ponent M$1
11 - !8h2 þ 4hÞ$1 with all other elements zero. The corresponding term,

along with the terms with ¯rst derivatives of !AÞ and !BÞ given in the ¯rst line, give
the ¯rst two terms of the star-product for the orbit SL!2;RÞ=U!1Þ labeled by the
highest weight L0 ¼ h.

It is easy to see that this property is obtained for higher terms as well. For this,
consider the matrixM at level n. The elementM11 arises from Ln

$1j0i, so this term is
exactly what it is for SL!2;RÞ. Further, terms arising from L$2L

n$2
$1 j0i, L$3L

n$3
$1 j0i,

L$3L$2L
n$5
$1 j0i, etc. will all have powers of c, since we get the central terms for

h0jLkL$kj0i. The principal minor or cofactor corresponding to M11 thus dominates
the determinant as c ! 1, and is order cn$1, while the cofactors corresponding to
the other elements will have smaller powers of c. As a result, in the inverse of M, the
element !M$1Þ11 dominates as c ! 1, with the limiting value 1=M11, while other
elements tend to zero. Since 1=M11 corresponds to SL!2;RÞ, we get the result that
the star product for the Virasoro group characterized by h, c becomes the star
product for the SL!2;RÞ=U!1Þ orbit labeled by h; i.e.

!AÞ + !BÞ'Virasoro;h;c ! !AÞ + !BÞ'SL!2;RÞ;h as c ! 1: !86Þ

This reduction also conforms to what is expected from the large c behavior discussed in
connection with (74). In the context of this result, it may be interesting to recall that
the c ! 1 limit is important in the context of semiclassical limits of partition functions
for !2þ 1Þ-dimensional gravity.4,5 The coset SL!2;RÞ=U!1Þ with the star product
in (86), is the noncommutative version of AdS2. For more on this space, see Ref. 26.

5. Discussion

We have worked out the construction of coherent states for the Virasoro group using
a class of orbits with c > 1, h > 1

2. The basic results are in Sec. 3. The wave functions
for the coherent states are given in (47). They satisfy a certain antiholomorphicity
property, as is evident from (51). We also give an explicit formula for the Kähler
potential K in terms of complex ¯elds de¯ned on the circle. We consider some of the
key properties of K and also discuss the normalization integral for the wave functions
as the partition function for the one-dimensional ¯eld theory corresponding to this K.

In the case of the well-known coherent states on orbits of compact groups as well
as the historically ¯rst case of the oscillator, one can de¯ne reproducing kernels via
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the overlap of coherent state wave functions. It would be interesting to explore the
properties of such kernels in the Virasoro case.

Also, we have restricted ourselves to c > 1, since we were partly motivated
by possible applications to !2þ 1Þ-dimensional gravity. However, the discrete set
of unitary c < 1 representations are also very interesting from a physics point of
view, since they are relevant to the so-called minimal models in CFT. Coherent states
for such cases are also worth exploring, but are obviously beyond the scope of
this work.

Turning to the more physical side of things, our results can be viewed as fur-
nishing a noncommutative version of the in¯nite dimensional Kähler space
cdiff S1=S1. The star product (83) gives the noncommutative algebra for functions. As
mentioned in the Introduction, this analysis was partially motivated by potential
application to !2þ 1Þ-dimensional gravity. In the spirit of noncommutative geome-
try, one can use a Hilbert space of states to model the spatial manifold.27,28 We have
recently argued for elaborating this framework, with a doubling of the Hilbert space
as in thermo¯eld dynamics, with the gauge ¯elds for gravity, i.e. the frame ¯elds and
the spin connection, coupling to the two Hilbert spaces in parity-conjugate ways.29

In this framework, it is possible to obtain the Einstein{Hilbert action for gravity
in !2þ 1Þ dimensions (with a nonzero cosmological constant), upon taking the
commutative limit. The explicit calculations were done using quantization of the
orbits SU!2Þ=U!1Þ or SL!2;RÞ=U!1Þ to model the corresponding noncommutative
spaces. However, since the partition function for gravity naturally involves repre-
sentations of the Virasoro algebra due to the contributions from black holes,11,12 one
can ask whether it is possible to extend the analysis and use the carrier space of the
representation as the Hilbert space of interest modeling the noncommutative space.
The coherent states discussed here provide a way to de¯ne symbols and star products
for such a formulation. We should expect that the commutative limit, which is the
large !c;hÞ limit, will then lead to the Einstein{Hilbert action.

Our results may also be interpreted in terms of a mock quantum Hall system. We
have analyzed the quantum Hall problem in arbitrary dimensions in a series of papers
and argued that the lowest Landau level of such systems model the corresponding
noncommutative spaces.30 E®ective actions, edge states, etc. were analyzed in such
cases. The present discussion may be viewed as another example of this, now applied
to an in¯nite-dimensional case.

As noted before, the Kähler potential de¯nes an interesting one-dimensional ¯eld
theory in its own right, given by

Z ¼
Z

d+e$K

K ¼ 1

4"

Z 2"

0
d%

c

12

i

!1þ '0 þ "'0Þ
"'00'0

!1þ "'0Þ
$ '00"'0

!1þ '0Þ

" #$ %(

þ 4h$ c

6

& '
!$i"''0Þ $ 4h log!1$ i"’0’Þ

)
:

!87Þ
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This should prove to be an interesting theory since it is closely tied to the Virasoro
group. We propose to investigate this further in future.
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Appendix A

In this appendix, we will go over some of the details of the results mentioned in Sec. 3.

Analysis near the origin
The quantities wn, "wn in U will be chosen as functions of the coordinates sn,

"sn, i.e.

"wk ¼ "sk þ "w !2Þ
k þ "w !3Þ

k þ . . . ; !A:1Þ

where "w !rÞ
k is of order r in powers of sn, "sn. Our strategy is to write down U$1dU and

choose these functions such that En is a holomorphic di®erential and "En is an anti-
holomorphic di®erential. For an operator X, a real number $, and for a variation of
X, we have the identity

@

@$
½e$$X#½e$X'' ¼ e$$X#

@

@$
e$X

$ %
þ @

@$
!e$$XÞ#½e$X'

¼ e$$X#½Xe$X' $ e$$XX#½e$X'
¼ e$$X#Xe$X: !A:2Þ

Integrating over $ from zero to one, we get

e$X#½eX' ¼
Z 1

0
d$e$$X#Xe$X: !A:3Þ

Using this equation, from the de¯nition of U in (35), we can write

U$1dU ¼
X

n

Z 1

0
d$e$$X!d"wnLn $ dwnL$nÞe$X

X ¼
X

m

!"wmLm $ wmL$mÞ: !A:4Þ

Expanding the exponential, we can write out the ¯rst two terms as

Term 1 ¼
X

d"wnLn $ dwnL$n;
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Term 2 ¼ $ 1

2!

X

n

½X; d"wnLn $ dwnL$n'

¼ $ 1

2!

X

m;n

!m$ nÞ"wmd"wnLmþn $ !m$ nÞwmdwnL$m$n½

þ !mþ nÞ!wnd"wm $ "wmdwnÞLm$n þ
c

12
!n3 $ nÞ!wnd"wn $ "wndwnÞ

i
:

!A:5Þ

The Lm$n can have terms of the form Lk and L$k, k > 0, as well as L0 terms.
Separating these out we ¯nd

Term 2 ¼ $ 1

2!

X

n

!wnd"wn $ "wndwnÞ 2nL0 þ
c

12
!n3 $ nÞ1

& '

$ 1

2!

X

k

½"C !2Þ
k Lk $ C !2Þ

k L$k';

"C
!2Þ
k ¼

Xk$1

n¼1

!k$ 2nÞ"wk$nd"wn&!k$ 3Þ

$
X

n

!kþ 2nÞ!"wkþndwn $ wnd"wkþnÞ&!k$ 1Þ

!A:6Þ

with C !2Þ
k being the complex conjugate of "C

!2Þ
k . Also &!k$ aÞ ¼ 1 for k / a and zero

otherwise. From the expression for "C
!2Þ
k , we see that there is one term in the coef-

¯cient of Lk which has dwn. We rewrite this term using
X

!kþ 2nÞ"wkþndwn ¼ d
X

!kþ 2nÞ"wkþnwn

h i
$
X

!kþ 2nÞwnd"wkþn: !A:7Þ

Thus, we ¯nd

Coefficient of Lk ¼ d "wk þ
1

2

X
!kþ 2nÞ"wkþnwn

$ %
$ 1

2

Xk$1

1

!k$ 2nÞ"wk$nd"wn&!k$ 3Þ

$
X

n

!kþ 2nÞwnd"wkþn&!k$ 1Þ: !A:8Þ

We now de¯ne wk, "wk as functions of complex coordinates sk, "sk, with an expansion
around the origin as

"wk ¼ "sk $
1

2

X

n

!kþ 2nÞ"skþnsn þ "w !3Þ
k þ . . . ; !A:9Þ

where "w !3Þ
k denote terms which are cubic in sn; "sn. The coe±cient of Lk now becomes

Coefficient of Lk ¼ d"sk $
1

2

Xk$1

1

!k$ 2nÞ"sk$nd"sn&!k$ 3Þ

$
X

!kþ 2nÞskd"skþn&!k$ 1Þ þ . . .

0 d"sk $
1

2

X

l

D !2Þ
kl d"sl þ . . . : !A:10Þ
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We see that, to this order, there are no dsn-terms in the coe±cient of Lk, k > 0; i.e. it
is an antiholomorphic one-form. To the same approximation, the coe±cient of the L0

and central terms become

!L0;1Þ $ terms ¼ $ 1

2!

X

n

!snd"sn $ "sndsnÞ 2nL0 þ
c

12
!n3 $ nÞ1

& '
: !A:11Þ

The next term in the expansion of (A.4), corresponding to the double commutator
of X with

P
d"wnLn $ dwnL$n is of the form

Term 3 ¼ 1

3!

X
!wn

"C
!2Þ
n $ "wnC

!2Þ
n Þ 2nL0 þ

c

12
!n3 $ nÞ

h i
þ
X

"C
!3Þ
k Lk $ C !3Þ

k L$k

h i
:

!A:12Þ

We can use wn - sn, "wn - "sn in working out the cubic terms in this expression, to
get expressions valid to the third order in sn, "sn. To this order, "C

!3Þ
k is given by

"C
!3Þ
k -

X

n

2kn!snd"sn $ "sndsnÞ"sk þ
X

#k;mþn!m$ nÞ"sm "C
!2Þ
n

þ
X

#k;m$n!mþ nÞ½sn "C
!2Þ
m $ "smC

!2Þ
n ': !A:13Þ

In this expression, a term like "sk"sndsn (which is a holomorphic form and hence not
what we want) can be removed by a term like "sk"snsn in the expression for "w !3Þ

k . The
simpli¯cation of the expression for "C

!3Þ
k is straightforward but long. With some

rearrangements of terms, it can be brought to the form

"C
!3Þ
k ¼

X

l

D !3Þ
k;l d"sl $ d' !3Þ

k $ 3

2

X
#k;r$s$n!rþ sþ nÞ!n$ sÞ"smsndss: !A:14Þ

The expression for D !3Þ
k;l d"sl is long and not important for our argument (since it is an

antiholomorphic form anyway), but we give it here for the sake of completeness,
X

l

D !3Þ
k;l d"sl ¼

X
sn"skd"sn þ 2kn"snsndsk þ #k;mþn#n;rþs!m$ nÞ!r$ sÞ"sm"srd"ss
,

þ 2#k;mþn#n;r$s!m$ nÞ!rþ sÞ"smssdsr
þ #k;mþn#n;r$s!m$ nÞ!rþ sÞ"srssd"sm
þ #k;m$n#m;rþs!mþ nÞ!r$ sÞsn"srd"ss
þ #k;m$n#m;r$s!mþ nÞ!rþ sÞsnssd"sr

þ 1

2
#k;r$s$n!!r; s;nÞsnssd"sr þ 2#k;m$n#n;r$s!mþ nÞ!rþ sÞ"smsrd"ss

þ #k;m$n#n;r$s!mþ nÞ!rþ sÞ"sssrd"sm
-
: !A:15Þ

Also 'k is given by

' !3Þ
k ¼

X
2kn"sn"sksn þ #k;mþn#n;r$s!m$ nÞ!rþ sÞ"sm"srss
,

þ 1

2
!!r; s;nÞ#k;r$s$n"smsnss þ #k;m$n#n;r$s!mþ nÞ!rþ sÞ"sm"sssr

%
: !A:16Þ
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In (A.15) and (A.16), !!r; s;nÞ is given by

!!r; s;nÞ ¼ 1

2
!2r2 $ s2 $ n2 þ r!nþ sÞ þ 2nsÞ: !A:17Þ

This is symmetric in n; s. In Term 3, ' !3Þ
k can be removed by a suitable choice of "w !3Þ

k ,
making the coe±cient of Lk to be an antiholomorphic form, except for the last term
in (A.14). We also note that there are cubic terms arising from the use of "w !2Þ

k , as
in (A.10), in Term 2. For this, we rewrite "C

!2Þ
k as

"C
!2Þ
k ¼

X

l

D !2Þ
kl d"sl $ d' !2Þ

k þ ~"C
!2Þ
k ;

~"C
!2Þ
k ¼ $ 1

2

X
½#k;mþn#n;r$s!m$ nÞ!rþ sÞ"sm!d"srss þ "srdssÞ'

h

þ
X

!mþ nÞ!rþ sÞ½#k;m$n#m;r$ssn!d"srss þ "srdssÞ þ #k;m$n#n;r$s"srssd"sm

$ #k;m$n#n;r$s"sm!d"srss þ "srdssÞ $ #k;m$n#m;r$s"srssdsn'
i
: !A:18Þ

In this expression, terms of the form "s"sds can be written as d½"s"ss' $ d"s"ss$ "sd"ss; the
total derivative adds to the expression for ' !3Þ

k and is removed by choice of "w !3Þ
k .

What is left will be an antiholomorphic form. This does not work for the two terms
in (A.18) which have the "ssds combination. These potentially problematic terms can
be simpli¯ed as

Problematic terms in ~"C
!2Þ
k ¼ $ 1

2

X
#k;r$s$n!r$ sþ nÞ!rþ sÞ"sr!sndss $ ssdsnÞ

¼ $ 1

2

X
#k;r$s$n!nþ sþ rþ !n$ sÞ"srsndss; !A:19Þ

where, in the second line, we have used the antisymmetry of the ¯rst term in n; s to
simplify the result. Comparing the contribution of the last term in (A.14) to !1=3!Þ
"C

!3Þ
k and the contribution of (A.19) to $!1=2!Þ"C !2Þ

k , we see that they cancel out

exactly. After removal of ' !3Þ
k terms via choice of "w !3Þ

k , we see that what is left of "C
!3Þ
k

is an antiholomorphic form.
The coe±cient of Lk can thus be written as

Coefficient of Lk ¼ "Ek ¼ d"s "k $
1

2

X

l

D !2Þ
kl d"sl þ

1

3!

X

l

D!3Þd"sl þ . . . : !A:20Þ

We have thus veri¯ed, in an expansion around the origin to cubic order in the
coordinates, that there is a choice of wn, "wn as a function of the coordinates sn, "s"n for
which "En is an antiholomorphic one-form.

Maurer{Cartan relations
The analysis given above for small values of sk, "sk shows that one can choose "En to

be an antiholomorphic one-form in an in¯nitesimal neighborhood of the origin. Our
aim is now to extend this to larger and larger regions by a sequence of translations,
U ! UV , where V is as in (43). For this, we will also need to use the Maurer{Cartan
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identity for U, so we will ¯rst work this out. From (36), assuming that we have
already obtained the holomorphicity properties for En and "En, we can write

U†@U ¼ $
X

n

EnL$n þ E0L0 þ E1;

U†"@U ¼
X

n

"EnLn $ "E0L0 $ "E1:
!A:21Þ

Taking the holomorphic exterior derivative of the ¯rst of these equations, we get one
of the Maurer{Cartan identities as

X
$@EnL$n þ @E0L0 þ @E1þ

1

2
!m$ nÞEn ^ EmL$n$m $ nE0 ^ EnL$n

$ %
¼ 0:

!A:22Þ

This yields three sets of relations corresponding to the coe±cients of L$n, L0 and 1.
These are

$!@En þ nE0 ^ EnÞ þ 1

2

X

r;s

!s$ rÞ#rþs;nEr ^ Es ¼ 0; !A:23Þ

@E0 ¼ 0; @E ¼ 0: !A:24Þ

The last two relations tell us that we can write

E0 ¼ 1

2
@W 0; E ¼ 1

2
@W : !A:25Þ

Note that the Kähler potential is related to these as K ¼ W 0hþW . We can now use
these expressions for E0, E to write (A.23) as

$@~En þ 1

2

X

r;s

!s$ rÞ#rþs;n
~E r ^ ~E s ¼ 0; !A:26Þ

where ~En ¼ Enexp !nW0=2Þ. This is the key identity we will need for extending the
previous result.

Extending the result by use of translational invariance
Now consider de¯ning E's and "E 's after translation by V. To ¯rst order inP "*nLn $ *nL$n, this leads to

!UV Þ$1d!UV Þ ¼V $1dV þ V $1!U$1dUÞV
-U$1dU þ

X
d"*nLn $ d*nL$n $ ½"*nLn $ *nL$n;U

$1dU '
, -

: !A:27Þ

We want to show that the coe±cient of Ln, n > 0 is an antiholomorphic one-
form; i.e. one can choose "*n such that the holomorphic di®erential part vanishes.
The condition for this, upon using (36) and evaluating the commutator term,
becomes

X
½@"*nLn þ "*nEm!mþ nÞLn$m $ "*nE0nLn' ¼ 0 !A:28Þ
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with n > m. Rewriting this by isolating the coe±cient of Lk, we get

@"*k $ kE0"*k þ
X

!2mþ kÞ"*mþkEm ¼ 0: !A:29Þ

De¯ning ~"* k ¼ "*kexp !$kW 0=2Þ, we can further write these conditions as

@~"* k þ
X

m

!2mþ kÞ~"*mþk
~Em ¼ 0: !A:30Þ

These are to be regarded as a set of equations which can be solved for "*k. However,
there are integrability conditions for these equations. They correspond to taking
another holomorphic exterior derivative of (A.30), and upon using (A.30) again,
become

X
!2mþ kÞ½~"*mþk@~E

m $
X

r

!2rþmþ kÞ~"*mþkþr
~E r ^ ~Em' ¼ 0: !A:31Þ

Because of the wedge product, we can antisymmetrize the coe±cient of ~E r ^ ~Em
in

r;m. For this, we can use

1

2
½!2mþ kÞ!2sþmþ kÞ $ !m $ sÞ' ¼ 1

2
!m$ sÞ½2!mþ sÞ þ k': !A:32Þ

Further, we take m ! n in the ¯rst term and m ! s, mþ r ! n in the second term.
Equation (A.31) can then be written as

X
!2nþ kÞ~"*nþk @~En $ 1

2

X

r;s

!s$ rÞ#rþs;n
~E r ^ ~E s

" #

¼ 0: !A:33Þ

These are obviously satis¯ed as a result of the Maurer{Cartan identity (A.26).
What we have shown is that if we have U with a choice of wn, "wn as functions of

sk, "sk for which En is a holomorphic one-form and "En is an antiholomorphic one-form,
then we can ¯nd *n, "*n such that !UV Þ$1d!UV Þ will have a holomorphic one-form as
the coe±cient of L$n and an antiholomorphic one-form as the coe±cient of Ln. This
result, combined with the previous result that this property can be obtained in an
in¯nitesimal neighborhood of the origin, as shown by explicit power series expansion,
shows we can ¯nd coordinates such that En is a !1; 0Þ-form and "En is a !0; 1Þ-form.
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