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Abstract—Batteryless sensing devices which rely on energy
harvesting can enable more sustainable and long-lasting Internet
of Things (IoT) based wearables. While it has become feasible
to implement energy-harvesting based wearables for digital
health applications, it remains challenging to integrate such
devices and the data they collect into machine learning pipelines
for tasks such as human activity recognition (HAR). A key
obstacle is uncertainty in the data acquisition process. Given
the discontinuous and uncertain availability of harvested energy,
when should a sensor spend energy to sample and transmit
data packets for processing? A common approach is to spend
energy opportunistically by sending packets whenever sufficient
energy is available. However, when considering a specific task,
namely HAR with kinetic energy harvesting based sensors, this
approach unfairly prioritizes data from activities where more
energy can be harvested (e.g., running). In this work, we improve
the opportunistic energy spending policy by pruning redundant
packets to reallocate energy towards activities where less energy
is harvested. Our approach results in an increase in the F1-score
of ‘lower energy’ activities while having a minimal impact on the
F1-score of ‘higher energy’ activities.1

Index Terms—Batteryless sensing, deep learning, HAR

I. INTRODUCTION

Batteryless sensing has emerged as a popular alternative to
battery-powered Internet of Things (IoT) devices in an effort to
increase sustainability and ensure long-lasting, maintenance-
free operation [1]. Batteryless IoT devices range from com-
plex systems with local processing [2] to simple beacons
[3] targeted towards wearable health applications. This work
targets the latter category which views batteryless sensors as
optimizable data sources in a broader edge AI system for
deep learning-based analytics. Specifically, we focus on human
activity recognition (HAR) using data from wearable kinetic
energy harvesting (KEH) based sensors. Batteryless HAR
seeks to enable long-term activity monitoring by providing
an autonomous, wearable data source which does not require
charging or replacement. Such characteristics are important
for wearables in health monitoring [4] and recent work has
demonstrated promising results of using long-term data from
wearable activity trackers to detect mental health disorders [5].

With advances in energy harvesting technologies, multiple
KEH-based HAR devices have been proposed in the past
several years [3], [6], [7], [8]. These works demonstrate the
feasibility of building a wearable, batteryless KEH device for

1Code: https://github.com/SLDGroup/PacketPruning

HAR. However, they have several significant limitations that
make them unsuitable for complex, continuous activity recog-
nition settings. First, these works do not use an accelerometer
as a data source, and instead leverage signals derived from the
KEH device such as the time between packet transmissions.
These signals are not informative over short time periods (less
than one second) and require relatively long windows (e.g.
tens of seconds) in order to be used for activity classification.
Second, these works leverage traditional classifiers like deci-
sion trees which are not well suited for sparse, asynchronous,
and variable length packet sequences. Finally, these works
use opportunistic energy spending policies which sample data
whenever sufficient energy is available, not necessarily when
the data is ‘informative’ for activity recognition. Therefore,
existing approaches are limited to activity sequences where
‘high-motion’ activities occur in long isolated segments.

In this work, we consider the more challenging setting of
dense activity prediction with a diverse sequence of high and
low-motion activities which may occur with variable duration.
The KEH device is treated as a Bluetooth (BLE) beacon which
samples and transmits short accelerometer packets (8 samples
at 25 Hz). Given these challenges, and the limitations of
existing approaches, we build on our preliminary work [9] and
leverage a more advanced activity classifier based on modern
convolutional neural networks (CNN) and transformers which
can handle sparse, asychronous data. Given a pretrained activ-
ity classifier, the central challenge we address in this work
is how to learn an energy spending policy which determines
when to send packets based on data redundancy. This is a
significant departure from prior work on energy allocation for
KEH-based HAR [10] which considers a much simpler setting
in which data can constantly be sampled (not batteryless) and
energy consumption is controlled by altering the sampling rate.

II. METHODS

A. Problem Setup

Our problem setting is derived from [9]. The data acqui-
sition and HAR classification pipeline is shown in Fig. 1.
Multiple KEH-based wearable sensors are worn on the body
and accumulate energy from human motion. When sufficient
energy has been harvested at a given sensor, an energy
spending policy determines whether to sample and transmit
a packet of accelerometer data to a local edge device such as
a mobile phone which uses deep learning for HAR.

20
24

 IE
EE

 2
0t

h 
In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 B
od

y 
Se

ns
or

 N
et

w
or

ks
 (B

SN
) |

 9
79

-8
-3

31
5-

30
14

-3
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
BS

N
63

54
7.

20
24

.1
07

80
46

3

Authorized licensed use limited to: University of Texas at Austin. Downloaded on June 12,2025 at 17:52:37 UTC from IEEE Xplore.  Restrictions apply. 



Kine�c Energy Harves�ng
Based Sensors

Energy Spending Policy

Data Packets

...

...

...

Fig. 1. Batteryless HAR Pipeline. Data from multiple KEH-based sensors gets sampled and transmitted to a nearby edge device based on an energy spending
policy. The sparse, asychronous data from these sensors gets classified by a transformer based architecture which accounts for spatial and temporal context.

Energy Harvesting and Consumption Model: We esti-
mate the kinetic energy that can be harvested from accelerom-
eter traces using a mass-spring-damper model as described
in [11]. For energy consumption, we follow the model used
in [9]. From an off state, the device must harvest Einit to
turn on and initialize. To acquire data (sampling and BLE
transmission), the device must harvest Epacket. At all other
times the device is in a low-power state and has idle power
consumption Pidle.

Deep Learning Architecture: Given that packets from
each sensor arrive in an asychronous manner, standard HAR
approaches [12], [13] which assume time synchronized data
cannot be used. Thus, we leverage the advanced deep learning
architecture shown in Fig. 1. For each body part, only the n
most recent packets are buffered and packets older than T
seconds are removed from the buffer. Each packet is passed
through a CNN to extract a feature embedding. These features
are augmented with a positional embedding which learns
spatial and temporal context based on which body part they
arrived from and their arrival time relative to the oldest packet.
The packet embeddings are processed using a transformer [14]
and aggregated using global average pooling; this is followed
by a fully connected layer for classification. We train the model
by sampling segments from the training activity sequence.
These segments are ‘sparsified’ into packets by applying an
opportunistic policy with random delays to ensure that a
diverse set of packets are observed.

B. Packet Pruning Methodology

A limitation of an opportunistic energy spending policy is
that it implicitly prioritizes data from activities where more
energy gets harvested. To understand this effect on HAR
classification, we plot the F1-score of each activity as a
function of the fraction of the total packets sampled during
each activity in the DSADS [15] dataset. In Fig. 2 we observe a
weak positive correlation, reflecting that low-motion activities
like sitting get lower F1-scores while high-motion activities
like jumping get higher F1-scores. However, some activities
achieve high F1-scores with low sampling priority and low
F1-scores with high sampling priority; this suggests that a
more complex energy spending policy is required to sample
activities at more informative times. Thus, we propose to
improve the opportunistic policy by pruning redundant packets

in an effort to reallocate energy usage from high-motion
activities to other activities.

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
Fraction of Sampled Packets

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F1
-S

co
re

sitting

standing

lying, back

lying, right side

ascending stairs descending
stairs             

standing, elevator

moving, elevator

walking, parking lot

walking, flat treadmill

walking, inclined treadmill

running, treadmill

exercising, stepper

exercising, cross trainer

exercise bike horizontal

exercise bike vertical

rowing

jumping

playing basketball

Low Motion
Medium Motion
High Motion

Fig. 2. F1-score of each activity as a function of the fraction of packets
sampled in the DSADS dataset. More energy is harvested from high-motion
activities so a larger fraction of the total packets are sampled. Red dots
represent low-motion activities. Blue dots resemble average-motion activities.
Green dots represent high-motion activities.

Offline Approach: We first develop an offline algorithm for
packet pruning which assumes access to present and past data.
Consider Fig. 3 which shows a window of packets arriving
from the left arm and the right leg for a segment of the
walking activity when applying the opportunistic policy. The
red × shows a packet to prune which results in a further
accumulation of energy, as shown by the red portion of the
black line. Given a set of packets, how can we determine
which one to prune? Ideally, we want to prune those packets
which will decrease the average classification loss (e.g., cross
entropy) the most over the sequence of predictions within
a segment. We take inspiration from work in the natural
language processing community [16] which seeks to determine
how flipping words in an input sequence affects the loss for
language models. Our problem setting is analogous in that we
are flipping packets in a binary manner.

More formally, consider the feature embeddings from a
sequence of packets as E = [e1, e2, · · · en] where ei ∈ Rd

and d is the embedding dimension. When pruning pack-
ets, we are applying a mask m = [m1,m2, · · ·mn] where
mi ∈ {0, 1} such that the new packet sequence becomes
[e1, e2, · · · en]⊙[m1,m2, · · ·mn]. Before pruning, the mask is
m(o) = [1, 1, · · · 1] since all packets are present; after pruning,
the mask has m(pi) = [1, · · · , 1, 0, 1, · · · , 1], where a zero
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Fig. 3. Segment of simulated data acquired from two body parts. The
blue, yellow, and green lines show the accelerometer X, Y, and Z signals
respectively over time. The black line shows the accumulated energy over
time on a second Y-axis. The dashed gray line shows the Epacket energy
threshold for sending a packet. The shaded gray regions show packets that
are sampled while the red × shows a packet that gets pruned. The yellow
and green highlighted regions show two examples of energy traces between
successive time steps in which the transmit threshold is reached.

means the packet in the ith entry is pruned. Our goal is to
find the mask m(pi) such that when it gets applied to the
packet sequence E, the average loss over the activity sequence
corresponding to E decreases the most. We express this as:

L =

te∑
t=ts

CE
(
yt, f(Ert ⊙ mrt)

)
(1)

where ts, te represent the start and end of an activity segment
we want to prune packets from, CE is the cross entropy loss,
yt is the label at time t, f is the classifier, and Ert ,mrt

represent a subset of the packet and mask sequence which
are active for the prediction at time t. Recall, that only the n
most recent packets since time t are considered as input to the
model; here we denote this using the subscript rt.

When pruning a packet, we move the mask from m(o)

to m(pi), which pushes the mask in the direction m(opi) =
m(pi) − m(o) = [0, · · · , 0,−1, 0, · · · , 0]. To estimate the
impact on the loss, we evaluate the directional derivative
along this vector as ∇m(opi)L = ∇m(o)L · (m(pi) −m(o)) =
− ∂L

∂m
(o)
i

which is the negative of the ith component of

the gradient of the loss with respect to m(o). Since we
want to find m(pi) which decreases the loss the most, we
consider the negative gradient which cancels the negative
from − ∂L

∂m
(o)
i

. Overall, we prune the packet based on the

largest entry of the gradient of the loss with respect to m(o):
argmax

i
∇m(o)

(∑te
t=ts

CE
(
yt, f(Ert ⊙ mrt)

))
.

Online Approach: In practice, we cannot use the offline
approach as there is no benefit to pruning a packet after it
is sampled (since the energy has already been consumed).
Regardless, we find the offline approach to be useful in
understanding which types of packets are less informative. For
example, in Fig. 3, the offline approach determines that the
fourth packet should be pruned which does indeed result in

a minimal loss increase. From Fig. 3 it can be seen that this
packet is redundant; the classifier has sufficient information
from the first three packets to predict the activity. Given this
insight, we propose a heuristic for detecting redundant packets
based of the energy traces between successive transmissions.

Formally, consider a sequence of the k most recent pack-
ets as [p1, p2, · · · , pk] and define the energy traces between
these packets as [e1,2, e2,3, · · · , ek−1,k] (see Fig. 3). Upon
reaching a sufficient amount of energy for packet k + 1, we
determine whether to prune this packet (i.e., do not sample
it) by comparing the similarity of the energy trace ek,k+1

with the k most recent ones. Given that these traces can
be of different lengths, we extract a simple feature vector
[mean, variance, skew, kurtosis] and compute the cosine
similarity between the most recent trace and the average of
the k most recent traces. If the similarity exceeds a threshold,
we determine that the packet is redundant and do not sample
it. As a result, the energy accumulates over time. In this way,
each packet pruned reallocates the energy to the next activity
in the sequence which may be a low-motion activity.

C. Experimental Details

For all experiments we consider a pretrained transformer
model as described in section II-A. The goal is to improve
the model’s predictions by providing it more informative data
through better energy spending policies. The model is trained
on data from an opportunistic policy with random delays added
to each packet. This ensures that a diverse combination of
packet sequences are observed during training.

Dataset Preprocessing: We train and evaluate our model
on the Opportunity [17] (5 classes, 7 body parts) and DSADS
[15] (19 classes, 5 body parts) datasets. The Opportunity data
is collected from natural activity sequences. For DSADS, we
create synthetic sequences by sampling randomly sized seg-
ments (10-30 sec each) from each activity. For the Opportunity
dataset, we use data from run 2 from user 1 for validation, runs
4 and 5 from users 2 and 3 for testing, and all remaining runs
for training as done in prior HAR works [13]. Similarly, for
DSADS we use data from user 6 for validation, users 7 and
8 for testing, and all other users for training.

Evaluation: We evaluate each approach using dense activity
prediction which requires the model to make a prediction at
every time step regardless of whether new data packets have
arrived. Given the label and prediction sequence, we calculate
and report the macro-averaged F1-score.

III. RESULTS AND DISCUSSION

We compare three energy spending policies in Table I.
The opportunistic policy samples a packet whenever sufficient
energy is available. The random policy adds random delays to
each opportunistic packet. The online pruning approach uses
the energy trace to determine if a packet is redundant and
should be pruned. When a packet is pruned, the energy level
accumulates into a surplus state which can reduce the delay
between the start of an activity and the arrival of the first
packet. Otherwise, sufficient energy must be accumulated after
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TABLE I
MACRO F1-SCORE FOR DENSE PREDICTION (HIGHER IS BETTER)

Method Opportunity DSADS

Opportunistic Policy 53.09 34.54
Random Policy 55.69 34.55
Online Pruning 55.56 39.28

activity transitions which can result in segments of missing
data. Also, each time the device incurs a power failure, there
will be a delay until the device harvests Einit to turn on.

As shown in Table I, the pruning based approach outper-
forms the opportunistic policy. To understand the fine-grained
benefits of the pruning based approaches, in Fig. 4 we visualize
the F1-score for each individual activity as a function of the
fraction of total packets sent for the DSADS dataset. From Fig.
4 we can see that pruning has a direct positive impact on most
of the low-motion activities. Indeed, by increasing the fraction
of packets allocated to these activities, we can significantly
increase the F1-score in comparison to the opportunistic
policy. We also observe that across all other activities there is
little degradation in the F1-score and some activities actually
improve even with fewer packets sampled. The improvement
for the Opportunity dataset is smaller. While this dataset
has fewer activities, they often occur in short durations (3-5
seconds) which makes energy allocation challenging given that
energy is being accumulated over successive activities rather
than long segments. This may explain why the random policy
performs similarly to targeted pruning.
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Fig. 4. F1-score of each activity as a function of the fraction of packets
sampled in the DSADS dataset. This is an extension of Fig. 2 that shows how
each dot moves when changing the energy spending policy from opportunistic
(base of the arrow) to the online pruning approach (tip of the arrow).

IV. CONCLUSION

In this paper, we have developed a packet pruning method-
ology to enhance the performance of batteryless HAR from the
perspective of energy spending policies. Our results explicitly
show that opportunistic policies do not sufficiently sample
data from low-motion activities. Our pruning based approach
directly increases the fraction of sampled packets, and thus the
F1-score of low-motion activities, without degrading the F1-
score on other activities. In future work, we seek to generalize

this pruning approach into a full optimization problem for
optimal packet sampling. This would enable richer energy
spending policies that sample packets at arbitrary time steps,
beyond those in which the transmit threshold is hit.
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