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Abstract—Internet of Things (IoT) devices have the potential
to enable a wide range of applications, including smart health
and agriculture. However, they are limited by their small battery
capacities. Utilizing energy harvesting is a promising approach to
augment the battery life of IoT devices. However, relying solely
on harvested energy is insufficient due to the stochastic nature
of ambient sources. Predicting and accounting for uncertainty
in the energy harvest (EH) is critical for optimal energy man-
agement (EM) in wearable IoT devices. This paper proposes
a two-step uncertainty-aware EH prediction and management
framework for wearable IoT devices. First, the framework
employs an energy-efficient conformal prediction (CP) method to
predict future EH and construct prediction intervals. Contrasting
to prior CP approaches, we propose constructing the prediction
intervals using a combination of residuals from previous hours
and days. Second, the framework proposes a near-optimal EM
approach that utilizes a rollout algorithm. The rollout algorithm
efficiently simulates various energy allocation trajectories as a
function of predicted EH bounds. Using results from the rollout,
the proposed approach constructs energy allocation bounds that
maximize application utility (quality of service) with a high
probability. Evaluations using real-world energy data from ARAS
and Mannheim datasets show that the proposed CP for EH
prediction provides 93% coverage probability with an average
width of 9.5 J and 1.9 J, respectively. Moreover, EM using the
rollout algorithm provides energy allocation decisions that are
within 1.9–2.9 J of the optimal with minimal overhead.

I. INTRODUCTION

Internet of Things (IoT) devices enable a wide range of
exciting applications, such as remote health monitoring and
digital agriculture [1–3]. Small form factor of IoT devices
typically limits the battery size and capacity. Consequently,
IoT devices have short operating lifetime and require frequent
recharging or battery replacement [4].

Energy harvesting and management has emerged as an
effective method to augment the battery lifetime of IoT
devices [4–6]. Ambient energy is not available at all times,
which means that IoT devices must optimally manage the
harvested energy. One of the key challenges with IoT energy
management (EM) is the stochastic nature of ambient energy
sources [7]. The stochastic nature necessitates development of
energy prediction models that aid EM algorithms.
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A number of recent studies [7–11] have proposed methods
for prediction of energy harvest (EH). Early approaches predict
future energy availability as a function of the energy values
in the past [9]. Machine learning (ML) models [12] have
also been proposed to predict future EH. These models only
provide a point prediction of energy without accounting for
the uncertainty in energy. To overcome this challenge, prior
work has investigated methods to obtain prediction intervals.
For instance, the mean variance estimation method (MVEM)
and its variants [13, 14] predict the mean and variance of
EH to build prediction intervals. However, these methods
typically assume a fixed distribution for EH, which is not
applicable in most real-world scenarios. Therefore, there is
a need to develop models that provide accurate prediction
intervals without assuming a fixed distribution for the EH.

This paper presents a conformal prediction (CP) based
method to predict EH in IoT devices. CP is an emerging ML
technique that provides a set of most likely predictions instead
of providing a single class label in a multi-class application.
CP has been also adapted to time-series applications to provide
prediction intervals [15]. However, prior CP methods for
energy prediction suffer from two limitations: 1) they rely
on a large training and calibration dataset. Specifically, for
each new prediction instance, the IoT device must calculate
conformity scores over the calibration dataset, leading to high
overhead, 2) they consider a single-dimensional residual vector
to construct the prediction intervals. That is, to predict EH at
any interval of time, such as an hour, the CP methods use the
errors from past hours only without considering the behavior
of errors in the same interval in past days. This leads to lower
coverage probability and higher prediction widths.

We propose to overcome the above challenges of CP in
energy predictions using two key insights. First, we observe
that maintaining a longer history of calibration data is not
useful for EH prediction. Specifically, as user patterns or
seasons change, residuals from past seasons have lower rel-
evance. Based on this, we propose to use a sliding window
of residuals to construct prediction intervals. Secondly, prior
studies have shown that EH patterns follow a strong daily
pattern with day-to-day variations [16]. Using this insight, we
propose to include residuals from the same interval in past
days in addition to past hours to construct prediction intervals.
Including errors from past hours and days allows the proposed
CP approach to improve coverage and prediction widths.

Once the energy is predicted, it must be used in an EM
algorithm to optimally allocate energy to the system. Energy
harvesting systems typically aim to achieve energy neutral
operation (ENO), whereby the energy consumed in any given
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horizon (e.g., a day) is equal to the energy harvested during
the horizon [8]. Achieving ENO is challenging since we
must make energy allocation decisions while accounting for
uncertainty in future EH and maximizing application perfor-
mance. To this end, we propose a rollout-based algorithm for
obtaining energy allocations that account for uncertainty in
future EH [17]. We start with an EM problem formulation that
maximizes application utility in a given horizon. The proposed
approach uses a 24-hour horizon since human activities and
EH typically follow a daily pattern [16] with variations across
users and time. The EM formulation first takes expected
values of EH for 24 hours at the beginning of the horizon
to obtain initial energy allocations. However, these allocations
may change due to variations in EH. To this end, we propose
to perform rollout using the EH bounds provided by CP.
Specifically, the rollout evaluates multiple trajectories of pos-
sible EH values and allocations to calculate future application
utility. The algorithm then provides a range of possible energy
allocations that maximize application utility. We also propose a
gradient descent-based approach to optimize the rollout phase
to minimize the number of trajectory evaluations. Overall, the
EM algorithm provides energy allocations that account for
uncertainty in EH while maximizing application utility.

We evaluate the proposed CP and EM approaches on ARAS
and Mannheim activity datasets [18, 19]. Experiments show
that energy predictions with CP achieve greater than 90%
coverage with less than 10 J width. Compared to MVEM [13],
CP achieves higher coverage and lower widths when the
magnitude of the EH is low. Achieving higher coverage and ac-
curacy in low energy intervals is especially important because
it can have a significant impact on the IoT device battery life.
The CP model is implemented on the Texas Instruments (TI)-
CC2652R microcontroller [20] to characterize the runtime
overhead. Our measurements show that CP takes 217 ms
to obtain the predictions with 3 mJ energy overhead, which
is less than 0.14% of typical EH value of Mannheim data.
Next, the EM algorithm provides energy allocations that are
within 3 J of an optimal Oracle that uses actual values of EH.
We also compare the rollout-based EM algorithm against a
baseline approach that uses expected values of EH for energy
allocations. The comparison shows that the proposed rollout-
based approach achieves 71% and 46% higher utility than the
baseline for ARAS and Mannheim datasets, respectively. Com-
parisons against a reinforcement learning approach show that
the rollout achieves 15–100% better utility. Implementation
on the TI-CC2652R device shows that the rollout algorithm
consumes about 390 mJ, on average. In summary, this paper
makes the following contributions:

• A conformal prediction-based method to predict and
construct prediction intervals for future EH,

• A sliding window of two-dimensional residuals to adap-
tively construct prediction intervals,

• Rollout-based energy management algorithm that ac-
counts for uncertainty in EH with minimal overhead,

• Experimental validation of the proposed CP and EM
approaches using real-world energy data with diverse
weather patterns and variable human activities.

Rest of this paper is organized as follows. Section II reviews
prior related work. Section III provides background on the EM
problem and preliminaries on CP. Section IV introduces the
proposed CP approach, while Section V provides details on
the rollout-based EM algorithm. We provide the experimental
results in Section VI, discuss potential impact in Section VII,
and conclude the paper in Section VIII.

II. RELATED WORK

Prediction of future EH is an important component of EM
algorithms. Several approaches have been proposed to predict
EH [7–9, 12]. The work in [8] proposes one of the first
EH prediction approaches that maintains an exponentially-
weighted moving average filter to maintain predictions at each
interval. However, moving average predictions have low accu-
racy when there are sudden changes in weather. Proenergy [9]
is another approach that uses stored profiles of typical days
to predict future EH. However, these approaches only provide
point predictions without accounting for the uncertainty in EH.

Ambient energy sources are highly stochastic due to
changes in weather or user activity patterns. EH prediction
algorithms must account for the uncertainty to improve EM
decisions. Recent research has proposed several approaches
for uncertainty prediction in EH [11, 13, 21]. For instance,
MVEM [13] directly predicts the mean and variance using
two neural networks. However, MVEM implicitly assumes
Gaussian distribution, which is not true for EH from wearable
devices. The lower-upper bound estimation (LUBE) method
[21] aims to overcome this limitation by directly predicting
upper and lower bounds of energy. However, LUBE is chal-
lenging to train and relies on proper choice of cost function,
which might vary based on user-specific activities and location.
Overall, most prior methods for uncertainty estimation assume
standard EH distribution, which is not feasible in real-world
scenarios. In contrast to prior approaches, we propose a
distribution-free CP algorithm for EH prediction.

EH predictions must be used to obtain effective EM deci-
sions that maximize performance of the device while main-
taining ENO. A number algorithms [1, 8, 22–24] have been
proposed to perform EM while taking EH predictions into
account. For instance, Kansal et al. utilize a exponentially-
weighted moving average method to predict future EH and
employ linear programming to optimize energy allocation [8].
The authors in [22] utilize the deviation between expected EH
and actual EH in a dynamic optimization formulation to obtain
EM decisions. While these approaches can be effective, they
only use point predictions of EH and provide single point
decisions for EM, thus not accounting for the uncertainty.
Recently, ML and reinforcement learning (RL) approaches
[25, 26] have been proposed to predict future EH and obtain
EM decisions. RL methods can be useful to account for any
deviation in EH during runtime, but it often requires a large
number of trajectories to learn effective policies, leading to
higher overhead. Moreover, stochasticity in future EH may
lead to errors in the learned model. In contrast to the prior
approaches, we propose a low-overhead gradient descent-
based rollout algorithm that utilizes CP prediction intervals
and constructs energy allocation bounds for EM.
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Fig. 1: Overview of the proposed conformal prediction algorithm.

III. PROBLEM SETUP AND BACKGROUND

A. Problem Setup and Overview

We consider a system with multiple energy harvesters and
sensors mounted on a user’s body, as shown in Figure 1.
The energy harvesters scavenge energy from the environment.
The harvested energy is routed through an EM algorithm that
decides the energy consumption in each interval. Optimal
decision-making requires knowledge of future EH, which
is stochastic in nature. Therefore, EM algorithms must be
provided with accurate predictions of future EH.

Let us consider that a day is divided into T equal in-
tervals for EM decisions. The stochastic EH in an interval
t (1 ≤ t ≤ T ) is given by EH(t). This energy must be
accurately predicted to aid in the EM. Point predictions are
insufficient due to inherent stochasticity in EH. Therefore,
our goal is to obtain lower and upper bounds for future
energy [Êub

H (t), Ê lb
H(t)] given a set of features X(t). We want

to ensure that the true EH lies in the prediction interval
with a probability of at least (1-α), where α ∈ (0, 1) is
a miscoverage level. Given this, one can either obtain con-
ditionally valid intervals where the conditional probability
P{EH(t) ∈ [Êub

H (t), Ê lb
H(t)]|X(t)} ≥ (1 − α) or marginally

valid intervals where P{EH(t) ∈ [Êub
H (t), Ê lb

H(t)]} ≥ (1− α).
In this paper, we obtain marginally valid intervals for EH.

The EM algorithm starts by performing an initial energy
allocation using expected values of EH at the beginning of
each 24-hour horizon, as shown in Figure 2. The initial
allocations are not optimal since future EH will deviate from
the expected values. The energy allocations must be adjusted
at the beginning of each interval t to account for uncertainty
in EH. To this end, outputs of the energy prediction block are
provided as inputs to the rollout-based EM algorithm.

The rollout algorithm evaluates multiple trajectories for the
system as a function of predicted EH and allocation values.
The rollout trajectories provide us with overall application
utility for each EH and allocation combination that satisfies
system energy constraints. Since our goal is to maximize
utility with ENO, the algorithm chooses EH and allocation
combinations that provide more than 90th percentile of the
utility as the energy allocation range. The rollout is repeated
at the beginning of each interval t with new EH predictions.

B. Conformal Prediction Preliminaries

CP has emerged as an effective method to quantify uncer-
tainty in ML models by providing prediction sets instead of
single predictions [27]. For time series or regression problems,
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Fig. 2: Overview of the proposed rollout algorithm.

CP algorithms provide a prediction interval that contains the
true value with a given probability 1−α. Existing CP methods
can be classified into three categories: split CP, full CP, and
Jackknife. We provide brief descriptions of each method next.
Split Conformal Prediction: Split CP divides data into two
sets: training and calibration [27]. The training set is used to
obtain a base prediction model. The calibration set is used to
evaluate conformity of new test inputs to prior data. Split CP
suffers from two key limitations for time-series data on IoT
devices: 1) the calibration set must be large enough to provide
useful intervals, thus increasing the memory overhead, 2)
evaluating conformity scores can add computational overhead.
Split CP can also lead to lower accuracy since the base model
must be independent of the calibration set [28].
Full CP: Full CP aims to avoid accuracy loss by using the
entire training dataset to build prediction models and intervals.
However, full CP has high computational overhead since it
trains multiple models for a range of output values [28].
Jackknife+: Jackknife+ [28] aims to balance split and full
CP by employing leave-one-out training for base predictors.
Jackknife+ trains a model corresponding to each data point
while leaving it out of the training data. Due to the leave-
one-out models, Jackknife+ has higher accuracy compared
to split CP and lower complexity when compared to full
CP. However, Jackknife+ needs retraining as new data points
become available, thus making it computationally expensive.
Key Challenges: In addition to the above challenges, CP
methods typically assume that training data are exchangeable
and independent [15]. However, time-series energy data are
generally not exchangeable since different sequences of EH
can change the joint probability distribution. Therefore, CP
methods for EH must provide prediction intervals in non-
exchangeable settings to be effective for wearable devices.

IV. PROPOSED CONFORMAL PREDICTION ALGORITHM

A. Overview of the Proposed Solution

We adapt the recently proposed Ensemble batch Prediction
Interval (EnbPI) approach [15] to solve the above challenges
and construct accurate prediction intervals. The key idea be-
hind EnbPI is to train an ensemble of base predictions using
bagging of training data and using a weighted average of
predictions. Predictions from the ensemble of predictors are
used with a sliding window of conformity scores for past data
points. The sliding window is updated with new scores at
the end of an interval when the EH is observed. Using an
ensemble of models allows us to use entire training data to
train the models while also avoiding overfitting models to any
particular set of data. Similarly, sliding window of residuals
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enables the approach to eliminate the need to re-train models
by adapting prediction widths to recent data distributions.

EnbPI algorithm requires a large window of residuals to
obtain accurate predictions. In case of EH prediction, not
all residuals in the history are useful due to changes in EH
potential throughout the day. For instance, residuals recorded
for early hours of past days are not as relevant when making
predictions for mid-day hours. Using this insight, we propose
to use a two-dimensional residual vector that includes errors
for the same interval in past days in addition to past intervals.
This helps reduce the residual vector size or improve accuracy.

B. Bootstrap Models for Point Prediction
The first step of the proposed CP algorithm uses supervised

bootstrap models as base predictors of EH. To capture the
daily behavior of energy, we divide each day into T equal-
length intervals and predict the future energy at the beginning
of each interval t. We assume that energy observations for
Dtrain days are available to train the bootstrap models. Using
the training data, we obtain supervised feature and label pairs
(X(t), EH(t)) for each observation in the training data. The
feature set consists of energy observations for the past 24 hours
at any given time t while the label is the actual energy.

After obtaining the training feature set, we train B bootstrap
models with subsets of training data so that we do not overfit
the models. We use the block bootstrap method with M
non-overlapping blocks since it is known to work well for
dependent data [15]. The block bootstrap method splits the
training data into M non-overlapping blocks each of length
⌊(Dtrain × T )/M⌋. The training data for each model bj is
sampled randomly from M blocks with replacement.
Bootstrap Model Weights: At runtime, each bootstrap model
provides a prediction of the EH in a given interval t. These
individual predictions must be aggregated to obtain a single
prediction. We can either use equal weights 1/B for each
model or assign custom weights to each model based on data
used to train each bootstrap model. In this paper, we assign
custom weights to each model using the equation below:

wj =

∑DN

i=1 wdi

DN
1 ≤ j ≤ B (1)

where, DN = Dtrain × T , total number of training samples,
and wdi is the weight that we assign to each training sample.
This weight is given by,

wdi
=

{
1

B−b , if used in training b < B models
0, if used in training all B models

(2)

The goal of using weights on each training sample is to
assign higher weights to models that have been fitted using
fewer training samples. Using model weights, the base energy
prediction for an interval t is obtained as:

ÊH(t) =
B∑

j=1

wj ÊH,j(t) (3)

where ÊH,j(t) is prediction from jth bootstrap model.

C. Prediction Interval Construction
CP methods keep a history of nonconformity scores to

construct prediction intervals. Commonly used nonconformity

scores include mean absolute deviation, absolute deviation,
deviation, or maximum deviation [15]. Among these, we
choose deviation as the nonconformity score. Since deviation
captures prediction error, we also refer to it as a residual. For
each prediction, we calculate the residual as follows:

ϵt = EH(t)− ÊH(t) (4)
We maintain a two-dimensional residual vector that consists of
errors from past hours and days. We can represent the residual
vector at a given interval t on day d as:

ψ = {[ϵdt−R, ϵ
d
t−R+1, · · · , ϵdt−1], [ϵ

d−S
t , · · · , ϵd−1

t ]} (5)
where R is the number of residuals for past intervals immedi-
ately preceding the current interval. Similarly, S is the number
of residuals from past days for the same interval t. The first
part of the residual vector captures errors in the past hours
without considering the interval, while the second part captures
errors in past days for the same interval. Using the residual
vector, we obtain the upper and lower bounds as:

Ê lb
H(t) = ÊH(t) + α quantile of ψ (6)

Êub
H (t) = ÊH(t) + (1− α) quantile of ψ (7)

The prediction width is given by directly using the α and
1− α quantiles of the residual vector. However, this may not
be the smallest width for a given prediction. Obtaining tight
prediction intervals is crucial since large prediction widths do
not offer useful information to EM algorithms. Therefore, we
perform a local search around quantiles following the approach
outlined in the EnbPI algorithm. The width is minimized by
defining a factor γ for local search as follows:
γ∗ = argmin

γ∈[0,α]

((1−α+γ) quant. of ψ−γ quant. of ψ) (8)

where γ∗ is the value for γ that gives the minimum width.
Equation 8 searches through multiple options for prediction
width and chooses the gamma that specifies minimum width.
Using γ∗, we obtain the final upper and lower bounds as:

Ê lb
H(t) = ÊH(t) + γ∗ quantile of ψ (9)

Êub
H (t) = ÊH(t) + (1− α+ γ∗) quantile of ψ (10)

Finally, at the end of each prediction interval, we obtain the
actual EH value and update the residual vector by removing
oldest entries. The sliding window enables the proposed CP
algorithm to adapt to changes in the environment.

D. Conformal Prediction Summary

Algorithm 1 summarizes the overall CP algorithm for EH
prediction at runtime. The inputs to the algorithm include
trained bootstrap models, required confidence interval, and
initial residual vector ψ. Given these inputs, the algorithm pre-
dicts EH values using each bootstrap model at the beginning
of each interval t. The predictions are then aggregated using
bootstrap model weights in line 5. Next, we find the optimal
value of γ by performing a local search over prediction widths
using Equation 8. The optimal γ∗ is used to obtain lower and
upper bounds for energy in the current interval t. Finally, we
update the residual vector by removing oldest entries ϵdt−R and
ϵd−S
t , while appending it with new residual EH(t) − ÊH(t).

The upper and lower bounds are returned to the EM algorithm.
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Algorithm 1: CP for Indoor-Outdoor EH Prediction
1 Input: Bootstrap models, Confidence interval α, Initial residual

vector ψ
2 for d = 1, 2, . . . do
3 for t = 1, 2, . . . , T do
4 Predict EH values ÊH(t) using bootstrap models
5 Compute γ∗ using Equation 8
6 ÊlbH(t) = ÊH(t) + γ∗ quantile of ψ

7 ÊubH (t) = ÊH(t) + (1− α+ γ∗) quantile of ψ
8 Update ψ by discarding oldest entries and appending

EH(t)− ÊH(t)
9 end

10 end
11 return ÊlbH(t) and ÊubH (t)

V. PROPOSED ENERGY MANAGEMENT ALGORITHM

A. Problem Formulation

We utilize a commonly used problem formulation for ENO
in IoT devices for energy management [8]. The optimization
problem can be written as follows:

max U(Ec) =

T−1∑
t=0

βt ln

(
Ec(t)

ME

)
s. t. (11)

EB(t+ 1) = EB(t) + ηEH(t)− Ec(t), 0 ≤ t ≤ T − 1
(12)

EB(t+ 1) ≥ Emin 0 ≤ t ≤ T − 1 (13)
EB(T ) ≥ Etarget (14)

where Ec denotes a vector of energy allocation Ec(t) over all
the intervals, β is a discount factor, ME is the minimum energy
allocation for non-negative utility, and EB(t) is the battery
level at the beginning of interval t. EH(t) is the stochastic EH
in interval t, η is the EH efficiency, Emin is the minimum
battery level, and Etarget specifies the battery level at the end
of a horizon. Next, we provide details on each component.

Objective Function: The EM objective is to maximize the
total utility of the application over the horizon, as shown
in Equation 11. We use a logarithmic utility function to
capture application behavior with increasing energy allocation.
Intuitively, the application can provide a higher quality of
service with higher energy. For instance, IoT devices can
operate sensors at higher sampling frequencies to improve
data quality. At the same time, increase in quality of service
diminishes after a maximum energy consumption for the
device. Logarithmic functions capture this behavior well since
they have higher slope at lower energy values and the slope
reduces with increase in energy. We also scale the energy
consumption in the utility function by ME since a minimum
level of energy is required for non-zero utility.
System Dynamics and Constraints: Equations 12–14 de-
scribe the battery energy dynamics and constraints for ENO.
Specifically, Equation 12 specifies that battery energy at the
beginning of an interval t+1 is given by battery in the previous
interval EB(t), stochastic EH EH(t), and energy consumption
Ec(t). Next, we would like to maintain a minimum level of
energy in the battery to account for any unexpected events.
The constraint in Equation 13 ensures that battery in the device
at all intervals is greater than or equal to Emin. Finally, the

device must maintain ENO target energy Etarget at the end
of each horizon to enable uninterrupted operation.
Optimization Variables and Challenges: The optimization
variables in the EM problem are energy allocations for each
interval. It is challenging to solve the EM problem since
optimal solution requires knowledge of future EH, which is
not feasible in practice. Moreover, any decisions made with
expected values for future EH must be reevaluated at each
interval to account for deviations from the expected EH.
Solution Approach: The EM problem in Equations 11–14
is a convex optimization problem. We can utilize convex
optimization solvers to obtain solutions to the problem. At
the same time, using convex solvers on IoT devices can lead
to high overhead. Therefore, we propose to use the dual
problem formulation and an iterative algorithm that allows us
to trade-off solution precision and overhead [29]. We provide
description of the dual problem and iterative algorithm next.

The Lagrangian of the EM problem is:

L = U(Ec) +
T−2∑
t=0

λt(EB(t) + ηEH(t)− Ec(t)

−Emin) + λT (EB(T )− Etarget)

(15)

where L is the Lagrangian and λt are the dual variables. Since
the problem is convex in nature, we can obtain the optimal so-
lution using the Karush-Kunh-Tucker (KKT) conditions [29].
The KKT conditions can be written as:

∂L

∂Ec(t)
: βt

[
ME

Ec(t)
− λt

]
= 0 0 ≤ t ≤ T − 1

(16)
λt(EB(t) + ηEH(t)− Ec(t)− Emin) = 0 0 ≤ t ≤ T − 1

(17)

λT (E
B(T )− Etarget) = 0 (18)

Since our goal is to enable an efficient runtime solution,
we utilize the iterative gradient projection (IGP) algorithm
proposed in [30] to solve the above system of equations.

Algorithm 2 shows the procedure for obtaining energy
allocation with a given set of EH values. The algorithm takes
EH values, required tolerance levels, step size, and maximum
iterations as inputs. The algorithm starts by choosing random
values for energy allocations and dual variables λt. Then, in
each iteration of the algorithm, we perform the following steps:
1) assign new energy allocations using Equation 16, 2) set new
values for lambda using the step size and Equations 17 and 18.
The optimization continues until the maximum iterations have
been reached or change in λ is less than the threshold.

B. Rollout Algorithm for Runtime Energy Allocation

The IGP algorithm is useful to obtain energy allocations
when the EH values are deterministic. However, our goal in
this paper is to account for uncertainty in future EH and
provide energy consumption bounds for the device. We also
aim to minimize the number of minimum and target energy
constraint violations. To this end, we propose to use a rollout-
based algorithm to obtain allocation bounds.

Rollout is a dynamic programming approach that explores
multiple trajectories for a given decision making problem [17].
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Algorithm 2: Iterative gradient projection algorithm
1 Input: EH , tolerance, Step Size δ, and Itermax

2 Ec(t)← rand() 0 ≤ t ≤ T − 1
3 λt, λ∗

t ← rand() 0 ≤ t ≤ T

4 while
∑T

t=0(λ
∗
t − λt)2 > tolerance and iter ≤ Itermax do

5 λt ← λ∗
t 0 ≤ t ≤ T − 1

6 Ec(t)← βtαME
λt

0 ≤ t ≤ T − 1 (follows from Equation 16)
7 λ∗

t ← max
{λt+δ(Ec(t)−EB(t)−ηEH(t)+Emin), 0} 0 ≤ t ≤ T−1

8 λ∗
T ← max{(Etarget − EB(T )), 0}

9 end
10 return Ec(t)

Rollout algorithms use a base policy to perform trajectory
evaluations with low overhead. At the end of rollout, decisions
that maximize the objective are chosen for implementation.
Key idea behind rollout is that it allows us to obtain improved
results compared to the underlying base policy [17]. Following
this insight, we use rollout to account for uncertainty in EH
and utilize IGP as the base policy.
Overview of Rollout Algorithm: Figure 2 shows an overview
of the proposed rollout algorithm for EM. We start with an
initial energy allocation with expected values of EH at the be-
ginning of each horizon. The initial energy allocations provide
us with a baseline for performing trajectory evaluations with
rollout. Moreover, the expected EH values aid in evaluating
rollout trajectories using Algorithm 2 since CP provides EH
bounds for the immediate future interval.

After obtaining the initial allocation, we perform runtime
rollout at the beginning of each interval. The first step is to
obtain a finite number of EH bins from the upper and lower
bounds provided by CP. We divide the EH into finite bins
to avoid a large number of trajectory evaluations. Then, for
each EH bin we obtain a possible range of energy allocations.
Next, we rollout the complete trajectory for the horizon
using the IGP algorithm to obtain application utility with
the current allocation. We discard any trajectory that violates
battery energy constraints. At the end of rollout, we obtain
the potential utility for each pair of EH and energy allocation.
Finally, EH and energy allocation pairs that provide highest
10 percentile of utility are used to obtain energy allocation
bounds for the current interval. We provide details of each
step in the following sections.

1) Initial Energy Allocation: The first step in the proposed
rollout-based EM algorithm is to obtain initial energy allo-
cations at the beginning of each horizon. The initial energy
allocations provide a baseline for trajectory evaluations in each
interval. Obtaining initial energy allocations requires expected
values of EH in the entire horizon for use in the IGP algorithm.
To this end, we utilize the mean EH over the past three days
in each interval as the expected EH Ê init

H . Using the mean
of three days allows us to obtain a low-overhead estimation
of future energy and then use CP for fine-grained predictions.
The expected EH is used in Algorithm 2 to obtain the initial
energy allocations as Êc(t) (0 ≤ t ≤ T − 1).

2) Runtime Rollout Algorithm: Actual EH will deviate
from the expected EH at runtime. To this end, we leverage
the proposed CP algorithm to obtain EH bounds for the

next interval before making energy allocation decisions. Each
possible EH value in the predicted bounds leads to different
energy allocations and utilities. We must also explore multiple
values of energy allocations at each interval to account for
uncertainty in application behavior. To this end, we calculate
a range of possible energy allocations using rollout.

Energy Allocation Bounds for Rollout: First, let us consider
that the EH bounds are divided into multiple bins with a width
of τEH . Now, consider that the current EH value under eval-
uation is represented with ẼH(t) (Ê lb

H(t) ≤ ẼH(t) ≤ Êub
H (t)).

This EH may differ from the initial EH estimation that was
used to obtain initial allocations. Consequently, the difference
in energy must be accounted for in future intervals. We can
represent the difference in EH as follows:

∆EH
(t) = ẼH(t)− Ê init

H (t) (19)
where ∆EH

(t) is the difference in EH values. If ∆EH
(t) > 0,

it means that there is a surplus in energy, which can be used
in future intervals. Next, the EH value used in the previous
interval t−1 for deciding the allocation may also deviate from
the actual energy harvest. The difference in EH values is:

∆EH
(t− 1) = ÊH(t− 1)− EH(t− 1) (20)

where ÊH(t − 1) is the EH used in the previous interval
and EH(t − 1) is the actual EH. The energy allocated to the
device in prior intervals may deviate from the initial energy
allocations, leading to changes in allocation for future intervals
to maintain ENO. The difference in energy allocations is:

∆Ec
(t− 1) = Ec(t− 1)− Einit

c (t− 1) (21)
where Ec(t−1) is the energy allocation chosen for the previous
interval and Einit

c is the initial energy allocation. ∆Ec
(t−1) >

0 means that the system consumed higher levels of energy in
the past interval that need to be accounted for in the future.
Combining, we can obtain the total difference in energy as:

∆(t) = ∆EH
(t) + ∆EH

(t− 1)−∆Ec(t− 1) (22)
The energy difference is used to obtain the energy allocation
bounds for the rollout as:

Elb
c (t), Eub

c (t) =
Ec(t− 1) + Einit

c (t)

2
±∆(t) (23)

where Elb
c (t) and Eub

c (t) are the lower and upper bounds,
respectively. The bounds use an average of initial energy
allocation and actual consumption in the prior interval to
account for deviations in the application, while noting that
using initial energy allocations also give comparable results.

After obtaining the energy allocation bounds, we divide it
into a finite number of bins for rollout. Specifically, we set
the energy allocation for the current interval to the candidate
energy allocation Êc(t). Then, we use the IGP algorithm to
obtain energy allocation for future intervals. The optimization
uses the current EH prediction value ẼH(t) for the current
interval, while the initial energy allocation is used for future
intervals. The optimization algorithm is executed for T − t in-
tervals since all intervals before t have already been executed,
as illustrated in Figure 3. The cumulative utility obtained from
the rollout is stored in a table with candidate EH as rows
and allocations as columns. If any of the ENO constraints are
violated, we set the utility to negative infinity.
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Fig. 3: Illustration of the rollout process.

The utility table provides the potential quality of decisions
taken with each EH and allocation combination. Our goal
is to obtain energy allocation bounds for the device such
that overall application utility is maximized. To this end, we
choose EH and allocation pairs that provide utility in the top
10 percentile to obtain the final energy allocation bounds.
The energy allocation bounds are provided to the device and
it consumes energy Ec(t) that lies within the bounds. In
summary, the rollout algorithm accounts for uncertainty in EH
and device behavior by providing energy consumption bounds
that satisfy battery energy constraints.

3) Rollout Optimization to Minimize Overhead: The rollout
algorithm evaluates all possible pairs of EH prediction and
energy allocation bins to future utility. This can result in
a large number of evaluations if we have large widths for
EH or allocations. Therefore, we use structure of the EM
optimization problem and utility function to minimize the
number of evaluations. Specifically, for a given EH prediction,
we can make following inferences about energy allocations:

• If the lowest energy allocation in the range violates any
constraints, then all other allocations will violate the
constraints. This is because total energy available for
remaining hours is not sufficient to maintain ENO and
any increase in the allocation will further reduce energy
available for future intervals. We can use this insight to
discard all higher energy allocation values.

• Cumulative utility from the rollout is a convex function
for valid energy allocation candidate values. This is
because the lowest value of allocation will obtain lower
utility for the current interval while increasing the utility
for future intervals. As we increase the allocation for
the current interval, the utility increases for the current
interval with small decreases for future intervals, leading
to increase in the total utility. This trend continues until
utility of the current intervals becomes the dominant
factor. At this point, the cumulative utility starts to fall.
Based on this insight, we employ gradient descent to
obtain the energy allocations with the highest utility.

Rollout Algorithm Complexity: The primary complexity in
the rollout algorithm consists of obtaining the solution to the
EM problem for each candidate EH value and correspond-
ing allocation bounds. The EM problem solution consists of
obtaining the inverse gradient of each time interval. This
results in T steps at most. Similarly, updating the values of

Algorithm 3: Optimized rollout algorithm
1 Input: ÊlbH(t), ÊubH (t), Ec(t− 1), Êinit

H (t)

2 for ẼH(t) in [ÊlbH(t), ÊubH (t)] do
3 ∆(t)← Calculate ∆(t) using Equations 19–21

4 Elb
c (t), Eub

c (t)← Ec(t−1)+Einit
c (t)

2
±∆(t)

5 for Êc(t) in [Elb
c (t), Eub

c (t)] do
6 U ← Solve EM problem with Êc(t) and initial EH for

remaining intervals
7 if Constraint violation then
8 Discard Êc(t)
9 end

10 Choose next Êc(t) using gradient descent
11 end
12 end
13 return: Allocation bounds with highest 10 percentile utilities

λ∗ takes T steps. Considering a maximum of Itermax, each
EM solution results in worst case complexity of O(ItermaxT).
Next, assuming NEH and NEc

bins for candidate EH and
allocation values, the overall worse-case complexity for the
rollout is O(ItermaxNEc

NEHT ). We note that this is the worst
case complexity and the complexity is significantly lower in
practice due to the optimizations in Algorithm 3.

4) Rollout Algorithm Summary: Algorithm 3 summarizes
the overall rollout algorithm at each interval t. The inputs
to the algorithm include current EH predictions from CP,
initial EH prediction, and energy consumption in the previous
interval Ec(t − 1). With these inputs, we first obtain the
EH bins for rollout. For each possible value of EH, the
algorithm first calculates ∆(t) using Equations 19–21. Then,
using ∆(t) the algorithm obtains bounds for possible energy
allocation values. The allocation bounds are then used to
evaluate the potential utility of each energy allocation trajec-
tory. The algorithm utilizes optimized rollout to minimize the
number of evaluations at runtime. Finally, EH and allocation
combinations that provide highest 10 percentile utilities are
returned as possible energy allocation bounds.

VI. EXPERIMENTAL EVALUATION

A. Experimental Setup

Wearable IoT Device Model: We consider a wearable system
with five energy harvesters. Specifically, we include piezoelec-
tric sensors on the knees and elbows (a total of four locations)
to harvest energy from user motion. The system also includes
an SP3-37 [31] flexible PV-cell to obtain energy from light.
Datasets and Data Pre-processing: Our goal is to provide
uncertainty-aware predictions of EH for both indoor and
outdoor scenarios. Accurate evaluations of the proposed CP
approach require datasets that provide actual energy values in
both scenarios. However, to the best of our knowledge, there
are no datasets that provide user-specific energy measurements
in both indoor and outdoor scenarios. Moreover, energy from
harvesters mounted on the body is a strong function of the
user’s activity. Therefore, we use activity traces from two
publicly available datasets: ARAS [18] and Mannheim [19]
for our evaluation. The ARAS dataset contains activity data
collected from two houses with four users over 30 days, while
the Mannheim dataset contains data from seven users recorded
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for two weeks. We utilize data from six users in the Mannheim
dataset since data for one of the users is incomplete.
Data Processing Steps: The data provided by ARAS and
Mannheim datasets includes fine-grained activity information
with multiple activity labels having similar EH potential. For
instance, eating breakfast and lunch in the ARAS dataset
have similar activity levels. We merge labels with similar
EH potential in both datasets to obtain a simplified set of
activities. We obtain a total of nine activity labels for the
ARAS dataset: {Active, cook, eat, clean, sleep, leisure, work,
care, and other} and four activities for the Mannheim dataset:
{shopping, transport, cycling, and movement}.

Next, we use models for light and motion energy harvesters
to obtain ground truth EH values by setting intensities to
each activity. The potential EH available from the piezoelectric
harvesters is a function of the user motion during each activity.
Consequently, we set intensities for legs and arms of users
for each activity. Starting with a baseline intensity of 1 for
exercise, we set the intensity for the ‘active’ activity as 0.5,
while the intensity for sleeping is zero. The activity intensities
are then combined with a baseline power of 13 µW [6]
available from piezoelectric harvesters.

Energy available from light is a function of the location
and activity. The locations are classified as either bedroom,
office, kitchen, or bathroom when the user is indoors and
outside or transport when a user is outdoors. Following this
setup, we obtain typical irradiance in each of these rooms
from the literature [5]. When the user is outdoors, we utilize
the solar irradiation measured by National Renewable Energy
Laboratory (NREL) [32] in Golden, CO. The irradiance is
combined with time of the day to calculate the light energy
using the area and I-V characteristics of the PV-cell.

ARAS and Mannheim datasets provide user activities for
one month or two weeks, which is not sufficient for evaluation
since our goal is to obtain accuracy evaluations over different
seasons and time of year. Therefore, we extend both datasets
for six years from 2015–2020 by shuffling and augmenting
activity data to the original datasets.
Data Variations: The proposed approach uses 24-hour hori-
zon for energy decisions since prior research has shown
that user activities and energy follow 24-hour routines with
variation [16]. At the same time, this does not mean that the
evaluation setup is static. Indeed, the expanded dataset with
the ARAS and Mannheim datasets provides a high degree of
diversity and dynamic environment for evaluations. Each user
experiences wide variations in environmental settings due to
changes in weather and location. For instance, ARAS user one
has higher variation of indoor activities while other users have
more outdoor activities. These changes in location, coupled
with changes in outdoor energy patterns due to weather
provide environmental variations for the proposed approach.
Moreover, ARAS dataset provides activities over 30 days
with considerable variation in activity and EH patterns. The
Mannheim dataset also shows variance in activities and EH
patterns across users and days. Finally, the solar irradiance data
across six years also has dynamic variations due to changes in
seasons and months. These dynamic variations in the expanded
dataset provide a rich set of EH conditions for evaluation.

Training, Validation, and Test Data: We split the six-
year energy data into three sets: training, validation, and test.
Data from 2015 is used for training, while 2016 is used for
validation. Finally, data from 2017–2020 is used as for testing.
Proposed Conformal Prediction Parameters: The parame-
ters for CP include choice of base predictor, interval length,
number of bootstrap models, miscoverage level α and length of
residual vector. We use a neural network with four neurons as
the base model for energy prediction. The interval length is set
to one hour since EM algorithms typically make decisions at
hourly or 30 minute intervals [8]. The value of α for prediction
interval miscoverage level is set to 0.90. The residual vector
lengths R and S are set to 96, respectively.
Proposed Rollout Algorithm Parameters: The parameters
for the proposed rollout algorithm include optimization pa-
rameters and partitioning width to perform rollout. We set the
battery energy target to 100 J and minimum energy to 10 J,
respectively. The discount factor β is set to 0.99 and ME is set
to 8 J. Furthermore, we set the EM horizon to one day and
divide each day into 24 intervals for making EM decisions.
Each day starts with an initial battery level of 100 J to provide
sufficient energy at the beginning of a day. During the rollout
phase, we partition energy harvest prediction intervals into
five bins and explore possible energy allocation values with
a bin width of 0.2 J. These bin sizes are chosen to balance the
complexity of rollout with accuracy of EM decisions.
Conformal Prediction Evaluation Metrics: We use coverage
and width of the prediction interval as metrics. Coverage
indicates the percentage of instances when the actual EH falls
within the predicted bounds. The prediction width is the range
of EH values given by the predicted bounds. Our goal is to
maximize coverage while minimizing the width.
Energy Management Evaluation Metrics: We utilize total
utility to the application over a day as the primary evaluation
metric since utility of remaining intervals guides the energy
decisions. Specifically, we compare the utility obtained by the
rollout algorithm against the baselines. We also use the quality
of individual EM decisions and compare it to the optimal
Oracle that uses actual EH values to make decisions.

B. Baseline Methods for Comparison

1) Baseline Mean variance Estimation Method: We use
MVEM [13] as a baseline approach for comparing the effec-
tiveness of the proposed CP method. MVEM uses two neural
networks to predict mean and variance of EH. We use a factor
of 1.65 to construct prediction intervals using the mean and
variance which is equivalent to prediction interval confidence
of 90% given by [LB, UB] = Mean ± 1.65 · Variance

2) Baseline Energy Management Approaches: We use two
baseline approaches for EM.
EM with Expected EH: Prior EM methods typically use
expected values of EH and make decisions at the beginning of
each horizon. The baseline algorithm utilizes EH estimates to
solve the optimization problem in Equations 11-14 using IGP.
The average EH of previous three days is used as the estimate.
tinyMAN [26]: tinyMAN is a RL-based approach for runtime
EM. The tinyMAN approach uses proximal policy optimiza-
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Fig. 4: Comparison of average hourly coverage and width of (a)-(b) ARAS
user 4, and (c)-(d) Mannheim user 6 using one-dimensional residual vector
and two-dimensional residual vector, respectively.

tion to train an RL agent that maximizes utility of an appli-
cation under energy constraints. Actual EH data are used to
train an agent that is used at runtime without explicitly needing
EH estimates. While it is useful, tinyMAN suffers from two
major limitations: 1) It does not account for EH prediction
intervals and provides a single energy allocation for each
interval, thus it does not account for the uncertainty. 2) RL
approaches require large number of episodes to achieve good
performance and design of appropriate rewards functions can
be challenging [33]. In contrast, the proposed rollout for EM
provides decision intervals and does not require any training.

C. Evaluation of the Proposed EH Prediction Approach

1) Validation of Using 2-D Residual Vector: We start with
validation of the proposed CP approach by analyzing benefits
provided by two-dimensional residual vector when compared
to one-dimensional residual used in prior approaches. To this
end, we first set the one-dimensional residual vector length
to 192 hours. The proposed two-dimensional residual vector
contains 192 entries by ensuring R = 96 and S = 96.

Figure 4 shows a comparison of average coverage and
width for one user from ARAS and Mannheim datasets at
each hour of the day. The coverage for both users improves
significantly using two-dimensional residual vector, especially
when the EH is high during mid-day hours. The prediction
width is also higher for mid-day hours to account for the
higher coverage and magnitude of EH in mid-day hours.
Conversely, during early hours of the day two-dimensional
residual vector achieves significantly tighter prediction width
while maintaining high coverage. This shows that the two-
dimensional vector is able to adapt to varying EH magnitudes
throughout the day while maintaining high coverage, thus
providing useful information for EM algorithms.

2) Selection of Bootstrap Models and Residual Vector
Length: The number of bootstrap models and residual vector
length directly impact accuracy and overhead. We perform a
design space exploration to select the number of bootstrap
models and length of the sliding residual vector. Specifically,
we compare the coverage and width of CP with 5, 10, and 15
bootstrap models. Our analysis shows that 15 bootstrap models
offer the highest accuracy without significant overhead.

To choose the appropriate residual vector length, we vary it
from 24 to 192, as shown in Figure 5. Residual values for 24,
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Fig. 5: Comparison of the hourly coverage and width of the prediction interval
by proposed approach using different residual lengths for (a)-(b) ARAS user
1 and (c)-(d) Mannheim user 6.

0 4 8 12 16 20 24
60

80

100

C
ov

er
ag

e 
(%

)

Hour

 MVEM     Proposed Conformal Prediction
Aras User 4

(b)

(c) (d)
0 4 8 12 16 20 24

60

80

100

C
ov

er
ag

e 
(%

)
Hour

Mannheim User 6

0 4 8 12 16 20 24
0
4
8

12

W
id

th
 (J

)

Hour

Mannheim User 6

0 4 8 12 16 20 24
0

10
20
30

W
id

th
 (J

)

Hour

Aras User 4

(a)

Fig. 6: Comparison of the hourly coverage and width of the prediction interval
using proposed approach and MVEM for (a)-(b) ARAS user 4 and (c)-(d)
Mannheim user 6.

48, 96, and 192 are shown, while noting that residual length
of 120 provides results similar to 96. The residual lengths
represent values of R and S, resulting in total length that is
twice the values shown in the figure. Higher residual lengths
provide the higher coverage while maintaining similar predic-
tion width. In particular, residual lengths of 96 and 192 provide
higher coverage for early hours of the day when the EH is
lowest. At the same time, memory and computational overhead
increase with increase in residual length. Consequently, we
choose 96 as the residual length because it provides a good
balance between accuracy and overhead.

3) Comparison of Proposed CP with MVEM: Next, we
evaluate the accuracy of CP and compare it with MVEM.
We start with a comparison of average hourly coverage and
prediction width for one user in each dataset in Figure 6. We
see that both CP and MVEM have close to 100% coverage dur-
ing early and late hours. However, MVEM has a significantly
higher width when compared to CP, showing that it is unable
to adapt to lower energy values. In fact, for Mannheim user
6, MVEM has a constant width of about 8 J throughout the
day, as shown in Figure 6(d). The coverage for CP decreases
during mid-day hours due to higher variance in energy. At the
same time, coverage achieved by CP is higher than MVEM
while having widths that are comparable to MVEM.

Next, we compare the performance of CP and MVEM for
ARAS user 4 on a specific day in June 2017. Figure 7 shows
that MVEM prediction interval does not cover the actual
EH during hours 10–12 and 15–16. In contrast, CP adapts
prediction widths throughout the day as per user activity.

Finally, Figure 8 shows the average coverage and width
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for all users in the Mannheim dataset. While the coverage for
both approaches is comparable, CP achieves, on average, 64%
lower prediction width for all users in the Mannheim dataset.
We also note that CP achieves 18% lower average width for
ARAS dataset users.

In summary, results in this section show that CP is able
to accurately capture differences in user activity and location
patterns to provide tailored prediction intervals.

D. Evaluation of the Proposed EM using Rollout

1) Validation of Energy Allocation Bounds from CP Pre-
diction Intervals: Recall that the proposed rollout algorithm
provides energy allocation bounds for each interval in a day.
Specifically, we provide energy allocation bounds that provide
utility in the top 10% percentile at the end of rollout. The
device then consumes energy within the bounds. It is crucial
to ensure that the energy allocation bounds contain the optimal
energy allocation. This section evaluates the allocation bounds
provided by the proposed approach against the optimal value.

Figure 9 shows energy allocation bounds and optimal energy
allocation for the fourth user in ARAS dataset on a specific
day. The black vertical line represents initial energy allocation
range for rollout while the blue lines represent final energy
allocation range. We can see from the figure that on both days,
we start with a wider range of initial energy allocations for
rollout. The bounds are made tighter using rollout, as shown
with the blue lines. The energy allocation bounds provided by
the rollout algorithm contain the optimal energy allocation for
most of the hours in the day. Even when the bounds do not
contain the optimal, the range is close to the optimal. This
shows that the proposed approach effectively provides energy
allocation bounds while accounting for uncertainty in EH.

2) Comparison of EM with Baseline Approaches: Next, we
show a comparison of the energy allocation and battery levels
for two different days for fourth user in the ARAS dataset and
sixth user in the Mannheim dataset, respectively. Specifically,
Figure 10(a) and (c) shows comparison of the energy allocation
of the proposed algorithm along with the optimal allocations
and the two baseline approaches, while Figure 10(b) and (d)
compare the corresponding battery energy levels for the same
day. We can see from the figure that energy allocation by
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Fig. 9: Validation of obtaining energy allocation bounds w.r.t optimal alloca-
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Fig. 10: Comparison of energy allocations and battery levels obtained using
proposed approach to the optimal and baseline approaches over a finite horizon
for (a)-(b) ARAS user 4 and (c)-(d) Mannheim user 6.

proposed EM closely matches the optimal while the iterative
approach under-allocates throughout the day. This results in
additional battery energy accumulation for the baseline while
the battery energy levels of the proposed approach closely
match the Oracle. Similarly, tinyMAN allocates higher energy
in the initial hours and then goes into a low power state due to
battery exhaustion. The energy allocations recover during mid-
dle hours, before going to a low power state at end of the day.
Moreover, tinyMAN is unable to maintain the target energy
constraint for both users. In contrast, the proposed approach
closely follows the optimal value and maintains ENO. It also
quickly overcomes any under-allocations due to accounting
for deviations in the following hours. Better performance of
the proposed EM algorithm is due to higher quality of EH
predictions from CP and trajectory evaluations using rollout.
These results show that the proposed approach is able to
closely follow the optimal allocations while maintaining ENO.

3) Utility Improvement with Rollout: Overall application
utility is an important metric since it captures the quality of
service to the users. To this end, we measure the percentage
utility improvement of the proposed EM algorithm compared
to the baseline approaches, as shown in Table I. Outliers with
low actual EH are removed from the comparison since it
is challenging to provide high utility for any approach on
such days. After removing the outlier days with low EH,
we observe that the proposed algorithm provides significant
utility improvements compared to both the iterative EM and
tinyMAN. In summary, our experimental results show that
accounting for uncertainty in future EH in energy prediction
and management leads to significantly better performance.
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TABLE I: Utility Improvement with rollout. ARAS user one has NA for
tinyMAN since it has high degree of zero allocations and violations.

User Utility Improv. (%) User Utility Improv. (%)
Iterative tinyMAN Iterative tinyMAN

ARAS 1 55 NA 3 77 100
2 75 100 4 78 100

Mannheim
1 44 43 4 45 22
2 51 15 5 43 21
3 53 40 6 42 25

E. Implementation Overhead

We use the TI-CC2652R device to measure the energy
consumption of proposed CP and rollout, while simulations are
used to evaluate the EM performance by streaming data into
Python [34] functions for CP and rollout. We first implement
the CP and rollout methods in C for integration into the TI
board. The C code is instrumented with timing calls from
standard C libraries to measure the execution time. Compiled
binaries are then flashed on the TI device to measure execution
time and energy consumption. The energy consumption is
measured using TI’s EnergyTrace [35] technology that pro-
vides accurate current and power consumption on TI devices.
Power consumption from EnergyTrace is combined with the
execution time to obtain the energy consumption.

The overhead measurements capture the execution time and
energy for executing the proposed algorithms. The measure-
ments capture raw energy and latency values without includ-
ing the application. This is because we perform EM in an
application-agnostic manner using an abstract utility function.
Moreover, the proposed methods are not dependent on any
particular application and are applicable any IoT application.

Overhead for the CP consists of running bootstrap models
and prediction interval construction. Our measurements on the
TI-CC2652R device show that each bootstrap model takes
about 11 ms to execute, resulting in 165 ms execution time
for 15 bootstrap models. The energy consumption for each
bootstrap model is 160 µJ, resulting in 2.4 mJ of energy for
15 models. Next, prediction interval construction using CP
takes about 52 ms to execute with 0.6 mJ energy. The mem-
ory required for storing features, residual vector, and neural
network weights is about 7 KB. In summary, the proposed EH
prediction approach takes about 217 ms execution time and
3 mJ of energy overhead, which is negligible when compared
to the interval length of one hour and EH in each interval.

We also implement the EM algorithm on the TI-CC2652R
processor to measure its overhead. Measurements show that it
takes about 300 ms for each rollout. On average, we perform
about 45 rollouts in each interval, leading to 13 s of overhead
each hour. This results in about 390 mJ energy. The total
overhead is less than 15% of the mean EH values. We note that
tinyMAN has lower overhead [26], however, it suffers from
lower utilities and higher ENO violations. If the potential EH
and available energy are less than the overhead, the system
goes into a low power state to conserve energy. Furthermore,
we can optimize EM by limiting the rollouts as per the
available energy budget since rollout iterations are the major
component of overhead. Overall, the overhead is reasonable
compared to the utility gains provided by rollout.

VII. DISCUSSION AND POTENTIAL IMPACT

Potential Societal Benefits: Widespread adoption of wear-
able devices can have several societal benefits by enabling
continuous monitoring of health parameters [36]. Distribution-
free conformal prediction and EM approaches proposed in this
paper form an important component of this vision because they
can lead to recharge-free operation for wearable devices. Indi-
viduals can have a better user experience since the device will
adapt to various energy setups, leading to more widespread
adoption of wearable technology.

Using EH instead of manual recharging for wearable devices
will lead to significant environmental benefits by lowering
the carbon footprint. To further understand these benefits, we
evaluate the total EH in each month of the year for both
datasets. Figure 11 shows the average energy harvest for each
user in the two datasets. The black triangles in the figure
denote the mean of EH along with one standard deviation on
the top and bottom. If we conservatively estimate that a million
users will use wearable devices, this results in 10 MWh energy
savings per year, leading to about 7 metric tons reduction in
CO2 emissions as per estimates by the US EPA [37].
Limited Energy Scenarios: We also observe that the ambient
energy levels are low for several hours or days. These energy
levels are not enough to power the sensors or processors on
the device. Therefore, the proposed approach uses a backup
battery to store harvested energy. The battery provides required
power levels when the harvested power is not sufficient. At the
same time, if the EH is low throughout the day, it may not be
sufficient to maintain ENO. In such cases, the device either
has to go into a lower power state or violates ENO.

In terms of applications, low energy scenarios can be useful
when continuous monitoring of users is not required. The
device can store energy during periods with no activity so
that sufficient reserves are available during active periods.
However, further optimizations in processors and sensors may
be needed if the available EH levels are insufficient.
Synergy with Intermittent Computing: Intermittent com-
puting technologies, such as checkpointing, are being used
in energy-constrained wearable devices [38]. The key idea
is to perform computations only when sufficient energy is
available from ambient sources. Co-design of applications with
intermittent computing and CP for energy predictions can
potentially improve EM in wearable devices. We believe that
this will be an interesting problem for the community.
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Fig. 11: Mean and Standard deviation of monthly energy harvest during 2017-
2020 in Colorado for (a) Mannheim dataset (b) ARAS datasets.
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VIII. CONCLUSION

Wearable and IoT devices offer promising applications
in health monitoring and digital agriculture. However, their
widespread usage is constrained by their limited battery ca-
pacities. Ambient EH is an effective solution to augment the
battery of wearable devices. However, stochastic nature of
EH makes EM in wearable devices challenging. Effective EM
requires knowledge of future EH and associated uncertainty.
This paper proposed a distribution-free conformal prediction
approach for prediction intervals of future EH in IoT devices.
We also proposed a rollout-based EM approach that provided
significant utility improvements compared to a baseline ap-
proach. Our immediate future work will focus on co-design
of wearable applications with intermittent computing and
proposed CP-based energy predictions.
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