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Abstract

Wearable devices are being increasingly used in
high-impact health applications including vital sign
monitoring, rehabilitation, and movement disor-
ders. Wearable health monitoring can aid in the
United Nations social development goal of healthy
lives by enabling early warning, risk reduction, and
management of health risks. Health tasks on wear-
able devices employ multiple sensors to collect rel-
evant parameters of user’s health and make deci-
sions using machine learning (ML) algorithms. The
ML algorithms assume that data from all sensors
are available for the health monitoring tasks. How-
ever, the applications may encounter missing or
incomplete data due to user error, energy limita-
tions, or sensor malfunction. Missing data results in
significant loss of accuracy and quality of service.
This paper presents a novel Classifier-Aware iM-
putation (CAM) approach to impute missing data
such that classifier accuracy for health tasks is not
affected. Specifically, CAM employs unsupervised
clustering followed by a principled search algo-
rithm to uncover imputation patterns that maintain
high accuracy. Evaluations on seven diverse health
tasks show that CAM achieves accuracy within 5%
of the baseline with no missing data when one sen-
sor is missing. CAM also achieves significantly
higher accuracy compared to generative approaches
with negligible energy overhead, making it suitable
for wide range of wearable applications.

1 Introduction

Ensuring healthy lives and promoting well-being for all ages
is one of the key goals of United Nations (UN) social de-
velopment goals (SDG) [Sachs et al., 2022]. Achieving this
goal will require development of low-cost and reliable de-
vices that provide early warning, risk reduction, and manage-
ment of health risks. This is especially true for rural and un-
derdeveloped communities with limited access to specialists
and diagnostic facilities. For instance, at least one sixth of
the population in sub-Saharan Africa lives at least two hours
away from a public hospital [Falchetta et al., 2020]. These
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Figure 1: Classification accuracy (mean and standard deviation) of
a deployed ML classifier for activity recognition task as a function
of k missing sensors.

challenges highlight the need for low-cost and reliable plat-
forms for continuous health assessment.

Wearable internet of things (IoT) devices are emerging as
a transformative technology to tackle challenging healthcare
applications [Espay et al., 2016; Lara and Labrador, 2012;
Maetzler et al., 2013]. Wearable devices are able to continu-
ously monitor parameters of interest in a healthcare task and
improve patient outcomes while reducing clinical visits [Es-
pay et al., 2016; Bhat er al., 2019]. Recent healthcare appli-
cations employ multiple sensors to improve data fidelity and
accuracy. While multiple sensors help in improving the accu-
racy for complex tasks, they are also susceptible to errors due
to missing sensor data. Specifically, data from one or more
sensors could be missing due to energy limitations, user er-
ror, sensor malfunction, or other challenges [Liu et al., 2020;
Hossain et al., 2020]. Missing data can be more severe in
under-served communities with intermittent access to power
or communication technologies. For instance, users may be
able to recharge only a part of wearable sensors or oper-
ate them for part of a day due to energy availability con-
straints [Alam and Ben Hamida, 2014]. Data missingness can
lead to significant drop in application performance, as shown
for an activity recognition task in Figure 1. Consequently,
there is a strong need for principled approaches that handle
missing data while maintaining application accuracy.

Several approaches have been proposed to handle missing
data [De Waal et al., 2011; Guo et al., 2019; Yoon et al., 2018;
Pires et al., 2020]. One class of approaches train multi-
ple classifiers to handle missing data scenarios. For in-
stance, in a task with M sensors, we need 2M — 2 clas-
sifiers. This solution is not suitable for energy-constrained
wearable devices used in health applications due to overhead



of context switching during deployment. Moreover, accu-
racy with a classifier that uses a subset of sensors could be
lower than using all sensors. The second class of imputa-
tion approaches use generative networks. These approaches
are inspired by the success of generative networks in im-
age and natural language processing [Creswell et al., 2018;
Xu et al., 2018]. Application of generative networks to sen-
sor data imputation suffers from two key limitations: 1) they
incur high memory and computational overhead, which is not
suitable for energy-constrained wearables; and 2) accuracy of
imputation and health applications drops significantly when
more than one sensor is missing, thus defeating the purpose
of imputation. Therefore, there is an immediate need for ap-
proaches that impute data with low overhead (energy, execu-
tion time, and memory) and maintain high accuracy.

This paper presents a novel Classifier-aware Imputa-
tion (CAM) approach to impute missing data in wearable
health applications while maintaining accuracy. CAM is
based on the key insight that we do not need exact imputation
of missing sensor data if we can maintain high accuracy for
the health task. At the same time, sensor data may follow sev-
eral repetitive patterns with some variations as a function of
activities or demographics. Using a single imputation pattern
for multiple distinct sensor data patterns may lower predic-
tive accuracy. Therefore, we propose to utilize unsupervised
clustering to obtain distinct patterns of sensor data and obtain
an imputation pattern for each combination of clusters. For
instance, assume that we have two clusters for each sensor in
an application with three sensors. CAM maintains imputation
patterns for four combinations of clusters across sensors two
and three, if sensor one is missing. Multiple patterns allow
CAM to customize imputation to changes in sensor data.

CAM achieves the desired goal of accurate imputations by
searching the space of sensor data to obtain imputation pat-
terns that represent an ‘average’ case of sensor observations.
The imputation pattern is chosen such that the overall accu-
racy of the health task is maximized when using the pattern.
The search algorithm in CAM is run for each cluster com-
bination in 2*-2 missing data scenarios to obtain a table of
imputation patterns. Using this table for imputation instead
generative networks aids in enabling energy-efficient imputa-
tion since the health application only needs to read from the
table at runtime. Overall, CAM enables accurate health ap-
plications in the presence of missing data with low overhead.

We validate the proposed CAM approach on seven di-
verse health applications including human activity recogni-
tion, gesture monitoring, an assistive device for paralyzed pa-
tients, and affect detection [Shoaib et al., 2014; Reiss and
Stricker, 2012; Theodoridis, 2011; Wilhelm et al., 2015;
Birbaumer et al., 2001; Villar et al., 2016; Schmidt et al.,
2018]. We enumerate all possible scenarios of missing sen-
sor data for each application and utilize CAM to obtain im-
putation patterns. Then, we test the accuracy of the machine
learning (ML) classifier with imputed data from CAM and
compare it against the accuracy with no missing data (upper
bound). Our experiments show that CAM achieves accuracy
within 10% of the upper-bound for up to two missing sensors.
Moreover, comparisons against a generative approach show
that CAM enables more than 15% higher accuracy for health

tasks with lower computational cost. Measurements on an
embedded device show that CAM imputes data with less than
10 mJ energy per imputation, showing significant promise to-
wards real-world deployment. We are currently in the process
of deploying CAM in gesture and activity recognition appli-
cation in collaboration with the WSU School of Medicine.
These deployments take us closer to achieving UN’s goals.

Contributions. We make the following contributions:

* Characterization of adverse effects on health applications
when data from one or more sensors is missing.

* Novel and energy-efficient approach, referred to as CAM,
to obtain imputation patterns that preserve accuracy and
quality of service for health tasks.

» Experimental evaluations with seven diverse health tasks
to demonstrate that CAM is able to reliably impute miss-
ing sensor data with minimal energy and runtime over-
head. Code for the CAM algorithm is available publicly
at: https://github.com/gmbhat/cam.git.

2 Related Work

Wearable devices enable a number of interesting health appli-
cations as evidenced by recent literature [Espay et al., 2016;
Mosenia et al., 2017; Limaye and Adegbija, 2018; Bhat et
al., 2020]. These applications use multiple sensors to enable
more complex tasks or improve accuracy. However, multiple
sensors also increase the probability of one or more sensors
having missing samples, leading to drop in accuracy. There-
fore, there is a great need to develop methods that impute sen-
sor data in an energy-efficient manner [Hussein et al., 2022b].

Several recent approaches in literature tackle the challenge
of missing data in multi-sensor applications [Guo ef al., 2019;
Yoon et al., 2018; Pires et al., 2020; Hussein et al., 2022c¢;
Hussein et al., 2023]. Statistical methods such as mean, me-
dian, and kurtosis are used when there are isolated missing
samples and reference data are available to evaluate the sta-
tistical measures. However, these methods fail when there are
longer sequences of missing data. Generative networks have
been successfully used for data imputation in recent litera-
ture [Yoon et al., 2018; Talukder et al., 2022]. Intuitively, the
goal of these approaches is to learn the relationships between
different sensors to impute longer sequences of missing data
when one or more sensors are missing. However, the deep
generative networks incur high overhead due to large number
of weights and higher energy overhead to perform imputa-
tion. Consequently, they are not suitable for low-power wear-
able devices. CAM precisely addresses this challenge using
a classifier-aware table of imputation patterns to handle miss-
ing data with low energy and memory overheads.

3 Background and Problem Setup

This section first provides the background on wearable de-
vices and introduces the missing sensor data problem.

3.1 Wearable Devices Preliminaries

We consider healthcare tasks with multiple sensors monitor-
ing physiological parameters, as shown in Figure 2. The sen-
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Figure 2: Overview of the proposed CAM approach for health tasks.
Missing data in health tasks leads to reduction in quality of service
and stress to users. CAM overcomes this by providing a table of
imputations that can be used by the application (right part of figure).
Imputations by CAM lead to recovery in quality of service.
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sor data are used in a number of health applications includ-
ing movement disorders, vital sign monitoring, and rehabil-
itation. We use a generic health task as a driver application
in this paper since the principles of CAM are generally ap-
plicable to any sensor data processing task. The time-series
sensor data are streaming in nature and go through the fol-
lowing steps for health assessment in real-time.

Data Segmentation. Health assessment of patients must be
performed periodically (e.g., every few seconds or minutes)
to track any changes in symptoms. Moreover, many health
parameters, such as heart rate, experience variations through-
out the day and must be continuously monitored. Therefore,
the sensor data must be segmented into either equal or vari-
able length windows for inference with ML classifiers. In
general, for a system with M sensors and 7" samples in each
window, we represent the sensor data with X & R**T. A
fixed-length segment with 7" samples is chosen for exposition
while noting that each sensor can have variable samples.

Feature Generation and Classification. ML classifiers are
commonly used by health applications to infer relevant pa-
rameters from sensor data. As such, the sensor data in each
window X € R™*T are used as inputs to feature generation
and ML classifier blocks. Labeled pairs of sensor data win-
dows and class labels y are used to train the classifiers and
streaming sensor data are used with the ML classifier to infer
health status at runtime. The ML classifier assumes that data
from all sensors are available for classification at runtime.

3.2 Missing Data Challenges

Standard algorithms on wearable devices assume that data
from all sensors are available at runtime. However, as noted
earlier, sensor data may be unavailable due to energy con-
straints, communication challenges, or user error. Missing
sensor data can either occur in isolated instances or in longer
blocks spanning multiple segments. Isolated missing data are
easier to handle since we can use available data around the
missing samples for imputation. Indeed, a number of statis-
tical approaches have been developed for handling isolated
missing samples that occur at random [De Waal erf al., 2011;
Pires et al., 2020]. Longer missing sequences are more chal-
lenging since there are no reference samples for imputation.
To this end, the goal of CAM is to impute data for long miss-
ing sequences by identifying an average case for missing sen-
sors. This is a challenging problem for healthcare tasks since
we must have highly accurate classification while avoiding
expensive computations on resource-constrained devices.

3.3 CAM Problem Setup

Consider that a health task uses M sensors to monitor the
user’s symptoms. We can represent the time-series sensor
data with X € R"™*T where T is the number of samples
in each input window. Each sub-series in X consists of data
from a single sensor. That is, the sensor data matrix can be de-
composed into M vectors as [Xi, -+, X;, -+, Xps] where
X, € RT corresponds to data from zth sensor. Several pairs
of sensor data X and labels y are used to train a baseline ML
classifier Fy to perform the health task. Parameters 6 denote
weights of the ML classifier Fy. The classifier takes data X
with no missingness and predicts corresponding class g.

The health application may encounter one or more missing
sensors during inference in the field. Assume that the set of
missing sensors is given by §. Missing data from sensors
leads to changes from the expected observations. The data
matrix with missing sensors is denoted by X € R"*7:

- of
X =
{Xi

The missing data matrix substitutes zeros for missing sensors
and uses observed data for sensors that are available. For in-
stance, in a physical activity monitoring application, if one of
the sensors is missing, all observations for the missing sen-
sor are substituted with zeros. This change in data results in
misclassifications by the health classifier and our goal is to
impute data for missing sensors S.
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4 Classifier-aware Imputation

In this section, we provide details of the CAM approach for
reliable health tasks. We start with an overview of CAM and
the two guiding principles behind CAM. Then, we describe
the key algorithmic steps involved in CAM.

Overview of CAM and Accuracy-Overhead Tradeoff.
Imputation algorithms on wearable devices must trade-off
overhead, reconstruction accuracy, and application perfor-
mance. Generative networks typically achieve higher recon-
struction accuracy, however, they incur high overhead due to
the use of complex deep neural networks. On the other hand,
we can store a single imputation pattern for each missing data
scenario to significantly lower the overhead. However, this
can impact application accuracy since a single pattern may
not be able to capture all variations in a dataset. To this end,
CAM explores a spectrum of overhead-accuracy trade-offs by
using multiple sensor data clusters and storing cluster-specific
imputation patterns. Clustering allows CAM to tailor the im-
putation patterns to variations in sensor data across different
classes/activities and users. Moreover, varying the number of
clusters allows us to control size of the look-up table since
more clusters lead to higher memory requirements. CAM
aims to balance the overhead and accuracy by performing de-
sign space exploration to uncover highly accurate imputation
patterns with minimal number of clusters.

Figure 2 shows the key steps in CAM for health applica-
tions. We consider a generic health application that uses mul-
tiple sensing modalities, as shown on the left side of the fig-
ure. A baseline classifier is trained to process the sensor data



for assessing health applications. The sensor data may go
missing during real-world usage, which in turns leads to loss
of accuracy for users. To handle the missing data, CAM pro-
vides a set of imputation patterns Z in a table for each missing
data scenario S and clusters C. The imputation table is used to
impute data and perform classification with the trained clas-
sifier. Imputation using CAM leads to accurate classification
in the presence of missing data and improvement in quality
of health applications, as seen on right side of the figure.

Guiding Principles behind CAM. CAM operates on two
guiding principles to achieve effective imputation while pre-
serving accuracy of the classifier. 1) We do not need exact
imputation of sensor data as long as the classifier accuracy is
preserved. As such, we can search for an ‘average’ pattern
for missing sensors configuration that provides high classi-
fication accuracy. 2) Similarly, the ML classifier for health
tasks can be trained to be robust to small deviations in sen-
sor data. Robust training allows for accurate predictions even
when the imputation patterns do not match exact sensor data.

4.1 Sensor Clustering and Imputation

Data from sensors for any given health task follows distinct
patterns with variations across classes, users, and time. Fol-
lowing this, CAM uses unsupervised clustering to divide data
from each sensor into distinct clusters. Specifically, CAM
utilizes k-means clustering to obtain a set of clusters C for the
M sensors. The number of clusters k is a hyperparameter that
must be chosen such that clusters are well-separated and bal-
anced [Hussein and Bhat, 2023]. Cluster centroids for each
sensor are stored on the wearable device for runtime usage.
After obtaining the clusters, CAM obtains a unique impu-
tation pattern for different combinations across sensors. This
is based on the insight that there are inter-relationships be-
tween sensors. For instance, let us assume that an application
has two sensors and CAM obtains two clusters for each sen-
sor. Then, we can have a window with the cluster mapping
as (1,2), which indicates that sensors belong to clusters 1 and
2, respectively. We can then learn an imputation pattern 1
for cluster mapping (1,2), such that if sensor one is missing
and sensor two belongs to cluster 2, it can be imputed with I.
These unique patterns ensure that imputation patterns are cus-
tomized to combinations of clusters observed during training.
Algorithm 1 shows the procedure for obtaining imputation
patterns as a function of sensor cluster mapping. Inputs to the
algorithm include training data, clusters C, classifier Fy, and
number of search iterations. The algorithm first identifies all
oM _9 missing data combinations. Then, we iterate over each
combination of clusters in a missing data scenario to build im-
putation patterns. In a health task with M sensors and & clus-
ters for each sensor, we have E(M=m) cluster combinations
for m missing sensors. CAM builds an imputation pattern
for each of these cluster combinations in a missing data sce-
nario. Specifically, all time-series windows corresponding to
a cluster combination are passed through a gradient-descent
algorithm to search for imputation patterns, as described in
the next section. Imputation patterns are stored as a look-up
table indexed by missing data scenario and cluster combina-
tions. The table is queried at runtime to impute data as a
function of missing sensors and clusters of available sensors.

Algorithm 1: CAM Training Procedure

1 Input: Training data Dirain, Sensor clusters C, health
classifier Fy, M A X, maximum iterations for gradient
descent; M AX, maximum iterations over all inputs

2 Cirain < Cluster information for each sensor in Dirain

3 M, < Enumerate 2* — 2 missing data scenarios

4 Initialize empty imputation table 7

s for m € M; do

6 Missing < Set of missing sensors

7 Available < Set of available sensors in m

8 C, + Combination of clusters for available sensors

9 for ¢, € Ca do

10 X <« All windows in Dirain With clusters ¢, for
available sensors

11 T < Call Algorithm 2 with X, m, M AX g,
and, MAX

12 Update Z with imputation Z,,, key: (m, cq), value:
In

13 end

14 end

—
w

Return: Imputation table 7

4.2 Algorithm to Find Imputation Patterns

High-level Overview of Algorithm. ML classifiers gener-
ally achieve high accuracy when all data are available for
classification. Since we use multiple sensors for health ap-
plications, the classifier uses information spread across the
M sensors. Loss of information from any one sensor leads
to drop in accuracy. Prior studies have also shown that clas-
sifiers may rely on a subset of critical sensors to make many
classification decisions [Belkhouja and Doppa, 2020]. CAM
exploits this behavior by first pushing the classifier to rely
more on the available sensors instead of the missing sensors.
At the same time, information of missing sensors should not
be completely ignored. Therefore, CAM utilizes a classifier-
aware search to find the most likely ‘average’ case pattern for
missing sensors to preserve accuracy of health tasks.

Algorithm. The goal of CAM is to obtain imputation pat-
terns Z,,, that achieve same classification results as the ideal
case with no missing data, where m is the set of missing
sensors. We can represent it as a problem of searching for
Ticm € RT such that:

T, = {L- 1fz em and Fy(X) = Fy(Zn) @)
X; ifigm

where Fy(X) and Fy(Z,,) are the classifier outputs with orig-
inal and imputed data, respectively. Intuitively, Equation 2
specifies that classifier outputs with imputed data are close to
the output with real, observed data. The imputation patterns
do not depend on the observed data from sensors. Instead, we
search for a suitable ‘average’ pattern that maintains classifier
accuracy. The problem of finding an imputation pattern for a
given missing data scenario can be formulated as:

Given m and X : Find Z,, s.t. VX, Fy(X) = Fp(Z,,) (3)

The search space must be appropriately traversed to ensure
that we find effective patterns. To this end, we use the follow-



Algorithm 2: CAM Search Algorithm

1 Input: Windows X’; Fy, pre-trained classifier; m, missing
sensors configuration; M A X ¢, maximum iterations for
gradient descent; M A X, maximum iterations over all
inputs

2 Output: Z,,,, imputation pattern

3 Random initialization of the set {Zem }

4 fori=1,---, MAX do

5 for each training example X do

6 for ic=1,---, MAX¢ do

7 lgX = Logits(Fy (X))

8

9

lgI = Logits(Fy(Z))
Estimate the loss £(1gX, 1g1)

10 Estimate the gradient V(73 £ for j € m
1 Perform gradient descent and update Z,,
12 end

13 end

14 end

15 return Imputation pattern Z,,

ing minimization problem to solve Equation 3:

min E(Logits(Fg(X)),Logits(Fg (Im))) @)
jEmM

where L is a loss function that compares logits of the classi-
fier with imputed and original data. We interpret the logits as
the unnormalized predictions of each class label in the health
task. If we ensure that logits are close to the ideal case with
no missingness, it means that the accuracy of classification
is preserved. The loss function £ can be any differentiable
function that evaluates the difference between two logit val-
ues. In our implementation, we use mean squared error as the
loss function. Overall, classification accuracy with imputed
and original signals will be similar when £ — 0.

CAM utilizes a gradient descent-based algorithm to solve
the minimization problem of finding imputation patterns. Al-
gorithm 2 shows the key steps of our solution to find impu-
tation patterns Z,,,. The number of gradient descent steps
MAXg is set to 100 to ensure that the algorithm finds the
optimal pattern for each input example in X'. Similarly, the
total iterations of optimization for the overall algorithm is set
to 50 for finding optimal imputation patterns across the entire
training data. The algorithm outputs imputation pattern Z,,
for a set of missing sensors m. Outputs of the algorithm are
used to construct the look-up table that is used at runtime, as
described in the previous section.

4.3 Robust Classifiers with CAM

CAM stores a single imputation pattern for each missing sen-
sor configuration in a given health task. Using a single pattern
allows CAM to have negligible overhead, however, it also in-
creases the likelihood of classifier errors in a small number
of instances. This is because the classifier has not seen the
imputation pattern during training. We train robust classifiers
[Belkhouja et al., 2023] to overcome this challenge.

We train robust classifiers in CAM following the recent
framework of augmented time-series data based on statistical
features [Belkhouja and Doppa, 2022; Hussein et al., 2022a].

The key idea is to generate small perturbations on the avail-
able training data while preserving the statistical features. We
also include the imputation patterns from CAM as additional
training data. The classifier Fy is trained with these additional
training examples to obtain a robust classifier Iy

S Experiments and Results

This section evaluates the performance of CAM on seven
healthcare tasks along multiple dimensions.

5.1 Experimental Setup

Wearable Device Setup. We employ the Odroid-XU3
board [Hardkernel, 2014] for sensor data processing and im-
putation. CAM utilizes the A7 cores on the Odroid-XU3
board for imputation since they are more energy-efficient.
The Odroid board stores imputation patterns for all sensors
and uses them as a function of the missing sensors.

Datasets. We employ seven diverse healthcare tasks to vali-
date the efficacy of CAM. For each of these datasets we evalu-
ate all possible missing data scenarios by varying the number
of missing sensors from 1 to M — 1.

Physical Activity Recognition [Shoaib et al., 2014]: Activity
recognition in health tasks is crucial since knowing what a pa-
tient is doing is important for movement disorders and reha-
bilitation [Maetzler et al., 2016]. The Shoaib dataset provides
accelerometer data for 10 users performing seven activities.

PAMAP? [Reiss and Stricker, 2012]: PAMAP2 is another ac-
tivity recognition dataset that provides data from three ac-
celerometers for five activities with nine users.

EMG Physical Action (EMG) [Theodoridis, 2011]: The
EMG dataset is another activity recognition dataset for users
who may experience aggression during their tasks. The
dataset is collected using EMG sensors interfacing four activ-
ities (Walking, Kicking, Jumping and Headering) with myo-
electrical contractions. The dataset includes recordings from
eight sensors placed on the upper arms and legs of the users.

Gesture Recognition [Wilhelm et al., 2015]: Gesture recogni-
tion is an important in various healthcare tasks such as assis-
tive devices and rehabilitation. To this end, we utilize the eR-
ing dataset to evaluate CAM in gesture recognition settings.
eRing is a smart health dataset that uses a finger ring to cap-
ture data along four dimensions using electric field sensing.
SelfRegulationSCP1 (SR-SCP1) [Birbaumer et al., 2001]:
Electroencephalograhy (EEG) is commonly used in brain-
machine inference tasks. We use the SR-SCP1 dataset to
evaluate CAM with EEG recordings. SR-SCP1 includes EEG
data from six channels. The data are used in a control system
that drives spelling devices for paralyzed patients.

Epilepsy [Villar et al., 2016]: This dataset is collected from
six participants using an accelerometer on the dominant wrist
while conducting four different activities. The activities are
walking, running, sawing, and seizure mimicking.

WESAD [Schmidt et al., 2018]: WESAD is a multi-modal
dataset using wearable sensors for affect detection. The data
is collected from 15 participants undergoing three different
affective states (neutral, stress, amusement) using five dif-
ferent sensors placed on the chest. The sensors are elec-



trocardiogram (ECGQG), electrodermal activity (EDA), elec-
tromyogram (EMG), respiration (RESP), and body temper-
ature (TEMP). We note that in our experimental settings, we
find that TEMP sensor’s data is crucial to obtain a stable per-
formance for all baselines. Therefore, we work under the as-
sumption that the TEMP sensor is always available.

Evaluation Metrics. Application accuracy is crucial in
healthcare tasks as it is important to maximize true positives
for a condition. Therefore, we use accuracy as the primary
metric in evaluation of CAM. Furthermore, energy and mem-
ory are important considerations due to resource constraints
in wearable health applications.

Classifier Representation. CAM uses a classifier that is
trained with data from all sensors for each dataset. Specif-
ically, we use a I-dimensional convolutional neural net-
work (I-D CNN) to perform classification. The 1-D CNN
uses two convolution and max-pool layers followed by two
fully connected layers with the ReLU activation. All net-
works are trained with the Adam optimizer [Kingma and Ba,
2015] for 20 epochs. 60% of the data are used for training
and 40% of data are used for cross-validation and testing.

CAM Training Overhead. We perform the imputation pat-
tern search on a server with 32 Intel® Xeon® Gold 6226R
cores with 192 GB of memory. Since the training is per-
formed offline, it can use large-scale servers to obtain opti-
mal imputation patterns. We note that the training overhead
increases with number of sensors and clusters. This overhead
can be minimized by utilizing parallel processing since pat-
terns for each combination can be searched independently.

5.2 Baseline Methods for Comparison

We compare the accuracy of CAM against three baselines
including a generative approach, zero-filling, and average-
filling. The goal of these comparisons is to evaluate both
accuracy and overhead when compared to the baselines.

GAIN. Generative approaches have been used for imputa-
tion. One specific instance of these approaches is GAIN that
imputes data as a function of available observed data. Specifi-
cally, the generator in GAIN takes observed and missing data
as inputs and outputs a data matrix that contains imputed val-
ues in missing instances. The primary disadvantage of GAIN
is that accuracy degrades with increase in missing sensors.

Zero Filling. Missing sensor data will be typically filled
with zeros when an imputation method is not available. This
is because the sensor will not send any data to the processor.
We use it as one of the baselines since it is easy to implement.

Average Filling. The missing data can also be substituted
by imputation patterns that are determined from prior obser-
vations. One instance of this is average-filling, where miss-
ing data are substituted with average values from the training
data. We use this as the third baseline for comparison.

5.3 Application Accuracy with Imputed Data

Accuracy of healthcare tasks is the primary consideration for
CAM. Therefore, we first evaluate accuracy of each applica-
tion with all four imputation approaches. We also obtain ac-
curacy with no missing data since it provides the upper-bound

Label 1 2 3 4 5 6 Lie .

Sit Walk Run Cycle
I 400 4 3 3 0 Down Y
2 149 0 0 0 O L 355 17 O 0 2
3 0 046 3 1 O S 15 686 1 1 13
4 00 3430 W 0 6 453 O 0
5 30 015320 R 0 2 0 368 O
6 00 0 0 050 cC 0 5 0 0 309

Table 2: PAMAP2 dataset con-
fusion matrix using CAM for
missing data imputation

Table 1: Confusion matrix for
eRing dataset using CAM for
missing data imputation

on classification performance for each application. We also
note that a single classifier is used with each application and
we do not train new classifiers for each missing data scenario.

Figure 3 shows the classification accuracy with CAM and
other imputation approaches for all missing data scenarios.
Each point on the figure shows the average accuracy and
standard deviation with a fixed number of missing sensors.
For instance, the point corresponding to one on the x-axis in
Figure 3(a) shows accuracy and standard deviation over five
cases of one sensor missing in the Shoaib et al. dataset. The
default accuracy with no missingness for each task is shown
with an orange line. The figures clearly show that CAM
achieves higher accuracy than all three baselines. In partic-
ular, zero-filling and average-filling have significant accuracy
drop for the majority of health tasks. For instance, zero-filling
and average-filling show accuracy drops of about 15-20% for
activity recognition. In WESAD dataset, we see that average-
filling has comparable performance in some of the missing
scenario cases when EDA sensor is missing. In these cases,
we can utilize average-filling as the imputation pattern and
avoid running CAM. At the same time, if any sensor other
than EDA is missing, CAM achieves higher accuracy. There
is a drop in accuracy with the increasing number of miss-
ing sensors which is due to the complexity of retrieving lost
information. We note that even GAIN fails to improve the
accuracy when a high number of sensors is missing.

CAM is also able to achieve better accuracy compared to
the generative GAIN approach. GAIN is able to recover ac-
curacy for up to one sensor, but it is unable to handle more
than one missing sensor in-spite of being more complex and
using larger number of parameters than CAM. This is a re-
markable result for CAM since it is able to achieve higher
accuracy compared to GAIN even when entire sequences of
data are missing. Finally, Tables 1 and 2 show the confu-
sion matrix of classifications for gesture and activity recog-
nition tasks when one sensor is missing. The matrices show
that CAM is able to equally recover all classes for both tasks.
Additional confusion matrices are provided in an appendix
available at: https://github.com/gmbhat/cam.git.

5.4 Implementation Overhead

The primary advantage of CAM over other baseline ap-
proaches is higher accuracy with minimal energy and mem-
ory overhead. To demonstrate this, Table 3 shows the memory
requirements for CAM and GAIN. As expected, GAIN needs
significantly higher memory on the device to store genera-
tor parameters. In strong contrast, overhead of CAM is less
than 10% of the overhead of GAIN for all datasets except
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Figure 3: Accuracy (Mean and standard deviation) of ML classifier via different imputation methods on all combinations of missing sensors.

Dataset CAM Memory (MB)  GAIN Memory (MB)
Shoaib 0.92 43.0
PAMAP2 0.15 102
Epilepsy 0.02 1.84
eRing 0.22 0.33
SR-SCP1 64.2 139
WESAD 0.31 4.82
EMG 0.78 12.3

Table 3: Summary of memory overhead of CAM and GAIN
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Figure 4: a) Comparison of energy consumption for GAIN and
CAM. The y-axis is shown in log scale to represent the large range
of values. b) Energy savings achieved by CAM compared to GAIN.

for eRing and SR-SCP1. The overhead is low for both CAM
and GAIN for the eRing dataset. SR-SCP1 dataset has higher
overhead since we must store more clusters and imputation
patterns due to higher variability in data. The overhead is still
less than GAIN while achieving higher accuracy.

We also compare the energy consumption of GAIN and
CAM for the health tasks. Figure 4(a) shows the energy con-
sumption while Figure 4(b) shows energy savings achieved
by CAM compared to GAIN for four datasets, while noting
that rest of the datasets show similar behavior. We see that
CAM has less than 10 mJ energy for all four tasks while
GAIN incurs higher energy. GAIN has almost 1 J energy
consumption in the assistive devices task. We see similar
behavior with energy savings where CAM achieves close to
100% savings in energy when compared to GAIN. In sum-
mary, CAM provides better performance while incurring sig-
nificantly lower overhead.

6 Path to Deployment

Successful deployment and adoption of this project will lead
to better health monitoring outcomes for the public, espe-

cially in rural areas and underdeveloped nations. This will be
directly in line with UN’s social development goal of healthy
lives for all ages and communities. The authors of this pa-
per have conducted successful user studies and deployments
for gesture recognition, gait, and activity monitoring appli-
cations. Following on this experience, the authors are well-
prepared to deploy CAM on a wide range of health sub-
jects and patients. CAM is well-suited for deployment on
resource-constrained devices in underdeveloped areas due to
its low memory and energy overheads.

The authors also have active collaborations with the WSU
School of Medicine and neurosurgeons for studies with pa-
tients. Through these collaborations, we will conduct stud-
ies with patients and evaluate performance of CAM in real-
world settings. After these preliminary evaluations, we will
work with community leaders across multiple nations to test
CAM in the field. Specifically, we will develop smartphone or
smartwatch applications so that users can monitor their health
remotely. Results from health applications will be relayed to
a healthcare dashboard that can be monitored by doctors. In
addition to smartphones, we anticipate developing low-cost
wearable devices that include necessary sensors and proces-
sors without additional features. This will bring the cost down
to $10 or less, while having few mW of power consumption.
The low-cost and low-power devices will be ideal for deploy-
ment in rural areas and underdeveloped nations. We antici-
pate widespread deployment of CAM in one to two years.

7 Conclusion

Several healthcare tasks are using wearable devices to en-
able continuous monitoring and to improve patient outcomes.
However, multi-sensor wearable devices may suffer from
missing data in the real-world, leading to loss in applica-
tion quality. This paper presented a classifier-aware imputa-
tion approach to handle missing data. The proposed CAM
approach enables low-overhead imputation by maintaining
a table of ‘average’ case patterns for each missing scenario
and cluster combinations. Experiments on a variety of health
tasks showed that CAM achieves higher accuracy compared
to more expensive baselines. Our immediate future work is
to deploy CAM in variety of real-world settings.
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