Energy-Efficient Missing Data Recovery 1n
Wearable Devices: A Novel Search-based Approach

Dina Hussein*, Taha Belkhouja*, Ganapati Bhat, and Janardhan Rao Doppa
School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, 99164

Abstract—Wearable and internet of things (IoT) devices are
transforming a number of high-impact applications. Machine
learning (ML) algorithms on wearable devices assume that data
from all sensors is available at runtime. However, one or more
sensors may be unavailable at runtime due to malfunction,
energy constraints or communication challenges. Loss of sensor
data can potentially lead to severe degradation in application
accuracy and quality of service. Commonly employed generative
ML methods to recover missing data are not suitable for resource-
constrained wearables because they incur significant memory,
execution time, and energy overhead at runtime. In contrast to
prior methods, this paper presents a novel search-based accuracy-
preserving imputation (AIM) algorithm that obtains most likely
imputation patterns of sensor data for each missing data scenario
via offline analytics. Specifically, for each missing data condition,
we store the most likely recovery patterns which preserve ML
classifier-based application accuracy in a look up table and use it
appropriately at runtime. The key insight behind AIM is that we
do not need exact recovery of the missing data as long as the ML
classifier-based application accuracy (e.g., health assessment) is
preserved. To further improve the overall effectiveness of AIM,
we train the ML classifiers to be robust to small errors in data
recovery. Experiments on four diverse wearable sensor based
time-series benchmarks demonstrate that AIM is able to maintain
accuracy within 5% of the baseline with no missing data when
one sensor is missing, and improves the overall accuracy by
15% compared to a state-of-the-art baseline. AIM achieves this
improvement with negligible energy consumption overhead.

I. INTRODUCTION

Wearable and internet of things (IoT) devices are en-
abling several challenging and high-impact applications such
as health monitoring, rehabilitation, and fitness tracking [1-
3]. They are also employed in mobile health applications
including diagnosis of movement disorders such as essential
tremor, and Parkinson’s disease by monitoring the respective
biomarkers [4, 5]. Wearable devices typically implement these
applications by collecting data from various sensors mounted
on the body and processing them using machine learning (ML)
algorithms to make data-driven predictions and decisions.

One of the key assumptions made by wearable applications
including the above-mentioned ones is that data from all
sensors is available at runtime. However, data from one or
more sensors might be missing during real-world, runtime
usage. Sensor data may be missing due to energy limitations,
user error, sensor malfunction, or data communication chal-
lenges [6, 7]. Missing data leads to significant degradation

*D. Hussein and T. Belkhouja contributed equally.
979-8-3503-1175-4/23/$31.00 ©2023 IEEE

=
o
o

~
ul

N
%)

....... Standard —— Zero filling

1 2 3 4
Number of missing sensors
Fig. 1: Classification accuracy (mean and standard deviation) of a deployed
ML classifier on Shoaib [8] dataset as a function of k£ missing sensors.

Test Accuracy
(%)
o

o

in the overall quality of applications since the underlying
ML models are trained with the assumption that data from
all sensors is available. Specifically, our experiments on real-
world applications show that missing data from even a single
sensor can degrade the accuracy of ML models by as much as
20%, as shown in Figure 1. Training multiple models for each
combination of sensors is also not feasible due to increased
memory overhead and context switching requirements at run-
time. Therefore, there is a strong need to develop approaches
that 1) recover missing data at runtime to preserve the accuracy
of a given ML-driven application; and 2) have low-overhead
in terms of execution time, power consumption, and memory
footprint as wearable devices are resource-constrained.

Recent work has proposed imputation methods that aim to
recover raw sensor data at runtine [9-12]. These approaches
typically use statistical methods or deep generative networks.
While imputation networks are able to recover accuracy loss,
they suffer from high memory overhead since we have to store
parameters for 2" — 2 possible missing data scenarios with n
sensors on the wearable device. They also incur additional
execution overhead to produce imputed data.

This paper presents a novel and energy-efficient search-
based Accuracy-Preserving Imputation (AIM) approach to
produce accuracy-preserving imputations for missing sensor
data at runtime. The AIM method meets the desiderata of
an effective solution for missing sensor data based on two
synergistic principles. First, we do not need to recover the
exact missing sensor data as long as the application accuracy
is preserved. Second, we can train the ML model to be
robust to small deviations from the exact sensor data, i.e.,
ability to make accurate predictions for sensor data with small
perturbations. To instantiate the first principle, AIM starts
with a set of possible scenarios for missing sensor data and
formulates a search problem whose goal is to obtain the most
likely imputation pattern for the missing sensors using the
given training data with no missingness. When we run the
search algorithm for each of the 2" —2 missing data scenarios,
we get a table of imputation patterns for each scenario. To

instantiate the second principle, we train robust ML models

using augmented data (i.e., perturbations of the clean and

complete training data) to make accurate predictions when the
imputed data deviates from the true data.

We validate the proposed AIM approach on four diverse
wearable sensor-based time series benchmark datasets [8, 13—
15]. For each of these applications, we enumerate all pos-
sible scenarios of missing sensor data and execute AIM for
imputing the missing data. Our results demonstrate that for
up to 2 missing sensors, AIM achieves accuracy within 5%
of the upper-bound baseline with no missing data. This is
a remarkable result because the likelihood of one or two
sensors missing is higher than a larger number of sensors being
unavailable in the real-world. The application accuracy with
AIM drops with more than two missing sensors, however, it
is still higher than the accuracy with no data recovery and
generative imputation networks. We also compare AIM with a
recent generative imputation network approach (GAIN) [12].
Compared to GAIN, our AIM approach achieves over 15%
higher prediction accuracy on average with significantly lower
energy and memory overhead. Specifically, our measurements
on the Odroid-XU3 device [16] show that AIM enables 78—
98% energy savings over GAIN, thus almost doubling the
operating time of wearable devices.

Contributions: This paper makes the following contributions:

o Characterization of the accuracy loss when one or more
sensors are unavailable in wearable applications.

« Novel and energy-efficient accuracy-preserving imputation
approach called AIM to identify the most likely data patterns
for imputation of missing sensor data.

« Experimental validation on four diverse wearable datasets to
demonstrate that AIM enables reliable imputation of missing
sensor data with minimal overhead.

II. RELATED WORK

Wearable devices are being increasingly used in health
applications [1-3, 17]. Integrating multiple sensors increases
the likelihood of one or more sensors being unavailable due to
energy constraints, user error, or communication challenges.
Therefore, there is a strong need for energy-efficient and
accuracy-preserving methods to recover missing data.

Recent work has proposed several methods to handle miss-
ing data in sensor based applications [9, 10, 12, 18, 19]. These
approaches typically use statistical or deep generative methods
to recover the missing data. Statistical methods, such as mean,
median, or regression use available data around the missing
instances to obtain an imputation [9, 10]. As such, they are
suitable to handle isolated missing data instances where data
around the missing samples is available. However, they are
not suitable for long sequences of sensor unavailability with
no reference data for statistical methods, which is the focus
of this paper. Deep generative methods have been recently
proposed to handle longer sequences of missing data [12, 20].
For instance, [12] employs a generative adversarial imputation
network (GAIN) to impute the data. Specifically, the GAIN
approach imputes the missing data conditioned upon observed

Design time (offline) -
Missing data Initialize
Scenarios Imputation I

User Data and Labels Train Baseline

Classifier

Labeled N OFor each training data X

Classify Obtain
with X logits
Classify Obtain
F: with [logits

data &

LossE

Gradient
Descent

Table of Imputation

patterns Update imputation
TT
S Runtime (Online)
Data with one or Impute using ML Prediction
more sensors . —
saved table Classifier

unavailable

Fig. 2: Overview of the proposed accuracy-preserving imputation approach.

data. Similarly, the work in [20] employs deep auto-encoder
models to impute EEG recordings from multiple patients and
data collection days. However, the primary limitation of deep
learning methods is the high memory overhead and the energy
cost of performing imputation at runtime.

To precisely fill this gap in the current knowledge, this pa-
per develops a novel and energy-efficient accuracy-preserving
imputation method to handle missing sensor data at runtime.

III. BACKGROUND AND PROBLEM SETUP

This section first provides the background on wearable
devices and introduces the missing sensor data problem.

A. Wearable Devices Preliminaries

We consider wearable systems with multiple sensors
mounted on the body, as shown in Figure 2. The sensors
are used to monitor physical and physiological parameters
for applications including mobile health, which we use as
the running example. Since the sensor data is continuous and
streaming in nature, wearable devices perform the following
steps to enable health assessment.

Data Segmentation: The streaming time series sensor data
must be divided into equal sized windows for periodic health
assessment and to provide fixed-sized inputs to the ML mod-
els. Given n sensors and 7" samples in each window, we denote
the time-series sensor data with the variable X € R"*T,

Feature Generation and Classification: The time-series sen-
sor data in each window X € R™"*T" are fed into feature gen-
eration and classifier blocks to perform the health assessment.
Labeled pairs of sensor data X € R™*7 and the class label y
are used to train a classifier Fy, where 6 are the parameters for
the classifier. At runtime, the sensor data and trained classifier
are used to predict class labels of interest.

B. Missing Sensor Data and Imputation Challenges

Depending on the length of unavailability, we can classify
the missing data patterns into two main categories as follows.

Random Missing Data: In this case, the sensor encounters
isolated missing samples that are not clustered around any
particular time instance. Prior work has proposed a number of
approaches to handle random missing data [9, 10]. Random
missing data is typically easier to handle since data around the

missing instance is available for imputation. Therefore, we do
not consider the random missing case and focus our attention
on the more challenging block missing case described next.

Block Missing Data: Block missing data occurs when long
sequences of sensor data are unavailable at runtime. The
block missing data is challenging to recover since it does not
contain any reference data for the missing sensors. Moreover,
in a system with n sensors, we can have 2" — 2 possible
combinations of block missing data.

C. Problem Setup

Let X € R™"*T be the time-series sensor data, where n is
the total number of sensor channels and 7' is the number of
samples in each input window. We denote every input X €
R™T as [Xy, -+, X;, -+, X,,] where X; € RT corresponds
to a channel 7 of X. The class label for each window is denoted
by y. We denote the set of training examples D as several input
X and ground-truth output y pairs. Standard ML algorithms
use the given data D to train a classifier Fy which takes time-
series X as input to predict the corresponding class label g,
where 6 stands for parameters of the classifier.

During inference, the data from one or more sensors might
be missing. Let {j }o<;<n represent the subset of channels that
are missing at runtime for a given input X. We denote the new
input that has {j} missing channels by X{j} € R™*T:

[0" ifi e {j}
VT ifig {5}
For example, for a human activity recognition (HAR) ap-
plication, when one of the sensors goes missing, its three
accelerometer channels data {j} = {1, 2, 3} will have 0 value.
This missing data in the input results in misclassifications
(g # y) by the classifier Fy as seen in Figure 1. Consequently,
the overall performance of the classifier and quality of appli-
cation service during deployment will degrade significantly.

ey

IV. SEARCH BASED ACCURACY-PRESERVING IMPUTATION

This section describes the accuracy-preserving imputation
(AIM) algorithm to solve missing sensor data challenge for
wearable applications. We first provide an overview of the
AIM approach and list the two synergistic design principles
behind AIM. Next, we describe the details of the algorithmic
approaches which instantiate those two design principles.

Overview of AIM Approach: During the offline configuration
of AIM, we perform the following two steps sequentially, as
shown in Figure 2. First, we train a robust ML classifier Fy
that can make accurate predictions for small perturbations of
time-series signals in the training data (i.e., no missingness).
This step ensures accuracy even if there are small errors in the
imputed values. Second, given the trained ML classifier Fp,
for each candidate missing sensors configuration, we execute
a search algorithm to compute the most likely imputation
pattern that preserves the accuracy of the classifier Fy using the
training data. The output of this step is a lookup table Z that
stores one imputation pattern for each missing configuration.
At runtime, given an input X with some missing channels (one

for each sensor), we impute the missing data using appropriate
imputation pattern from the lookup table Z (i.e., negligible
overhead) and then use the classifier Fy to make prediction.
Design Principles: AIM meets the desiderata of an effective
solution for missing sensor data based on two synergistic
principles. 1) Accuracy-preserving imputation: there is no need
to recover the exact missing sensor data as long as the accuracy
of ML classifier is preserved. 2) Training robust classifiers:
training the ML classifier to make accurate predictions even
with small deviations from the exact sensor data distribution
will exhibit robustness to small errors in imputed data. Below
we provide algorithms to instantiate these two principles.

A. Search Algorithm for Accuracy-Preserving Imputation

Intuition: During the offline training phase with no missing
data, the ML classifier for wearable application achieves high
accuracy on the given classification task. Since the inputs are
multivariate time-series signals, the classifier relies on the in-
formation spread across n different channels to make accurate
predictions. Prior work has shown that classifiers rely on a
subset of critical channels to predict output labels [21]. This
means that in case of missing channels, the input possesses
enough information to allow the classifier to predict its true
label. Therefore, we set our goal to find a recovery data
pattern that lets the classifier predict the correct labels from the
available channels. The recovery pattern pushes the classifier
to predict the output label as if the data from all sensors is
available. In summary, we can view our solution as the search
for the most likely data pattern to impute the data for missing
sensors for preserving the accuracy of the given ML classifier.

Algorithm: Formally, given a ML classifier Fj, for any input
X = [X1, -+ ,X,] and a fixed set of missing channels {j},
we search for an imputation pattern Z;c ;1 € RT s.t.:

T — Ij leE{j} and FQ(X)%FQ(I{]})
VG ifig ()

We note that Z;¢ ;1 does not depend on the available sensor
data of the input X. Every imputation pattern is stored in
a look up table indexed by the combination of the missing
channels {j}o<;<n where the samples are missing. We con-
duct this search for each missing sensor data configuration
during design time (offline) where the goal is to find for
every combination of {;} missing channels, the corresponding
imputation pattern Z;c(;y that yields a prediction similar to
the prediction on the original input without any missingness.
Hence, at runtime, we use the stored lookup table to select the
appropriate imputation pattern with negligible overhead.

We find imputation patterns based on a given set of missing
channels {j}o<;<, (missing configuration) that preserves the
accuracy of classifier Fy. We define our overall objective for
the search of imputation pattern as shown below:

Given {]} : We find I{j} s.t. VX, F@(X) ~ FQ(I{J'}> 3)
We compute the imputation pattern to fill values of the missing
channels by solving the minimization problem below:

min c(Logits(Fg(X)), Logits(Fy (Z,))) @)

Tietsy

2)

Algorithm 1 AIM Search for accuracy-preserving imputation

Input: Training set D = {X}; Fy, pre-trained classifier on D = {(X,y)};
{4}, missing sensors configuration; M A X ¢, maximum iterations for gradient
descent; M AX, maximum iterations over all inputs
Output: {Z;¢c;}}, imputation pattern.

1: Random initialization of the set {Z;c(;1}

2: for i=1,---, MAX do

3: for each training example X do

4. for ig=1,---, MAXg do

5 Compute the classifier’s logits values: 1gX = Logits(Fp (X))
6: Compute the classifier’s logits values: 1g] = Logits(Fy(Z(;3))
7: Estimate the loss £(1gX,1g])

8: Estimate the gradient V7 1 £ for j € {7}

9: Perform gradient descent and update {Z;} for j € {j}

10: end for

11: end for

12: end for

13: return imputation pattern {Ije{ j}} as per the requirements of Eq.2

The loss function £ over the logits outcome of the classifier
is used for accuracy-preserving imputation pattern search.
The logits of a classifier are interpreted as the unnormalized
predictions for each candidate class label and input time-series
signal pair. The role of this loss function is to compute the
similarity between the prediction outcomes of the classifier
Fy for the original input example X (no missingness) and
the input with the imputed pattern Zy;y. For example, £ can
be the Mean Squared Error between the logits values of both
predictions Fy(X) and Fy(Zy;y). When L — 0, accuracy of
the classifier over imputed and original inputs will be similar.

Algorithm 1 shows the pseudo-code of proposed search
approach to compute accuracy-preserving imputation pattern
Zyjy- We set MAXg = 100 to ensure that AIM can find the
optimal imputation pattern per example X. Additionally, we
set M AX = 50 to ensure that AIM optimizes the imputation
pattern across the training data. The output of this algorithm
is used to populate a look-up table Z that maps the set of
missing channels {;} to the corresponding imputation pattern
{Z;}. Therefore, given a missing sensor data configuration {;}
and any input X at test time, we construct I{j} as shown in
Eq. 2 and employ the classifier Fy to predict the class label
after using Zy;, to impute the missing data in input X.

B. Training Robust Classifiers for Improved Effectiveness

Recall that we store one imputation pattern for each miss-
ingness configuration to preserve the accuracy and AIM’s
imputation strategy does not depend on the available sensor
data of the given input X. As a result, AIM has negligible
overhead, but ML classifier may not make correct predictions
with generic imputation patterns for a small fraction of the
input examples. Therefore, we propose to train ML classifiers
to be robust to small errors in the imputed data.

The motivation to train robust ML classifiers is two-fold.
First, the ML classifier is less sensitive to the natural noise
in the training data. As a result, we will be able to find
more robust imputation patterns using our search algorithm
and robust ML classifier. Second, the ML classifier will be
more robust to small errors in the imputed data at the runtime.

We train robust a ML classifier using data augmentation
and propose to apply the recent framework of generating

augmented data for time-series signals based on their statistical
features [22, 23]. The key idea is to generate small pertur-
bations over the original time-series signals in the training
data which preserve the statistical features. To instantiate this
framework for our specific use-case, we employ the following
statistical features: mean absolute error, statistical average,
and root mean square. Additionally, for HAR applications, we
include the body acceleration feature due to its high relevance.

V. EXPERIMENTS AND RESULTS

This section analyzes the performance of the proposed data
recovery approach on four datasets along different dimensions.

A. Experimental Setup

1) Wearable Device Setup: We employ the Odroid-XU3
board [16] for sensor data processing, while noting that
any low-power processor can be used. Odroid-XU3 contains
four high-performance ARM Cortex-A15 and four low-power
Cortex-A7 cores. We use the Odroid-XU3 to store the impu-
tation table and measure the overhead on A7 cores.

2) Datasets: AIM is validated using four datasets described
below. To validate the proposed missing data recovery ap-
proach, we vary the number of missing sensors for each dataset
with n sensors from one to n — 1.

Shoaib et al. [8]: The Shoaib dataset includes three-axis
accelerometer data for 10 users performing seven activities.
The dataset has accelerometer sensors at five locations on the
body: left pocket, right pocket, wrist, belt and upper arm.
PAMAP2 [13]: PAMAP2 is a HAR dataset that provides data
from three accelerometers for five activities with nine users.
eRing [14]: eRing is a smart health dataset that uses a ring to
capture data along four dimensions. The eRing dataset allows
us to test the efficacy of AIM in gesture recognition settings.
SelfRegulationSCP1 (SR-SCP1) [15]: SR-SCP1 is a health
monitoring dataset that includes EEG data from six channels.
The data from EEG sensors is used to develop a control system
to drive spelling devices for completely paralyzed patients.

3) Evaluation Metrics: We employ accuracy, memory, and
energy consumption as evaluation metrics. Accuracy is used
as a metric because accuracy is of utmost importance in health
applications. Similarly, memory and energy are important for
wearable devices due to resource constraints.

4) Classifier Representation: We use a 1-D convolutional
neural network (CNN) as the classifier for all datasets. Specifi-
cally, we use a 1-D CNN with one conv. and max-pooling lay-
ers, and two fully connected layers with the ReLU activation
and dropout value of 20%. We use the Adam optimizer [24]
over 20 epochs for both standard and robust training.

B. Baseline Methods for Comparison

The proposed data recovery approach is compared against
baseline approaches described below.
GAIN [12]: GAIN is a generative approach that recovers
missing data as a function of the observed data. GAIN trains a
deep neural network that takes the observed data and a mask
specifying the missing time instances as input. The output of
the generator is a data matrix that consists of imputed values.

------- Standard ¥ Zerofilling Average filling AIM ¢ GAIN
Shoaib ERing

> 100 = S5 8 .. > 100 +—= I GT 96%83 86 ..
8 75 %76 8l 6 71 3 75 w74 75 -
> =]
8 so0 fex fsais7 51 | 3 s0 e, o1
f‘ 25 6 %7 B4 f’ 25
wn (%) ;
@ o #10 § 20

a) 1 2 3 4 b) 1 2 3

Number of missing sensors Number of missing sensors

100 SelfRegulationSCP1 100 PAMAP?2
> et IO s IR ks ey st annenns T e e ensessnss s an e P 937 GG
S 75| 08585 %'75758’86 %72768 5 81 78| 8 75 Y74 179 8L
E 765 164 3 ¥s58
$ 50 g g 50 53
% 25 %25 +BO
~ 0 ” 0

c) 1 2 3 4 5 d) 1 2

Number of missing sensors

Number of missing sensors

Fig. 3: Accuracy (Mean and standard deviation) of the robust-trained ML classifier via different imputation methods on all combinations of missing sensors.
ERing

One of the disadvantages of the GAIN approach is the high
memory requirement for storage of the generator parameters
and energy overhead for each imputation. Moreover, genera-
tive models for time-series data are challenging to train [25],
which can affect their accuracy in complex tasks.

Zero Filling: In the absence of any data recovery algorithm,
missing data will typically be filled with zeros. Therefore, we
use it as one of the baselines for comparison. Filling missing
values with previously observed data is not feasible since we
assume the sensor is missing for the entire experiment.
Average Filling: Another realistic alternative for zero-filling
is to fill the missing data with pre-determined values that
represent the average case over the training data with no
missingness. These values are determined by averaging sensor
data across all training time-series signals.

C. Application Accuracy with Imputed Data

We start the experimental evaluation by analyzing the ac-
curacy of the health applications under different missing data
scenarios. For each dataset, we first train a classifier to perform
the application tasks. Once the classifier is trained, we use it
with the proposed search algorithm to find likely patterns of
sensor data when one or more sensors are missing.

Figure 3 shows the comparison of accuracy for all four
datasets. Each point on the figure shows the mean and standard
deviation of the accuracy over all possible combinations of
missing sensors. For example, in case of two missing sensors
in the Shoaib dataset, we obtain the average and standard
deviation over (g) combinations of possible scenarios. We see
that missing data with zero-filling or average-filling settings
have a significant drop in accuracy. For example, for both
HAR datasets, a single missing sensor results in more than
20% drop in average accuracy. In contrast, using the same
classifier and missing data cases, AIM is able to efficiently
recover the classification performance. Even when data from
the entire window is missing, AIM is able to produce an
average performance within 5% of the original accuracy for all
datasets. AIM also succeeds in improving average performance
of the classifiers on HAR datasets by 15% in the highly-
unlikely case where almost all sensors are missing. Addi-
tionally, the confusion matrices in Figure 4 show that AIM

PAMAP2

O 8 KENO O
0 2 0 [gEf 0

3
9
0O 0 0 0 O
0

True label
v oA W N e O

3 4 1 2 3 4 1 2 3] 1 2 3
Predicted label Predicted label Predicted label Predicted label

Fig. 4: Confusion matrix normalized over the true labels of the deployed
classifier on ERing and PAMAP2 datasets using AIM (red) imputation
methods in the event of a single missing sensor. The same performance using
zero-filling (blue) is provided for reference.

improves the classification accuracy over different classes with
equal importance in spite using a single imputation pattern.
Compared to the imputation provided by the baseline GAIN
approach, AIM produces better results for most of the cases.
Notably, GAIN fails to recover the original accuracy when
more than one sensor is missing. GAIN has lower accuracy
than zero-filling in some cases because GAIN is unable
to follow real data accurately and incurs higher error. For
PAMAP2, the average performance is reduced from 58% to
30% for the GAIN algorithm. In summary, the AIM approach
is able to efficiently recover the data with low overhead, while
the baseline GAIN approach is unable to recover the accuracy
for more than one sensor missing and has a higher overhead.

D. Accuracy Improvement with Robust Classifiers

The AIM algorithm generates a pattern Zy;; to preserve
the accuracy of the classifier in the case of {j} missing input
channels. Ideally, the generated pattern requires small adjust-
ments to fit every input X to maintain Fy(X) ~ Fy(Zy;y).
To account for these adjustments, we use robust training
for the ML classifier to overcome small errors in imputed
data. Robust classifiers are also important because any health
application must be able to handle small variations in data
either due to natural disturbances or imputation. To this end,
we compare the accuracy of the proposed robust classifiers
with the standard classifier in Table I. Indeed, the table shows
that robust training overcomes errors due to small imputation
deviations by improving the average accuracy for majority of
cases while reducing standard deviation. For example, SR-
SCP1 has an increase of 6% in recovered accuracy with a

TABLE I: Classification accuracy of the imputed data of k missing sensors
generated by AIM using different standard and robust training protocols. Table
entries show mean with standard deviation in parantheses.

Dataset k£ Standard Robust ‘ Dataset k Standard Robust
1 91 (2) 94 (1) 1 79 (8) 85 (1)
Shoaib 2 80 (5) 84 (9) 2 79 (8) 85 (2)
3 69 (13) 71 (13) | SR-SCP1 3 79 (8) 84 (2)
4 50 (12) 51 (12) 4 81 (9) 81 (9)
1 95 (1) 96 (0) 5 73 (5) 78 (12)
ERing 2 84 (8) 86 (7) 1 92 (2) 93 (0)
3 60 (2) 63 (8) PAMAP2 2 75 (3) 77 (11)

standard deviation of 1%. Overall, robust training is able to
provide higher accuracy while reducing standard deviation.

E. Implementation Overhead

One of the primary advantages of AIM is low memory
and energy overhead. Table II shows the memory overhead
for AIM and GAIN, respectively. GAIN incurs high memory
overhead to store the parameters of the generator network. In
contrast, AIM has less than 1 MB memory overhead. AIM
memory requirements are minimal even when the wearable
device includes multiple health applications. The memory
overhead for AIM can be further reduced by loading only the
required imputation setting on detecting missing data.

Next, Figure 5(a) compares energy consumption of GAIN
and AIM for all datasets. The energy consumption is obtained
using power sensors on the Odroid-XU3 board. We see that
AIM consumes less than 10 mJ per imputation while GAIN
has significantly higher energy consumption. For instance,
energy consumption for the SR-SCP1 dataset is close to 1 J
for each imputation. Similarly, Figure 5(b) shows percentage
energy savings achieved by AIM when compared to GAIN.
The energy savings are close to 98% for all datasets except
eRing. The eRing dataset has lower energy savings of about
74% since it has lower computation requirements for both
GAIN and AIM, resulting in lower energy savings. In sum-
mary, the AIM approach provides superior performance over
prior approaches while incurring significantly lower overhead.

TABLE II: Summary of memory overhead of AIM and GAIN approaches

Dataset AIM Memory (MB) GAIN Memory (MB)
Shoaib 0.180 25
PAMAP2 0.055 60
eRing 0.007 0.19
SR-SCP1 0.667 81
[1 GAN KXY AIM
=1000 $100

~E g0t
29 60f
o 240t
w'= 20F

a0

20 7T O ?'\
b o p? @0 s
(b) QPN\ B 6?\,6

£ 100

X T
[

G 0.1

‘ e\ P?'L ?;\(\g 0?\
(@ e Q?‘\‘\ e 5?\,%

Fig. 5: a) Comparison of energy consumption for GAIN and AIM approach.
The y-axis is shown in log scale to represent the large range of values. b)
Energy savings achieved by AIM when compared to GAIN.

VI. CONCLUSION

Wearable devices are transforming a number of high-impact
applications. However, they may suffer loss in the quality of

service due to one or more sensors being unavailable at run-
time. This paper presented a novel search-based algorithm that
obtains most likely imputation patterns of sensor data for each
missing data scenario via offline analytics. Experiments on four
diverse wearable sensor based time-series benchmarks showed
that the proposed approach is able to maintain accuracy within
5% of the ideal accuracy when the number of missing sensors
is less than two, with negligible runtime overhead.

[1]
[2]
[3]
[4]

[5]
[6]

[7]
[8]
[9]

[10]

[11]

[12]
[13]

[14]

[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

REFERENCES

A. Mosenia et al., “Wearable Medical Sensor-Based System Design: A
Survey,” IEEE TMSCS., vol. 3, no. 2, pp. 124-138, 2017.

A. Limaye and T. Adegbija, “HERMIT: A Benchmark Suite for the
Internet of Medical Things,” IEEE IoT J., vol. 5, no. 5, 2018.

A. J. Espay et al., “Technology in Parkinson’s Disease: Challenges and
Opportunities,” Movt. Disorders, vol. 31, no. 9, pp. 1272-1282, 2016.
P. Zappi et al., “Activity Recognition from On-Body Sensors by Classi-
fier Fusion: Sensor Scalability and Robustness,” in Proc. Int. Conf. on
Intell. Sensors, Sensor Netw. and Info., 2007, pp. 281-286.

H. Kim et al., “Collaborative Classification for Daily Activity Recogni-
tion with a Smartwatch,” in Proc. SMC, 2016, pp. 003 707-003 712.

S. Liu er al., “Handling Missing Sensors in Topology-Aware IoT
Applications with Gated Graph Neural Network,” Proc. IMWUT, vol. 4,
no. 3, pp. 1-31, 2020.

K. Kunze and P. Lukowicz, “Sensor Placement Variations in Wearable
Activity Recognition,” IEEE Perv. Comput., vol. 13, no. 4, 2014.

M. Shoaib et al., “Fusion of Smartphone Motion Sensors for Physical
Activity Recognition,” Sensors, vol. 14, no. 6, pp. 10 146-10 176, 2014.
I. M. Pires et al., “Improving Human Activity Monitoring by Imputation
of Missing Sensory Data: Experimental Study,” Future Internet, vol. 12,
no. 9, p. 155, 2020.

T. De Waal, J. Pannekoek, and S. Scholtus, Handbook of Statistical Data
Editing and Imputation. John Wiley & Sons, 2011, vol. 563.

T. Hossain and S. Inoue, “A Comparative Study on Missing Data
Handling Using Machine Learning for Human Activity Recognition,”
in Proc. ICIEV and icIVPR, 2019, pp. 124-129.

J. Yoon, J. Jordon, and M. Schaar, “GAIN: Missing Data Imputation
Using Generative Adversarial Nets,” in ICML, 2018, pp. 5689-5698.
A. Reiss and D. Stricker, “Introducing a New Benchmarked Dataset for
Activity Monitoring,” in ISWC, 2012, pp. 108-109.

M. Wilhelm et al., “eRing: Multiple Finger Gesture Recognition with
One Ring Using an Electric Field,” in Proc. Int. Work. on Sensor-based
Activity Recognition and Interaction, 2015, pp. 1-6.

N. Birbaumer er al., “A Brain-Controlled Spelling Device for the
Completely Paralyzed,” Nature, pp. 297-298, 2001.

Hardkernel. (2014) Odroid-xu3. https://www.hardkernel.com/shop/
odroid-xu3/ Accessed 11/20/2020.

G. Bhat, N. Tran, H. Shill, and U. Y. Ogras, “w-HAR: An Activity
Recognition Dataset and Framework using Low-Power Wearable De-
vices,” Sensors, vol. 20, no. 18, p. 5356, 2020.

Z. Guo et al., “A Data Imputation Method for Multivariate Time Series
Based on Generative Adversarial Network,” Neurocomputing, vol. 360,
pp. 185-197, 2019.

D. Hussein, A. Jain, and G. Bhat, “Robust Human Activity Recognition
Using Generative Adversarial Imputation Networks,” in Proc. DATE,
2022, pp. 84-87.

S. Talukder et al., “Deep Neural Imputation: A Framework for Recov-
ering Incomplete Brain Recordings,” arXiv:2206.08094, 2022.

T. Belkhouja and J. R. Doppa, “Analyzing Deep Learning for Time-
Series Data Through Adversarial Lens in Mobile and IoT Applications,”
IEEE TCAD, vol. 39, no. 11, pp. 3190-3201, 2020.

——, “Adversarial Framework with Certified Robustness for Time-
Series Domain via Statistical Features,” JAIR, 2022.

D. Hussein et al., “Reliable Machine Learning for Wearable Activity
Monitoring: Novel Algorithms and Theoretical Guarantees,” in Proc.
ICCAD, 2022, pp. 1-9.

D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
in The Int. Conf. on Learning Representations (Poster), 2015.

E. Brophy, Z. Wang, Q. She, and T. Ward, “Generative Adversarial
Networks in Time Series: A Survey and Taxonomy,” arXiv preprint
arXiv:2107.11098, 2021.

