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Naturality and functoriality in involutive
Heegaard Floer homology

Kristen Hendricks, Jennifer Hom, Matthew Stoffregen, and Ian Zemke

Abstract. We prove first-order naturality of involutive Heegaard Floer homology, and further-

more, construct well-defined maps on involutive Heegaard Floer homology associated to cobor-
disms between three-manifolds. We also prove analogous naturality and functoriality results

for involutive Floer theory for knots and links. The proof relies on the doubling model for the

involution, as well as several variations.
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1. Introduction

Heegaard Floer homology, defined by Ozsvath and Szabd in the early 2000s [22, 23],
is a powerful suite of invariants of 3-manifolds, knots and links inside of them, and
4-dimensional cobordisms between them. Given a basepointed 3-manifold (Y, w)
together with a choice of Spin€ structure s on Y, the initial construction of the invari-
ant goes by choosing a Heegaard diagram J¢ for (Y, w) and associating to it a free
finitely-generated chain complex CF~ (#, ) over the ring F[U], where U is a vari-
able of degree —2. If ¢ and H’ are two Heegaard diagrams representing (Y, w),
the Reidemeister—Singer theorem implies that there is some sequence of Heegaard
moves that may be applied to J# to produce a diagram related to #’ by a basepoint-
preserving diffeomorphism isotopic to the identity in Y. Ozsvith and Szabd [23,
Section 9.2] proved that these sequences of moves induce transition maps, that is,
chain homotopy equivalences

Wy 3. CF (H,s) — CF(H',s),
showing that the isomorphism class of the homology group

HF ()= D HF (J.s)
s€Spin© (Y)

is an invariant of (Y, w).

Juhdsz, Thurston, and the fourth author [9] proved that this data is first-order nat-
ural in the sense that the maps W g _, % are independent up to chain homotopy of the
choice of Heegaard moves and diffeomorphisms isotopic to the identity relating the
two diagrams. (Here, “first-order” means that the chain homotopies relating the tran-
sition maps associated to two possible sequences of Heegaard moves are not known
to be independent of the choices involved in their definition.) It follows that Hee-
gaard Floer homology associates to (Y, w) a specific module HF~ (Y, w) rather than
an isomorphism class of F [U]-modules.

In 2015, the first author and Manolescu [5] put additional structure on the Hee-
gaard Floer package in the form of a homotopy involution ¢, leading to involutive
Heegaard Floer homology. The construction of the invariant goes as follows: given a
basepointed 3-manifold (Y, w) together with a conjugation-invariant Spin® structure
s on Y, there is a chain isomorphism

n:CF~(¥,3) — CF~(#,s),

where # denotes the conjugate Heegaard diagram. One may then compose with the
transition map
Vo 0 CF (H,5) > CF (H,3)
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obtaining the map ¢. This data is variously packaged either as the pair (CF~ (Y), ¢),
called an (-complex, or as the mapping cone

CFI™(J,5) = Cone(CF~ (3¢, 5) 2% 0. cF (3, 5)[~1]).
Here, Q is a formal variable of degree —1, and we view the cone as a complex over
F[U, 0]/ Q2. Juhasz—Thurston—Zemke naturality implies that the equivariant chain
homotopy equivalence class of the pair (CF~ (¥, s), (), or equivalently F[U, 0]/ 02
chain homotopy equivalence class of CFI™ (#,s), is an invariant of Y [5, Section
2.1]. However, this does not suffice to show that involutive Heegaard Floer homology
is itself natural.

In this paper, we prove that the involutive Heegaard Floer homology is a natu-
ral invariant of the basepointed 3-manifold (Y, w) together with a choice of framing
& = (&1, &, &3) of the oriented normal bundle to the basepoint; equivalently, that
transition maps between the involutive complexes induced by Heegaard moves and
basepointed diffeomorphisms isotopic to the identity in ¥ which preserve £ are unique
up to homotopy. Our proof relies on equipping a Heegaard diagram # for (Y, w, &)
with a set of doubling data which is used to give a tractable model for the involution.
We write © for a Heegaard diagram J# equipped with such a collection of data, and
we refer to such a ® as a doubling enhanced Heegaard diagram for (Y, w, §). We refer
to the involutive Heegaard Floer homology of (¥, w, &) as defined using the Heegaard
diagram 4 with this model for the involution as CFI~ (). (For more information on
the doubling model for the involution, see Section 1.2.)

We also describe a set of moves which relate any two choices of doubling enhanced
Heegaard diagrams. Given a sequence of such moves relating ® and D', we define a
transition map

Ve .o : CFI (D) — CFI (D)

and show they are independent of the sequence chosen, as follows.
Theorem 1.1. The transition map Vo _, 5y is independent up to F[U, Q]/ Q?-equi-

variant chain homotopy from the sequence of moves between doubling enhanced
Heegaard diagrams. Furthermore, Vo _,o >~ id, and Vo, proVp 5 >~ Ve _, .

Remark 1.2. The involutive transition map Wg_, 5/ above contains data equivalent
to a pair (Vy—_z/, Hp—9’), where Wy _, 5/ is the non-involutive transition map
from CF~ (#) to CF~ (#'), and Hp_, 5y is a distinguished chain-homotopy between
W, 07t and L5 W g, g/. In this manner, Theorem 1.1 implies that the chain homo-
topy Hp_, 5 is also well defined, up to a suitable notion of further chain-homotopy.

Given a 4-dimensional cobordism W with

W = -1, ]_[Y2
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and a Spin® structure s on W, Ozsvdth and Szabé [23] also constructed cobordism
maps
CF(W,s) : CF~ (Y1, w1, 8ly,) = CF (Y2, w2, 8|y,).

These maps depend on a choice of path y connecting the basepoints in Y; and Y, but
are otherwise independent of choices made in their definition [23, Sections 8 and 9],
cf. also [39, Corollary F].

In [5], the first author and Manolescu gave a construction of cobordism maps on
involutive Heegaard Floer homology, but did not show their construction was invariant
of a choice of handle decomposition of the cobordism. In this paper, we refine the
construction to give maps

CFI(W.E,s) : CFI" (Y1, w1, 8ly,.&y,) = CFI (Y2, w2, 8|y, £y,)

associated to a cobordism W from Y; to Y,, a conjugation-invariant Spin® structure
on W, and a choice of framing & of the normal bundle to a choice of path y which
induces the framings £y, of the normal bundle to the basepoint w; in ¥;. We prove
these maps are well defined in the following sense.

Theorem 1.3. The cobordism map CFI(W, &, s) is well defined; that is, it depends
only on the choice of W, s, y, and &.

Our theory has some subtle differences from the Oszvath—Szabé cobordism maps;
in particular, the role of duality is not presently obvious. See Remark 14.2 for further
discussion.

Heegaard Floer homology have a counterpart for knots and links in 3-manifolds,
introduced by Ozsviath and Szab6 [21] and independently in the case of knots by J.
Rasmussen [28]. In its modern form, this theory associates to a Heegaard diagram #
for a link L in a 3-manifold Y, with two basepoints w; and z; on each component, a
chain complex €F L (H) over the ring F[Uq, Vq,..., Uy, V,]. This again decomposes
over Spin¢ structures on Y such that

eFLH) = P eFL(H.s).
s€Spin€ (Y)
As previously, there are maps associated to sequence of Heegaard moves between
Heegaard diagrams J# and #’' for (Y, L, w, z):
Wy g CFL(H,3) > CFL(H,3).

These maps are again well defined up to chain homotopy [9, Theorem 1.8].
The first author and Manolescu [5] defined an endomorphism (7, on €FL(H),
called the link involution, in analogy with the procedure for defining the 3-manifold
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involution ¢, and showed that the equivariant chain homotopy equivalence class of the
pair
CFLI(H) = (CFL(H), 1)

is an invariant of (¥, L). (We note that [5] focused on the case of knots, rather than
links, but the same construction works for links.) The doubling model for the involu-
tion ¢ on 3-manifolds may be adapted to a model for the endomorphism ¢z, . We use this
model to prove naturality and functoriality of the link variant of Floer homology in
the following sense. Once again, we let © denote an appropriate set of doubling data
for a Heegaard diagram # for (¥, L, w, z), and let €F £ I (D) refer to the (7 -complex
defined using this data. This data need not include a framing of either basepoint; see
the discussion in Section 17.7 for more on this issue. Given a sequence of Heegaard
moves relating two doubling-enhanced Heegaard link diagrams, we define a transition
map
Uy o CFLI(D) - CFLI(D)

which are enhanced ¢z -homomorphisms. (Types of morphisms between (7, complexes
are reviewed in Section 2.5.) We then prove the following.

Theorem 1.4. The transition maps Vo5 are well defined up to homotopies of
morphisms of 11, -complexes.

The fourth author [35], following work of Juhasz [7], defined maps associated to
decorated link cobordisms (W, X, s) between (Y1, L1, w1, 22, s|y,) and (Y2, Lo, w»,
Z,9ly,) as follows:

f?i(W, E, 5) . €$’$(Y1, Ll, w1,21,9|yl) — fﬁx(Yz, L2, W2,22,5|Y2),

which are again invariant of the choices involved in their definitions. Here, the pair
(W, X) consists of a compact 4-manifold W with embedded surface X such that W is
a cobordism from Y; to Y, and

0T = —1, ]_[ Lo,

together with some decorations on 3. We will be interested in the case that 3 is a
collection of annuli, each with one boundary component in ¥; and one in Y5, and each
decorated with two parallel longitudinal arcs. Maps associated to knot concordances
or knot cobordisms have also appeared in [1,8,31].

Given a link cobordism (W, X) from (Y7, L1, w, z) to (Y2, L, w, z) consisting of
a set of annuli each with two parallel longitudinal arcs as described above, and a Spin©
structure s on W with the property that 3 = s + PD([X]), we construct cobordism
maps

CFLIW,S,5): CFLI(Y). L1, w.z,5|y,) = CFLI(Y2, Ly, w. z,5y,),
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which are again enhanced homomorphisms of (7 -complexes. We prove the following
functoriality theorem.

Theorem 1.5. The cobordism maps €F LI (W, X, s) are well defined up to homo-
topies of 11 -complexes.

1.1. Computations and examples

In our paper, we also perform several example computations. The first example we
present is for the cobordism W = S2 x §2, with its unique self-conjugate Spin° struc-
ture 3. If we remove two 4-balls from W, we obtain a cobordism from S3 to S3, and
hence a map

CFI(W.§.%):F[U, 0]/ 0* — F[U. 0]/ 0.

In Section 14, we show via a direct diagrammatic computation that CFI(W, &, s) is
multiplication by Q. (The choice of framings does not affect the result in this case.)
This agrees with the prediction from Pin(2)-equivariant monopole Floer homology;
see the proof of [13, Theorem 5].

As a second example, we compute certain 2-handle cobordisms using the knot sur-
gery formula from [4]. We recall that to a knot K C 3, Ozsvith and Szab6 [27, The-
orem 1.1] described a complex X, (K) which computes CF~(S2(K)). Therein, they
also described a way of computing the non-involutive cobordism map CF(W,(K), s)
in terms of €¥ K (K), where W, (K) denotes the natural 2-handle cobordism from
S3 to S3(K), for each s € Spin®(W;(K)). In [4], we described an involutive refine-
ment of Ozsvath and Szabd’s mapping cone formula, which we denoted by XTI, (K),
and which computes CFI(S2(K)). In Section 16, we describe a refinement of our
work from [4] which computes certain cobordism maps. From the description in [4],
it turns out to be most convenient to consider the cobordism W, (K) from S2(K) to
S3 obtained by reversing the orientation of W, (K). This manifold possesses a self-
conjugate Spin® structure if and only if 7 is even. In Theorem 16.1, we describe an
algebraic formula for the involutive cobordism map CFI(W,,(K), £, s) when s is the
unique self-conjugate Spin® structure on W, (K). Again, the choice of framings does
not affect the computation.

1.2. The doubling model of the involution and several variations

The constructions of this paper rely on a model for the involution ¢, used in our pre-
vious paper [4], based on the procedure of doubling a Heegaard diagram. We now
briefly recall this model. If ¥ is a Heegaard splitting of Y, containing a basepoint
w, we construct another Heegaard splitting D(X) of Y, with D(X) = T#X, which
is embedded as the boundary of a regular neighborhood of ¥ \ N(w). A schematic
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D(H)

Figure 1.1. Realizing the involution on S by doubling.

appears in Figure 1.1. The attaching curves for doubled diagrams are described in
Section 3.2. An important property of the doubling operation is that if # is a dia-
gram for Y, and D(#) is a double, then the maps relating CF~ (#) and CF~ (D(#))
have a conceptually simple form, and similarly for the maps from CF~ (D(#)) to
CF _(J? ); see Section 3.3. (Doubled Heegaard diagrams had previously been consid-
eredin [10,11,36].)

The proofs in the present paper require additional variations of this model for the
involution, based on adding extra basepoints or extra tubes between the two copies
of ¥ and X. In the 3-manifold case, we begin by describing transition maps between
the involutive complexes associated to Heegaard diagrams for a 3-manifold which
are related by elementary equivalences in terms of maps on the complexes associ-
ated to the doubled diagrams, and define maps for general handleslide equivalences
as compositions of the maps for elementary equivalences. However, it is somewhat
difficult to see that this construction fails to depend on the sequence of elementary
equivalences chosen. To show this, we consider an expanded version of this model,
in which an additional basepoint and pair of curves are added in the doubling region.
We introduce this model in detail in Section 7. Using this model we define transition
maps for handleslide equivalences which are more obviously invariant of the choices
involved, and then use this to prove invariance of the transition maps for the stan-
dard doubling model. In the case of knots and links, our situation is somewhat more
technically complex, so for simplicity we in fact work solely with the analog of the
expanded model for the involution. Throughout, the curve-counting arguments in our
computations rely heavily on the cylindrical formulation of [14].

Remark 1.6. We emphasize here that there are two possible doubling models one
could use to construct the map ¢ and our cobordism maps. The model described
above and pictured in Figure 1.1 is called the beta-doubling model of the involu-
tion; the analogous construction with the roles of the alpha and beta curves reversed
is the alpha-doubling model. This distinction is examined more closely in Section 3.5.
Our techniques also show naturality and functoriality for involutive Heegaard Floer
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Figure 1.2. The effect of changing the framing on the doubled diagram from Figure 1.1.

homology constructed using the alpha-doubling model. We do not, however, attempt
to relate these two models.

1.3. The role of framings

Theorem 1.1 differs from Juhdsz—Thurston—Zemke naturality in the incorporation of
a framing of the normal bundle to the basepoint w in Y. In particular, CFI(Y, w) is
acted on not by Difft (Y, w), the orientation-preserving diffeomorphisms of (¥, w),
but by Diff/ (Y, w), the diffeomorphisms of (¥, w) which preserving the framing &
at the basepoint. The Dehn twist tw in a neighborhood of w is an example of a class
in 7o (Diff(Y, w, £)) which is trivial in 7o (Diff(Y, w)), but is not a priori trivial in
wo(Diff(Y, w, £)). We calculate the following.

Theorem 1.7. The element tw € mo(Diff/ (Y, w)) acts on CFI(Y, w) by Id + 0.

Here, ® is a formal derivative of the differential with respect to U ; for a review of
this map, see Section 2.3. The action of tw on CFI(Y, w) can also be interpreted as an
action of loops in the space of framings of (¥, w), as in Section 17. The space of such
framings is a copy of SO(3), and therefore has fundamental group 71 (SO(3)) = Z/2,
whose nontrivial element acts as tw above.

In the doubling model described above, the choice of framing affects the choice
of curves in the doubled diagram; concretely, it corresponds to a Dehn twist around a
meridian of the connect sum tube in S#X, as in Figure 1.2.

The reader will note that we do not require a framing of the basepoint for the
naturality and functoriality results for links. Heuristically, this follows from the fact
that the connect sum region of (any variation of) the doubled diagram for a link does
not contain a basepoint; for more details, see Section 17.7.

We expect that the dependence on the framings and the appearance of the map
@ in this computation are related to a conjectural Pin(2)-equivariant structure on
Heegaard Floer homology, in analogy with Manolescu’s Pin(2)-Seiberg Witten Floer
homology and Lin’s Pin(2)-monopole Floer homology, and hope to investigate this
connection in future work. We further note that the appearance of the framings in
our theorems implies that any infinite order naturality statement for Heegaard Floer
homology would necessarily also take framings of the basepoint into account.
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1.4. Organization

This paper is organized as follows. In Section 2, we discuss some algebraic prelim-
inaries and their Floer-theoretic counterparts; in particular, we discuss hypercubes
of chain complexes and hypercubes of attaching curves for a Heegaard surface. We
additionally review the algebraic formalism of (-complexes and their relationship to
hypercubes of chain complexes. In Section 3, we review some background on invo-
Iutive Heegaard Floer homology, and in particular recall the operation of doubling
a Heegaard diagram and the resulting model for the involution on Heegaard Floer
homology from [4]. In Section 4, we recall the structure of Juhdsz, Thurston, and
Zemke’s proof of naturality of ordinary Heegaard Floer homology and describe how
to adapt it to our case. In Section 5, we define transition maps for Heegaard dia-
grams related by elementary equivalences, and define general transition maps for
Heegaard diagrams related by handleslide equivalences as compositions of maps for
elementary equivalences. We prove in Proposition 5.4 that these maps satisfy the con-
tinuity axiom, in analogy with [9, Proposition 9.27]. In Section 6, we prove some
necessary technical results concerning stabilizations and holomorphic polygons, gen-
eralizing the results from our previous paper [4]. In Section 7, we introduce the
basepoint expanded doubling diagrams and the basepoint expanded model of the invo-
lution, and construct transition maps for handleslide equivalences using this model.
In Section 8, we define a chain homotopy equivalence between involutive chain com-
plexes associated to the ordinary and basepoint expanded doubles of a Heegaard
diagram, and prove that these maps commute with the transitions maps associated to
handleslide equivalences. We further show that the transition maps defined in Sec-
tion 7 for generalized handleslide equivalences are unique up to chain homotopy
equivalence, which proves the result for the non-expanded model. We then turn our
attention to constructing the maps between involutive complexes associated to cobor-
dism; in Section 9, we construct the maps associated to one- and three-handles and
in Section 10, we construct the maps associated to two-handles. In Section 11, we
define construct naturality maps for stabilizations as compositions of cobordism maps
associated to cancelling handles and prove they commute with the transition maps
associated to handleslide equivalences and with each other. In Section 12, we prove
invariance of our transition maps under handleswaps, in analogy with [9, Section
9.3]. Finally, in Section 13, we complete the proofs of Theorem 1.1, following the
structure of the proof in [9, Section 9.4], and of Theorem 1.3. As an example, in Sec-
tion 14, we present the calculation of the cobordism map for a twice punctured copy
of §2 x §2, decomposed as 2-handle cobordisms S* — S x $2 and S! x §2 — S3.
In Section 15, we describe how to adapt the naturality and functoriality results of the
previous sections to the case of knots and links, and prove Theorems 1.4 and 1.5.
We use this in Section 16 to provide a computation of the involutive cobordism map
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associated to the cobordism W, (K) from S32(K) to S3 for n even in terms of the
involutive mapping cone formula. We conclude by analyzing the effect of changing
the framing in Section 17, giving a proof of Theorem 1.7.

2. Algebraic preliminaries

2.1. Hypercubes and hyperboxes

In this section, we recall the hypercube formalism of Manolescu and Ozsvdth [18].
We write [E,, for the set of points {0, 1}* € Z". Similarly, if d = (d1,...,dy) is a
tuple of n positive integers, we write

E(d) ={0,...,d1} x---x{0,...,d}.
If ¢,&' € R", we say that ¢ < ¢’ if the inequality holds for each component of ¢ and &’.

Definition 2.1. An n-dimensional hypercube of chain complexes (C¢, DS“’"/)SE]EH is
a collection of groups C?, ranging over ¢ € [E,, together with a collection of maps
D& Ct - C 8/, whenever ¢ < ¢’. Furthermore, we assume the following compati-
bility condition is satisfied whenever ¢ < &”:

Z D" o D& = 0. 2.1)

glie<e/<g”

We usually call D%¢ the internal differential of C?. The hypercube structure
relation in equation (2.1) is equivalent to (P,cg, C% D o< D*®') being a chain
complex.

Definition 2.2. A hyperbox of chain complexes of size d consists of a collection of
groups (C®)gek(a), together with a choice of map D&’ C¢ — C*" whenever |¢/ —
g|poo < 1. We assume equation (2.1) holds whenever |¢” — g|po0 < 1.

An important operation involving hyperboxes is compression [18, Section 5]. This
operation takes a hyperbox of size d = (dy, ..., d,) and returns an n-dimensional
hypercube of chain complexes. We illustrate with an example. Consider a 1-dimen-

sional hyperbox

Jfo.1 f1.2 So—1.n

Co C Cn.

The compression of the above hyperbox is the hypercube

Sn—1.no0fo.1

Cy —— (.

More generally, the same description also works for an n-dimensional hyperbox
€ of size (1,...,1,d). That is, we may view € as a 1-dimensional hyperbox of size
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(d), which we call €’, where the complex at each point gg of E(d) is the (n — 1)-
dimensional hypercube €, = (D.cg, _, C*, D o< D?e0:¢20) viewed as a chain
complex. Schematically, €’ is represented as a diagram

Jo.1

2 Ja—1.a

N
I !/ /
where the maps f; ;41 are constructed as a sum of the maps DebEIH] for ¢ < ¢/ €
E,-1.
The definition given above for compression of a 1-dimensional hyperbox of chain

complexes then applies to construct a 1-dimensional hypercube:

Ja—1.a°°fo.1 €’

ne

€

Fore <¢' € E, withe, # ¢, the map D##’ of the compression of € is the component
of fg_1.40...0 fo. from €®to €%

For a hyperbox C of size (di, ..., d,), the above description may be iterated
to give the compression, as follows. This description depends on a choice of order-
ing of the axes of the cube. (The motivated reader may verify that re-ordering the
axes results in a homotopic hypercube.) Firstly, we may view C as a collection of
dy, ..., dy—1 hyperboxes of size (1,...,1,d,). We compress each of these hyper-
boxes using the function-composition description above. Stacking these hyperboxes
results in a hyperbox of size (di, ..., d,—1,1). We may view this as a collection of
di, ..., dn—3 hypercubes of size (1,...,1,d,—1, 1), which we compress using the
function-composition description. Stacking the resulting hyperboxes gives a hyper-
box of size (di,...,dy—2, 1, 1). Repeating this procedure gives the compression of
C. It is possible to relate this description to the description in terms of the algebra of
songs in [18], cf. [17, Section 4.1.2].

2.2. Hypercubes of attaching curves

In this section, we describe the notion of a hypercube in the Fukaya category. Such
objects are described by Manolescu and Ozsvath [18], and are referred to as hyper-
boxes of Heegaard diagrams. The reader may also compare this construction to Lip-
shitz, Ozsvath and Thurston’s notion of a chain complex of attaching circles [15]. The
construction is also described in [4, Section 5.5].

We begin with a preliminary definition about Spin® structures. Firstly, we say
£p = (B*)eeE,, is an empty hypercube of beta (or alpha)-attaching curves if it is a
collection of attaching curves on a surface ¥, indexed by points of E,. Let ¥, ¢,
be the 3-manifold determined by the two sets of attaching curves (B°!, B%2) and
Xe,....em b€ the smooth 4-manifold associated to the collection of sets of attaching
curves (B%L,..., B*") in the usual way [23, Section 8.1].
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Definition 2.3. (1) Suppose that £ = (B°)scE, is an empty hypercube of beta-
curves. A hypercube of Spin‘-structures for £p consists of a collection of Spin®
structures

@81,...,{:‘”1 - SPiHC(Xel,...,sm)

for each sequence ¢; < --+ < &, in E,, satisfying m > 1 and the following compat-
ibility relations. Firstly, if 1 <i < j < m, then &, ,,, is closed under the action
of 81H1(Y8i,8j). Secondly if &1 < .-+ < &y is a sequence, and &;; < ... <¢;; isa

subsequence, where 1 < iy < ... <i; <m,then @sil ....g;, 1s the image of &,

i 0 TCeY MR =8 e Em

under the natural restriction map

Spin© (X ) — Spin® (Xgi1 eees8i ).

15--5€m

@) If £4 = (a®)eek, and £g = (B°)seE,, are two empty hypercubes of alpha
and beta attaching curves, then a hypercube of Spin® structures for the pair (£, £g)
consists of the following. For every pair of sequences (v; < ... < vg) in E, and
(1 <...<egg)inE,, suchthatk + £ > 1, a set of Spin® structures &, | . v, ¢;,....ep S
Spin® (Xvg,.v1,61,...,6¢) that are closed under § L_orbits and compatible with restric-
tion, similar to above. The case that one of (v; < ... <vg)and (¢; < ... < g¢) is the

empty list is allowed.

Note that a hypercube of Spin® structures for the pair (£, £ ) induces a hyper-
cube of Spin® structures for each of £, and £4.

Definition 2.4. An n-dimensional hypercube of beta attaching curves &£ on a poin-
ted surface (X, w) consists of an empty hypercube of beta attaching curves (8°)¢cE,, ,
a hypercube of Spin® structures on &£ g, together with a choice of Floer chain ©, €
CF~ (X, B¢, B, w) whenever ¢ < &'. Furthermore, the chains are required to satisfy
the following compatibility condition, whenever ¢ < &’:

Z Jer.pe2,...pen (Ocen . Ogy_ye,) = 0. 22)

=g <-<ep=¢'

Here, fge1 ge2,... gen is polygon-counting map associated to (81, %2,..., B°") as
in [23, Section 8.1]. The sum is taken over Spin® structures according to the hypercube

of Spin® structures.

We will also write the Floer chain O ¢ as © e pe’ when it seems clearest to refer
to the sets of curves involved. In the above, we assume that each Heegaard multi-
diagram is weakly admissible, and the appropriate finiteness of counts so that the sum
makes sense. Assuming weak admissibility, one may always obtain a sensible expres-
sion by working over the power series ring [F[[U]]. Hypercubes of alpha attaching
curves are defined by a notational modification of the above definition.
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We may pair hypercubes of attaching curves, as follows. If £, = (a¢”, ©y/ )1 ¢E,,
and £g = (B, O )seE, are hypercubes of attaching curves for some hypercubes
of Spin® structures, and we have a hypercube of Spin® structures & for the pair
(£q, £) which extends the hypercubes for £, and £g, then we may form an
(n + m)-dimensional hypercube of chain complexes denoted by CF™ (£4, £, ©).
The group at index (v, ¢) is the ordinary Floer complex CF™ (X, ", 8%, &, ). The
morphism from (v, €) to (v, &’) is the map

Dy.e),v.en(x) = E ka,--‘,w,81,--.,81‘,@\% ..... V18] enE

‘):‘)1 <...<vk=‘)/
e=g| <-<gj=¢

X (O vpyseOuy X, 04, 65, ..., 0 ).

’ Ej—15€j

It is straightforward to use the compatibility condition in (2.2) to see that CF~ (£,
&L, ©) is a hypercube of chain complexes. In specific examples, we will also use the
abbreviated notation

BEl =B
aVl—..—aVk (x)

= ka,-..,v1,81,--.,€j,@vk ..... V]E] g (®Vkavk—1 [ ®v2,v1 » Xy ®81 €200t ®€j—1,€j)-

B

If v = v/, then we will usually write f‘ﬁ,s_’ ’ , and similarly if ¢ = ¢’. With respect

to this notation the hypercube map becomes

_ BEl—>..—>BES
D), 0.en(x) = > MO
v=v|<..<vg=v’
=g <..<g;=¢

We will also frequently substitute the letter 4 for f in the specific case of a map
counting pseudoholomorphic rectangles.

2.3. (-complexes
We recall the following definition from [5].

Definition 2.5. An (-complex is a chain complex (C, d) which is free and finitely gen-
erated over F[U] and equipped with an endomorphism ¢. Furthermore, the following
hold.

(1) C is equipped with a Z-grading, such that U has grading —2. We call this
grading the Maslov or homological grading.

(2) There is a grading preserving isomorphism U ' H,(C) = F[U,U™'].

(3) ¢ is a grading preserving chain map and ¢ ~ id.
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Definition 2.6. If (C,:) and (C’,!’) are t-complexes, we define the group of enhanced
t-morphisms to be

Mor((C, 1), (C",()) := Hompy)(C. C') & Hompy1(C, C")[1],

where Homp[¢/1(C, C’) denotes homogeneous (but not necessarily grading-preserv-
ing) morphisms and [1] denotes a grading shift. We define

Invor(F. h) = (0'F 4+ F3, Ft+ /' F + 3'h + hd),

which makes the category of -complexes into a dg-category. An enhanced ¢-homomo-
rphism is an enhanced (-morphism (F, i) satisfying owmor(F, #) = 0. An enhanced
t-homotopy equivalence is an enhanced (-homomorphism (F, /) such that there exists
an enhanced (-homomorphism (G, k) with the property that (G,k)o(F,h) and (F,h)o
(G, k) both differ from (id, 0), the identity enhanced (-morphism, by a boundary in
Mor. Composition is given by (F,h) o (F',h/) = (F o F', F'h + I'F).

If (C, 0) is a free, finitely generated chain complex over F[U], we now describe
the chain map
o:.C - C.

Write 0 as a matrix with respect to a free IF [U]-basis of C. We then define & to be the
endomorphism obtained by differentiating each entry of this matrix with respect to
U and extend F[U]-linearly. This map appears naturally in considering the basepoint
action on Heegaard Floer homology [9, 37, 39]. The map & is independent of the
choice of basis up to F[U]-equivariant chain homotopy. In the special case that the
basis is the set of generators associated to a particular Heegaard diagram for (Y, w),
such that powers of the variable U in the differential record intersections with the
divisor {w} x Sym# ~!(X), we may write this map as ®,,.

2.4. Hypercubes and ¢-complexes

In this section, we describe a relation between enhanced (-morphisms and hypercubes.
An enhanced (-morphism (F, h): (C,t) — (C’, ') may be encoded into a diagram of
the following form:

C : F— C
A l|/ 23)
Lol
C F— C’

The pair (F, k) is an enhanced (-homomorphism if and only if the above diagram is a
hypercube of chain complexes. Composition of t-morphisms is encoded by stacking
and compressing hypercubes.
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Remark 2.7. The diagram in equation (2.3) is algebraically equivalent to the follow-
ing diagram:

~
~
~
~
~

O (u+id) Oh Q(V+id)

l S l

0-C F—> Q-C

In particular, we may view enhanced iota morphisms between iota complexes as con-
taining equivalent information to an F [U, O]/ Q?-equivariant map between the associ-
ated complexes over F[U, O]/ Q2. We will use the two perspectives interchangeably.

C F s C’
|

Relations between compositions of (-morphisms are also naturally encoded into
hypercubes.

Lemma 2.8. Suppose that (A, 14), (B,tp), (C,tc) and (D, p) are t-complexes, and
(F, ), (G,g), (H,h), (1,i), and (J, J) are enhanced t-morphisms which fit into the
following diagram:

A ~ T I > B
\\\% h T~ \\\
VNG TJ .- \ H
vooNs -~
\ \"N | It
Vol C -F——7 D
A \ Yi AN LB \
\ AN \
\ NN \
g NoTON h
\ AN \
\ Ny \
34 % Lc A S % [55)
N
A — NI - > B N
\ ~\\_\\ | \ Ny \\
G \\ =J - H < \\
\P\N T Ny
C = D

Then, the hypercube relations for the above diagram are equivalent to each of (F, f),
(G, g), (H,h) and (1,i) being enhanced (-homomorphisms, as well as the relation

(F,f)O(G,g)+(H,h)O([,l) = BM('—LJ)

Proof. The length 1 relations imply that F, G, H, and [ are chain maps. The length
2 relations along the left, right, front, and back faces are easily seen to be equivalent
to (F, f), (G, g), (H,h) and (I, i) being enhanced (-homomorphisms. The length 2
relation along the top and bottom faces is equivalent to

FG+ HI =[d,J].
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The length 3 relation is equivalent to
Fg+ fG+Hi+hl =upJ +Jug+ [0, /]
On the other hand, by definition,
(F, f)o(G,g)+ (H,h)yo(I,i)=(FG+ HI,Fg+ fG+ Hi +hl),

while
omor(J, ) = ([0, J].epJ + Ja + [0, j]).

The main claim follows immediately. ]

2.5. tg-complexes and (7 -complexes

We now review the refinement of the analog of an (-complex for knots, called an ¢g-
complex, and its extension to links. First, we recall some algebraic background. Let
(Ck, 0) be a free, finitely generated complex over the ring F[U, V]. There are two
naturally associated maps

d,V: Cx — Ck,

constructed as follows. Write d as a matrix with respect to a free F[U, V]-basis of
Ck. We then define @ to be the endomorphism obtained by differentiating each entry
of this matrix with respect to U. We define W to be the endomorphism obtained by
differentiating each entry with respect to V. These maps appear naturally in the study
of knot Floer homology, see [29,32,35]. The maps ® and W are independent of the
choice of basis up to F[U, V]-equivariant chain homotopy [33, Corollary 2.9].

An F-linear map F: Cg — Cy is skew-F[U, V]-equivariant if

FoV=UoF and FoU=%VoF.

We recall the following definition from [4]. (Compare also [5, Definition 6.2] and
[33, Definition 2.2].)

Definition 2.9. An (x-complex (Ck, 0, k) is a finitely generated, free chain complex
(Ck, d) over F[U, V], equipped with a skew-equivariant endomorphism tx satisfying

1% ~id +OW.

Remark 2.10. If (Cg, 0, tx) is an tg-complex, then (x commutes with U = UV,
and hence we can view Ck as an (infinitely generated) complex over F[U] with an
[F[U]-equivariant endomorphism tg .

We have the following notions of morphism of ¢ g -complexes.
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Definition 2.11. Suppose that C=(Cg, 0, g) and €' =(Cy, 9, 1% ) are tg-complexes.

(1) An tg-homomorphism from C to € consists of an F[U, V]-equivariant chain
map F:Cg — Cg, which satisfies i), F + Fig = 0 (where < denotes skew-
equivariantly chain homotopy equivalence).

(2) The group of enhanced (g -morphisms is
Mor(€, €') := Hompy,v)(Ck . Cx) ® Hompp v (Ck. Cx)[1. 1],

where Hompy,v)(Cxk . Cg) denotes the group of F[U, V]-skew-equivariant
maps. The differential on Mor(Ckg, C%) is given by

OMor(F,8) = (FOI+ I F, Fix +x F + g + g9).
We say (F, g) is an enhanced (g -homomorphism if
am(F, g) = O

The two enhanced ¢ g-morphisms are ¢ g-homotopic if their sum is a boundary
in Mor(Cg, C%).

We will also be interested in the case of free, finitely-generated complexes (Cy, d)
over the ring F[Uq, V1, ..., Uy, V¢], which arise when we study links L with multi-
ple components. In this case, there are maps ®; and W; for 1 <i < £ arising from
differentiating with respect to each variable. An F-linear map F: Cy — C; is said
to be skew-equivariant if it exchanges U; and V; for each i. We may then consider
tr,-complexes (Cy, 0, t1), where the map ¢z, satisfies the formula

12~ (id+®Wy)o...0(id+D;¥y).

This is the diffeomorphism map for performing a Dehn twist on each link component.
See [32, Theorem B] for further discussion. The definitions of ¢ g -morphisms and their
variations now extend straightforwardly to ¢7,-complexes.

As in Section 2.4, an enhanced tx-homomorphism is equivalent to a hypercubes
of chain complexes, compositions of (x-morphisms are encoded as hypercubes in the
same manner as in Lemma 2.8.

3. Involutive Heegaard Floer homology
In this section, we review Hendricks and Manolescu’s construction of involutive Hee-

gaard Floer homology [5], and also define the doubling models which feature in our
statements of naturality and functoriality.
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3.1. The involutive Floer complexes

We presently recall Hendricks and Manolescu’s original construction [5]. Suppose
that # = (X, o, B, w) is a weakly admissible Heegaard diagram for Y. Suppose that
s is a self-conjugate Spin® structure. Write H=(Z, B o, w) for the diagram obtained
from J by reversing the orientation of 3 and reversing the roles of & and . There is
a canonical chain isomorphism

n:CF~(#,3) — CF~(#,s).
Hendricks and Manolescu consider the map
:CF(#,3) > CF(#,9)

given by the formula
Lvi=noWy %,
where W,,__ 7 is the map from naturality as in [9]. They define the involutive Hee-

gaard Floer complex CFI(Y, s) to be the F[U, Q]/(Q?)-chain complex whose under-
lying F[U, 0]/(0Q?)-module is

CF~(Y,s) ®p[v] FIU, Q]/(Q?) = CF~(Y,s) ® QCF (Y, s)

with differential dcry(v,s) = dcr—(v,s) ® id +(id +1) ® Q. That is, the involutive Hee-
gaard Floer complex is the mapping cone

Cone(Q(id+t): CF~(Y,s) —> QCF~ (Y, 9))

with the evident action of the F[U, Q]/(Q?). Hendricks and Manolescu prove that
CFI” (Y, s) is well-defined up to chain homotopy equivalence.

Hendricks and Manolescu also define a refinement for knots, which we recall
presently along with its extension to links. Beginning with the knot case, suppose
that K is a null-homologous, oriented knot in a 3-manifold Y, and s € Spin°(Y) is
self-conjugate. We recall the following standard definition.

Definition 3.1. A Heegaard diagram for a pair (Y, K) consists of a tuple (X, o, 8,
w, z), such that (X, &, §) is a Heegaard diagram for Y, such that the knot K intersects
X in the points w and z. Furthermore, if U, and Ug are the closures of the two
components of ¥ \ X, then K intersects each of Uy and Up in a boundary-parallel arc.
The standard convention is that K intersects X positively at z, and negatively at w.

We will work over the version of knot Floer homology [21, 28] which is freely
generated over a 2-variable polynomial ring IF[U, V]. We denote this chain complex
by €F K (K). See, e.g., [33, Section 3] for background on this version of knot Floer
homology.
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Let ¢7: (Y, K, w,z) — (Y, K, z, w) be the diffeomorphism of tuples supported
in a neighborhood of K corresponding to a positive half-twist along K, and similarly
for ¢~ and the negative half-twist. There is a canonical chain isomorphism

Nk CFK(Z, B, &, z,w) > EF K, a, B, w,2),
which satisfies ng (U - x) =V - ng(x) and ng (V- x) = U - ng(x). We define
LK+ =1k © qj¢+(]g)_>g? o (b:—,

and we define (g — similarly. Here, ¢, denotes the tautological diffeomorphism map,
and W, 4, j denotes the map from naturality obtained by picking a sequence
of Heegaard moves relating ¢+ (H) and #. There is a map (x defined similarly.
Hendricks and Manolescu define the involutive knot Floer complex to be the data
consisting of €F K (K) equipped with the endomorphism (g 4, which gives an (-
complex.

Remark 3.2. In [5], Hendricks and Manolescu considered only the involution we
call tx +, which is written simply as (g . It is unknown whether there are any knots K
where (€F K (K), tx,+) is inequivalent to (€¥ K (K), tx,—). The distinction between
tk,+ and (g — has previously been observed in [2].

The case of links is similar. For a link L of £ = |L| components, we consider
Heegaard diagrams (X, o, 8, w, z) such that w = {w1,...,w,} and z = {z1,..., z¢}
and the ith component K; of L intersects X positively at z; and negatively at w;.
The resulting chain complex €FL(L) is freely-generated over the polynomial ring
F[Uyi, V1, ..., U, V). In principle, there are 2¢ choices of orientation which may be
used to define the involution; however, for simplicity, we assume that an orientation is
fixed, and we consider only the two orientations which are either coherent, or opposite
to our preferred orientation. It is now straightforward to adapt the construction of (g 4
given above to models for ¢, + for these versions of the link involution.

3.2. Doubled Heegaard diagrams

Suppose that # = (X, «, B, w) is a pointed Heegaard diagram for Y. We view a
regular neighborhood of ¥ as X x [0, 1]. Pick a small disk D C X, which contains
w along its boundary. The submanifold Uy = (X \ D) x [0, 1] is a handlebody of
genus 2g, where g denotes g(X). The boundary of this submanifold is canonically
identified with ©#X, where the connected sum occurs at w. Write U, for the closure
of the complement of Uy. Clearly, U; is also a handlebody of genus 2g. We write
D(X) = Z#X for this Heegaard surface.

We may naturally equip D(X) with attaching curves, as follows. For U;, we may
use the curves o U B, where @ € ¥ and 8 C . For Uy, we pick compressing disks by
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picking a collection 8y, ..., d2¢ of properly embedded arcs on X \ N(w), called the
doubling arcs. We add a basepoint to N (w), for which we also write w. We assume
that the arcs 81, . . ., 624 are disjoint from w, and also form a basis of H; (X \ D, 9D \
{w}). We form attaching curves A C I#X by doubling the curves 81, ..., 84 onto
T#Y. We write D(H#) = (Z#X, af, A, w) for the resulting diagram.

If £ = (&1, &2, &3) is a framing of w € Y, then the framing is used in the con-
struction as follows. We assume the Heegaard surface is tangent to the 2-plane field
(€1,£,) C Ty Y . Additionally, in the tube connecting S#3, we must place the basepoint
w. We place it in the direction corresponding to ;.

Remark 3.3. The diagram D(J¢) may also be described by gluing two bordered
Heegaard diagrams for genus g handlebodies [16].

3.3. Doubling and the involution

We use doubled Heegaard diagrams to give a natural model of the involution. This
model appears in [4,36]. In this section, we describe the construction.
Firstly, we define the following map as a composition of 1-handle maps

FPP.CF (5. . B.w) > CF~(S#S. aB. B. w).

Next, we note that the diagram (S#X, BB, A, w) is a doubled diagram for (S! x
S2)*¢, and hence we may pick a cycle © BB.A generating the top degree of homology.
The cycle ©45 4 is not unique, but any two choices are related by a boundary. We
define the holomorphic triangle map

faﬁ;%; CF (SH#E, 0B, BB, w) — CF (S4Z, 0B, A, w)
by the formula i
FE7R0) = fapppa®©g5.0)
ap af,BB.ANT T BBA
Analogously, there is another holomorphic triangle map
ff;?“&‘ CF (ZH#Z,aB, A, w) — CF~ (S#Z, aB, ad, w)
as well as a 3-handle map
F% CF~ (ZH#X,aB,aa, w) — CF(Z, B, a, w).
Proposition 3.4 ([36, Propositions 7.2 and 7.8]). The composition fwf’éfHA o FFP

is chain homotopic to the map W g _, pg) from naturality. Dually, the composition
o, A 5 - . .
F; %o faﬂ__"""‘ is chain homotopic to the map W, g, 5.
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The idea of the proof of the above result is that the composition is topologically
equivalent to a composition of the maps for canceling 1-handles and 2-handles, or
canceling 2-handles and 3-handles.

Corollary 3.5. The involution satisfies
t~noF;%o faAE_’“O_‘ o faﬂEﬁQA ) Flﬂ’ﬂ,

where 1) is the canonical chain isomorphism
n:CF(Z,B.& w) —> CF (Z,a, B, w).

Definition 3.6. Suppose (Y, w, £) is a based manifold with a framing & = (&1, &5, &3)
of Ty Y. A doubling enhanced Heegaard diagram D consists of the following data.

(1) A Heegaard diagram # = (X, &, 8, w). Furthermore, X is positively tangent
to the 2-plane spanned by &; and &,.

(2) A set of attaching curves A on I#X, constructed by doubling a basis of arcs
81, ...,02¢. Furthermore, we view the endpoint of each §; arc as determining
an oriented tangent space (oriented to point into §;). We assume that none of
these oriented tangent spaces coincide with the span of &;.

(3) Choices of almost complex structures to compute the four Floer complexes
CF(Z,a,B), CF(Z#Z,aB, BB), CF(Z#Z,af, A) and CF(THX, af, ad),
as well as almost complex structures to compute the triangle maps faAB_’“&

and faﬂ Bﬂ A,

We say that D is a doubling enhancement of J. We say that O is admissible if each
of the Heegaard diagrams and triples are weakly admissible.

3.4. Doubling and the knot and link involution

The knot involution of [5] also admits a convenient doubling model, which we intro-
duced in [4] (see also [11, Section 9.4]). In this section we recall this model. In our
proof of naturality, we will also need to use several stabilized models, which we intro-
duce in Section 15.

The doubling model for knots has a similar description to Corollary 3.5, but more
care will be needed to define the maps. There is furthermore one additional choice to
be made, which will correspond to a choice of which direction along K to perform a
half-twist.

We begin by describing doubled knot diagrams. If (2, e, 8, w, z) is a diagram for
(Y, K), we consider the following two diagrams:

DT (H) = (Z#H,Z,af, A, w,w) and D™ (¥)= (T#yZ,aB, A,z z).



K. Hendricks, J. Hom, M. Stoffregen, and I. Zemke 22

We start by analyzing the diagram D (). There is a map
FPPex X (S a,B,w,2) - €FK(S#. 5, af, BB, w, b)

obtained as the composition of a 1-handle map, as well as a diffeomorphism map for
moving z to w. As in the setting of closed 3-manifolds, we have holomorphic triangle

maps faﬂ ﬁﬂ 4 and faAB_’“&. Finally, there is a map
Fyl €F K (S#. 3, af. ad, w, 0) > CFK(Z, B.&.2,w),

obtained by moving w to the position of z, and then applying the 3-handle maps to
remove the o curves. Similar logic to Proposition 3.4 then implies that

- 2 A 2 Q
LK+ = NK © F;’_‘: o faAﬁ_—NxOl o faﬂﬂ_ﬂ* o Flﬂ,f

B

There are analogous maps F lﬂ
such that

and F3* which instead involve the diagram D~ (¥),

lK,— XNk o©° Foif o faAE—m& ° faﬂlg_ﬂ_)A o Fﬁ’_ﬁ
The same procedure with only notational changes may be used to give doubling

models for the link involutions ¢7.4 for links with more than one component. See
Section 15 for more details.

3.5. Alpha versus beta doubling

The reader may note that a somewhat arbitrary choice has been made in the definition
of ¢. Indeed, there is another diagram

D(¥#) = (Z#Z, A, Ba, w),

conjugate to the diagram D(J) considered above. Similar to Proposition 3.4 and
using the same notation from that proposition, fa%“_) aoF % is also chain homotopic
to Wy, 5gy- Dually, Ff’ﬁ ) ffiﬂg is homotopic to \IJD-(]()_)J-(. As a consequence,
parallel to Corollary 3.5,
~ B.B Ba Ba Q0
t~noF; ofAiﬂEofaa o F{"%. 3.1

a—>A
We will refer to the composite on the right-hand side of equation (3.1) as the alpha-
doubling model for ¢, and we refer to the model o F3** o faA__""é‘ o faﬁﬁ_’A o Flﬂ’ﬂ
from Corollary 3.5 as the beta-doubling model. In spite of the fact that the alpha-
doubling and beta-doubling models are homotopic by naturality, we do not claim

there is a canonical homotopy between them. In this paper, we arbitrarily work over
the beta-doubling model exclusively.
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4. On naturality in Heegaard Floer theory

In this section, we discuss naturality in Heegaard Floer theory and how it adapts to our
setting. Our goal in this section is to state a version of the naturality theorem which
covers our use of framed basepoints in the involutive Heegaard Floer complex.

We recall that the proof of [9] centers on proving naturality for invariants of
sutured 3-manifolds. We recall that if Y is equipped with a basepoint w, then we
may obtain a sutured manifold by removing a regular neighborhood of w and adding
a single suture (closed loop) to the boundary. The reader should think of the suture as
corresponding to the intersection of a Heegaard surface for Y with the boundary.

We cannot apply the work of [9] without any change, because our construction
of the involutive Floer complex requires a choice of framing at the basepoint. This is
incompatible with the continuity axiom of [9], which requires any diffeomorphism of
a sutured manifold ¢ € Diff* (M, y) which is isotopic to the identity through sutured
diffeomorphisms to act by the identity on the complex. In our present context, this
is too strong of an axiom to impose, since such diffeomorphisms may correspond
to diffeomorphisms of (Y, w) which act non-trivially on the framing of the basepoint.
Instead, we wish to weaken the continuity axiom to only require that diffeomorphisms
which are isotopic to the identity relative to the boundary to act by the identity on our
invariant. In this section, we explain how the techniques of [9] adapt to our present
situation.

Remark 4.1. Note that in the original setting [9], this was of little importance, since
isotopies of sutured manifolds which are supported in a small neighborhood of the
boundary do not change the position of the alpha or beta curves.

We begin by recalling some notation from [9]. We first recall the graph Gy ;)
defined therein. The vertices consist of embedded Heegaard diagrams for (M, y), with
attaching curves taken up to isotopy on the Heegaard surface. The edges of 9y,
consist of the following.

(1) Alpha equivalences on a fixed Heegaard surface.

(2) Beta equivalences on a fixed Heegaard surface.

(3) Index (1, 2)-stabilizations.

(4) Diffeomorphisms of (M, y) which are isotopic to the identity as sutured dif-
feomorphisms.

We now define a subgraph ﬁ(any) C Y(m,y), which we call the graph of boundary
framed Heegaard moves. This graph has the same vertices as §(s,,,). We add all of
the same edges, except that diffeomorphisms are required to be the identity on the
boundary of M, and also are required to be isotopic to the identity rel boundary. We
consider the following loops of Heegaard diagrams (thought of as 2-cells). These are
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a restriction of the distinguished rectangles from [9, Definition 2.32]. These consist
of the following loops.

(1) Commutation of alpha and beta equivalences.

(2) Commutations of two index (1, 2)-stabilizations.

(3) Commutations of an index (1, 2)-stabilization and an alpha/beta equivalence.
(4) Simple handleswap loops.

(5) A sequence of diffeomorphism edges in ﬁ(aM )

Heegaard diagram #, such that the composition of the diffeomorphisms is a
contractible loop in Diff(M, oM ).

starting and ending at a fixed

Proposition 4.2. After attaching 2-cells to the graph 5&4 ) corresponding to the
loops (1)—(5), we obtain a simply connected space.

Proof. The result follows from essentially the same argument as [9], with some extra
attention paid to the behavior of diffeomorphisms on dM . Note that ﬁ(aM ) is a sub-
complex of §(ar,,). One may go through the proof described in [9, Section 8]. We

consider a loop of Heegaard moves in ﬁ(aM " of k-steps:

el el e ey
%0%%1—)%2——)---—)%}62%0.

We now build a map S! — FV=1(M, y), denoting the space of pairs (f, v) of
sutured functions and gradient like vector fields which lie in codimension O or 1.
(See [9] for this notation). This is constructed the same as therein. Namely, for each
diagram J#;, we pick a compatible pair ( f, v) € §Vy(M, y) inducing this pair. For
each move of Heegaard diagrams, we pick a compatible 1-parameter family of pairs
(ft,ve) € §V<1(M, y). Accordingly, one constructs a polyhedral decomposition of
D2, such that each edge contains at most one codimension 1 singularity, and each 2-
cell contains at most one codimension 2 singularity. From here, one argues that after
subdividing it is sufficient to consider only 2-cells whose edges compose to give one
of the loops (1)—(5).

The difference between our situation and [9] is that we must argue that it is suffi-
cient to consider only sutured isotopies which fix the boundary pointwise. One must
do this for both edges and for 2-cells. Consider first a 1-cell:

o1: D' — FVo(M, y).

Given such a path, one may construct a family of embedded Heegaard surfaces. To see
that these are related by an isotopy, one uses a version of the isotopy extension lemma,
as stated in [9, Lemma 6.19]. Note that this lemma actually constructs an isotopy
which is the identity on dM, because it is obtained by integrating a time dependent
family of vector fields on (M, y) which is supported on the interior of (M, y).
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Given amap 05: D? — ¥ Vy(M, y), the above construction, applied to S = dD?2,
defines a loop of diffeomorphisms ¢g: S' — Diff(M, dM). Since the corresponding
path in ¥ Vo (M, y) is contractible, we may extend this loop ¢g over D?. We observe
that [9, Lemma 6.20] constructs a null-homotopy of the corresponding loop of diffeo-
morphisms. We observe that this null-homotopy is again constructed by integrating
along a time dependent family of vector fields which is supported in int(M), and
hence the corresponding family of diffeomorphisms are the identity on dM . Hence,
the boundary framed loops in (1)—(5) are sufficient to contract an arbitrary loop. m

5. Maps for elementary handleslide equivalences

In this section, we define the transition maps for changes of the doubling data which
fix the Heegaard surface X. These correspond to changes of the ¢,  and A curves by
handleslides and isotopies. Furthermore, in this section, we consider only a restricted
set of alpha and beta equivalences, as follows.

Definition 5.1. (1) Suppose that (X, w) is a Heegaard surface with n > 1 basepoints
and y and y’ are attaching curves on 3. We say that y and y’ are handleslide equiv-
alent if they may be related by a sequence of handleslides and isotopies.

(2) Suppose X is a Heegaard surface and y and p’ are handleslide equivalent
attaching curves on X. We say that p and p’ are related by an elementary equivalence
if (X,p’,y,w) is a weakly admissible diagram, and T,, N T, consists of exactly
2l7I=1 generators.

Suppose (I, a, B) is a Heegaard diagram, and &’ and B’ are handleslide equiva-
lent to & and B, respectively. Suppose further that A and A’ are choices of doubling
curves. Let © denote the data consisting of (X, &, B), the curves A, and appropriate
choices of almost complex structures to compute the involution. Let D’ denote the
analogous data with &/, B’ and A’. We say that D' is obtained from © by an elemen-
tary equivalence if o’ and B’ are obtained from a and B by elementary equivalences,
and also if the tuple

(HE, '@’ aax, BB, ﬂ'l_i/, A A w)

is weakly admissible.
In the case that D’ is obtained from O by an elementary equivalence, we define
the transition map
Vo ,o:CFI(D) — CFI(D')

as the compression of the hyperbox of chain complexes shown in Figure 5.1. Therein,
the rows with the 1-handle maps are constructed similarly to [4, Section 14], where
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CF(a,p) ——— CF(o/.) — CF(oc’,,B’)
5.5 FlBI',B FIBI’,B’

14, <+ <+
CF(ep.BB) — CF(a'is’,ﬂﬁ) —— CF(«'B’.B'B)

~ ~

F

~
~ N
N ~
N ~
~ ~ ~
N2 SU v A N2

CF(aB.A) — CF(a/B',A) —— CF(o/B’,A")

~ ~

Voo = N N
< <
< <

N ~
4 N <+ ~A ~+

CF(aB,ad) — CF(a'B’,a&) — CF(«'B,a'a’)
I [ [
F3o® Fe Fee
1 ¥ ¥
CF(B.&a) — CF(B.a) —— CF(B.&)

id T~o id

2 Tl 2

CF(B,&) ——— CF(B.&) = CF(B &)

Figure 5.1. The transition map for an elementary equivalence. An additional row involving the
canonical map 7 is omitted.

they are called hypercubes of stabilization. The construction here requires that the
o’ be obtained from & by an elementary equivalence, and similar for 8 and B’, so
that the degeneration argument from [4, Section 10] applies. The rows with 3-handles
are similar. The remaining subcubes are obtained by pairing hypercubes of attaching
curves.

Note that in Figure 5.1, we have omitted a final level involving the tautological
map 1: CF(B, &) — CF(«, B). Throughout the paper, we will usually omit this row.

If © and D’ are handleslide equivalent (but perhaps not related by an elementary
equivalence), we pick an arbitrary sequence

D=91,....9, =9
such that ®; 4, and ©; are related by an elementary equivalence for all ;. We define
Voo :=Vp, 9,0 oV¥p 5m,. (5.1

A key step in our proof of naturality will be proving the following theorem.
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Theorem 5.2. Suppose that D, D' and D" are doubling enhanced Heegaard dia-
grams which all have the same underlying Heegaard surface 3 and are handleslide
equivalent.

(1) The map Vo_, 2y defined in (5.1) is independent of intermediate sequence of
doubling enhanced Heegaard diagrams, up to F[U, Q]/ Q?-equivariant chain
homotopy.

(2) Yoo =~ iderr o).
Q) VosproVp o >~ Voo

Part (2) of Theorem 5.2 is proven in the subsequent Section 5.1. Parts (1) and (3)
are more technical and are proven in Sections 7 and 8; in particular, they follow from
Proposition 8.1.

Remark 5.3. We are only able to define the map Wo_, o/ using Figure 5.1 when
© and D’ are related by an elementary equivalence because we are not able to con-
struct the 1-handle hypercubes if © and ®’ are related by an arbitrary handleslide
equivalence. To show the map Wo_, 5 is independent of the choice of intermediate
diagrams, we will define a more complicated transition map ‘AIJ@_Q)/ in Section 7.3.

5.1. Continuity

In this section, we prove the continuity axiom from [9, Definition 2.32] for our maps
associated to a handleslide equivalence. In our present context, the continuity axiom
amounts to the following.

Proposition 5.4. Let © denote an admissible doubling enhanced Heegaard diagram
SJor (Y, w,§). Let g: (X, w) — (2, w) be a pointed diffeomorphism which is smoothly
isotopic to the identity through diffeomorphisms which are the identity on a neighbor-
hood of w. Let g(©) be the push-forward of the diagram  under g, and let

CFI(g): CFI(®D) — CFI(g(®))
denote the tautological map. Then
lp,’D—)g(@) >~ CFI(g).

Proof. We adapt the argument of [9, Proposition 9.27] to the involutive case by also
using the small translate theorems for triangles and quadrilaterals from our previous
paper [4]. Write (X, &, 8, w) for the underlying Heegaard diagram of ©, and let A
be the doubling curves. As a first step, pick a C > small diffeomorphism g¢ of (X, w)
and write &’ = go(er), and define B’ and A’ similarly. Assume that |} N ;| = 25;;,
where §; i denotes the Kronecker delta, and assume the analogous statement holds for



K. Hendricks, J. Hom, M. Stoffregen, and I. Zemke 28

B’, B, A" and A. It follows from the small translate theorems [4, Propositions 11.1
and 11.5] that if g is chosen suitably small, then we may pick an almost complex
structure on ¥ x A which interpolates between a fixed J on the (X, &, 8) cylindrical
end and (go)«(J) onthe (X, a’, B) cylindrical end such that the map f/ 4,8(Oa’ o, X)
counts only small triangles, so that fo/ o g(®q’ o, X) = X, for all x € Ty N Tp.
Here, x,, denotes the nearest point of Ty N Tg to x. In a similar manner, the small
translate theorem for quadrilaterals implies that all of the length 2 maps counted by
Vo ¢,(D) Vanish (as no holomorphic curves are counted). In particular, Vo _, ¢, (o)
coincides with the nearest point map.

Similarly, if g; is C* close to go, then the same argument as the small translate
theorems also implies that Vo g/ (o) and Yo/ () p coincide with the nearest point
maps.

More generally, if g is C°° small relative to g, then we can decompose

Voe(®@) X Vo (0)-g (@) © Vo-g0(D)

and apply the nearest point results to the latter two maps to identify Wo_, z(p) with
CFI(g). This establishes the claim when g is C°°-small. Since both sides of the de-
sired equality are functorial under composition, and any diffeomorphism g: (X, w) —
(¥, w) which is smoothly isotopic to the identity may be decomposed into a compo-
sition of C*°-small diffeomorphisms, this proves the claim in general. ]

6. Holomorphic polygons and stabilizations

In this section, we describe some technical results concerning stabilizations of Hee-
gaard diagrams and holomorphic polygons. The results we cover are a generalization
of those considered in [4, Section 9].

Definition 6.1. Suppose that Dy = (X, ¥, .., ¥,, w) is a weakly admissible Hee-
gaard tuple and & is a set of Spin® structures on Xy, .., , which is closed under the
action of H' (Y, ) fori < j.

(1) We say that (Do, ©) is a multi-stabilizing diagram if the following are sat-
isfied. All elements of & restrict to a single element of Spin®(0Xy,, . ,)
which is furthermore torsion. Additionally, we require that if 31, s, € &, then
d(s1) = d(s2), where d(s) = (c(s) — 2y — 30)/4.

(2) We say (Do, ©) is algebraically rigid if d=0 on a?(Eg, YiVit1:Siit1, W),
where s; ;1 is the restriction to Yy, ,, ., of the elements of ©.

Example 6.2. Let Dy be a Heegaard triple where all y; are pairwise related by small
Hamiltonian translates. Let © = {s¢}, where s is the unique Spin® structure which
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has torsion restriction to the boundary. Then, (Dy, ©) is a multi-stabilizing diagram.
For suitable choices of translates, Dy is algebraically rigid.

Remark 6.3. When the set © is understood from context (such as the case when there
which has torsion restriction to 9Xy, . ,),
we will usually refer to the diagram £y as being a multi-stabilizing diagram.

. : . ¢
is a unique Spin® structure on Xy,

n

In this section, we state a helpful result about stabilizations and holomorphic
curves. Before we state our result, we introduce some notation.

As a first step, we recall some notation and basic facts about Stasheff’s associ-
ahedron, K. We view K, as a convex polytope which models the compactification
of n + 1 marked points on the boundary of a disk. It is well known that K, admits
an embedding into a Euclidean space and has the homology of a point. There is a
well-known cell structure on K, giving a convenient model for its homology, which
we denote C£°'(K,). The cells of this decomposition are in bijective correspondence
with planar trees with n inputs, one output, and no internal vertices of valence less
than 3. If T is such a tree, then the degree of the corresponding cell is

n — 1 — #(internal vertices).

The differential of a tree T is the sum of all ways of breaking an internal vertex into
two vertices, both with valence at least 3. The degree 0 cells correspond to trees with
only valence 3 internal vertices. There is a codimension O cell of degree n — 2, which
has just one internal vertex.

Suppose that D = (X, p4,...,¥,, w) is a weakly admissible Heegaard tuple and
J = (Jx)xek,_, is a stratified family of almost complex structures on X x D, for
computing holomorphic 7-gons. Suppose also that G C Spin®(X,,,....;, ) is a set which
is closed under the actions of §' H1(Y, yi.y;) foralli < j, and assume for simplicity
that all elements of & restrict to a single element of Spin®(dXy,,... , ). Given a tree
T € C&(K,_1), there is a map

fe{D,@;J,T: a"‘(y]» )’27 g1,2) ® U ® (/j;‘()’n—lv angl’l—l,n) - @(71, an g1,1’!)9

obtained by composing the polygon maps corresponding to each internal vertex of
T.If T has only valence 3 internal vertices, then there is a unique point of K,_;
corresponding to 7', which is in the strata of maximal codimension. We write Jr for
the corresponding almost complex structure, and otherwise suppress the tree from
the notation in this case. The map f@,@; J,T 1s obtained by successively composing

holomorphic triangle maps according to the tree 7.
More generally, we can view the holomorphic polygon maps as fitting together
compatibly to give a chain map

f0.6:7:CEMNKn—1)®CF(y1,72.51.2)8 - @CF(¥ 1. Vs Sn—1.1) = CE( 1, V. 51.0)-
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The same statement holds for CF™ as long as we are more careful about finiteness
of curve counts, either by restricting Spin® structures or working over F[[U]]. We call
this version of the map fp e.s and its specialization to a particular tree fp e.J,7
analogously.

Lemma 6.4. Suppose that Do = (Zo,y,..., ¥, w) is a diagram and © is a set of
Spin® structures such that (Dy, ©) is algebraically rigid and multi-stabilizing. Let Ty
and T be two degree 0 trees. Then,

f@o,@;]rl (X1, ce ’xn—l) = f.@o,@;]r2 (xl’ cee 7xn—1)

foranyx; € T,, N'Ty, .

Proof. The trees T1 and T, are homologous as elements of C,fe”(Kn_l), since
H{MN (K1) = Z.
Hence, the maps
fD0.@107, [D0.G: 7, CF(¥1.¥2.51.2)®*®CF(¥ 1.V - 5n—1.0) = CF(¥ 1.7 ,0.51.0)

are chain homotopic. The differentials on domain and codomain of the two maps
vanish, so any two chain homotopic maps between them are equal. ]

Proposition 6.5. Let D = (X,81,...,8,,w) and Do = (X0,¥ 1, .-,V Wo) be Hee-
gaard n-diagrams, where n>2. Assume s € Spin®(Xs, ... 5,) and @ CSpin®(Xy, ... y,)
and assume that (Do, ©) is an algebraically rigid multi-stabilizing Heegaard dia-
gram. From the connected sum D#Dy by adding a tube from Dy at some wy € wy
to a point on D. Let T be a degree 0 tree representing the generator of CS"(K,_1).
Suppose J = (Jx)xek,_, and J® = (JQ)rek,_, are stratified families of almost
complex structures on & X Dy, and Xy x Dy, respectively, for counting holomorphic
n-gons. Let 01, ..., 0,1 be homogeneously graded elements (necessarily cycles) of
6‘?7(20, V1:V2:51,2)0 - -s 6’?7(20, Yn—1:Yn>Sn—1,n), Fespectively, and suppose that

y = fi)o,@;_/g(@lv s On—1)
is non-zero. Then, for any tree T’
Jo#00,546,(7 A 70y, 1 (X1 X 01, ..., Xp—1 X Oy_1)
=fi),s;J,T’(xl,u-’xn—l)@y+ Z q,Q z,

ze€Ty, NTy,
er(z)>gr(y)

where q, are elements of CF~ (2,81, 8,).
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Proof. The proof follows from similar reasoning to [4, Propositions 10.2 and 10.6],
as we now sketch. See also [25, Section 6.1]. Since we are using almost complex
structures which are singular at the connected sum point, the relevant moduli spaces
are fibered products over D,’f x K,—_1, where k is the multiplicity of a class at the
connected sum point. Consider a class ¥ A g, where Yo € m2(01, ..., 04—1, ¥0),
for some intersection point y,, and such that sy,,(¥o) € ©. The assumption that

A

1y, eV B0 (01, ...,0,—1) = y is non-zero implies that there exists a class of trian-

gles ' € m2(01,...,0,—1,y) which has s, (¥') € G, ny,(¥') = 0and pu(y’) = 0.
Since all elements of & have the same degree, we conclude that

gr(yo) — 2nw,(Yo) + n(¥o) = gr(y).

Using Sarkar’s formula for the Maslov index, we see that

n A o) = (V) + (Vo) — 2nw, (Vo).

(The only difference between the formulas for w(y A o) and w(¥) + w(¥yp) is in
the Euler measure, which is corrected on the right-hand side by 2n,,,(1¢)). Hence,
combining the above two formulas, we obtain

LW A o) = w(y) + gr(y) — gr(yo) + nwo\{we} (Yo)-

The main claim concerns only classes, where gr(y) — gr(y,) > 0. As the map

fi)#i)o,s#so;J/\JO,T’

counts index 3 — n curves, we assume that

n(¥) + gr(y) — gr(¥o) + Nwo\fwo) (Yo) = 3 —n.

By transversality for curves representing ¥, we may assume that u(y) > 3 — n.
Hence, if gr(y) — gr(y,) = 0, then we must have u(y¥) =3 —n, gr(y) = gr(yy) =0
and 7y,\{we} (Vo) = 0. In particular, the unconstrained moduli space M () is O-
dimensional. It suffices to understand the moduli spaces on the X side.

Let k£ > 0 be a fixed integer, and assume that gr(y) = gr(y,). Write Mg (04, ...,
0n—1, y ) for the moduli space of curves representing a class in (61, ..., 0,—1, ¥¢)
with multiplicity k at wg. We now claim that

evi Mi(01,...,0,—1,y0) — D,’ﬁ x K1

is odd degree if y is a summand of y in C/'TV(yl, ¥»), and is even degree if y, is not
a summand of y. This clearly implies the claim.

Let (d,x) € D,’f x K,—1 be generic, and pick a path y: [0, co) — D,’f x Kp—1,
such that y(0) = (d, x) and y(¢) has the following behavior as t — co. As t — 00,
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we assume that x (¢) approaches the tree 7', viewed as a point in dK,_;, while the k-
tuple of points d (¢) travel towards one of the boundary punctures of D,’,c . Furthermore,
we assume that under the identification of this end as a half cylinder [0, 1] x [0, c0),
they approach some fixed d’ C ((0, 1) x R)*, modulo the R-action on [0, 00). We
consider the 1-dimensional moduli space of curves which have ev(u) € im y. The
generic degenerations of this moduli space at finite ¢ correspond exactly to index 1
disks breaking off of the cylindrical ends. These cancel modulo 2, since the differen-
tials vanish on each CF (¥ ¥ix1>5ii+1). The ends appearing as  — oo correspond
to points in the following set:

( ]_[ M(d),d/))x( ]_[ «MJT(WO))-
$€m2(601,601) Yo€m2(01,...0n—1,¥0)

.....

u(p)=2k n(ro)=0
"wo(‘/fo)=0
The left-hand factor has odd cardinality by [36, equation (31)]. The count of the right-
hand side is exactly the y, coefficient of fg, & 70 (01, ...,0,—1), completing the
proof. ]

6.1. Remarks and special cases

Proposition 6.5 generalizes [4, Propositions 10.2 and 10.6], which concern triangles
and quadrilaterals. In this section we describe some special cases.

Remark 6.6. The results of [4, Propositions 10.2 and 10.6] are stated in terms of
an index tuple, which does not appear in our Proposition 6.5. The stabilization for-
mulas from [4] are stated only in the case that one of the index tuple coordinates
was 0. The entry of the index tuple being zero implied a specific formula for y =
fi)o,Cé;J? (01,...,6,). See [4, Lemma 10.4]. In our present paper, we also need the
stabilization formulas in cases when the entry of the index tuple is non-zero, but where
we know the value of f:@o,@;Jg 01,...,60,).

Example 6.7. Suppose that D and Dy are as in the statement of Proposition 6.5, and
suppose further that £y has the property that each yp; is obtained from y; by a small
Hamiltonian translation of each of the curves. Then, Proposition 6.5 implies that

+ + _ +
fi)#i)o,s#so;J/\Jo,T/(xl X91,z’ s Xn—1 Xen—l,n)_fﬁ,S;J,T’(xl’ cee ,xn—1)®®1,n~
Similarly,

— + +
f.f()#i)o,s#so;J/\JO,T’(xl X 91,2’ Xz X 02,3’ s Xp—1 X en—l,n)
=fi),s;J,T/(xl’---,xn—l)®01_’n+ Z qz®®.
©€T,, NTy,

er(®)>gr(0},,)
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7. An expanded model of the involution

In this section, we describe a basepoint-expanded doubling model of the involution,
which will allow us to understand the transition maps for non-elementary handleslide
equivalences. An outline of this section is as follows. In Section 7.1, we define the
notion of a basepoint expanded, doubling enhanced Heegaard diagram D, which can
be used to construct an F[U, Q]/ Q?-complex CFI (D). In Section 7.3, we construct
transition maps

Vs 5,  CFI(D1) — CFI(Dy)

in the case that 5)1 and 5)2 are two basepoint expanded, doubling enhanced Hee-
gaard diagrams which have the same underlying Heegaard surface, and which satisfy
a weak admissibility condition. Unlike in Section 5, we do not require D, and D,
to be related by an elementary handleslide. In the subsequent Section 8, we relate
the complexes CFI (5~)) and the transition maps ‘I’f)l 55, 10 the non-expanded mod-

els described earlier. The key motivation for considering the maps '1'51_)52 is that
they may be defined for non-elementary handleslide equivalences in a manner which
clearly is independent of additional choices.

7.1. Doubling with extra basepoints

We now describe our expanded model of the involution, which uses an extra basepoint.
The presence of the extra basepoint simplifies some of the gluing arguments.

Definition 7.1. A basepoint expanded, doubling enhanced Heegaard diagram D
consists of a singly pointed Heegaard diagram

H =020, p,w),

a small disk D C X, containing w along its boundary, a choice of point w’, as
well as a collection of 2g + 2 attaching curves A C T#X, as follows. The curves
A are constructed by doubling a basis of pairwise disjoint, properly embedded arcs
81,...,82g+42 on X'\ D, which avoid w and w’ and which form a basis of H;(X \
D, oD \ {w, w’}). Additionally, D contains the choice of almost complex structures
used to compute the holomorphic triangle maps.

Using a basepoint expanded diagram D, as above, we obtain a model of the invo-
lution by modifying the formula in Corollary 3.5, as follows. We let ¢ and ¢’ be small
perturbations of the circle dD, as in Figure 7.1.

We define a 1-handle map

FfE’CB:CF(E,a,,B,w) — CF(Z#X, acp, BcB,w, w')
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A (=, o, B, w) B (S#X,acB, BcB.w, ')

Y
@

e

C (CH#Z,acB, A, w,w) D (ZHX,acB, ac’'a, w, w')

E (SH#X,ac'B,ac'B, w, w') F (Z,B.a, w)

Figure 7.1. The basepoint expanded doubling model of the involution. (Frames are read in
alphabetical order).

by tensoring with the top degree generator. This map adds the basepoint w’. Similarly,
we define a map

F;xc/’“c/: CF(Z#Z,ac'B,ac’a, w,w') — CF(Z, B, &, w)
by using the same formula as the standard 3-handle map.
We define the basepoint-expanded model for the involution via the formula

— ac’ac’ | rac'a A—sac'a | pBcB—>A _ pcB.ecB
Li=mno Fj acB—ac'B °aAr0 ach ° ach °Fy ’
In the above equation, A, denotes the relative homology map for an arc A connecting
w and w’ in the connected sum region. This map is discussed further in the subsequent
Section 7.2.

Remark 7.2. Similar to the non-expanded model, the expanded model also naturally
depends on our framing § = (&1, &,, £3) of the basepoint. We assume that the original
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Heegaard surface X is positively tangent to (£1, &>), that w is in the direction of &;
and w’ is in the direction of &, in the tube region. Furthermore, we assume that A is
chosen so that if we identify Span(&, &) with C, where &, = 1 and & = i, and we
identify the intersection with the tube region of S#Y with S? C C, then A corresponds
to '* fort € [0, /2).

7.2. Homology actions on hypercubes

In this section, we describe how to construct a homology action on a hypercube of
Floer chain complexes. We can construct both a version for closed curves on %, as
well as a relative one for arcs on ¥ with boundary in w. We focus on the relative case.
We recall the construction from [39, Section 5]. If # = (¥, &, §, w) is a multi-
pointed Heegaard diagram, and A is a path on ¥ connecting wy, w, € w, there is an

endomorphism
Ay:CE(H#,s) - CF(H,s), (7.1)

which satisfies
[8. 43] = Uy + Us,. (7.2)

In our present paper, we work with just one U -variable, so A4, becomes a chain map.
The map A is defined as follows. If ¢ € m,(x, y) is a class of disks, we may define
a quantity a(, ¢) € Z by summing the changes of the multiplicities of ¢ across the
alpha curves as one travels along A. (Compare [19].) Sometimes, it is helpful to write
a(A, ) = (0, D(¢9)) - A, where d4 D(¢p) is the alpha boundary of the domain of ¢.
The map A is defined via the formula

A= ) a( pEM(p)/RYU M @+ Fnun @)y

pemr(x,y)
u(g)=1

The map A, is sometimes a helpful tool when adding and removing basepoints.
We now describe a version of A, for hypercubes. Suppose we are given two hyper-
cubes of attaching curves £, and £ on a multi-pointed Heegaard diagram, each
consisting of handleslide equivalent attaching curves, such that the length 1 mor-
phisms are all the top degree generators of CF~ (#*(S! x S2)). We now suppose
that A is an arc which connects two basepoints, w; and w,. Consider the pairing
CF(&Ly, £p), where we identify the variables of the basepoints wy and w, to a single
U.

We now construct a morphism of hypercubes

Ap:CF(Ly, £8) = CF (Lo, £p).

Recall that a morphism of hypercubes can itself be thought of as a hypercube of
dimension 1 larger than dim CF(£y, £). Our morphism of hypercubes A, will
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have the property that the length one morphisms coincide with the chain maps A,
from (7.1). We will show that A, is well defined up to chain homotopy of hypercube
morphisms, and is natural with respect to restriction to sub-cubes of CF(&£4, £p).

We note that we may formally view A as an input for a holomorphic polygon
counting map by setting

Ity v sesym X120 X1, A X 1 X m—1,m)
= > By, DY) - MM () U1 D Fun ()
YEML(X0. 150X m—1.m»Z)
n()=3-m

where M () denotes the moduli space of holomorphic m-gons (in the usual sense).
As particular examples,

Jeap(d,x) = Ap(x) and fopp(x,A) = Bi(x),

where A counts holomorphic disks weighted by #(dq (¢) N A), while B counts disks
weighted by #(dg(¢) N A).

Lemma 7.3. The holomorphic polygon counting maps, defined with an extra input A,
satisfy the standard associativity rule as long as one uses the convention that A =
Uw, + Uy,, together with conventions that the polygon maps are U, -equivariant
and strictly unital (i.e., they vanish if they have 1 as an input when there are more
than 2 total inputs). In particular, if we work over a single U variable, they satisfy the
associativity relations with the convention that oA = 0.

Proof. The proof differs based on whether £ = 2 or £ > 2. If £ = 2, then the result
follows from equation (7.2). For the case that £ > 2, one counts the ends of index
(3 — £) moduli spaces weighted by d,, D(v) - A and quickly obtains the result. ]

The construction of A is as follows. We will formally construct a cube-shaped
diagram £ of dimension dim &£, + 1. To begin, we take two copies of £, for which
we write £y X {0} and £, x {1}, and formally adjoin additional length 1 arrows from
Lo x {0} to £ x {1}, which we label by the character A.

We begin by constructing the length 2 chains of éﬁg, via the following argument.
We will show that the 2-dimensional faces can be constructed to have the following
form:

Ou/a — o

N
\
N
N

Ul A (7.3)

A
l \ul
o

— Oy’ ¢ —> oc’
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(We have not yet defined 74’ .) The desired relation is that
A)(Og o) + A;(@a/,a) = 0Uny a- (7.4)

Here, A, counts changes of a disk class across e, while A, counts changes across a’.
Note that by [6, Section 3.5], we have that

Ak(®a’,a) + A;(®¢x’,a) = U((le + q)wz)(@a’,a)’ (7-5)
where @, denotes the map

Gy, (1) = U™ D n (MM () /RYU Tor T un) @)
pems(x,y)
n(@)=1
extended F [U]-equivariantly.
We note that ®,, (04 ) is a cycle of grading 1 higher than ®y 4, s0 it is null-
homologous, since 4 is the top degree generator. Let 1, 4 be any chain of homo-
geneous grading one higher that ®4/ o so that

ana/,a = (q)wl + q)wz)(@a/,a)-

We perform this construction to build all of the length 2 chains in :Eé. (If we did not
quotient by Uy, + Uy,, then we would instead obtain a length 2 morphism of the
form U, né,,a + Uznﬁ,’a).

We now construct the higher length chains in the cube élfé. Their construction is
similar to the construction of the length 2 chains. We assume, by induction, that each
length m > 1 chain is of the form Uny 4. (This is only necessary when m € {2, 3},
but is satisfiable for all m > 1).

Let ¢ < &’ be points Ez, where

d =dim £y,

and suppose that all chains of length less than |¢’ — |1 have already been defined.
Set

J
CE',S = § i § fagj ..... afl (®asj,agf—1 "“’®a€i+1,a8i’k’
e=g1<-<g;=¢ i=0
®a8i ofi—ls ey ®a£2’a£l )
J
+ 2 : 2 : foﬁj ..... afl (®a£/ o=l Ogti+ afis Ungei ofi=1,

e=g|<-<g;=¢ i=0

®u8i—l =25 ®C{82,Ol81 ) (76)
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However, by an entirely analogous argument to (7.5), we have

nwy +nw,
Coe= E faej «fl (®a€j afi=ls e ®a52,a51)
ooy

e=g|<-<gj=¢

j
+ E E Juti @€l (®a€j afi—lsees Oyrit1 afis Ungsi gfi-1,

£=g <<gj =g’ i=0

®¢x8i—1 ofi—=2 -y ®a52 ,afl )7 (77)

where fan;ﬁ‘jr:ﬁf counts holomorphic polygons with a factor of 1y, (V) + 1y, (¥).
In particular, Cy , = UC 6’/’ ¢» for some chain C ;/’ .- Since the hypercube relations are
satisfied for all proper faces, the element C,  is a cycle. Since the complexes are
free F[U]-modules, this implies that C/, , is also a cycle. However, Cy/ ¢ has grading
m — 2 higher than the top degree generator, where m = |¢’ — ¢|1. Hence, C/, _ has
grading m higher than the top degree generator. As long as m > 1, we conclude that
C 8/,,8 is a boundary. We set 7,/ , to be any chain of homogeneous grading m + 1
such that
anoﬁ/,oz8 = Ca{’,e'

Finally, we define the hypercube corresponding to the morphism A, to be the
pairing of CF (i’,g, &£), where the hypercube maps are defined by using the normal
formulas for the maps in a pairing, while allowing the chains A to be inputs.

Lemma 7.4. (1) The diagram éﬁé satisfies the hypercube relations (interpreted in the
way described above).

(2) The map A), satisfies Ovor(Ay) = 0 (i.e., Ay is a cycle).

(3) The map A, is independent, up to chain-homotopy of hypercube morphisms,
from the choices of chains used in its construction.

Proof. The first claim follows immediately from the construction. The second claim
follows quickly from Gromov compactness interpreted via Lemma 7.3.

We consider the final claim. This is proven as follows. Suppose we have two
models of jﬁé, which are both constructed using the above procedure. We consider a
partially constructed hypercube of dimension d + 2, given by the following diagram:

La Mm— Ly
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Here, A1 denotes the chains in one model of SC{}[, while A, denotes the chains con-
structed in the other model, and the * arrows are yet to be defined. The hypercube
relations are satisfied on the four d-dimensional faces of the above diagram. We wish
to define chains which increment both of the displayed coordinates, such that the
hypercube relations are satisfied. The construction of such arrows (corresponding to
the * arrow above) follows nearly verbatim from the construction of the cube £2
itself. Pairing éﬁél_ﬁu with £ gives the homotopy between the two models of A},
completing the proof. ]

Remark 7.5. (1) If one works over the ring F[Uy,,, ..., Uy,], one obtains instead
that Ovor(Ar) = (U, + Uy,) - id, where A = Uy, + Uy, .
(2) The simplest case of the map A, is when £, is O-dimensional. Then, éﬁé is

just the formal hypercube

A
o — o

If £4 is a beta hypercube, then the map
Ap:CF(a, £g) — CF(a, £p)

requires no additional choices.
(3) Naturally, one may also build a hypercube £%, similar to above, and define

B: CF(La. £5) — CF(Lo. L£p)

as the hypercube CF(£L,, élfg).

7.3. Maps for general equivalences on the expanded model

We now define the naturality maps for a general alpha or beta equivalence in terms
of the expanded model of the involution. Suppose that D and D' are two basepoint
expanded doubling enhanced Heegaard diagrams, which share the same underlying
Heegaard surface . Write # = (X, a, 8, w) and #' = (X, a’, B’, w) for the under-
lying non-involutive Heegaard diagrams of D and D, respectively. Write A and A’
for the choices of doubling curves. Furthermore, we assume that the diagram

(S#5, o', @ 0, &, B. B, BB .c.c’, A, A w, w')
is weakly admissible. (This may be achieved by winding &, &’, B and B’ sufficiently).

Remark 7.6. Note that the above is not a valid Heegaard diagram since none of the
attaching curve sets have 2g(X) + 1 curves, however, it still makes sense to require
weak-admissibility. Indeed, the definition of weak-admissibility is that if P is a non-
zero integral 2-chain with boundary equal to a linear combination of curves on the
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CF(a, B, w) ———— CF(a/,,w) ———— CF(a/, B, w)

|
B.cB

B.
Fy
3

cB.cB
Fl

3

cB.cB
F]

3

CF(occB, BB, w, w') —» CF(oc’cB/,ﬂcB,w,w’) — CF(oz’c[_i,,ﬂ’cﬁ/,w,w’)

CF(acB. A, w,w') — CF(oc/c,B/,A,w,w/) _ CF(oc’cB/,A’,w,w/)

| <
Ay

0

~

S

~

T3

A

1

~

CF(acB,ac'a, w,w') — CF(a’cB/,occ’&,w,w’) — CF(oc’c/_i/,oc’c&',w,w’)

~

~

~

e

~

CF(ac'B,ac’a, w,w') — CF(oc’c’Bl,ozc’o'c,w,w’) — CF(a’c’B/,a’c’&’,w,w’)

ac’.ac’
F3

<

a’cac’
F";

4

Fo/c/.a’c’
3

4

CF(B.& w) ————— CF(B',&,w) ————— CF(B’,&, w)

I
id

1

= pa—a

~

I
id

1

CFB.a,w) — CFB.a,w) — 3 CF(B. &, w)

Figure 7.2. The hyperbox whose compression is the basepoint expanded transition map

Vs 5

diagram and n, (P) = ny (P) = 0, then P has both positive and negative multiplic-

ities.

Our transition map @5_)5, is defined by the hyperbox in Figure 7.2. We now
describe aspects of the construction in more detail. The second and third levels are

obtained by pairing hyperboxes of attaching curves in the obvious manner. The fourth
level is obtained from the argument in Section 7.2, where we take A to be a path in
the neck region which connects the two basepoints w and w’.

We now consider the levels involving the 1-handle and 3-handle maps. The map

FIL’E’,CB

is different than the other 1-handle maps we have seen so far, since we do not
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require the diagram (%, B, /_9/) to be a standard diagram for (S! x §2)*¢ . Instead, we
only require the diagram to be admissible. We define the top level as the compression
of the following hyperbox:

CF(a,f,w) ———— CF(a/,f, ) ——————— CF(a/, B/, w)
\ \ \

®®5~B ®®B’,B ®®B’v/§/
{ 4 ¥
CF(a, B, w)®CF(B, B, w') » CF(a, B, w)RCF(B B, w') + CF(a', B, w)®CF(B'. B, v
\ \ \
pie pe pie
4 4 ¥

CF(acP, BcB.w,w') — CF(a'cB’, BcB, w,w') — CF(a'cB’,B'cB , w,w')

(7.8)

The horizontal arrows in equation (7.8) are holomorphic triangle maps. In the

middle, they are the tensor product of the holomorphic triangle maps on the two rele-

vant Heegaard triples. (Or equivalently, the map which counts holomorphic triangles

in the symplectic manifold (X LI £) x D3, where D3 denotes a disk with three bound-
ary punctures.)

Lemma 7.7. The diagram in equation (77.8) satisfies the hyperbox relations.

Proof. The fact that the maps ®©® BB (and so forth) are chain maps follows from the
fact that ® BB is a cycle. The maps F. f *“ are chain maps by [39, Proposition 8.5]. The
fact that the top left and right squares commute is a consequence of the fact that

T555©@p 5 Opp) =0Op 5 and  fg 55(Op 5,05 5) = O 5.

The left relation follows from a small triangle argument [4, Proposition 11.1], while
the right one follows from the grading considerations. Commutativity of the bottom
two squares follows from the stabilization results for triangles [39, Theorem 8.8]. m

Remark 7.8. We remark that our main motivation for using the expanded model of
involution is to simplify the construction of the 1-handle and 3-handle hypercubes in
the transition map. Indeed, the 1-handle hypercube at the top level of equation (5.1)
is challenging to construct for general B and B’. The challenge is that in Heegaard
Floer theory, degenerating the holomorphic £-gon maps along a connected sum neck
in the Heegaard diagram yields moduli spaces which are fibered products over an
evaluation map to Sym” (D) x K¢_1, where K;_; denotes an associahedron. Here, n
denotes the multiplicity at the connected sum point. The factor of Sym” (D) records
asymptotics of holomorphic curves at the connected sum point. The factor of K;_;
records a choice of almost complex structure on Dy. The construction of the 1-handle
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hypercube amounts to a problem of deforming the diagonal in
Sym™(Dg) x Sym"(Dy) x K¢y x K¢_1.

However, in the expanded model of the involution, we can use stabilization results
like Proposition 6.5 to reduce the problem to considering diagonals in Ky_; x Ky_1,
which is a simpler problem and is sufficient for our purposes.

8. Relating the expanded and ordinary models of the involution

In this section, we relate the expanded model of the involution from Section 7 with
the ordinary model from Section 3.2. If ® is a doubling enhanced Heegaard dia-
gram, and Disa basepoint expanded doubling diagram, such that the underlying
(non-involutive) Heegaard diagrams for © and D coincide, we will construct a chain
homotopy equivalence

Fg 5 CFI(D) — CFI(D).

Proposition 8.1. (1) If © and D’ are ordinary doubling diagrams which differ by an
elementary equivalence, then

qu)—)f)’ © Fi)—)f) + F 1%y ° Voo ~0.

() If D, D', and D" are three basepoint expanded doubling enhancements of
three handleslide equivalent diagrams, then

Va5 oY =V 5
The definition of the map F,_, 5 is in Section 8.2. The proof of part (1) of Propo-
sition 8.1 is in Section 8.3. Finally, we prove part (2) in Section 8.4.

8.1. Preliminaries

In this section, we review a few maps that will appear in the construction of Fo_ 5,
and also construct an important hypercube.

Firstly, we recall the free-stabilization maps from [39, Section 6]. If # = (¥, «,
B, w) is a Heegaard diagram, and w’ is a point in X \ (e U B U w), we may form a
new diagram ¥t = (X, a U ag, B U Bo, w U {w’}) by adding attaching curves ag
and B¢ which are contained in a small ball centered at w’. We assume that ag and Bo
intersect in two points, and furthermore, are disjoint froma U 8 U w.

In the above setting, there are chain maps

SH:CF (J,5) > CF~(#*t,s) and S, :CF (¥t s)— CF (¥#,s)
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called the free-stabilization maps. They are given by the formulas
S;C(x) =x x0T, S (x X 67) =0, Spr(x x07) =x,

extended equivariantly over F[U].
If A is an arc which connects w’ to another basepoint in w, then

Sy AxStE =id, 8.1)

for appropriately chosen almost complex structure. This is proven in [39, Lemma 7.10]
by a model computation.

We now generalize equation (8.1) to the setting of hypercubes. Suppose that H =
CF(&£y, £p) is a hypercube formed by pairing hypercubes of attaching curves &£, and
£ g. We form new hypercubes, £ and 13;, by adding small translates of g and B¢ to
each attaching curve of £, and &£ g. We form the morphisms of £ by tensoring each
morphism of £, with 00'['[)’0[ o- We construct SCZ{ similarly. The hypercube relations for
£+ and :ﬁ; follow from Proposition 6.5. Finally, we define a new hypercube of chain
complexes, Ht = CF(£7, éCz;).

We assume, additionally, that £,, is a hypercube of handleslide equivalent alpha
attaching curves, and that the length 1 morphisms are all cycles representing the top
degree generator of homology. We construct the morphism

Ay: CF(E], :f,;;) — CF(£], ig)

as in Section 7.2.
We consider the following diagram:

H —id— H
I
st
1
g.f+
|
id Ay (8.2)

1
g_f+
|
S,
v \l/
H—id— H

The maps 8;, and 8, denote hypercube versions of the free-stabilization maps;
that is, they are hypercube morphisms with only length 1 maps, which are the ordi-
nary free-stabilization maps on the Floer complexes. In the language of [4], these are
hypercubes of stabilization.
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If we compress the right-hand side of (8.2) we obtain a cube-shaped diagram. In
the following, we verify that the resulting diagram is a hypercube of chain complexes.

Proposition 8.2. Let H and H™' be as above. Then, A; may be chosen so that the
diagram in (8.2) becomes a hypercube of chain complexes once we compress the
right-hand side. In the hypercubes along the right-hand side, we use almost complex
structures which are nodal near the free-stabilization region.

We begin with the following lemma.

Lemma 8.3. Let H and H™ be as above. The hypercube (£} )* may be chosen so
that each chain of length at least 2 in the A direction is of the form Ung o ® 0}

©0,00"

Proof. The proof is to follow the steps of the construction in Section 7.2 and verify
that each of the chains in l’é of length 2 or more may be taken to be of the stated form.

Suppose ¢ < ¢ and |¢' — &|;1 = 1. The chain of £} from e to e is of the form
Ou, 0, ® 90':) o DY definition. As in equation (7.4), the desired length 2 hypercube

relation is
(AA. + A )(®a o ® ag, ao) = a(Una s ® 9(10 (xo) (83)

From equation (7.5), we know that

(A/I + A )(® a() a()) - U(q>w + @ )(O Ol ® 60(0 a())
Using the differential computation from [39, Proposition 6.5] we see that @,/ (®y o ®
O &) = 0and

Dy (®a/ ® 9(;; 060) =, (®[x’,a) ® 9(;2 ag’

where ®; denotes the basepoint action on the unstabilized complexes. In particular,
we see that @ (Oy o) = 0y o, for some 7y o, since P, increases grading by 1,
and ©y o is in the maximal grading of homology. Using the fact that S is a chain
map [39, Proposition 6.5], we also have

0000t ® Oty ) = 001a.a) ® bty

In particular, the chain 74 o, constructed as above, satisfies equation (8.3).

The higher length chains of (£ )+ are analyzed similarly. In our present context,
by using the stabilization result for holomorphic polygons in Proposition 6.5, we see
that the right-hand side of equation (7.6) can be written as Cy/ ¢ ® 9;5 @ where Cy ¢
is a chain on the unstabilized complex. By the exact same reasoning as before, Cy ,
is a multiple of U, and is a cycle, so we may pick a primitive of the form Ung’ o ®

9;:) o> completing the proof. |
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Proof of Proposition 8.2. The hypercube relations for the right-hand side follow from
the fact that each of the maps 8$,, Ay and 8, is ahomomorphism of hypercubes (i.e.,
a chain map).

The hypercube relations for the entire cube, after compressing the right-hand side

of the diagram in equation (8.2) are equivalent to the relation
Sy ArSt, =id,

as hypercube morphisms. First, we use Lemma 8.3 to construct the hypercube (£ )
so that each chain of length at least 2 which has non-trivial A direction is of the form
Unew,a ® 9(;’;’“0. In the composition AAS;:,, each arrow with length greater than 1
will be obtained by a holomorphic polygon count which only has inputs of the form
x® 9;5,,10. By Proposition 6.5, the output of such a polygon count will also have a
tensor factor of 90‘[2’& o- Such elements lie in the kernel of S ,. Hence, the composition
S,A AS; has no arrows of length greater than 1. The arrows of length 1 correspond

to the composition S, A3 S uf/, which is the identity, by [39, Lemma 7.10]. [ ]

8.2. Themap Fg_ 5

In this section, we define the map F4_, 5. The map will correspond to a hypercube
relating the expanded model of the involution from Section 7 and the non-expanded
model from Section 3.2.

The construction proceeds in two steps. We first relate the singly-pointed involu-
tion to a model which adds a basepoint in a very simple way. We call this the trivially
expanded involution. As a second step, we relate the trivially expanded model to the
expanded model defined in Section 7.

Let (X, e, B, w) denote a Heegaard diagram, and let w’ be a new basepoint, chosen
near w. Let a9 and By be two new alpha and beta circles, centered at w’. We will let
s denote either of the curves ag or B¢ (or small translates thereof).

In Figure 8.1, each square commutes, and no length 2 maps are necessary. As our
definition, we take the compression of the right-hand side of Figure 8.1 as the trivially
expanded model of the involution.

We now describe how to relate the trivially expanded model in Figure 8.1 to the
expanded model described in Section 7. To do this, we use the hyperbox shown in
Figure 8.2.

We now explain the maps appearing in equation Figure 8.2. Except for the top-
and bottom-most cubes, all of the faces either commute on the nose, or are obtained
by pairing hypercubes of attaching curves. The hypercubes are all of handleslide
equivalent attaching curves, or handleslide equivalent attaching curves with an extra
direction corresponding to A. Hence, the construction follows by the technique of
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B.B
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BB—A
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BsB—>sA
Tush
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id— CF(a, B) —id—> CF(a, B)

sB.sB
Fl

2

B.BsP) -ia> CF(asp. Bsp)

BsB—sA
TusB

~

CF(aB,A) —ia> CF(aB,A) — S}, — CF(asB,sA) -ias CF(asB,sA)

~

CF(af,A) —ia> CF(aB,A) — 12%

A—aa
fop

~

CF(ap,a&) -id> CF(af,aa) — F&%— CF(B,&) —id—> CF(B,a)

A—ad
Uiy

~

0]

S 5 4
CF(asB,sA) — 4, — CF(asB,sA) -id> CF(asB,sA)
5 e e
CF(asB,sA) - 1357% . CF(asB, as@) -id> CF(as;,as&)
sz, Slll/ Foss

— CF(aB, o) - F&“s CF(B,a)

oo
F3

~

2

[P]

~

2

id— CF(B,&) —id— CF(B, &)

CF(B.&) —id— CF(B,a)

Figure 8.1. The first hyperbox used to construct the map F_ 5. None of the faces have length
2 maps. The boxed letter will be referred to in the proof of part (1) of Proposition 8.1.
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CF(e, B) id > CF(ax, B) id > CF(a, )

Fi\‘B,sB lej,c/; Flcj,cﬁ

CF(ozs/_i,ﬂsB N CF(ocsB,,BcB) — ybep — CF(och,ﬂcB)

<

asB asB—acPB
I S~ I ~~__ I
BsB—>sA T~e BcB—sA RN BcB—sA
faSB T~ faSB \\\\\ facB
\Ir \\\) \Ir \\\7& \I(

CF(asB,sA) id—> CF(aspB,sA) — L e — CF(acB, sA)

| | : |
A,\ AA \\\\\ A)L
! ! 4

CF(asB.,sA) id—> CF(aspB,sA) — L e — CF(acB, sA)
o e |
. ~~ _ ~~ H _
SA—asd S~ sA—ac’a S~ sA—ac’@
fOtSB \\\\\ fOtSB \\\\\ facB
1 T + Rt ¥
CF(asB, asqt) — f&8=2<'d o CF(asB,ac'a) — 2G5 - — CF(acB,ac'a)

| o , |
Tl focla

id id T~ acB—ac’B
l l \\\\,\ 2

CF(asP,asa) — f28~'d 5 CF(asB,ac'@) — £o4° P CF(ac'B, ac'®)

asfB asB—ac’
| | I
F:;xs,as F;zs.ozc’ F;{(",Dtc’
! J l
CF(B,a) id > CF(B, @) id > CF(B,a)

Figure 8.2. The second hyperbox used to construct the map F_, 5. The boxed letters label
the faces (in particular, they do not label maps in the faces).

filling empty hypercubes of handleslide equivalent attaching curves [18, Lemma 8.6],
or Section 7.2.

We now consider the top-most and bottom-most hypercubes. We claim that the
hypercube relations may be verified by appealing to Proposition 6.5. To this end, we
state the following lemma.

Lemma 8.4. (1) With respect to the unique Spin® structures which have torsion
restriction to the boundaries of the corresponding 4-manifolds, the Heegaard triples

(Z,sB,sB.cB,w,w') and (Z,cB.sB,cB,w,w)
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Figure 8.3. The curves s, ¢ and ¢’ in the connected sum neck region. The w basepoint is indi-
cated by e and the w’ is indicated by o’.

are weakly admissible multi-stabilizing Heegaard triples. Furthermore,

Fo . (ot + — ot
fsﬂ,Sﬂ,cﬂ (®s[§,s3’ ®sﬂ_,c/§) - ®sﬂ_,c/§’
F o . _(oF + — ot
Jepsheh (®CB,SB’ ®S5,65) o ®05,65’
Here, f; B.sB.ch denotes the map on 67, and similarly for the other holomorphic tri-
angle map.
(2) Similarly, with respect to the unique Spin® structures which have torsion
restriction to the boundary,

Z,as,as,ac’, w,w') and (T,oc’,as,ac’, w,w’)
are weakly admissible multi-stabilizing diagrams, and

~ _ I -
fas,as,ac/(®as,as, ®as,ac’) = ®as,ac”
~ i _ -

fac/,as,ac’(e)ac/’as, ®as,ac’) - Yac,ac’

Proof. The claims about admissibility are proven by reducing to the genus zero triples
(S2,s,s,c,w,w’), and so forth, by removing pairwise isotopic triples of curves from
B or . See Figure 8.3 for the model case. It is straightforward to verify admissibility
for the genus 0 diagrams. Clearly the other conditions of a multi-stabilizing diagram
are satisfied.

We now prove the claim about the holomorphic triangle maps. Both triangle maps
may be interpreted as naturality maps for a sequence of handleslides. Since each of
the Floer complexes appearing in the statement have a unique top degree intersection
point, and a unique bottom degree intersection point, and also since the claims only
involve the maps on CF, the claims follow from grading considerations. ]

8.3. Proof of part (1) of Proposition 8.1

We now show that the map F_ 5, defined in the previous section, commutes up to
chain homotopy for the transition maps for elementary equivalences of the alpha and
beta curves. This is part (1) of Proposition 8.1.
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Our proof is to build a 3-dimensional hypercube which realizes the homotopy
commutation

Fo_ g oV =V¥g 5 0Fy 5,

whenever ® and ®’ differ by an elementary equivalence. We build this hypercube
as follows. For each of the faces labeled (A)—(S) in Figure 8.1, and each of the faces
labeled (A’)—(L") in Figure 8.2, we build a hyperbox of size (1, 1, 2), which extends
the corresponding sub-cube of the map Fg_, 5 in the direction of the maps ¥o_, o
and Wz _ 5,. We can view each of these hyperboxes as a sequence of two hyper-
cubes. The third coordinate of the first hypercube is an alpha equivalence, and the
third coordinate of the second hypercube is a beta equivalence. (This pattern is paral-
lel to the construction of the map Wo_,5; see Figure 5.1). Write ’, B/, and A’ for
the attaching curves of ©’.

The construction of the size (1, 1, 2) hyperbox over the facet labeled B in Fig-
ure 8.1 is shown below.

CF(a, B) 7L CF(a’, B) N CF(a’,B')
\,d \_d \_d
I I 1
I N N
CF(a, B) £l ‘ CF(a’, B) fff”/‘ CF(a,B))
FBp FEB FE#
FIJB'.:E FISE.AB FlsB’,sB’
CF(aB.BB) ——|—s2% 5~ CF('B . BB) ——|— rf5#% 5 CF('B . B'B)
59 \Sﬁ st
w \ ) w \‘ 7 7 w \‘
CF(asB.BsB) — s, . — CF(@/'sB' . BsB) — rL5#" —; CF(a/sp’.p'sB")

(8.4)
The hypercube relations for the diagram in (8.4) follow by using Proposition 6.5 to
destabilize the holomorphic triangle counts.

The hyperbox over the face labeled (G) in Figure 8.1 follows from the construction
from Proposition 8.2. The size (1, 1, 2) hyperboxes over the remaining faces (A)—(S)
are similar to the construction in equation (8.4). We leave the details to the reader.

Next, we move on to extending the hyperboxes from Figure 8.2. The extensions of
the faces labeled (C’)—(J’) are obtained by pairing hypercubes of handleslide equiv-
alent attaching curves (with an extra dimension corresponding to A in the case of E’
and F’). In particular, the extensions are constructed using techniques which are now
standard, so we leave them to the reader.

We investigate the hypercubes labeled A’, B’, K’ and L. All four are constructed
similarly, so we focus our attention on the face labeled A’. The extension is shown in
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CF (. ) R CF(e. B) it CF(o'.B")
id id id
N ) N
CF(e. B) Fanar CF(o', B) e CF(o'.B")
Fi\'fi,xl? FISB/‘SB FISB/‘W/
FISBA-B FISB’.CB FISB’.CB’
5 = 3 -7 - B—pB'sB =7 o
CFsB.BsB) ——— |- 12E 5% CF@'sB . BsB) —— |- 557 7% - cF(/'sB'. B'sB)
-BsB—BcB BsB—BcB B'sB'—B'cB
s ToEre 1ol
~ > >
R r cB ry R B—p'cp’ a’ a’
CF(asB.BcB) —— f&F o — CF(&'sp’.Bep) — f5877" P — CF(o/sp’ . B'cB)

(8.5)
The hypercube relations follow from the stabilization results of Proposition 6.5, to-
gether with Lemma 8.4.

8.4. The composition law for expanded transition maps

In this section, we prove part (2) of Proposition 8.1. As in the hypotheses of the
proposition, suppose that we have three handleslide equivalent Heegaard diagrams

(E,a,ﬂ,W), (E,a,,ﬂ/,U)), (Evu”’ﬂ//yw)’

all with underlying surface X. We also pick three choices of basepoint expanded dou-
bling curves A, A’ and A”, and let ¢ and ¢’ denote the curves in the connected sum
region. We further assume that the tuple

= — — — - -/ =/
=#HZ,o" a" o & a,a,B,8,8.8.8B".8 ., A, A, A" c,c' w)

is weakly admissible (cf. Remark 7.6). Write D, D' and D" for the associated base-
point expanded, doubling enhanced Heegaard diagrams. We will show that

= Vs 5o ¥s 5

DD
Our proof goes by constructing a hyperbox which realizes the stated relation. For

each vertical level in the construction of @5 the hyperbox we construct will have

YR
a level which takes the form of a hyperbox of size (2,2, 1).
We describe the 1-handle hyperbox first. See Figure 8.4 for the overall shape of the

I-handle hyperbox. As a first step, we construct the hypercube shown in the following
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equation:
F[U] id > F[U]
VTN
\id\
F[U] id > F[U]
Oz 5 \\\ Op 5
a‘)BN,B/ N R
4 ©p.5 A ©p 3
[ Nl ey
CF(B'.B) ——— i/ | —— CF@ B>
\ ) ‘~\\\\\\\\‘\ \ 7\\\
B \ N —p/ B <
fg/_>g// \ hg,_ﬁg,, ——— fﬁ/_>3// .
R el N 4
-1 = B—p’ s —1 =
CFB". B) 75 s cF(B".B)
(8.6)

The hypercube in equation (8.6) is constructed similarly to the procedure for filling
a hypercube of handleslide equivalent attaching curves, described by Manolescu and
Ozsvith [18, Lemma 8.6]. In equation (8.6), an arrow labeled by an element x €
Te N Ty means the map from F[U] to CF (e, B) given by

11— x,

extended equivariantly over U. The existence of A g pr A BB and w G fr SO that the

diagram in (8.6) satisfies the hypercube relations follows from the fact that 8, 8 " and
B " are handleslide equivalent.

It is helpful to concretely understand the hypercube relations in (8.6). The length
1 relations amount to each chain marked with ® being a cycle. The length 2 relations
are as follows:

B=B (. \y—@- -
f (®ﬂ/>ﬁ) = @ﬂ/’ﬂ/a
1859550 =954
Ot Tg /—>ﬂ”(®5’,3) = Mg
fﬂ—hB (®B_”,ﬁ_) —+ ®ﬁ_”:5/ = 8)&5// g/,

R N [ [N ©7

B’
f / ﬁ// ’ ﬂ//
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Note that the first relation is forced by grading considerations, and the second is
implied by a nearest point map computation. The third and fourth relations are clearly
satisfiable, and the final relation is the associativity relations for quadrilaterals.

Finally, the length 3 relation is

BBy . o B=B" (@- ) — 90~ -
f—,, (Aﬂ”,ﬂ) + /\ﬁ//’ﬂ/ + hB,_)B,,(®ﬂ/’ﬁ) - awﬂ”,ﬂ"

Note that the hypercube in (8.6) is a new type of hypercube. It is not naturally
realized by pairing alpha and beta hypercubes together. We can think of the left-hand
side as determining the following hypercube of alpha attaching curves:

Oz 5 AB//!B— CF: (8.8)

On the other hand, the front side is more naturally viewed as corresponding to the
following hypercube of beta attaching curves:

=/ =1

B 1— B

N\
N
N
N

®1§”J§ AB”.B' 63//.5/

U

- =/
B —©5— B

(8.9)

The bottom face of (8.6) is the pairing of hypercubes of attaching curves.
Next, we pick hypercubes of alpha attaching curves and beta attaching curves
(respectively):

o —Ou o — o B —0sp— B
L e Owre A0 1 A @ (8.10)
l \\\J l l \\\J l
o« — 0y o> o B —©s s> B”

As usual, we assume that the length 1 morphisms represent top degree cycles. Note
that we do not assume that the chains in (8.10) have any relation with the chains
in (8.8) or (8.9).

We now consider the diagram in Figure 8.4. We will presently define the maps
appearing therein, and then subsequently prove the hypercube relations. All the maps



Naturality and functoriality in involutive Heegaard Floer homology

53

(o', B
1\ "f',f/*,a// \\\‘\\\ fofa’;a”
| [T R
. /
- (a, B) Foan - (", B) 17— (@". B)
| \ \ |
FeB.cB N FlvB’AcB \\\ . \\\ FICB’,CB/
\\ \\
\ SN
\\ \\\
\ - N
. \ N
\\ \\
Fifeh A A it i
5, \\ | 0,
- - 3 -/ " A U =/ AV,
(e, BeB) — 105 o\ —> (@cB BB) — 17 "~ (@'cB ».B’C’PT_}\\
\\“\\ N NN,
~o R ~o 114 N
id \\\‘\\\\ fo‘i‘n"%’ﬁa”cﬁ” l\\ \\\‘\\\\ :;;BB/*)QN\L\E//
- Sen A
\ T \J\// o \&// ’
_ _ _ _ _ o _ _
(ach. BB) — 725 (@'cB". BeB) — £8P H s (@B’ e
(. B) I Vo (", B
id > . i
N 1’
(ec. B) Thmsa? 7. (@, B) FEH—— (", B")
| |
Fl B.cB FICB”'CE \\\;"», ) FICBN'CB/
[,
N ’ .
Q. o,
N
\ i
N
N
N o
\\
FIL'B.CB F]L‘B”,L’B \\\M F]('B”,cﬁ”
| .
- - 3 — - z Z YY)
(@cB. BeB) — 158 | (@' BeB) — BB eR s @'cR! BB
id id \‘\\\ fﬁii%i?ﬂ%’;"
\ \ \\\\‘w \,u
- _ . _ _ _ .
(O{Cﬂ, ﬂcﬂ) - fc‘ifég_)a//(.gﬂ - (“,/Cﬂ ’ ﬂcﬂ) - fBCBﬁBH(B” g

=/ =1
a//(.BH (a/lcﬂ ’ ﬂ”cﬂ )
Figure 8.4. Four hypercubes. The length 2 maps are sums of quadrilateral and triangle maps

(obtained by pairing hypercubes). The two boxes are stacked along the gray faces.
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are built from the hypercubes in (8.6) and (8.10). We note that the hypercube relations
are slightly subtle, since they do not arise from simply pairing hypercubes of attaching
curves together.

We focus first on the top left cube of Figure 8.4. The maps appearing there are as
follows.

(1) The length 2 map along the top is one associated to pairing the O-dimensional
beta hypercube 8 with the alpha hypercube

& — Oy o— o
N

N
N

N
Av’ o Oa o

1
« l
N
Lo
o

— Oy 6> o

(2) The length 2 map along the bottom is the one obtained by pairing the 0-
dimensional beta hypercube B¢ B with the hypercube

acf — Oy 4107105 5 — a'cp’

1 h A_\ ®a”,a’|0+|®[§”.[§’

J/ \\\\\) ‘L

- -/
ocf —©ur 407105, ; — o'

where
A= 2aal0F S50 5 5(©Opr . Op g) + Oaral0F Az 5.

(3) The length 2 map along the right-hand side is
x> fh L (01025, 5.
(4) The length 3 map is
¥ B 0T+ farap Caran )0 A 5.

Lemma 8.5. The maps described above for the top left subcube of the diagram in
Figure 8.4 satisfy the hypercube relations.

Proof. The length 1 relations are immediate, as are the length 2 relations for all but
the right face of the cube. For the right face of the cube, using the stabilization result
from Proposition 6.5, applied to holomorphic triangles, we see that the hypercube
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relations amount to showing that if x € Ty~ N Tg, then

faﬂ/—ﬂ)l”(x)|9+|(®/§” B + fﬂ_// B/ B(®I§// ﬁ/, ®B/ ﬂ_))
= A0 (N6 A5 ) + fE o (02)107F A5 5.

which follows from the form of the differential on the Heegaard diagram obtained by
attaching a 1-handle. The key point is that the right-hand side of the above equation
simplifies to just faﬁ, (x)|0T|0A jr §» Which coincides with the left-hand side by
equation (8.7).

Next, we consider the length 3 relation of the cube. The desired relation is that if

x € Tq NTg, then

_)a//

L
+ forrap Qo ¥)|0F105, 5
+hyrepnarcprach pep(@ua |07 10g, 5. O al071Og,5. X107 |0 5)
+ il © S 10T 1250 5
+ o ach pei Paral0F | fn 1 5O 51 Op 5). x |9+|®;f,5
+ Forepr ach pei Oaral0 105, 5. x167105 5)

= [ OO0 5 + O IO A5 5.0 ).

(x)16105, 5

(8.11)
We note that
(1 s N0 5 58] )
= farap oo Oarar. Oara). 0|6 A5 5
+ (S a0 S ) IO F 25 5
FHE g (0107105, 5
+ 1l o OOV 0 5 5O - O ) (8.12)

Also,
[ Crarer )10 A, 5. 0] ()
= fa”,a,ﬂ (®a”,a + fa”,a’,a (®a”,a” ®a’,a)7 x)|0+|kﬂ_”,/§

+ forap oo OO, 5 + [0 5 5(Op, 51, Op §)). (8.13)
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Next, we note that the stabilization result from Proposition 6.5 implies that

Jaregrach pepParal® | [ g j©Opi g O g) X107 10 5)

= furapCaras N0 f50 1 5O 51 Of ),
Joreprach.pes(Oaral0 Az, 5,x10%|05 5)

= Jorap(Oara, X)10F A5, 5. (8.14)

Using (8.12), (8.13), and (8.14) to simplify (8.11), we see that the length 3 hyper-
cube relation becomes equivalent to

e aefrach.pef(Oara |07 10,5, Ou o607 105 5, 16705 5)
= hfj%/%ﬁ (x)|9+|f5//,ﬂ‘/,ﬁ‘ (©g1 5. Op ) (8.15)

We now prove (8.15). Suppose that ¥ and /¢ are classes of rectangles on (X, a”,
o, a, B)and (T, /_9”, /_i/, B. B) such that (V) + (o) = —1. Let C(y, o) denote
the set of all homology classes which coincide with ¥ and ¢ outside the 1-handle
region, and have 07 as their input and output in the 1-handle region. (Such rectangles
necessarily have index —1.) Applying Proposition 6.5 to the 1-handle region allows
us to remove the 1-handle region connecting = and X. We obtain

D #M(§) = H#HMY) Xy M(0))  (mod 2). (8.16)
¢eC (¥, ¥o)

Here, we are also using the nodal almost complex structures around the 1-handle
region on the left-hand side. Furthermore, any class of rectangles which is not in
some C (Y, ¥o) for a pair (Y, ¥o) satisfying () + 1 (¥o) = —1 has no holomorphic
representatives. Also, Xey denotes the fibered product over the evaluation map to the
parameter space R =~ M (O).

We write h° for the map from CF~ (a, B) to CF_(oz”cB”, BcP) which is the

composition ) o
c cB,c

h° = hgcg—m/cﬁ_’—m”cﬂ_” o Fy g ﬂ'
By equation (8.16), we may identify 4° as the map which counts holomorphic rect-
angles on the disjoint union of two diagrams, viewed as a fibered product over evp.
We may consider a map i’ for any generic ¢ € R, which counts curve pairs (u, ug)
on the disjoint union consisting of holomorphic quadrilaterals such that evg(u) =
evo(uo) + ¢.

We claim that 2* = h?" for generic ¢ and ¢ in R. Firstly, we note that since f8
appears twice (once as a small Hamiltonian isotopy), the nearest point argument of
[4, Proposition 11.5] (cf. [15, Section 3.4]) implies that for suitably small choices
of translations, the only rectangles on X with representatives have Maslov index at
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least 0. In particular, all holomorphic rectangles counted by A’ for generic ¢ have
p(¥) = —1and (o) = 0.

We consider the ends of the moduli spaces counted by A’, ranging over ¢ € [0, 00).
No degenerations are possible on the 3-side, since all rectangles there have index —1.
On the -side, rectangles have index 0, so the possible degenerations are a holomor-
phic disk splitting off at some finite ¢, as well as the ends which appear as t — oo.
The ends appearing at { — oo correspond exactly to the map

B
ha—>a/—>af/(x)|9+|f/§//,5/,5(®ﬁ/’,/§"fB',B,E(®B/,E’®B,E))-

The ends at finite ¢ are slightly more subtle. First, one end which can appear is an
end where a disk breaks off into the -8 end. These cancel modulo two since © BB
is a cycle. Holomorphic disks breaking off into the other ends are prohibited, since
they would leave an index —1 holomorphic rectangle, with ® .3 as input. (The most
important end where this is prohibited is the outgoing B”—B end, where a more general
diagram might have degenerations.) In particular, we obtain (8.15), completing the
proof. |

The hypercube in the bottom right of Figure 8.4 is constructed by simply inter-
changing the roles of the alpha and beta curves in the above procedure.

We now construct the maps in the top right hypercube of Figure 8.4. As a first
step, we pick chains to give hypercubes of attaching curves, as follows.

(1) The top face is obtained by pairing the two hypercubes

@a//!a/ ®ﬁ.ﬂ/
o ——ao” and B—— B

(2) The bottom face is obtained by pairing the two hypercubes

_, O 167105, 5 _ ~ Opplcl®p g p
oc’cﬂ/ AN a”cﬂ// and Bcf—— ﬂ,cﬂ/

(3) The length 2 map along the left face is
x> fh ()02, 5.
(4) The length 2 map along the front face is
x> f57P 010440 4
(5) The length 3 map is the sum of the following two maps:

x> (f57F o 5 ) @10 w5 50,

a//

x — h'=0(x).
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The map 7'<'0 is a new map, as follows. It counts pairs (u, ug), where u and u are
holomorphic rectangles on (X, a”, o', B, B’) and (X, ﬁ”, B/, B, B/), respectively, both
of index —1, such that

evo(u) < evg(ug).
If y and z are the outputs of u and ug, respectively, then the 4’ <% (x) has a summand
of y x 8% x z (weighted by the appropriate U -power).

Lemma 8.6. With the maps described above, the top right subcube of Figure 8.4 is a
hypercube of chain complexes.

Proof. The proof is similar to the proof of Lemma 8.5. The length 1 and 2 hypercube
relations are similar to the previous case, so we focus on the length 3 relation. If
x € Ty N T, the desired relation is

gz‘ix”(x)|9+|oﬂ”,ﬂ_’

 Sorepir pepprei —ar 1015, 5.05,5167105 5.)
a’cB”.BcB B cB \J o' —>a” B".B° B.B’ B.B’
+ (577 o £ ) @10t 1A 5

+ hﬁcﬂ_—ﬂg cB ~ (x|9+|®5/’5)

a/cﬁ/_)a//cﬂ//
= [(£17% o £h ) (0T w5 5, + h =", 8] (x). (8.17)
By excising the special curves in the connected sum region using the results about

holomorphic triangles and 1-handles from [39, Theorem 8.8] (compare Proposition 6.5
above), we obtain

B
fa”cﬁ_”,ﬂcﬁ,ﬂ’cﬂ_’(fa/—>a/’(x)|0+|kﬁ” By ®ﬂ ﬂ/|0+|®/§yﬁ/)
= (f57% o 15 )07 5P g ). (8.18)
We now analyze the quadrilateral map
BcB—B'ch’ +10 - -
ha/cﬂ_/_)a//CB//(xlg |®ﬂ/’ﬁ)

As with the previous case, we can destabilize the 1-handle region and identify the
expression with the count of index —1 holomorphic quadrilaterals on (X L X) x .
We can view this moduli space as the fibered product over the evaluation map to
M(O) 2 R.If (¥, ¥p) is a homology class on (X L X) x (I which admits a holomor-
phic representative, then there are generically two possibilities:

(1) u(¥) =0and u(Yo) = —1;
(2) n(¥) = —land pu(yo) = 0.
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As before we will write #° for the map pPeB—Bch’ (x]671©4, 5). For ¢ € [0, 00),

/ ﬂ/_)a// ﬂ//
we write A’ for a deformation, which counts curves such that

evo(ug) —evpo(u) = t¢.

We count the ends of the moduli spaces defining the maps /! (ranging over ¢ € [0, 00)).
We obtain

[0 1<) (x) = WELPP (x(0+|05, 5)

o cﬁ/_)a//cﬂ//

+ (fﬂ_)ﬂ fa’—)a”)(x)|8+|hg’_—)>ﬂﬂ”(®ﬁ/ ,3) + ha _)a//(X)|0+|®/3// ﬂ’ (819)

Note that instead of ® 3B in the final factor, what more naturally appears is

fg//,g/,g/((ag//’g/,fg/’g,g/(@)g/,/;, ®/§,/§/))‘
However, this coincides with ® G B by a nearest point computation, cf. [4, Proposi-

tion 11.1].
Finally,

[(FE7F 0 s ()10 1050 - 0] ()

B—p’ B—B’ B—B’
(fa//_) Of _)a”(x))|9+|(f (A'ﬂ” ﬂ)+)’ﬁ” ﬂ/—i_hﬁ’—)ﬁ”(@ﬂ/ﬂ))
(8.20)

By combining (8.18), (8.19), and (8.20), we quickly obtain (8.17), completing the
proof. |

9. 1- and 3-handles

In this section, we define our cobordism maps for 1-handle and 3-handles. Since for
the maps in this section there will be an obvious choice of Spin® structure and framed
path, we omit these from the notation throughout.

9.1. The construction

We now construct the map for a 4-dimensional 1-handle. Suppose that Sg = {p, p'}
is a (framed) O-sphere in Y. We pick a Heegaard surface (X, ¢, §) so that Sp C
3\ (o U B). We form a Heegaard surface for the surgered manifold Y (Sy) by cutting
out small disks centered at p and p’, and gluing in an annular diagram (A4, yo, Yo),
where y and y¢ are meridians of the annulus which intersect in two points. (Here and
onwards, we abuse notation and view one copy of Y, as a Hamiltonian translate of the
other). Write (X', ayo, BYo, w) for the diagram obtained by this procedure.
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We now define the 4-dimensional 1-handle map. To do this, we first pick paths A
and A’ from p and p’ to w. We pick doubling arcs & for ¥ which are disjoint from A
and A’. Furthermore, we choose two more doubling arcs §o on X/, which are contained
in the union of a neighborhood of A and A’, as well as the annular 1-handle region.
We assume 8 U 8 is a valid collection of doubling arcs for X’. Write A and A for
the curves obtained by doubling § and 8, respectively.

Additionally, the involutive 1-handle map requires a choice of closed curve v C
S/#5', such that the path 7 is obtained by doubling a properly embedded arc on
3"\ N(w) which intersects y, transversely at a single point.

We define the 1-handle map to be the diagram obtained by compressing the fol-
lowing hyperbox:

CF(e. B) P00 CF(@yo. By0)
\ \
FF.B Flﬁioﬁ?o
+ +
CF(aB.BB) - 1070707 5 CF(aByojo. BByoTo) === CF(¢Byo70. BBYo70)
| \ ~—_ \
BB—A -BBYoV0—Avo 70 el -BBvov0— A0
/a/} jaﬁyo?o Tl faBVm?o
4 4 Te-y 4
CF(aB.A) — F7070%0 5 CF(aByofo. Ayo7o) — /epor2 "% = CF(aByofo. AAo)
| S~ |
fA,La& Ay 70—ad@voTo “\\\ AAg—aaYoTo
aB aByovo R aByovo
+ N2 Te-y N2

CF(af,aq) — /0707070 5 CF(aByoio, ®@yo7o) B. — CF(aByoTo. a&yoo)

F;x.oc F;V()JXV()
+ +
CF(B, &) Flo-70 CF(Byo, ®yo)

©.1)
It will be helpful to observe that the bottom-most level of (9.1) has the following
slightly expanded form:

CF(aB.a) - FJ070y CF(aBio, adjo) - F107°3 CF(aByoio,adyobo) - B> CF(aByojo. adyoio)
|

H F3VO~V()
4
CF(af, ad) - F7070y CF(aBfo, ad&io) CF(aB7o, adjo)
1 1
CF(B.a) Frov0 CF(Byo. @yo)

9.2)

We now describe the construction of (9.1). The top-most face which has a diagonal

map is obtained by pairing a hypercube of beta attaching curves with the hypercube
of alpha attaching curves consisting of &8y 7.
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We now consider the lowest face of (9.1) which has a diagonal map. This map
is obtained by pairing the 0-dimensional alpha hypercube a7, with the diagram
below. The map B; is the Hj-action for t, defined by counting changes across the
beta curves, aayo ).

A]/());() — BOaygy9.000 — AAp

~
~
~
~
~
~
~

O Ayo70.advy 70 n_ Oang.aaryg

l Tt l

®ayoYo T—— €YYo

9.3)

In equation (9.3), the hypercube relations are to be interpreted using the formalism of
Section 7.2. In particular, the hypercube relations amount to the equation

N = B(Oayoip.aaroro) T Sayoro.Ado.aarvoio (Oayoro,Adgs OAAg.aayos): (94)

Remark 9.1. There are many choices of morphisms in the diagram in equation (9.3).
Any two choices of top-degree generators ® ay,7,,AA, are homologous. Similarly any
two choices of Oayy7y,aayo7o ANd OAAyaayj, are homologous. Unlike these mor-
phisms, it is not the case that any two choices of diagonal morphism 17="1Ay,70.¢ayo70
are homologous. Indeed, this chain lies in the top degree of CF~ (#7181 x §2),
and hence, there two choices which are not homologous. Similarly, it is not the case
that any two choices for the curve t are homologous. Nonetheless, we will show in
Lemma 9.5 that resulting involutive 1-handle map obtained by compressing the dia-
gram in equation (9.2) is independent of these choices, up to chain homotopy.

We now show that this is satisfiable.

Lemma 9.2. There is a homogeneously graded n € CF(Ayoyo, €&yoyo) satisfy-
ing (9.4).

Proof. Any two choices of A A are related by a sequence of handleslides and iso-
topies. Via an associativity argument, it is sufficient to show the claim for any con-
venient choice of A and A. In particular, we may assume that the curves of Ay are
disjoint from « and &. In particular, the relevant triple diagram

(E/#il, Aj/o)70, A A(), Ot&)/o);())
may be decomposed as a connected sum

(SHE, A, A, a&)#(T*#T?, yo70, Ao, Yo70)-
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By the stabilization result in Proposition 6.5, it suffices to show the claim for the genus
2 triple (TZ#TZ, )/0)7(), Ay, )/0)70).

There are two ways to verify the claim in this situation. The first strategy is to
argue topologically via the following reasoning.

(1) Topologically the triple (T 2#T 2, yo70. Ao, Yo 7o) is for 0-surgery on an unknot
inS! x §2.

(2) By picking A appropriately, we may assume that t runs parallel to a curve
A € Ay. Furthermore, A is the meridian of the knot on which we are per-
forming surgery, and in particular defines the dual of the surgery knot.

(3) In general, if U is a O-framed unknot in Y, and u is a meridian, then
CF(WWU)) = A, 0 Fi,

where F] is the 1-handle map. This is easily verified using a genus 1 diagram
and a stabilization result for triangles.

(4) By combining the ideas above, the proof is complete.

Alternately, one may explicitly perform the computation by counting holomorphic
triangles. Write 6% (resp., 6%) for the intersection points of yo with its translate
(resp., Yo with its translate). In Figure 9.1, we show the four index O triangle classes
which can contribute. Two of the classes are in 7,(©F, ©®F, 6%|67) and the other
two classes are in 7o(©F, ©F, 07|61). If ¥, and ¥, denote the two classes in
(0T, 01, 07|67), we claim

#M (Y1) + #M(Y2) =1 mod 2, 9.5)

and similarly for the two classes in 7,(®1, ®+, §~|01). This claim is verified via
a Gromov compactness argument which is illustrated and explained in Figure 9.2.
Hence, we conclude that fy,70.A0.7070 (©F, ®F) = 6710~ 4 67|6, which is also
easily seen to be the action t on 1|07, ]

Finally, we verify that the bottom-most face of (9.1) is a hypercube. Note that this
face may be expanded into the diagram shown in (9.2). In light of this, it suffices to
show the following relation (note the similarity to equation (8.2)).

Lemma 9.3. As maps from CF (a7, a&7) to CF(aB 7o, yo), there is an equality
F3VO:VO o Br ° F11’0>VO =id.

Proof. Compare [39, Lemma 7.10]. The relation follows from the form of the differ-
ential after attaching a 1-handle. Namely, it follows from [39, Proposition 8.5] that
the differential satisfies

AxxOF )=0d(x)® 6

Y0,Y0 Y0:Y0"
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oo ||
(© @) %

(01,01, 07167)| 01, 01,0716

Figure 9.1. Verifying equation (9.4) by counting triangles. Left: The diagram (T2#T2,
YoYo, Ao). Right: The four classes of index 0 holomorphic triangles which contribute to the
triangle map fy43,Aq. 070 (®+, ®+)-

Furthermore, the proof shows that the holomorphic curves which go from x x 9;5’1,0

toy x 01,0,),0 for some x and y all have x = y and have domain consisting of one of
the two bigons contained in the 1-handle region. The 1-chain 7 intersects the boundary
of exactly one of these bigons, and hence,

+ _ - +
B,(x X 91/0,1/0) =L x 01/0,1/0 tz® 91/0,1/0

for some z € CF(af, aéx). The stated claim follows immediately. |

9.2. Well-definedness of the 1-handle maps

In this section, we prove that the stabilization maps are compatible with the maps
for changing the alpha and beta curves via handleslides or isotopies, or changing the
choice of doubling curves A and A . We also prove that the involutive 1-handle maps
are independent of the choice of the curve T € X’ #Y. as well as the choice of chains
used to construct the hypercubes in (9.1).

As a first step, we verify independence of the curve 7.

Lemma 9.4. Suppose that © and t' are two closed curves on Y'#X' obtained by
doubling properly embedded arcs on X' \ N(w) which intersect yo transversely at a
single point. Then, there are choices of the additional auxiliary data in the construc-
tion so that the models of the 1-handle maps in equation (9.1) are chain homotopic.

Proof. In the compression of equation (9.1) the choice of t only affects the diagonal
map. There are two ways in which it appears. The first is via the choice of 7, and the
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a

Figure 9.2. A Gromov compactness argument which shows that the total count of holomorphic
triangles of index 0 in 72(®1, ®1,7]67) is 1. In the left-most columns are index 1 classes
of triangles. On the other columns of a given row, we show all decompositions of that class into
an index O triangle class and an index 1 disk class (such that both classes have nonnegative mul-
tiplicities). Configurations A and E have the same total count as the 7+ |9_ ~ coefficient of our
map. Configuration B has total count 1. Configurations C and D have the same count. Gromov
compactness gives #4 + #B 4+ #C = 0 and #D + #E = 0, which quickly gives equation (9.5).

second is a summand which has a factor of

F;!)/oaayo o A_Vo?_o—mﬁyo?oim&yo?o o Fllfo?o,yofo' (9.6)
aByovo

We consider this latter summand first. The map in equation (9.6) counts holomorphic

triangles weighted by

#t N 80,&,,01;0 ().

If Y € ma(x, y,z) is a class of triangles counted in the above composition, then both

+ _ as factors. By the stabilization

x and y (the incoming intersection points) have 0),0,},0
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result of Proposition 6.5, if such a class has a representative, then z must have a
factor of 9;;’),0 as well. However, such a term would evaluate trivially under F5 "*"*"°.
Hence, equation (9.6) vanishes.

We now consider the first summand, which involves the choice of 1. Let T and ¢’
be two choices of curves, as above, and let 1, be some choice of diagonal chain for
the hypercube from equation (9.3), when 7 is used. It is straightforward to see that
[r] —[r'] € Hi(Z'#X) lies in the span of the A curves. Let C be a 2-chain on ¥ such
that 03 is T — 7’ plus a linear combination of small parallel pushoffs of the A curves.

We define the 2-chain
Ne = Nz + He (O aygo.aayoro)-

In the above, H¢ denotes the F[U]-linear map whose value on an intersection point
X € Tayoyo N Taayyio 18 the sum of the multiplicities of C at each factor of x. It
is straightforward to see that 7, is a valid choice of diagonal for the hypercube in
equation (9.3) which uses t’. Since each summand of Hc (O ayy70.aayoio) has 65

Y0:Y0
as a factor, the same argument as above shows that

Y0,Y0 _ Y0,Y0 _ — _ —
F3 ° faﬂyoﬁo,Ayoﬁo,a&yo?o(Fl (x), Hc (®ayoi0.0ar070)) = 0,
so the diagonal maps computed using 7, and 71,/ coincide. ]

Lemma 9.5. Suppose that ¥ = (S, o, B) and #' = (2, a’, B') are two Heegaard
diagrams for Y with the same underlying Heegaard surface, such that o' is obtained
from a by an elementary handleslide or isotopy. We assume B’ is obtained similarly
from B. Let © and D' denote doubling enhancements of ¥ and J’ with choices
of almost complex structures and doubling curves A and A'. Let Sq denote a 0-
sphere which is embedded in X \ (a« U B U’ U B') and let = (Sg) denote the result of
attaching a 1-handle along Sg to . Let Ao and Ay denote extra choices of doubling
arcs, as in the construction of the 1-handle map, and let D(Sg) and D' (Sy) denote the
doubling enhancements of (Z(So), ayo, Byo) and (2(So). a'yo. B'yo) by using the
new doubling curves Ao and Ay, respectively. Let T be a single choice of symmetric
I-cycle on % (So)#X(So) which intersects yq transversely at a single point. Finally,
let CFI(W(Sg)) and CFI(W(Sy)) denote the involutive 1-handle maps, computed
with these two choices of data. Then

‘Ifg)(go)_)@/(go) (@) CFI(W(S())) ~ CFI(W(S()))/ [¢) qf@ﬁ@u (97)

Proof. The proof is to enlarge the diagram in (9.1) into a 3-dimensional hyperbox by
adding an extra direction coming out of the page. One face will correspond to the map
CFI(W(Sp)) and an opposite face will correspond to the map CFI(W(Sy))’. Tt will
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be straightforward to unpack the hypercube relations to obtain (9.7). We presently
describe the construction of the hyperbox.

We extend the top-most hypercube of (9.1) to the hyperbox shown in (9.8). The
unlabeled arrows are holomorphic triangle maps. There are no morphisms of length 2
or 3. The hypercube relations follow from the stabilization formula of Proposition 6.5.

Y0-Y0

CF(a, B) 1 » CF(eyo, BYo)

F
CF(a’, B) > CF(a'yo. BYo)
FBA FB70.57
1 1

_ e Fe
F]B’;ﬁ Fﬁ ¥0.-B70

J/() Y0707 v

CF(otﬂ BB) ———|— CF(aByoio. BBYyoTo)

\ 1l \ 1
FY0707070

CF(a/'B'.BB) ———— CF(o’B'yo70. BBYo70)

Y0-Y0

CF(a', B) : > CF(@'yo, BYo)
\ . Olyo\
CF(e', B') 1 » CF(a'v0, B'y0)
FIB’ B FIB’V(),B_V()
FB B
E d FB/T/()VB’V()
FV()V() YOV 0 1 _ _ 1
CF(a’ﬂ BB) — |+ CF(c'B yoo. BBYo¥o)
\ :’/ = Flyoyoyyoyxl :r o
CF(e'B . B'B) ——— CF(a'B yo¥o, B'B vo7o)

9.8)

The hypercubes obtained by extending the two small left-most cubes of (9.1) are
similarly defined to be hyperboxes of stabilizations.

We now consider the right-most cubes of (9.1) (i.e., the two cubes which have
length 2-maps). The top-most cube is easily extended by building hypercubes of
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attaching curves where each length 1 chain is a cycle generating the top degree of
HF~. We leave the details to the reader.

We now consider the bottom-most cube of (9.1) which has a length 2 map, and
we describe its extension to a 3-dimensional hyperbox. (Recall that this hypercube
involved more choices than usual, such as the choice of the chain n and the curve
7; see Remark 9.1.) The construction is obtained by pairing hypercubes of attaching
curves. The main technical challenge in extending the 2-dimensional cube in (9.3) is
building a 3-dimensional hypercube of attaching curves with the following form:

AVO);O \—> AA()

AN -

\
- \
T~< \
\\\\ \

\\ o= | ;\\“} I A
VO NA VY ——— A'A
\\ n.. \\ !

: 9.9)

~ \
NN

v \\ \,\.1 \jr n’ \\

\ - -
\Eo| > @@yofon

\

T~ \ \
-] SN
\ “~h \
h -~ AN
v = W

‘E\\\} 157 >
— aayo)o

In equation (9.9), the chains 7 and 1’ are the ones used to construct CFI(W(Sy)) and
CFI(W(Sy))’, as constructed in Lemma 9.2. In particular, these morphisms are fixed,
and similarly the top length 2 morphism has also already been chosen in the previous
step, so we assume that chain is fixed. Note that the two morphisms from aayyyo
to a’@’yo7o are forced to coincide, since &’ is obtained from & by an elementary
handleslide, so there is a single top degree generator of CF ('@’ yo¥o, @ yo7o), which
is

®a’&’ Q0 ® 6+

Y0Y0,Y070 "

Assuming for the moment the existence of the hypercube in (9.9), one extends
the bottom-most cube of (9.1) by constructing two hypercubes. The first hypercube is
obtained by pairing the back face of (9.9) with the hypercube

- O45.0p —,

af ——— a'p.

The second hypercube is obtained by pairing the entirety of equation (9.9) with the
0-dimensional hypercube o’ '
We now prove the existence of the hypercube in (9.9). The existence of length 2

chains in equation (9.9) along the top, left and right faces is straightforward.
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We now consider the bottom face of (9.9). The desired relation is
Ar(®a&)70,a’o'c’yo)70) + Br(®a&)70,a’&’y0170) = 8(17)7

where /1 denotes the diagonal chain. Since t is a closed curve, we have an equality
A, = By, the above equation is satisfied by 4 = 0. (Compare equation (7.5) for arcs
instead of closed curves). As we will see, setting # = 0 might not allow the length 3
hypercube relation to be satisfied, so instead, we use the chain

h=e- ®a&1’0170,a/&/1'0)70’ (9.10)

where ¢ € F is to be determined.

Finally, we claim that we may make a choice of the constant ¢ in equation (9.10),
and also pick a length 3 chain for the cube in (9.9) so that the hypercube relations are
satisfied. To see this, let C € CF(Ayoyo, o’@ yo7o) denote the sum of all composi-
tions featuring in the length 3 hypercube relations, except for the length 3 map itself.
Here, we momentarily set ¢ = 0 in (9.10). The hypercube relations on the proper faces
force C to be a cycle. We note however that C has the same grading as the top degree
element generator of

HF ™ (Ayojo, o'’ yo70).

In particular, it either represents the top degree element or is null-homologous. If it is
null-homologous, we set ¢ = 0 in (9.9) and pick any primitive of C in the appropri-
ate grading to be the length 3 map in our hypercube. If C represents the top degree
generator, then we pick ¢ = 1, and let the length 3 chain be any primitive of

fAVo?o,a&VO?o,a’&’yofo (®AVOJ70a0‘&VOJ70’ ®a&y0170,a’6¢’y0;70) + C.

The hypercube relations are clearly satisfied.

Finally, it remains to extend the bottom-most cube of Figure 9.1. To extend this
hypercube, it is convenient to consider the expanded description in (9.2). In fact, the
only hypercube which requires explanation to extend is the cube

B: — CF(aByoTo, @@yo70)
\

Y0-Y0
F3

1
CF(aB7o. aajo) CF(aB 7o, e o)

CF (B0, a@yo) — F]*7 » CF(aByofo. «&yo7o)

We define our 3-dimensional extension of this cube to have trivial length 3 map. The
hypercube relations for the 3-dimensional extension of this cube are proven somewhat
similarly to the proof of Proposition 8.2. The only non-trivial length 2 map in the
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above diagram is in the top subface. This subface has the following form:

CF(aByo.ad&jo) — F°"° — CF(aByojo.adyoo) B: — CF(aByoo. ¢dyo7o)

CF (/B 70, o) — F/07 = CF(a' B yoT0. adyoio) — Be — CF(a’ B yoTo. adyoio)

J J “\“““N\www} l

CF (/B jo.0'&'70) — F7*7 5 CF(a’B yoio. '@ voio) — B — CF (o’ B yojo. '@ yojo)

It is sufficient to show that the compression of this diagram composes trivially with
the map F3y0’y0. The key tool we will use is that the triangle maps, when applied to

elements of the form (x X 0;{) vo) ® (¥ % 9;8 yo) have only summands of the form

+ . . . .
zZ X 9),0’),0. This fact follows from Proposition 6.5. The top diagonal map counts

holomorphic triangles which are weighted by the quantity #(dgay,7,(¥) N 7) € F.
Similarly, the bottom triangle map is a sum of holomorphic triangle maps with cer-
tain weights. The special inputs for the length 1 triangle maps all have tensor factors

+ . .
of 9),0,),0, as does the special length 2 element used for the bottom diagonal map by

equation (9.10). Hence, in compression of the diagram, the only holomorphic trian-

+
Y0,Y0°

output. In particular, the output vanishes when composed with

and hence so does their
Y0,Y0
Fy .

gles which are counted have only tensor factors of 6
=
9.3. 3-handles

We define the 3-handle map by dualizing the construction of the 1-handle map. Con-
cretely, this amounts to compressing the diagram shown in the following equation:

CF(ayo. Byo) F3070 CF(a, )
\ \
F]B?()ff?o F]B»B
4 {
CF(aByovo, BByoYo) B:— CF(aByoyo, BByoyo) — Fy070:70"0— CF(af, BB)
\ Tt \ \
N \\\\ -BBYovg— Avo 70 fﬁflﬁA
aByo¥o \\\\\\ aByo¥vo ap
) Tty ) +
CF(aByoiio. AAg) — fuzoo 87070 — CF(atByo7o. Ayoyo) — F07020%0 —; CF(af. A)
\ Tl \ \
faAB—m& \\\\\\ fﬁ;yy%};%_)mm% foﬁé—ma
i« \\\‘~; 4 ~L
CF(aByoyo. adyoyo) =———————= CF(aByojo.adyojo) — F07070"0 — CF(ap,o&)
\ \
F;xyg‘ozyg ng‘a
{ 1

CF(Byo. a¥o) Flo70 CF(B.,&)
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9.4. Attaching 1-handles near the basepoint

We may obtain a slightly simpler formula for the 1-handle map when we perform the
attachment near the basepoint w.

Lemma 9.6. Suppose Sog C Y is a O-sphere and Y is connected. We have an isomor-
phism of groups
CFI (Y(So)) = CFI"(Y) ®F (687,67).

With respect to this decomposition, the involutive I-handle map takes the form
CFI(W(Sp))(x) = x x 67T,

extended equivariantly over F[U, Q]/ Q2. The 3-handle map takes the form x x 07
0 and x x 0~ + x, extended F[U, Q]/ Q?-equivariantly.

Proof. We focus on the 1-handle map. We pick our diagram so that, before doubling,
there is a special genus 1 region near the basepoint, and so, the doubled arcs have the
configuration shown in Figure 9.1 in the double of this region. We form the compres-
sion of (9.1) by first compression horizontally, then vertically.

We first show that for suitable almost complex structures, the diagonal maps make
trivial contribution to compression of the diagram. We consider the top-most diagonal
map. This map counts holomorphic quadrilaterals on the connected sum

(. BB. A, A)#(yo¥o. YoTo. YoTo. Ao).

Note that each Heegaard subdiagram of the right-handle quadruple has vanishing dif-
ferential (since it has the minimal number of generators possible; see Figure 9.1).
Hence, the stabilization results for holomorphic quadrilaterals from Proposition 6.5
imply that

BByovo—Ayo7o—AAo o FYovo:vo¥o _ pyovo.fo hﬂf}*A*A

aByo7o ! ! ap '
By the small translate theorem for holomorphic quadrilaterals [4, Proposition 11.5],
the map hﬁg—m—m vanishes.

We now consider the bottom-most diagonal map in (9.1). Because of our choice of

diagram, the chain 7 in (9.3) may be chosen to vanish, by the same model computation
we used to verify Lemma 9.2. Hence, the dashed length 2 map is the sum

— - - — - — T - —
Ayovo—>AAo—adyoyo | j Avoyo—edyoyo—>adyo¥o ©.11)
aByovo aByovo
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T
AyoFo—adyofo—>a@yod . o
Here, h goy‘z_)wyoyo #@Y0Y0 denotes the map which counts holomorphic trian-
aByovo
gles on the diagram

(Z'#Z', aByo. Yo. AyoTo. a@yoTo).

which are weighted by an extra factor of dqayy7, D (V) - T.

We claim that both of these maps in equation (9.11) vanish when precomposed
with F)' 070:Y070 and post-composed with F37%Y0 Consider the first quadrilateral
map. It counts curves on the diagram

(@B, A, A, a&)#(yoTo. YoV, Ao, YoTo).

We can use Proposition 6.5 to destabilize the quadruple, noting that the evaluation of
the right-hand triple on a degree 0 tree of C&!(Ky) is

0r16~ +60710"

by Lemma 9.2. Hence, Qyo,yo

factor of the composition is

A—>A—aa +
haﬁ () ® 9)70,)70'

This expression vanishes by the small translate theorem for quadrilaterals [4, Propo-
sition 11.5], since A appears twice.
hA)_/O?O—W&Vo?o—tW&Vo?o

. . . . aByovo
makes trivial contribution. In this case, the triangle count occurs on

Finally, we argue that the triangle counting map also

(@B, A, a&)#(yoTo. YoTo. YoTo)-

Y0,Y0
are the input, so this triangle map makes trivial contribution to the

Proposition 6.5 implies there are no triangles with 6

+
Y0,Y0

compressed diagram.

as output when only terms
involving 0

The argument for 3-handles follows because the 3-handle map is defined dually to
the 1-handle map, so the above argument immediately translates after taking duals. m

9.5. Commutation of 1-handles

Lemma 9.7. Suppose that S and S’ are two embedded and disjoint spheres in Y,
whose dimensions lie in {0, 2}. Then

CFI(W(Y(S),S)) o CFI(W(Y,S)) ~ CFI(W(Y(S'),S)) o CFI(W(Y,S')).

Lemma 9.7 may be proven by using the model computations from Lemma 9.6.
Alternatively, it may be proven by building a 3-dimensional hyperbox which has two
faces corresponding to the definition of the 1-handle maps from (9.1).
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10. 2-handles

In this section, we describe the map for a framed link I. C Y, with a self-conjugate
Spin® structure s on W(Y, L) (or more generally, a family & C Spin®(W (Y, L)) which
is closed under conjugation). As in Section 9, we may omit the path and framing from
our notation.

The existence of a map for 2-handles was described by Hendricks and Manolescu
[5], though they were not able to prove invariance of the construction. The construc-
tion we present in this section should be thought of as a systematic version of the
construction therein using the doubling operation.

10.1. The construction

Suppose L is a framed link in Y. We assume that the framing is Morse, so that there is
a corresponding 2-handle cobordism W(Y, IL). We pick a bouquet for I, in the sense
of [24, Definition 4.1], as well as a Heegaard triple (X, &, &, 8) subordinate to this
bouquet [24, Definition 4.2].

Remark 10.1. Like the 2-handle maps from [24], our 2-handle maps also depend on a
bouquet for the link IL. Independence from the bouquet will be proven in Lemma 13.1.

We first construct several auxiliary hypercubes. We firstly have two hypercubes of
alpha attaching circles

Oy« , - Oy545 ;=
¢« ——a and af —— o' (10.1)

and a hypercube of beta attaching circles
BB —— A. (10.2)

There is a unique choice of top degree cycle in the hypercubes in equation (10.1),
while the cycle ® BB.A in equation (10.2) is only well defined up to addition of a
boundary.

Next, we construct a more complicated hypercube of beta attaching curves:

A - Onarar — a'd’
| I

®A,rx6¢ AA,Q&/ ®oc/c_e/,a&’ (103)
) Y

aa Ouq.aa’ — a&’

We now prove that the hypercube in (10.3) may be constructed.
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Lemma 10.2. If O o5/, Owa’ aa’s Oaaa and Oug aa are cycles which represent
the top degree elements of their respective HF~ groups, then

[fawa ea (Or s Owi aa)| = [ fA0s.0a (O i Ouiaar)]:

where the brackets denote the induced element in homology. In particular, Ap o5’ €
CF(A,aa&’) may be chosen so that (10.3) is a hypercube of attaching curves.

Proof. Both triples (Z#Z, A, o’a@’, a@’) and (Z#X, A, e, @’) represent the same
cobordism, topologically. Namely, they represent a cobordism from (S! x $2)*¢ to
(S x §2)8~ILl which is surgery on a |IL| component link, each component of which
is an S!-fiber of a S! x S2-summand. "

Since the element [ fa o/a’, 05’ (Oa.wa, Owa’ aa’)] represents a top-degree class
of CF(S' x §2)8~LI we have that any two choices of AAq satisfying (10.3) are
homologous.

Now, suppose that © C Spin°(W(Y, L)) is a finite set which is closed under con-
jugation. We now define the 2-handle map for L, which denote by CFI(W(Y,LL), @),
using the hypercubes in (10.1), (10.2) and (10.3). We define the map CFI(W(Y,L), ©)
to be the compression of the hyperbox shown in (10.4). A priori, CFI(W(Y, L), ©)
depends on the choices in its construction; for well-definedness see Section 10.2.

CF(x, B) 7L CF(e', B)
BB FEB
L , L

CF(apB.BB) — e CF(o'B. BP)
\L_ \\\\‘\\“\~; \L_

CF(aB. A) — s CF(a'B,A)

hﬁ;ja"‘ﬁ 17

CF(aB.A) 187 — 5 CF(af.o'd’) £ CF(a/B.a’&’)
foﬁ?_m& HaAﬁ_—ma ‘ f;ﬁa —ad’ F_é”/“’/
L e !
CF(af, ait) fog=ed s CF(af.ad’) Fe CF(B.&')
Fe F3e
CF(B.@) 15 CF(B.&") CF(B.&")

(10.4)
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Lemma 10.3. If we compress each horizontal level in (10.4), then the resulting dia-
gram is a hyperbox of chain complexes.

Proof. Tt suffices to show that each face is a hypercube of chain complexes. The sub-
cubes with length 2 maps are all obtained by pairing hypercubes of attaching curves,
so the claim is immediate for these faces. The top-most and bottom-most subcubes are
hypercubes of stabilization, so the claim is immediate. The only remaining cube of
interest is the second-bottom-most cube on the right. The hypercube relations amount
to the relation

o o a’a _ oo o'a’ —>aa’
F; o aB—>a'3_F3 ° Jup . (10.5)

This is proven as follows. We observe that the Heegaard triples for these triangle maps
are (X, o', a, o )#(Z, B, B, @) and (X, a, o, 0)#(Z, B, &', &'). The first triple is a
stabilization of the small isotopy triple (X, B, B, &’), and similarly the second triple
is also a stabilization of a Heegaard triple for a small isotopy. Using the stabilization
results of Proposition 6.5 and the small triangle theorem [4, Proposition 11.1], we
obtain (10.5), completing the proof. ]

Remark 10.4. If & C Spin(W(Y,1L)) is a set of Spin° structures which is closed
under the conjugation action, then a cobordism map may be defined by summing the
maps above for all s € @. If @ is infinite, one may need to use coefficients in F[[U]]
to obtain a well-defined map.

10.2. Independence of simple handleslides

We now prove that the construction above commutes with the maps for simple handle-
slides and changes of the doubling arcs. We phrase our result in enough generality that
they also imply that the 2-handle maps are independent of the choice of bouquet for
L, and are independent of handleslides amongst the components of L.

Suppose that (X, o', &, B) is a Heegaard triple subordinate to a bouquet of L. C Y.
Suppose that (X, e, o7, B ) is another Heegaard triple, such that o, oy and B
are obtained from o', & and B (respectively) by elementary handleslide equivalences,
in the sense of Section 5. We assume, furthermore, that each of the following sets
admits a unique top degree intersection point, which is a cycle in its respective Floer
complex:

Toy N Te, Ta}_, N Ty, TO‘/H N Ty, and TﬂﬂTﬂH.

We also suppose that we pick two sets of doubling arcs, A and A . We require no
particular relation between A and A g, except that the diagram (E#i A, Ay, w)be
admissible.
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Proposition 10.5. Suppose that (X, o', a, B) and (X, oy, gy, ) are as above.
Let CFI(W(L)) and CFI(W(LL))H denote the 2-handle maps, computed with the two
triples (3,0, o, B) and (2, 0ty a g, By ), and the doubling arcs A and A g, respec-
tively. Let ® denote the doubling data for Y determined by (X, a, ), A, and some
choices of almost-complex structures. Let Dy denote the doubling data determined
by (X, e, By), Ag, and some choices of almost-complex structures. Let ©' and
D'y denote the analogous data for Y (). Then

Ve o, © CFI(W(L)) ~ CFIW (L) o Vo .5,

Here, Vo_, 5, and \Pg/%@/H denote the transition maps for elementary handleslides
and changes of the doubling data, and ~ denotes F[U, Q]/ Q?-equivariant chain
homotopy.

Proof. Mirroring the construction of the maps Wo_,p,,, we construct for each sub-
cube of equation (10.4) a hyperbox of size (2, 1, 1). The final coordinate corresponds
to the involution. If we collapse this axis of the cube, we obtain a hyperbox of size
(2, 1). If we compress this hyperbox, we obtain the following hypercube, which real-
izes the homotopy commutation in the statement.

CFI(D) —— Fww) > CFI(D)
T~ T~

Yooy -—— ‘1’9/—>©’
o —
CFI(Dp) i) CFI(Dy,)

The top-most hyperbox is obtained by extending the top-most hypercube of equa-
tion (10.4) out of the page, and is obtained by stacking two hypercubes of stabiliza-
tion. We leave the details to the reader.

We now consider the hypercube in (10.4) which is second from the top. The
corresponding hyperbox is obtained by pairing hypercubes, as follows. We think
of a hyperbox of size (2, 1, 1) as being obtained by stacking two hypercubes. The
first hypercube is obtained by constructing and pairing the following hypercubes of

attaching curves, where the length-1 edges are obtained using the unique top-degree
generators specified earlier; the 2-faces are filled as in Lemma 10.2:

aﬂ—)a

aHﬂH —> oCI-IIQH
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The next hypercube is obtained by constructing and pairing the following hypercubes
of attaching curves:

agBy —— Py

and
BB
A « BuBu
\ul
Ay

The remaining hypercubes which have a length 2 map are constructed by pair-
ing hypercubes of attaching curves in a straightforward manner. We remark that the
central-most hypercube of (10.4) is obtained by a small rearrangement of the pair-
ing of an alpha hypercube with a beta hypercube. The corresponding 3-dimensional
hyperbox is obtained by performing the analogous rearrangement to two hypercubes
obtained by pairing.

Finally, we consider the three bottom-most hypercubes of (10.4) which do not
have a length-2 map. We consider the right hypercube in the second to bottom-most
level.

CF(ap,a'a’) —— CF(a'B,o'd’)

\ \\‘\
\ ~~_
\ T~a
\ T
\ S~
\ =~
\ >

\ CFanBpy.o'@) —— CF(ayBy.a'd)
\ Fgﬂa’

o Ned
NS \ F H

CF(aB.ad’) —\F| —s CF(B. &)

\
\
\
\
A ~

CF(apBy.aa’) —FSH* 5 CF(By.a')




Naturality and functoriality in involutive Heegaard Floer homology 77

CFayBp,a'@’) ——— CF(ay By, o'@)

\ Te—-a
\ Te—a
\ Te—-a
\ Teo—a
\ Te~o
\\ | \$

\\ CF(agBy.oyay) ﬁ CF(oly By oyay)
\ aH,a

\\ F3

N \\ B F3 H>
CF(otH,BH,oc&') —\\\F;tf g — CF(ﬁH,&/)
\

\
\
\
\
L ~

CFapBy audly) —FyH " - CF(By, &)

(10.6)

In (10.6), all of the length 1 and 2 maps which are unlabeled are holomorphic triangle
maps or quadrilateral maps. There are no length 3 maps.

The length 2 hypercube relations for the diagrams in (10.6) are verified as follows.
For the faces which have length 2 maps, the hypercube relations are obvious. For the
other faces, the length 2 relations are proven similarly to the proof of (10.5).

It remains to prove the length 3 relations for the diagrams in (10.6). To verify
these, we note that each summand in the length 3 relation is a composition of a sum
of quadrilateral maps followed by a 3-handle map. We claim that each summand
vanishes identically. To see this, consider the length 2 map along the top face of the top
cube of (10.6). This map is the sum of two quadrilateral maps, which take place on the
diagrams (X, oy, o, , o )#(Z, BH, B.B.&') and (%, oy, a, o )#(Z, BH, BH,
B.a’). In particular, both diagrams are algebraically rigid and admissible multi-sta-
bilizations. By our result on stabilizations in Proposition 6.5, we see that

oy 0E o’a’ _pa o0’
B o awposayy b = Mfpy © 15
however, h‘;-/_) Gfy = 0 by the small translate theorem for quadrilaterals [4, Proposi-
-BH

tion 11.5], since B is repeated twice in the diagram. The same argument works for all
of the other summands, verifying the hypercube relations for the diagrams in (10.6).

One now constructs hypercubes for the bottom two faces of (10.4). The construc-
tion of these hyperboxes is similar to the ones constructed above, and we leave the
details to the reader.

There is one final hyperbox to construct, corresponding to the lowest level of
Figure 5.1. This hyperbox is constructed easily by pairing hypercubes of attaching
curves and rearranging the result slightly. We leave the details to the reader. |
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10.3. The composition law
In this section, we prove the composition law for cobordisms with only 2-handles.

Proposition 10.6. Suppose that 1Ly and 1L, are two framed links in Y, and $; €
Spin® (W(Y,1Ly)) and s, € Spin®(W(Y(IL1),1L»)) are two self-conjugate Spin® struc-
tures. Then

CFI(W(Y(]L]),]Lz), 52) [©) CFI(W(Y,]L]), %1) ~ CFI(W(Y, ]Ll U ]Lz), @(91, 52)),

where ©(s1, 7) is the set of Spin® structures on W(Y, 1Ly U L,) which restrict to s,
and s».

Proof. The proof of Proposition 10.6 is to construct a 3-dimensional hypercube with
the following properties.

(1) One direction corresponds to the involution.

(2) One face corresponds to the cobordism map CFI(W(Y,L1), s1).

(3) One face corresponds to the cobordism map CFI(W(Y (ILy),1L5), $3).
(4) One face corresponds to the identity map from CFI(Y) to itself.

(5) One face corresponds to the map CFI(W(Y,L; U L,), &(s1, $2)).

If we view the 3-dimensional hypercube as forming a 2-dimensional hypercube in-
volving the CFI complexes, then the corresponding shape is as follows:

CFI(Y) “—“FW(Y,]LI),SI — CFI(Y(]LI))
~ -

e -

FwLiuL).&es1.82) T =-—____ Fwr@iLa).es

- ‘5\\\‘\‘\}
CFI(Y(L{,L3)) id > CFI(Y(Ly,1L3))

As afirst step, pick a Heegaard quadruple (X, ", &, oz, B) satisfying the following
properties.

(1) (Z,a, a, B) is subordinate to a bouquet of the link L; C Y.
2) (Z,a”,a’, B) is subordinate to a bouquet of the link L., € Y(ILy).
3) (Z,a”, a, B) is subordinate to a bouquet of the link L; UL, C Y.

Let Oy’ o, Oq7 o’ and Oy o be the canonical generators. As in Ozsvith and Szabd’s
original proof for HF~, an easy model computation implies that the following diagram
is a hypercube of alpha attaching curves:

o Oy u > o
I I

Ou’ O o/ (10.7)
4 4

o 1 > o
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Pairing with the 0-dimensional hypercube B and restricting to the Spin® structures in
the statement gives the non-involutive version of Proposition 10.6. Note that we can
stabilize (10.7) to obtain the following hypercube of attaching curves on X#X:

ap Oupas— a'B
| |
Oyrg.ap T (10.8)
N N
o’ B 1 > o' B

Our hyperbox for Proposition 10.6 will be of size (1, 1, 6), which we organize into 6
hypercubes €y, ..., Cs, which we stack to obtain a hyperbox. The cubes C; and C,
are shown in Figure 10.1.

The second hypercube in Figure 10.1 also has a length 3 map which is not drawn.
In the figure, the top hypercube is a hypercube of stabilization, and the bottom hyper-
cube is obtained by pairing the hypercube in (10.8) with the 1-dimensional hypercube

ﬂB — O34 — A.

We now move to the construction of the hypercube C3 and Cg4, starting by con-
structing some auxiliary hypercubes. In Figure 10.2, we construct the 3-dimensional
analog of the hypercube of beta-attaching curves in (10.3). We next consider the
hypercube of chain complexes obtained by pairing the cube in (10.8) with the 1-
dimensional cube

A — 0O grar— o

We reorganize the resulting cube slightly, to obtain the diagram shown in Figure 10.3.
Although the diagram in the figure is not technically a hypercube, since the bottom
face is subdivided, if we compress the bottom face, we obtain a hypercube of chain
complexes, which we call C3.

Next, we pair the top face of Figure 10.2 with the cube

ocB — 04548 — oc’B

and modify the resulting hypercube to obtain the back-most portion of the diagram
shown on the top of Figure 10.4. This diagram is not technically a hypercube, since
some of the faces are subdivided. Nonetheless, we can form a hypercube C4 as fol-
lows. We view the diagram as being obtained by stacking two box-like diagrams (one
on the back, and one on the front). Some of the faces of these boxes are subdivided, so
we compress these faces. This gives two cube-diagrams. The hypercube relations for
these cubes are straightforward to verify. For the back-most cube, they follow from
the hypercube relations for the original cube described above. For the front cube, the
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CF(“! ﬂ) - fa—>a/ ? CF(OC/’ ﬂ)
N T N
ff—wz” hﬁ—)a /—al’ a—>a’/
s |
CF(a”, B) - id CF(oc” B)
FIB'B B B
Fpb ‘ Fbb
CF(aB,ﬂ/?) —ff;% —> CF(o/B. BB)
faﬂ—m”ﬁ ‘5§—>af5—>a~,§ - f’ﬁ—w”ﬁ
\’L ~ \\\\\} \,L ~

CF(«"B.BB)

id

CF(@B.BB) — /£i5— CF(@'B. &

—_— CF((X//B, ﬂﬁ)

B)

\\\\\ ——— I\
BB BB st
'ﬁO?\Q—NX//B thB—NX/B—NX”B f’5—>0t”6
NN \‘T‘*\A S
\ \CF aB, id~—— CF(a"B,
\ \ ! \
BB—A N BB—A
faB \\ N f 7 \\
\ \
\ ‘\\ \
\ N \
\\ N \\
\ AN \
\ BB—A N \ BB—A
v \\ fOéB \\,J \\ fa”B
- \ \
CF@B.A) — N [i— CF@B.A)
N T AN \
A \ BB A \
fO(B—)C(NB \\ "aB'_)a/B_w‘//B ) f o’ B—a'’ B \\
\ L/r ~\\\\\\} \ \V\’
CF(a"B,A)

id— CF(a”B, A)

Figure 10.1. The hypercubes C; and C,. The gray faces are stacked

hypercube relations are straightforward to verify directly,

since all of the triangle maps

involve stabilizations of Heegaard triples for small isotopies of the attaching curves.
Hence, Proposition 6.5 may be used to destabilize the relevant counts, and then the

small translate theorem for triangles [4, Proposition 11.1] may be used to identify the

destabilized maps with nearest point maps.

80
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=1

Figure 10.2. An auxiliary hypercube of S-attaching curves used in the construction of C4.

- rA

15— CF(a’B, A)

af—a
- \
-~ \
\“\ \
~~_ \
- - \
e T=~pa \
A X A
fozl?%a”ﬂ. qﬂ\‘af’/j?\) - \\\ fa’ﬁ%a”ﬁ
\ : B~~~ _ \
\ U \
\ RS
\ el \
\ \ \‘~\}
\ o \ ar
\ CF(a" B, A) - CF(a"B,A)
\ T \
A—a”a Asa
aB—a’ B o' B—a B
\ - \
\ . \
- \ A /R \
CF(@B.A) ———\—Joplws— CF(@'B.A) |
N TNl N \
/‘Aﬁ*ﬂl”&” \ - ——— - fA?u//&// \ A—aa”
YapB AN e TTe=hl—aVgn Ya’B AN Yo B
Y \\ faA//Ea « qﬂ\m‘/B TTe—— ;I . N \\
P 17 =1\ P 1 =1 -’ &’ /@ 17 211\
CF(ap,a"a”)\=—j== CF(aB,a"a"”) - 133 5> CF(&/B, a"a")\
\ N T AN \
.a//&// \ f_a//,i// a//&// /.a//&//
aB—a’ B\ aB—a’ B aB—a’'B—a’’ B a’B—a’ B
Y \ Tees MY
CF(a"ﬂ,ot”&”) CF(a"ﬂ,a”&”) CF(ot”ﬂ,a”&”)
Figure 10.3. The diagram Cs.

We now describe the construction of the hypercube Cs. We first pair the 0-dimen-

sional hypercube a8 with the hypercube in Figure 10.2. Then, we rearrange, and

obtain the diagram shown in the middl

e of Figure 10.4.

There is a final hyperbox involving 3-handles, which we compress to obtain the

hypercube Cg, shown on the bottom of Figure 10.4. Stacking and compressing the

hypercubes Cj, ..

., Cg proves the statement.
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CF(af, A)

CF(a'B, A)

= CF(aﬂ O(” //) CF(a/ﬂ a// /l)
CF(OC”B,&N&”) = , '. s CF(O(”B,OL” //)
e, R
2 TNA N \
CF(aB.A) - — CF(af|,e’'a’) —|— CF(a'B, oc‘cx) \
\ ) Tl \‘\ - T s\}\;\)‘\\ F30t” o’
CF(aB,a"a’) —||— CF(axB,a'a@”") — CF(a/B,0'a ”)
CF(OLHB o' & //) F3o// o CF(B,&//)
CF(af,A) —— CF(aB,0’@’) — CF(e/B.a'&’)
\\\‘*\-. ‘\“\\“*\ ‘\ \‘\“\\‘~\ ‘
RN ) ~~\\>\,4 ‘~~\>\
\ CF(aB.a"@") —— CF(aB.a/'@") —— CF(/B.a'@")
\\\ AR \\ ‘ \\\ F3a o F3a o
\ \\‘ 2 v [ n =
\\\ CF(Q(”ﬂ,OE” //) - F3a N3 : CF(ﬂ,ot”)
€5 . \\\ \\)’l,vv s \ l F3a o
CF(aB.a) -\~ |— CF(a}. o) 1%7 F&*. CF(B,&)
\ k¥ \\L( W \

SO s
CF(apB,aa’) ——

CF(aB,aa’) —F&“ — CF(B,a&")

F—f‘a 3v. \
CF(B.a") CF(B.&")
CF(afB, ad) — CF(af,ad’) —F&* — CF(B.a&)
CF(ap.a&") —; CF(af,a&’) — F**— CF(B, &”)
S |~
CF(B.&") ‘ CF(B.&")
C: O
CF(B.&) — JH CF(||,&) :J: CF(B.a')
CF(B.&") —||—= CF(B.&") ———— CF(B.&")
N N
CF(B.&") CF(B.&")

Figure 10.4. The diagrams used to construct C4, Cs, and Cg
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10.4. More on commutations of handles

In this section, we prove that 1-handle and 3-handle maps may be commuted with
2-handle maps, when the corresponding topological handle manipulation is also pos-
sible.

Proposition 10.7. Suppose that L is a framed 1-dimensional link in Y, and S is a
0- or 2-dimensional sphere in Y \ L. Let @ C Spin°(W(Y, L)) be a set of Spin®
structures which is closed under conjugation, and let

&' C Spin®(W(Y(S),L))
be the corresponding set. Then
CFI(W(Y(LL),S)) o CFI(W(Y,L),®) ~ CFI(W(Y(S),LL), &) o CFI(W(Y,S)).

Proof. The proof is similar to the proof of Proposition 10.6. We will build a 3-
dimensional hypercube, four of whose faces correspond to the four maps

CFI(W(Y(L),S)), CFI(W(Y,L), ®),
CFI(W(Y(S),L), &), CFI(W(Y.S)).

The hypercube relations for the compression of this hyperbox translate exactly to the
chain homotopy for the commutation described in the statement.

The hypercube realizing the commutation will be constructed as the compression
of a hyperbox of size (1, 1, 5), which we view as five hypercubes, stacked on top of
each other. We write By, ..., Bs for these hypercubes.

The top-most hypercubes B, and B, are shown in Figure 10.5. They are construct-
ed by stacking hypercubes constructed by pairing hypercubes of attaching curves, as
well as hypercubes of stabilization.

The diagram used to construct B3 is shown in Figure 10.6.

The hypercube B4 is displayed in Figure 10.7. The construction is as follows.
The back-left cube is a hypercube of stabilization for the map F" 070:¥0%0 The back-
right cube is constructed by pairing the 0-dimensional hypercube By 7o with a 3-
dimensional generalized hypercube of beta attaching curves which has 7 as one of the
length 1 morphisms. The construction is similar to the definition of the 1-handle map,
and the proof of well definedness is similar to Lemma 9.5. The front portion is verified
to satisfy the hypercube relations (after compressing the top face) by observing that
the length 2 map composes trivially with the 3-handle map F. 30‘ "vo-a'yo by applying our
stabilization result from Proposition 6.5 and applying the small translate theorems for
triangles and quadrilaterals [4, Propositions 11.1 and 11.5].

Our final hypercube B5 is shown in Figure 10.8. Stacking and compressing these
hypercubes completes the proof. |
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F{*"0 —— CF(ayo. Byo)
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FY0"0 ——— CF(ey0, Byo)

Flﬁm.ﬁyo

= CF(aByo¥o. BByo7o)

84

CF(ayo. Byo)
~

-Bvo
e
0—>a'vo

N
—F CF((X/}/(), ﬂyo)
Ff?OvEV(l

Flﬁm.ﬁyo

N
BBYo70
Y aByovo—o’ Bvovo
~

CF (e’ Byojo. BByoTo)

CF(aByoio. BBYoTo)

CF(e'B.BB) — F}7070% — CF(e/ Byo7o. BByo7o)

\
\
\
\
\
\
\

—_ CF (e’ Byoyo. BByoto)

CF(a/B,A) — F}07070%0 — CF(a Byojo. Ayoio) —— CF(e/Byojo. AAo)

Figure 10.5. The hypercubes B (top) and B, (bottom) are obtained by compressing these two

diagrams. The unlabeled arrows are all holomorphic triangle or quadrilateral maps. There is

also a length 3 arrow in the right subcube for B, which is not drawn.

11. Naturality maps for stabilizations

In this section, we construct our naturality maps for stabilizations of the Heegaard

surface, and prove some basic properties. Our definition of the naturality map for a

stabilization is simple: we define the map for a stabilization as the composition of

a 1-handle cobordism map with the 2-handle cobordism map for a 2-handle which

topologically cancels the 1-handle.

The definition gives some diagrammatic flexibility for computing the stabilization

map. In particular, for a stabilization we require two points py and p; to be chosen
on ¥ \ (e U B). We then add a tube to X with feet at py and p;. We add one new
alpha curve and one beta curve. The beta curve is a meridian of the tube, and the
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_ F‘VOVO-VUVU _ _
CF(af,A) ————— CF(aByo70. Ayoyo) ——— CF(aByo70. AAo)

\ ~

\\ N \) -
\ CF(&'B. A) ———— CF(e'Byojo. Ayoio) ~~— CF(&'Byoio, AAo)

\ \ N \
\ \ N \

\
FXov0-v0%0

- \
Y070-707
Fl() 0-Y0¥'N \

CF(af. A) > CF(@Byoo. Ayofo) ———> CF(@Byclo. AAo) .\

s~ \ N \
\ S~——l_ N AN \
\ ~a N \
\ Tt~ N \
\ _ _ \ e AN \
\ 7070V 70 \ > N

CF(aB.a'@) —\"—|— CF(@Byofo.&'&yops) —|— CF((xﬁyofo,a’Ei«\/?%)

\

N T NI
\ \ ~~—_ N
\ .
\ N Te-—ll SN
~ Fm?g,ym?o by RSN Y

CF(@/'B,«'&) ———— CF(a'Byofio, «'&voT0) —2— CF(&'Byofo, «'&vo7o)

Figure 10.6. The diagram used to construct the hypercube Bs.

alpha curve is obtained by concatenating a longitude of the curve with an embedded
curve on X \ e. If ¥ is embedded in Y, then we may view the construction as being
determined by picking an embedded path on X \ & which connects py and p;, and
having the tube run parallel to this path. The new alpha circle runs parallel to this
arc. We define the destabilization map as the composition of a 2-handle map for a
0-framed unknot, followed by the 3-handle cobordism map.

Note that this stabilization operation naturally determines a 3-ball in ¥ which
intersects X in a disk. We say two stabilizations are disjoint if there are two choices
of corresponding 3-balls in ¥ which are disjoint.

We write o for the stabilization map, and t for the destabilization map. The main
results of this section are summarized in the following proposition.

Proposition 11.1. (1) The stabilization and destabilization maps commute with the
transition map for elementary equivalences of doubling-enhanced Heegaard diagram.
(2) If o and o’ are the maps for two disjoint stabilizations, then

coo' ~d oo.
(3) If o and t are stabilizations and destabilizations for the same 3-ball, then
cot~id and too ~id.

Our proof of parts (2) and (3) goes by way of computing basepoint-adjacent sta-
bilizations and destabilizations (note that by handlesliding the original alpha and beta
curves, such a configuration may always be achieved).
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Figure 10.7. The diagram used to build the hypercube B4. We stack the diagrams along the

gray face. There is a length 3 map in the right portion of top-most diagram which is not drawn.

Lemma 11.2. Suppose that py and pg are two points on X\ (e U B) which both lie in
the same component as the basepoint w. For a suitable choice of doubling curves on

the stabilized diagram and suitably degenerated choices of almost complex structures,

we have

o~(xrxxc) and T~ (x XCH>X),

where {c} = oy N By, and (x +— x x c) denotes the F[U, Q]/ Q?-equivariant map
which sends x to x X ¢, and similarly for (x X ¢ — x).

Proof. Consider o (the proof for t is essentially the same). By definition, o is the

composition of the 1-handle cobordism map, followed by the map for a canceling 2-
handle. By Lemma 9.6, for a suitable choice of almost complex structure, the 1-handle
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Y070-Y070

- - o B - o
CF(ap.a&) ———— CF(aByofo.xityofo) —— CF(eByoo.adyoio)

\A _ F070:7070 \_ \\\\“‘Elﬁ -~
CF(ap, ad’) Fea CF(aByoyo, ad’yo70) —— CF(aByoio,od’yoPo)
oo 3 oo
B . Fr070 T "
CF(B.a") CF(B70.& o)
v F|170~70 ’ _ ‘L
CF(B, @) CF(Byo, xyo)

\ Flf/o o \

CF(B.&) CF(B7o. &' 7o)

Figure 10.8. The diagram used to construct the hypercube Bs.

map takes the form x +— x x 6%, extended FF[U, Q]/ Q?-equivariantly. We will show
that the 2-handle cobordism map is chain homotopic to a map which sends x x 87 to
x Xc.

We recall that the 2-handle map is defined in equation (10.4). We claim that the
diagonal map of the compression is trivial. To see this, we make the following sub-
claims about the diagram in (10.4) in the present context.

(1) The top-most length 2 map vanishes on elements of the form x x 9/;; B0 X

At _ +
Oﬂ,ﬂ XQﬁO’ﬁO,forx € Ty N Tg.

(2) The middle length 2 map composes trivially with the 3-handle map F;’ Bo.aBo
(labeled F3a ** in equation (10.4)), and the bottom-most length 2 map com-

poses trivially with the map F3 “***° (labeled F;"® in equation (10.4)).

We consider claim (1) first. There is a genus 2 portion of the Heegaard quadruple
corresponding to the stabilization, which takes the following form:

Qo = (T*#T2, a0 Bo. BoPo. BoPo. Ao).

‘We observe that

Fo_ Fo. + o+ +
f“OﬂO’ﬂOﬂO’AO (f“OﬂO’ﬂOﬁO’ﬂOﬂO <®a030,ﬂ0/§0’ Oﬂoﬁo,ﬂogo)’ ®ﬂ0l§0,A0) -
This may be seen since the inner triangle map corresponds to the naturality map for
a small perturbation of the curves Bof, while the outer triangle map corresponds to
a factor of the doubling model of the involution for the diagram (T2, g, Bo). Hence,
by applying Proposition 6.5, we obtain the equality

BBoBBo—AAg + + + _ 1 BB—A + _
B s 50 (£ 7 O gy X O 5 O o ) = WOE™0 (3 30 ) © O,

®060[§0,A0'
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which vanishes by the small translate theorem for holomorphic quadrilaterals [4,
Proposition 11.5].

Next, we consider claim (2), from above. There are two quadrilateral maps which
appear in this claim. The proof for both maps is essentially the same, so we focus on

the map
AAg—aagadg

aBoBBo—>aaoBBo’
This is the middle length 2 map in (10.4). We wish to show that this map composes
trivially with F3°‘ ** _To see this, we consider the genus 2 Heegaard quadruple

Q@ = (T2#T2, apdo. Ao. BoBo. 2o Bo)-

This is an admissible, algebraically rigid multi-stabilizing quadruple. Furthermore,
we claim that
3 . _(f - (T 5t 5t =0 _
fao&o,ﬂoﬁo,aoﬂo (fao&O’AO”SO/BO (®0t05t0,ﬂ0ﬁ0’ OAo,ﬂOBO)’ Oﬂoﬁo,aoﬁo) o an&o’oé(iﬂl().l)
The above equation is verified by noting that the inner triangle map may be interpreted
as the cobordism map for a 2-handle attachment along a fiber of S x §2, while the
outer triangle map may be interpreted as a 2-handle attached along a 0-framed unknot.

The fact that @; 0.0 is the output may be viewed as a consequence of the above
0¢0,%0P0

topological description.
Combining (11.1) with Proposition 6.5, we conclude that

AA()_-_)O{O(()&&()_ ~ ®+ ~
wpoBBo—aaopho™ * ©pofo.n)
_ pA—aa - . +
= W2 () X O o Y C:ozx O g (112)

ZGTaBﬂTa@

for some C, € F[U]. Equation (11.2) vanishes once composed with Féx %0:4%0 by the
small translate theorem for holomorphic quadrilaterals [4, Proposition 11.5].
The composition of the bottom-most length 2 map from equation (10.4) with

F3 Po-@Bo anishes in our present setting by a nearly identical argument. [

We can now prove Proposition 11.1.

Proof of Proposition 11.1. Claim (1) follows immediately from the fact that 1-handle,
2-handle and 3-handle cobordism maps commute (up to chain homotopy) with the
transition maps for elementary handleslides.

Claims (2) and (3) follow from Lemma 11.2, since by (1), we may perform stabi-
lizations near the basepoint, and then observe that the formulas given therein clearly
satisfy the stated relations. |
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12. Handleswaps

In this section, we prove handleswap invariance.

12.1. Simple handleswaps

Of central importance to the approach to naturality in [9] are the following loops in
the graph of Heegaard diagrams for a 3-manifold Y.

Definition 12.1. Suppose Y is a 3-manifold. A simple handleswap loop is a triangle
of Heegaard diagrams

which satisfies the following.

(1) H; is an embedded Heegaard diagram for Y, which has the same Heegaard
surface for each i € {I, 2, 3}.

(2) eis an a-equivalence, f is a B-equivalence, and g is a diffeomorphism.

(3) The diagrams #¢; decompose as connected sums of a fixed Heegaard diagram
H = (X, ay, B,,) with genus two diagrams §; = (X, a;, ;). Furthermore,
in the punctured genus two surface (X#X¢) \ X, the above triangle is diffeo-
morphic to the triangle in Figure 12.1.

In particular, in the above definition, &; consists of two closed curves o; and
oy, while 8, consists of two closed curves B; and 5. The arrow e corresponds to
handlesliding a; over o, while the arrow f corresponds to handlesliding 81 over 5.

Recall that associated to handleslides and diffeomorphisms, we have defined mor-
phisms, CFI(e), CFI( ) and CFI(g), which are well defined up to F[U, Q]/ Q?-equ-
ivariant homotopy equivalence.

Theorem 12.2. CFI(g) o CFI(f) o CFl(e) =~ Idcri(z,)-

The proof of Theorem 12.2 occupies the subsequent sections.

12.2. Reduction to basepoint-adjacent handleswaps

A simple handleswap need not occur in a region of the Heegaard diagram near a
basepoint. However, we now show that for the purposes of naturality, it suffices to
consider handleswaps where the special genus 2 region is adjacent to the basepoint.
We note that this fact was also observed by Sungkyung Kang.
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b
® “ @

B1 o2

Figure 12.1. A simple handleswap.

Lemma 12.3. Suppose that F is a weak Heegaard invariant (in the sense of [9, Def-
inition 2.24]) which satisfies all of the conditions of a strong Heegaard invariant
[9, Definition 3.23] except possibly handleswap invariance. If F has no monodromy
around basepoint-adjacent handleswaps, then it has no monodromy around arbitrary
handleswaps.

Proof. Let p € ¥ denote the connected sum point. Pick an arc A which connects p
to the basepoint w. We proceed by induction on the number of intersections of (e, U
B.) N A. The base case is the hypothesis. If # is arbitrary, there is an equivalence j
between K and a diagram J’ (obtained by handlesliding an alpha or beta curve over
p) such that on J’, there is one fewer intersection of (at,, U B,,) N A. If #;, #} and
J¢} denote the diagrams obtained by connect summing the standard genus 2 diagrams
from Figure 12.1, there is an analogous simple handleswap loop involving #{, #}
and J5. Write e/, f’ and g’ for the analogous equivalences. We have a diagram of

equivalences

H
|

J1

+

#1

&g , % \ , e
-4 e
/ p

K,
4 o~
73 iz
e N
H3 v I

H —— 17
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@o, all, &g, and &l
H 7 -H
ﬂO’ ﬂO 5 ﬂ09 and ﬂO

Figure 12.2. The double of the handleswap region. The left side is X, and the right is .

The three outer rectangles are obtained from distinguished squares by inverting some
of the arrows, which are isomorphisms. By hypothesis, F' commutes around these
squares. Our inductive hypothesis is that F has no monodromy around the central
triangle. This clearly implies that F' has no monodromy around the outer triangle,
completing the proof. |

12.3. Proof of Theorem 12.2

Let us introduce some notation. For the curves in the handleswap region, we write &y,
oc(’;{, B, and ﬂé’. We write a for o, U oc(’;{, and similarly for ﬂgl. Hence, for the
three diagrams appearing in the handleswap loop, we write

H1 = (SH#Sg, a0, B),  Ho = (SHZo, a1, B), H; = (Z#2,a, pH).

Similarly, let A, be a collection of doubling curves on Z#X. Let A be choice of
doubling curves on Y o#Z0, as shown in Figure 12.2. Write A for A, U Ay.

We write © for J, decorated with A,,. We pick a collection of four doubling
curves Ay on Zo#X,. We decorate J;, Ko, and J3 with A to form the doubling
enhanced diagrams 1, ©,, and D3, respectively.

We note that for i € {1, 2, 3}, there are canonical isomorphisms

CFI(D) =~ CFI(D;), (12.1)
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given by x > x x ¢;, extended F[U, Q]/ Q?-equivariantly. Here, we write ¢; for the
unique intersection points

Cc1 € Tao N Tﬂo’ Co € Taé’ N Tﬁo’ and c¢3 € Taé{ n TBOH'
In fact, we have the following lemma.

Lemma 12.4. The genus 2 diagram shown in Figure 12.2 is weakly admissible. Fur-
thermore, each of the following subdiagrams has vanishing differential:

(1) (So#Z0. BoBo. Ao.w),
= ~H
2) (Zo#Z0. By By - Ao, w),
(3) (Zo#Zo, Ao, oo, w),
@) (So#Zo, Ao, ag' &gl w),
(5) (So#Zo, oBg. Ao, w),
= ~H
(6) (20#207 aéiﬂo ) AOv w)
Proof. Admissibility is a straightforward computation which we leave to the reader.
To check that each of the stated complexes has vanishing differential, it suffices to
check that each has the same number of generators as its homology. The first four sub-
diagrams represent a complex for #25! x §2 and also have exactly four generators.

Similarly the final two subdiagrams represent S>, and each have a unique intersection
point. |

By definition,
CFl(e) = Vo, 9, and CFI(f) = Vo,-9,,

where Up, ., is obtained by compressing a hyperbox as in Figure 5.1. Comput-
ing the composition ¥, .5, o V5, . p, is somewhat inefficient, however, since the
involutive transition maps naturally allow for changing both the alpha and the beta
curves simultaneously. Instead, we will consider the map W, _, o, obtained by com-
pressing the hyperbox in Figure 5.1. (See equation (12.4), below). By Theorem 5.2,

CFI(f)oCFl(e) =V¥p,59,°¥p 59, 2 V¥Vp,52;. (12.2)

To prove Theorem 12.2, we also need to understand the diffeomorphism map
CFI(g). We note that the diffeomorphism g does not fix Ay. Hence, by definition,
this map is the composition

CFI(g) := Vg(D3)»o, © Ty, (12.3)

which we explain presently. The map T, is the tautological map which sends an inter-
section point x € Taaéi N TﬂﬂOH to its image in Tye, N Tgg, under g, extended
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F[U, Q]/ Q?%-equivariantly. Also, g(D3) is obtained by enhancing Heegaard diagram
J1 with the doubling curves A, UAj, where Ay =g(Ag). The map ¥, (n,)—o, is
built by compressing a hyperbox similar to the one in Figure 5.1 which realizes the
change of doubling curves.

With respect to the canonical isomorphisms of (12.1), the map Ty is clearly equal
to the identity map. Theorem 12.2 follows from (12.2) and (12.3) and the following
result.

Proposition 12.5. With respect to the canonical isomorphisms in (12.1), the maps
Vo, 5o, and Ye(,)—», are chain homotopic to the identity map.

Proof. We focus first on the computation of Wo,_.5,. By definition, this map is
obtained by compressing the following hyperbox:

CF(a,f) —— CF(af,p) ——— CF(a*, g

B.B FIBIH,B FIBHI
14, <+ v
CF(aB,BB) — CF(aH B, BB) — cFHp" gHp"™)

~
~o -

F

~ ~
~ ~
~ ~

4 v e M
CF(B,A) — CF@H B, A) — 5 cr®p™ A)
(12.4)
1 Tw Y T Y

CF(ozB,oc&) — CF(O[HBH,O[O_L) — CF(OLHBH,OLH&H)
| [
Fe F3°‘H'°‘ Fy
1 +
CF(B.&) — CF(B" &) —— CF(

CF(B.&) — CF@.at) — = cr@™.aM)

We note that in the above diagram, each polygon counting map occurs on a connected
sum. One summand is X or ©#X while the other summand is the genus 2 subsurface
¥, or its double. We will argue by viewing the diagram as a multi-stabilization and
applying Lemma 12.4 and Proposition 6.5.

There is a subtlety in that the almost complex structures used to construct the
transition map equation (12.4) are not naturally adapted to the genus four stabilization
region where the handleswap occurs. Instead, we must first argue that we can change
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Figure 12.3. Curves along which we degenerate the almost complex structure.

the above composition to one which is naturally adapted to the handleswap. To do so,
we consider the closed curves on S#X shown in Figure 12.3. We label these as c4,
c—, cg and cq. These are as follows.

(1) co is a meridian of the connected sum tube used in the doubling operation.

(2) c4 is aclosed curve on ¥ which bounds the handleswap region and the con-
nected sum point.

(3) c_ is a symmetric closed curve on X, and bounds the handleswap region as
well as a the connected sum point.

(4) cs is a closed curve on T#X which bounds the union of both handleswap
regions. Also, cg is disjoint from all A curves.

Write J., for an almost complex structure or family of almost complex structures
which is nodal along c¢, and use similar notation to define almost complex structures
degenerated on another curve or collections of pairwise disjoint curves on T#X.

We introduce some shorthand. Write CF(Ly), ..., CF(Lg) for the six horizontal
levels of equation (12.4). (These are themselves 1-dimensional hyperboxes of chain
complexes). By using change of almost complex structure hypercubes, similar to [4,
Section 13], we may assume that the complexes and maps in equation (12.4) are
computed with respect to almost complex structures which are maximally pinched
along co, c4 and c_, in the sense of [4, Section 8.3]. This gives the map Vo, p,, as
defined in the earlier sections of the present paper. On the other hand, using similar
techniques, we may use change of almost complex structure hypercubes to relate this
model to one which is maximally pinched along ¢4, c— and c¢s. This gives a hyperbox
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which we schematically indicate by the following diagram:

CFJL,+ (Ll) id > CFJL,+ (Ll)
| |
F F
2 2

CFJC_’_.C_’CO (Lz) \— \I’Jc+,c—,(t0—>fc+,c—,c(g — CF]C+’C_’L,8 (Lz)

-
CFy(L3) — VY/—ves —— CFy, (L3)

l $ | (12.5)

CFJL'+,L'7,(70 (L4) — \I/Jc+,c7,c0—>1c+,c7,cg — CF_]C+.C7’C8 (L4)
| |

F3 F3

+ +
CFj._(Ls) — id » CFy._(Ls)

| e, |
CFJC_ (L6) id > CFJC_ (Ls)

The hyperbox in equation (12.5) realizes a chain homotopy between the model of
Vo, 9;, computed with respect to almost complex structures which are maximally
pinched along ¢y, ¢ and cg, and a model of ¥, .o, which is computed using
almost complex structures which are maximally pinched along c4, c— and cg.

In the model of Wo,_,p, appearing along the right-hand side of equation (12.5),
the holomorphic polygon counts all occur on a multi-stabilization of the diagram on
Y or X#X. The stabilization results for triangles imply that the two length 1 maps
along the top of (12.4) compose to give a map which is intertwined with the identity
under the canonical isomorphisms CF(#) =~ CF(#;) (similar to (12.1)). (This is the
content of [9, Propositions 9.31 and 9.32]).

It remains to show that none of the diagonal maps make non-trivial contribution to
the compression of (12.4). To this end, we make the following claims, which together
imply that the compression has trivial diagonal map.

(1) The compression of the top two levels of (12.4) has trivial diagonal map.

(2) The compression of the third and fourth levels of (12.4) has trivial diagonal
map.

(3) The bottom-most level of (12.4) has trivial diagonal map.

Consider first the claim (3). The diagonal map is a quadrilateral counting map on the
connected sum (X, oy, oty B,,, B,)#(Z0. océi, ao, By, ﬂgl). Applying the stabiliza-
tion result from Proposition 6.5 to the setting of holomorphic quadrilaterals, we may
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destabilize the map to the diagram (X, &y, oy, 8,,, B,,)- By the small translate theorem
for quadrilaterals [4, Proposition 11.5], this map vanishes.

Next, consider (1). For this claim, we observe that the stabilization results for
holomorphic triangles imply that the length 1 holomorphic triangle maps preserve the
subspaces spanned by the top-degree generator (and furthermore, act tensorially on
these subspaces). Furthermore, the same argument as for claim (3) implies that the
holomorphic quadrilateral maps vanish on elements which have a factor which is the
top degree generator. Since the top degree generator is the output of the 1-handle maps
on the top row, this implies that the compression has trivial diagonal map. Claim (2)
follows from an analogous argument. This completes the proof of the claim about
Vo -o;.

We now consider the claim about W (p,)—p,. This map may be computed by
compressing the following diagram:

CF(a,f) ——— CF(a,) ——— CF(a, B)

B

i —

FBe FBP F
<+ <+
CF(u/?,ﬁ[f) —— CF(ap.BB) — CF(ap.BB)

~
~ ~

<

N
~ \\
~ ~
~ ~
~. N
~ Ny ~ ~A N

CF(aB,g(A\)) — CF(al_i,g(é)) —— CF(aB.A)

TS T (12.6)

~
~ N

~ TNy ~ S~y ~
CF(af,a&) — CF(af,aq) — CF(af,ax)
I I I
F:;X,Ot F:;O(.C( F:;)[.Ol
1 1 1

CF(B.&) — > CF(B.&) — % CF(B.&)

The description in (12.6) is not the most convenient for our purposes. Instead, we
describe a sequence of doubling curves g(Ag) = Ag, cee, Ag = Ag on Zo#Xg, such
that each A} is obtained from A%~! by a handleslide. Furthermore, we have the fol-
lowing properties for each i € {0,...6}.
(1) The diagram
(Zo#X0, 2olo, BB, Af)’ Af)+l’ w)

is weakly admissible.



Naturality and functoriality in involutive Heegaard Floer homology 97

(2) Each of the following complexes CF(eto B, A 0) CF(aa, AO) CF(BB. A’ 0)
and CF(AL, Af)ﬂ) has vanishing differential.

The curves AJ, ... A§ are shown in Figure 12.4. We leave it to the reader to verify
the above claims. (Compare Lemma 12.4.)

We compute the map W, (9,)-»o, as a composition of 6 maps, corresponding to
the transition maps for changing A} to AhLl each of which is computed by com-
pressing a hyperbox similar to (12.6). The same argument as for o, .5, implies
that each of these maps is intertwined with the identity map by the canonical isomor-
phisms in (12.1). The proof is complete. |

13. Completing the proofs of naturality and functoriality

In this section, we complete our proofs of naturality and functoriality.

13.1. Naturality

If © and ®’ are two arbitrary doubling-enhanced Heegaard diagrams (equipped with
a framing at the basepoint), we define our transition map W5 _, 5/ by composing the
maps for an arbitrary sequence stabilizations, elementary equivalences of attaching
curves, and pointed isotopies of the Heegaard diagram in (Y, w).

We now prove Theorem 1.1, showing that this transition map WVo_, 5 defined
above is independent up to chain homotopy from the sequence of Heegaard moves.

Proof of Theorem 1.1. By [9, Theorem 2.38] and as in Section 4, it suffices to show
that the transition maps we have defined satisfy the axioms of a strong Heegaard
invariant [9, Definition 2.32]. We verify these axioms presently.

The functoriality axiom asserts two claims. Firstly, it asserts that we have well-
defined morphisms associated to handleslide equivalences of alpha curves and mor-
phisms associated to handleslide equivalences of beta curves (for a fixed Heegaard
surface). This part of the axiom follows from Theorem 5.2. (We remind the reader
that unlike in the setting of ordinary Heegaard Floer homology, it is not particularly
natural to define an involutive transition map which changes just the alpha curves, or
just the beta curves, since the transition map is defined by compressing hyperboxes as
in (5.1). Such hyperboxes necessarily require changing both the alpha and beta curves
simultaneously.)

The second part of the functoriality axiom asserts that the morphisms for stabi-
lizations are inverse to the morphisms for destabilizations. This is proven in Proposi-
tion 11.1.
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(6)—o 0
o~ + (o)—o

Figure 12.4. The curves g(Ag) = A8, ..
sequence of handleslides. Each arrow indicates the subsequent handleslide.

98

LAl = Ao, which relate g(Ap) and Ag by a
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The next axiom from [9, Definition 3.32] is the commutativity axiom, concerning

commutativity of the distinguished rectangles from [9, Definition 2.29]. In our present

case, we verify that there is no monodromy around the distinguished rectangles in

Proposition 4.2. In our present setting, we may rephrase the distinguished rectangles
from [9] as diagrams of embedded, doubling enhanced Heegaard diagrams with the
following shape, satisfying one of five configurations:

@14@2

bk

D3 —— Dy

We presently enumerate the five configurations, and also prove that there is no mon-
odromy.

ey

2

3

“)

&)

e, f, g and h are handleslide equivalences. In our setting, we must consider
changes of both of the attaching curves, as well as changes of the doubling
datum. Note these are also referred to as strong equivalences in the literature,
e.g., in [18]. The diagram commutes up to chain homotopy by Theorem 5.2.
We note that in [9], the stated rectangle has the property that e and & are
a-equivalences, while f and g are S-equivalences. However, the rectangle
therein is also a rectangle of isotopy diagrams, so we must consider changes
of both the alpha and beta curves along each edge.

e and & are handleslide equivalences of attaching curves and doubling curves,
while f and g are both stabilizations. Commutativity follows from Proposi-
tion 11.1.

e and / are handleslide equivalences, while f and g are diffeomorphisms pre-
serving the framing &. Commutativity around such rectangles is tautological.

e, f, g and h are all stabilizations. Furthermore, there are disjoint 3-balls B;
and B,, such that e and /& correspond to a stabilization in B, while f and
g correspond to a stabilization in B,. Commutativity around such rectangles
follows from Proposition 11.1.

The maps e and & are stabilizations, while f and g are diffeomorphisms pre-
serving the framing. Furthermore, the stabilization ball for / is the image of
the stabilization ball for e under the diffeomorphism g. Commutativity around
such rectangles is tautological.

The remaining axioms of [9, Definition 3.32], continuity and handleswap invari-

ance, were verified in Proposition 5.4 and Theorem 12.2. [
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13.2. Functoriality

We now finish defining our cobordism maps and sketch the proof of Theorem 1.3,
showing that these maps are well defined. Our proof is modeled on [24]. Since our
approach is standard, we only provide an overview and sketch the points at which our
construction deviates from [24].

We begin with the construction, and will shortly sketch a proof of invariance.
Suppose W is a cobordism from Y; to Y3, and assume basepoints in Y; and Y5, as
well as a framed path y connecting them, have been chosen. We assume that W, Y,
Y, are connected. We pick a Morse function f: W — [0, 1]. We may assume that the
indices of the critical points of f are non-decreasing, and we assume all critical values
are distinct and that f has critical points only of index 1, 2 and 3. Next, we pick a
gradient like vector field v such that our path y is a flow-line. A choice of gradient
like vector field gives a diffeomorphism

W = W(S,) UW(S1) UW(So),

where S; are framed i-dimensional links and S¢ C Y7, S; C Y1(Sp), and S, C
Y1(So)(S1). If s € Spin® (W) is self-conjugate, we define our cobordism map as the
composition

CFI(W, E, 5) = CFI(W(Sz)) ) CFI(W(Sl), §|W(Sl)) o CFI(W(S()))

We now prove Theorem 1.3. As a first step, we show that the 2-handle map is well
defined.

Lemma 13.1. Our 2-handle map CFI(W(S1), $|ws,)) is independent of the choice
of diagram subordinate to a particular bouquet. Furthermore, it is also invariant from
the choice of bouquet, as well as handleslides amongst the components of S1.

Proof. Ozsviath and Szabé [24, Lemma 4.5] described five moves which relate any
two bouquets of a fixed link. Invariance under the first four of these moves follows
immediately from invariance of our map from handleslides amongst the curves in our
Heegaard triple, Proposition 10.5. The final move described by Ozsvéth and Szab6
is stabilization of the Heegaard triple. Invariance from this move is a formal conse-
quence of our definition of the stabilization map. Indeed we defined the naturality map
for stabilizations as the composition of the 1-handle map, followed by a canceling 2-
handle map. Both the 1-handle map and map for a canceling 2-handle map commute
with the 2-handle map CFI(W(S1), s|w(s,)) by Propositions 10.6 and 10.7. Hence,
our 2-handle map is independent of the choice of diagram subordinate to a fixed bou-
quet.

Next, we note that independence of the choice of bouquet, as well as independence
of handleslides amongst the components of S; both follow from independence of the
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map from handleslides of the attaching curves, which we proved in Proposition 10.5.
Compare [24, Lemma 4.8]. [

Proof of Theorem 1.3. Firstly, we verify that the construction is independent of the
choice of gradient-like vector field v for f. Subsequently, we sketch that the cobor-
dism map is invariant from f.

The space of gradient like vector fields for a fixed Morse function is connected.
Since we have already decomposed W along level sets which separate critical points
of different indices, the codimension 1 singularities of a path of gradient like vec-
tor fields are handleslides amongst link components of the same indices. For criti-
cal points of index 1 or 3, invariance under these moves can instead be proven by
reordering the attachment of the handles using the composition law for 1-handles and
3-handles, Proposition 9.7, since a handleslide is the same as an isotopy after attach-
ing one of the handles. For 2-handles, we cannot add additional level sets because
of the Spin® decomposition, so instead handleslide invariance is proven directly in
Lemma 13.1.

We now consider invariance under f. By standard Cerf theory [3, 12], any two
Morse functions fy and f; with critical points ordered monotonically may be con-
nected with a 1-parameter family (f;);e[0,1] Whose critical points are also ordered
monotonically, except at finitely many points where a birth-death singularity occurs.
Furthermore, if fy and f; have no index 0 or 4 critical points, then each f; may
also be chosen to have no index O or 4 critical points. We now show that the maps
are invariant under index 1/2 handle cancelations, as well as index 2/3 handle can-
celations. Invariance under such handle cancelation is essentially automatic from the
definition of our naturality map for stabilizations. Indeed, consider the case that W
has a Morse function with only index 2 critical points, whose descending manifolds
intersect Yy in a framed link S;. Let Sg € Yy be a 0-sphere, and let K be a framed
knot in Yy (Sg) which intersects the co-core of Sy at exactly 1-point. Assume S; is
disjoint from S¢ and K. Using the composition law of Proposition 10.6, we obtain

CFI(W(S, UK)) o CFI(W(So))
~ CFI(W(S1)) o CFI(W(K)) o CFI(W(So)) := CFI(W(S})) o 0,

where o is the naturality map for stabilization (and we are omitting Spin® structures
from the notation). Invariance under index 2/3 handle cancelations follows entirely
analogously. The proof is complete. ]

14. The cobordism map for S2 x S2

In this section we compute the cobordism map for S? x S2. We prove the following
proposition.
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Proposition 14.1. Let W denote S? x S2, with two 4-balls removed. Let s denote the
unique self-conjugate Spin® structure on W. Then, the cobordism map

CFI(W,s):F[U, 0]/ 0* — F[U. 0]/ Q*

is multiplication by Q.

Using the composition law, we may decompose W as two 2-handle cobordisms,
W = W, o Wj. The first 2-handle is attached along a O-framed unknot in S 3 to form
W1i. The second 2-handle is attached along an S 1 fiber of S x S2 to form W,. Note
that, in both cases, one end of the cobordism is a copy of S3, on which the map ®
is null-homotopic. This implies that the choice of framings of the basepoints of the
three-manifolds and along choices of paths connecting them do not affect the final
computation, and we therefore omit them.

We start with the standard Heegaard triple (X, o', &, B) for Wy. In Figure 14.1,
we show the diagram (S#X, '8, aB, BB, A). Therein, the top half of the figure is 3,
and the bottom half is . This figure also encodes (=, o', o, B).

The first quadrilateral counting map in equation (10.4) is hﬂ ﬂ —A o The Hee-
gaard quadruple (Z#X, /B, af, BB, A) is depicted in Figure 14.1. This diagram

is weakly admissible. The input for hﬁ g:aA,- from CF(BB, A) is 62;5 A and the
( +

ﬂﬁ A
. We need only evaluate h - wh.pf

input from CF (o’ B ap) is @;’, -), since

B.aB

Fﬂ '3(®a B) = ﬂ 85’ and for grading reasons h’gﬂ_)A (@ oB. Bﬂ) is a multiple of
®;r, BA° Hence, we need only consider holomorphlc quadnlaterals in
+ + +
7205 i Oup s Opin Cpoa)

There is an index —1 domain (shaded). This class has a holomorphic representative for
a unique conformal class of rectangle. Indeed, for each slit length (along the alpha and
beta arcs in the interior of P,) there is a map of a varying conformal class of rectangles
to the domain of P,. Meanwhile, there is a holomorphic rectangle mapping to P; for
a unique conformal structure.
By inspection, there are no other positive domains, and so,
BB—>A o+ y=et. .
ap—a’B " aB.BB o'B,A

The Heegaard quadruple for the second map £ ﬁ;_‘fz; F; is depicted in Figure 14.2.

We need only consider summands in the image containing x = {x, xf}, since grad-

ing considerations imply that the only other generator that can appear in the image of
A—a'a’ BB—A B.B
—>oa o f ﬂ_ — o F1

(xﬁ_—>a/ﬂ_

is {x, x7}, which is annihilated by F&**
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Figure 14.1. The Heegaard quadruple (S#%, a’B8, af, BB, A). The generators of interest are

+ _ + + _ + + _ + + _ +
Oy gap =0 T1HO 5,5 =10.0710,5  ={ttTand® 5 ={zz7}

Figure 14.2. The Heegaard quadruple (2,08, «B, A, a’@’) in the definition of & (?B_’O‘/&/ with

—a’B’
some intersection points labeled. The generators of interest are ®Z, wa =ttt ®:B N
’ + _ (At f— Tt ’
{6,060}, ®a//§,a/§ ={¢pT.p}andx = {x; . x| }.
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Figure 14.3. The Heegaard quadruple (=, B, A, «’a’, a&’) in the definition of H aAB_)‘)‘&,,
with some intersection points labeled. The generators of interest are I A/ ={rt, 1},
O s war = %2 1= {x.x2}, ¥ = {¢2.¢3} and O 5 A = {0.6'}.

One checks directly that there are no positive domains among those generators for

A—a'o’ aq well as HA=*¥ | the latter of which is shown in Figure 14.3.
aB—>a ﬂ

It follows that the map Fy, sl takes the form
3 Fwy sy 1 2
(CFI(S )——> CFI(S" x S ))

CF(S3) 10— — CF(S! x §2)

~
| - |

~

o1+ 1~»00eTt o1+

.~
~
~

A
0 - CF(S?) — 10— — 0 -CF(S! x §2)

We now consider the 2-handle cobordism W from S! x S? — §3. This is deter-
mined by the Heegaard triple (2, &”, &', B), where o', B are as before, and o is a
copy of er. Let 6, B be the lower-degree generator of CF~ (X, o/, §) and GT - be the

hﬂﬂﬁA 0 0+

top-degree generator of CF~ (X, B, B). We need to calculate /"’ o' fa' B

A" A—)aa -
e 5O 3 and HAZZE (@7 ).

We consider diagrams for each of those quadruples. Indeed, the first quadruple
is represented in Figure 14.1 with the role of the /B and af curves exchanged.
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A direct calculation shows there are no positive domains for Ch NPrL 0, R
+ + _ BB—A +
9 ,0 BAA" ,O4rg.A) SO h o fa” ﬂ( 6- -) = 0. Entirely similar remarks apply
Aa” 4 A_>a/a//
fo h o Bsa” B( B, p)-and HY (@ B, A) Computing as above, we obtain that

1 2 Fwa =iw, 3
CFI(S! x §2) ——2 CFI(S?)

CF(S' x §?) — ot—1,06-0— CF(S?)

- o@1+y o(1+1)

| |

Q- -CF(S!'x 8?) —oet1,070— Q- CF(S?)
Composing the CFI(W,, $5) o CFI(W1, s1), we obtain multiplication by Q.

Remark 14.2. The cobordism W is obtained topologically by turning the cobordism
W, around and reversing its orientation. The maps CFI(W;, s1) and CFI(W,, $5)
become dual over F[U, O]/ Q? after performing a change of basis, corresponding to
a nontrivial automorphism on CFI(S! x §2). Compare [24, Theorem 3.5]. Note that
our definition of the 2-handle map in equation (10.4) does not naturally dualize to
another 2-handle map. We hope to investigate duality more precisely in future work.

15. Knots and links

In this section, we describe how to adapt the naturality and functoriality results of the
previous sections to the case of knots and links, and in particular prove Theorems 1.4
and 1.5.

If L is a link, in this section we write € £.I (L) for the pair (EFL(L),r). Anal-
ogously to the case of knots, our construction requires a choice of orientation on L, so
there are potentially 2¢ different potential models for ¢7,. To simplify the notation, we
assume that an orientation is fixed, and we consider only the two orientations which
are either coherent, or opposite to our preferred orientation. We write ¢7, 1 and ¢z, —
for these models of the link involution.

In analogy to our construction in the case of closed 3-manifolds, we will describe
several expanded models of the link involution 77, + in Section 15.1. To streamline
the presentation, we only define transition maps with respect to the expanded models
(unlike in the case of closed 3-manifolds, where we defined both non-expanded and
expanded models). Since we only consider the expanded models of the involution
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in this section, we will write © for the expanded, doubling enhanced link diagram
we consider in Section 15.1. This notation departs from previous sections, where we
wrote ® for expanded models of the involution. Similarly, we write ¥o, . p, for the
expanded models of the transition maps in this section, instead of \1}51 5D,

In this section, we show how to adapt the techniques of the earlier sections to
prove the following naturality theorem, which implies Theorem 1.4.

Theorem 15.1. Suppose that L is a link in a 3-manifold.

(1) The transition maps Vo _, o are well defined up to homotopies of morphisms
of tp,-complexes.

(2) Yoo ~iderer(o).
3) If D1, D, and D3 are three expanded, doubling enhanced Heegaard link
diagrams for (Y, L), then V5, »9, 0 ¥p, 59, =~ Vo, >9;.

Additionally, we prove the following functoriality theorem, which is an expanded
version of Theorem 1.5.

Theorem 15.2. Suppose that (W, ) is a link cobordism from (Y1, L1) to (Y2, L»).
Suppose further that ¥ consists of a collection of annuli, each with one boundary
component in Yy, and one boundary component in Y,. Suppose further that each
annulus is decorated with two parallel longitudinal arcs, s € W is a Spin® structure
such that 3 = s + PD|[X]. Then, the cobordism map €¥ £LI(W, X, s) defined via the
doubling model is an enhanced (1, -homomorphism, and is well-defined up to enhanced
L1, -homotopy.

15.1. Expanded models of the knot and link involutions

In this section, we describe our expanded model of the knot and link involution, sim-
ilar to the expanded 3-manifold involution which appeared in Section 7. This is the
model we use to prove Theorem 15.1.

The construction is as follows. Suppose that L is a linkin ¥, and (X, &, 8, w, 2)
is a Heegaard link diagram for (Y, L) such that each component of L contains exactly
two basepoints. We pick an auxiliary point p € X \ (e U g U {w, z}), at which we
will form the connected sum of X and X.

We write ¢ for the curve which is a meridian of the connected sum tube, as in the
3-manifold case. There is a natural 1-handle map

FPPoerst (S 0. B.w.z) — CFL(THS, acB, BeB.w UZ,z U ).

We pick a collection of properly embedded and pairwise disjoint arcs 8y, ...,
82g42|L)—1 on X \ N(p), such that after cutting X \ N(p) along 81, ...,82¢42//-1>
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___________________

Figure 15.1. A doubly pointed Heegaard knot diagram with a special point p (left), and the
double (right).

we are left with 2| L| punctured disks. We assume that each disk contains exactly one
basepoint from w U z. Equivalently, we may assume that 1, ..., 82442/7|—1 forms
a basis of H(X \ (w U z), p). We double the arcs 41, ..., 8264211 to obtain the
attaching curves A. See Figure 15.1 for an example.

The complex EFL(Z#Z, BcB. A, w Uz, z U ) represents an |L|-component
unlink in #8S! x S2, where each component contains 4 basepoints. There are two
canonical homology classes, represented by cycles GZ A and 62 A" These are
the generators of the top degree of homology with respect to the gradlngs gr,, and
gr,, respectively. See [35, Lemma 3.7]. We define
fﬂccﬂﬂ_)A Z( ) = facﬁ,ﬂcﬂ_,A( ®Zcﬂ A)

o

and we similarly define faﬁc cEﬂ ZAY 6 be the holomorphic triangle map with special
input ®z 5A° (The reason that the z-map has the w-generator as its input is due to
the 1nterpretat10n of the map in terms of decorated link cobordisms from [35].)

Similarly, there are two distinguished classes % Aacd @:A wcq 1N CF I(E#E, A,
aca,wUz,zUw).

We define the following two expanded models of the knot involution:

ac,ac A—)ac&;w BeB—>A;z cB.cp
LL .+ =Tk o F © Jaca factx Fl ’

ac,ac fA—mc& 1 fﬂcﬁ—>A w FICB’CB.

aca aca

_nKoF

Lemma 15.3. The maps 1,.— and Ty, + are homotopic to the maps (1, — and i, 4,
respectively, which were defined in Section 3.4.

Proof. We focus on the case when L is a doubly pointed knot K, since the proof for
links is not substantially different.
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z w
Vo S—
TTZ_LU
a
['si:
w | z K ’

Figure 15.2. Decorations on a cylindrical link cobordism [0, 1] x K corresponding to a compo-
sition of a quasi-stabilization followed by a quasi-destabilization.

The proof is to identify each of the above compositions with a cobordism map
from [35]. The map Fy Beh s equal to a composition of g 4-dimensional 1-handle
maps, as well as the birth cobordism map for adding an unknot component. The map
F3'“% is similarly equal to the composition of g 3-handle maps, as well as a death
cobordism map which deletes an unknot.

We now consider the triangle maps. The map ffc‘f A s the composition of g
4-dimensional 2-handle maps (as in the ordinary doubling model of the involution),
as well as the saddle cobordism map which attaches a band which has both of its ends
in a component of K \ {w, z} which is oriented from z to w (i.e., which lies in the
beta handlebody). Furthermore, the band is contained in the type-z subsurface of the
A—aca;w

fDlCO{
instead in the type-w subsurface.

link cobordism. The map has a similar description, except that the band is

To make the identifications in the main statement, we argue as follows. By can-

celing the 1-handles and 2-handles, we may identify the composition f Bef— Az

aca
F f B.ch with the composition of a birth cobordism, followed by a w-saddle map. By

[35, Proposition 8.5], we may identify this composition with the quasi-stabilization
map S + , from [35, Section 4] and [32]. Analogously, we may identify the composi-

tion Fy ae.ac faAC:aw " with T, The composition 7, o S ; 5 1s homotopic to the

basepoint moving map which sends w to Z and z to w, both moving in the positive
direction by [35, Section 4.4]. See Figure 15.2. |
Remark 15.4. The compositions ng o F3 <% faAc:aC&;z ffcfxﬂ_m;z o Flcﬂ’cﬂ

ac,ac A—aca;w BeB—Asw cB.cB
and ng o Fj ° foca ° foca ol

same argument as above identifies the two maps with the link cobordism maps for a

are null-homotopic. Indeed, the

cylinder which contains a null-homotopic loop in the dividing set. Such a cobordism
map induces the trivial map, since it may be identified with one of the compositions
S— S+t _or T, T, which both vanish by [35, Lemma 4.13].

w,zZ-w,z w,z " w,z?

Remark 15.5. As previously mentioned, if L has £-components, there are 2¢ natural
models of the link involution, depending on how we twist each link component. The
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expanded model described above can also be used to realize any of these models. We
consider the diagram (E#i, ﬂcﬁ, A, wUZz,zUw). Suppose that O is a map from the
set of link components of L to the set {+, —} (corresponding to a choice of whether
to twist in the positive or negative direction). We let Z(Q) consist of the basepoints
from w U z, for components where Q@ = —, as well as the basepoints from z U w for
components where O = +. Let W (Q) denote the complement. Then, each collection
Z(0) and W(Q) determine Maslov gradings on €FL(Z#Z, BcB, A, w Uz, z U
w), and we let ®Z(®) and @W(O) be the corresponding top-degree generators. A
straightforward extension of Lemma 15.3 shows that the involution 77, @ is computed
by using ©Z(® for the first triangle map, and ®W (@) for the second.

15.2. Naturality for knots and links

Most of the ideas from the previous sections carry over to define transition maps
and cobordism maps for the model of involutive link Floer homology described in
Section 15.1.

The main new technical subtlety is that the model of involutive link Floer homol-
ogy in Section 15.1 has an additional piece of data: the choice of connected sum point
p. If p and p’ are two choices of special points on X, a choice of path on X from p
to p’ can be used to relate the two models where the connected sum is taken at p or
p’, by using a point-pushing diffeomorphism along this path. In principle, a transition
map defined in this manner might depend on the choice of path. To handle this issue,
we introduce further expansions of the doubling model, as follows.

Suppose that p = {p1,..., pn} is a collection of marked points on ¥ \ (e U 8 U
w U z). We may form an expanded model of the involution, as follows. Firstly, we
consider the surface 2#, ¥, where we attach a connected sum tube at each point in p.
Letc = {ci,...,cn} denote a collection of meridians of the tubes. We pick properly
embedded arcs 81, ..., 82¢42|1|+|p|—2, Which form a basis of H;(X \ (w U z), p). It
is straightforward to see that if A is constructed by doubling 81, ..., 824 42|L|+[p|—-2
then (2#1,2, acﬁ, A, wUz, zUw) is a diagram for (Y, L), where each component
of L is given four basepoints.

Given a collection of points p as well as doubling arcs, as above, the construc-
tion from Section 15.1 adapts verbatim to produce a model of the link involution. It
remains to relate the models for different choices of p.

Suppose K = (X, «, 8, w, z) is a Heegaard link diagram, and p is a subset of
Y\ (eUBUwUz),andgisapointon X \ (¢ UB Uw Uz U p). Suppose that D,
and " py¢4y are doubling enhancements of #, which use the connected sum points p
and p U {q}, respectively. We now define expansion and contraction morphisms

£, CFKI(D,) — CFKI(Dpuig)). Cqi CFKI(Dpuig)) — CFKI(D,).
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We define the map &, in equation (15.1). Our definition of €, is similar to our
definition of the 1-handle map, and C; is defined similarly to the 3-handle map. In
particular, &, is given by the following hyperbox.

CF K (a, B) id CF K (a, B)

FerBens perabencad

l !

CFK (e pB.BepB) — FL7 —s €FK(oe pegB. Be pcgB) id— CFK (e pcgB. Be pcgB)

/.ﬂ(‘pBﬂA:z BepeqB—Acq:z RENE BepegB—NA iz
acpB YacpeqB \\\\ YacpeqB
l l ) ‘\\)

2 cq.c 2 Acg—A 2 7
CFK(acpB. A) —— F{" —— CFK(acpcgB. Acg) —— £ 0 5 — CFK(acpcqB. A')
fA~>7o(<'p6(:w Acg—acpeqdiw S~ /.A/A)ﬂi',){fq&:w

TacpB TacpeqB Sl LacpeqB

| l ]

CF K (ac pB,ac p&) — F{T1—s CF K (ac pcg B, ac pcgd) Br —— CF K (ac pcgB,ac pcg)

F;I(‘p,{l('p F;tcpz'q.an’pcq
CFK (B, &) id CFK(B. &)
(15.1)

In the definition of &,, we write 7 for a closed curve on E#pu{q}i which is sym-
metric with respect to the Z,-symmetry, and has a single transverse intersection with
cq-

q

Lemma 15.6. (1) The maps €4 and C; commute with the transition maps for handle-
slides and isotopies of the attaching curves. Furthermore, €, and C, are independent
of the choice of T, up to chain homotopy.

Q) If p #q, then [€),Cq] = 0, [Ep, E¢q] = 0, and [Cp, Cg] =~ 0.

(3)EpoCp ~idand Cpo &, ~id.

(4) If ¢ is a surface isotopy of ¥ which moves p to q and fixes all of the other
connected sum points and basepoints, then ¢ >~ Cp 0 &,.

Proof. The proof of part (1) is essentially the same as for the 1-handle and 3-handle
maps. See Lemmas 9.4 and 9.5.

The proofs of claims (2) and (3) amount to constructing five hyperboxes (one for
each relation). All of these hyperboxes have a similar flavor, so we describe the hyper-
box for the relation C; o0&, ~id, and leave the remaining hyperboxes to the reader.
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The hyperbox we build will correspond to the hypercube

CFKI(Dp) 4+ CFKI(Dpuigy)

| S~o
~

id S~ Cq

g 4

+
CFKI(D,p) —id— CFKI(D,)

We build four constituent hyperboxes, each corresponding to one of the four levels of
equation (15.1). The highest level is the following diagram:

CF K (a, B) id > CF K (e, B)
.. N

Id\ id\/l
| CF X (e, B) id s CF K (o, B)

cpB.cpB epeqB.cpeqB
Fl Fl

NS Fll?.l? < perbBcpb
CF K(aepB. BepB) -Fi* ) CF K(acpcgB, BepcgB)
~_ ~
id F;70B,
\ v_ ~ 3 ~ v_ ~
CF K(acpB,BcpP) id—> CF K (acpB, BcpP)

The bottom-most level is very similar to the above, so we omit it.

We now consider the hyperbox corresponding to the second level from the top in
equation (15.1):

CF K (acpB, BepB) FI¥ Y CF K (acpcgB, BepegB) -id> CF K (ac pegB, BepcgB)
AN

FN \
\ B \ B:
NN \ N

id CF K (e pcgB. BepcgB) id—> CF K (e pcgB, BepegB)

\\ \\\ 3 N \\ 3 9
CFK(acpB.BepB) —Tid> EF K(acpB,BepB) —Tid> CFK(acpB,BecpB)
| \ N | \

\ N \
\ N \
\ N~ \

CF K (e pB. A) — F{7°0 3 €F K (ac,|cqB. Acg) —— €F K (e cqB. A')
<\ \

~N At \\
B: \ - \
N M b B 2

id CF K (acpegB. Acg) —i|l— CF K (acpcgB, Acg)
\ \F ;'q .cq \F ;'q .cq
- ’ s - ’ s -
CFK(acpB.A) id—> CF K(acpB, A) ——id— CF K(acpB.A)
(15.2)

In equation (15.2), each unlabeled arrow is a triangle or quadrilateral map. The back
right hypercube also has a length 3 map, which is not labeled. We now explain the
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back-right hypercube. This hypercube is obtained by pairing ac pcy B with the fol-
lowing hypercube of beta attaching curves:

BepcyB 1 > BepegB
\\\\ \\\ \
T \ T
NN \ S
N - 7
BepegB = » BepcaP
N
BepegB.Acq N

\ (15.3)

The above hypercube of beta attaching curves is constructed as follows. Length 2
chains are constructed by adapting Lemma 9.2. Once these are chosen, a length 3
chain may be chosen by the standard cube-filling procedure. Namely, if C is the sum
of all other terms of the length 3 relation, we know dC = 0 because of the hypercube
relations on the other proper faces, and C is in €F K (B¢ pcy B.Ac,), a complex for
an unlink in a connected sum of several copies of S x S2, of gr,-grading equal to
that of the top degree generator of homology. By potentially adding a copy of the top
degree generator to the 2-chain labeled 7, in equation (15.3), the hypercube relations
may be satisfied.

The hyperbox for the third level of equation (15.1) is constructed very similarly.
Indeed, if we switch the roles of the alpha and beta curves, then the hypercube for the
third level of equation (15.1) is obtained by dualizing equation (15.2). Stacking these
hyperboxes and compressing gives the relation C; o £, ~ id.

One important point to check is that the diagonal maps on the second and third
hypercubes can be chosen to match. For example, to build the hypercube in equa-
tion (15.2), we may potentially have to add the top degree generator to n so that the
hypercube relations are satisfiable. A similar issue occurs in constructing the length
2 map on the top face of the third hypercube as well. Nonetheless, as in the proof of
Lemma 9.5, addition of the top degree generator to 7 in equation (15.3) has no effect
on the diagonal map in the compression of equation (15.2). Hence, the compression
of equation (15.2) may be stacked on top of the corresponding hypercube below it.

We now consider part (4). This follows from the first claims, as we now explain.
Let A be a path from p to g. Let ¢, , denote the surface isotopy which moves g to
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p along A, and is supported in a small neighborhood of A. It is sufficient to show that
$g—>poCpoy~id.

Let x¢ be a point in the interior of A. We compute as follows, using the previous
relations:

$g—p©Cpo€q = gspoCpolyyoly ol
>~ gsp0Cxy0Eq0Cpoly,
2 Cry0gsp0EqgoCpoly
>~ Cxy0EpoCpoly,
~id.

Note that commuting ¢, , past Cy, in the second line is possible since the diffeomor-
phism ¢, , is isotopic to one which fixes xo. Next, ¢, , 0 €, =~ €, by naturality
of the expansion and contraction maps with respect to changes of attaching curves,
which is part (1) of the statement. This establishes part (4). |

15.3. Functoriality for knots and links

In this section, we describe several aspects of the proof of Theorem 15.2. Firstly, to
construct cobordism maps for (W, X): (Y1, L1) — (Y2, L») when X is a collection of
annuli such that each component of ¥ intersects Y; and Y, non-trivially, it is suffi-
cient to describe cobordism maps on link Floer homology for 4-dimensional handles
attached to the complement of a link.

Cobordism maps for 4-dimensional handles attached in the complement of a link
are defined similarly to the maps for cobordisms between closed 3-manifolds (cf.
[35, Section 5]). The 1-handle and 3-handle maps are defined as in Section 9, and
the 2-handle maps are defined similarly to Section 10. One caveat is that there is an
asymmetry in the definition of the 2-handle maps with respect to the basepoints, in
that we choose the 2-handle maps to count holomorphic triangles which represent
classes satisfying s () = s. Note that by [34, Lemma 3.8], we have

(sw —s:)(¥) = PD[Z].

In particular, the final hypercube we use in constructing the cobordism maps for our
2-handle map will have the following form:

CFL(T, B, @) e y CFL(T, B, &)
17IL ﬂIL
+ 2\

€FL(T, . B) — 17

_)CY,/

S €?$(E, o, B)
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16. 2-handle maps and the knot surgery formula

In this section, we compute another family of involutive cobordism maps. If K C S3,
and n € Z, we will compute the map for the 2-handle cobordism from S23n (K) to S3.
Our description will be in terms of the knot surgery formula of [4], and is in a similar
spirit to the non-involutive description of the 2-handle map of Ozsvath and Szabd
[27, Theorem 1.1].

We suppose that K € S 3 is a knot, and we consider the 2-handle cobordism
W, (K) from S3(K) to S3. This cobordism is Spin if and only if m is even. Fur-
thermore, if m = 2n, then the unique self-conjugate Spin® structure on W, (K) is
the one which satisfies {(c1(s), X) = 0, where X is obtained by capping K with the
core of the 2-handle. This Spin® structure restricts to [n] € Spin®(S;,(K)) under the
isomorphism Spin®(S3, (K)) = Z/2n.

Our formula is phrased in terms of the mapping cone formula of Ozsvath and
Szabé [27] and its involutive analog from [4]. We review these constructions briefly.
We write Ag(K) for the subcomplex of CFK*®(K) generated by elements UV’ x
where A(x) 4+ j —i = 0and j > —s and i > 0. We write Bs(K) for the subspace
generated by similar monomials, with no restriction on j. We write B,(K) for the
subspace generated by monomials which satisfy j > —s, but with no restriction on
i. We write vg: Ay — B and vU5: Ay — ES for the canonical inclusions. We recall
from [27] that the mapping cone formula requires a choice of homotopy equivalence
from Bg(K) to Bsim(K). We write &, for this map. We write A (K) for the direct
product over s of As(K), tensored with the power series ring F[[U]]. Similarly B(K)
denotes the direct product of the complexes B;(K), tensored with F[[U]].

We recall that Ozsvéth and Szab6 proved that if K € S3 and m € Z, then

CF~(S2(K)) = Cone(v + hp: A(K) — B(K)),

where h;,,;, = §,. In [4], we extended this to the involutive setting, and proved that

AK) — L B(Kk)

CFI™ (S, (K)) ~ lQ(id J;L\A\)‘\Ijﬁ"\g lQ(id—HB)
QA(K) —"— OB(K)

The map t4: Ay — A_g is given by 14 = U®ig and the map (g : By — B_s4m 1S
given by &, U* k. The map H,y, is defined by picking a map Hy,: Bs(K) — B_y(K)
satisfying

Uik + FmU° itk Em = [0, Huml. (16.1)

Indeed, any two choices of map H,, satisfying this equation are themselves related by
appropriate homotopies. See [4, Section 3.5].
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With the above notation in place, we now state our formula for the 2-handle map.
Once again, because one end of the cobordism is the three-sphere, the formula is not
affected by choices of framings, and we omit them from the notation.

Theorem 16.1. Ler s be the unique self-conjugate Spin® structure on the 2-handle
cobordism Wy, (K) from S3,(K) to S3. Write BI,,(K) := Cone(Q (id +ug): B, (K) —
0B, (K)), and let

J:XI,(K) — BI,(K)

be the map J := vy H,‘f + anlx, where H;l is projection onto Ag & QA and Hf
is similar. Then, there is a hypercube of F[U, Q]/ Q?-equivariant maps

CFI™(S3,(K)) — CFI(W3,(K).e) — CFI~(S?)

X, (K) J y BI,(K)

Remark 16.2. In Theorem 16.1, tx denotes the involution on the mapping cone, i.e.,
Ix = tA + tB + H»,V. Note (5 vanishes when composed with Hf , and hence makes
no contribution to the map J.

Example 16.3. Consider the case K = U and n = 0, so that W, (K) is the cobordism

W, from S x S? to S3 considered in Section 14. We recall that X (K) may be taken

h
to be the cone of A¢(K) u> Bo(K) [27, Section 4.8]. In [4, Section 22.9] we show

that CFI™ (S3(K)) ~ XI¢(K), to wit the complex

Ag(K) — 0 By(K)

TS~__ Hob
lQ(id'HA) \\\\\\\) lQ(id‘HB)
QAo(K) — " 0By(K).

With this in mind, BIo(K) = Bo(K) & QBy(K) with appropriate gradings and dif-
ferentials. We take Ao(U) and By (U) to be appropriately graded copies of F[U]. For
clarity, let a be the generator of Ao(U) and b be the generator of By(U). Choosing
Hy = 0 satisfies the formula 16.1. With this in mind, the map J sends J(a) = b and
J(b) = Qb, and correspondingly, J(Qa) = Qb and J(Qb) = 0. This differs from
the map associated to the cobordism computed in Section 14 by a change of basis;
setting ® = g and ®~ = a + Qb recovers the map as described there.

We will focus on proving the case that n # 0. The case that n = 0 is similar.
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We begin by considering the non-involutive analog of the above theorem, which is
similar to [27, Theorem 1.1]. Ozsvéth, Szab6 constructed a map from CF~(S;, (K))
to Cone(CF~ (S5, ,,(K)) — CF(S?)), which we think of as a hypercube

CF™(S3,(K))
l TNk (16.2)

Rt
CF™ (83,1 m(K)) —— CF(S).

In the above, CF~ (S?) denotes a version of twisted Floer homology which is isomor-
phic to CF~(S?)  F[T]/(T™ — 1).

We may consider instead a version of the above hypercube with twisted coeffi-
cients lying in F[T']. We will write CF~(S3) for this version. We can also construct
an analog of equation (16.2) over IF[T], though the resulting hypercube has a different
shape:

CF™(S3,(K)) —— CF~(8?)

T~k
" (16.3)
l Ty B l
CF (83, n(K)) —S— CF~(S?3).

In equation (16.3), F is denoted as

Ayr
F= Y 1P ormw, k).,
s€Spin (W5, (K))
where N
__{c1(8), %) +2n
AWZ/n’E(g) . — f.
Additionally,

M = Z Um(sz—l)/BTm(s+1)/2‘
s€2Z+1

Note that M = 0 if we set T™ = 1. Hence, the hypercube in equation (16.2) is
obtained from equation (16.3) if we set 7™ = 1 and remove the top right corner of
the hypercube.

The formula for F is derived as follows. Ozsvath and Szabé proved (16.2) by con-
sidering a Heegaard quadruple (X, a3, 02,1, B, w, z), with a special genus 1 surgery
region, as in [27, Section 3]. In the diagrams (X, &1, §) and (X, a2, §8), the points w
and z are immediately adjacent. The diagram (X, a1, B, w) represents S3, (K). The
diagram (X, @2, B, w) represents S;, +m(K). The diagram (X, &3, B, w, z) represents
(S3, K). One obtains the hypercube in equation (16.3) by considering the degenera-
tions of holomorphic quadrilaterals. The quantity U m(s?=1/87m(s+1)/2 arises from



Naturality and functoriality in involutive Heegaard Floer homology 117

a model count of holomorphic triangles on the diagram (X, a3, a2, &¢1, w, z) (see
[27, Section 3]).

We now fix § > 0, and we set U® = 0. Write CF? for CF~/U?, and make similar
notation for maps. We assume that m >> 0, so the only terms of F with U-power less
than § have s € {1, —1}. Hence,

F=a+rm Y =P w),k), ).
sESpin"(Wz'n (K))

On D(—m, 1), Spin® structures may be identified with 2Z + 1, where s € 2Z + 1
corresponds to the Spin® structure t satisfying

(c1(1),8?) =5 -m.

We are most interested in the Spin® structures corresponding to s = =1, which are
the Spin® structures with maximal square. Note that the composition of the natural
cobordisms from S3, (K) to S3, +m(K) (which has an extra boundary component
L(m, 1)) and the cobordism from Sz3n+m (K) to S%is W (K)#D(—m, 1). We iden-
tify Spin® structures on W, (K)#D(—m, 1) as pairs s#[s] where s € Spin® (W, (K))
and s € 27 + 1.

We recall the notation of Ozsvith and Szabé for Spin® structures on W, (K).
They write x5 and vy, for the Spin® structures which satisfy

(c1(xs5), Z) +2n =25 and (c1(ys), X) —2n = 2s,

respectively.
There are also analogous Spin® structures on W, , . (K), for which we write X
and %Y);. The Spin® structure X satisfies

{c1(Xs). X) +2n +m = 2s,
and %)), is similar. We write
Gz, Gy, : CF (S5, (K)) = CF(S?)

for the corresponding cobordism maps.
If s € Z, we may define a projection map Iy: CF3(S3) — CF?(S?) by reading
off only the component 7. Using this map, we may form a hypercube

CF(S3 (K).[s]) —E— CF3(s%) M, cFd(s3)

l Lk lM lid
3

CF3 (83, m(K)) —S— CF3(5%) —=5 CF¥(S9).
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If we compress the above hyperbox, we obtain the following diagram:

CF(Wzln \Xs)

CF*(83,(K). [s]) y CF8(S3)

Gz, ~=3
CF (83, m(K)) . S CF(S3)

If we instead use ITs42,4m, We obtain a hypercube relating the maps CF(W,,, v;)
and Gy, .

The next step of the knot surgery formula is to construct a hypercube of the fol-
lowing form:

G G
CF (83, p(K)) 22200 cpd(53)
lr ) lgw (16.4)

Ty
AS(K) — U 5 s (k)

The map I is a holomorphic triangle counting map. The map 8, is the map for trivi-
alizing the twisted coefficients defining CF 5(83).

The above hypercube is built by gluing together hypercubes with the following
shape:

CF (83 4m(K)) —25 CFY(S%) CF (83,4 m(K)) 25 CFY(5%)
lr l w and lr el l w
TN
AS(K) — 25 B(K) AS(K)y — 2 gé (k)

We may combine the above hypercubes into a hyperbox of the following shape:

CF3(S3,(K), [s]) —— CFW, 5) CF%(S?3)
\\\\\\\\ I
==- id

~ by ___ v

CF8 (W2n m)\ k

(CF*(S3,4m(K)) -G~ CF'(S5?)) 2 erisy 165
| T Gg I / |
r \j P s11Ls] 0,y

+ ~ v +
(A%(K) —v+hay + BY(K)) B¥(K)
T 4 _

In the above, I, denotes projection of CF' § (S5, +m(K)) onto the Spin® structure
identified with [s] € Z/(2n + m). Also, we view each parenthesized group as being
a single point in the set E(1,2) = {0, 1} x {0, 1, 2}.
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Symmetrically, there is another hypercube of the following form:

CF (83 (K),[s]) —————— CcFW3,.9) ———— CF3(S3)
| TTe—— |
CF(W:%”’m)\k\ \\\‘km#[ll.\\‘ f
(CF3 (83,4 m(K)) -G~ CF'(5%) T crisy (169
LN T Gy T — 0
3 J ~ G\"f WSt opgmd — -
(AS(K) —vthay > BY(K)) 2 BY(K)
i ———

Equations (16.5) and (16.6) can be used to compute the cobordism maps for
W, (K), very similarly to Ozsvéth and Szab6’s [27, Theorem 1.1].

In particular, the fundamental objects to construct are the hypercubes in equa-
tions (16.2) and (16.3). The involutive extension of equation (16.2) is one of the main
theorems of [4]. We now describe how to extend equation (16.3) to an involutive
hypercube.

Proposition 16.4. There is a hypercube of the form

CFI (53,(K)) —— CFI (5%

l NS lM
S

CFI™(S3,.,,(K)) —%— CFI(S?).

Furthermore, G and F are the involutive cobordism maps summed over all Spin©
structures (as defined in this paper) and M is the map

Z Um(sz_l)/STm(s-}—l)/Z .id +EQ
se2Z+1

The map E decomposes into a sum

E = Z E,,

s€27Z+1
where each Ej is of homogeneous grading —m(s*> — 1)/4 + 1.

Proof. The proof is mostly by a straightforward reinterpretation of the techniques
of [4]. There is one point where our description in [4] is not convenient for our present
purpose, which is in the first subcube of the central hypercube. We recall the Heegaard
quintuple (y”,y’,y.8,8’) used to define the first central hypercube. There is a natural
hypercube, obtained by pairing two hypercubes (in [4], we referred to this hypercube
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as the first auxiliary hypercube). Over [F [T'], this hypercube takes the following form:

— ¥ SEr— ()
CF (y, 8) - fyﬁy” CF ()’ B 8)
N Te-al
RN S
\ \‘f\V—w/ hy%y/%y” - M
\ N -l
| N ’ 8 s ”
\ — ) _
\\ \\CF (y . 8) — fy/ﬁy” E— CF (y N 6)
§—8' \ §—8' N -§—8'
fyﬁ \\ hyay’ \\\ .fy//
\ AN \\\ ‘
’ N A
h8~>8 / N §—68'
vy \\\ hly _)y//
\ .
N . / ’
\ ./;‘75 Ny J, rEre

A—— CF~ (y". 8

-~ \
\ \\\\ \ "
S T N

flf;)’/ \\ h()s‘//—n/ !yt M \\\
N TS
CF~(y',8) —— ff/’_)y// — CF—(y".8)
§—8'

The length 3 map (not shown) is the pentagon counting map DYy

We recall that (', 8”) admits a 3-handle map to a diagram #, and that both
(y.8") and (y’, 8’) are genus 1 stabilizations of J,. Furthermore, ff/ ,» and f oyt
are the maps for surgering on a O-framed unknot. Since the relevant Heegaard tr1ples
are both stabilizations, both of these maps admit left inverses, which are a 3-handle
map followed by a stabilization. Write o for the stabilization map which has (y,8") as
its codomain, and write ¢’ for the stabilization map which has (y’,8") as its codomain.

As a replacement for the diagram ‘C’ en in [4], we build the following diagram:

— -8 = ("
CF(y.8) I3 CF~(y".8)
N T~— \
\\\ \‘\‘*~\\‘ \ \
N f‘s -~ i \\ M
Ny—y y—=y/ =y \
N S\
N T -a
\\\\ ‘ \ ]
— (] 7
N CF(y/,§) —— fy,w,,4> CF—(y".§)
N
\ §— |’ AN §—8" \\
id O'F3hy_ VRN UF?f \
\ N \
N \
\\\ \\\ ‘ \
AN 58 S~>8/
. -J/F3hy/_)y// o F3h101‘:3f
AN \\\‘ \\
\\\ ™ \ /
id N Y \ o FflE
\,J \\ \\
— 7 S— /
CF(y.9) 778 = CF~(y.8") \
- . \
It AN \\
8 §—8' "8 N
Syt hy—w N Sysyr AN

CF~(y'.8) Al CF=(y'.¥)
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The length 3 map (not shown) is

’ §—>68' / §—8'
o FBPV_)]//_)VN +o0 F3h10'F3hy_>y//.

Following the notation of [4], the map /; denotes hf,/_) Y—>y
are straightforward to verify. Compare [4, Lemma 16.4].

. The hypercube relations

The hypercubes 1?(53,3 and t?c(;l) are more straightforward to modify, and we leave
the details to the reader. Upon compressing and stacking these hypercubes, we get the
diagram in the statement. It remains to verify the listed claims. The identification of
J and G as cobordism maps is straightforward, and we leave the details to the reader.
Compare [4, Lemma 16.14].

We now consider the map labeled M in the statement, the length one component
of this map (i.e., the non-Q component) may be identified with

Z Um(sz—l)/8 Tm(s+1)/2
se€2Z+1

by the lattice point counting argument in [27, Section 3]. It remains to identify the Q-
term. The Q-term is essentially the same as the map E considered in [4, Section 19].
Therein, we showed that E is null-homotopic over F[U, T]/(T™ — 1). Our argu-
ment used at several places that the coefficients were in F[U, T]/(T™ — 1) instead of
F[U, T], so we give an alternate argument that is sufficient for our present purposes.
The first observation is that the map E decomposes over Spin®(D(—m, 1)), which
we have already identified with 2Z + 1. The grading change formula is also a routine
consequence of this identification, and the standard grading change formulas for the
cobordism maps in Heegaard Floer homology [20]. ]

Remark 16.5. We write M = My + QM. Since CF~ (S3) ~ F[U] is supported only
in even gradings, and M; may be viewed as a chain map from CF~(S?) to itself which
shifts the mod 2 grading by 1, we may conclude that M >~ 0. In particular, by adding a
term to the length 3 map of the hypercube, we may assume that M| = 0. Furthermore,
fixing § and letting m be sufficiently large, we see that £ 8 is homogeneously graded,
so the null-homotopy may also be taken to be homogeneously graded.

In [4, Section 21], we also described how to extend the hypercube in (16.4) into
the involutive setting. Using this, together with Proposition 16.4, we may construct the
involutive analog of the hyperboxes in equations (16.5) and (16.6). We construct this
hyperbox so that the top face has the hyperbox from equation (16.5), which involves
the Spin® structures xs and X5 with s = n. There is an important subtlety in that the
bottom face of this hyperbox will be the hypercube from equation (16.6), involving
the Spin® structures y—, and %Y)—,. (Note that y_,, = X,.)

The front face of this hyperbox will compress to have the diagonal map H»,7,
where H», is the length 2 map from the involutive mapping cone of [4].



K. Hendricks, J. Hom, M. Stoffregen, and 1. Zemke 122

We add one more level to this hyperbox so that the top and bottom levels faces
coincide. We add this level to the bottom of the hyperbox. We build this new level as
a pair of hypercubes. The first hypercube has the following shape:

CF3(S3.(K), [n]) ————— CFWj,.v—n) —— CF*(S?)
CF(\Wzn.zHX‘k\\\‘“‘\ P Ny
\ \ T “5‘\“‘\
(CF* (San4m(K)) — CF*(S?)) T2 CF(S?)
id TG ———
N d
4 id id I, id
CF(S3,(K).[n]) — CF(W)ytn) —|——— CF3(S3)
\ T “‘~~“§‘ \\\
CF(W2n$ ~k ‘an#[— —— \id \\\
\ v \\ v \“\\‘~‘§‘\“‘\\>{ N2
(CF (83,4 m(K)) — CF*(S5?)) T CF(S?)

_ /
Gz, M

In the above diagram, IT,, denotes projection onto the B,,-summand of CF~(S?). The
hypercube relations are straightforward.

We finally have one additional hypercube, as follows:

/ Gy_, \
(CFB(SSn-!—m(K)) f} QS(S?,)) CFS(S3)
R o

(A(S(K)\)\‘B&(K)) TTTee- BS(K)
T

1 id ?;\:finé” /
/_ld/_ Gary Ty — \1}’? u
(CF? (83, 4m(K)) — CF?(5%) CF (S
N N, R
N N
(A% (K) —— B%(K)) B3(K)

vII //

The above shape can be easily checked to be a hypercube of chain complexes, so the
proof is complete.
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17. The SO(3)-twist

In this section, we show that the diffeomorphism map associated to tw € w1 (SO(3)) =
Z /2 acts on CFI(Y) by Id +Q ®, proving Theorem 1.7. Our argument will actually
identify the map with Q ®:, though this is homotopic to Q® on CFI(Y). In Sec-
tion 17.7, we will further consider an analogous twisting diffeomorphism map on
involutive knot Floer homology, and show that it is trivial.

Before beginning with the computation, we recall several topological perspectives
about tw. The first is as a Dehn twist along a small S? enclosing the basepoint. A
regular neighborhood of such a sphere is S? x . We recall that

Diff(S?) ~ 0(3),

so the generator of 771 (SO(3)) gives a diffeomorphism of $? x I which is the identity
on the boundary.

There is another perspective on tw, is as follows. Write Diff ™ (¥, w) for the orien-
tation preserving diffeomorphisms ¢ such that ¢ (w) = w; likewise, write Diff/ (¥, w)
for the orientation preserving diffeomorphisms ¢ such that ¢ (w) = w and d, ¢ = id.
If we fix a trivialization of Ty,Y, we obtain a Serre fibration

Diff/ (Y, w) — Difft (Y, w) — SO(3).

and hence, a map
711(S0(3)) — 7o (Diff’ (Y, w)).

17.1. Heegaard diagrams for the twist map

We first describe the Heegaard diagrams used to define tw,. Recall that in non-
involutive Heegaard Floer homology, if ¢: ¥ — X is a diffeomorphism, then the action
of ¢« on Heegaard Floer homology is induced by composing the maps in the follow-
ing diagram:

B—>d(B)
a—¢(a)

CF(Z,a,B) —— CF(Z,¢™ (@), ¢~ (B)) = CF(s.a. B).

where f aﬂ _:;)(gg )isa composition of holomorphic triangle maps and change of almost
complex structure maps, and Ty is the tautological map on intersection points. The
diffeomorphism maps on involutive Heegaard Floer homology are defined similarly,
except that we replace CF(X, a, 8) with a one-dimensional hyperbox (whose maps of
non-zero length correspond to the involution), and we replace ff _::;Eg;) and Ty with
morphisms of hyperboxes.

This has the following instantiation in our present setting. Let § be a set of dou-

bling arcs (with boundary on w) and § a set obtained by applying a boundary Dehn
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Figure 17.1. Top row: the doubling arcs § (left) and 3 (right). On the bottom row, we show the
doubled diagrams and indicate how A is obtained from A by moving the basepoint in a loop
around the connected sum tube.

twist in a loop which encircles w. Let A and A be their corresponding doubled curves
on X#X. Then, tw, is obtained by compressing the following diagram (where we are
omitting an extra column corresponding to the tautological portion of the diffeomor-
phism map):

CF(Z,a,8) ———— CF(Z,a, B)

2 2

CF(Z#Z,ap, BB) —— CF(Z#XZ,ap,BpB)

S~

~ S v
CF(S#S,aB,A) —— CF(S#%,af, A) (17.1)
v \\\\\$ v

CF(ZH#Z,af, a&) — CF(THE, af, ad)

The relevant Heegaard diagrams are shown in Figure 17.1.

Remark 17.1. Since tw, can be interpreted in terms of moving the basepoint around
the connected sum neck on T#X, one might expect that the formula for the hypercube
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my-action from [38, Section 13] would show that tw, is null-homotopic as a mor-
phism of 1-dimensional hypercubes. That is, if we view y, as a 2-dimensional diagram
below, then there is a 3-dimensional hypercube taking the form shown on the right:

CF(Y) — Ve s CF(Y)
CF(Y) -5 CF(Y) N S
\ \.Q'-\\ - -
\ S CF(Y)
\\ .
Vs = L \\\V* t
\\\ 3 L
CF(Y) — (Y)-.
N2 N ‘\‘\\\\
CF(Y) ERAEN CF(Y) \id Tt \id"-__
~N 4 “~\\>u <+
CF(Y) id S CF(Y)

We observe however that the techniques of [38] do not guarantee the 3-dimensional
hypercube so constructed has the same maps on the top and bottom faces of the
hypercube. (This may seem surprising since the length one components of y, are
the identity on the nose.) Concretely, the homotopy on the top face involves maps
related to relative homology actions on stabilized diagrams, which are in general
not preserved by the involution. In particular, such a hypercube does not give us an
F[U, Q]/ 0? equivariant homotopy id ~ tw, on CFI(Y).

17.2. Degenerating connected sums

Our argument depends on a somewhat complicated neck stretching argument. Our
strategy is adapted from work of Ozsvith and Szab¢ in the setting of bordered knot
Floer homology [26]. We have explored some of these ideas further in [4, 38].

We focus first on the case of two ordinary Heegaard diagrams

H=(,a,p,w) and H = (.« B,/ W),

and we take the connected sum at w and w’ (deleting one of the basepoints).

We first degenerate the connected sum tubes by letting neck length approach oco.
We obtain maps which count perfectly matched moduli spaces. We write CF A (H#H")
for the resulting chain complex.

There are homotopy equivalences

WE<E W¥<I. R, (##H') — CF(H) @p[y) CF(H').
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The map W=< counts holomorphic disk pairs (,u’) of expected dimension 0
such that the following hold.

(1) For [0, 1] x (=00, 0), the punctures of u and u’ consist of perfectly matched
pairs; that is, each puncture of u is paired with a puncture of u’ which has
identical projection to [0, 1] x R (and vice-versa).

(2) There is an even number of u and u’ punctures on [0, 1] x {0}, the special
line. These punctures all have distinct projections to [0, 1] x {0}, and alternate
between u and u’. The left-most puncture is from u.

(3) In [0, 1] x (0, 0), u and u’ may have any number of punctures, and there is
no constraint.

The map WE'<T 5 defined similarly, except that the left-most puncture on the special
line is from v’.

Proposition 17.2. The maps WE<Z gnd WE'<Z gre chain maps. Furthermore, they
are homotopy equivalences, with homotopy inverses given by the maps which count
curves in 0-dimensional moduli spaces with matching conditions in the regions above
and below [0, 1] x {0} reversed.

A proof, modeled on Ozsvath and Szabd’s work [26], may be found in [38, Sec-
tion 11.2]. An extension of the connected sum maps W=<%" to the setting of connected
sums of hypercubes (under certain topological assumptions) is also proven in [38,
Proposition 11.8].

17.3. Setting up the computation

In Section 15.2, we considered several stabilized models of the involution where we
used multiple connected sum tubes, but a single basepoint. To perform our computa-
tion, we will join ¥ and ¥ using a tube at w and a tube at another point p. Considering
this stabilized model will allow us to localize the computation.

Write ¢, for the meridian of the p-tube. Note that we can get a valid Heegaard dia-
gram by replacing ¢, with a meridian of the other tube. There are two natural choices,
cw and ¢y, depending on which side of w we put the meridian (see Figure 17.2).

We recall that the stabilized model of the involution from Section 15 takes the
following form:

F;xcp,acp o faAcp—;_(acp&) o fofcﬁ:gﬁ-)_)A o Flcp,B_,cpE.

We now modify the sequence of curves we use in this Heegaard diagram, by break-

ing the sequence
BepB — A — acya

into a longer sequence. This will make some holomorphic curve counts easier.
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Figure 17.2. A once stabilized model of the involution. On the top, we show the doubling arcs
on 2. On the bottom left, we have an overview of the two tubes. On the bottom right, we zoom
in on the w-tube region.

We pick sets of doubled curves Ay, ..., A,, containing 2g + 1 curves each, on
T#X such that the following hold.

(H A; = A? U D, where A? are doubled curves on the unstabilized diagram,
obtained by doubling arcs with two endpoints at w. Here, D is a single curve
which is obtained by doubling an arc which connects p to w.

(2) (Z#Z, BB, AY) is algebraically rigid. (Compare [4, Definition 6.5].)

(3) (Z#Z, aa, Ag) is algebraically rigid.

(4) Each A? 11 s obtained from A? by a small isotopy or a simple arc slide of the
doubling arcs on X \ N(p), not crossing over the endpoint corresponding to
D. (In particular, each (Z#X, A?, A? 11, w) is algebraically rigid.) Note that
this implies that A?,  is obtained from A? by an elementary handleslide.

We will use the following model of the involution:

FOlc,;,Oth (Oléw&)_’(acpo_‘) Ay—(acy@)
3 (@Cwph)—>(@cpB) ~ atuwp
o Ao Ay  (BewP) Ay (BepB)>(BEwB) | pepBicpB
° Suzh © az,f °Vaerpraenpy © 1
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The motivation for using this model is that most of the holomorphic curve counts
in the above diagram occur on a connected sum of the ordinary doubled diagram for
Y on X#X and a genus 1 diagram where the diffeomorphism acts non-trivially. The
genus 1 region is a neighborhood of D U ¢y,; we call it T'.

We now write Zi for tw(A;). If we write A; = A? U D, then Z,- = A? U 5,
where D is obtained from D by applying the twist in the torus region.

Our argument will proceed as follows. We will view each of the holomorphic
polygon counts as occurring on a connected sum of S#% and T. We will build a
3-dimensional hyperbox whose front and back faces are expanded versions of the
hyperbox in equation (17.1). The new dimension corresponds to the map W=#=<T
The back face will consist of the perfectly matched complexes. The front face will
consist of the trivially matched complexes with some extra terms. The extra terms
correspond to the Q ® summand of tw..

17.4. Initial and final hypercubes

In this section, we extend the following hypercubes (with holomorphic curves counted

with perfect matching) into a third dimension corresponding to the map yIHE<T,

CF(0Cy@, 0Cy@) —33 CF(0tGypy®, 0Ll @)

CF(a. ) —*— CF(a. B) l l
lFlch'ch lFpr’CpB CF(acyt, acyt) —— CF(acyd, acyd)
CF(acyB) — CF(acyB) lch’"“"” lF:C,,,w,,
CF(B,&) ——4—— CF(B.&).

In the above, there is no diagonal term because the diffeomorphism tw fixes all of
the attaching curves on the Heegaard diagram.

Lemma 17.3. If we stretch the almost complex structure sufficiently on the connected
sum tubes, we have the equality

(BepB)>Bewh) | pepbrcpB _ péwB.cuwp

werf)—>iuf) ° 11 =h '
Proof. This follows from our stabilization result for holomorphic triangles in Propo-
sition 6.5. Topologically, it is sufficient to observe that on X, there is a sequence of

handleslides of ¢, over the other B curves (not crossing over w) which takes ¢, to ¢y
(i.e., handleslide ¢, over each B curve twice). ]

We now investigate the next terms in the sequence. In Figure 17.3, we draw the
diagram (T, ¢y, D, D, ¢, w).

sfw
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_______________________________________

Figure 17.3. The special genus 1 region and the diagram (T2, &, D, D, ¢},, w). The dashed
circle is the connected sum point. Also shown is a holomorphic quadrilateral that will play a
role in our argument.

Next, we observe

QCp,aCp __ CpsCp o0
F; = F, o Fy7.

We note that after surgering out the a curves, the curves ¢, become isotopic to cy,.
Hence, we identify
CpsCp o,Q _ Cw,Cw o,
F; o F;" =F; o Fy7.

In a similar manner to Lemma 17.3, we have the strict commutation

Foe ((!Ew(?)%(acpﬂ_f) _ gy Cwd)—>(cwd) F%e 172

30 Ywewh)>@eph) - @uBrcwh) O3 (17.2)

We now prove a simple index bound for the diagram (T, ¢y, ¢y ). We view this

diagram as having both a basepoint w € T, as well as a connected sum point p € T.
Note that these do not coincide. See Figure 17.4.

Lemma 17.4. Suppose that ¢ € mo(07, 0) is a class of disks on (T, Cy, Cyp, W).
(1) Then, p(¢) = 2ny(¢) + gr(67, 0).
(2) If D(¢) = O, then ju(¢) = np().
Proof. The first claim is the Maslov grading formula.
We now consider the second claim. Consider first the case that # = 8. Then,

any class ¢ = eg + k- P + n - [T], where P is the periodic domain class which has
ny = 0and n, = 1. We observe u(¢p) = 2n, and n,(¢) =n + k. Also, n, n — k and
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Cw

Figure 17.4. The diagram (T, ¢y, ¢y, w). The dashed circle is the connected sum point p.

n + k are multiplicities of this disk class, so all must be nonnegative. This implies, in
particular, that n > |k|. Ergo,

(@) =2n=n+k =nyd),

as claimed.

We now consider the case that & = 67, In this case, write ¢ for the bigon which
has n, = 1 and write ¢ = ¢ + k - P + n - [T] for a general class. In this case, n,
n —k and n + k + 1 are multiplicities on the diagram. Hence, n > k. We have

w@)=14+2n>14+n+k =ny(¢),
completing the proof. |
We now perform a key computation.
Lemma 17.5. We have the relation

G d 3 xR0 —>x 5
FlwsCw \p(ch)_’(Cw‘{) ~ _ \IJE<T ,
30 " ewhewh) ~ \ x @0t > oS(x) ) °

where @E is the standard basepoint action on CF(X, B, a), usually denoted by ®,.

Proof. The map \Pégwg;:zw?) is a composition of two triangle maps. Figure 17.4
shows the diagram (X, ¢y, ¢y, w). The transition map may be viewed as handlesliding

¢y over the connected sum point.
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We first claim that index bound which implies that the 3-handle map is well
defined implies also that

Cw,Cw
F3

= Ffwew o g=<T, (17.3)
To see this, note that WE<T counts holomorphic disk-pairs (ux, uT) on
(z_:’ B7 &)#(T’ Cw, Cw),

which have a special line matching condition. Suppose that ux has S marked points
below the special line and M marked points along the special line. The matching
condition implies that u has the same number of marked points below and on the
special lines, respectively. If ¢ € m5(0, 8) is the class of uT, we observe that

p(@pr) = 2ny (1) + 2r(6,0') = 2M + 25 + gr (6. 0").

In the composition F3™*“" o PE<T only curves with 6’ = 6~ contribute. Therefore,
the above shows that
u(gr) = 2M 4 28.

By assumption, ¥Z<T counts 0-dimensional moduli spaces, so we must have

0= pu(ps) + p(¢r) — 28 —2M > u(¢x).

By transversality, if ¢y admits a holomorphic representative, then u(¢x) > 0 with
equality if and only if ¢y is a constant class. Hence,

F;w,cw ° \IJE<T

counts only curves which represent the constant class on 3. It is easy to see by consid-
ering the diagram (T, ¢y, ¢y, ) that this also implies that these classes are also constant
on T. Hence, equation (17.3) follows.

Therefore, we may replace F3™“ in the left-hand side of the equation in the
statement with F3™*" o UE<T We now consider the 1-parameter moduli spaces
which would naturally be used to commute W=<T past both of the triangle maps used
to define \I‘,(C_wq)*(cw&_)
triangles which have a special line which has an even number of marked points, which
are ¥ < T matched. Here, we view the triangle A as [0, 1] x R with the puncture
{1} x {0} removed. The special lines are of the form [0, 1] x {s}, s € R.

In these moduli spaces, there are ends corresponding to the composition

. These are the 1-dimensional moduli spaces of holomorphic

(Ewé_l)*(cw&_) o ‘IJE<T
(CwB)—>(cwB) ’

as well as ends corresponding to a chain homotopy. There is also the possibility of an
additional end where a holomorphic disk forms at the same height as the special line,
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and some the punctures along the special line may also degenerate into a holomor-
phic disk. We claim that these ends are constrained to a broken curve containing the
following curves.

(u-1) An index one disk on (T, ¢y, ¢y, ) Which has a single marked point, which
is from T.

(u-2) A trivial disk on (Z, 8, B).

(u-3) A pair of triangles on (T, ¢y, Cy, Cw) A (f], o, B B) which have marked
points at the same height as the B-B vertex of the triangle. Furthermore, %
and T marked points alternate along this line, and both the left-most and
right-most punctures are from X.

See Figure 17.6. We say that triangle pair satisfying (#-3)is (£ < T < --- < X)-
matched.

To establish that these are the only ends, we consider a potential degeneration

where the special line on the triangle A has the same height as the -8 puncture of A.
We consider a limiting curve, and write Wé’ war for the homology classes of the
holomorphic triangles, and we write ¢)’5 and ¢ for the classes of the holomorphic
disks that break off. We suppose that there are n% and n7 marked points of the disk
classes along the special line, and S” = § % = S marked points below the special line
(i.e., perfectly matched). The expected dimension of the disk class with this matching
condition is
(%) + u(pr) —ng —np +1-28". (17.4)
The above quantity must be 1 in a generic degeneration. On the other hand, since q%

is a disk class on (2, 8, B), and the connected sum point is the basepoint, we have
p(gg) = 2np(d%) = 2(n, + S7)
by the absolute grading formula. Similarly, Lemma 17.4 implies that
w(gr) = np + 87
We observe that the expected dimension in equation (17.4) is at least
ng+1+S8"

Hence, S" =n
nﬁr e {0, 1}.
We therefore conclude that

'i = 0 for a generic degeneration. Since |n7, — n%| < 1, we must have

p(gps) = np(ps) =0 and pu(pp) =1,

and n = 1, for a generic degeneration.
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Figure 17.5. A schematic of the homotopy W=<T<--<Z ~ (id @®Z) o WE<T,

From this broken curve, we may extend the moduli space, by considering the
(X < T < ... < X)-matched moduli space of triangles where the special line has
height below the B-B boundary puncture of the triangle A (see Figure 17.5).

There is a natural map

WE<T<<Z. CF (Bey, @iyp) — CFg(Bcw, @iy),

which counts curve pairs of expected dimension 0 with the following matchings.
(1) Punctures along the special line are (X < T < ... < X)-matched.
(2) Punctures below the special line are perfectly matched.
(3) Punctures above the special line are trivially matched.

We claim that B _ B B
\IJZ<T<"'<E ~ (ld ®¢£) ° \PE<T.

This is proven by splitting the special line into two special lines. The higher special
line contains a single X-marked point. The lower special line is ¥ < T matched.
Other marked points are perfectly matched below the lower special line, and trivially
matched above it. (i.e., there is no change in matching as we cross the X-matched
line.)

We count the ends of these 1-parameter moduli spaces with two special lines. The
only non-canceling ends are as follows.

(1) Anindex 1 disk breaking off while the special lines have finite, non-zero dis-
tance, giving a chain homotopy.
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Figure 17.6. Canceling moduli space ends in Lemma 17.5. Squares denote special inputs of
the holomorphic polygon maps. The curves in the square indicate 1-dimensional moduli spaces,
and the arrows labeled with 9 indicate codimension 1 degenerations. Solid dots are Z-punctures

and open dots are T -punctures.

(2) The vertical distance between the two canceling ends approaches 0 or co. The
distance 0 end contributes l}’E<T<_'"<Z while the distance oo end corresponds
to the composition (id ®PZ) o WE=T,

Counting ends as above yields
\DE<T<"'<E ~ (ld ®CI)§) o qu<T'

Finally, we put all the pieces together. When counting triangles with trivial match-
ing conditions, it is straightforward to see that

(Cwa)—>(cwd) __ - .
lIJ(C_'wB)_)(CwE) - 1d®1d’

on the level of intersection points.
Counting the ends of the above moduli spaces, we have ends which contribute the

map
Cw,Cw (Cw@)—>(cwa) S<T
F3 ° lIJ(C_wB)_>(Cw.1§) o ¥ ’

This is equal to

x0T x ST
(x®9+l—>0)oql '
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Additionally, we have the contribution corresponding to extending the bigon degen-

eration. This gives an extra contribution of PE<T post-composed with

x®0T > d2(x).
Summing this with the previous contribution gives the main statement. ]

Remark 17.6. Note that the proof of equation (17.3) adapts easily to show that

oo s#2<T _ g, Z<T aa
F; oW =y o F37.

17.5. Central hypercubes

\DZ#§<T

In this section, we describe how to commute past the levels of tw, which

involve the quadrilateral maps. The main result of this section is the following lemma.

Lemma 17.7. The map PYZHE<T

from the perfectly matched hyperbox

extends to a homotopy equivalence of hyperboxes

CF(“EanBC_wB) — CF(“EwB’ﬂEwB)

NS T~A ~
CF(aéywB.BDB) — CF(aéwPB.BDP)

~ <A ~

CF(oéywB, A1) —— CF(acwfB, A1)

~ ~4 ~

CF(aéyB,Ay) ——> CF(aiywB, Ay)

S~
N2

~A ~
CF(aéyB.a D) — CF(aiyB,aDa)

S~

v ~4 ~

CF(0téy B, 0tCyy@t) — CF(aly B, 0tCyyit)

to its trivially matched counterpart.

Proof. We observe that all of the attaching curves which appear in the statement
are disjoint from the connected sum tube which connects ¥ and T2, In fact, we
may describe the entire hyperbox using a connected sum operation on hypercubes of
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attaching curves. This connected sum operation on hypercubes of attaching curves is
a small modification of the one considered by Lipshitz, Ozsvath and Thurston in [15,
Section 3.5] (see [38, Section 9.5] for our present notation). If £ = (B, O ¢')ccE,,
and £p = (B, ©y,»/)veE,, are two hypercubes of attaching curves on Heegaard sur-
faces X and X', then £ g#£ g/ is a hypercube of attaching curves of dimension n + m.
The curves of £ g#XL g are defined as

£(8,V) =B, U ﬂ;

with small translations of curves taken to achieve admissibility. In our present setting,
if the connected sum of ¥ and X' is taken at either w or w’ (deleting this basepoint),
then the curves B ,) will also form an admissible diagram which is algebraically
rigid, so we take the length 1 Floer chains of &£ g#J g/ to be the top degree generators,
and all higher length chains to vanish.

In the hyperbox in the statement of the lemma, each constituent hypercube of
chain complexes is obtained by pairing the O-dimensional hypercube &é,, B with a 2-
dimensional hypercube of beta attaching curves. We view &, 8 as the connected sum
of 0-dimensional hypercubes a8 with é,,. In the top-most and bottom-most hyper-
cubes, the beta hypercube of attaching curves are connected sums of a 0-dimensional
hypercube on X#X with a 2-dimensional hypercube on T 2. The remaining beta hyper-
cubes are connected sums of a 1-dimensional hypercube on T#X and a 1-dimensional
hypercube on T2.

The work of the last author [38, Section 11.3] constructs, under suitable hypothe-
ses, a homotopy equivalence between the hyperbox in the lemma statement (i.e., the
hyperbox obtained by counting curve pairs with perfect matching) and the hyperbox
obtained by counting curve pairs with trivial matching. The precise statement may
be found in [38, Proposition 11.8] and involves the following somewhat technical
definitions.

(1) The alpha and beta hypercubes of attaching curves must be algebraically rigid
and consist of handleslide equivalent attaching curves.

(2) A technical condition about the placement of the connected sum points and the
basepoint must be satisfied. See [38, Definition 11.4]. We say that a hypercube
of algebraically rigid, handleslide equivalent attaching curves is graded by
the connected sum point p if for all nonnegative classes ¢ € m2(Qg, ¢,. - - -,
O, _1,e,) (Where O, . 4 are chains from the hypercube), we have

(@) = 2np(9).

We recall the statement of [38, Proposition 11.8]. Suppose that X and ¥’ are Hee-
gaard surfaces with distinguished points p € ¥ and p’ € ¥/, and £, and £p are
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algebraically rigid hypercubes on X and &£, and &g/ are algebraically rigid hyper-
cubes on X'. If £, is graded by p and £p/ is graded by p’, then the map

W< CF (Lot Lo, Lp#Ly) — CFg(LottLor, Lot p)

is a homotopy equivalence. Here, CF » has differential counting perfectly matched
curve pairs, while CFg counts trivially matched curve pairs.

We now return to the original setting of the present lemma. By construction, each
hypercube is algebraically rigid. Furthermore, the alpha hypercubes af and ¢, are
vacuously graded by the connected sum point since they are 0-dimensional. All of
the hypercubes on S#X are graded by the connected sum point since the connected
sum point is adjacent to the basepoint and the hypercubes are algebraically rigid.
The beta hypercubes on T2 are not all graded by the basepoint, but all of the alpha
hypercubes which lie on T? are. The only difference in our present situation and [38]
is that the hypercubes of attaching curves do not all consist of handleslide equivalent
attaching curves. For example, 8 B is not handleslide equivalent to A?. Nonetheless,
the proof of [38, Proposition 11.8] still goes through since Heegaard diagram formed
from a pair of curves in the diagram represents an algebraically rigid diagram for a
connected sum of S' x $2’s and the grading assumption in (2) is satisfied. Hence, the
same argument as in [38, Proposition 11.8] provides the homotopy equivalence in the
statement. ]

Next, we view the above hyperbox as consisting of attaching curves on the disjoint
union of #X and T, instead of the connected sum of these two diagrams. Note that
compression commutes with pairing up to homotopy, so we may instead compress the
hyperbox of attaching curves:

BéwB —— BiwP
l l
BDB ——— BDB
l l
Al — 3 A,

1 1
(17.5)
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Note that we have not defined compression of hyperboxes of attaching curves. Non-
etheless, the function-composition approach from Section 2.1 generalizes to this set-
ting with minimal care. In our present case this amounts to viewing each of the n 4 2
levels in the above diagram as a twisted complex in the Fukaya category. Each pair of
adjacent levels in the diagram determines a morphism between 1-dimensional hyper-
cubes of attaching curves. A pair of morphisms between hypercubes of attaching
curves may be composed, so we compose iteratively all of these morphisms. Note
that this is not the same as applying the ordinary A,-composition map [, . Rather,
it is the result of applying u, repeatedly.

Lemma 17.8. The compression of the diagram in equation (17.5) takes the following
form:

ﬁEwB —1> ﬁEwB

_ x'ie+ _
X0 X|0
1

OCydl ———— Oy

Here, X is the iterated composition of the vertical arrows on E#i and 0% are the
intersection points of ¢y, N ¢,,. Furthermore, the cycle X' is homologous to X .

Proof. We view the diagram as being obtained by composing n + 1 morphisms be-
tween 1-dimensional hypercubes of Lagrangians. Viewing this diagram as a sequence
of morphisms 6,41, ..., 0, we form the composition as

W2(Ont1, ..., u2(02,61)).

We first claim that except for the final composition, there are no diagonal terms in any
partial composition. To see this, consider the first composition; the same argument
will apply to all later compositions except for the final. There are three holomorphic
quadrilateral counts which contribute to the diagonal term, corresponding to the fol-
lowing quadrilaterals:

(1) (BewB.BEwB.BDB. AY),

(2) (BcwB.BDB.BDB. Ay,

(3) (BcwB.BDB. A1 AY).
Each of these Heegaard quadruples decomposes as a connected sum where both fac-
tors have one set of attaching curves which is a small translation of an adjacent set.
Since we are counting curves using trivial matchings, we use [4, Proposition 11.5]
to see that no holomorphic quadrilaterals contribute. Similarly, using a model count

on the genus 1 diagram, we observe that the two triangle compositions in the vertical
direction coincide.



Naturality and functoriality in involutive Heegaard Floer homology 139
Therefore, the final composition is of a diagram of the following form:

ﬁc_w[’ — ﬂéwﬁ

lxw lXIG

~_ (17.6)

0Cypd —> OLCy O

where 6 denotes the intersection point of ¢,, N D or ¢y, N D.

As a first step, we consider the length 1 maps in the compression of (17.6). The
length one chain on the left side of the compression is given by counting triangles on
(ZH#X, Ba, aa, ax) and (T2, ¢y, D, ¢y). There is no matching condition, so we count
triangles on the two diagrams separately and see that the triangle maps applied to
(X6, ©%]6) have output X |#~. The computation on #X follows from nearest-point
triangle counts, and the computation on T2 is a direct and straightforward triangle
count.

We now consider the length 2 map of the compression. The small translate theo-
rems [4, Propositions 11.1 and 11.5] prohibit holomorphic quadrilaterals except on

- - ” - ~
k) ’ ) £ s Lw o ’ stw/-
(Z#%, BB, ax, aa, xa)#(T<, ¢y, D, D, Cy)

Since the diagram on T#X has several adjacent sets of attaching curves which are
small translates of one another, the only curves counted consist of pairs (u, u’) where
u is an index 0 quadrilateral on X#X and u’ is an index —1 quadrilateral on T2. Fur-
thermore, the two quadrilaterals share the same almost complex structure parameter
(viewing the moduli space of rectangles as R). There is a unique such curve u’, shown
in Figure 17.3. Write X’|0~ for the output.

To see that X’ is homologous to X we deform the matching, by instead requiring
the quadrilaterals ¥ and u’ to have almost evo (1) — evo(u’) = ¢, where ev denotes
the evaluation map to the moduli space of complex rectangles, identified with R. We
then send ¢ — oo. The effect is to change X’ by a boundary. This shows that X’ is
homologous to the composition

/’LZ(/’LZ(X, ®0t0_l,0l0_l)7 ®a6¢,a6¢),

which we identify with X via the nearest point map. This completes the proof. |

17.6. Proof of Theorem 1.7

We now complete our proof of the computation of the map tw.
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Proof of Theorem 1.7. It remains to put the pieces together to finish the proof. We
build a 3-dimensional hyperbox to realize the homotopy. The back face is the map
tw., computed using perfect matching between #X and T 2.

The front face is defined very similarly, using the trivial (i.e., tensor product)
matchings, with a modification of one cube. In place of

CFA(Cw B, Copt) id—— CFA(Cw B, Cup@)

Few-cw y(Cwd)—(cwa) Fw:cw gy Cwd)—(cwa)
3 (CwB)—>(cwB) 3 (CwB)—=>(cwB)

| |

CF(B. &) id » CF(B, &)
we have
CFg(Cyw P, Cwit) id—> CFg(Cw B, Cuw@)
1 1
CF(B,a) id > CF(B. &)
where
;[ x®07 —>x ST
Y _(x®6+m1>w(x> )q’ |

Lemmas 17.3, 17.7 and equation (17.3) show that the hyperbox relations are satisfied
for appropriate choices of length 3 maps on the interior of the cube.

Next, we compress the front face of the hypercube described above. We pair the
hypercube from Lemma 17.8 with a&,, B and then stack with the 2-dimensional hyper-
cube

CF(Z,B,&) —<= CF (%, B, a)
[ r

CF(S,a.B) —% CF(Z,a, B)

The so-constructed cube has the form

CF(a, B) —% CF(,p)

b

CF(a, f) —% CF(a, B),

completing the proof. |
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.................

Figure 17.7. A doubled knot diagram (for the unknot). Meridional twisting preserves the dia-
gram.

17.7. Knots and links

If K is a knot, then a priori there is an action twk corresponding to rotating a neigh-
borhood of K in the meridional direction (see Figure 17.7). (Rotation in the longi-
tudinal direction is well known to induce an interesting automorphism by work of
Sarkar [30].) Despite the interesting potential for a new map, we have the following
proposition.

Proposition 17.9. The map tw' is chain homotopic to id on €F KX I(K). The same
holds for links.

Proof. We consider the stabilized model of the involution. For knots and links, the
doubling arcs § have endpoints at a point p which is not one of the basepoints of
the knot. Hence, applying tw* to each Heegaard diagram has no effect on any of the
attaching curves. |

Remark 17.10. We can also recover the above result on the non-stabilized doubling
models of the knot involution, considered in Section 3.4 and [4, Section 2.2], though
the argument is more subtle. Here, we double at one of the basepoints (say w € X),
with the § curves having endpoints at w. In this model, after attaching 1-handles, we
move w to the position of z. The map tw* still changes the curves A, but since there
is no basepoint in the tube region (unlike in the case of closed 3-manifolds), the effect
on the level of diagrams is to act by a surface diffeomorphism which is isotopic to the
identity relative to the basepoints on S#X.
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