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Naturality and functoriality in involutive

Heegaard Floer homology

Kristen Hendricks, Jennifer Hom, Matthew Stoffregen, and Ian Zemke

Abstract. We prove first-order naturality of involutive Heegaard Floer homology, and further-

more, construct well-defined maps on involutive Heegaard Floer homology associated to cobor-

disms between three-manifolds. We also prove analogous naturality and functoriality results

for involutive Floer theory for knots and links. The proof relies on the doubling model for the

involution, as well as several variations.
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1. Introduction

Heegaard Floer homology, defined by Ozsváth and Szabó in the early 2000s [22, 23],

is a powerful suite of invariants of 3-manifolds, knots and links inside of them, and

4-dimensional cobordisms between them. Given a basepointed 3-manifold .Y; w/

together with a choice of Spinc structure s on Y , the initial construction of the invari-

ant goes by choosing a Heegaard diagram H for .Y; w/ and associating to it a free

finitely-generated chain complex CF�.H ; s/ over the ring F ŒU �, where U is a vari-

able of degree �2. If H and H
0 are two Heegaard diagrams representing .Y; w/,

the Reidemeister–Singer theorem implies that there is some sequence of Heegaard

moves that may be applied to H to produce a diagram related to H
0 by a basepoint-

preserving diffeomorphism isotopic to the identity in Y . Ozsváth and Szabó [23,

Section 9.2] proved that these sequences of moves induce transition maps, that is,

chain homotopy equivalences

‰H!H 0 W CF�.H ; s/ ! CF�.H 0; s/;

showing that the isomorphism class of the homology group

HF�.H / D
M

s2Spinc.Y /

HF�.H ; s/

is an invariant of .Y; w/.

Juhász, Thurston, and the fourth author [9] proved that this data is first-order nat-
ural in the sense that the maps ‰H!H 0 are independent up to chain homotopy of the

choice of Heegaard moves and diffeomorphisms isotopic to the identity relating the

two diagrams. (Here, “first-order” means that the chain homotopies relating the tran-

sition maps associated to two possible sequences of Heegaard moves are not known

to be independent of the choices involved in their definition.) It follows that Hee-

gaard Floer homology associates to .Y; w/ a specific module HF�.Y; w/ rather than

an isomorphism class of F ŒU �-modules.

In 2015, the first author and Manolescu [5] put additional structure on the Hee-

gaard Floer package in the form of a homotopy involution �, leading to involutive

Heegaard Floer homology. The construction of the invariant goes as follows: given a

basepointed 3-manifold .Y; w/ together with a conjugation-invariant Spinc structure

s on Y , there is a chain isomorphism

�W CF�.H ; s/ ! CF�. xH ; s/;

where xH denotes the conjugate Heegaard diagram. One may then compose with the

transition map

‰ xH!H
W CF�. xH ; s/ ! CF�.H ; s/
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obtaining the map �. This data is variously packaged either as the pair .CF�.Y /; �/,

called an �-complex, or as the mapping cone

CFI�.H ; s/ D Cone.CF�.H ; s/
Q.1C�/
�����! Q � CF�.H ; s/Œ�1�/:

Here, Q is a formal variable of degree �1, and we view the cone as a complex over

F ŒU; Q�=Q2. Juhász–Thurston–Zemke naturality implies that the equivariant chain

homotopy equivalence class of the pair .CF�.H ; s/; �/, or equivalently F ŒU;Q�=Q2

chain homotopy equivalence class of CFI�.H ; s/, is an invariant of Y [5, Section

2.1]. However, this does not suffice to show that involutive Heegaard Floer homology

is itself natural.

In this paper, we prove that the involutive Heegaard Floer homology is a natu-

ral invariant of the basepointed 3-manifold .Y; w/ together with a choice of framing

� D .�1; �2; �3/ of the oriented normal bundle to the basepoint; equivalently, that

transition maps between the involutive complexes induced by Heegaard moves and

basepointed diffeomorphisms isotopic to the identity in Y which preserve � are unique

up to homotopy. Our proof relies on equipping a Heegaard diagram H for .Y; w; �/

with a set of doubling data which is used to give a tractable model for the involution.

We write D for a Heegaard diagram H equipped with such a collection of data, and

we refer to such a D as a doubling enhanced Heegaard diagram for .Y;w;�/. We refer

to the involutive Heegaard Floer homology of .Y;w; �/ as defined using the Heegaard

diagram H with this model for the involution as CFI�.D/. (For more information on

the doubling model for the involution, see Section 1.2.)

We also describe a set of moves which relate any two choices of doubling enhanced

Heegaard diagrams. Given a sequence of such moves relating D and D0, we define a

transition map

‰D!D0 W CFI�.D/ ! CFI�.D0/

and show they are independent of the sequence chosen, as follows.

Theorem 1.1. The transition map ‰D!D0 is independent up to F ŒU; Q�=Q2-equi-
variant chain homotopy from the sequence of moves between doubling enhanced
Heegaard diagrams. Furthermore,‰D!D ' id, and‰D0!D00 ı‰D!D0 '‰D!D00 .

Remark 1.2. The involutive transition map ‰D!D0 above contains data equivalent

to a pair .‰H!H 0 ; HD!D0/, where ‰H!H 0 is the non-involutive transition map

from CF�.H / to CF�.H 0/, andHD!D0 is a distinguished chain-homotopy between

‰H!H 0 �D and �D0‰H!H 0 . In this manner, Theorem 1.1 implies that the chain homo-

topy HD!D0 is also well defined, up to a suitable notion of further chain-homotopy.

Given a 4-dimensional cobordism W with

@W D �Y1
a

Y2
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and a Spinc structure s on W , Ozsváth and Szabó [23] also constructed cobordism

maps

CF.W; s/ W CF�.Y1; w1; sjY1
/ ! CF�.Y2; w2; sjY2

/:

These maps depend on a choice of path 
 connecting the basepoints in Y1 and Y2 but

are otherwise independent of choices made in their definition [23, Sections 8 and 9],

cf. also [39, Corollary F].

In [5], the first author and Manolescu gave a construction of cobordism maps on

involutive Heegaard Floer homology, but did not show their construction was invariant

of a choice of handle decomposition of the cobordism. In this paper, we refine the

construction to give maps

CFI.W; �; s/ W CFI�.Y1; w1; sjY1
; �Y1

/ ! CFI�.Y2; w2; sjY2
; �Y2

/

associated to a cobordism W from Y1 to Y2, a conjugation-invariant Spinc structure

on W , and a choice of framing � of the normal bundle to a choice of path 
 which

induces the framings �Yi
of the normal bundle to the basepoint wi in Yi . We prove

these maps are well defined in the following sense.

Theorem 1.3. The cobordism map CFI.W; �; s/ is well defined; that is, it depends
only on the choice of W , s, 
 , and � .

Our theory has some subtle differences from the Oszváth–Szabó cobordism maps;

in particular, the role of duality is not presently obvious. See Remark 14.2 for further

discussion.

Heegaard Floer homology have a counterpart for knots and links in 3-manifolds,

introduced by Ozsváth and Szabó [21] and independently in the case of knots by J.

Rasmussen [28]. In its modern form, this theory associates to a Heegaard diagram H

for a link L in a 3-manifold Y , with two basepoints wi and zi on each component, a

chain complex CFL.H / over the ring F ŒU1;V1; : : : ;U`;V`�. This again decomposes

over Spinc structures on Y such that

CFL.H / D
M

s2Spinc.Y /

CFL.H ; s/:

As previously, there are maps associated to sequence of Heegaard moves between

Heegaard diagrams H and H
0 for .Y; L;w; z/:

‰H!H 0 W CFL.H ; s/ ! CFL.H 0; s/:

These maps are again well defined up to chain homotopy [9, Theorem 1.8].

The first author and Manolescu [5] defined an endomorphism �L on CFL.H /,

called the link involution, in analogy with the procedure for defining the 3-manifold
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involution �, and showed that the equivariant chain homotopy equivalence class of the

pair

CFL	 .H / D .CFL.H /; �L/

is an invariant of .Y; L/. (We note that [5] focused on the case of knots, rather than

links, but the same construction works for links.) The doubling model for the involu-

tion � on 3-manifolds may be adapted to a model for the endomorphism �L. We use this

model to prove naturality and functoriality of the link variant of Floer homology in

the following sense. Once again, we let D denote an appropriate set of doubling data

for a Heegaard diagram H for .Y;L;w;z/, and let CFL	 .D/ refer to the �L-complex

defined using this data. This data need not include a framing of either basepoint; see

the discussion in Section 17.7 for more on this issue. Given a sequence of Heegaard

moves relating two doubling-enhanced Heegaard link diagrams, we define a transition

map

‰D!D0 W CFL	 .D/ ! CFL	 .D0/

which are enhanced �L-homomorphisms. (Types of morphisms between �L complexes

are reviewed in Section 2.5.) We then prove the following.

Theorem 1.4. The transition maps ‰D!D0 are well defined up to homotopies of
morphisms of �L-complexes.

The fourth author [35], following work of Juhasz [7], defined maps associated to

decorated link cobordisms .W;†;s/ between .Y1; L1;w1; z2;sjY1
/ and .Y2; L2;w2;

z2; sjY2
/ as follows:

CFL.W;†; s/ W CFL.Y1; L1;w1; z1; sjY1
/ ! CFL.Y2; L2;w2; z2; sjY2

/;

which are again invariant of the choices involved in their definitions. Here, the pair

.W;†/ consists of a compact 4-manifoldW with embedded surface† such thatW is

a cobordism from Y1 to Y2 and

@† D �L1
a

L2;

together with some decorations on †. We will be interested in the case that † is a

collection of annuli, each with one boundary component in Y1 and one in Y2, and each

decorated with two parallel longitudinal arcs. Maps associated to knot concordances

or knot cobordisms have also appeared in [1, 8, 31].

Given a link cobordism .W;†/ from .Y1; L1;w; z/ to .Y2; L2;w; z/ consisting of

a set of annuli each with two parallel longitudinal arcs as described above, and a Spinc

structure s on W with the property that Ns D s C PD.Œ†�/, we construct cobordism

maps

CFL	 .W;†; s/W CFL	 .Y1; L1;w; z; sjY1
/ ! CFL	 .Y2; L2;w; z; sjY2

/;
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which are again enhanced homomorphisms of �L-complexes. We prove the following

functoriality theorem.

Theorem 1.5. The cobordism maps CFL	 .W; †; s/ are well defined up to homo-
topies of �L-complexes.

1.1. Computations and examples

In our paper, we also perform several example computations. The first example we

present is for the cobordismW D S2 � S2, with its unique self-conjugate Spinc struc-

ture s. If we remove two 4-balls from W , we obtain a cobordism from S3 to S3, and

hence a map

CFI.W; �; s/W F ŒU;Q�=Q2 ! F ŒU;Q�=Q2:

In Section 14, we show via a direct diagrammatic computation that CFI.W; �; s/ is

multiplication by Q. (The choice of framings does not affect the result in this case.)

This agrees with the prediction from Pin.2/-equivariant monopole Floer homology;

see the proof of [13, Theorem 5].

As a second example, we compute certain 2-handle cobordisms using the knot sur-

gery formula from [4]. We recall that to a knotK � S3, Ozsváth and Szabó [27, The-

orem 1.1] described a complex Xn.K/ which computes CF�.S3n .K//. Therein, they

also described a way of computing the non-involutive cobordism map CF.Wn.K/;s/
in terms of CF K.K/, where Wn.K/ denotes the natural 2-handle cobordism from

S3 to S3n .K/, for each s 2 Spinc.Wn.K//. In [4], we described an involutive refine-

ment of Ozsváth and Szabó’s mapping cone formula, which we denoted by XIn.K/,

and which computes CFI.S3n .K//. In Section 16, we describe a refinement of our

work from [4] which computes certain cobordism maps. From the description in [4],

it turns out to be most convenient to consider the cobordism W 0
n.K/ from S3n .K/ to

S3 obtained by reversing the orientation of Wn.K/. This manifold possesses a self-

conjugate Spinc structure if and only if n is even. In Theorem 16.1, we describe an

algebraic formula for the involutive cobordism map CFI.W 0
2n.K/; �;s/ when s is the

unique self-conjugate Spinc structure onW 0
2n.K/. Again, the choice of framings does

not affect the computation.

1.2. The doubling model of the involution and several variations

The constructions of this paper rely on a model for the involution �, used in our pre-

vious paper [4], based on the procedure of doubling a Heegaard diagram. We now

briefly recall this model. If † is a Heegaard splitting of Y , containing a basepoint

w, we construct another Heegaard splitting D.†/ of Y , with D.†/ Š †#x†, which

is embedded as the boundary of a regular neighborhood of † n N.w/. A schematic
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H NH

D.H /

Figure 1.1. Realizing the involution on S3 by doubling.

appears in Figure 1.1. The attaching curves for doubled diagrams are described in

Section 3.2. An important property of the doubling operation is that if H is a dia-

gram for Y , andD.H / is a double, then the maps relating CF�.H / and CF�.D.H //

have a conceptually simple form, and similarly for the maps from CF�.D.H // to

CF�. xH /; see Section 3.3. (Doubled Heegaard diagrams had previously been consid-

ered in [10, 11, 36].)

The proofs in the present paper require additional variations of this model for the

involution, based on adding extra basepoints or extra tubes between the two copies

of † and x†. In the 3-manifold case, we begin by describing transition maps between

the involutive complexes associated to Heegaard diagrams for a 3-manifold which

are related by elementary equivalences in terms of maps on the complexes associ-

ated to the doubled diagrams, and define maps for general handleslide equivalences

as compositions of the maps for elementary equivalences. However, it is somewhat

difficult to see that this construction fails to depend on the sequence of elementary

equivalences chosen. To show this, we consider an expanded version of this model,

in which an additional basepoint and pair of curves are added in the doubling region.

We introduce this model in detail in Section 7. Using this model we define transition

maps for handleslide equivalences which are more obviously invariant of the choices

involved, and then use this to prove invariance of the transition maps for the stan-

dard doubling model. In the case of knots and links, our situation is somewhat more

technically complex, so for simplicity we in fact work solely with the analog of the

expanded model for the involution. Throughout, the curve-counting arguments in our

computations rely heavily on the cylindrical formulation of [14].

Remark 1.6. We emphasize here that there are two possible doubling models one

could use to construct the map � and our cobordism maps. The model described

above and pictured in Figure 1.1 is called the beta-doubling model of the involu-

tion; the analogous construction with the roles of the alpha and beta curves reversed

is the alpha-doubling model. This distinction is examined more closely in Section 3.5.

Our techniques also show naturality and functoriality for involutive Heegaard Floer



K. Hendricks, J. Hom, M. Stoffregen, and I. Zemke 8

Figure 1.2. The effect of changing the framing on the doubled diagram from Figure 1.1.

homology constructed using the alpha-doubling model. We do not, however, attempt

to relate these two models.

1.3. The role of framings

Theorem 1.1 differs from Juhász–Thurston–Zemke naturality in the incorporation of

a framing of the normal bundle to the basepoint w in Y . In particular, CFI.Y; w/ is

acted on not by DiffC.Y; w/, the orientation-preserving diffeomorphisms of .Y; w/,

but by Difff .Y; w/, the diffeomorphisms of .Y; w/ which preserving the framing �

at the basepoint. The Dehn twist tw in a neighborhood of w is an example of a class

in �0.Diff.Y; w; �// which is trivial in �0.Diff.Y; w//, but is not a priori trivial in

�0.Diff.Y; w; �//. We calculate the following.

Theorem 1.7. The element tw 2 �0.Difff .Y; w// acts on CFI.Y; w/ by Id CQˆ.

Here, ˆ is a formal derivative of the differential with respect to U ; for a review of

this map, see Section 2.3. The action of tw on CFI.Y;w/ can also be interpreted as an

action of loops in the space of framings of .Y;w/, as in Section 17. The space of such

framings is a copy of SO.3/, and therefore has fundamental group �1.SO.3//Š Z=2,

whose nontrivial element acts as tw above.

In the doubling model described above, the choice of framing affects the choice

of curves in the doubled diagram; concretely, it corresponds to a Dehn twist around a

meridian of the connect sum tube in †#†, as in Figure 1.2.

The reader will note that we do not require a framing of the basepoint for the

naturality and functoriality results for links. Heuristically, this follows from the fact

that the connect sum region of (any variation of) the doubled diagram for a link does

not contain a basepoint; for more details, see Section 17.7.

We expect that the dependence on the framings and the appearance of the map

ˆ in this computation are related to a conjectural Pin.2/-equivariant structure on

Heegaard Floer homology, in analogy with Manolescu’s Pin.2/-Seiberg Witten Floer

homology and Lin’s Pin.2/-monopole Floer homology, and hope to investigate this

connection in future work. We further note that the appearance of the framings in

our theorems implies that any infinite order naturality statement for Heegaard Floer

homology would necessarily also take framings of the basepoint into account.
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1.4. Organization

This paper is organized as follows. In Section 2, we discuss some algebraic prelim-

inaries and their Floer-theoretic counterparts; in particular, we discuss hypercubes

of chain complexes and hypercubes of attaching curves for a Heegaard surface. We

additionally review the algebraic formalism of �-complexes and their relationship to

hypercubes of chain complexes. In Section 3, we review some background on invo-

lutive Heegaard Floer homology, and in particular recall the operation of doubling

a Heegaard diagram and the resulting model for the involution on Heegaard Floer

homology from [4]. In Section 4, we recall the structure of Juhász, Thurston, and

Zemke’s proof of naturality of ordinary Heegaard Floer homology and describe how

to adapt it to our case. In Section 5, we define transition maps for Heegaard dia-

grams related by elementary equivalences, and define general transition maps for

Heegaard diagrams related by handleslide equivalences as compositions of maps for

elementary equivalences. We prove in Proposition 5.4 that these maps satisfy the con-

tinuity axiom, in analogy with [9, Proposition 9.27]. In Section 6, we prove some

necessary technical results concerning stabilizations and holomorphic polygons, gen-

eralizing the results from our previous paper [4]. In Section 7, we introduce the

basepoint expanded doubling diagrams and the basepoint expanded model of the invo-

lution, and construct transition maps for handleslide equivalences using this model.

In Section 8, we define a chain homotopy equivalence between involutive chain com-

plexes associated to the ordinary and basepoint expanded doubles of a Heegaard

diagram, and prove that these maps commute with the transitions maps associated to

handleslide equivalences. We further show that the transition maps defined in Sec-

tion 7 for generalized handleslide equivalences are unique up to chain homotopy

equivalence, which proves the result for the non-expanded model. We then turn our

attention to constructing the maps between involutive complexes associated to cobor-

dism; in Section 9, we construct the maps associated to one- and three-handles and

in Section 10, we construct the maps associated to two-handles. In Section 11, we

define construct naturality maps for stabilizations as compositions of cobordism maps

associated to cancelling handles and prove they commute with the transition maps

associated to handleslide equivalences and with each other. In Section 12, we prove

invariance of our transition maps under handleswaps, in analogy with [9, Section

9.3]. Finally, in Section 13, we complete the proofs of Theorem 1.1, following the

structure of the proof in [9, Section 9.4], and of Theorem 1.3. As an example, in Sec-

tion 14, we present the calculation of the cobordism map for a twice punctured copy

of S2 � S2, decomposed as 2-handle cobordisms S3 ! S1 � S2 and S1 � S2 ! S3.

In Section 15, we describe how to adapt the naturality and functoriality results of the

previous sections to the case of knots and links, and prove Theorems 1.4 and 1.5.

We use this in Section 16 to provide a computation of the involutive cobordism map
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associated to the cobordism W 0
n.K/ from S3n .K/ to S3 for n even in terms of the

involutive mapping cone formula. We conclude by analyzing the effect of changing

the framing in Section 17, giving a proof of Theorem 1.7.

2. Algebraic preliminaries

2.1. Hypercubes and hyperboxes

In this section, we recall the hypercube formalism of Manolescu and Ozsváth [18].

We write En for the set of points ¹0; 1ºn � Z
n. Similarly, if d D .d1; : : : ; dn/ is a

tuple of n positive integers, we write

E.d/ D ¹0; : : : ; d1º � � � � � ¹0; : : : ; dnº:

If "; "0 2 R
n, we say that " � "0 if the inequality holds for each component of " and "0.

Definition 2.1. An n-dimensional hypercube of chain complexes .C "; D";"0
/"2En

is

a collection of groups C ", ranging over " 2 En, together with a collection of maps

D";"0
WC " ! C "

0
, whenever " � "0. Furthermore, we assume the following compati-

bility condition is satisfied whenever " � "00:
X

"0W"�"0�"00

D"0;"00

ıD";"0

D 0: (2.1)

We usually call D";" the internal differential of C ". The hypercube structure

relation in equation (2.1) is equivalent to .
L
"2En

C ";
P
"�"0 D";"0

/ being a chain

complex.

Definition 2.2. A hyperbox of chain complexes of size d consists of a collection of

groups .C "/"2E.d/, together with a choice of map D";"0
WC " ! C "

0
whenever j"0 �

"jL1 � 1. We assume equation (2.1) holds whenever j"00 � "jL1 � 1.

An important operation involving hyperboxes is compression [18, Section 5]. This

operation takes a hyperbox of size d D .d1; : : : ; dn/ and returns an n-dimensional

hypercube of chain complexes. We illustrate with an example. Consider a 1-dimen-

sional hyperbox

C0
f0;1

��! C1
f1;2

��! � � �
fn�1;n

����! Cn:

The compression of the above hyperbox is the hypercube

C0
fn�1;nı���ıf0;1

����������! Cn:

More generally, the same description also works for an n-dimensional hyperbox

C of size .1; : : : ; 1; d/. That is, we may view C as a 1-dimensional hyperbox of size
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.d/, which we call C
0, where the complex at each point "0 of E.d/ is the .n � 1/-

dimensional hypercube C
0
"0

D .
L
"2En�1

C ""0 ;
P
"�"0 D""0;"

0"0/, viewed as a chain

complex. Schematically, C
0 is represented as a diagram

C
0
0

f0;1

��! C
0
1

f1;2

��! � � �
fd�1;d

�����! C
0
d ;

where the maps fi;iC1 are constructed as a sum of the maps D"i;"0iC1 for " � "0 2

En�1.

The definition given above for compression of a 1-dimensional hyperbox of chain

complexes then applies to construct a 1-dimensional hypercube:

C
0
0

fd�1;d ı���ıf0;1

����������! C
0
n:

For "� "0 2 En with "n ¤ "0
n, the mapD";"0

of the compression of C is the component

of fd�1;d ı : : : ı f0;1 from C
" to C

"0
.

For a hyperbox C of size .d1; : : : ; dn/, the above description may be iterated

to give the compression, as follows. This description depends on a choice of order-

ing of the axes of the cube. (The motivated reader may verify that re-ordering the

axes results in a homotopic hypercube.) Firstly, we may view C as a collection of

d1; : : : ; dn�1 hyperboxes of size .1; : : : ; 1; dn/. We compress each of these hyper-

boxes using the function-composition description above. Stacking these hyperboxes

results in a hyperbox of size .d1; : : : ; dn�1; 1/. We may view this as a collection of

d1; : : : ; dn�2 hypercubes of size .1; : : : ; 1; dn�1; 1/, which we compress using the

function-composition description. Stacking the resulting hyperboxes gives a hyper-

box of size .d1; : : : ; dn�2; 1; 1/. Repeating this procedure gives the compression of

C . It is possible to relate this description to the description in terms of the algebra of

songs in [18], cf. [17, Section 4.1.2].

2.2. Hypercubes of attaching curves

In this section, we describe the notion of a hypercube in the Fukaya category. Such

objects are described by Manolescu and Ozsváth [18], and are referred to as hyper-
boxes of Heegaard diagrams. The reader may also compare this construction to Lip-

shitz, Ozsváth and Thurston’s notion of a chain complex of attaching circles [15]. The

construction is also described in [4, Section 5.5].

We begin with a preliminary definition about Spinc structures. Firstly, we say

Lˇ D .ˇ"/"2En
is an empty hypercube of beta (or alpha)-attaching curves if it is a

collection of attaching curves on a surface †, indexed by points of En. Let Y"1;"2

be the 3-manifold determined by the two sets of attaching curves .ˇ"1 ; ˇ"2/ and

X"1;:::;"m
be the smooth 4-manifold associated to the collection of sets of attaching

curves .ˇ"1 ; : : : ;ˇ"m/ in the usual way [23, Section 8.1].
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Definition 2.3. (1) Suppose that Lˇ D .ˇ"/"2En
is an empty hypercube of beta-

curves. A hypercube of Spinc-structures for Lˇ consists of a collection of Spinc

structures

S"1;:::;"m
� Spinc.X"1;:::;"m

/

for each sequence "1 < � � � < "m in En, satisfying m > 1 and the following compat-

ibility relations. Firstly, if 1 � i < j � m, then S"1;:::;"m
is closed under the action

of ı1H 1.Y"i ;"j /. Secondly if "1 < � � � < "m is a sequence, and "i1 < : : : < "ij is a

subsequence, where 1 � i1 < : : : < ij � m, then S"i1
;:::;"ij

is the image of S"1;:::;"m

under the natural restriction map

Spinc.X"1;:::;"m
/ ! Spinc.X"i1

;:::;"ij
/:

(2) If L˛ D .˛"/"2En
and Lˇ D .ˇ"/"2Em

are two empty hypercubes of alpha

and beta attaching curves, then a hypercube of Spinc structures for the pair .L˛;Lˇ /

consists of the following. For every pair of sequences .�1 < : : : < �k/ in En and

."1 < : : : < "`/ in Em such that kC ` > 1, a set of Spinc structures S�k ;:::;�1;"1;:::;"`
�

Spinc.X�k ;:::;�1;"1;:::;"`
/ that are closed under ı1-orbits and compatible with restric-

tion, similar to above. The case that one of .�1 < : : : < �k/ and ."1 < : : : < "`/ is the

empty list is allowed.

Note that a hypercube of Spinc structures for the pair .L˛;Lˇ / induces a hyper-

cube of Spinc structures for each of L˛ and Lˇ .

Definition 2.4. An n-dimensional hypercube of beta attaching curves Lˇ on a poin-

ted surface .†;w/ consists of an empty hypercube of beta attaching curves .ˇ"/"2En
,

a hypercube of Spinc structures on Lˇ , together with a choice of Floer chain ‚";"0 2

CF�.†;ˇ";ˇ"
0

; w/ whenever " < "0. Furthermore, the chains are required to satisfy

the following compatibility condition, whenever " < "0:

X

"D"1<���<"nD"0

fˇ"1 ;ˇ"2 ;:::;ˇ"n .‚"1;"2
; : : : ; ‚"n�1;"n

/ D 0: (2.2)

Here, fˇ"1 ;ˇ"2 ;:::;ˇ"n is polygon-counting map associated to .ˇ"1 ;ˇ"2 ; : : : ;ˇ"n/ as

in [23, Section 8.1]. The sum is taken over Spinc structures according to the hypercube

of Spinc structures.

We will also write the Floer chain ‚";"0 as ‚ˇ";ˇ"0 when it seems clearest to refer

to the sets of curves involved. In the above, we assume that each Heegaard multi-

diagram is weakly admissible, and the appropriate finiteness of counts so that the sum

makes sense. Assuming weak admissibility, one may always obtain a sensible expres-

sion by working over the power series ring F ŒŒU ��. Hypercubes of alpha attaching

curves are defined by a notational modification of the above definition.
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We may pair hypercubes of attaching curves, as follows. If L˛ D .˛� ;‚�0;�/�2Em

and Lˇ D .ˇ"; ‚";"0/"2En
are hypercubes of attaching curves for some hypercubes

of Spinc structures, and we have a hypercube of Spinc structures S for the pair

.L˛;Lˇ / which extends the hypercubes for L˛ and Lˇ , then we may form an

.n C m/-dimensional hypercube of chain complexes denoted by CF�.L˛;Lˇ ;S/.

The group at index .�; "/ is the ordinary Floer complex CF�.†; ˛� ; ˇ";S�;"/. The

morphism from .�; "/ to .�0; "0/ is the map

D.�;"/;.�0;"0/.x/ D
X

�D�1<���<�kD�0

"D"1<���<"j D"0

f�k ;:::;�1;"1;:::;"j ;S�k;:::;�1;"1;:::;"j

� .‚�k ;�k�1
; : : : ; ‚�2;�1

;x; ‚"1;"2
; : : : ; ‚"j �1;"j /:

It is straightforward to use the compatibility condition in (2.2) to see that CF�.L˛;

Lˇ ;S/ is a hypercube of chain complexes. In specific examples, we will also use the

abbreviated notation

f
ˇ"1 !���!ˇ

"j

˛�1 !:::!˛�k
.x/

D f�k ;:::;�1;"1;:::;"j ;S�k;:::;�1;"1;:::;"j
.‚�k ;�k�1

; : : : ; ‚�2;�1
;x; ‚"1;"2

; : : : ; ‚"j �1;"j /:

If � D �0, then we will usually write f
ˇ"!ˇ"0

˛� , and similarly if " D "0. With respect

to this notation the hypercube map becomes

D.�;"/;.�0;"0/.x/ D
X

�D�1<:::<�kD�0

"D"1<:::<"j D"0

f
ˇ"1 !���!ˇ

"j

˛�1 !:::!˛�k
:

We will also frequently substitute the letter h for f in the specific case of a map

counting pseudoholomorphic rectangles.

2.3. �-complexes

We recall the following definition from [5].

Definition 2.5. An �-complex is a chain complex .C;@/which is free and finitely gen-

erated over F ŒU � and equipped with an endomorphism �. Furthermore, the following

hold.

(1) C is equipped with a Z-grading, such that U has grading �2. We call this

grading the Maslov or homological grading.

(2) There is a grading preserving isomorphism U�1H�.C / Š F ŒU; U�1�.

(3) � is a grading preserving chain map and �2 ' id.
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Definition 2.6. If .C; �/ and .C 0; �0/ are �-complexes, we define the group of enhanced
�-morphisms to be

Mor..C; �/; .C 0; �0// WD HomFŒU �.C; C
0/˚ HomFŒU �.C; C

0/Œ1�;

where HomFŒU �.C; C
0/ denotes homogeneous (but not necessarily grading-preserv-

ing) morphisms and Œ1� denotes a grading shift. We define

@Mor.F; h/ D .@0F C F@; F �C �0F C @0hC h@/;

which makes the category of �-complexes into a dg-category. An enhanced �-homomo-

rphism is an enhanced �-morphism .F; h/ satisfying @Mor.F; h/ D 0. An enhanced
�-homotopy equivalence is an enhanced �-homomorphism .F; h/ such that there exists

an enhanced �-homomorphism .G;k/with the property that .G;k/ı.F;h/ and .F;h/ı

.G; k/ both differ from .id; 0/, the identity enhanced �-morphism, by a boundary in

Mor. Composition is given by .F; h/ ı .F 0; h0/ D .F ı F 0; F 0hC h0F /.

If .C; @/ is a free, finitely generated chain complex over F ŒU �, we now describe

the chain map

ˆWC ! C:

Write @ as a matrix with respect to a free F ŒU �-basis of C . We then defineˆ to be the

endomorphism obtained by differentiating each entry of this matrix with respect to

U and extend F ŒU �-linearly. This map appears naturally in considering the basepoint

action on Heegaard Floer homology [9, 37, 39]. The map ˆ is independent of the

choice of basis up to F ŒU �-equivariant chain homotopy. In the special case that the

basis is the set of generators associated to a particular Heegaard diagram for .Y; w/,

such that powers of the variable U in the differential record intersections with the

divisor ¹wº � Symg�1.†/, we may write this map as ˆw .

2.4. Hypercubes and �-complexes

In this section, we describe a relation between enhanced �-morphisms and hypercubes.

An enhanced �-morphism .F; h/W .C; �/ ! .C 0; �0/ may be encoded into a diagram of

the following form:

C C

C C 0

�

F

h �0

F

(2.3)

The pair .F; h/ is an enhanced �-homomorphism if and only if the above diagram is a

hypercube of chain complexes. Composition of �-morphisms is encoded by stacking

and compressing hypercubes.
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Remark 2.7. The diagram in equation (2.3) is algebraically equivalent to the follow-

ing diagram:

C C 0

Q � C Q � C 0

Q.�Cid/

F

Q�h Q.�0Cid/

F

In particular, we may view enhanced iota morphisms between iota complexes as con-

taining equivalent information to an F ŒU;Q�=Q2-equivariant map between the associ-

ated complexes over F ŒU;Q�=Q2. We will use the two perspectives interchangeably.

Relations between compositions of �-morphisms are also naturally encoded into

hypercubes.

Lemma 2.8. Suppose that .A; �A/, .B; �B/, .C; �C / and .D; �D/ are �-complexes, and
.F; f /, .G; g/, .H; h/, .I; i/, and .J; j / are enhanced �-morphisms which fit into the
following diagram:

A B

C D

A B

C D

G

�A i

I

j

H

�B

h

F

f

J

�D

G

I

J H

g

�C

F

Then, the hypercube relations for the above diagram are equivalent to each of .F; f /,
.G; g/, .H; h/ and .I; i/ being enhanced �-homomorphisms, as well as the relation

.F; f / ı .G; g/C .H; h/ ı .I; i/ D @Mor.J; j /:

Proof. The length 1 relations imply that F , G, H , and I are chain maps. The length

2 relations along the left, right, front, and back faces are easily seen to be equivalent

to .F; f /, .G; g/, .H; h/ and .I; i/ being enhanced �-homomorphisms. The length 2

relation along the top and bottom faces is equivalent to

FG CHI D Œ@; J �:
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The length 3 relation is equivalent to

Fg C f G CHi C hI D �DJ C J �A C Œ@; j �:

On the other hand, by definition,

.F; f / ı .G; g/C .H; h/ ı .I; i/ D .FG CHI;Fg C f G CHi C hI /;

while

@Mor.J; j / D .Œ@; J �; �DJ C J �A C Œ@; j �/:

The main claim follows immediately.

2.5. �K -complexes and �L-complexes

We now review the refinement of the analog of an �-complex for knots, called an �K-

complex, and its extension to links. First, we recall some algebraic background. Let

.CK ; @/ be a free, finitely generated complex over the ring F ŒU; V�. There are two

naturally associated maps

ˆ;‰WCK ! CK ;

constructed as follows. Write @ as a matrix with respect to a free F ŒU; V�-basis of

CK . We then define ˆ to be the endomorphism obtained by differentiating each entry

of this matrix with respect to U. We define ‰ to be the endomorphism obtained by

differentiating each entry with respect to V. These maps appear naturally in the study

of knot Floer homology, see [29, 32, 35]. The maps ˆ and ‰ are independent of the

choice of basis up to F ŒU;V�-equivariant chain homotopy [33, Corollary 2.9].

An F -linear map F WCK ! C 0
K is skew-F ŒU;V�-equivariant if

F ı V D U ı F and F ı U D V ı F:

We recall the following definition from [4]. (Compare also [5, Definition 6.2] and

[33, Definition 2.2].)

Definition 2.9. An �K-complex .CK ; @; �K/ is a finitely generated, free chain complex

.CK ; @/ over F ŒU;V�, equipped with a skew-equivariant endomorphism �K satisfying

�2K ' id Cˆ‰:

Remark 2.10. If .CK ; @; �K/ is an �K-complex, then �K commutes with U D UV,

and hence we can view CK as an (infinitely generated) complex over F ŒU � with an

F ŒU �-equivariant endomorphism �K .

We have the following notions of morphism of �K-complexes.
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Definition 2.11. Suppose that CD.CK ; @; �K/ and C0D.C 0
K ; @

0; �0K/ are �K-complexes.

(1) An �K-homomorphism from C to C0 consists of an F ŒU;V�-equivariant chain

map F WCK ! C 0
K , which satisfies �0KF C F �K Å 0 (where Å denotes skew-

equivariantly chain homotopy equivalence).

(2) The group of enhanced �K-morphisms is

Mor.C;C0/ WD HomFŒU;V�.CK ; C
0
K/˚ HomFŒU;V�.CK ; C

0
K/Œ1; 1�;

where HomFŒU;V�.CK ; C
0
K/ denotes the group of F ŒU; V�-skew-equivariant

maps. The differential on Mor.CK ;C
0
K/ is given by

@Mor.F; g/ D .F @C @0F;F �K C �0KF C @0g C g@/:

We say .F; g/ is an enhanced �K-homomorphism if

@Mor.F; g/ D 0:

The two enhanced �K-morphisms are �K-homotopic if their sum is a boundary

in Mor.CK ;C
0
K/.

We will also be interested in the case of free, finitely-generated complexes .CL; @/

over the ring F ŒU1;V1; : : : ;U`;V`�, which arise when we study links L with multi-

ple components. In this case, there are maps ˆi and ‰i for 1 � i � ` arising from

differentiating with respect to each variable. An F -linear map F WCL ! C 0
L is said

to be skew-equivariant if it exchanges Ui and Vi for each i . We may then consider

�L-complexes .CL; @; �L/, where the map �L satisfies the formula

�2L ' .id Cˆ`‰`/ ı : : : ı .id Cˆ1‰1/:

This is the diffeomorphism map for performing a Dehn twist on each link component.

See [32, Theorem B] for further discussion. The definitions of �K-morphisms and their

variations now extend straightforwardly to �L-complexes.

As in Section 2.4, an enhanced �K-homomorphism is equivalent to a hypercubes

of chain complexes, compositions of �K-morphisms are encoded as hypercubes in the

same manner as in Lemma 2.8.

3. Involutive Heegaard Floer homology

In this section, we review Hendricks and Manolescu’s construction of involutive Hee-

gaard Floer homology [5], and also define the doubling models which feature in our

statements of naturality and functoriality.
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3.1. The involutive Floer complexes

We presently recall Hendricks and Manolescu’s original construction [5]. Suppose

that H D .†;˛;ˇ; w/ is a weakly admissible Heegaard diagram for Y . Suppose that

s is a self-conjugate Spinc structure. Write xH D .x†; Ň ; N̨ ;w/ for the diagram obtained

from H by reversing the orientation of † and reversing the roles of ˛ and ˇ. There is

a canonical chain isomorphism

�W CF�. xH ; s/ ! CF�.H ; s/:

Hendricks and Manolescu consider the map

�W CF�.H ; s/ ! CF�.H ; s/

given by the formula

� WD � ı‰
H! xH ;

where ‰
H! xH is the map from naturality as in [9]. They define the involutive Hee-

gaard Floer complex CFI.Y;s/ to be the F ŒU;Q�=.Q2/-chain complex whose under-

lying F ŒU;Q�=.Q2/-module is

CF�.Y; s/˝FŒU � F ŒU;Q�=.Q2/ D CF�.Y; s/˚QCF�.Y; s/

with differential @CFI.Y;s/ D @CF�.Y;s/ ˝ idC.idC�/˝Q. That is, the involutive Hee-

gaard Floer complex is the mapping cone

Cone.Q.id C�/W CF�.Y; s/ ! QCF�.Y; s//

with the evident action of the F ŒU; Q�=.Q2/. Hendricks and Manolescu prove that

CFI�.Y; s/ is well-defined up to chain homotopy equivalence.

Hendricks and Manolescu also define a refinement for knots, which we recall

presently along with its extension to links. Beginning with the knot case, suppose

that K is a null-homologous, oriented knot in a 3-manifold Y , and s 2 Spinc.Y / is

self-conjugate. We recall the following standard definition.

Definition 3.1. A Heegaard diagram for a pair .Y; K/ consists of a tuple .†; ˛; ˇ;

w; z/, such that .†;˛;ˇ/ is a Heegaard diagram for Y , such that the knotK intersects

† in the points w and z. Furthermore, if U˛ and Uˇ are the closures of the two

components of Y n†, thenK intersects each ofU˛ andUˇ in a boundary-parallel arc.

The standard convention is that K intersects † positively at z, and negatively at w.

We will work over the version of knot Floer homology [21, 28] which is freely

generated over a 2-variable polynomial ring F ŒU;V�. We denote this chain complex

by CF K.K/. See, e.g., [33, Section 3] for background on this version of knot Floer

homology.
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Let �CW .Y; K; w; z/ ! .Y; K; z; w/ be the diffeomorphism of tuples supported

in a neighborhood of K corresponding to a positive half-twist along K, and similarly

for �� and the negative half-twist. There is a canonical chain isomorphism

�K W CF K.x†; Ň ; N̨ ; z; w/ ! CF K.†;˛;ˇ; w; z/;

which satisfies �K.U � x/ D V � �K.x/ and �K.V � x/ D U � �K.x/. We define

�K;C WD �K ı‰�C.H/! xH ı �C
� ;

and we define �K;� similarly. Here, �C
� denotes the tautological diffeomorphism map,

and ‰�C.H/! xH denotes the map from naturality obtained by picking a sequence

of Heegaard moves relating �C.H / and xH . There is a map ��K defined similarly.

Hendricks and Manolescu define the involutive knot Floer complex to be the data

consisting of CF K.K/ equipped with the endomorphism �K;˙, which gives an �K-

complex.

Remark 3.2. In [5], Hendricks and Manolescu considered only the involution we

call �K;C, which is written simply as �K . It is unknown whether there are any knots K

where .CF K.K/; �K;C/ is inequivalent to .CF K.K/; �K;�/. The distinction between

�K;C and �K;� has previously been observed in [2].

The case of links is similar. For a link L of ` D jLj components, we consider

Heegaard diagrams .†;˛;ˇ;w; z/ such that w D ¹w1; : : : ; wnº and z D ¹z1; : : : ; z`º

and the i th component Ki of L intersects † positively at zi and negatively at wi .

The resulting chain complex CFL.L/ is freely-generated over the polynomial ring

F ŒU1;V1; : : : ;U`;V`�. In principle, there are 2` choices of orientation which may be

used to define the involution; however, for simplicity, we assume that an orientation is

fixed, and we consider only the two orientations which are either coherent, or opposite

to our preferred orientation. It is now straightforward to adapt the construction of �K;˙

given above to models for �L;˙ for these versions of the link involution.

3.2. Doubled Heegaard diagrams

Suppose that H D .†; ˛; ˇ; w/ is a pointed Heegaard diagram for Y . We view a

regular neighborhood of † as † � Œ0; 1�. Pick a small disk D � †, which contains

w along its boundary. The submanifold U0 D .† n D/ � Œ0; 1� is a handlebody of

genus 2g, where g denotes g.†/. The boundary of this submanifold is canonically

identified with †#x†, where the connected sum occurs at w. Write U1 for the closure

of the complement of U0. Clearly, U1 is also a handlebody of genus 2g. We write

D.†/ D †#x† for this Heegaard surface.

We may naturally equip D.†/ with attaching curves, as follows. For U1, we may

use the curves ˛ [ Ň , where ˛ �† and Ň � x†. For U0, we pick compressing disks by
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picking a collection ı1; : : : ; ı2g of properly embedded arcs on † n N.w/, called the

doubling arcs. We add a basepoint to @N.w/, for which we also write w. We assume

that the arcs ı1; : : : ; ı2g are disjoint from w, and also form a basis ofH1.† nD;@D n

¹wº/. We form attaching curves � � †#x† by doubling the curves ı1; : : : ; ı2g onto

†#x†: We write D.H / D .†#x†;˛ Ň ;�; w/ for the resulting diagram.

If � D .�1; �2; �3/ is a framing of w 2 Y , then the framing is used in the con-

struction as follows. We assume the Heegaard surface is tangent to the 2-plane field

.�1; �2/�TwY . Additionally, in the tube connecting†#x†, we must place the basepoint

w. We place it in the direction corresponding to �1.

Remark 3.3. The diagram D.H / may also be described by gluing two bordered

Heegaard diagrams for genus g handlebodies [16].

3.3. Doubling and the involution

We use doubled Heegaard diagrams to give a natural model of the involution. This

model appears in [4, 36]. In this section, we describe the construction.

Firstly, we define the following map as a composition of 1-handle maps

F
Ň; Ň

1 W CF�.†;˛;ˇ; w/ ! CF�.†#x†;˛ Ň ;ˇ Ň ; w/:

Next, we note that the diagram .†#x†; ˇ Ň ;�; w/ is a doubled diagram for .S1 �

S2/#g , and hence we may pick a cycle‚ˇ Ň;� generating the top degree of homology.

The cycle ‚ˇ Ň;� is not unique, but any two choices are related by a boundary. We

define the holomorphic triangle map

f
ˇ Ň!�

˛ Ň W CF�.†#x†;˛ Ň ;ˇ Ň ; w/ ! CF�.†#x†;˛ Ň ;�; w/

by the formula

f
ˇ Ň!�

˛ Ň .x/ D f˛ Ň;ˇ Ň;�.x;‚ˇ Ň;�/:

Analogously, there is another holomorphic triangle map

f �!˛ N̨

˛ Ň W CF�.†#x†;˛ Ň ;�; w/ ! CF�.†#x†;˛ Ň ;˛ N̨ ; w/

as well as a 3-handle map

F
˛;˛
3 W CF�.†#x†;˛ Ň ;˛ N̨ ; w/ ! CF�.x†; Ň ; N̨ ; w/:

Proposition 3.4 ([36, Propositions 7.2 and 7.8]). The composition f ˇ
Ň!�

˛ Ň ı F
Ň; Ň

1

is chain homotopic to the map ‰H!D.H/ from naturality. Dually, the composition
F
˛;˛
3 ı f �!˛ N̨

˛ Ň is chain homotopic to the map ‰D.H/! xH .
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The idea of the proof of the above result is that the composition is topologically

equivalent to a composition of the maps for canceling 1-handles and 2-handles, or

canceling 2-handles and 3-handles.

Corollary 3.5. The involution satisfies

� ' � ı F
˛;˛
3 ı f �!˛ N̨

˛ Ň ı f
ˇ Ň!�

˛ Ň ı F
Ň; Ň

1 ;

where � is the canonical chain isomorphism

�W CF�.x†; Ň ; N̨ ; w/ ! CF�.†;˛;ˇ; w/:

Definition 3.6. Suppose .Y;w; �/ is a based manifold with a framing � D .�1; �2; �3/

of TwY . A doubling enhanced Heegaard diagram D consists of the following data.

(1) A Heegaard diagram H D .†;˛;ˇ; w/. Furthermore, † is positively tangent

to the 2-plane spanned by �1 and �2.

(2) A set of attaching curves � on †#x†, constructed by doubling a basis of arcs

ı1; : : : ; ı2g . Furthermore, we view the endpoint of each ıi arc as determining

an oriented tangent space (oriented to point into ıi ). We assume that none of

these oriented tangent spaces coincide with the span of �1.

(3) Choices of almost complex structures to compute the four Floer complexes

CF.†;˛;ˇ/, CF.†#x†;˛ Ň ;ˇ Ň /, CF.†#x†;˛ Ň ;�/ and CF.†#x†;˛ Ň ;˛ N̨ /,

as well as almost complex structures to compute the triangle maps f �!˛ N̨

˛ Ň

and f
ˇ Ň!�

˛ Ň .

We say that D is a doubling enhancement of H . We say that D is admissible if each

of the Heegaard diagrams and triples are weakly admissible.

3.4. Doubling and the knot and link involution

The knot involution of [5] also admits a convenient doubling model, which we intro-

duced in [4] (see also [11, Section 9.4]). In this section we recall this model. In our

proof of naturality, we will also need to use several stabilized models, which we intro-

duce in Section 15.

The doubling model for knots has a similar description to Corollary 3.5, but more

care will be needed to define the maps. There is furthermore one additional choice to

be made, which will correspond to a choice of which direction along K to perform a

half-twist.

We begin by describing doubled knot diagrams. If .†;˛;ˇ;w; z/ is a diagram for

.Y;K/, we consider the following two diagrams:

DC.H / D .†#z x†;˛ Ň ;�; w; Nw/ and D�.H / D .†#w x†;˛ Ň ;�; Nz; z/:
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We start by analyzing the diagram D
C.H /: There is a map

F
Ň; Ň

1;C W CF K.†;˛;ˇ; w; z/ ! CF K.†#z x†;˛ Ň ;ˇ Ň ; w; Nw/

obtained as the composition of a 1-handle map, as well as a diffeomorphism map for

moving z to Nw. As in the setting of closed 3-manifolds, we have holomorphic triangle

maps f
ˇ Ň!�

˛ Ň and f �!˛ N̨

˛ Ň . Finally, there is a map

F
˛;˛
3;C W CF K.†#z x†;˛ Ň ;˛ N̨ ; w; Nw/ ! CF K.x†; Ň ; N̨ ; Nz; Nw/;

obtained by moving w to the position of Nz, and then applying the 3-handle maps to

remove the ˛ curves. Similar logic to Proposition 3.4 then implies that

�K;C ' �K ı F
˛;˛
3;C ı f �!˛ N̨

˛ Ň ı f
ˇ Ň!�

˛ Ň ı F
Ň; Ň

1;C :

There are analogous maps F
Ň; Ň

1;� and F
˛;˛
3;� which instead involve the diagramD�.H /,

such that

�K;� ' �K ı F
˛;˛
3;� ı f �!˛ N̨

˛ Ň ı f
ˇ Ň!�

˛ Ň ı F
Ň; Ň

1;� :

The same procedure with only notational changes may be used to give doubling

models for the link involutions �L;˙ for links with more than one component. See

Section 15 for more details.

3.5. Alpha versus beta doubling

The reader may note that a somewhat arbitrary choice has been made in the definition

of �. Indeed, there is another diagram

xD.H / D .†#x†;�;ˇ N̨ ; w/;

conjugate to the diagram D.H / considered above. Similar to Proposition 3.4 and

using the same notation from that proposition, f
ˇ N̨
˛ N̨!� ıF

N̨ ; N̨
1 is also chain homotopic

to‰
H! ND.H/. Dually, F

ˇ;ˇ
3 ı f

ˇ N̨

�!ˇ Ň is homotopic to‰ ND.H/! NH
. As a consequence,

parallel to Corollary 3.5,

� ' � ı F
ˇ;ˇ
3 ı f

ˇ N̨

�!ˇ Ň ı f
ˇ N̨
˛ N̨!� ı F

N̨ ; N̨
1 : (3.1)

We will refer to the composite on the right-hand side of equation (3.1) as the alpha-

doubling model for �, and we refer to the model � ı F
˛;˛
3 ı f �!˛ N̨

˛ Ň ı f
ˇ Ň!�

˛ Ň ı F
Ň; Ň

1

from Corollary 3.5 as the beta-doubling model. In spite of the fact that the alpha-

doubling and beta-doubling models are homotopic by naturality, we do not claim

there is a canonical homotopy between them. In this paper, we arbitrarily work over

the beta-doubling model exclusively.
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4. On naturality in Heegaard Floer theory

In this section, we discuss naturality in Heegaard Floer theory and how it adapts to our

setting. Our goal in this section is to state a version of the naturality theorem which

covers our use of framed basepoints in the involutive Heegaard Floer complex.

We recall that the proof of [9] centers on proving naturality for invariants of

sutured 3-manifolds. We recall that if Y is equipped with a basepoint w, then we

may obtain a sutured manifold by removing a regular neighborhood of w and adding

a single suture (closed loop) to the boundary. The reader should think of the suture as

corresponding to the intersection of a Heegaard surface for Y with the boundary.

We cannot apply the work of [9] without any change, because our construction

of the involutive Floer complex requires a choice of framing at the basepoint. This is

incompatible with the continuity axiom of [9], which requires any diffeomorphism of

a sutured manifold � 2 DiffC.M; 
/ which is isotopic to the identity through sutured

diffeomorphisms to act by the identity on the complex. In our present context, this

is too strong of an axiom to impose, since such diffeomorphisms may correspond

to diffeomorphisms of .Y;w/ which act non-trivially on the framing of the basepoint.

Instead, we wish to weaken the continuity axiom to only require that diffeomorphisms

which are isotopic to the identity relative to the boundary to act by the identity on our

invariant. In this section, we explain how the techniques of [9] adapt to our present

situation.

Remark 4.1. Note that in the original setting [9], this was of little importance, since

isotopies of sutured manifolds which are supported in a small neighborhood of the

boundary do not change the position of the alpha or beta curves.

We begin by recalling some notation from [9]. We first recall the graph G.M;
/

defined therein. The vertices consist of embedded Heegaard diagrams for .M;
/, with

attaching curves taken up to isotopy on the Heegaard surface. The edges of G.M;
/

consist of the following.

(1) Alpha equivalences on a fixed Heegaard surface.

(2) Beta equivalences on a fixed Heegaard surface.

(3) Index .1; 2/-stabilizations.

(4) Diffeomorphisms of .M; 
/ which are isotopic to the identity as sutured dif-

feomorphisms.

We now define a subgraph G
@
.M;
/

� G.M;
/, which we call the graph of boundary
framed Heegaard moves. This graph has the same vertices as G.M;
/. We add all of

the same edges, except that diffeomorphisms are required to be the identity on the

boundary of M , and also are required to be isotopic to the identity rel boundary. We

consider the following loops of Heegaard diagrams (thought of as 2-cells). These are
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a restriction of the distinguished rectangles from [9, Definition 2.32]. These consist

of the following loops.

(1) Commutation of alpha and beta equivalences.

(2) Commutations of two index .1; 2/-stabilizations.

(3) Commutations of an index .1; 2/-stabilization and an alpha/beta equivalence.

(4) Simple handleswap loops.

(5) A sequence of diffeomorphism edges in G
@
.M;
/

, starting and ending at a fixed

Heegaard diagram H , such that the composition of the diffeomorphisms is a

contractible loop in Diff.M; @M/.

Proposition 4.2. After attaching 2-cells to the graph G
@
.M;
/

corresponding to the
loops (1)–(5), we obtain a simply connected space.

Proof. The result follows from essentially the same argument as [9], with some extra

attention paid to the behavior of diffeomorphisms on @M . Note that G
@
.M;
/

is a sub-

complex of G.M;
/. One may go through the proof described in [9, Section 8]. We

consider a loop of Heegaard moves in G
@
.M;
/

of k-steps:

H0

e1
�! H1

e1
�! H2

e2
�! � � �

ek
�! Hk D H0:

We now build a map S1 ! F V�1.M; 
/, denoting the space of pairs .f; v/ of

sutured functions and gradient like vector fields which lie in codimension 0 or 1.

(See [9] for this notation). This is constructed the same as therein. Namely, for each

diagram Hi , we pick a compatible pair .f; v/ 2 GV0.M; 
/ inducing this pair. For

each move of Heegaard diagrams, we pick a compatible 1-parameter family of pairs

.ft ; vt / 2 GV�1.M; 
/. Accordingly, one constructs a polyhedral decomposition of

D2, such that each edge contains at most one codimension 1 singularity, and each 2-

cell contains at most one codimension 2 singularity. From here, one argues that after

subdividing it is sufficient to consider only 2-cells whose edges compose to give one

of the loops (1)–(5).

The difference between our situation and [9] is that we must argue that it is suffi-

cient to consider only sutured isotopies which fix the boundary pointwise. One must

do this for both edges and for 2-cells. Consider first a 1-cell:

�1WD
1 ! F V0.M; 
/:

Given such a path, one may construct a family of embedded Heegaard surfaces. To see

that these are related by an isotopy, one uses a version of the isotopy extension lemma,

as stated in [9, Lemma 6.19]. Note that this lemma actually constructs an isotopy

which is the identity on @M , because it is obtained by integrating a time dependent

family of vector fields on .M; 
/ which is supported on the interior of .M; 
/.
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Given a map �2WD
2 ! F V0.M;
/, the above construction, applied to S1 D @D2,

defines a loop of diffeomorphisms �� WS1 ! Diff.M; @M/. Since the corresponding

path in F V0.M; 
/ is contractible, we may extend this loop �� over D2. We observe

that [9, Lemma 6.20] constructs a null-homotopy of the corresponding loop of diffeo-

morphisms. We observe that this null-homotopy is again constructed by integrating

along a time dependent family of vector fields which is supported in int.M/, and

hence the corresponding family of diffeomorphisms are the identity on @M . Hence,

the boundary framed loops in (1)–(5) are sufficient to contract an arbitrary loop.

5. Maps for elementary handleslide equivalences

In this section, we define the transition maps for changes of the doubling data which

fix the Heegaard surface†. These correspond to changes of the ˛, ˇ and � curves by

handleslides and isotopies. Furthermore, in this section, we consider only a restricted

set of alpha and beta equivalences, as follows.

Definition 5.1. (1) Suppose that .†;w/ is a Heegaard surface with n � 1 basepoints

and 
 and 
 0 are attaching curves on †. We say that 
 and 
 0 are handleslide equiv-
alent if they may be related by a sequence of handleslides and isotopies.

(2) Suppose † is a Heegaard surface and 
 and 
 0 are handleslide equivalent

attaching curves on†. We say that 
 and 
 0 are related by an elementary equivalence
if .†; 
 0; 
;w/ is a weakly admissible diagram, and T
 0 \ T
 consists of exactly

2j
 j�1 generators.

Suppose .†;˛;ˇ/ is a Heegaard diagram, and ˛0 and ˇ0 are handleslide equiva-

lent to ˛ and ˇ, respectively. Suppose further that � and �0 are choices of doubling

curves. Let D denote the data consisting of .†;˛;ˇ/, the curves �, and appropriate

choices of almost complex structures to compute the involution. Let D0 denote the

analogous data with ˛0, ˇ0 and �0. We say that D0 is obtained from D by an elemen-
tary equivalence if ˛0 and ˇ0 are obtained from ˛ and ˇ by elementary equivalences,

and also if the tuple

.†#x†;˛0 N̨ 0;˛ N̨ ;ˇ Ň ;ˇ0 Ň 0
;�;�0; w/

is weakly admissible.

In the case that D0 is obtained from D by an elementary equivalence, we define

the transition map

‰D!D0 W CFI.D/ ! CFI.D0/

as the compression of the hyperbox of chain complexes shown in Figure 5.1. Therein,

the rows with the 1-handle maps are constructed similarly to [4, Section 14], where
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‰D!D0 WD

CF.˛;ˇ/ CF.˛0;ˇ/ CF.˛0;ˇ0/

CF.˛ Ň ;ˇ Ň / CF.˛0 Ň 0
;ˇ Ň / CF.˛0 Ň 0

;ˇ0 Ň 0
/

CF.˛ Ň ;�/ CF.˛0 Ň 0
;�/ CF.˛0 Ň 0

;�0/

CF.˛ Ň ;˛ N̨ / CF.˛0 Ň 0
;˛ N̨ / CF.˛0 Ň 0

;˛0 N̨ 0/

CF. Ň ; N̨ / CF. Ň 0
; N̨ / CF. Ň 0

; N̨ 0/

CF. Ň ; N̨ / CF. Ň ; N̨ 0/ CF. Ň 0
; N̨ 0/

F
Ň; Ň

1
F

Ň 0; Ň

1
F

Ň 0; Ň 0

1

F
˛;˛
3 F

˛0;˛
3

F
˛0;˛0

3

id id

Figure 5.1. The transition map for an elementary equivalence. An additional row involving the

canonical map � is omitted.

they are called hypercubes of stabilization. The construction here requires that the

˛0 be obtained from ˛ by an elementary equivalence, and similar for ˇ and ˇ0, so

that the degeneration argument from [4, Section 10] applies. The rows with 3-handles

are similar. The remaining subcubes are obtained by pairing hypercubes of attaching

curves.

Note that in Figure 5.1, we have omitted a final level involving the tautological

map �W CF. Ň ; N̨ / ! CF.˛;ˇ/. Throughout the paper, we will usually omit this row.

If D and D0 are handleslide equivalent (but perhaps not related by an elementary

equivalence), we pick an arbitrary sequence

D D D1; : : : ;Dn D D0

such that DiC1 and Di are related by an elementary equivalence for all i . We define

‰D!D0 WD ‰Dn�1!Dn
ı � � � ı‰D1!D2

: (5.1)

A key step in our proof of naturality will be proving the following theorem.
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Theorem 5.2. Suppose that D, D0 and D00 are doubling enhanced Heegaard dia-
grams which all have the same underlying Heegaard surface † and are handleslide
equivalent.

(1) The map ‰D!D0 defined in (5.1) is independent of intermediate sequence of
doubling enhanced Heegaard diagrams, up to F ŒU;Q�=Q2-equivariant chain
homotopy.

(2) ‰D!D ' idCFI.D/.

(3) ‰D0!D00 ı‰D!D0 ' ‰D!D00 .

Part (2) of Theorem 5.2 is proven in the subsequent Section 5.1. Parts (1) and (3)

are more technical and are proven in Sections 7 and 8; in particular, they follow from

Proposition 8.1.

Remark 5.3. We are only able to define the map ‰D!D0 using Figure 5.1 when

D and D0 are related by an elementary equivalence because we are not able to con-

struct the 1-handle hypercubes if D and D0 are related by an arbitrary handleslide

equivalence. To show the map ‰D!D0 is independent of the choice of intermediate

diagrams, we will define a more complicated transition map z‰D!D0 in Section 7.3.

5.1. Continuity

In this section, we prove the continuity axiom from [9, Definition 2.32] for our maps

associated to a handleslide equivalence. In our present context, the continuity axiom

amounts to the following.

Proposition 5.4. Let D denote an admissible doubling enhanced Heegaard diagram
for .Y;w; �/. Let gW .†;w/ ! .†;w/ be a pointed diffeomorphism which is smoothly
isotopic to the identity through diffeomorphisms which are the identity on a neighbor-
hood of w. Let g.D/ be the push-forward of the diagram D under g, and let

CFI.g/W CFI.D/ ! CFI.g.D//

denote the tautological map. Then

‰D!g.D/ ' CFI.g/:

Proof. We adapt the argument of [9, Proposition 9.27] to the involutive case by also

using the small translate theorems for triangles and quadrilaterals from our previous

paper [4]. Write .†;˛;ˇ; w/ for the underlying Heegaard diagram of D, and let �

be the doubling curves. As a first step, pick a C1 small diffeomorphism g0 of .†;w/

and write ˛0 D g0.˛/, and define ˇ0 and �0 similarly. Assume that j˛0
i \ j̨ j D 2ıij ,

where ıij denotes the Kronecker delta, and assume the analogous statement holds for
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ˇ0, ˇ, �0 and �. It follows from the small translate theorems [4, Propositions 11.1

and 11.5] that if g0 is chosen suitably small, then we may pick an almost complex

structure on † �� which interpolates between a fixed J on the .†;˛;ˇ/ cylindrical

end and .g0/�.J / on the .†;˛0;ˇ/ cylindrical end such that the map f˛0;˛;ˇ .‚˛0;˛;x/

counts only small triangles, so that f˛0;˛;ˇ .‚˛0;˛; x/ D xnp for all x 2 T˛ \ Tˇ .

Here, xnp denotes the nearest point of T˛0 \ Tˇ to x. In a similar manner, the small

translate theorem for quadrilaterals implies that all of the length 2 maps counted by

‰D!g0.D/ vanish (as no holomorphic curves are counted). In particular, ‰D!g0.D/

coincides with the nearest point map.

Similarly, if g0
0 is C1 close to g0, then the same argument as the small translate

theorems also implies that ‰D!g0
0
.D/ and‰g0

0
.D/!D coincide with the nearest point

maps.

More generally, if g is C1 small relative to g0, then we can decompose

‰D!g.D/ ' ‰g0.D/!g.D/ ı‰D!g0.D/

and apply the nearest point results to the latter two maps to identify ‰D!g.D/ with

CFI.g/. This establishes the claim when g is C1-small. Since both sides of the de-

sired equality are functorial under composition, and any diffeomorphism gW .†;w/!

.†;w/ which is smoothly isotopic to the identity may be decomposed into a compo-

sition of C1-small diffeomorphisms, this proves the claim in general.

6. Holomorphic polygons and stabilizations

In this section, we describe some technical results concerning stabilizations of Hee-

gaard diagrams and holomorphic polygons. The results we cover are a generalization

of those considered in [4, Section 9].

Definition 6.1. Suppose that D0 D .†0;
1; : : : ;
n;w/ is a weakly admissible Hee-

gaard tuple and S is a set of Spinc structures on X
1;:::;
n
, which is closed under the

action of ıH 1.Y
i ;
j
/ for i < j .

(1) We say that .D0;S/ is a multi-stabilizing diagram if the following are sat-

isfied. All elements of S restrict to a single element of Spinc.@X
1;:::;
n
/

which is furthermore torsion. Additionally, we require that if s1;s2 2 S, then

d.s1/ D d.s2/, where d.s/ D .c21.s/ � 2� � 3�/=4.

(2) We say .D0;S/ is algebraically rigid if @D0 on cCF.†0;
 i ;
 iC1;si;iC1;w/,
where si;iC1 is the restriction to Y
i ;
iC1

of the elements of S.

Example 6.2. Let D0 be a Heegaard triple where all 
 i are pairwise related by small

Hamiltonian translates. Let S D ¹s0º, where s0 is the unique Spinc structure which
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has torsion restriction to the boundary. Then, .D0;S/ is a multi-stabilizing diagram.

For suitable choices of translates, D0 is algebraically rigid.

Remark 6.3. When the set S is understood from context (such as the case when there

is a unique Spinc structure on X
1;:::;
n
which has torsion restriction to @X
1;:::;
n

),

we will usually refer to the diagram D0 as being a multi-stabilizing diagram.

In this section, we state a helpful result about stabilizations and holomorphic

curves. Before we state our result, we introduce some notation.

As a first step, we recall some notation and basic facts about Stasheff’s associ-

ahedron, Kn. We view Kn as a convex polytope which models the compactification

of nC 1 marked points on the boundary of a disk. It is well known that Kn admits

an embedding into a Euclidean space and has the homology of a point. There is a

well-known cell structure on Kn, giving a convenient model for its homology, which

we denote C cell
� .Kn/. The cells of this decomposition are in bijective correspondence

with planar trees with n inputs, one output, and no internal vertices of valence less

than 3. If T is such a tree, then the degree of the corresponding cell is

n � 1 � #.internal vertices/:

The differential of a tree T is the sum of all ways of breaking an internal vertex into

two vertices, both with valence at least 3. The degree 0 cells correspond to trees with

only valence 3 internal vertices. There is a codimension 0 cell of degree n� 2, which

has just one internal vertex.

Suppose that D D .†;
1; : : : ;
n; w/ is a weakly admissible Heegaard tuple and

J D .Jx/x2Kn�1
is a stratified family of almost complex structures on † � Dn for

computing holomorphic n-gons. Suppose also that S � Spinc.X
1;:::;
n
/ is a set which

is closed under the actions of ı1H 1.Y
i ;
j
/ for all i < j , and assume for simplicity

that all elements of S restrict to a single element of Spinc.@X
1;:::;
n
/. Given a tree

T 2 C cell
� .Kn�1/, there is a map

OfD;SIJ;T W cCF.
1;
2; s1;2/˝ � � � ˝ cCF.
n�1;
n; sn�1;n/ ! cCF.
1;
n; s1;n/;

obtained by composing the polygon maps corresponding to each internal vertex of

T . If T has only valence 3 internal vertices, then there is a unique point of Kn�1

corresponding to T , which is in the strata of maximal codimension. We write JT for

the corresponding almost complex structure, and otherwise suppress the tree from

the notation in this case. The map OfD;SIJ;T is obtained by successively composing

holomorphic triangle maps according to the tree T .

More generally, we can view the holomorphic polygon maps as fitting together

compatibly to give a chain map

OfD;SIJ WC cell
� .Kn�1/˝cCF.
1;
2;s1;2/˝� � �˝cCF.
n�1;
n;sn�1;n/!cCF.
1;
n;s1;n/:
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The same statement holds for CF� as long as we are more careful about finiteness

of curve counts, either by restricting Spinc structures or working over F ŒŒU ��. We call

this version of the map fD;SIJ and its specialization to a particular tree fD;SIJ;T

analogously.

Lemma 6.4. Suppose that D0 D .†0;
1; : : : ;
n;w/ is a diagram and S is a set of
Spinc structures such that .D0;S/ is algebraically rigid and multi-stabilizing. Let T1
and T2 be two degree 0 trees. Then,

OfD0;SIJT1
.x1; : : : ;xn�1/ D OfD0;SIJT2

.x1; : : : ;xn�1/

for any xi 2 T
i
\ T
iC1

.

Proof. The trees T1 and T2 are homologous as elements of C cell
� .Kn�1/, since

H cell
� .Kn�1/ Š Z:

Hence, the maps

OfD0;SIJT1
; OfD0;SIJT2

WcCF.
1;
2;s1;2/˝� � �˝cCF.
n�1;
n;sn�1;n/!cCF.
1;
n;s1;n/

are chain homotopic. The differentials on domain and codomain of the two maps

vanish, so any two chain homotopic maps between them are equal.

Proposition 6.5. Let D D .†;ı1; : : : ;ın;w/ and D0 D .†0;
1; : : : ;
n;w0/ be Hee-
gaard n-diagrams, where n>2. Assume s2Spinc.Xı1;:::;ın

/ and S�Spinc.X
1;:::;
n
/

and assume that .D0;S/ is an algebraically rigid multi-stabilizing Heegaard dia-
gram. From the connected sum D#D0 by adding a tube from D0 at some w0 2 w0

to a point on D . Let T be a degree 0 tree representing the generator of C cell
� .Kn�1/.

Suppose J D .Jx/x2Kn�1
and J 0 D .J 0x /x2Kn�1

are stratified families of almost
complex structures on † �Dn and †0 �Dn, respectively, for counting holomorphic
n-gons. Let �1; : : : ; �n�1 be homogeneously graded elements (necessarily cycles) of
cCF.†0;
1;
2; s1;2/; : : : ;cCF.†0;
n�1;
n; sn�1;n/, respectively, and suppose that

y D Of
D0;SIJ 0

T
.�1; : : : ; �n�1/

is non-zero. Then, for any tree T 0

fD#D0;s#SI.J^J 0/;T 0.x1 � �1; : : : ;xn�1 � �n�1/

D fD;sIJ;T 0.x1; : : : ;xn�1/˝ y C
X

z2T
1
\T
n

gr.z/>gr.y/

qz ˝ z;

where qz are elements of CF
�.†; ı1; ın/.
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Proof. The proof follows from similar reasoning to [4, Propositions 10.2 and 10.6],

as we now sketch. See also [25, Section 6.1]. Since we are using almost complex

structures which are singular at the connected sum point, the relevant moduli spaces

are fibered products over Dk
n � Kn�1, where k is the multiplicity of a class at the

connected sum point. Consider a class  ^  0, where  0 2 �2.�1; : : : ; �n�1; y0/,

for some intersection point y0, and such that sw0
. 0/ 2 S. The assumption that

Of
1;:::;
n;SIJ 0
T
.�1; : : : ; �n�1/ D y is non-zero implies that there exists a class of trian-

gles  0 2 �2.�1; : : : ; �n�1;y/ which has sw0
. 0/ 2 S, nw0

. 0/ D 0 and �. 0/ D 0.

Since all elements of S have the same degree, we conclude that

gr.y0/ � 2nw0
. 0/C �. 0/ D gr.y/:

Using Sarkar’s formula for the Maslov index, we see that

�. ^  0/ D �. /C �. 0/ � 2nw0
. 0/:

(The only difference between the formulas for �. ^  0/ and �. /C �. 0/ is in

the Euler measure, which is corrected on the right-hand side by 2nw0
. 0/). Hence,

combining the above two formulas, we obtain

�. ^  0/ D �. /C gr.y/ � gr.y0/C nw0n¹w0º. 0/:

The main claim concerns only classes, where gr.y/ � gr.y0/ � 0. As the map

fD#D0;s#s0IJ^J 0;T 0

counts index 3 � n curves, we assume that

�. /C gr.y/ � gr.y0/C nw0n¹w0º. 0/ D 3 � n:

By transversality for curves representing  , we may assume that �. / � 3 � n.

Hence, if gr.y/� gr.y0/ � 0, then we must have �. /D 3� n, gr.y/D gr.y0/D 0

and nw0n¹w0º. 0/ D 0. In particular, the unconstrained moduli space M. / is 0-

dimensional. It suffices to understand the moduli spaces on the †0 side.

Let k � 0 be a fixed integer, and assume that gr.y/ D gr.y0/. Write Mk.�1; : : : ;

�n�1;y0/ for the moduli space of curves representing a class in �2.�1; : : : ; �n�1;y0/

with multiplicity k at w0. We now claim that

evW Mk.�1; : : : ; �n�1;y0/ ! Dk
n �Kn�1

is odd degree if y0 is a summand of y in cCF.
1;
n/, and is even degree if y0 is not

a summand of y . This clearly implies the claim.

Let .d ; x/ 2 Dk
n � Kn�1 be generic, and pick a path 
 W Œ0;1/ ! Dk

n � Kn�1,

such that 
.0/ D .d ; x/ and 
.t/ has the following behavior as t ! 1. As t ! 1,
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we assume that x.t/ approaches the tree T , viewed as a point in @Kn�1, while the k-

tuple of points d.t/ travel towards one of the boundary punctures ofDk
n . Furthermore,

we assume that under the identification of this end as a half cylinder Œ0; 1� � Œ0;1/;

they approach some fixed d 0 � ..0; 1/ � R/k , modulo the R-action on Œ0;1/. We

consider the 1-dimensional moduli space of curves which have ev.u/ 2 im 
 . The

generic degenerations of this moduli space at finite t correspond exactly to index 1

disks breaking off of the cylindrical ends. These cancel modulo 2, since the differen-

tials vanish on each cCF.
 i ;
 iC1; si;iC1/. The ends appearing as t ! 1 correspond

to points in the following set:
 a

�2�2.�1;�1/
�.�/D2k

M.�;d 0/

!
�

 a

 02�2.�1;:::;�n�1;y0/
�. 0/D0
nw0

. 0/D0

MJT
. 0/

!
:

The left-hand factor has odd cardinality by [36, equation (31)]. The count of the right-

hand side is exactly the y0 coefficient of Of
D0;SIJ 0

T
.�1; : : : ; �n�1/, completing the

proof.

6.1. Remarks and special cases

Proposition 6.5 generalizes [4, Propositions 10.2 and 10.6], which concern triangles

and quadrilaterals. In this section we describe some special cases.

Remark 6.6. The results of [4, Propositions 10.2 and 10.6] are stated in terms of

an index tuple, which does not appear in our Proposition 6.5. The stabilization for-

mulas from [4] are stated only in the case that one of the index tuple coordinates

was 0. The entry of the index tuple being zero implied a specific formula for y D
Of
D0;SIJ 0

T
.�1; : : : ; �n/. See [4, Lemma 10.4]. In our present paper, we also need the

stabilization formulas in cases when the entry of the index tuple is non-zero, but where

we know the value of Of
D0;SIJ 0

T
.�1; : : : ; �n/.

Example 6.7. Suppose that D and D0 are as in the statement of Proposition 6.5, and

suppose further that D0 has the property that each 
 i is obtained from 
1 by a small

Hamiltonian translation of each of the curves. Then, Proposition 6.5 implies that

fD#D0;s#s0IJ^J 0;T 0.x1��C
1;2; : : : ;xn�1��C

n�1;n/DfD;sIJ;T 0.x1; : : : ;xn�1/˝‚
C
1;n:

Similarly,

fD#D0;s#s0IJ^J 0;T 0.x1 � ��
1;2;x2 � �C

2;3; : : : ;xn�1 � �C
n�1;n/

D fD;sIJ;T 0.x1; : : : ;xn�1/˝ ��
1;n C

X

‚2T
1
\T
n

gr.‚/>gr.��
1;n
/

qz ˝‚:
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7. An expanded model of the involution

In this section, we describe a basepoint-expanded doubling model of the involution,

which will allow us to understand the transition maps for non-elementary handleslide

equivalences. An outline of this section is as follows. In Section 7.1, we define the

notion of a basepoint expanded, doubling enhanced Heegaard diagram zD, which can

be used to construct an F ŒU;Q�=Q2-complex CFI. zD/. In Section 7.3, we construct

transition maps
z‰ zD1! zD2

W CFI. zD1/ ! CFI. zD2/

in the case that zD1 and zD2 are two basepoint expanded, doubling enhanced Hee-

gaard diagrams which have the same underlying Heegaard surface, and which satisfy

a weak admissibility condition. Unlike in Section 5, we do not require zD1 and zD2

to be related by an elementary handleslide. In the subsequent Section 8, we relate

the complexes CFI. zD/ and the transition maps z‰ zD1! zD2
to the non-expanded mod-

els described earlier. The key motivation for considering the maps z‰ zD1! zD2
is that

they may be defined for non-elementary handleslide equivalences in a manner which

clearly is independent of additional choices.

7.1. Doubling with extra basepoints

We now describe our expanded model of the involution, which uses an extra basepoint.

The presence of the extra basepoint simplifies some of the gluing arguments.

Definition 7.1. A basepoint expanded, doubling enhanced Heegaard diagram zD

consists of a singly pointed Heegaard diagram

H D .†;˛;ˇ; w/;

a small disk D � †, containing w along its boundary, a choice of point w0, as

well as a collection of 2g C 2 attaching curves � � †#x†, as follows. The curves

� are constructed by doubling a basis of pairwise disjoint, properly embedded arcs

ı1; : : : ; ı2gC2 on † nD, which avoid w and w0 and which form a basis of H1.† n

D; @D n ¹w;w0º/. Additionally, zD contains the choice of almost complex structures

used to compute the holomorphic triangle maps.

Using a basepoint expanded diagram zD, as above, we obtain a model of the invo-

lution by modifying the formula in Corollary 3.5, as follows. We let c and c0 be small

perturbations of the circle @D, as in Figure 7.1.

We define a 1-handle map

F
c Ň;c Ň

1 W CF.†;˛;ˇ; w/ ! CF.†#x†;˛c Ň ;ˇc Ň ; w;w0/
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w
w

w0

w
w0

w

w0

w
w

w0

A B

C D

E F

.†;˛;ˇ; w/ .†# N†;˛c Ň ;ˇc Ň ; w;w0/

.†# N†;˛c Ň ;�; w;w0/ .†# N†;˛c Ň ;˛c0 N̨ ; w;w0/

.†# N†;˛c0 Ň ;˛c0 Ň ; w;w0/ . N†; Ň ; N̨ ; w/

Figure 7.1. The basepoint expanded doubling model of the involution. (Frames are read in

alphabetical order).

by tensoring with the top degree generator. This map adds the basepointw0. Similarly,

we define a map

F
˛c0;˛c0

3 W CF.†#x†;˛c0 Ň ;˛c0 N̨ ; w;w0/ ! CF.x†; Ň ; N̨ ; w/

by using the same formula as the standard 3-handle map.

We define the basepoint-expanded model for the involution via the formula

� WD � ı F
˛c0;˛c0

3 ı f ˛c
0 N̨

˛c Ň!˛c0 Ň ı A� ı f �!˛c0 N̨

˛c Ň ı f
ˇc Ň!�

˛c Ň ı F
c Ň;c Ň

1 :

In the above equation, A� denotes the relative homology map for an arc � connecting

w andw0 in the connected sum region. This map is discussed further in the subsequent

Section 7.2.

Remark 7.2. Similar to the non-expanded model, the expanded model also naturally

depends on our framing � D .�1; �2; �3/ of the basepoint. We assume that the original
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Heegaard surface † is positively tangent to .�1; �2/, that w is in the direction of �1

and w0 is in the direction of �2, in the tube region. Furthermore, we assume that � is

chosen so that if we identify Span.�1; �2/ with C, where �1 D 1 and �2 D i , and we

identify the intersection with the tube region of†#x†with S1 � C, then � corresponds

to eit for t 2 Œ0; �=2�.

7.2. Homology actions on hypercubes

In this section, we describe how to construct a homology action on a hypercube of

Floer chain complexes. We can construct both a version for closed curves on †, as

well as a relative one for arcs on† with boundary in w. We focus on the relative case.

We recall the construction from [39, Section 5]. If H D .†;˛;ˇ;w/ is a multi-

pointed Heegaard diagram, and � is a path on † connecting w1; w2 2 w, there is an

endomorphism

A�W CF.H ; s/ ! CF.H ; s/; (7.1)

which satisfies

Œ@; A�� D Uw1
C Uw2

: (7.2)

In our present paper, we work with just one U -variable, so A� becomes a chain map.

The map A� is defined as follows. If � 2 �2.x;y/ is a class of disks, we may define

a quantity a.�; �/ 2 Z by summing the changes of the multiplicities of � across the

alpha curves as one travels along �. (Compare [19].) Sometimes, it is helpful to write

a.�; �/ D .@˛D.�// � �, where @˛D.�/ is the alpha boundary of the domain of �.

The map A� is defined via the formula

A�.x/ WD
X

�2�2.x;y/
�.�/D1

a.�; �/#.M.�/=R/U nw1
.�/C���Cnwn .�/ � y:

The map A� is sometimes a helpful tool when adding and removing basepoints.

We now describe a version of A� for hypercubes. Suppose we are given two hyper-

cubes of attaching curves L˛ and Lˇ on a multi-pointed Heegaard diagram, each

consisting of handleslide equivalent attaching curves, such that the length 1 mor-

phisms are all the top degree generators of CF�.#n.S1 � S2//. We now suppose

that � is an arc which connects two basepoints, w1 and w2. Consider the pairing

CF.L˛;Lˇ /, where we identify the variables of the basepoints w1 and w2 to a single

U .

We now construct a morphism of hypercubes

A�W CF.L˛;Lˇ / ! CF.L˛;Lˇ /:

Recall that a morphism of hypercubes can itself be thought of as a hypercube of

dimension 1 larger than dim CF.L˛;Lˇ /. Our morphism of hypercubes A� will
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have the property that the length one morphisms coincide with the chain maps A�
from (7.1). We will show that A� is well defined up to chain homotopy of hypercube

morphisms, and is natural with respect to restriction to sub-cubes of CF.L˛;Lˇ /.

We note that we may formally view � as an input for a holomorphic polygon

counting map by setting

f
1;:::;
j ;
j ;:::;
m
.x1;2; : : : ;xj�1;j ; �;xj;jC1; : : : ;xm�1;m/

WD
X

 2�2.x0;1;:::;xm�1;m;z/
�. /D3�m

.@
j
D. / � �/#M. /U nw1

. /C���Cnwn . / � z;

where M. / denotes the moduli space of holomorphic m-gons (in the usual sense).

As particular examples,

f˛;˛;ˇ .�;x/ D A�.x/ and f˛;ˇ;ˇ .x; �/ D B�.x/;

whereA� counts holomorphic disks weighted by #.@˛.�/\�/, whileB� counts disks

weighted by #.@ˇ .�/ \ �/.

Lemma 7.3. The holomorphic polygon counting maps, defined with an extra input �,
satisfy the standard associativity rule as long as one uses the convention that @� D

Uw1
C Uw2

, together with conventions that the polygon maps are Uwi
-equivariant

and strictly unital (i.e., they vanish if they have 1 as an input when there are more
than 2 total inputs). In particular, if we work over a single U variable, they satisfy the
associativity relations with the convention that @� D 0.

Proof. The proof differs based on whether ` D 2 or ` > 2. If ` D 2, then the result

follows from equation (7.2). For the case that ` > 2, one counts the ends of index

.3 � `/ moduli spaces weighted by @
i
D. / � � and quickly obtains the result.

The construction of A� is as follows. We will formally construct a cube-shaped

diagram L
�
˛ of dimension dim L˛ C 1. To begin, we take two copies of L˛ , for which

we write L˛ � ¹0º and L˛ � ¹1º, and formally adjoin additional length 1 arrows from

L˛ � ¹0º to L˛ � ¹1º, which we label by the character �.

We begin by constructing the length 2 chains of L
�
˛ , via the following argument.

We will show that the 2-dimensional faces can be constructed to have the following

form:

˛ ˛0

˛ ˛0

‚˛0;˛

� U�˛0;˛ �

‚˛0;˛

(7.3)
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(We have not yet defined �˛0;˛ .) The desired relation is that

A�.‚˛0;˛/C A0
�.‚˛0;˛/ D @U�˛0;˛: (7.4)

Here, A� counts changes of a disk class across ˛, while A0
�

counts changes across ˛0.

Note that by [6, Section 3.5], we have that

A�.‚˛0;˛/C A0
�.‚˛0;˛/ D U.ˆw1

Cˆw2
/.‚˛0;˛/; (7.5)

where ˆwi
denotes the map

ˆwi
.x/ D U�1

X

�2�2.x;y/
�.�/D1

nwi
.�/#.M.�/=R/U .nw1

C���Cnwn /.�/;

extended F ŒU �-equivariantly.

We note that ˆwi
.‚˛0;˛/ is a cycle of grading 1 higher than ‚˛0;˛ , so it is null-

homologous, since ‚˛0;˛ is the top degree generator. Let �˛0;˛ be any chain of homo-

geneous grading one higher that ‚˛0;˛ so that

@�˛0;˛ D .ˆw1
Cˆw2

/.‚˛0;˛/:

We perform this construction to build all of the length 2 chains in L
�
˛ . (If we did not

quotient by Uw1
C Uw2

, then we would instead obtain a length 2 morphism of the

form U1�
1
˛0;˛ C U2�

2
˛0;˛).

We now construct the higher length chains in the cube L
�
˛ . Their construction is

similar to the construction of the length 2 chains. We assume, by induction, that each

length m > 1 chain is of the form U�˛0;˛ . (This is only necessary when m 2 ¹2; 3º,

but is satisfiable for all m > 1).

Let " < "0 be points Ed , where

d D dim L˛;

and suppose that all chains of length less than j"0 � "jL1 have already been defined.

Set

C"0;" WD
X

"D"1<���<"j D"0

jX

iD0

f˛"j ;:::;˛"1

�
‚˛"j ;˛

"j �1 ; : : : ; ‚˛"iC1 ;˛"i ; �;

‚˛"i ;˛"i�1 ; : : : ; ‚˛"2 ;˛"1

�

C
X

"D"1<���<"j D"0

jX

iD0

f˛"j ;:::;˛"1

�
‚˛"j ;˛

"j �1 ; : : : ; ‚˛"iC1 ;˛"i ; U�˛"i ;˛"i�1 ;

‚˛"i�1 ;˛"i�2 ; : : : ; ‚˛"2 ;˛"1

�
: (7.6)
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However, by an entirely analogous argument to (7.5), we have

C"0;" D
X

"D"1<���<"j D"0

f
nw1

Cnw2

˛
"j ;:::;˛"1

.‚˛"j ;˛
"j �1 ; : : : ; ‚˛"2 ;˛"1 /

C
X

"D"1<���<"j D"0

jX

iD0

f˛"j ;:::;˛"1

�
‚˛"j ;˛

"j �1 ; : : : ; ‚˛"iC1 ;˛"i ; U�˛"i ;˛"i�1 ;

‚˛"i�1 ;˛"i�2 : : : ; ‚˛"2 ;˛"1

�
; (7.7)

where f
nw1

Cnw2

˛"n ;:::;˛"1
counts holomorphic polygons with a factor of nw1

. /C nw2
. /.

In particular, C"0;" D UC 0
"0;", for some chain C 0

"0;". Since the hypercube relations are

satisfied for all proper faces, the element C"0;" is a cycle. Since the complexes are

free F ŒU �-modules, this implies that C 0
"0;" is also a cycle. However, C"0;" has grading

m � 2 higher than the top degree generator, where m D j"0 � "jL1 . Hence, C 0
"0;" has

grading m higher than the top degree generator. As long as m � 1, we conclude that

C 0
"0;" is a boundary. We set �˛"0

;˛" to be any chain of homogeneous grading m C 1

such that

@�˛"0
;˛" D C 0

"0;":

Finally, we define the hypercube corresponding to the morphism A� to be the

pairing of CF.L�
˛;Lˇ /, where the hypercube maps are defined by using the normal

formulas for the maps in a pairing, while allowing the chains � to be inputs.

Lemma 7.4. .1/ The diagram L
�
˛ satisfies the hypercube relations (interpreted in the

way described above).
.2/ The map A� satisfies @Mor.A�/ D 0 (i.e., A� is a cycle).
.3/ The map A� is independent, up to chain-homotopy of hypercube morphisms,

from the choices of chains used in its construction.

Proof. The first claim follows immediately from the construction. The second claim

follows quickly from Gromov compactness interpreted via Lemma 7.3.

We consider the final claim. This is proven as follows. Suppose we have two

models of L
�
˛ , which are both constructed using the above procedure. We consider a

partially constructed hypercube of dimension d C 2, given by the following diagram:

L
�1!�2
˛ D

L˛ L˛

L˛ L˛

id �

�1

id

�2
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Here, �1 denotes the chains in one model of L
�
˛ , while �2 denotes the chains con-

structed in the other model, and the � arrows are yet to be defined. The hypercube

relations are satisfied on the four d -dimensional faces of the above diagram. We wish

to define chains which increment both of the displayed coordinates, such that the

hypercube relations are satisfied. The construction of such arrows (corresponding to

the � arrow above) follows nearly verbatim from the construction of the cube L
�
˛

itself. Pairing L
�1!�2
˛ with Lˇ gives the homotopy between the two models of A�,

completing the proof.

Remark 7.5. (1) If one works over the ring F ŒUw1
; : : : ; Uwn

�, one obtains instead

that @Mor.A�/ D .Uw1
C Uw2

/ � id, where @� D Uw1
C Uw2

.

(2) The simplest case of the map A� is when L˛ is 0-dimensional. Then, L
�
˛ is

just the formal hypercube

˛
�
�! ˛:

If Lˇ is a beta hypercube, then the map

A�W CF.˛;Lˇ / ! CF.˛;Lˇ /

requires no additional choices.

(3) Naturally, one may also build a hypercube L
�
ˇ

, similar to above, and define

B�W CF.L˛;Lˇ / ! CF.L˛;Lˇ /

as the hypercube CF.L˛;L
�
ˇ
/.

7.3. Maps for general equivalences on the expanded model

We now define the naturality maps for a general alpha or beta equivalence in terms

of the expanded model of the involution. Suppose that zD and zD0 are two basepoint

expanded doubling enhanced Heegaard diagrams, which share the same underlying

Heegaard surface †. Write H D .†;˛;ˇ; w/ and H
0 D .†;˛0;ˇ0; w/ for the under-

lying non-involutive Heegaard diagrams of zD and zD0, respectively. Write � and �0

for the choices of doubling curves. Furthermore, we assume that the diagram

�
†#x†;˛0; N̨ 0;˛; N̨ ;ˇ; Ň ;ˇ0; Ň 0

; c; c0;�;�0; w;w0
�

is weakly admissible. (This may be achieved by winding ˛, ˛0, ˇ and ˇ0 sufficiently).

Remark 7.6. Note that the above is not a valid Heegaard diagram since none of the

attaching curve sets have 2g.†/C 1 curves, however, it still makes sense to require

weak-admissibility. Indeed, the definition of weak-admissibility is that if P is a non-

zero integral 2-chain with boundary equal to a linear combination of curves on the
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CF.˛;ˇ; w/ CF.˛0;ˇ; w/ CF.˛0;ˇ0; w/

CF.˛c Ň ;ˇc Ň ; w;w0/ CF.˛0c Ň 0
;ˇc Ň ; w;w0/ CF.˛0c Ň 0

;ˇ0c Ň 0
; w;w0/

CF.˛c Ň ;�; w;w0/ CF.˛0c Ň 0
;�; w;w0/ CF.˛0c Ň 0

;�0; w;w0/

CF.˛c Ň ;�; w;w0/ CF.˛0c Ň 0
;�; w;w0/ CF.˛0c Ň 0

;�0; w;w0/

CF.˛c Ň ;˛c0 N̨ ; w;w0/ CF.˛0c Ň 0
;˛c0 N̨ ; w;w0/ CF.˛0c Ň 0

;˛0c N̨ 0; w;w0/

CF.˛c0 Ň ;˛c0 N̨ ; w;w0/ CF.˛0c0 Ň 0
;˛c0 N̨ ; w;w0/ CF.˛0c0 Ň 0

;˛0c0 N̨ 0; w;w0/

CF. Ň ; N̨ ; w/ CF. Ň 0
; N̨ ; w/ CF. Ň 0

; N̨ 0; w/

CF. Ň ; N̨ ; w/ CF. Ň ; N̨ 0; w/ CF. Ň 0
; N̨ 0; w/

F
c Ň;c Ň

1
F

c Ň 0;c Ň

1
F

c Ň 0;c Ň 0

1

A� A� A�

F
˛c0;˛c0

3
F

˛0c0;˛c0

3
F

˛0c0;˛0c0

3

id h N̨ ! N̨ 0

Ň! Ň0
id

Figure 7.2. The hyperbox whose compression is the basepoint expanded transition map

z‰ zD! zD0 .

diagram and nw.P / D nw0.P / D 0, then P has both positive and negative multiplic-

ities.

Our transition map z‰ zD! zD0 is defined by the hyperbox in Figure 7.2. We now

describe aspects of the construction in more detail. The second and third levels are

obtained by pairing hyperboxes of attaching curves in the obvious manner. The fourth

level is obtained from the argument in Section 7.2, where we take � to be a path in

the neck region which connects the two basepoints w and w0.

We now consider the levels involving the 1-handle and 3-handle maps. The map

F
c Ň 0;c Ň

1 is different than the other 1-handle maps we have seen so far, since we do not
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require the diagram .†; Ň ; Ň 0
/ to be a standard diagram for .S1 � S2/#g . Instead, we

only require the diagram to be admissible. We define the top level as the compression

of the following hyperbox:

CF.˛;ˇ; w/ CF.˛0;ˇ; w/ CF.˛0;ˇ0; w/

CF.˛;ˇ; w/˝CF. Ň ; Ň ; w0/ CF.˛0;ˇ; w/˝CF. Ň 0
; Ň ; w0/ CF.˛0;ˇ0; w/˝CF. Ň 0

; Ň 0
; w0/

CF.˛c Ň ;ˇc Ň ; w;w0/ CF.˛0c Ň 0
;ˇc Ň ; w;w0/ CF.˛0c Ň 0

;ˇ0c Ň 0
; w;w0/

˝‚ Ň; Ň ˝‚ Ň 0; Ň ˝‚ Ň 0; Ň 0

F
c;c
1

F
c;c
1

F
c;c
1

(7.8)

The horizontal arrows in equation (7.8) are holomorphic triangle maps. In the

middle, they are the tensor product of the holomorphic triangle maps on the two rele-

vant Heegaard triples. (Or equivalently, the map which counts holomorphic triangles

in the symplectic manifold .†t x†/�D3, whereD3 denotes a disk with three bound-

ary punctures.)

Lemma 7.7. The diagram in equation (7.8) satisfies the hyperbox relations.

Proof. The fact that the maps ˝‚ Ň; Ň (and so forth) are chain maps follows from the

fact that‚ Ň; Ň is a cycle. The maps F
c;c
1 are chain maps by [39, Proposition 8.5]. The

fact that the top left and right squares commute is a consequence of the fact that

f Ň 0; Ň; Ň.‚ Ň 0; Ň ; ‚ Ň; Ň/ D ‚ Ň 0; Ň and f Ň 0; Ň; Ň 0.‚ Ň 0; Ň ; ‚ Ň; Ň 0/ D ‚ Ň 0; Ň 0 :

The left relation follows from a small triangle argument [4, Proposition 11.1], while

the right one follows from the grading considerations. Commutativity of the bottom

two squares follows from the stabilization results for triangles [39, Theorem 8.8].

Remark 7.8. We remark that our main motivation for using the expanded model of

involution is to simplify the construction of the 1-handle and 3-handle hypercubes in

the transition map. Indeed, the 1-handle hypercube at the top level of equation (5.1)

is challenging to construct for general ˇ and ˇ0. The challenge is that in Heegaard

Floer theory, degenerating the holomorphic `-gon maps along a connected sum neck

in the Heegaard diagram yields moduli spaces which are fibered products over an

evaluation map to Symn.D`/�K`�1, whereK`�1 denotes an associahedron. Here, n

denotes the multiplicity at the connected sum point. The factor of Symn.D`/ records

asymptotics of holomorphic curves at the connected sum point. The factor of K`�1
records a choice of almost complex structure onD`. The construction of the 1-handle
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hypercube amounts to a problem of deforming the diagonal in

Symn.D`/ � Symn.D`/ �K`�1 �K`�1:

However, in the expanded model of the involution, we can use stabilization results

like Proposition 6.5 to reduce the problem to considering diagonals in K`�1 �K`�1,

which is a simpler problem and is sufficient for our purposes.

8. Relating the expanded and ordinary models of the involution

In this section, we relate the expanded model of the involution from Section 7 with

the ordinary model from Section 3.2. If D is a doubling enhanced Heegaard dia-

gram, and zD is a basepoint expanded doubling diagram, such that the underlying

(non-involutive) Heegaard diagrams for D and zD coincide, we will construct a chain

homotopy equivalence

F
D! zD

W CFI.D/ ! CFI. zD/:

Proposition 8.1. .1/ If D and D0 are ordinary doubling diagrams which differ by an
elementary equivalence, then

z‰ zD! zD0 ı F
D! zD

C F
D0! zD0 ı‰D!D0 ' 0:

.2/ If zD; zD0, and zD00 are three basepoint expanded doubling enhancements of
three handleslide equivalent diagrams, then

z‰ zD0! zD00 ı z‰ zD! zD0 ' z‰ zD! zD00 :

The definition of the map F
D! zD

is in Section 8.2. The proof of part (1) of Propo-

sition 8.1 is in Section 8.3. Finally, we prove part (2) in Section 8.4.

8.1. Preliminaries

In this section, we review a few maps that will appear in the construction of F
D! zD

,

and also construct an important hypercube.

Firstly, we recall the free-stabilization maps from [39, Section 6]. If H D .†;˛;

ˇ;w/ is a Heegaard diagram, and w0 is a point in † n .˛ [ ˇ [ w/, we may form a

new diagram H
C D .†; ˛ [ ˛0; ˇ [ ˇ0;w [ ¹w0º/ by adding attaching curves ˛0

and ˇ0 which are contained in a small ball centered at w0. We assume that ˛0 and ˇ0

intersect in two points, and furthermore, are disjoint from ˛ [ ˇ [ w.

In the above setting, there are chain maps

SC
w0 W CF�.H ; s/ ! CF�.H C; s/ and S�

w0 W CF�.H C; s/ ! CF�.H ; s/
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called the free-stabilization maps. They are given by the formulas

SC
w0.x/ D x � �C; S�

w0.x � �C/ D 0; S�
w0.x � ��/ D x;

extended equivariantly over F ŒU �.

If � is an arc which connects w0 to another basepoint in w, then

S�
w0A�S

C
w0 D id; (8.1)

for appropriately chosen almost complex structure. This is proven in [39, Lemma 7.10]

by a model computation.

We now generalize equation (8.1) to the setting of hypercubes. Suppose that H D

CF.L˛;Lˇ / is a hypercube formed by pairing hypercubes of attaching curves L˛ and

Lˇ . We form new hypercubes, L
C
˛ and L

C
ˇ

, by adding small translates of ˛0 and ˇ0 to

each attaching curve of L˛ and Lˇ . We form the morphisms of L
C
˛ by tensoring each

morphism of L˛ with �C
˛0;˛0

. We construct L
C
ˇ

similarly. The hypercube relations for

L
C
˛ and L

C
ˇ

follow from Proposition 6.5. Finally, we define a new hypercube of chain

complexes, HC D CF.LC
˛ ;L

C
ˇ
/.

We assume, additionally, that L˛ is a hypercube of handleslide equivalent alpha

attaching curves, and that the length 1 morphisms are all cycles representing the top

degree generator of homology. We construct the morphism

A�W CF.LC
˛ ;L

C
ˇ
/ ! CF.LC

˛ ;L
C
ˇ
/

as in Section 7.2.

We consider the following diagram:

H H

HC

HC

H H

id

id

S
C

w0

A�

S
�
w0

id

(8.2)

The maps SC
w0 and S

�
w0 denote hypercube versions of the free-stabilization maps;

that is, they are hypercube morphisms with only length 1 maps, which are the ordi-

nary free-stabilization maps on the Floer complexes. In the language of [4], these are

hypercubes of stabilization.
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If we compress the right-hand side of (8.2) we obtain a cube-shaped diagram. In

the following, we verify that the resulting diagram is a hypercube of chain complexes.

Proposition 8.2. Let H and HC be as above. Then, A� may be chosen so that the
diagram in (8.2) becomes a hypercube of chain complexes once we compress the
right-hand side. In the hypercubes along the right-hand side, we use almost complex
structures which are nodal near the free-stabilization region.

We begin with the following lemma.

Lemma 8.3. Let H and HC be as above. The hypercube .LC
˛ /
� may be chosen so

that each chain of length at least 2 in the � direction is of the form U�˛0;˛ ˝ �C
˛0;˛0

.

Proof. The proof is to follow the steps of the construction in Section 7.2 and verify

that each of the chains in L
�
˛ of length 2 or more may be taken to be of the stated form.

Suppose " < "0 and j"0 � "jL1 D 1. The chain of L
C
˛ from ˛" to ˛"0 is of the form

‚˛"0 ;˛"
˝ �C

˛0;˛0
by definition. As in equation (7.4), the desired length 2 hypercube

relation is

.A� C A0
�/.‚˛0;˛ ˝ �C

˛0;˛0
/ D @.U�˛0;˛ ˝ �C

˛0;˛0
/: (8.3)

From equation (7.5), we know that

.A� C A0
�/.‚˛0;˛ ˝ �C

˛0;˛0
/ D U.ˆw Cˆw0/.‚˛0;˛ ˝ �C

˛0;˛0
/:

Using the differential computation from [39, Proposition 6.5] we see thatˆw0.‚˛0;˛˝

�C
˛0;˛0

/ D 0 and

ˆw.‚˛0;˛ ˝ �C
˛0;˛0

/ D ˆ�
w.‚˛0;˛/˝ �C

˛0;˛0
;

where ˆ�
w denotes the basepoint action on the unstabilized complexes. In particular,

we see that ˆ�
w.‚˛0;˛/ D @�˛0;˛ , for some �˛0;˛ , since ˆ�

w increases grading by 1,

and ‚˛0;˛ is in the maximal grading of homology. Using the fact that SC
w0 is a chain

map [39, Proposition 6.5], we also have

@.�˛0;˛ ˝ �C
˛0;˛0

/ D @.�˛0;˛/˝ �C
˛0;˛0

:

In particular, the chain �˛0;˛ , constructed as above, satisfies equation (8.3).

The higher length chains of .LC
˛ /
� are analyzed similarly. In our present context,

by using the stabilization result for holomorphic polygons in Proposition 6.5, we see

that the right-hand side of equation (7.6) can be written as C"0;" ˝ �C
˛0;˛0

, where C"0;"

is a chain on the unstabilized complex. By the exact same reasoning as before, C"0;"

is a multiple of U , and is a cycle, so we may pick a primitive of the form U�˛0;˛ ˝

�C
˛0;˛0

, completing the proof.
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Proof of Proposition 8.2. The hypercube relations for the right-hand side follow from

the fact that each of the maps SC
w0 , A� and S

�
w0 is a homomorphism of hypercubes (i.e.,

a chain map).

The hypercube relations for the entire cube, after compressing the right-hand side

of the diagram in equation (8.2) are equivalent to the relation

S
�
w0A�S

C
w0 D id;

as hypercube morphisms. First, we use Lemma 8.3 to construct the hypercube .LC
˛ /
�

so that each chain of length at least 2 which has non-trivial � direction is of the form

U�˛0;˛ ˝ �C
˛0;˛0

. In the composition A�S
C
w0 , each arrow with length greater than 1

will be obtained by a holomorphic polygon count which only has inputs of the form

x ˝ �C
˛0;˛0

. By Proposition 6.5, the output of such a polygon count will also have a

tensor factor of �C
˛0;˛0

. Such elements lie in the kernel of S�
w0 . Hence, the composition

S
�
w0A�S

C
w0 has no arrows of length greater than 1. The arrows of length 1 correspond

to the composition S�
w0A�S

C
w0 , which is the identity, by [39, Lemma 7.10].

8.2. The map F
D! zD

In this section, we define the map F
D! zD

. The map will correspond to a hypercube

relating the expanded model of the involution from Section 7 and the non-expanded

model from Section 3.2.

The construction proceeds in two steps. We first relate the singly-pointed involu-

tion to a model which adds a basepoint in a very simple way. We call this the trivially
expanded involution. As a second step, we relate the trivially expanded model to the

expanded model defined in Section 7.

Let .†;˛;ˇ;w/ denote a Heegaard diagram, and letw0 be a new basepoint, chosen

near w. Let ˛0 and ˇ0 be two new alpha and beta circles, centered at w0. We will let

s denote either of the curves ˛0 or ˇ0 (or small translates thereof).

In Figure 8.1, each square commutes, and no length 2 maps are necessary. As our

definition, we take the compression of the right-hand side of Figure 8.1 as the trivially

expanded model of the involution.

We now describe how to relate the trivially expanded model in Figure 8.1 to the

expanded model described in Section 7. To do this, we use the hyperbox shown in

Figure 8.2.

We now explain the maps appearing in equation Figure 8.2. Except for the top-

and bottom-most cubes, all of the faces either commute on the nose, or are obtained

by pairing hypercubes of attaching curves. The hypercubes are all of handleslide

equivalent attaching curves, or handleslide equivalent attaching curves with an extra

direction corresponding to �. Hence, the construction follows by the technique of
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CF.˛;ˇ/ CF.˛;ˇ/ CF.˛;ˇ/ CF.˛;ˇ/

CF.˛ Ň ;ˇ Ň / CF.˛ Ň ;ˇ Ň / CF.˛s Ň ;ˇs Ň / CF.˛s Ň ;ˇs Ň /

CF.˛ Ň ;�/ CF.˛ Ň ;�/ CF.˛s Ň ; s�/ CF.˛s Ň ; s�/

CF.˛s Ň ; s�/ CF.˛s Ň ; s�/ CF.˛s Ň ; s�/

CF.˛s Ň ; s�/ CF.˛s Ň ;˛s N̨ / CF.˛s Ň ;˛s N̨ /

CF.˛ Ň ;�/ CF.˛ Ň ;�/ CF.˛ Ň ;˛ N̨ / CF. Ň ; N̨ /

CF.˛ Ň ;˛ N̨ / CF.˛ Ň ;˛ N̨ / CF. Ň ; N̨ / CF. Ň ; N̨ /

CF. Ň ; N̨ / CF. Ň ; N̨ / CF. Ň ; N̨ / CF. Ň ; N̨ /

id

F
Ň; Ň

1 A F
Ň; Ň

1

id

B

id

F
s Ň;s Ň

1 C F
s Ň;s Ň

1

id

f
ˇ Ň!�

˛ Ň D f
ˇ Ň!�

˛ Ň

S
C

w0

E f
ˇs Ň!s�

˛s Ň

id

F f
ˇs Ň!s�

˛s Ň

id

id G

S
C

w0

S
C

w0

H

id

A� I A�

A�

A�

J

id

f s�!˛s N̨

˛s Ň K f s�!˛s N̨

˛s Ň

S�
w0

f s�!˛s N̨

˛s Ň

L

id

S�
w0 M F

˛s;˛s
3

id

f�!˛ N̨

˛ Ň N f�!˛ N̨

˛ Ň

f
ˇ N̨

�!ˇ Ň

O

F
˛;˛
3

F
˛;˛
3 P id

id

F
˛;˛
3 Q F

˛;˛
3

F
˛;˛
3

R

id

id S id

id id id

Figure 8.1. The first hyperbox used to construct the map F
D! zD

. None of the faces have length

2 maps. The boxed letter will be referred to in the proof of part (1) of Proposition 8.1.
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CF.˛;ˇ/ CF.˛;ˇ/ CF.˛;ˇ/

CF.˛s Ň ;ˇs Ň / CF.˛s Ň ;ˇc Ň / CF.˛c Ň ;ˇc Ň /

CF.˛s Ň ; s�/ CF.˛s Ň ; s�/ CF.˛c Ň ; s�/

CF.˛s Ň ; s�/ CF.˛s Ň ; s�/ CF.˛c Ň ; s�/

CF.˛s Ň ;˛s N̨ / CF.˛s Ň ;˛c0 N̨ / CF.˛c Ň ;˛c0 N̨ /

CF.˛s Ň ;˛s N̨ / CF.˛s Ň ;˛c0 N̨ / CF.˛c0 Ň ;˛c0 N̨ /

CF. Ň ; N̨ / CF. Ň ; N̨ / CF. Ň ; N̨ /

F
s Ň;s Ň

1

id

A’ F
s Ň;c Ň

1

id

B’ F
c Ň;c Ň

1

f
ˇs Ň!s�

˛s Ň

f
ˇs Ň!ˇc Ň

˛s Ň

C’
f

ˇc Ň!s�

˛s Ň

f
ˇc Ň

˛s Ň!˛c Ň

D’
f

ˇc Ň!s�

˛c Ň

A�

id

E’ A�

f s�

˛s Ň!˛c Ň

F’
A�

f s�!˛s N̨

˛s Ň

id

G’
f s�!˛c0 N̨

˛s Ň

f s�

˛s Ň!˛c Ň

H’
f s�!˛c0 N̨

˛c Ň

id

f ˛s N̨ !˛c0 N̨

˛s Ň

I’

f ˛c0 N̨

˛s Ň!˛c Ň

id
J’

f ˛c0 N̨

˛c Ň!˛c0 Ň

F
˛s;˛s
3

f ˛s N̨ !˛c0 N̨

˛s Ň

K’ F
˛s;˛c0

3

f ˛c0 N̨

˛s Ň!˛c0 Ň

L’ F
˛c0;˛c0

3

id id

Figure 8.2. The second hyperbox used to construct the map F
D! zD

. The boxed letters label

the faces (in particular, they do not label maps in the faces).

filling empty hypercubes of handleslide equivalent attaching curves [18, Lemma 8.6],

or Section 7.2.

We now consider the top-most and bottom-most hypercubes. We claim that the

hypercube relations may be verified by appealing to Proposition 6.5. To this end, we

state the following lemma.

Lemma 8.4. .1/ With respect to the unique Spinc structures which have torsion
restriction to the boundaries of the corresponding 4-manifolds, the Heegaard triples

.x†; s Ň ; s Ň ; c Ň ; w;w0/ and .x†; c Ň ; s Ň ; c Ň ; w;w0/
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�0

�

�0

�c c0

s s

† N† † N†

Figure 8.3. The curves s, c and c0 in the connected sum neck region. The w basepoint is indi-

cated by � and the w0 is indicated by �0.

are weakly admissible multi-stabilizing Heegaard triples. Furthermore,

Ofs Ň;s Ň;c Ň.‚
C

s Ň;s Ň ; ‚
C

s Ň;c Ň/ D ‚C

s Ň;c Ň ;

Ofc Ň;s Ň;c Ň.‚
C

c Ň;s Ň ; ‚
C

s Ň;c Ň/ D ‚C

c Ň;c Ň :

Here, Ofs Ň;s Ň;c Ň denotes the map on cCF, and similarly for the other holomorphic tri-
angle map.

.2/ Similarly, with respect to the unique Spinc structures which have torsion
restriction to the boundary,

.†;˛s;˛s;˛c0; w;w0/ and .†;˛c0;˛s;˛c0; w;w0/

are weakly admissible multi-stabilizing diagrams, and

Of˛s;˛s;˛c0.‚�
˛s;˛s; ‚

C
˛s;˛c0/ D ‚�

˛s;˛c0 ;

Of˛c0;˛s;˛c0.‚C
˛c0;˛s; ‚

�
˛s;˛c0/ D ‚�

˛c0;˛c0 :

Proof. The claims about admissibility are proven by reducing to the genus zero triples

.S2; s; s; c; w;w0/, and so forth, by removing pairwise isotopic triples of curves from
Ň or ˛. See Figure 8.3 for the model case. It is straightforward to verify admissibility

for the genus 0 diagrams. Clearly the other conditions of a multi-stabilizing diagram

are satisfied.

We now prove the claim about the holomorphic triangle maps. Both triangle maps

may be interpreted as naturality maps for a sequence of handleslides. Since each of

the Floer complexes appearing in the statement have a unique top degree intersection

point, and a unique bottom degree intersection point, and also since the claims only

involve the maps on cCF, the claims follow from grading considerations.

8.3. Proof of part (1) of Proposition 8.1

We now show that the map F
D! zD

, defined in the previous section, commutes up to

chain homotopy for the transition maps for elementary equivalences of the alpha and

beta curves. This is part (1) of Proposition 8.1.
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Our proof is to build a 3-dimensional hypercube which realizes the homotopy

commutation

F
D0! zD0 ı‰D!D0 ' z‰ zD! zD0 ı F

D! zD
;

whenever D and D0 differ by an elementary equivalence. We build this hypercube

as follows. For each of the faces labeled (A)–(S) in Figure 8.1, and each of the faces

labeled (A’)–(L’) in Figure 8.2, we build a hyperbox of size .1; 1; 2/, which extends

the corresponding sub-cube of the map F
D! zD

in the direction of the maps ‰D!D0

and z‰ zD! zD0 . We can view each of these hyperboxes as a sequence of two hyper-

cubes. The third coordinate of the first hypercube is an alpha equivalence, and the

third coordinate of the second hypercube is a beta equivalence. (This pattern is paral-

lel to the construction of the map ‰D!D0 ; see Figure 5.1). Write ˛0, ˇ0, and �0 for

the attaching curves of D0.

The construction of the size .1; 1; 2/ hyperbox over the facet labeled B in Fig-

ure 8.1 is shown below.

CF.˛;ˇ/ CF.˛0;ˇ/ CF.˛0;ˇ0/

CF.˛;ˇ/ CF.˛0;ˇ/ CF.˛0;ˇ0/

CF.˛ Ň ;ˇ Ň / CF.˛0 Ň 0
;ˇ Ň / CF.˛0 Ň 0

;ˇ0 Ň 0
/

CF.˛s Ň ;ˇs Ň / CF.˛0s Ň 0
;ˇs Ň / CF.˛0s Ň 0

;ˇ0s Ň 0
/

f
ˇ

˛!a0

F
Ň; Ň

1

id

B

F
Ň 0; Ň

1

f
ˇ!ˇ0

˛0

id

F
Ň 0; Ň 0

1

id

f
ˇ

˛!˛0 f
ˇ!ˇ0

˛0

F
s Ň 0;s Ň 0

1

f
ˇ Ň

˛ Ň!˛0 Ň0

S
C

w0

f
ˇ Ň!ˇ0 Ň0

˛0 Ň0

S
C

w0 S
C

w0

f
ˇs Ň

˛s Ň!˛0s Ň 0

F
s Ň 0;s Ň

1

f
ˇs Ň!ˇ0s Ň 0

˛0s Ň 0

F
s Ň;s Ň

1

(8.4)

The hypercube relations for the diagram in (8.4) follow by using Proposition 6.5 to

destabilize the holomorphic triangle counts.

The hyperbox over the face labeled (G) in Figure 8.1 follows from the construction

from Proposition 8.2. The size .1; 1; 2/ hyperboxes over the remaining faces (A)–(S)

are similar to the construction in equation (8.4). We leave the details to the reader.

Next, we move on to extending the hyperboxes from Figure 8.2. The extensions of

the faces labeled (C’)–(J’) are obtained by pairing hypercubes of handleslide equiv-

alent attaching curves (with an extra dimension corresponding to � in the case of E’

and F’). In particular, the extensions are constructed using techniques which are now

standard, so we leave them to the reader.

We investigate the hypercubes labeled A’, B’, K’ and L’. All four are constructed

similarly, so we focus our attention on the face labeled A’. The extension is shown in
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the following diagram:

CF.˛;ˇ/ CF.˛0;ˇ/ CF.˛0;ˇ0/

CF.˛;ˇ/ CF.˛0;ˇ/ CF.˛0;ˇ0/

CF.˛s Ň ;ˇs Ň / CF.˛0s Ň 0
;ˇs Ň / CF.˛0s Ň 0

;ˇ0s Ň 0
/

CF.˛s Ň ;ˇc Ň / CF.˛0s Ň 0
;ˇc Ň / CF.˛0s Ň 0

;ˇ0c Ň 0
/

f
ˇ

˛!a0

F
s Ň;s Ň

1

id

A’

F
s Ň 0;s Ň

1

f
ˇ!ˇ0

˛0

id

F
s Ň 0;Nsˇ0

1

id

f
ˇ

˛!˛0 f
ˇ!ˇ0

˛0

F
s Ň 0;c Ň 0

1

f
ˇs Ň

˛s Ň!˛0s Ň 0

f
ˇs Ň!ˇc Ň

˛s Ň

f
ˇs Ň!ˇ0s Ň 0

˛0s Ň 0

f
ˇs Ň!ˇc Ň

˛0s Ň 0 f
ˇ0s Ň 0!ˇ0c Ň 0

˛0s Ň 0

f
ˇc Ň

˛s Ň!˛0s Ň 0

F
s Ň;c Ň

1

f
ˇc Ň!ˇ0c Ň 0

˛0s Ň 0

F
s Ň 0;c Ň

1

(8.5)

The hypercube relations follow from the stabilization results of Proposition 6.5, to-

gether with Lemma 8.4.

8.4. The composition law for expanded transition maps

In this section, we prove part (2) of Proposition 8.1. As in the hypotheses of the

proposition, suppose that we have three handleslide equivalent Heegaard diagrams

.†;˛;ˇ; w/; .†;˛0;ˇ0; w/; .†;˛00;ˇ00; w/;

all with underlying surface†. We also pick three choices of basepoint expanded dou-

bling curves �, �0 and �00, and let c and c0 denote the curves in the connected sum

region. We further assume that the tuple

.†#x†;˛00; N̨ 00;˛0; N̨ 0;˛; N̨ ;ˇ; Ň ;ˇ0; Ň 0
;ˇ00; Ň 00

;�;�0;�00; c; c0; w/

is weakly admissible (cf. Remark 7.6). Write zD, zD0 and zD00 for the associated base-

point expanded, doubling enhanced Heegaard diagrams. We will show that

z‰ zD! zD00 ' z‰ zD0! zD00 ı z‰ zD! zD0 :

Our proof goes by constructing a hyperbox which realizes the stated relation. For

each vertical level in the construction of z‰ zD! zD0 , the hyperbox we construct will have

a level which takes the form of a hyperbox of size .2; 2; 1/.

We describe the 1-handle hyperbox first. See Figure 8.4 for the overall shape of the

1-handle hyperbox. As a first step, we construct the hypercube shown in the following
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equation:

F ŒU � F ŒU �

F ŒU � F ŒU �

CF. Ň 0
; Ň / CF. Ň 0

; Ň 0
/

CF. Ň 00
; Ň / CF. Ň 00

; Ň 0
/

id

‚ Ň 0; Ň

id

! Ň 00; Ň 0

id

‚ Ň 0; Ň 0

id

‚ Ň 00; Ň 0

f
Ň

Ň 0! Ň00

f
Ň! Ň0

Ň0

h
Ň! Ň0

Ň0! Ň00
f

Ň 0

Ň0! Ň00

‚ Ň 00; Ň

f
Ň! Ň0

Ň00

� Ň 00; Ň

� Ň 00; Ň 0

(8.6)

The hypercube in equation (8.6) is constructed similarly to the procedure for filling
a hypercube of handleslide equivalent attaching curves, described by Manolescu and

Ozsváth [18, Lemma 8.6]. In equation (8.6), an arrow labeled by an element x 2

T˛ \ Tˇ means the map from F ŒU � to CF.˛;ˇ/ given by

1 7! x;

extended equivariantly over U . The existence of � Ň 00; Ň 0 , � Ň 00; Ň 0 and ! Ň 00; Ň 0 so that the

diagram in (8.6) satisfies the hypercube relations follows from the fact that Ň , Ň 0
and

Ň 00
are handleslide equivalent.

It is helpful to concretely understand the hypercube relations in (8.6). The length

1 relations amount to each chain marked with ‚ being a cycle. The length 2 relations

are as follows:

f
Ň! Ň 0

Ň 0
.‚ Ň 0; Ň/ D ‚ Ň 0; Ň 0 ;

f
Ň 0

Ň 0! Ň 00
.‚ Ň 0; Ň 0/ D ‚ Ň 00; Ň 0 ;

‚ Ň 00; Ň C f
Ň

Ň 0! Ň 00
.‚ Ň 0; Ň/ D @� Ň 00; Ň ;

f
Ň! Ň 0

Ň 00
.‚ Ň 00; Ň/C‚ Ň 00; Ň 0 D @� Ň 00; Ň 0 ;

f
Ň 0

Ň 0! Ň 00
ı f

Ň! Ň 0

Ň 0
C f

Ň! Ň 0

Ň 00
ı f

Ň

Ň 0! Ň 00
D
h
@; h

Ň! Ň 0

Ň 0! Ň 00

i
: (8.7)
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Note that the first relation is forced by grading considerations, and the second is

implied by a nearest point map computation. The third and fourth relations are clearly

satisfiable, and the final relation is the associativity relations for quadrilaterals.

Finally, the length 3 relation is

f
Ň! Ň 0

Ň 00
.� Ň 00; Ň/C � Ň 00; Ň 0 C h

Ň! Ň 0

Ň 0! Ň 00
.‚ Ň 0; Ň/ D @! Ň 00; Ň 0 :

Note that the hypercube in (8.6) is a new type of hypercube. It is not naturally

realized by pairing alpha and beta hypercubes together. We can think of the left-hand

side as determining the following hypercube of alpha attaching curves:

Ň Ň

Ň 0 Ň 00

1

� Ň 00; Ň‚ Ň 0; Ň ‚ Ň 00; Ň

‚ Ň 00; Ň 0

(8.8)

On the other hand, the front side is more naturally viewed as corresponding to the

following hypercube of beta attaching curves:

Ň 00 Ň 00

Ň Ň 0

1

� Ň 00; Ň 0‚ Ň 00; Ň ‚ Ň 00; Ň 0

‚ Ň; Ň 0

(8.9)

The bottom face of (8.6) is the pairing of hypercubes of attaching curves.

Next, we pick hypercubes of alpha attaching curves and beta attaching curves

(respectively):

˛ ˛0

˛ ˛00

‚˛0;˛

�˛00;˛1 ‚˛00;˛0

‚˛00;˛

and

ˇ ˇ0

ˇ ˇ00

‚ˇ;ˇ0

�ˇ;ˇ001 ‚ˇ0;ˇ00

‚ˇ;ˇ00

(8.10)

As usual, we assume that the length 1 morphisms represent top degree cycles. Note

that we do not assume that the chains in (8.10) have any relation with the chains

in (8.8) or (8.9).

We now consider the diagram in Figure 8.4. We will presently define the maps

appearing therein, and then subsequently prove the hypercube relations. All the maps
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.˛;ˇ/ .˛0;ˇ/ .˛0;ˇ0/

.˛;ˇ/ .˛00;ˇ/ .˛00;ˇ0/

.˛c Ň ;ˇc Ň / .˛0c Ň 0
;ˇc Ň / .˛0c Ň 0

;ˇ0c Ň 0
/

.˛c Ň ;ˇc Ň / .˛00c Ň 00
;ˇc Ň / .˛00c Ň 00

;ˇ0c Ň 0
/

id

F
c Ň;c Ň

1

f
ˇ

˛!˛0

f
ˇ

˛0!˛00

F
c Ň 0;c Ň

1

f
ˇ!ˇ0

˛0

f
ˇ0

˛0!˛00

F
c Ň 0;c Ň 0

1

f
ˇ

˛!˛00

F
c Ň 00;c Ň

1

f
ˇ!ˇ0

˛00

F
c Ň 00;c Ň 0

1

id

f
ˇc Ň

˛c Ň!˛0c Ň 0

f
ˇc Ň

˛0c Ň 0!˛00c Ň 00

f
ˇc Ň!ˇ0c Ň 0

˛0c Ň 0

f
ˇ0c Ň 0

˛0c Ň 0!˛00c Ň 00

F
c Ň;c Ň

1

f
ˇc Ň

˛c Ň!˛00c Ň 00 f
ˇc Ň!ˇ0c Ň 0

˛00c Ň 00

.˛;ˇ/ .˛00;ˇ/ .˛00;ˇ0/

.˛;ˇ/ .˛00;ˇ/ .˛00;ˇ00/

.˛c Ň ;ˇc Ň / .˛00c Ň 00
;ˇc Ň / .˛00c Ň 00

;ˇ0c Ň 0
/

.˛c Ň ;ˇc Ň / .˛00c Ň 00
;ˇc Ň / .˛00c Ň 00

;ˇ00c Ň 00
/

id

F
c Ň;c Ň

1

f
ˇ

˛!˛00

id

F
c Ň 00;c Ň

1

f
ˇ!ˇ0

˛00

f
ˇ0!ˇ00

˛00

F
c Ň 00;c Ň 0

1

f
ˇ

˛!˛00

F
c Ň 00;c Ň

1

f
ˇ!ˇ00

˛00

F
c Ň 00;c Ň 00

1

id

f
ˇc Ň

˛c Ň!˛00c Ň 00

id

f
ˇc Ň!ˇ0c Ň 0

˛00c Ň 00

f
ˇ0c Ň 0!ˇ00c Ň 00

˛00c Ň 00

F
c Ň;c Ň

1

f
ˇc Ň

˛c Ň!˛00c Ň 00 f
ˇc Ň!ˇ00c Ň 00

˛00c Ň 00

Figure 8.4. Four hypercubes. The length 2 maps are sums of quadrilateral and triangle maps

(obtained by pairing hypercubes). The two boxes are stacked along the gray faces.
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are built from the hypercubes in (8.6) and (8.10). We note that the hypercube relations

are slightly subtle, since they do not arise from simply pairing hypercubes of attaching

curves together.

We focus first on the top left cube of Figure 8.4. The maps appearing there are as

follows.

(1) The length 2 map along the top is one associated to pairing the 0-dimensional

beta hypercube ˇ with the alpha hypercube

˛ ˛0

˛ ˛00

‚˛0;˛

�˛00;˛1 ‚˛00;˛0

‚˛00;˛

(2) The length 2 map along the bottom is the one obtained by pairing the 0-

dimensional beta hypercube ˇc Ň with the hypercube

˛c Ň ˛0c Ň 0

˛c Ň ˛00c Ň 00

‚˛0;˛ j�Cj‚ Ň 0; Ň

1 � ‚˛00;˛0 j�Cj‚ Ň 00; Ň 0

‚˛00;˛ j�Cj‚ Ň 00; Ň

where

� D �˛00;˛j�Cjf Ň 00; Ň 0; Ň.‚ Ň 00; Ň 0 ; ‚ Ň 0; Ň/C‚˛00;˛j�Cj� Ň 00; Ň :

(3) The length 2 map along the right-hand side is

x 7! f
ˇ
˛0!˛00.x/j�

Cj� Ň 00; Ň :

(4) The length 3 map is

x 7! h
ˇ
˛!˛0!˛00.x/j�

Cj� Ň 00; Ň C f˛00;˛;ˇ .�˛00;˛;x/j�
Cj� Ň 00; Ň :

Lemma 8.5. The maps described above for the top left subcube of the diagram in
Figure 8.4 satisfy the hypercube relations.

Proof. The length 1 relations are immediate, as are the length 2 relations for all but

the right face of the cube. For the right face of the cube, using the stabilization result

from Proposition 6.5, applied to holomorphic triangles, we see that the hypercube
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relations amount to showing that if x 2 T˛00 \ Tˇ , then

f
ˇ
˛0!˛00.x/j�

Cj
�
‚ Ň 00; Ň C f Ň 00; Ň 0; Ň.‚ Ň 00; Ň 0 ; ‚ Ň 0; Ň/

�

D @
�
f
ˇ
˛0!˛00.x/j�

Cj� Ň 00; Ň

�
C f

ˇ
˛0!˛00.@x/j�

Cj� Ň 00; Ň ;

which follows from the form of the differential on the Heegaard diagram obtained by

attaching a 1-handle. The key point is that the right-hand side of the above equation

simplifies to just f
ˇ
˛0!˛00.x/j�

Cj@� Ň 00; Ň , which coincides with the left-hand side by

equation (8.7).

Next, we consider the length 3 relation of the cube. The desired relation is that if

x 2 T˛ \ Tˇ ; then

h
ˇ
˛!˛0!˛00.x/j�

Cj‚ Ň 00; Ň

C f˛00;˛;ˇ .�˛00;˛;x/j�
Cj‚ Ň 00; Ň

C h˛00c Ň 00;˛0c Ň 0;˛c Ň;ˇc Ň.‚˛00;˛0 j�Cj‚ Ň 00 Ň 0 ; ‚˛0;˛j�Cj‚ Ň 0 Ň ;xj�Cj‚ Ň; Ň/

C .f
ˇ
˛0!˛00 ı f

ˇ
˛!˛0/.x/j�

Cj� Ň 00; Ň

C f˛00c Ň 00;˛c Ň;ˇc Ň.�˛00;˛j�Cjf Ň 00; Ň 0; Ň.‚ Ň 00; Ň 0 ; ‚ Ň 0; Ň/;xj�Cj‚C
Ň; Ň/

C f˛00c Ň 00;˛c Ň;ˇc Ň.‚˛00;˛j�Cj� Ň 00; Ň ;xj�Cj‚ Ň; Ň/

D
h
h
ˇ
˛!˛0!˛00.�/j�

Cj� Ň 00; Ň C f˛00;˛;ˇ .�˛00;˛;�/j�
Cj� Ň 00; Ň ; @

i
.x/:

(8.11)

We note that
h
h
ˇ
˛!˛0!˛00.�/j�

Cj� Ň 00; Ň ; @
i
.x/

D f˛00;˛;ˇ .f˛00;˛0;˛.‚˛00;˛0 ; ‚˛0;˛/;x/j�
Cj� Ň 00; Ň

C
�
f
ˇ
˛0!˛00 ı f

ˇ
˛!˛0

�
.x/j�Cj� Ň 00; Ň

C h
ˇ
˛!˛0!˛00.x/j�

Cj‚ Ň 00; Ň

C h
ˇ
˛!˛0!˛00.x/j�

Cjf Ň 00; Ň 0; Ň.‚ Ň 00; Ň 0 ; ‚ Ň 0; Ň/: (8.12)

Also,

�
f˛00;˛;ˇ .�˛00;˛;�/j�

Cj� Ň 00; Ň ; @
�
.x/

D f˛00;˛;ˇ .‚˛00;˛ C f˛00;˛0;˛.‚˛00;˛0 ; ‚˛0;˛/;x/j�
Cj� Ň 00; Ň

C f˛00;˛;ˇ .�˛00;˛;x/j�
Cj.‚ Ň 00; Ň C f Ň 00; Ň 0; Ň.‚ Ň 00; Ň 0 ; ‚ Ň 0; Ň//: (8.13)
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Next, we note that the stabilization result from Proposition 6.5 implies that

f˛00c Ň 00;˛c Ň;ˇc Ň.�˛00;˛j�Cjf Ň 00; Ň 0; Ň.‚ Ň 00; Ň 0 ; ‚ Ň 0; Ň/;xj�Cj‚ Ň; Ň/

D f˛00;˛;ˇ .�˛00;˛;x/j�
Cjf Ň 00; Ň 0; Ň.‚ Ň 00; Ň 0 ; ‚ Ň 0; Ň/;

f˛00c Ň 00;˛c Ň;ˇc Ň.‚˛00;˛j�Cj� Ň 00; Ň ;xj�Cj‚ Ň; Ň/

D f˛00;˛;ˇ .‚˛00;˛;x/j�
Cj� Ň 00; Ň : (8.14)

Using (8.12), (8.13), and (8.14) to simplify (8.11), we see that the length 3 hyper-

cube relation becomes equivalent to

h˛00c Ň 00;˛0c Ň 0;˛c Ň;ˇc Ň.‚˛00;˛0 j�Cj‚ Ň 00 Ň 0 ; ‚˛0;˛j�Cj‚ Ň 0; Ň ;xj�Cj‚ Ň; Ň/

D h
ˇ
˛!˛0!˛00.x/j�

Cjf Ň 00; Ň 0; Ň.‚ Ň 00; Ň 0 ; ‚ Ň 0; Ň/: (8.15)

We now prove (8.15). Suppose that  and  0 are classes of rectangles on .†;˛00;

˛0;˛;ˇ/ and . N†; Ň 00
; Ň 0
; Ň ; Ň / such that �. /C �. 0/ D �1. Let C. ;  0/ denote

the set of all homology classes which coincide with  and  0 outside the 1-handle

region, and have �C as their input and output in the 1-handle region. (Such rectangles

necessarily have index �1.) Applying Proposition 6.5 to the 1-handle region allows

us to remove the 1-handle region connecting † and N†. We obtain

X

�2C. ; 0/

#M.�/ � #.M. / �ev�
M. 0// .mod 2/: (8.16)

Here, we are also using the nodal almost complex structures around the 1-handle

region on the left-hand side. Furthermore, any class of rectangles which is not in

some C. ; 0/ for a pair . ; 0/ satisfying �. /C�. 0/D �1 has no holomorphic

representatives. Also, �ev�
denotes the fibered product over the evaluation map to the

parameter space R Š M.�/.

We write h0 for the map from CF�.˛; ˇ/ to CF�.˛00c Ň 00
; ˇc Ň / which is the

composition

h0 D h
ˇc Ň

˛c Ň!˛0c Ň 0!˛00c Ň 00
ı F

c Ň;c Ň

1 :

By equation (8.16), we may identify h0 as the map which counts holomorphic rect-

angles on the disjoint union of two diagrams, viewed as a fibered product over ev�.

We may consider a map ht for any generic t 2 R, which counts curve pairs .u; u0/

on the disjoint union consisting of holomorphic quadrilaterals such that ev�.u/ D

ev�.u0/C t .

We claim that ht D ht
0

for generic t and t 0 in R. Firstly, we note that since Ň

appears twice (once as a small Hamiltonian isotopy), the nearest point argument of

[4, Proposition 11.5] (cf. [15, Section 3.4]) implies that for suitably small choices

of translations, the only rectangles on N† with representatives have Maslov index at
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least 0. In particular, all holomorphic rectangles counted by ht for generic t have

�. / D �1 and �. 0/ D 0.

We consider the ends of the moduli spaces counted by ht , ranging over t 2 Œ0;1/.

No degenerations are possible on the†-side, since all rectangles there have index �1.

On the N†-side, rectangles have index 0, so the possible degenerations are a holomor-

phic disk splitting off at some finite t , as well as the ends which appear as t ! 1.

The ends appearing at t ! 1 correspond exactly to the map

h
ˇ
˛!˛0!˛00.x/j�

Cjf Ň 00; Ň 0; Ň.‚ Ň 00; Ň 0 ; f Ň 0; Ň; Ň.‚ Ň 0; Ň ; ‚ Ň; Ň//:

The ends at finite t are slightly more subtle. First, one end which can appear is an

end where a disk breaks off into the Ň - Ň end. These cancel modulo two since ‚ Ň; Ň

is a cycle. Holomorphic disks breaking off into the other ends are prohibited, since

they would leave an index �1 holomorphic rectangle, with ‚ Ň; Ň as input. (The most

important end where this is prohibited is the outgoing Ň 00
- Ň end, where a more general

diagram might have degenerations.) In particular, we obtain (8.15), completing the

proof.

The hypercube in the bottom right of Figure 8.4 is constructed by simply inter-

changing the roles of the alpha and beta curves in the above procedure.

We now construct the maps in the top right hypercube of Figure 8.4. As a first

step, we pick chains to give hypercubes of attaching curves, as follows.

(1) The top face is obtained by pairing the two hypercubes

˛0
‚˛00;˛0

����! ˛00 and ˇ
‚ˇ;ˇ0

����! ˇ0:

(2) The bottom face is obtained by pairing the two hypercubes

˛0c Ň 0 ‚˛00;˛0 j�Cj‚ Ň 00; Ň 0

������������! ˛00c Ň 00
and ˇc Ň

‚ˇ;ˇ0 jcj‚ Ň; Ň 0

���������! ˇ0c Ň 0
:

(3) The length 2 map along the left face is

x 7! f
ˇ
˛0!˛00.x/j�

Cj� Ň 00; Ň :

(4) The length 2 map along the front face is

x 7! f
ˇ!ˇ 0

˛00 .x/j�Cj� Ň 00; Ň 0 :

(5) The length 3 map is the sum of the following two maps:

x 7!
�
f
ˇ!ˇ 0

˛00 ı f
ˇ
˛0!˛00

�
.x/j�Cj! Ň 00; Ň 0 ;

x 7! ht<t0.x/:
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The map ht<t0 is a new map, as follows. It counts pairs .u; u0/, where u and u0 are

holomorphic rectangles on .†;˛00;˛0;ˇ;ˇ0/ and .x†; Ň 00
; Ň 0
; Ň ; Ň 0

/, respectively, both

of index �1, such that

ev�.u/ < ev�.u0/:

If y and z are the outputs of u and u0, respectively, then the ht<t0.x/ has a summand

of y � �C � z (weighted by the appropriate U -power).

Lemma 8.6. With the maps described above, the top right subcube of Figure 8.4 is a
hypercube of chain complexes.

Proof. The proof is similar to the proof of Lemma 8.5. The length 1 and 2 hypercube

relations are similar to the previous case, so we focus on the length 3 relation. If

x 2 T˛0 \ Tˇ , the desired relation is

h
ˇ!ˇ 0

˛0!˛00.x/j�
Cj‚ Ň 00; Ň 0

C f˛00c Ň 00;ˇc Ň;ˇ 0c Ň 0

�
f
ˇ
˛0!˛00.x/j�

Cj� Ň 00; Ň ; ‚ˇ;ˇ 0 j�Cj‚ Ň; Ň 0

�

C
�
f
ˇ!ˇ 0

˛00 ı f
ˇ
˛0!˛00

�
.x/j�Cj� Ň 00; Ň 0

C h
ˇc Ň!ˇ 0c Ň 0

˛0c Ň 0!˛00c Ň 00
.xj�Cj‚ Ň 0; Ň/

D
��
f
ˇ!ˇ 0

˛00 ı f
ˇ
˛0!˛00

�
.�/j�Cj! Ň 00; Ň 0 C ht<t0 ; @

�
.x/: (8.17)

By excising the special curves in the connected sum region using the results about

holomorphic triangles and 1-handles from [39, Theorem 8.8] (compare Proposition 6.5

above), we obtain

f˛00c Ň 00;ˇc Ň;ˇ 0c Ň 0

�
f
ˇ
˛0!˛00.x/j�

Cj� Ň 00; Ň ; ‚ˇ;ˇ 0 j�Cj‚ Ň; Ň 0

�

D
�
f
ˇ!ˇ 0

˛00 ı f
ˇ
˛0!˛00

�
.x/j�Cjf

Ň! Ň 0

Ň 00
.� Ň 00; Ň/: (8.18)

We now analyze the quadrilateral map

h
ˇc Ň!ˇ 0c Ň 0

˛0c Ň 0!˛00c Ň 00

�
xj�Cj‚ Ň 0; Ň

�
:

As with the previous case, we can destabilize the 1-handle region and identify the

expression with the count of index �1 holomorphic quadrilaterals on .† t x†/ � �.

We can view this moduli space as the fibered product over the evaluation map to

M.�/Š R. If . ; 0/ is a homology class on .†t x†/� � which admits a holomor-

phic representative, then there are generically two possibilities:

(1) �. / D 0 and �. 0/ D �1;

(2) �. / D �1 and �. 0/ D 0.
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As before we will write h0 for the map h
ˇc Ň!ˇ 0c Ň 0

˛0c Ň 0!˛00c Ň 00
.xj�Cj‚ Ň 0; Ň/. For t 2 Œ0;1/,

we write ht for a deformation, which counts curves such that

ev�.u0/ � ev�.u/ D t:

We count the ends of the moduli spaces defining the maps ht (ranging over t 2 Œ0;1/).

We obtain

Œ@; ht<t0 �.x/ D h
ˇc Ň!ˇ 0c Ň 0

˛0c Ň 0!˛00c Ň 00
.xj�Cj‚ Ň 0; Ň/

C .f
ˇ!ˇ 0

˛00 ı f
ˇ
˛0!˛00/.x/j�

Cjh
Ň! Ň 0

Ň 0! Ň 00
.‚ Ň 0; Ň/C h

ˇ!ˇ 0

˛0!˛00.x/j�
Cj‚ Ň 00; Ň 0 : (8.19)

Note that instead of ‚ Ň 00; Ň 0 in the final factor, what more naturally appears is

f Ň 00; Ň 0; Ň 0

�
‚ Ň 00; Ň 0 ; f Ň 0; Ň; Ň 0.‚ Ň 0; Ň ; ‚ Ň; Ň 0/

�
:

However, this coincides with ‚ Ň 00; Ň 0 , by a nearest point computation, cf. [4, Proposi-

tion 11.1].

Finally,

��
f
ˇ!ˇ 0

˛00 ı f
ˇ
˛0!˛00.�/

�
j�Cj! Ň 00; Ň 0 ; @

�
.x/

D
�
f
ˇ!ˇ 0

˛00 ı f
ˇ
˛0!˛00.x/

�
j�Cj

�
f

Ň! Ň 0

Ň 00
.� Ň 00; Ň/C � Ň 00; Ň 0 C h

Ň! Ň 0

Ň 0! Ň 00
.‚ Ň 0; Ň/

�
:

(8.20)

By combining (8.18), (8.19), and (8.20), we quickly obtain (8.17), completing the

proof.

9. 1- and 3-handles

In this section, we define our cobordism maps for 1-handle and 3-handles. Since for

the maps in this section there will be an obvious choice of Spinc structure and framed

path, we omit these from the notation throughout.

9.1. The construction

We now construct the map for a 4-dimensional 1-handle. Suppose that S0 D ¹p; p0º

is a (framed) 0-sphere in Y . We pick a Heegaard surface .†; ˛; ˇ/ so that S0 �

† n .˛ [ ˇ/. We form a Heegaard surface for the surgered manifold Y.S0/ by cutting

out small disks centered at p and p0, and gluing in an annular diagram .A; 
0; 
0/,

where 
0 and 
0 are meridians of the annulus which intersect in two points. (Here and

onwards, we abuse notation and view one copy of 
0 as a Hamiltonian translate of the

other). Write .†0;˛
0;ˇ
0; w/ for the diagram obtained by this procedure.
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We now define the 4-dimensional 1-handle map. To do this, we first pick paths �

and �0 from p and p0 to w. We pick doubling arcs ı for † which are disjoint from �

and �0. Furthermore, we choose two more doubling arcs ı0 on†0, which are contained

in the union of a neighborhood of � and �0, as well as the annular 1-handle region.

We assume ı [ ı0 is a valid collection of doubling arcs for †0. Write � and �0 for

the curves obtained by doubling ı and ı0, respectively.

Additionally, the involutive 1-handle map requires a choice of closed curve � �

†0#x†0, such that the path � is obtained by doubling a properly embedded arc on

†0 nN.w/ which intersects 
0 transversely at a single point.

We define the 1-handle map to be the diagram obtained by compressing the fol-

lowing hyperbox:

CF.˛;ˇ/ CF.˛
0;ˇ
0/

CF.˛ Ň ;ˇ Ň / CF.˛ Ň 
0 N
0;ˇ Ň 
0 N
0/ CF.˛ Ň 
0 N
0;ˇ Ň 
0 N
0/

CF.˛ Ň ;�/ CF.˛ Ň 
0 N
0;�
0 N
0/ CF.˛ Ň 
0 N
0;��0/

CF.˛ Ň ;˛ N̨ / CF.˛ Ň 
0 N
0;˛ N̨
0 N
0/ CF.˛ Ň 
0 N
0;˛ N̨
0 N
0/

CF. Ň ; N̨ / CF. Ň N
0; N̨ N
0/

F
Ň; Ň

1

F

0;
0
1

F
Ň N
0; Ň N
0

1

F

0 N
0;
0 N
0
1

f
ˇ Ň!�

˛ Ň f
ˇ Ň
0 N
0!�
0 N
0

˛ Ň
0 N
0
f

ˇ Ň
0 N
0!��0

˛ Ň
0 N
0

F

0 N
0;
0 N
0
1

f �!˛ N̨

˛ Ň

f
�
0 N
0!��0

˛ Ň
0 N
0

f
�
0 N
0!˛ N̨ 
0 N
0

˛ Ň
0 N
0
f

��0!˛ N̨ 
0 N
0

˛ Ň
0 N
0

F

0 N
0;
0 N
0
1

F
˛;˛
3

B�

F
˛
0;˛
0
3

F
N
0; N
0

1

(9.1)

It will be helpful to observe that the bottom-most level of (9.1) has the following

slightly expanded form:

CF.˛ Ň ;˛ N̨ / CF.˛ Ň N
0;˛ N̨ N
0/ CF.˛ Ň 
0 N
0;˛ N̨
0 N
0/ CF.˛ Ň 
0 N
0;˛ N̨
0 N
0/

CF.˛ Ň ;˛ N̨ / CF.˛ Ň N
0;˛ N̨ N
0/ CF.˛ Ň N
0;˛ N̨ N
0/

CF. Ň ; N̨ / CF. Ň N
0; N̨ N
0/

F
N
0; N
0

1
F


0;
0
1

B�

F

0;
0
3

F
N
0; N
0

1

F
˛;˛
3 F

˛;˛
3

F
N
0; N
0

1

(9.2)

We now describe the construction of (9.1). The top-most face which has a diagonal

map is obtained by pairing a hypercube of beta attaching curves with the hypercube

of alpha attaching curves consisting of ˛ Ň 
0 N
0.
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We now consider the lowest face of (9.1) which has a diagonal map. This map

is obtained by pairing the 0-dimensional alpha hypercube ˛ Ň 
0 N
0 with the diagram

below. The map B� is the H1-action for � , defined by counting changes across the

beta curves, ˛ N̨
0 N
0.

�
0 N
0 ��0

˛ N̨
0 N
0 ˛ N̨
0 N
0

‚�
0 N
0;��0

‚�
0 N
0;˛ N̨ 
0 N
0
� ‚��0;˛ N̨ 
0 N
0

�

(9.3)

In equation (9.3), the hypercube relations are to be interpreted using the formalism of

Section 7.2. In particular, the hypercube relations amount to the equation

@� D B� .‚�
0 N
0;˛ N̨
0 N
0
/C f�
0 N
0;��0;˛ N̨
0 N
0

.‚�
0 N
0;��0
; ‚��0;˛ N̨
0 N
0

/: (9.4)

Remark 9.1. There are many choices of morphisms in the diagram in equation (9.3).

Any two choices of top-degree generators‚�
0 N
0;��0
are homologous. Similarly any

two choices of ‚�
0 N
0;˛ N̨
0 N
0
and ‚��0;˛ N̨
0 N
0

are homologous. Unlike these mor-

phisms, it is not the case that any two choices of diagonal morphism �D��
0 N
0;˛ N̨
0 N
0

are homologous. Indeed, this chain lies in the top degree of CF�.#gC1S1 � S2/,

and hence, there two choices which are not homologous. Similarly, it is not the case

that any two choices for the curve � are homologous. Nonetheless, we will show in

Lemma 9.5 that resulting involutive 1-handle map obtained by compressing the dia-

gram in equation (9.2) is independent of these choices, up to chain homotopy.

We now show that this is satisfiable.

Lemma 9.2. There is a homogeneously graded � 2 CF.�
0 N
0; ˛ N̨
0 N
0/ satisfy-
ing (9.4).

Proof. Any two choices of ��0 are related by a sequence of handleslides and iso-

topies. Via an associativity argument, it is sufficient to show the claim for any con-

venient choice of � and �0. In particular, we may assume that the curves of �0 are

disjoint from ˛ and N̨ . In particular, the relevant triple diagram

.†0#x†0;�
0 N
0;��0;˛ N̨
0 N
0/

may be decomposed as a connected sum

.†#x†;�;�;˛ N̨ /#.T2#T
2; 
0 N
0;�0; 
0 N
0/:
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By the stabilization result in Proposition 6.5, it suffices to show the claim for the genus

2 triple .T2#T
2; 
0 N
0;�0; 
0 N
0/.

There are two ways to verify the claim in this situation. The first strategy is to

argue topologically via the following reasoning.

(1) Topologically the triple .T2#T
2;
0 N
0;�0;
0 N
0/ is for 0-surgery on an unknot

in S1 � S2.

(2) By picking �0 appropriately, we may assume that � runs parallel to a curve

� 2 �0. Furthermore, � is the meridian of the knot on which we are per-

forming surgery, and in particular defines the dual of the surgery knot.

(3) In general, if U is a 0-framed unknot in Y , and � is a meridian, then

CF.W.U // D A� ı F1;

where F1 is the 1-handle map. This is easily verified using a genus 1 diagram

and a stabilization result for triangles.

(4) By combining the ideas above, the proof is complete.

Alternately, one may explicitly perform the computation by counting holomorphic

triangles. Write �˙ (resp., N�˙) for the intersection points of 
0 with its translate

(resp., N
0 with its translate). In Figure 9.1, we show the four index 0 triangle classes

which can contribute. Two of the classes are in �2.‚
C; ‚C; �Cj N��/ and the other

two classes are in �2.‚
C; ‚C; ��j N�C/. If  1 and  2 denote the two classes in

�2.‚
C; ‚C; �Cj N��/, we claim

#M. 1/C #M. 2/ � 1 mod 2; (9.5)

and similarly for the two classes in �2.‚
C; ‚C; ��j N�C/. This claim is verified via

a Gromov compactness argument which is illustrated and explained in Figure 9.2.

Hence, we conclude that f
0 N
0;�0;
0 N
0
.‚C; ‚C/ D �Cj N�� C ��j N�C, which is also

easily seen to be the action � on �Cj N�C.

Finally, we verify that the bottom-most face of (9.1) is a hypercube. Note that this

face may be expanded into the diagram shown in (9.2). In light of this, it suffices to

show the following relation (note the similarity to equation (8.2)).

Lemma 9.3. As maps from CF.˛ Ň N
0;˛ N̨ N
0/ to CF.˛ Ň N
0;˛ N̨ N
0/, there is an equality

F

0;
0

3 ı B� ı F

0;
0

1 D id :

Proof. Compare [39, Lemma 7.10]. The relation follows from the form of the differ-

ential after attaching a 1-handle. Namely, it follows from [39, Proposition 8.5] that

the differential satisfies

@.x � �C

0;
0

/ D @.x/˝ �C

0;
0

:
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B

E

E

B

w

w

w

w

w

�2.‚
C; ‚C; �Cj N��/ �2.‚

C; ‚C; ��j N�C/

Figure 9.1. Verifying equation (9.4) by counting triangles. Left: The diagram .T 2#T
2;


0 N
0; �0/. Right: The four classes of index 0 holomorphic triangles which contribute to the

triangle map f
0 N
0;�0;
0 N
0
.‚C; ‚C/.

Furthermore, the proof shows that the holomorphic curves which go from x � �C

0;
0

to y � ��

0;
0

for some x and y all have x D y and have domain consisting of one of

the two bigons contained in the 1-handle region. The 1-chain � intersects the boundary

of exactly one of these bigons, and hence,

B� .x � �C

0;
0

/ D x � ��

0;
0

C z ˝ �C

0;
0

for some z 2 CF.˛ Ň ;˛ N̨ /. The stated claim follows immediately.

9.2. Well-definedness of the 1-handle maps

In this section, we prove that the stabilization maps are compatible with the maps

for changing the alpha and beta curves via handleslides or isotopies, or changing the

choice of doubling curves � and �0. We also prove that the involutive 1-handle maps

are independent of the choice of the curve � � †0#x†0, as well as the choice of chains

used to construct the hypercubes in (9.1).

As a first step, we verify independence of the curve � .

Lemma 9.4. Suppose that � and � 0 are two closed curves on †0#x†0 obtained by
doubling properly embedded arcs on †0 n N.w/ which intersect 
0 transversely at a
single point. Then, there are choices of the additional auxiliary data in the construc-
tion so that the models of the 1-handle maps in equation (9.1) are chain homotopic.

Proof. In the compression of equation (9.1) the choice of � only affects the diagonal

map. There are two ways in which it appears. The first is via the choice of �, and the
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w

w

w

w

w w

w

w

w

w

w

w

A B C

D E

Figure 9.2. A Gromov compactness argument which shows that the total count of holomorphic

triangles of index 0 in �2.‚
C; ‚C; �Cj N��/ is 1. In the left-most columns are index 1 classes

of triangles. On the other columns of a given row, we show all decompositions of that class into

an index 0 triangle class and an index 1 disk class (such that both classes have nonnegative mul-

tiplicities). Configurations A and E have the same total count as the �Cj N�� coefficient of our

map. Configuration B has total count 1. Configurations C andD have the same count. Gromov

compactness gives #AC #B C #C � 0 and #D C #E � 0, which quickly gives equation (9.5).

second is a summand which has a factor of

F
˛
0;˛
0

3 ı f
�
0 N
0!˛ N̨
0 N
0

�
�!˛ N̨
0 N
0

˛ Ň
0 N
0

ı F

0 N
0;
0 N
0

1 : (9.6)

We consider this latter summand first. The map in equation (9.6) counts holomorphic

triangles weighted by

#� \ @˛ N̨
0 N
0
. /:

If  2 �2.x;y; z/ is a class of triangles counted in the above composition, then both

x and y (the incoming intersection points) have �C

0;
0

as factors. By the stabilization
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result of Proposition 6.5, if such a class has a representative, then z must have a

factor of �C

0;
0

as well. However, such a term would evaluate trivially under F
˛
0;˛
0

3 .

Hence, equation (9.6) vanishes.

We now consider the first summand, which involves the choice of �. Let � and � 0

be two choices of curves, as above, and let �� be some choice of diagonal chain for

the hypercube from equation (9.3), when � is used. It is straightforward to see that

Œ� �� Œ� 0� 2H1.†
0#x†0/ lies in the span of the � curves. Let C be a 2-chain on† such

that @† is � � � 0 plus a linear combination of small parallel pushoffs of the � curves.

We define the 2-chain

�� 0 WD �� CHC .‚�
0 N
0;˛ N̨
0 N
0
/:

In the above, HC denotes the F ŒU �-linear map whose value on an intersection point

x 2 T�
0 N
0
\ T˛ N̨
0 N
0

is the sum of the multiplicities of C at each factor of x. It

is straightforward to see that �� 0 is a valid choice of diagonal for the hypercube in

equation (9.3) which uses � 0. Since each summand of HC .‚�
0 N
0;˛ N̨
0 N
0
/ has �C


0;
0

as a factor, the same argument as above shows that

F

0;
0

3 ı f˛ Ň
0 N
0;�
0 N
0;˛ N̨
0 N
0
.F


0;
0

1 .x/;HC .‚�
0 N
0;˛ N̨
0 N
0
// D 0;

so the diagonal maps computed using �� and �� 0 coincide.

Lemma 9.5. Suppose that H D .†;˛; ˇ/ and H
0 D .†;˛0; ˇ0/ are two Heegaard

diagrams for Y with the same underlying Heegaard surface, such that ˛0 is obtained
from ˛ by an elementary handleslide or isotopy. We assume ˇ0 is obtained similarly
from ˇ. Let D and D0 denote doubling enhancements of H and H

0 with choices
of almost complex structures and doubling curves � and �0. Let S0 denote a 0-
sphere which is embedded in† n .˛ [ ˇ [ ˛0 [ ˇ0/ and let†.S0/ denote the result of
attaching a 1-handle along S0 to †. Let �0 and �0

0 denote extra choices of doubling
arcs, as in the construction of the 1-handle map, and let D.S0/ and D0.S0/ denote the
doubling enhancements of .†.S0/; ˛
0; ˇ
0/ and .†.S0/; ˛0
0; ˇ

0
0/ by using the
new doubling curves �0 and �0

0, respectively. Let � be a single choice of symmetric
1-cycle on †.S0/#x†.S0/ which intersects 
0 transversely at a single point. Finally,
let CFI.W.S0// and CFI.W.S0//0 denote the involutive 1-handle maps, computed
with these two choices of data. Then

‰D.S0/!D0.S0/ ı CFI.W.S0// ' CFI.W.S0//
0 ı‰D!D0 : (9.7)

Proof. The proof is to enlarge the diagram in (9.1) into a 3-dimensional hyperbox by

adding an extra direction coming out of the page. One face will correspond to the map

CFI.W.S0// and an opposite face will correspond to the map CFI.W.S0//0. It will
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be straightforward to unpack the hypercube relations to obtain (9.7). We presently

describe the construction of the hyperbox.

We extend the top-most hypercube of (9.1) to the hyperbox shown in (9.8). The

unlabeled arrows are holomorphic triangle maps. There are no morphisms of length 2

or 3. The hypercube relations follow from the stabilization formula of Proposition 6.5.

CF.˛;ˇ/ CF.˛
0;ˇ
0/

CF.˛0;ˇ/ CF.˛0
0;ˇ
0/

CF.˛ Ň ;ˇ Ň / CF.˛ Ň 
0 N
0;ˇ Ň 
0 N
0/

CF.˛0 Ň 0
;ˇ Ň / CF.˛0 Ň 0


0 N
0;ˇ Ň 
0 N
0/

F
Ň; Ň

1

F

0;
0
1

F
Ň N
0; Ň N
0

1

F

0;
0
1

F
Ň 0 N
0; Ň N
0

1

F

0 N
0;
0 N
0
1

F
Ň 0; Ň

1

F

0 N
0;
0 N
0
1

CF.˛0;ˇ/ CF.˛0
0;ˇ
0/

CF.˛0;ˇ0/ CF.˛0
0;ˇ
0
0/

CF.˛0 Ň 0
;ˇ Ň / CF.˛0 Ň 0


0 N
0;ˇ Ň 
0 N
0/

CF.˛0 Ň 0
;ˇ0 Ň 0

/ CF.˛0 Ň 0

0 N
0;ˇ

0 Ň 0

0 N
0/

F
Ň 0; Ň

1

F

0;
0
1

F
Ň 0 N
0; Ň N
0

1

F

0;
0
1

F
Ň 0 N
0; Ň 0 N
0

1
F


0 N
0;
0 N
0
1

F
Ň 0; Ň 0

1

F

0 N
0;
0 N
0
1

(9.8)

The hypercubes obtained by extending the two small left-most cubes of (9.1) are

similarly defined to be hyperboxes of stabilizations.

We now consider the right-most cubes of (9.1) (i.e., the two cubes which have

length 2-maps). The top-most cube is easily extended by building hypercubes of
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attaching curves where each length 1 chain is a cycle generating the top degree of

HF�. We leave the details to the reader.

We now consider the bottom-most cube of (9.1) which has a length 2 map, and

we describe its extension to a 3-dimensional hyperbox. (Recall that this hypercube

involved more choices than usual, such as the choice of the chain � and the curve

� ; see Remark 9.1.) The construction is obtained by pairing hypercubes of attaching

curves. The main technical challenge in extending the 2-dimensional cube in (9.3) is

building a 3-dimensional hypercube of attaching curves with the following form:

�
0 N
0 ��0

�0
0 N
0 �0�0
0

˛ N̨
0 N
0 ˛ N̨
0 N
0

˛0 N̨ 0
0 N
0 ˛0 N̨ 0
0 N
0

�

�

h

�

�0

(9.9)

In equation (9.9), the chains � and �0 are the ones used to construct CFI.W.S0// and

CFI.W.S0//0, as constructed in Lemma 9.2. In particular, these morphisms are fixed,

and similarly the top length 2 morphism has also already been chosen in the previous

step, so we assume that chain is fixed. Note that the two morphisms from ˛ N̨
0 N
0
to ˛0 N̨ 0
0 N
0 are forced to coincide, since ˛0 is obtained from ˛ by an elementary

handleslide, so there is a single top degree generator of CF.˛0 N̨ 0
0 N
0;˛ N̨
0 N
0/, which

is

‚˛0 N̨ 0;˛ N̨ ˝ �C

0 N
0;
0 N
0

:

Assuming for the moment the existence of the hypercube in (9.9), one extends

the bottom-most cube of (9.1) by constructing two hypercubes. The first hypercube is

obtained by pairing the back face of (9.9) with the hypercube

˛ Ň
‚

˛ Ň;˛0 Ň0

������! ˛0 Ň 0
:

The second hypercube is obtained by pairing the entirety of equation (9.9) with the

0-dimensional hypercube ˛0 Ň 0
.

We now prove the existence of the hypercube in (9.9). The existence of length 2

chains in equation (9.9) along the top, left and right faces is straightforward.
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We now consider the bottom face of (9.9). The desired relation is

A� .‚˛ N̨ N
0;˛0 N̨ 0
0 N
0
/C B� .‚˛ N̨ N
0;˛0 N̨ 0
0 N
0

/ D @.h/;

where h denotes the diagonal chain. Since � is a closed curve, we have an equality

A� D B� , the above equation is satisfied by h D 0. (Compare equation (7.5) for arcs

instead of closed curves). As we will see, setting h D 0 might not allow the length 3

hypercube relation to be satisfied, so instead, we use the chain

h D " �‚˛ N̨
0 N
0;˛0 N̨ 0
0 N
0
; (9.10)

where " 2 F is to be determined.

Finally, we claim that we may make a choice of the constant " in equation (9.10),

and also pick a length 3 chain for the cube in (9.9) so that the hypercube relations are

satisfied. To see this, let C 2 CF.�
0 N
0;˛
0 N̨ 0
0 N
0/ denote the sum of all composi-

tions featuring in the length 3 hypercube relations, except for the length 3 map itself.

Here, we momentarily set "D 0 in (9.10). The hypercube relations on the proper faces

force C to be a cycle. We note however that C has the same grading as the top degree

element generator of

HF�.�
0 N
0;˛
0 N̨ 0
0 N
0/:

In particular, it either represents the top degree element or is null-homologous. If it is

null-homologous, we set " D 0 in (9.9) and pick any primitive of C in the appropri-

ate grading to be the length 3 map in our hypercube. If C represents the top degree

generator, then we pick " D 1, and let the length 3 chain be any primitive of

f�
0 N
0;˛ N̨
0 N
0;˛0 N̨ 0
0 N
0
.‚�
0 N
0;˛ N̨
0 N
0

; ‚˛ N̨
0 N
0;˛0 N̨ 0
0 N
0
/C C:

The hypercube relations are clearly satisfied.

Finally, it remains to extend the bottom-most cube of Figure 9.1. To extend this

hypercube, it is convenient to consider the expanded description in (9.2). In fact, the

only hypercube which requires explanation to extend is the cube

CF.˛ Ň N
0;˛ N̨ N
0/ CF.˛ Ň 
0 N
0;˛ N̨
0 N
0/ CF.˛ Ň 
0 N
0;˛ N̨
0 N
0/

CF.˛ Ň N
0;˛ N̨ N
0/ CF.˛ Ň N
0;˛ N̨ N
0/

F

0;
0
1

B�

F

0;
0
3

We define our 3-dimensional extension of this cube to have trivial length 3 map. The

hypercube relations for the 3-dimensional extension of this cube are proven somewhat

similarly to the proof of Proposition 8.2. The only non-trivial length 2 map in the



Naturality and functoriality in involutive Heegaard Floer homology 69

above diagram is in the top subface. This subface has the following form:

CF.˛ Ň N
0;˛ N̨ N
0/ CF.˛ Ň 
0 N
0;˛ N̨
0 N
0/ CF.˛ Ň 
0 N
0;˛ N̨
0 N
0/

CF.˛0 Ň 0
N
0;˛ N̨ N
0/ CF.˛0 Ň 0


0 N
0;˛ N̨
0 N
0/ CF.˛0 Ň 0

0 N
0;˛ N̨
0 N
0/

CF.˛0 Ň 0
N
0;˛

0 N̨ 0 N
0/ CF.˛0 Ň 0

0 N
0;˛

0 N̨ 0
0 N
0/ CF.˛0 Ň 0

0 N
0;˛

0 N̨ 0
0 N
0/

F

0;
0
1

B�

F

0;
0
1

B�

F

0;
0
1

B�

It is sufficient to show that the compression of this diagram composes trivially with

the map F

0;
0

3 . The key tool we will use is that the triangle maps, when applied to

elements of the form .x � �C

0;
0

/ ˝ .y � �C

0;
0

/ have only summands of the form

z � �C

0;
0

. This fact follows from Proposition 6.5. The top diagonal map counts

holomorphic triangles which are weighted by the quantity #.@˛ N̨
0 N
0
. / \ �/ 2 F .

Similarly, the bottom triangle map is a sum of holomorphic triangle maps with cer-

tain weights. The special inputs for the length 1 triangle maps all have tensor factors

of �C

0;
0

, as does the special length 2 element used for the bottom diagonal map by

equation (9.10). Hence, in compression of the diagram, the only holomorphic trian-

gles which are counted have only tensor factors of �C

0;
0

, and hence so does their

output. In particular, the output vanishes when composed with F

0;
0

3 .

9.3. 3-handles

We define the 3-handle map by dualizing the construction of the 1-handle map. Con-

cretely, this amounts to compressing the diagram shown in the following equation:

CF.˛
0;ˇ
0/ CF.˛;ˇ/

CF.˛ Ň 
0 N
0;ˇ Ň 
0 N
0/ CF.˛ Ň 
0 N
0;ˇ Ň 
0 N
0/ CF.˛ Ň ;ˇ Ň /

CF.˛ Ň 
0 N
0;��0/ CF.˛ Ň 
0 N
0;�
0 N
0/ CF.˛ Ň ;�/

CF.˛ Ň 
0 N
0;˛ N̨
0 N
0/ CF.˛ Ň 
0 N
0;˛ N̨
0 N
0/ CF.˛ Ň ;˛ N̨ /

CF. Ň N
0; N̨ N
0/ CF. Ň ; N̨ /

F
Ň N
0; Ň N
0

1

F

0;
0
3

F
Ň; Ň

1

B�

f
ˇ Ň
0 N
0!��0

˛ Ň
0 N
0

F

0 N
0;
0 N
0
3

f
ˇ Ň
0 N
0!�
0 N
0

˛ Ň
0 N
0
f

ˇ Ň!�

˛ Ň

f
��0!�
0 N
0

˛ N
0 N
0

f �!˛ N̨

˛ Ň

F

0 N
0;
0 N
0
3

f
�
0 N
0!˛ N̨ 
0 N
0

˛ Ň
0 N
0
f �!˛ N̨

˛ Ň

F
˛
0;˛
0
3

F

0 N
0;
0 N
0
3

F
˛;˛
3

F
N
0; N
0

3
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9.4. Attaching 1-handles near the basepoint

We may obtain a slightly simpler formula for the 1-handle map when we perform the

attachment near the basepoint w.

Lemma 9.6. Suppose S0 � Y is a 0-sphere and Y is connected. We have an isomor-
phism of groups

CFI�.Y.S0// Š CFI�.Y /˝F h�C; ��i:

With respect to this decomposition, the involutive 1-handle map takes the form

CFI.W.S0//.x/ D x � �C;

extended equivariantly over F ŒU;Q�=Q2. The 3-handle map takes the form x � �C 7!

0 and x � �� 7! x, extended F ŒU;Q�=Q2-equivariantly.

Proof. We focus on the 1-handle map. We pick our diagram so that, before doubling,

there is a special genus 1 region near the basepoint, and so, the doubled arcs have the

configuration shown in Figure 9.1 in the double of this region. We form the compres-

sion of (9.1) by first compression horizontally, then vertically.

We first show that for suitable almost complex structures, the diagonal maps make

trivial contribution to compression of the diagram. We consider the top-most diagonal

map. This map counts holomorphic quadrilaterals on the connected sum

.˛ Ň ;ˇ Ň ;�;�/#.
0 N
0; 
0 N
0; 
0 N
0;�0/:

Note that each Heegaard subdiagram of the right-handle quadruple has vanishing dif-

ferential (since it has the minimal number of generators possible; see Figure 9.1).

Hence, the stabilization results for holomorphic quadrilaterals from Proposition 6.5

imply that

h
ˇ Ň
0 N
0!�
0 N
0!��0

˛ Ň
0 N
0

ı F

0 N
0;
0 N
0

1 D F

0 N
0;�0

1 ı h
ˇ Ň!�!�

˛ Ň :

By the small translate theorem for holomorphic quadrilaterals [4, Proposition 11.5],

the map h
ˇ Ň!�!�

˛ Ň vanishes.

We now consider the bottom-most diagonal map in (9.1). Because of our choice of

diagram, the chain � in (9.3) may be chosen to vanish, by the same model computation

we used to verify Lemma 9.2. Hence, the dashed length 2 map is the sum

h
�
0 N
0!��0!˛ N̨
0 N
0

˛ Ň
0 N
0

C h
�
0 N
0!˛ N̨
0 N
0

�
�!˛ N̨
0 N
0

˛ Ň
0 N
0

: (9.11)
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Here, h
�
0 N
0!˛ N̨
0 N
0

�
�!˛ N̨
0 N
0

˛ Ň
0 N
0

denotes the map which counts holomorphic trian-

gles on the diagram

.†0#x†0;˛ Ň 
0; N
0;�
0 N
0;˛ N̨
0 N
0/;

which are weighted by an extra factor of @˛ N̨
0 N
0
D. / � � .

We claim that both of these maps in equation (9.11) vanish when precomposed

with F

0 N
0;
0 N
0

1 and post-composed with F
˛
0;˛
0

3 . Consider the first quadrilateral

map. It counts curves on the diagram

.˛ Ň ;�;�;˛ N̨ /#.
0 N
0; 
0 N
0;�0; 
0 N
0/:

We can use Proposition 6.5 to destabilize the quadruple, noting that the evaluation of

the right-hand triple on a degree 0 tree of C cell
� .K4/ is

�Cj N�� C ��j N�C

by Lemma 9.2. Hence, ��

0;
0

factor of the composition is

h�!�!˛ N̨

˛ Ň .x/˝ �C
N
0; N
0

:

This expression vanishes by the small translate theorem for quadrilaterals [4, Propo-

sition 11.5], since � appears twice.

Finally, we argue that the triangle counting map h
�
0 N
0!˛ N̨
0 N
0

�
�!˛ N̨
0 N
0

˛ Ň
0 N
0

also

makes trivial contribution. In this case, the triangle count occurs on

.˛ Ň ;�;˛ N̨ /#.
0 N
0; 
0 N
0; 
0 N
0/:

Proposition 6.5 implies there are no triangles with ��

0;
0

as output when only terms

involving �C

0;
0

are the input, so this triangle map makes trivial contribution to the

compressed diagram.

The argument for 3-handles follows because the 3-handle map is defined dually to

the 1-handle map, so the above argument immediately translates after taking duals.

9.5. Commutation of 1-handles

Lemma 9.7. Suppose that S and S
0 are two embedded and disjoint spheres in Y ,

whose dimensions lie in ¹0; 2º. Then

CFI.W.Y.S/;S0// ı CFI.W.Y;S// ' CFI.W.Y.S0/;S// ı CFI.W.Y;S0//:

Lemma 9.7 may be proven by using the model computations from Lemma 9.6.

Alternatively, it may be proven by building a 3-dimensional hyperbox which has two

faces corresponding to the definition of the 1-handle maps from (9.1).
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10. 2-handles

In this section, we describe the map for a framed link L � Y , with a self-conjugate

Spinc structure s onW.Y;L/ (or more generally, a family S � Spinc.W.Y;L//which

is closed under conjugation). As in Section 9, we may omit the path and framing from

our notation.

The existence of a map for 2-handles was described by Hendricks and Manolescu

[5], though they were not able to prove invariance of the construction. The construc-

tion we present in this section should be thought of as a systematic version of the

construction therein using the doubling operation.

10.1. The construction

Suppose L is a framed link in Y . We assume that the framing is Morse, so that there is

a corresponding 2-handle cobordism W.Y;L/. We pick a bouquet for L, in the sense

of [24, Definition 4.1], as well as a Heegaard triple .†;˛0;˛;ˇ/ subordinate to this

bouquet [24, Definition 4.2].

Remark 10.1. Like the 2-handle maps from [24], our 2-handle maps also depend on a

bouquet for the link L. Independence from the bouquet will be proven in Lemma 13.1.

We first construct several auxiliary hypercubes. We firstly have two hypercubes of

alpha attaching circles

˛
‚˛0;˛

����! ˛0 and ˛ Ň
‚

˛0 Ň;˛ Ň

�����! ˛0 Ň (10.1)

and a hypercube of beta attaching circles

ˇ Ň
‚

ˇ Ň;�

����! �: (10.2)

There is a unique choice of top degree cycle in the hypercubes in equation (10.1),

while the cycle ‚ˇ Ň;� in equation (10.2) is only well defined up to addition of a

boundary.

Next, we construct a more complicated hypercube of beta attaching curves:

� ˛0 N̨ 0

˛ N̨ ˛ N̨ 0

‚�;˛0 N̨ 0

‚�;˛ N̨ ��;˛ N̨ 0 ‚˛0 N̨ 0;˛ N̨ 0

‚˛ N̨ ;˛ N̨ 0

(10.3)

We now prove that the hypercube in (10.3) may be constructed.
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Lemma 10.2. If ‚�;˛0 N̨ 0 , ‚˛0 N̨ 0;˛ N̨ 0 , ‚�;˛ N̨ and ‚˛ N̨ ;˛ N̨ 0 are cycles which represent
the top degree elements of their respective HF� groups, then

�
f�;˛0 N̨ 0;˛ N̨ 0.‚�;˛0 N̨ 0 ; ‚˛0 N̨ 0;˛ N̨ 0/

�
D
�
f�;˛ N̨ ;˛ N̨ 0.‚�;˛ N̨ ; ‚˛ N̨ ;˛ N̨ 0/

�
;

where the brackets denote the induced element in homology. In particular, ��;˛ N̨ 0 2

CF.�;˛ N̨ 0/ may be chosen so that (10.3) is a hypercube of attaching curves.

Proof. Both triples .†#x†;�;˛0 N̨ 0;˛ N̨ 0/ and .†#x†;�;˛ N̨ ;˛ N̨ 0/ represent the same

cobordism, topologically. Namely, they represent a cobordism from .S1 � S2/#g to

.S1 � S2/g�jLj which is surgery on a jLj component link, each component of which

is an S1-fiber of a S1 � S2-summand.

Since the element Œf�;˛0 N̨ 0;˛ N̨ 0.‚�;˛0 N̨ 0 ; ‚˛0 N̨ 0;˛ N̨ 0/� represents a top-degree class

of CF.S1 � S2/g�jLj, we have that any two choices of ��;˛ N̨ 0 satisfying (10.3) are

homologous.

Now, suppose that S � Spinc.W.Y;L// is a finite set which is closed under con-

jugation. We now define the 2-handle map for L, which denote by CFI.W.Y;L/;S/,
using the hypercubes in (10.1), (10.2) and (10.3). We define the map CFI.W.Y;L/;S/
to be the compression of the hyperbox shown in (10.4). A priori, CFI.W.Y;L/;S/
depends on the choices in its construction; for well-definedness see Section 10.2.

CF.˛;ˇ/ CF.˛0;ˇ/

CF.˛ Ň ;ˇ Ň / CF.˛0 Ň ;ˇ Ň /

CF.˛ Ň ;�/ CF.˛0 Ň ;�/

CF.˛ Ň ;�/ CF.˛ Ň ;˛0 N̨ 0/ CF.˛0 Ň ;˛0 N̨ 0/

CF.˛ Ň ;˛ N̨ / CF.˛ Ň ;˛ N̨ 0/ CF. Ň ; N̨ 0/

CF. Ň ; N̨ / CF. Ň ; N̨ 0/ CF. Ň ; N̨ 0/

f
ˇ

˛!˛0

F
Ň; Ň

1 F
Ň; Ň

1

f
ˇ Ň

˛ Ň!˛0 Ň

f
ˇ Ň!�

˛ Ň h
ˇ Ň!�

˛ Ň!˛0 Ň
f

ˇ Ň!�

˛0 Ň

f �

˛ Ň!˛0 Ň

h�!˛0 N̨ 0

˛ Ň!˛0 Ň f �!˛0 N̨ 0

˛0ˇ

f �!˛ N̨

˛ Ň H �!˛ N̨ 0

˛ Ň

f �!˛0 N̨ 0

˛ Ň f ˛0 N̨ 0

˛ Ň!˛0 Ň

f ˛0 N̨ 0!˛ N̨ 0

˛ Ň F
˛0;˛0

3

f ˛ N̨ !˛ N̨ 0

˛ Ň

F
˛;˛
3

F
˛;˛
3

F
˛;˛
3

f N̨ ! N̨ 0

Ň

(10.4)
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Lemma 10.3. If we compress each horizontal level in (10.4), then the resulting dia-
gram is a hyperbox of chain complexes.

Proof. It suffices to show that each face is a hypercube of chain complexes. The sub-

cubes with length 2 maps are all obtained by pairing hypercubes of attaching curves,

so the claim is immediate for these faces. The top-most and bottom-most subcubes are

hypercubes of stabilization, so the claim is immediate. The only remaining cube of

interest is the second-bottom-most cube on the right. The hypercube relations amount

to the relation

F
˛0;˛0

3 ı f ˛
0 N̨ 0

˛ Ň!˛0 Ň D F
˛;˛
3 ı f ˛

0 N̨ 0!˛ N̨ 0

˛ Ň : (10.5)

This is proven as follows. We observe that the Heegaard triples for these triangle maps

are .†; ˛0; ˛; ˛0/#.x†; Ň ; Ň ; N̨ 0/ and .†; ˛; ˛0; ˛/#.x†; Ň ; N̨ 0; N̨ 0/. The first triple is a

stabilization of the small isotopy triple .x†; Ň ; Ň ; N̨ 0/, and similarly the second triple

is also a stabilization of a Heegaard triple for a small isotopy. Using the stabilization

results of Proposition 6.5 and the small triangle theorem [4, Proposition 11.1], we

obtain (10.5), completing the proof.

Remark 10.4. If S � Spinc.W.Y;L// is a set of Spinc structures which is closed

under the conjugation action, then a cobordism map may be defined by summing the

maps above for all s 2 S. If S is infinite, one may need to use coefficients in F ŒŒU ��

to obtain a well-defined map.

10.2. Independence of simple handleslides

We now prove that the construction above commutes with the maps for simple handle-

slides and changes of the doubling arcs. We phrase our result in enough generality that

they also imply that the 2-handle maps are independent of the choice of bouquet for

L, and are independent of handleslides amongst the components of L.

Suppose that .†;˛0;˛;ˇ/ is a Heegaard triple subordinate to a bouquet of L � Y .

Suppose that .†;˛0
H ;˛H ;ˇH / is another Heegaard triple, such that ˛0

H , ˛H and ˇH
are obtained from ˛0; ˛ and ˇ (respectively) by elementary handleslide equivalences,

in the sense of Section 5. We assume, furthermore, that each of the following sets

admits a unique top degree intersection point, which is a cycle in its respective Floer

complex:

T˛H
\ T˛; T˛0

H
\ T˛0 ; T˛0

H
\ T˛; and Tˇ \ TˇH

:

We also suppose that we pick two sets of doubling arcs, � and �H . We require no

particular relation between � and �H , except that the diagram .†#x†;�;�H ; w/ be

admissible.
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Proposition 10.5. Suppose that .†; ˛0; ˛; ˇ/ and .†; ˛0
H ; ˛H ; ˇH / are as above.

Let CFI.W.L// and CFI.W.L//H denote the 2-handle maps, computed with the two
triples .†;˛0;˛;ˇ/ and .†;˛0

H ;˛H ;ˇH /, and the doubling arcs � and �H , respec-
tively. Let D denote the doubling data for Y determined by .†;˛;ˇ/, �, and some
choices of almost-complex structures. Let DH denote the doubling data determined
by .†; ˛H ; ˇH /, �H , and some choices of almost-complex structures. Let D0 and
D0
H denote the analogous data for Y.L/. Then

‰D0!D0
H

ı CFI.W.L// ' CFI.W.L//H ı‰D!DH
:

Here,‰D!DH
and‰D0!D0

H
denote the transition maps for elementary handleslides

and changes of the doubling data, and ' denotes F ŒU; Q�=Q2-equivariant chain
homotopy.

Proof. Mirroring the construction of the maps ‰D!DH
, we construct for each sub-

cube of equation (10.4) a hyperbox of size .2; 1; 1/. The final coordinate corresponds

to the involution. If we collapse this axis of the cube, we obtain a hyperbox of size

.2; 1/. If we compress this hyperbox, we obtain the following hypercube, which real-

izes the homotopy commutation in the statement.

CFI.D/ CFI.D0/

CFI.DH / CFI.D0
H /

‰D!DH

FW.L/

‰
D0!D0

H

FH
W.L/

The top-most hyperbox is obtained by extending the top-most hypercube of equa-

tion (10.4) out of the page, and is obtained by stacking two hypercubes of stabiliza-

tion. We leave the details to the reader.

We now consider the hypercube in (10.4) which is second from the top. The

corresponding hyperbox is obtained by pairing hypercubes, as follows. We think

of a hyperbox of size .2; 1; 1/ as being obtained by stacking two hypercubes. The

first hypercube is obtained by constructing and pairing the following hypercubes of

attaching curves, where the length-1 edges are obtained using the unique top-degree

generators specified earlier; the 2-faces are filled as in Lemma 10.2:

˛ Ň ˛0 Ň

˛H Ň
H ˛0

H
Ň
H

and

ˇ Ň

�

:
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The next hypercube is obtained by constructing and pairing the following hypercubes

of attaching curves:

˛H Ň
H ˛0

H
Ň
H

and

ˇ Ň

� ˇH
Ň
H

�H

The remaining hypercubes which have a length 2 map are constructed by pair-

ing hypercubes of attaching curves in a straightforward manner. We remark that the

central-most hypercube of (10.4) is obtained by a small rearrangement of the pair-

ing of an alpha hypercube with a beta hypercube. The corresponding 3-dimensional

hyperbox is obtained by performing the analogous rearrangement to two hypercubes

obtained by pairing.

Finally, we consider the three bottom-most hypercubes of (10.4) which do not

have a length-2 map. We consider the right hypercube in the second to bottom-most

level.

CF.˛ Ň ;˛0 N̨ 0/ CF.˛0 Ň ;˛0 N̨ 0/

CF.˛H Ň
H ;˛

0 N̨ 0/ CF.˛0
H

Ň
H ;˛

0 N̨ 0/

CF.˛ Ň ;˛ N̨ 0/ CF. Ň ; N̨ /

CF.˛H Ň
H ;˛ N̨ 0/ CF. Ň

H ; N̨ 0/

F
˛0;˛0

3

F
˛0

H
;˛0

3

F
˛;˛
3

F
˛H ;˛

3
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CF.˛H Ň
H ;˛

0 N̨ 0/ CF.˛0
H

Ň
H ;˛

0 N̨ 0/

CF.˛H Ň
H ;˛

0
H N̨ 0

H / CF.˛0
H

Ň
H ;˛

0
H N̨ 0

H /

CF.˛H Ň
H ;˛ N̨ 0/ CF. Ň

H ; N̨ 0/

CF.˛H Ň
H ;˛H N̨ 0

H / CF. Ň
H ; N̨ 0

H /

F
˛0

H
;˛0

3

F
˛0

H
;˛0

H
3

F
˛H ;˛

3

F
˛H ;˛H
3

(10.6)

In (10.6), all of the length 1 and 2 maps which are unlabeled are holomorphic triangle

maps or quadrilateral maps. There are no length 3 maps.

The length 2 hypercube relations for the diagrams in (10.6) are verified as follows.

For the faces which have length 2 maps, the hypercube relations are obvious. For the

other faces, the length 2 relations are proven similarly to the proof of (10.5).

It remains to prove the length 3 relations for the diagrams in (10.6). To verify

these, we note that each summand in the length 3 relation is a composition of a sum

of quadrilateral maps followed by a 3-handle map. We claim that each summand

vanishes identically. To see this, consider the length 2 map along the top face of the top

cube of (10.6). This map is the sum of two quadrilateral maps, which take place on the

diagrams .†;˛0
H ;˛

0;˛;˛0/#.x†; Ň
H ;

Ň ; Ň ; N̨ 0/ and .†;˛0
H ;˛H ;˛;˛

0/#.x†; Ň
H ;

Ň
H ;

Ň ; N̨ 0/. In particular, both diagrams are algebraically rigid and admissible multi-sta-

bilizations. By our result on stabilizations in Proposition 6.5, we see that

F
˛0

H
;˛H

3 ı h˛
0 N̨ 0

˛ Ň!˛0 Ň!˛0
H

Ň
H

D h N̨ 0

Ň! Ň! Ň
H

ı F
˛;˛0

3 ;

however, h N̨ 0

Ň! Ň! Ň
H

D 0 by the small translate theorem for quadrilaterals [4, Proposi-

tion 11.5], since Ň is repeated twice in the diagram. The same argument works for all

of the other summands, verifying the hypercube relations for the diagrams in (10.6).

One now constructs hypercubes for the bottom two faces of (10.4). The construc-

tion of these hyperboxes is similar to the ones constructed above, and we leave the

details to the reader.

There is one final hyperbox to construct, corresponding to the lowest level of

Figure 5.1. This hyperbox is constructed easily by pairing hypercubes of attaching

curves and rearranging the result slightly. We leave the details to the reader.
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10.3. The composition law

In this section, we prove the composition law for cobordisms with only 2-handles.

Proposition 10.6. Suppose that L1 and L2 are two framed links in Y , and s1 2

Spinc.W.Y;L1// and s2 2 Spinc.W.Y.L1/;L2// are two self-conjugate Spinc struc-
tures. Then

CFI.W.Y.L1/;L2/; s2/ ı CFI.W.Y;L1/; s1/ ' CFI.W.Y;L1 [ L2/;S.s1; s2//;

where S.s1; s2/ is the set of Spinc structures on W.Y;L1 [ L2/ which restrict to s1

and s2.

Proof. The proof of Proposition 10.6 is to construct a 3-dimensional hypercube with

the following properties.

(1) One direction corresponds to the involution.

(2) One face corresponds to the cobordism map CFI.W.Y;L1/; s1/.

(3) One face corresponds to the cobordism map CFI.W.Y.L1/;L2/; s2/.

(4) One face corresponds to the identity map from CFI.Y / to itself.

(5) One face corresponds to the map CFI.W.Y;L1 [ L2/;S.s1; s2//.

If we view the 3-dimensional hypercube as forming a 2-dimensional hypercube in-

volving the CFI complexes, then the corresponding shape is as follows:

CFI.Y / CFI.Y.L1//

CFI.Y.L1;L2// CFI.Y.L1;L2//

FW.Y;L1/;s1

FW.Y;L1[L2/;S.s1;s2/ FW.Y.L1/;L2/;s2

id

As a first step, pick a Heegaard quadruple .†;˛00;˛0;˛;ˇ/ satisfying the following

properties.

(1) .†;˛0;˛;ˇ/ is subordinate to a bouquet of the link L1 � Y .

(2) .†;˛00;˛0;ˇ/ is subordinate to a bouquet of the link L2 � Y.L1/.

(3) .†;˛00;˛;ˇ/ is subordinate to a bouquet of the link L1 [ L2 � Y .

Let ‚˛0;˛ , ‚˛00;˛0 and ‚˛00;˛ be the canonical generators. As in Ozsváth and Szabó’s

original proof for HF�, an easy model computation implies that the following diagram

is a hypercube of alpha attaching curves:

˛ ˛0

˛00 ˛00

‚˛0;˛

‚˛00;˛ ‚˛00;˛0

1

(10.7)
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Pairing with the 0-dimensional hypercube ˇ and restricting to the Spinc structures in

the statement gives the non-involutive version of Proposition 10.6. Note that we can

stabilize (10.7) to obtain the following hypercube of attaching curves on †#x†:

˛ Ň ˛0 Ň

˛00 Ň ˛00 Ň

‚
˛0 Ň;˛ Ň

‚
˛00 Ň;˛ Ň ‚

˛00 Ň;˛0 Ň

1

(10.8)

Our hyperbox for Proposition 10.6 will be of size .1; 1; 6/, which we organize into 6

hypercubes C1; : : : ; C6, which we stack to obtain a hyperbox. The cubes C1 and C2

are shown in Figure 10.1.

The second hypercube in Figure 10.1 also has a length 3 map which is not drawn.

In the figure, the top hypercube is a hypercube of stabilization, and the bottom hyper-

cube is obtained by pairing the hypercube in (10.8) with the 1-dimensional hypercube

ˇ Ň �:‚
ˇ Ň;�

We now move to the construction of the hypercube C3 and C4, starting by con-

structing some auxiliary hypercubes. In Figure 10.2, we construct the 3-dimensional

analog of the hypercube of beta-attaching curves in (10.3). We next consider the

hypercube of chain complexes obtained by pairing the cube in (10.8) with the 1-

dimensional cube

� ˛00 N̨ 00:‚�;˛00 N̨ 00

We reorganize the resulting cube slightly, to obtain the diagram shown in Figure 10.3.

Although the diagram in the figure is not technically a hypercube, since the bottom

face is subdivided, if we compress the bottom face, we obtain a hypercube of chain

complexes, which we call C3.

Next, we pair the top face of Figure 10.2 with the cube

˛ Ň ˛0 Ň‚
˛ Ň;˛0 Ň

and modify the resulting hypercube to obtain the back-most portion of the diagram

shown on the top of Figure 10.4. This diagram is not technically a hypercube, since

some of the faces are subdivided. Nonetheless, we can form a hypercube C4 as fol-

lows. We view the diagram as being obtained by stacking two box-like diagrams (one

on the back, and one on the front). Some of the faces of these boxes are subdivided, so

we compress these faces. This gives two cube-diagrams. The hypercube relations for

these cubes are straightforward to verify. For the back-most cube, they follow from

the hypercube relations for the original cube described above. For the front cube, the
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CF.˛;ˇ/ CF.˛0;ˇ/

CF.˛00;ˇ/ CF.˛00;ˇ/

CF.˛ Ň ;ˇ Ň / CF.˛0 Ň ;ˇ Ň /

CF.˛00 Ň ;ˇ Ň / CF.˛00 Ň ;ˇ Ň /

f
ˇ

˛!˛00

F
Ň; Ň

1

f
ˇ

˛!˛0

f
ˇ

˛!˛00

F
Ň; Ň

1

id

F
Ň; Ň

1

h
ˇ

˛!˛0!˛00

f
ˇ Ň

˛ Ň!˛00 Ň

f
ˇ Ň

˛ Ň!˛0 Ň

h
ˇ Ň

˛ Ň!˛0 Ň!˛00 Ň
f

ˇ Ň

˛0 Ň!˛00 Ň

F
Ň; Ň

1

id

CF.˛ Ň ;ˇ Ň / CF.˛0 Ň ;ˇ Ň /

CF.˛00 Ň ;ˇ Ň / CF.˛00 Ň ;ˇ Ň /

CF.˛ Ň ;�/ CF.˛0 Ň ;�/

CF.˛00 Ň ;�/ CF.˛00 Ň ;�/

f
ˇ Ň

˛ Ň!˛00 Ň

f
ˇ Ň!�

˛ Ň

f
ˇ Ň

˛ Ň!˛0 Ň

f
ˇ Ň

˛0 Ň!˛00 Ň

f
ˇ Ň!�

˛0 Ň

id

f
ˇ Ň!�

˛00 Ň

h
ˇ Ň

˛ Ň!˛0 Ň!˛00 Ň

f�

˛ Ň!˛00 Ň

f�

˛ Ň!˛0 Ň

h
ˇ Ň

˛ Ň!˛0 Ň!˛00 Ň
f�

˛0 Ň!˛00 Ň

f
ˇ Ň!�

˛ Ň

id

Figure 10.1. The hypercubes C1 and C2. The gray faces are stacked.

hypercube relations are straightforward to verify directly, since all of the triangle maps

involve stabilizations of Heegaard triples for small isotopies of the attaching curves.

Hence, Proposition 6.5 may be used to destabilize the relevant counts, and then the

small translate theorem for triangles [4, Proposition 11.1] may be used to identify the

destabilized maps with nearest point maps.
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� ˛0 N̨ 0

˛00 N̨ 00 ˛0 N̨ 00

˛ N̨ ˛ N̨ 0

˛ N̨ 00 ˛ N̨ 00
1

Figure 10.2. An auxiliary hypercube of ˇ-attaching curves used in the construction of C4.

CF.˛ Ň ;�/ CF.˛0 Ň ;�/

CF.˛00 Ň ;�/ CF.˛00 Ň ;�/

CF.˛ Ň ;�/ CF.˛0 Ň ;�/

CF.˛ Ň ;˛00 N̨ 00/ CF.˛ Ň ;˛00 N̨ 00/ CF.˛0 Ň ;˛00 N̨ 00/

CF.˛00 Ň ;˛00 N̨ 00/ CF.˛00 Ň ;˛00 N̨ 00/ CF.˛00 Ň ;˛00 N̨ 00/

f �

˛ Ň!˛0 Ň

f �

˛ Ň!˛00 Ň f �

˛0 Ň!˛00 Ň

h�!˛00 N̨ 00

˛0 Ň!˛00 Ň

h�

˛ Ň!˛ 0 Ň!˛ 00 Ň

f �!˛00 N̨ 00

˛ Ň

f �

˛ Ň!˛0 Ň

h�!˛00 N̨ 00
˛ Ň!˛0 Ň

f �!˛00 N̨ 00

˛0 Ň

f ˛00 N̨ 00

˛ Ň!˛00 Ň

f ˛00 N̨ 00

˛ Ň!˛0 Ň

f ˛00 N̨ 00

˛ Ň!˛00 Ň h˛00 N̨ 00

˛ Ň!˛0 Ň!˛00 Ň f ˛00 N̨ 00

˛0 Ň!˛00 Ň

f �!˛00 N̨ 00

˛00 Ň

h�!˛00 N̨ 00

˛ Ň!˛00 Ň

f �!˛00 N̨ 00

˛00 Ň

Figure 10.3. The diagram C3.

We now describe the construction of the hypercube C5. We first pair the 0-dimen-

sional hypercube ˛ Ň with the hypercube in Figure 10.2. Then, we rearrange, and

obtain the diagram shown in the middle of Figure 10.4.

There is a final hyperbox involving 3-handles, which we compress to obtain the

hypercube C6, shown on the bottom of Figure 10.4. Stacking and compressing the

hypercubes C1; : : : ;C6 proves the statement.
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C4 W

CF.˛ Ň ;�/ CF.˛0 Ň ;�/

CF.˛ Ň ;˛00 N̨ 00/ CF.˛0 Ň ;˛00 N̨ 00/

CF.˛00 Ň ;˛00 N̨ 00/

CF.˛ Ň ;�/ CF.˛ Ň ;˛0 N̨ 0/ CF.˛0 Ň ;˛0 N̨ 0/

CF.˛ Ň ;˛00 N̨ 00/ CF.˛ Ň ;˛0 N̨ 00/ CF.˛0 Ň ;˛0 N̨ 00/

CF.˛00 Ň ;˛00 N̨ 00/ CF. Ň ; N̨ 00/

F
˛0;˛0

3

F
˛00;˛00

3

F
˛00;˛00

3

CF.˛ Ň ;˛00 N̨ 00/

CF.˛00 Ň ;˛00 N̨ 00/

C5 W

CF.˛ Ň ;�/ CF.˛ Ň ;˛0 N̨ 0/ CF.˛0 Ň ;˛0 N̨ 0/

CF.˛ Ň ;˛0 N̨ 00/ CF.˛0 Ň ;˛0 N̨ 00/

CF. Ň ; N̨ 00/

CF.˛ Ň ;˛ N̨ / CF.˛ Ň ;˛ N̨ 0/ CF. Ň ; N̨ 0/

CF.˛ Ň ;˛ N̨ 00/ CF.˛ Ň ;˛ N̨ 00/ CF. Ň ; N̨ 00/

CF. Ň ; N̨ 00/ CF. Ň ; N̨ 00/

F
˛0;˛0

3
F

˛0;˛0

3

F
˛0;˛0

3

F
˛00;˛00

3

F
˛;˛
3

F
˛;˛
3

F
˛;˛
3

F
˛00;˛00

3

CF.˛ Ň ;˛00 N̨ 00/

CF.˛00 Ň ;˛00 N̨ 00/

C6 W

CF.˛ Ň ;˛ N̨ / CF.˛ Ň ;˛ N̨ 0/ CF. Ň ; N̨ 0/

CF.˛ Ň ;˛ N̨ 00/ CF.˛ Ň ;˛ N̨ 00/ CF. Ň ; N̨ 00/

CF. Ň ; N̨ 00/

CF. Ň ; N̨ / CF. Ň ; N̨ 0/ CF. Ň ; N̨ 0/

CF. Ň ; N̨ 00/ CF. Ň ; N̨ 00/ CF. Ň ; N̨ 00/

CF. Ň ; N̨ 00/ CF. Ň ; N̨ 00/

F
˛;˛
3

F
˛;˛
3

F
˛;˛
3

F
˛;˛
3

F
˛;˛
3

F
˛;˛
3

F
˛;˛
3

CF. Ň ; N̨ 00/

Figure 10.4. The diagrams used to construct C4, C5, and C6.
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10.4. More on commutations of handles

In this section, we prove that 1-handle and 3-handle maps may be commuted with

2-handle maps, when the corresponding topological handle manipulation is also pos-

sible.

Proposition 10.7. Suppose that L is a framed 1-dimensional link in Y , and S is a
0- or 2-dimensional sphere in Y n L. Let S � Spinc.W.Y; L// be a set of Spinc

structures which is closed under conjugation, and let

S0 � Spinc.W.Y.S/;L//

be the corresponding set. Then

CFI.W.Y.L/;S// ı CFI.W.Y;L/;S/ ' CFI.W.Y.S/;L/;S0/ ı CFI.W.Y;S//:

Proof. The proof is similar to the proof of Proposition 10.6. We will build a 3-

dimensional hypercube, four of whose faces correspond to the four maps

CFI.W.Y.L/;S//; CFI.W.Y;L/;S/;

CFI.W.Y.S/;L/;S0/; CFI.W.Y;S//:

The hypercube relations for the compression of this hyperbox translate exactly to the

chain homotopy for the commutation described in the statement.

The hypercube realizing the commutation will be constructed as the compression

of a hyperbox of size .1; 1; 5/, which we view as five hypercubes, stacked on top of

each other. We write B1; : : : ;B5 for these hypercubes.

The top-most hypercubesB1 andB2, are shown in Figure 10.5. They are construct-

ed by stacking hypercubes constructed by pairing hypercubes of attaching curves, as

well as hypercubes of stabilization.

The diagram used to construct B3 is shown in Figure 10.6.

The hypercube B4 is displayed in Figure 10.7. The construction is as follows.

The back-left cube is a hypercube of stabilization for the map F

0 N
0;
0 N
0

1 . The back-

right cube is constructed by pairing the 0-dimensional hypercube ˛ Ň 
0 N
0 with a 3-

dimensional generalized hypercube of beta attaching curves which has � as one of the

length 1 morphisms. The construction is similar to the definition of the 1-handle map,

and the proof of well definedness is similar to Lemma 9.5. The front portion is verified

to satisfy the hypercube relations (after compressing the top face) by observing that

the length 2 map composes trivially with the 3-handle map F
˛0
0;˛

0
0

3 by applying our

stabilization result from Proposition 6.5 and applying the small translate theorems for

triangles and quadrilaterals [4, Propositions 11.1 and 11.5].

Our final hypercube B5 is shown in Figure 10.8. Stacking and compressing these

hypercubes completes the proof.
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B1 W

CF.˛;ˇ/ CF.˛
0;ˇ
0/ CF.˛
0;ˇ
0/

CF.˛0;ˇ/ CF.˛0
0;ˇ
0/ CF.˛0
0;ˇ
0/

CF.˛ Ň ;ˇ Ň / CF.˛ Ň 
0 N
0;ˇ Ň 
0 N
0/ CF.˛ Ň 
0 N
0;ˇ Ň 
0 N
0/

CF.˛0 Ň ;ˇ Ň / CF.˛0 Ň 
0 N
0;ˇ Ň 
0 N
0/ CF.˛0 Ň 
0 N
0;ˇ Ň 
0 N
0/

f
ˇ

˛!˛0

F
Ň; Ň

1

F

0;
0
1

f
ˇ
0

˛
0!˛0
0

F
Ň N
0; Ň N
0

1

f
ˇ
0

˛
0!˛0
0

F
Ň N
0; Ň N
0

1

F

0;
0
1

F
Ň N
0; Ň N
0

1

f
ˇ Ň

˛ Ň!˛0 Ň

F

0 N
0;
0 N
0
1

f
ˇ Ň
0 N
0

˛ Ň
0 N
0!˛0 Ň
0 N
0
f

ˇ Ň
0 N
0

˛ Ň
0 N
0!˛0 Ň
0 N
0

F
Ň; Ň

1

F

0 N
0;
0 N
0
1

F
Ň N
0; Ň N
0

1

B2 W

CF.˛ Ň ;ˇ Ň / CF.˛ Ň 
0 N
0;ˇ Ň 
0 N
0/ CF.˛ Ň 
0 N
0;ˇ Ň 
0 N
0/

CF.˛0 Ň ;ˇ Ň / CF.˛0 Ň 
0 N
0;ˇ Ň 
0 N
0/ CF.˛0 Ň 
0 N
0;ˇ Ň 
0 N
0/

CF.˛ Ň ;�/ CF.˛ Ň 
0 N
0;�
0 N
0/ CF.˛ Ň 
0 N
0;��0/

CF.˛0 Ň ;�/ CF.˛0 Ň 
0 N
0;�
0 N
0/ CF.˛0 Ň 
0 N
0;��0/

F

0 N
0;
0 N
0
1

F

0 N
0;
0 N
0
1

F

0 N
0;
0 N
0
1

F

0 N
0;
0 N
0
1

Figure 10.5. The hypercubes B1 (top) and B2 (bottom) are obtained by compressing these two

diagrams. The unlabeled arrows are all holomorphic triangle or quadrilateral maps. There is

also a length 3 arrow in the right subcube for B2 which is not drawn.

11. Naturality maps for stabilizations

In this section, we construct our naturality maps for stabilizations of the Heegaard

surface, and prove some basic properties. Our definition of the naturality map for a

stabilization is simple: we define the map for a stabilization as the composition of

a 1-handle cobordism map with the 2-handle cobordism map for a 2-handle which

topologically cancels the 1-handle.

The definition gives some diagrammatic flexibility for computing the stabilization

map. In particular, for a stabilization we require two points p0 and p1 to be chosen

on † n .˛ [ ˇ/. We then add a tube to † with feet at p0 and p1. We add one new

alpha curve and one beta curve. The beta curve is a meridian of the tube, and the
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CF.˛ Ň ;�/ CF.˛ Ň 
0 N
0;�
0 N
0/ CF.˛ Ň 
0 N
0;��0/

CF.˛0 Ň 
0 N
0;��0/

CF.˛ Ň ;�/ CF.˛ Ň 
0 N
0;�
0 N
0/ CF.˛ Ň 
0 N
0;��0/

CF.˛ Ň ;˛0 N̨ 0/ CF.˛ Ň 
0 N
0;˛
0 N̨ 0
0 N
0/ CF.˛ Ň 
0 N
0;˛

0 N̨ 0
0 N
0/

CF.˛0 Ň ;˛0 N̨ 0/ CF.˛0 Ň 
0 N
0;˛
0 N̨ 0
0 N
0/ CF.˛0 Ň 
0 N
0;˛

0 N̨ 0
0 N
0/

F

0 N
0;
0 N
0
1

F

0 N
0;
0 N
0
1

F

0 N
0;
0 N
0
1

F

0 N
0;
0 N
0
1 B�

F

0 N
0;
0 N
0
1 B�

CF.˛0 Ň ;�/ CF.˛0 Ň 
0 N
0;�
0 N
0/

Figure 10.6. The diagram used to construct the hypercube B3.

alpha curve is obtained by concatenating a longitude of the curve with an embedded

curve on † n ˛. If † is embedded in Y , then we may view the construction as being

determined by picking an embedded path on † n ˛ which connects p0 and p1, and

having the tube run parallel to this path. The new alpha circle runs parallel to this

arc. We define the destabilization map as the composition of a 2-handle map for a

0-framed unknot, followed by the 3-handle cobordism map.

Note that this stabilization operation naturally determines a 3-ball in Y which

intersects † in a disk. We say two stabilizations are disjoint if there are two choices

of corresponding 3-balls in Y which are disjoint.

We write � for the stabilization map, and � for the destabilization map. The main

results of this section are summarized in the following proposition.

Proposition 11.1. .1/ The stabilization and destabilization maps commute with the
transition map for elementary equivalences of doubling-enhanced Heegaard diagram.

.2/ If � and � 0 are the maps for two disjoint stabilizations, then

� ı � 0 ' � 0 ı �:

.3/ If � and � are stabilizations and destabilizations for the same 3-ball, then

� ı � ' id and � ı � ' id :

Our proof of parts (2) and (3) goes by way of computing basepoint-adjacent sta-

bilizations and destabilizations (note that by handlesliding the original alpha and beta

curves, such a configuration may always be achieved).
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CF.˛ Ň ;�/ CF.˛ Ň 
0 N
0;�
0 N
0/ CF.˛ Ň 
0 N
0;��0/

CF.˛ Ň ;˛0 N̨ 0/ CF.˛ Ň 
0 N
0;˛
0 N̨ 0
0 N
0/ CF.˛ Ň 
0 N
0;˛

0 N̨ 0
0 N
0/

CF.˛ Ň ;˛ N̨ / CF.˛ Ň 
0 N
0;˛ N̨
0 N
0/ CF.˛ Ň 
0 N
0;˛ N̨
0 N
0/

CF.˛ Ň ;˛ N̨ 0/ CF.˛ Ň 
0 N
0;˛ N̨ 0
0 N
0/ CF.˛ Ň 
0 N
0;˛ N̨ 0
0 N
0/

F

0 N
0;
0 N
0
1

F

0 N
0;
0 N
0
1 B�

F

0 N
0;
0 N
0
1 B�

F

0 N
0;
0 N
0
1 B�

CF.˛ Ň ;˛0 N̨ 0/ CF.˛ Ň 
0 N
0;˛
0 N̨ 0
0 N
0/ CF.˛ Ň 
0 N
0;˛

0 N̨ 0
0 N
0/

CF.˛0 Ň ;˛0 N̨ 0/ CF.˛0 Ň 
0 N
0;˛
0 N̨ 0
0 N
0/ CF.˛0 Ň 
0 N
0;˛

0 N̨ 0
0 N
0/

CF.˛ Ň ;˛ N̨ 0/ CF.˛ Ň 
0 N
0;˛ N̨ 0
0 N
0/ CF.˛ Ň 
0 N
0;˛ N̨ 0
0 N
0/

CF. Ň ; N̨ 0/ CF. Ň N
0; N̨ 0 N
0/

F

0 N
0;
0 N
0
1 B�

F

0 N
0;
0 N
0
1 B�

F

0 N
0;
0 N
0
1

F
˛;˛
3

B�

F
˛
0;˛
0
3

F
N
0; N
0

1

F
˛0;˛0

3

F
˛0
0;˛0
0
3

Figure 10.7. The diagram used to build the hypercube B4. We stack the diagrams along the

gray face. There is a length 3 map in the right portion of top-most diagram which is not drawn.

Lemma 11.2. Suppose that p1 and p0 are two points on† n .˛ [ ˇ/which both lie in
the same component as the basepoint w. For a suitable choice of doubling curves on
the stabilized diagram and suitably degenerated choices of almost complex structures,
we have

� ' .x 7! x � c/ and � ' .x � c 7! x/;

where ¹cº D ˛0 \ ˇ0, and .x 7! x � c/ denotes the F ŒU; Q�=Q2-equivariant map
which sends x to x � c, and similarly for .x � c 7! x/.

Proof. Consider � (the proof for � is essentially the same). By definition, � is the

composition of the 1-handle cobordism map, followed by the map for a canceling 2-

handle. By Lemma 9.6, for a suitable choice of almost complex structure, the 1-handle
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CF.˛ Ň ;˛ N̨ / CF.˛ Ň 
0 N
0;˛ N̨
0 N
0/ CF.˛ Ň 
0 N
0;˛ N̨
0 N
0/

CF.˛ Ň ;˛ N̨ 0/ CF.˛ Ň 
0 N
0;˛ N̨ 0
0 N
0/ CF.˛ Ň 
0 N
0;˛ N̨ 0
0 N
0/

CF. Ň ; N̨ 0/ CF. Ň N
0; N̨ 0 N
0/

CF. Ň ; N̨ / CF. Ň N
0; N̨ N
0/

CF. Ň ; N̨ 0/ CF. Ň N
0; N̨ 0 N
0/

F
˛;˛
3

F

0 N
0;
0 N
0
1 B�

F

0 N
0;
0 N
0
1 B�

F
N
0; N
0

1

F
˛;˛
3 F

˛;˛
3

F
N
0; N
0

1

F
N
0; N
0

1

Figure 10.8. The diagram used to construct the hypercube B5.

map takes the form x 7! x � �C, extended F ŒU;Q�=Q2-equivariantly. We will show

that the 2-handle cobordism map is chain homotopic to a map which sends x � �C to

x � c.

We recall that the 2-handle map is defined in equation (10.4). We claim that the

diagonal map of the compression is trivial. To see this, we make the following sub-

claims about the diagram in (10.4) in the present context.

(1) The top-most length 2 map vanishes on elements of the form x � �C
ˇ0;ˇ0

�

‚C
Ň; Ň � �C

Ň
0; Ň

0

, for x 2 T˛ \ Tˇ .

(2) The middle length 2 map composes trivially with the 3-handle map F
˛ˇ0;˛ˇ0

3

(labeled F
˛0;˛0

3 in equation (10.4)), and the bottom-most length 2 map com-

poses trivially with the map F
˛˛0;˛˛0

3 (labeled F
˛;˛
3 in equation (10.4)).

We consider claim (1) first. There is a genus 2 portion of the Heegaard quadruple

corresponding to the stabilization, which takes the following form:

Q0 D .T2#T
2; ˛0 Ň

0; ˇ0 Ň
0; ˇ0 Ň

0;�0/:

We observe that

Of˛0
Ň
0;ˇ0

Ň
0;�0

�
Of˛0

Ň
0;ˇ0

Ň
0;ˇ0

Ň
0

�
‚C

˛0
Ň
0;ˇ0

Ň
0

; ‚C

ˇ0
Ň
0;ˇ0

Ň
0

�
; ‚C

ˇ0
Ň
0;�0

�
D ‚˛0

Ň
0;�0

:

This may be seen since the inner triangle map corresponds to the naturality map for

a small perturbation of the curves ˇ0 Ň
0, while the outer triangle map corresponds to

a factor of the doubling model of the involution for the diagram .T2; ˛0; ˇ0/. Hence,

by applying Proposition 6.5, we obtain the equality

h
ˇˇ0

Ň Ň
0!��0

˛ˇ0
Ň Ň

0!˛˛0
Ň Ň

0

�
x � �C

ˇ0;ˇ0
�‚C

Ň; Ň � �C
Ň
0; Ň

0

�
D h

ˇ Ň!�

˛ Ň!˛ Ň

�
x � �C

ˇ0;ˇ0

�
˝‚˛0

Ň
0;�0

;
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which vanishes by the small translate theorem for holomorphic quadrilaterals [4,

Proposition 11.5].

Next, we consider claim (2), from above. There are two quadrilateral maps which

appear in this claim. The proof for both maps is essentially the same, so we focus on

the map

h
��0!˛˛0 N̨ N̨0

˛ˇ0
Ň Ň

0!˛˛0
Ň Ň

0

:

This is the middle length 2 map in (10.4). We wish to show that this map composes

trivially with F
˛0;˛0

3 . To see this, we consider the genus 2 Heegaard quadruple

Q1 D .T2#T
2; ˛0 N̨0; �0; ˇ0 Ň

0; ˛0 Ň
0/:

This is an admissible, algebraically rigid multi-stabilizing quadruple. Furthermore,

we claim that

Of˛0 N̨0;ˇ0
Ň
0;˛0

Ň
0
. Of˛0 N̨0;�0;ˇ0

Ň
0
.‚C

˛0 N̨0;ˇ0
Ň
0

; ‚C

�0;ˇ0
Ň
0

/;‚C

ˇ0
Ň
0;˛0

Ň
0

/ D ‚�

˛0 N̨0;˛0
Ň
0
:

(11.1)

The above equation is verified by noting that the inner triangle map may be interpreted

as the cobordism map for a 2-handle attachment along a fiber of S1 � S2, while the

outer triangle map may be interpreted as a 2-handle attached along a 0-framed unknot.

The fact that ‚�

˛0 N̨0;˛0
Ň
0

is the output may be viewed as a consequence of the above

topological description.

Combining (11.1) with Proposition 6.5, we conclude that

h
��0!˛˛0 N̨ N̨0

˛ˇ0
Ň Ň

0!˛˛0
Ň Ň

0

.x �‚C

ˇ0
Ň
0;�
/

D h�!˛ N̨

˛ Ň!˛ Ň.x/ �‚�

˛0
Ň
0;˛0 N̨0

C
X

z2T
˛ Ň \T˛ N̨

Cz � z �‚C

˛0
Ň
0;˛0 N̨0

; (11.2)

for some Cz 2 F ŒU �. Equation (11.2) vanishes once composed with F
˛˛0;˛˛0

3 , by the

small translate theorem for holomorphic quadrilaterals [4, Proposition 11.5].

The composition of the bottom-most length 2 map from equation (10.4) with

F
˛ˇ0;˛ˇ0

3 vanishes in our present setting by a nearly identical argument.

We can now prove Proposition 11.1.

Proof of Proposition 11.1. Claim (1) follows immediately from the fact that 1-handle,

2-handle and 3-handle cobordism maps commute (up to chain homotopy) with the

transition maps for elementary handleslides.

Claims (2) and (3) follow from Lemma 11.2, since by (1), we may perform stabi-

lizations near the basepoint, and then observe that the formulas given therein clearly

satisfy the stated relations.
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12. Handleswaps

In this section, we prove handleswap invariance.

12.1. Simple handleswaps

Of central importance to the approach to naturality in [9] are the following loops in

the graph of Heegaard diagrams for a 3-manifold Y .

Definition 12.1. Suppose Y is a 3-manifold. A simple handleswap loop is a triangle

of Heegaard diagrams

H1

H3 H2

eg

f

which satisfies the following.

(1) Hi is an embedded Heegaard diagram for Y , which has the same Heegaard

surface for each i 2 ¹1; 2; 3º.

(2) e is an ˛-equivalence, f is a ˇ-equivalence, and g is a diffeomorphism.

(3) The diagrams Hi decompose as connected sums of a fixed Heegaard diagram

H D .†;˛u;ˇu/ with genus two diagrams Gi D .†0;˛i ;ˇi /. Furthermore,

in the punctured genus two surface .†#†0/ n†, the above triangle is diffeo-

morphic to the triangle in Figure 12.1.

In particular, in the above definition, ˛1 consists of two closed curves ˛1 and

˛2, while ˇ1 consists of two closed curves ˇ1 and ˇ2. The arrow e corresponds to

handlesliding ˛1 over ˛2, while the arrow f corresponds to handlesliding ˇ1 over ˇ2.

Recall that associated to handleslides and diffeomorphisms, we have defined mor-

phisms, CFI.e/, CFI.f / and CFI.g/, which are well defined up to F ŒU;Q�=Q2-equ-

ivariant homotopy equivalence.

Theorem 12.2. CFI.g/ ı CFI.f / ı CFI.e/ ' IdCFI.H1/.

The proof of Theorem 12.2 occupies the subsequent sections.

12.2. Reduction to basepoint-adjacent handleswaps

A simple handleswap need not occur in a region of the Heegaard diagram near a

basepoint. However, we now show that for the purposes of naturality, it suffices to

consider handleswaps where the special genus 2 region is adjacent to the basepoint.

We note that this fact was also observed by Sungkyung Kang.
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e

f

g

E E

B B

E E

B B

E E

B B
˛1

˛2

ˇ2

ˇ1

Figure 12.1. A simple handleswap.

Lemma 12.3. Suppose that F is a weak Heegaard invariant (in the sense of [9, Def-

inition 2.24]) which satisfies all of the conditions of a strong Heegaard invariant
[9, Definition 3.23] except possibly handleswap invariance. If F has no monodromy
around basepoint-adjacent handleswaps, then it has no monodromy around arbitrary
handleswaps.

Proof. Let p 2 † denote the connected sum point. Pick an arc � which connects p

to the basepoint w. We proceed by induction on the number of intersections of .˛u [

ˇu/ \ �: The base case is the hypothesis. If H is arbitrary, there is an equivalence j

between H and a diagram H
0 (obtained by handlesliding an alpha or beta curve over

p) such that on H
0, there is one fewer intersection of .˛u [ ˇu/ \ �. If H

0
1; H

0
2 and

H
0
3 denote the diagrams obtained by connect summing the standard genus 2 diagrams

from Figure 12.1, there is an analogous simple handleswap loop involving H
0
1, H

0
2

and H
0
3. Write e0, f 0 and g0 for the analogous equivalences. We have a diagram of

equivalences

H1

H
0
1

H
0
3

H
0
2

H3 H2

e

j1

e0g0

j3

f 0

j2

g

f
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E E

B B C C

D D

�0

˛0; ˛H0 , N̨ 0, and N̨H0

ˇ0; ˇH0 , Ň
0, and ŇH

0

w

Figure 12.2. The double of the handleswap region. The left side is †, and the right is x†.

The three outer rectangles are obtained from distinguished squares by inverting some

of the arrows, which are isomorphisms. By hypothesis, F commutes around these

squares. Our inductive hypothesis is that F has no monodromy around the central

triangle. This clearly implies that F has no monodromy around the outer triangle,

completing the proof.

12.3. Proof of Theorem 12.2

Let us introduce some notation. For the curves in the handleswap region, we write ˛0,

˛H0 , ˇ0 and ˇH0 . We write ˛H for ˛u [ ˛H0 , and similarly for ˇH0 . Hence, for the

three diagrams appearing in the handleswap loop, we write

H1 D .†#†0;˛;ˇ/; H2 D .†#†0;˛
H ;ˇ/; H3 D .†#†0;˛

H ;ˇH /:

Similarly, let �u be a collection of doubling curves on †#x†. Let �0 be choice of

doubling curves on †0#x†0, as shown in Figure 12.2. Write � for �u [ �0.

We write D for H , decorated with �u. We pick a collection of four doubling

curves �0 on †0#x†0. We decorate H1; H2, and H3 with � to form the doubling

enhanced diagrams D1, D2, and D3, respectively.

We note that for i 2 ¹1; 2; 3º, there are canonical isomorphisms

CFI.D/ Š CFI.Di /; (12.1)
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given by x 7! x � ci ; extended F ŒU;Q�=Q2-equivariantly. Here, we write ci for the

unique intersection points

c1 2 T˛0
\ Tˇ0

; c2 2 T˛H
0

\ Tˇ0
; and c3 2 T˛H

0
\ TˇH

0
:

In fact, we have the following lemma.

Lemma 12.4. The genus 2 diagram shown in Figure 12.2 is weakly admissible. Fur-
thermore, each of the following subdiagrams has vanishing differential:

(1) .†0#x†0;ˇ0 Ň
0;�0; w/,

(2) .†0#x†0;ˇ
H
0

ŇH
0 ;�0; w/,

(3) .†0#x†0;�0;˛0 N̨ 0; w/,

(4) .†0#x†0;�0;˛
H
0 N̨H0 ; w/,

(5) .†0#x†0;˛0 Ň
0;�0; w/,

(6) .†0#x†0;˛
H
0

ŇH
0 ;�0; w/.

Proof. Admissibility is a straightforward computation which we leave to the reader.

To check that each of the stated complexes has vanishing differential, it suffices to

check that each has the same number of generators as its homology. The first four sub-

diagrams represent a complex for #2S1 � S2 and also have exactly four generators.

Similarly the final two subdiagrams represent S3, and each have a unique intersection

point.

By definition,

CFI.e/ D ‰D1!D2
and CFI.f / D ‰D2!D3

;

where ‰Di !DiC1
is obtained by compressing a hyperbox as in Figure 5.1. Comput-

ing the composition‰D2!D3
ı‰D1!D2

is somewhat inefficient, however, since the

involutive transition maps naturally allow for changing both the alpha and the beta

curves simultaneously. Instead, we will consider the map ‰D1!D3
obtained by com-

pressing the hyperbox in Figure 5.1. (See equation (12.4), below). By Theorem 5.2,

CFI.f / ı CFI.e/ D ‰D2!D3
ı‰D1!D2

' ‰D1!D3
: (12.2)

To prove Theorem 12.2, we also need to understand the diffeomorphism map

CFI.g/. We note that the diffeomorphism g does not fix �0. Hence, by definition,

this map is the composition

CFI.g/ WD ‰g.D3/!D1
ı Tg ; (12.3)

which we explain presently. The map Tg is the tautological map which sends an inter-

section point x 2 T˛˛H
0

\ TˇˇH
0

to its image in T˛˛0
\ Tˇˇ0

under g, extended
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F ŒU;Q�=Q2-equivariantly. Also, g.D3/ is obtained by enhancing Heegaard diagram

H1 with the doubling curves �u[�0
0, where �0

0Dg.�0/. The map ‰g.D3/!D1
is

built by compressing a hyperbox similar to the one in Figure 5.1 which realizes the

change of doubling curves.

With respect to the canonical isomorphisms of (12.1), the map Tg is clearly equal

to the identity map. Theorem 12.2 follows from (12.2) and (12.3) and the following

result.

Proposition 12.5. With respect to the canonical isomorphisms in (12.1), the maps
‰D1!D3

and ‰g.D3/!D1
are chain homotopic to the identity map.

Proof. We focus first on the computation of ‰D1!D3
. By definition, this map is

obtained by compressing the following hyperbox:

CF.˛;ˇ/ CF.˛H ;ˇ/ CF.˛H ;ˇH /

CF.˛ Ň ;ˇ Ň / CF.˛H ŇH ;ˇ Ň / CF.˛H ŇH ;ˇH ŇH /

CF.˛ Ň ;�/ CF.˛H ŇH ;�/ CF.˛H ŇH ;�/

CF.˛ Ň ;˛ N̨ / CF.˛H ŇH ;˛ N̨ / CF.˛H ŇH ;˛H N̨H /

CF. Ň ; N̨ / CF. ŇH ; N̨ / CF. ŇH ; N̨H /

CF. Ň ; N̨ / CF. Ň ; N̨H / CF. ŇH ; N̨H /

F
Ň; Ň

1
F

ŇH ; Ň

1
F

ŇH ; ŇH

1

F
˛;˛
3 F

˛H ;˛
3

F
˛H ;˛H

3

(12.4)

We note that in the above diagram, each polygon counting map occurs on a connected

sum. One summand is † or †#x† while the other summand is the genus 2 subsurface

†0, or its double. We will argue by viewing the diagram as a multi-stabilization and

applying Lemma 12.4 and Proposition 6.5.

There is a subtlety in that the almost complex structures used to construct the

transition map equation (12.4) are not naturally adapted to the genus four stabilization

region where the handleswap occurs. Instead, we must first argue that we can change
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c0

cC

c�

cı

†

N†

Figure 12.3. Curves along which we degenerate the almost complex structure.

the above composition to one which is naturally adapted to the handleswap. To do so,

we consider the closed curves on †#x† shown in Figure 12.3. We label these as cC;

c�, cı and c0. These are as follows.

(1) c0 is a meridian of the connected sum tube used in the doubling operation.

(2) cC is a closed curve on † which bounds the handleswap region and the con-

nected sum point.

(3) c� is a symmetric closed curve on x†, and bounds the handleswap region as

well as a the connected sum point.

(4) cı is a closed curve on †#x† which bounds the union of both handleswap

regions. Also, cı is disjoint from all � curves.

Write Jc0
for an almost complex structure or family of almost complex structures

which is nodal along c0, and use similar notation to define almost complex structures

degenerated on another curve or collections of pairwise disjoint curves on †#x†.

We introduce some shorthand. Write CF.L1/; : : : ;CF.L6/ for the six horizontal

levels of equation (12.4). (These are themselves 1-dimensional hyperboxes of chain

complexes). By using change of almost complex structure hypercubes, similar to [4,

Section 13], we may assume that the complexes and maps in equation (12.4) are

computed with respect to almost complex structures which are maximally pinched
along c0, cC and c�, in the sense of [4, Section 8.3]. This gives the map ‰D1!D3

, as

defined in the earlier sections of the present paper. On the other hand, using similar

techniques, we may use change of almost complex structure hypercubes to relate this

model to one which is maximally pinched along cC, c� and cı . This gives a hyperbox
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which we schematically indicate by the following diagram:

CFJcC
.L1/ CFJcC

.L1/

CFJcC;c�;c0
.L2/ CFJcC;c�;cı

.L2/

CFJ .L3/ CFJcı
.L3/

CFJcC;c�;c0
.L4/ CFJcC;c�;cı

.L4/

CFJc�
.L5/ CFJc�

.L5/

CFJc�
.L6/ CFJc�

.L6/

id

F1 F1

‰JcC;c�;c0
!JcC;c�;cı

‰J !Jcı

‰JcC;c�;c0
!JcC;c�;cı

F3 F3

id

id

(12.5)

The hyperbox in equation (12.5) realizes a chain homotopy between the model of

‰D1!D3
, computed with respect to almost complex structures which are maximally

pinched along cC; c� and c0, and a model of ‰D1!D3
which is computed using

almost complex structures which are maximally pinched along cC; c� and cı .

In the model of ‰D1!D3
appearing along the right-hand side of equation (12.5),

the holomorphic polygon counts all occur on a multi-stabilization of the diagram on

† or †#x†. The stabilization results for triangles imply that the two length 1 maps

along the top of (12.4) compose to give a map which is intertwined with the identity

under the canonical isomorphisms CF.H / Š CF.Hi / (similar to (12.1)). (This is the

content of [9, Propositions 9.31 and 9.32]).

It remains to show that none of the diagonal maps make non-trivial contribution to

the compression of (12.4). To this end, we make the following claims, which together

imply that the compression has trivial diagonal map.

(1) The compression of the top two levels of (12.4) has trivial diagonal map.

(2) The compression of the third and fourth levels of (12.4) has trivial diagonal

map.

(3) The bottom-most level of (12.4) has trivial diagonal map.

Consider first the claim (3). The diagonal map is a quadrilateral counting map on the

connected sum .†; ˛u; ˛u; ˇu; ˇu/#.†0; ˛
H
0 ; ˛0; ˇ0; ˇ

H
0 /. Applying the stabiliza-

tion result from Proposition 6.5 to the setting of holomorphic quadrilaterals, we may
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destabilize the map to the diagram .†;˛u;˛u;ˇu;ˇu/. By the small translate theorem

for quadrilaterals [4, Proposition 11.5], this map vanishes.

Next, consider (1). For this claim, we observe that the stabilization results for

holomorphic triangles imply that the length 1 holomorphic triangle maps preserve the

subspaces spanned by the top-degree generator (and furthermore, act tensorially on

these subspaces). Furthermore, the same argument as for claim (3) implies that the

holomorphic quadrilateral maps vanish on elements which have a factor which is the

top degree generator. Since the top degree generator is the output of the 1-handle maps

on the top row, this implies that the compression has trivial diagonal map. Claim (2)

follows from an analogous argument. This completes the proof of the claim about

‰D1!D3
.

We now consider the claim about ‰g.D3/!D1
. This map may be computed by

compressing the following diagram:

CF.˛;ˇ/ CF.˛;ˇ/ CF.˛;ˇ/

CF.˛ Ň ;ˇ Ň / CF.˛ Ň ;ˇ Ň / CF.˛ Ň ;ˇ Ň /

CF.˛ Ň ; g.�// CF.˛ Ň ; g.�// CF.˛ Ň ;�/

CF.˛ Ň ;˛ N̨ / CF.˛ Ň ;˛ N̨ / CF.˛ Ň ;˛ N̨ /

CF. Ň ; N̨ / CF. Ň ; N̨ / CF. Ň ; N̨ /

CF. Ň ; N̨ / CF. Ň ; N̨ / CF. Ň ; N̨ /

F
Ň; Ň

1
F

Ň; Ň

1
F

Ň; Ň

1

F
˛;˛
3

F
˛;˛
3

F
˛;˛
3

(12.6)

The description in (12.6) is not the most convenient for our purposes. Instead, we

describe a sequence of doubling curves g.�0/D �0
0; : : : ;�

6
0 D �0 on†0#x†0, such

that each �i
0 is obtained from �i�1

0 by a handleslide. Furthermore, we have the fol-

lowing properties for each i 2 ¹0; : : : 6º.

(1) The diagram

.†0#x†0;˛0 N̨ 0;ˇ0 Ň
0;�

i
0;�

iC1
0 ; w/

is weakly admissible.
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(2) Each of the following complexes CF.˛0 Ň
0;�

i
0/, CF.˛ N̨ ;�i

0/, CF.ˇ Ň ;�i
0/,

and CF.�i
0;�

iC1
0 / has vanishing differential.

The curves �0
0; : : :�

6
0 are shown in Figure 12.4. We leave it to the reader to verify

the above claims. (Compare Lemma 12.4.)

We compute the map ‰g.D3/!D1
as a composition of 6 maps, corresponding to

the transition maps for changing �i
0 to �iC1

0 , each of which is computed by com-

pressing a hyperbox similar to (12.6). The same argument as for ‰D1!D3
implies

that each of these maps is intertwined with the identity map by the canonical isomor-

phisms in (12.1). The proof is complete.

13. Completing the proofs of naturality and functoriality

In this section, we complete our proofs of naturality and functoriality.

13.1. Naturality

If D and D0 are two arbitrary doubling-enhanced Heegaard diagrams (equipped with

a framing at the basepoint), we define our transition map ‰D!D0 by composing the

maps for an arbitrary sequence stabilizations, elementary equivalences of attaching

curves, and pointed isotopies of the Heegaard diagram in .Y; w/.

We now prove Theorem 1.1, showing that this transition map ‰D!D0 defined

above is independent up to chain homotopy from the sequence of Heegaard moves.

Proof of Theorem 1.1. By [9, Theorem 2.38] and as in Section 4, it suffices to show

that the transition maps we have defined satisfy the axioms of a strong Heegaard

invariant [9, Definition 2.32]. We verify these axioms presently.

The functoriality axiom asserts two claims. Firstly, it asserts that we have well-

defined morphisms associated to handleslide equivalences of alpha curves and mor-

phisms associated to handleslide equivalences of beta curves (for a fixed Heegaard

surface). This part of the axiom follows from Theorem 5.2. (We remind the reader

that unlike in the setting of ordinary Heegaard Floer homology, it is not particularly

natural to define an involutive transition map which changes just the alpha curves, or

just the beta curves, since the transition map is defined by compressing hyperboxes as

in (5.1). Such hyperboxes necessarily require changing both the alpha and beta curves

simultaneously.)

The second part of the functoriality axiom asserts that the morphisms for stabi-

lizations are inverse to the morphisms for destabilizations. This is proven in Proposi-

tion 11.1.
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Figure 12.4. The curves g.�0/ D �0
0; : : : ;�

6
0 D �0, which relate g.�0/ and �0 by a

sequence of handleslides. Each arrow indicates the subsequent handleslide.
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The next axiom from [9, Definition 3.32] is the commutativity axiom, concerning

commutativity of the distinguished rectangles from [9, Definition 2.29]. In our present

case, we verify that there is no monodromy around the distinguished rectangles in

Proposition 4.2. In our present setting, we may rephrase the distinguished rectangles

from [9] as diagrams of embedded, doubling enhanced Heegaard diagrams with the

following shape, satisfying one of five configurations:

D1 D2

D3 D4

e

f g

h

We presently enumerate the five configurations, and also prove that there is no mon-

odromy.

(1) e, f , g and h are handleslide equivalences. In our setting, we must consider

changes of both of the attaching curves, as well as changes of the doubling

datum. Note these are also referred to as strong equivalences in the literature,

e.g., in [18]. The diagram commutes up to chain homotopy by Theorem 5.2.

We note that in [9], the stated rectangle has the property that e and h are

˛-equivalences, while f and g are ˇ-equivalences. However, the rectangle

therein is also a rectangle of isotopy diagrams, so we must consider changes

of both the alpha and beta curves along each edge.

(2) e and h are handleslide equivalences of attaching curves and doubling curves,

while f and g are both stabilizations. Commutativity follows from Proposi-

tion 11.1.

(3) e and h are handleslide equivalences, while f and g are diffeomorphisms pre-

serving the framing �. Commutativity around such rectangles is tautological.

(4) e, f , g and h are all stabilizations. Furthermore, there are disjoint 3-balls B1

and B2, such that e and h correspond to a stabilization in B1, while f and

g correspond to a stabilization in B2. Commutativity around such rectangles

follows from Proposition 11.1.

(5) The maps e and h are stabilizations, while f and g are diffeomorphisms pre-

serving the framing. Furthermore, the stabilization ball for h is the image of

the stabilization ball for e under the diffeomorphism g. Commutativity around

such rectangles is tautological.

The remaining axioms of [9, Definition 3.32], continuity and handleswap invari-

ance, were verified in Proposition 5.4 and Theorem 12.2.
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13.2. Functoriality

We now finish defining our cobordism maps and sketch the proof of Theorem 1.3,

showing that these maps are well defined. Our proof is modeled on [24]. Since our

approach is standard, we only provide an overview and sketch the points at which our

construction deviates from [24].

We begin with the construction, and will shortly sketch a proof of invariance.

Suppose W is a cobordism from Y1 to Y2, and assume basepoints in Y1 and Y2, as

well as a framed path 
 connecting them, have been chosen. We assume that W , Y1,

Y2 are connected. We pick a Morse function f WW ! Œ0; 1�. We may assume that the

indices of the critical points of f are non-decreasing, and we assume all critical values

are distinct and that f has critical points only of index 1, 2 and 3. Next, we pick a

gradient like vector field v such that our path 
 is a flow-line. A choice of gradient

like vector field gives a diffeomorphism

W Š W.S2/ [W.S1/ [W.S0/;

where Si are framed i -dimensional links and S0 � Y1, S1 � Y1.S0/, and S2 �

Y1.S0/.S1/. If s 2 Spinc.W / is self-conjugate, we define our cobordism map as the

composition

CFI.W; �; s/ D CFI.W.S2// ı CFI.W.S1/; sjW.S1// ı CFI.W.S0//:

We now prove Theorem 1.3. As a first step, we show that the 2-handle map is well

defined.

Lemma 13.1. Our 2-handle map CFI.W.S1/; sjW.S1// is independent of the choice
of diagram subordinate to a particular bouquet. Furthermore, it is also invariant from
the choice of bouquet, as well as handleslides amongst the components of S1.

Proof. Ozsváth and Szabó [24, Lemma 4.5] described five moves which relate any

two bouquets of a fixed link. Invariance under the first four of these moves follows

immediately from invariance of our map from handleslides amongst the curves in our

Heegaard triple, Proposition 10.5. The final move described by Ozsváth and Szabó

is stabilization of the Heegaard triple. Invariance from this move is a formal conse-

quence of our definition of the stabilization map. Indeed we defined the naturality map

for stabilizations as the composition of the 1-handle map, followed by a canceling 2-

handle map. Both the 1-handle map and map for a canceling 2-handle map commute

with the 2-handle map CFI.W.S1/; sjW.S1// by Propositions 10.6 and 10.7. Hence,

our 2-handle map is independent of the choice of diagram subordinate to a fixed bou-

quet.

Next, we note that independence of the choice of bouquet, as well as independence

of handleslides amongst the components of S1 both follow from independence of the



Naturality and functoriality in involutive Heegaard Floer homology 101

map from handleslides of the attaching curves, which we proved in Proposition 10.5.

Compare [24, Lemma 4.8].

Proof of Theorem 1.3. Firstly, we verify that the construction is independent of the

choice of gradient-like vector field v for f . Subsequently, we sketch that the cobor-

dism map is invariant from f .

The space of gradient like vector fields for a fixed Morse function is connected.

Since we have already decomposed W along level sets which separate critical points

of different indices, the codimension 1 singularities of a path of gradient like vec-

tor fields are handleslides amongst link components of the same indices. For criti-

cal points of index 1 or 3, invariance under these moves can instead be proven by

reordering the attachment of the handles using the composition law for 1-handles and

3-handles, Proposition 9.7, since a handleslide is the same as an isotopy after attach-

ing one of the handles. For 2-handles, we cannot add additional level sets because

of the Spinc decomposition, so instead handleslide invariance is proven directly in

Lemma 13.1.

We now consider invariance under f . By standard Cerf theory [3, 12], any two

Morse functions f0 and f1 with critical points ordered monotonically may be con-

nected with a 1-parameter family .ft /t2Œ0;1� whose critical points are also ordered

monotonically, except at finitely many points where a birth-death singularity occurs.

Furthermore, if f0 and f1 have no index 0 or 4 critical points, then each ft may

also be chosen to have no index 0 or 4 critical points. We now show that the maps

are invariant under index 1/2 handle cancelations, as well as index 2/3 handle can-

celations. Invariance under such handle cancelation is essentially automatic from the

definition of our naturality map for stabilizations. Indeed, consider the case that W

has a Morse function with only index 2 critical points, whose descending manifolds

intersect Y0 in a framed link S1. Let S0 � Y0 be a 0-sphere, and let K be a framed

knot in Y0.S0/ which intersects the co-core of S0 at exactly 1-point. Assume S1 is

disjoint from S0 and K. Using the composition law of Proposition 10.6, we obtain

CFI.W.S1 [ K// ı CFI.W.S0//

' CFI.W.S1// ı CFI.W.K// ı CFI.W.S0// WD CFI.W.S1// ı �;

where � is the naturality map for stabilization (and we are omitting Spinc structures

from the notation). Invariance under index 2/3 handle cancelations follows entirely

analogously. The proof is complete.

14. The cobordism map for S 2
� S 2

In this section we compute the cobordism map for S2 � S2. We prove the following

proposition.
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Proposition 14.1. LetW denote S2 � S2, with two 4-balls removed. Let s denote the
unique self-conjugate Spinc structure on W . Then, the cobordism map

CFI.W; s/W F ŒU;Q�=Q2 ! F ŒU;Q�=Q2

is multiplication by Q.

Using the composition law, we may decompose W as two 2-handle cobordisms,

W D W2 ıW1. The first 2-handle is attached along a 0-framed unknot in S3 to form

W1. The second 2-handle is attached along an S1 fiber of S1 � S2 to form W2. Note

that, in both cases, one end of the cobordism is a copy of S3, on which the map ˆ

is null-homotopic. This implies that the choice of framings of the basepoints of the

three-manifolds and along choices of paths connecting them do not affect the final

computation, and we therefore omit them.

We start with the standard Heegaard triple .†; ˛0; ˛; ˇ/ for W1. In Figure 14.1,

we show the diagram .†#x†;˛0 Ň ;˛ Ň ;ˇ Ň ;�/. Therein, the top half of the figure is†,

and the bottom half is x†. This figure also encodes .†;˛0;˛;ˇ/.

The first quadrilateral counting map in equation (10.4) is h
ˇ Ň!�

˛ Ň!˛0 Ň . The Hee-

gaard quadruple .†#x†; ˛0 Ň ; ˛ Ň ; ˇ Ň ;�/ is depicted in Figure 14.1. This diagram

is weakly admissible. The input for h
ˇ Ň!�

˛ Ň!˛0 Ň from CF.ˇ Ň ;�/ is ‚C

ˇ Ň;�
, and the

input from CF.˛0 Ň ;˛ Ň / is ‚C

˛0 Ň;˛ Ň . We need only evaluate h
ˇ Ň!�

˛ Ň!˛0 Ň.‚
C

˛ Ň;ˇ Ň/, since

F
Ň; Ň

1 .‚˛;ˇ / D ‚C

˛ Ň;ˇ Ň , and for grading reasons h
ˇ Ň!�

˛ Ň!˛0 Ň.‚
C

˛ Ň;ˇ Ň/ is a multiple of

‚C

˛0 Ň;�
. Hence, we need only consider holomorphic quadrilaterals in

�2.‚
C

˛0 Ň;˛ Ň ; ‚
C

˛ Ň;ˇ Ň ; ‚
C

ˇ Ň;�
; ‚C

˛0 Ň;�
/:

There is an index �1 domain (shaded). This class has a holomorphic representative for

a unique conformal class of rectangle. Indeed, for each slit length (along the alpha and

beta arcs in the interior ofP2) there is a map of a varying conformal class of rectangles

to the domain of P2. Meanwhile, there is a holomorphic rectangle mapping to P1 for

a unique conformal structure.

By inspection, there are no other positive domains, and so,

h
ˇ Ň!�

˛ Ň!˛0 Ň.‚
C

˛ Ň;ˇ Ň/ D ‚C

˛0 Ň;�
:

The Heegaard quadruple for the second map h�!˛ N̨ 0

˛ Ň!˛0 Ň is depicted in Figure 14.2.

We need only consider summands in the image containing x D ¹x�
0 ; x

C
1 º, since grad-

ing considerations imply that the only other generator that can appear in the image of

h�!˛0 N̨0

˛ Ň!˛0 Ň ı f
ˇ Ň!�

˛ Ň ı F
Ň; Ň

1 is ¹xC
0 ; x

�
1 º, which is annihilated by F

˛0;˛0

3 .
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B

ˇ Ň

E

B

˛ Ň

�

�

z
�

�

P1
˛0 Ň

†

N†

�C

zC

�C

�CP2

E

Figure 14.1. The Heegaard quadruple .†#x†;˛0 Ň ;˛ Ň ; ˇ Ň ;�/. The generators of interest are

‚C

˛0 Ň;˛ Ň
D ¹�; �Cº, ‚C

˛ Ň;ˇ Ň
D ¹�; �Cº, ‚C

ˇ Ň;�
D ¹�; �Cº and ‚C

˛0 Ň;�
D ¹z; zCº.

�

˛0 Ň

˛ Ň

˛0 N̨ 0

E

B B

�

��

x�
0 xC

0

E

��

�C

�C

xC
1 x�

1

� 0

Figure 14.2. The Heegaard quadruple .†;˛0 Ň ;˛ Ň ;�;˛0 N̨ 0/ in the definition of h�!˛0 N̨0

˛ Ň!˛0 Ň
, with

some intersection points labeled. The generators of interest are ‚C
�;˛0 N̨ 0 D ¹�C; �º, ‚C

˛ Ň;�
D

¹�; � 0º, ‚C

˛0 Ň;˛ Ň
D ¹�C; �º and x D ¹x�

0
; xC

1
º.
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E E

B B

�

˛ N̨ 0

˛ Ň

˛0 N̨ 0

�

��

�

�4

�C

x2 x1

�

�3

x

�1�2

Figure 14.3. The Heegaard quadruple .†; ˛ Ň ;�; ˛0 N̨ 0; ˛ N̨ 0/ in the definition of H�!˛ N̨ 0

˛ Ň
,

with some intersection points labeled. The generators of interest are ‚C
�;˛0 N̨ 0 D ¹�C; �º,

‚C
˛0 N̨ 0;˛ N̨ 0 D x2 WD ¹x; x2º, y D ¹�2; �3º and ‚˛ Ň;� D ¹�; � 0º.

One checks directly that there are no positive domains among those generators for

h�!˛0 N̨0

˛ Ň!˛0 Ň as well as H�!˛ N̨ 0

˛ Ň , the latter of which is shown in Figure 14.3.

It follows that the map FW1;sjW1
takes the form

�
CFI.S3/

FW1;sjW1
�������! CFI.S1 � S2/

�

'

CF.S3/ CF.S1 � S2/

Q � CF.S3/ Q � CF.S1 � S2/

1 7!‚�

Q.1C�/ 1 7!Q‚C Q.1C�/

1 7!‚�

We now consider the 2-handle cobordism W from S1 � S2 ! S3. This is deter-

mined by the Heegaard triple .†; ˛00; ˛0; ˇ/, where ˛0; ˇ are as before, and ˛00 is a

copy of ˛. Let ��
˛0;ˇ

be the lower-degree generator of CF�.†;˛0;ˇ/ and �C
Ň; Ň be the

top-degree generator of CF�.x†; Ň ; Ň /. We need to calculate h
ˇ Ň!�

˛0 Ň!˛00 Ň.�
�
˛0;ˇ

� �C
Ň; Ň/,

h
�;˛00 N̨ 00

˛0 Ň!˛00 Ň.‚
�

˛0 Ň;�
/, and H�!˛0 N̨ 00

˛0 Ň .‚�

˛0 Ň;�
/.

We consider diagrams for each of those quadruples. Indeed, the first quadruple

is represented in Figure 14.1 with the role of the ˛0 Ň and ˛ Ň curves exchanged.
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A direct calculation shows there are no positive domains for �2.‚
C

˛00 Ň;˛0 Ň ; �
�
˛0;ˇ

�

�C
Ň; Ň ;‚

C

ˇ Ň;�
;‚˛00 Ň;�/ so h

ˇ Ň!�

˛0 Ň!˛00 Ň.�
�
˛0;ˇ

� �C
Ň; Ň/D 0. Entirely similar remarks apply

for h
�;˛00 N̨ 00

˛0 Ň!˛00 Ň.‚
�

˛0 Ň;�
/, and H�!˛0 N̨ 00

˛0 Ň .‚�

˛0 Ň;�
/. Computing as above, we obtain that

�
CFI.S1 � S2/

FW2;sjW2
�������! CFI.S3/

�

'

CF.S1 � S2/ CF.S3/

Q � CF.S1 � S2/ Q � CF.S3/

‚C 7!1;‚� 7!0

Q.1C�/ Q.1C�/

‚C 7!1;‚� 7!0

Composing the CFI.W2; s2/ ı CFI.W1; s1/, we obtain multiplication by Q.

Remark 14.2. The cobordismW1 is obtained topologically by turning the cobordism

W2 around and reversing its orientation. The maps CFI.W1; s1/ and CFI.W2; s2/
become dual over F ŒU;Q�=Q2 after performing a change of basis, corresponding to

a nontrivial automorphism on CFI.S1 � S2/. Compare [24, Theorem 3.5]. Note that

our definition of the 2-handle map in equation (10.4) does not naturally dualize to

another 2-handle map. We hope to investigate duality more precisely in future work.

15. Knots and links

In this section, we describe how to adapt the naturality and functoriality results of the

previous sections to the case of knots and links, and in particular prove Theorems 1.4

and 1.5.

If L is a link, in this section we write CFL	 .L/ for the pair .CFL.L/; �L/. Anal-

ogously to the case of knots, our construction requires a choice of orientation on L, so

there are potentially 2` different potential models for �L. To simplify the notation, we

assume that an orientation is fixed, and we consider only the two orientations which

are either coherent, or opposite to our preferred orientation. We write �L;C and �L;�

for these models of the link involution.

In analogy to our construction in the case of closed 3-manifolds, we will describe

several expanded models of the link involution z�L;˙ in Section 15.1. To streamline

the presentation, we only define transition maps with respect to the expanded models

(unlike in the case of closed 3-manifolds, where we defined both non-expanded and

expanded models). Since we only consider the expanded models of the involution
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in this section, we will write D for the expanded, doubling enhanced link diagram

we consider in Section 15.1. This notation departs from previous sections, where we

wrote zD for expanded models of the involution. Similarly, we write ‰D1!D2
for the

expanded models of the transition maps in this section, instead of z‰ zD1! zD2
.

In this section, we show how to adapt the techniques of the earlier sections to

prove the following naturality theorem, which implies Theorem 1.4.

Theorem 15.1. Suppose that L is a link in a 3-manifold.

(1) The transition maps ‰D!D are well defined up to homotopies of morphisms
of �L-complexes.

(2) ‰D!D ' idCFL	.D/.

(3) If D1, D2 and D3 are three expanded, doubling enhanced Heegaard link
diagrams for .Y; L/, then ‰D2!D3

ı‰D1!D2
' ‰D1!D3

.

Additionally, we prove the following functoriality theorem, which is an expanded

version of Theorem 1.5.

Theorem 15.2. Suppose that .W; †/ is a link cobordism from .Y1; L1/ to .Y2; L2/.
Suppose further that † consists of a collection of annuli, each with one boundary
component in Y1, and one boundary component in Y2. Suppose further that each
annulus is decorated with two parallel longitudinal arcs, s 2 W is a Spinc structure
such that Ns D s C PDŒ†�. Then, the cobordism map CFL	 .W;†;s/ defined via the
doubling model is an enhanced �L-homomorphism, and is well-defined up to enhanced
�L-homotopy.

15.1. Expanded models of the knot and link involutions

In this section, we describe our expanded model of the knot and link involution, sim-

ilar to the expanded 3-manifold involution which appeared in Section 7. This is the

model we use to prove Theorem 15.1.

The construction is as follows. Suppose that L is a link in Y , and .†;˛;ˇ;w; z/

is a Heegaard link diagram for .Y;L/ such that each component of L contains exactly

two basepoints. We pick an auxiliary point p 2 † n .˛ [ ˇ [ ¹w; zº/, at which we

will form the connected sum of † and x†.

We write c for the curve which is a meridian of the connected sum tube, as in the

3-manifold case. There is a natural 1-handle map

F
c Ň;c Ň

1 W CFL.†;˛;ˇ;w; z/ ! CFL.†#x†;˛c Ň ;ˇc Ň ;w [ Nz; z [ Nw/:

We pick a collection of properly embedded and pairwise disjoint arcs ı1; : : : ;

ı2gC2jLj�1 on † n N.p/, such that after cutting † n N.p/ along ı1; : : : ; ı2gC2jLj�1,
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w

z

Nw

Nz

Figure 15.1. A doubly pointed Heegaard knot diagram with a special point p (left), and the

double (right).

we are left with 2jLj punctured disks. We assume that each disk contains exactly one

basepoint from w [ z. Equivalently, we may assume that ı1; : : : ; ı2gC2jLj�1 forms

a basis of H1.† n .w [ z/; p/. We double the arcs ı1; : : : ; ı2gC2jLj�1 to obtain the

attaching curves �. See Figure 15.1 for an example.

The complex CFL.†#x†; ˇc Ň ;�;w [ Nz; z [ Nw/ represents an jLj-component

unlink in #gS1 � S2, where each component contains 4 basepoints. There are two

canonical homology classes, represented by cycles ‚w

ˇc Ň;�
and ‚z

ˇc Ň;�
. These are

the generators of the top degree of homology with respect to the gradings grw and

grz, respectively. See [35, Lemma 3.7]. We define

f
ˇc Ň!�Iz

˛c Ň .�/ D f˛c Ň;ˇc Ň;�

�
�; ‚w

ˇc Ň;�

�
;

and we similarly define f
ˇc Ň!�Iw

˛c Ň to be the holomorphic triangle map with special

input ‚z

ˇc Ň;�
. (The reason that the z-map has the w-generator as its input is due to

the interpretation of the map in terms of decorated link cobordisms from [35].)

Similarly, there are two distinguished classes ‚w
�;˛c N̨ ; ‚

z
�;˛c N̨ in CFL.†#x†;�;

˛c N̨ ;w [ Nz; z [ Nw/.

We define the following two expanded models of the knot involution:

z�L;C D �K ı F
˛c;˛c
3 ı f

�!˛c N̨ Iw
˛c N̨ ı f

ˇc Ň!�Iz
˛c N̨ ı F

c Ň;c Ň

1 ;

z�L;� D �K ı F
˛c;˛c
3 ı f

�!˛c N̨ Iz
˛c N̨ ı f

ˇc Ň!�Iw
˛c N̨ ı F

c Ň;c Ň

1 :

Lemma 15.3. The maps z�L;� and z�L;C are homotopic to the maps �L;� and �L;C,
respectively, which were defined in Section 3.4.

Proof. We focus on the case when L is a doubly pointed knot K, since the proof for

links is not substantially different.
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w z

w z

Nz Nw

Nz Nw

SC
Nw; Nz

T �
z;w

K

Figure 15.2. Decorations on a cylindrical link cobordism Œ0; 1� �K corresponding to a compo-

sition of a quasi-stabilization followed by a quasi-destabilization.

The proof is to identify each of the above compositions with a cobordism map

from [35]. The map F
c Ň;c Ň

1 is equal to a composition of g 4-dimensional 1-handle

maps, as well as the birth cobordism map for adding an unknot component. The map

F
˛c;˛c
3 is similarly equal to the composition of g 3-handle maps, as well as a death

cobordism map which deletes an unknot.

We now consider the triangle maps. The map f
ˇc Ň!�Iz
˛c N̨ is the composition of g

4-dimensional 2-handle maps (as in the ordinary doubling model of the involution),

as well as the saddle cobordism map which attaches a band which has both of its ends

in a component of K n ¹w; zº which is oriented from z to w (i.e., which lies in the

beta handlebody). Furthermore, the band is contained in the type-z subsurface of the

link cobordism. The map f
�!˛c N̨ Iw
˛c N̨ has a similar description, except that the band is

instead in the type-w subsurface.

To make the identifications in the main statement, we argue as follows. By can-

celing the 1-handles and 2-handles, we may identify the composition f
ˇc Ň!�Iz
˛c N̨ ı

F
c Ň;c Ň

1 with the composition of a birth cobordism, followed by a w-saddle map. By

[35, Proposition 8.5], we may identify this composition with the quasi-stabilization

map SC
Nz; Nw , from [35, Section 4] and [32]. Analogously, we may identify the composi-

tion F
˛c;˛c
3 ı f

�!˛c N̨ Iw
˛c N̨ with T �

z;w . The composition T �
z;w ı SC

Nz; Nw is homotopic to the

basepoint moving map which sends w to Nz and z to Nw, both moving in the positive

direction by [35, Section 4.4]. See Figure 15.2.

Remark 15.4. The compositions �K ı F
˛c;˛c
3 ı f

�!˛c N̨ Iz
˛c N̨ ı f

ˇc Ň!�Iz
˛c N̨ ı F

c Ň;c Ň

1

and �K ı F
˛c;˛c
3 ı f

�!˛c N̨ Iw
˛c N̨ ı f

ˇc Ň!�Iw
˛c N̨ ı F

c Ň;c Ň

1 are null-homotopic. Indeed, the

same argument as above identifies the two maps with the link cobordism maps for a

cylinder which contains a null-homotopic loop in the dividing set. Such a cobordism

map induces the trivial map, since it may be identified with one of the compositions

S�
w;zS

C
w;z or T �

w;zT
C
w;z , which both vanish by [35, Lemma 4.13].

Remark 15.5. As previously mentioned, if L has `-components, there are 2` natural

models of the link involution, depending on how we twist each link component. The
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expanded model described above can also be used to realize any of these models. We

consider the diagram .†#x†;ˇc Ň ;�;w [ Nz;z [ Nw/. Suppose that O is a map from the

set of link components of L to the set ¹C;�º (corresponding to a choice of whether

to twist in the positive or negative direction). We let Z.O/ consist of the basepoints

from w [ Nz, for components where O D �, as well as the basepoints from z [ Nw for

components where O D C. Let W .O/ denote the complement. Then, each collection

Z.O/ and W .O/ determine Maslov gradings on CFL.†#x†; ˇc Ň ;�;w [ Nz; z [

Nw/, and we let ‚Z.O/ and ‚W .O/ be the corresponding top-degree generators. A

straightforward extension of Lemma 15.3 shows that the involution z�L;O is computed

by using ‚Z.O/ for the first triangle map, and ‚W .O/ for the second.

15.2. Naturality for knots and links

Most of the ideas from the previous sections carry over to define transition maps

and cobordism maps for the model of involutive link Floer homology described in

Section 15.1.

The main new technical subtlety is that the model of involutive link Floer homol-

ogy in Section 15.1 has an additional piece of data: the choice of connected sum point

p. If p and p0 are two choices of special points on †, a choice of path on † from p

to p0 can be used to relate the two models where the connected sum is taken at p or

p0, by using a point-pushing diffeomorphism along this path. In principle, a transition

map defined in this manner might depend on the choice of path. To handle this issue,

we introduce further expansions of the doubling model, as follows.

Suppose that p D ¹p1; : : : ; pnº is a collection of marked points on † n .˛ [ ˇ [

w [ z/. We may form an expanded model of the involution, as follows. Firstly, we

consider the surface†#p
x†, where we attach a connected sum tube at each point in p.

Let c D ¹c1; : : : ; cnº denote a collection of meridians of the tubes. We pick properly

embedded arcs ı1; : : : ; ı2gC2jLjCjpj�2, which form a basis of H1.† n .w [ z/;p/. It

is straightforward to see that if � is constructed by doubling ı1; : : : ; ı2gC2jLjCjpj�2,

then .†#p
x†;˛c Ň ;�;w [ Nz; z [ Nw/ is a diagram for .Y; L/, where each component

of L is given four basepoints.

Given a collection of points p as well as doubling arcs, as above, the construc-

tion from Section 15.1 adapts verbatim to produce a model of the link involution. It

remains to relate the models for different choices of p.

Suppose H D .†; ˛; ˇ;w; z/ is a Heegaard link diagram, and p is a subset of

† n .˛ [ ˇ [ w [ z/, and q is a point on† n .˛ [ ˇ [ w [ z [ p/. Suppose that Dp

and Dp[¹qº are doubling enhancements of H , which use the connected sum points p

and p [ ¹qº, respectively. We now define expansion and contraction morphisms

EqW CF K	 .Dp/ ! CF K	 .Dp[¹qº/; CqW CF K	 .Dp[¹qº/ ! CF K	 .Dp/:
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We define the map Eq in equation (15.1). Our definition of Eq is similar to our

definition of the 1-handle map, and Cq is defined similarly to the 3-handle map. In

particular, Eq is given by the following hyperbox.

CF K.˛;ˇ/ CF K.˛;ˇ/

CF K.˛cp
Ň ;ˇcp

Ň / CF K.˛cpcq
Ň ;ˇcpcq

Ň / CF K.˛cpcq
Ň ;ˇcpcq

Ň /

CF K.˛cp
Ň ;�/ CF K.˛cpcq

Ň ;�cq/ CF K.˛cpcq
Ň ;�0/

CF K.˛cp
Ň ;˛cp N̨ / CF K.˛cpcq

Ň ;˛cpcq N̨ / CF K.˛cpcq
Ň ;˛cpcq N̨ /

CF K. Ň ; N̨ / CF K. Ň ; N̨ /

id

F
cp Ň;cp Ň

1 F
cpcq Ň;cpcq Ň

1

F
cq ;cq
1

f
ˇcp Ň!�Iz

˛cp Ň

id

f
ˇcpcq Ň!�cq Iz

˛cpcq Ň f
ˇcpcq Ň!�0Iz

˛cpcq Ň

F
cq ;cq
1

f
�!˛cp N̨ Iw

˛cp Ň

f
�cq !�0

˛cpcq Ň

f
�cq !˛cpcq N̨ Iw

˛cpcq Ň f
�0!˛cpcq N̨ Iw

˛cpcq Ň

F
cq ;cq
1

F
acp;acp
3

B�

F
˛cpcq ;˛cpcq
3

id

(15.1)

In the definition of Eq , we write � for a closed curve on †#p[¹qº
x† which is sym-

metric with respect to the Z2-symmetry, and has a single transverse intersection with

cq .

Lemma 15.6. .1/ The maps Eq and Cq commute with the transition maps for handle-
slides and isotopies of the attaching curves. Furthermore, Eq and Cq are independent
of the choice of � , up to chain homotopy.

.2/ If p ¤ q, then ŒEp;Cq� ' 0, ŒEp;Eq� ' 0, and ŒCp;Cq� ' 0.

.3/ Ep ı Cp ' id and Cp ı Ep ' id.

.4/ If � is a surface isotopy of † which moves p to q and fixes all of the other
connected sum points and basepoints, then �� ' Cp ı Eq .

Proof. The proof of part (1) is essentially the same as for the 1-handle and 3-handle

maps. See Lemmas 9.4 and 9.5.

The proofs of claims (2) and (3) amount to constructing five hyperboxes (one for

each relation). All of these hyperboxes have a similar flavor, so we describe the hyper-

box for the relation CqıEq' id, and leave the remaining hyperboxes to the reader.
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The hyperbox we build will correspond to the hypercube

CF K	 .Dp/ CF K	 .Dp[¹qº/

CF K	 .Dp/ CF K	 .Dp/

Eq

id Cq

id

We build four constituent hyperboxes, each corresponding to one of the four levels of

equation (15.1). The highest level is the following diagram:

CF K.˛;ˇ/ CF K.˛;ˇ/

CF K.˛;ˇ/ CF K.˛;ˇ/

CF K.˛cp
Ň ;ˇcp

Ň / CF K.˛cpcq Ň ;ˇcpcq Ň /

CF K.˛cp
Ň ;ˇcp

Ň / CF K.˛cp
Ň ;ˇcp

Ň /

id

F
cp Ň;cp Ň

1

id

id

F
cpcq Ň;cpcq Ň

1

id

F
cp Ň;cp Ň

1

id

F
cq;cq
1

F
cq;cq
3

ıB�

F
Ň; Ň

1

id

The bottom-most level is very similar to the above, so we omit it.

We now consider the hyperbox corresponding to the second level from the top in

equation (15.1):

CFK.˛cpcq Ň ;ˇcpcq Ň / CFK.˛cpcq Ň ;ˇcpcq Ň /

CFK.˛cp
Ň ;ˇcp

Ň /

CFK.˛cp
Ň ;�/ CFK.˛cpcq Ň ;�cq/ CFK.˛cpcq Ň ;�0/

CFK.˛cpcq Ň ;�cq/ CFK.˛cpcq Ň ;�cq/

CFK.˛cp
Ň ;�/ CFK.˛cp

Ň ;�/ CFK.˛cp
Ň ;�/

F
cq;cq
1

id

id

B� B�

id

F
cq;cq
3

F
cq;cq
3

id id

id

F
cq;cq
1

B�

id

F
cq;cq
3

F
cq;cq
3

id id

CFK.˛cp
Ň ;ˇcp

Ň /

CFK.˛cpcq Ň ;ˇcpcq Ň / CFK.˛cpcq Ň ;ˇcpcq Ň /

CFK.˛cp
Ň ;ˇcp

Ň / CFK.˛cp
Ň ;ˇcp

Ň /

(15.2)

In equation (15.2), each unlabeled arrow is a triangle or quadrilateral map. The back

right hypercube also has a length 3 map, which is not labeled. We now explain the
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back-right hypercube. This hypercube is obtained by pairing ˛cpcq Ň with the fol-

lowing hypercube of beta attaching curves:

ˇcpcq Ň ˇcpcq Ň

ˇcpcq Ň ˇcpcq Ň

�cq �0

�cq �cq

�

‚z

ˇcpcq Ň;�cq

1

�

‚z

ˇcpcq Ň;�0

1

‚z

ˇcpcq Ň;�cq

�

‚�cq;�0

� ‚�0;�cq

‚z

ˇcpcq Ň;�cq

1

(15.3)

The above hypercube of beta attaching curves is constructed as follows. Length 2

chains are constructed by adapting Lemma 9.2. Once these are chosen, a length 3

chain may be chosen by the standard cube-filling procedure. Namely, if C is the sum

of all other terms of the length 3 relation, we know @C D 0 because of the hypercube

relations on the other proper faces, and C is in CF K.ˇcpcq Ň ;�cq/, a complex for

an unlink in a connected sum of several copies of S1 � S2, of grz-grading equal to

that of the top degree generator of homology. By potentially adding a copy of the top

degree generator to the 2-chain labeled �, in equation (15.3), the hypercube relations

may be satisfied.

The hyperbox for the third level of equation (15.1) is constructed very similarly.

Indeed, if we switch the roles of the alpha and beta curves, then the hypercube for the

third level of equation (15.1) is obtained by dualizing equation (15.2). Stacking these

hyperboxes and compressing gives the relation Cq ı Eq ' id.

One important point to check is that the diagonal maps on the second and third

hypercubes can be chosen to match. For example, to build the hypercube in equa-

tion (15.2), we may potentially have to add the top degree generator to � so that the

hypercube relations are satisfiable. A similar issue occurs in constructing the length

2 map on the top face of the third hypercube as well. Nonetheless, as in the proof of

Lemma 9.5, addition of the top degree generator to � in equation (15.3) has no effect

on the diagonal map in the compression of equation (15.2). Hence, the compression

of equation (15.2) may be stacked on top of the corresponding hypercube below it.

We now consider part (4). This follows from the first claims, as we now explain.

Let � be a path from p to q. Let �q!p denote the surface isotopy which moves q to
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p along �, and is supported in a small neighborhood of �. It is sufficient to show that

�q!p ı Cp ı Eq ' id :

Let x0 be a point in the interior of �. We compute as follows, using the previous

relations:

�q!p ı Cp ı Eq ' �q!p ı Cp ı Cx0
ı Ex0

ı Eq

' �q!p ı Cx0
ı Eq ı Cp ı Ex0

' Cx0
ı �q!p ı Eq ı Cp ı Ex0

' Cx0
ı Ep ı Cp ı Ex0

' id :

Note that commuting �q!p past Cx0
in the second line is possible since the diffeomor-

phism �q!p is isotopic to one which fixes x0. Next, �q!p ı Eq ' Ep by naturality

of the expansion and contraction maps with respect to changes of attaching curves,

which is part (1) of the statement. This establishes part (4).

15.3. Functoriality for knots and links

In this section, we describe several aspects of the proof of Theorem 15.2. Firstly, to

construct cobordism maps for .W;†/W .Y1; L1/ ! .Y2; L2/ when † is a collection of

annuli such that each component of † intersects Y1 and Y2 non-trivially, it is suffi-

cient to describe cobordism maps on link Floer homology for 4-dimensional handles

attached to the complement of a link.

Cobordism maps for 4-dimensional handles attached in the complement of a link

are defined similarly to the maps for cobordisms between closed 3-manifolds (cf.

[35, Section 5]). The 1-handle and 3-handle maps are defined as in Section 9, and

the 2-handle maps are defined similarly to Section 10. One caveat is that there is an

asymmetry in the definition of the 2-handle maps with respect to the basepoints, in

that we choose the 2-handle maps to count holomorphic triangles which represent

classes satisfying sw. / D s. Note that by [34, Lemma 3.8], we have

.sw � sz/. / D PDŒ†�:

In particular, the final hypercube we use in constructing the cobordism maps for our

2-handle map will have the following form:

CFL.x†; Ň ; N̨ / CFL.x†; Ň ; N̨ 0/

CFL.†;˛;ˇ/ CFL.†;˛0;ˇ/

f N̨ ! N̨ 0

ŇIs

�L �L

f
ˇ

˛!˛0; NsCPDŒ†�
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16. 2-handle maps and the knot surgery formula

In this section, we compute another family of involutive cobordism maps. IfK � S3,

and n 2 Z, we will compute the map for the 2-handle cobordism from S32n.K/ to S3.

Our description will be in terms of the knot surgery formula of [4], and is in a similar

spirit to the non-involutive description of the 2-handle map of Ozsváth and Szabó

[27, Theorem 1.1].

We suppose that K � S3 is a knot, and we consider the 2-handle cobordism

W 0
m.K/ from S3m.K/ to S3. This cobordism is Spin if and only if m is even. Fur-

thermore, if m D 2n, then the unique self-conjugate Spinc structure on W 0
2n.K/ is

the one which satisfies hc1.s/; †i D 0, where † is obtained by capping K with the

core of the 2-handle. This Spinc structure restricts to Œn� 2 Spinc.S32n.K// under the

isomorphism Spinc.S32n.K// Š Z=2n.

Our formula is phrased in terms of the mapping cone formula of Ozsváth and

Szabó [27] and its involutive analog from [4]. We review these constructions briefly.

We write As.K/ for the subcomplex of CFK1.K/ generated by elements UiVjx

where A.x/C j � i D 0 and j � �s and i � 0. We write Bs.K/ for the subspace

generated by similar monomials, with no restriction on j . We write zBs.K/ for the

subspace generated by monomials which satisfy j � �s, but with no restriction on

i . We write vsWAs ! Bs and zvsWAs ! zBs for the canonical inclusions. We recall

from [27] that the mapping cone formula requires a choice of homotopy equivalence

from zBs.K/ to BsCm.K/. We write Fm for this map. We write A.K/ for the direct

product over s of As.K/, tensored with the power series ring F ŒŒU ��. Similarly B.K/

denotes the direct product of the complexes Bs.K/, tensored with F ŒŒU ��.

We recall that Ozsváth and Szabó proved that if K � S3 and m 2 Z, then

CF
�.S3m.K// Š Cone.v C hmW A.K/ ! B.K//;

where hm D Fmzv. In [4], we extended this to the involutive setting, and proved that

CFI
�.S3m.K// '

A.K/ B.K/

QA.K/ QB.K/

Hmzv

vChm

Q.id C�A/ Q.id C�B/

vChm

The map �AWAs ! A�s is given by �A D U s�K and the map �B W Bs ! B�sCm is

given by FmU
s�K . The mapHm is defined by picking a mapHmW zBs.K/! B�s.K/

satisfying

U s�K C FmU
s�KFm D Œ@;Hm�: (16.1)

Indeed, any two choices of mapHm satisfying this equation are themselves related by

appropriate homotopies. See [4, Section 3.5].
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With the above notation in place, we now state our formula for the 2-handle map.

Once again, because one end of the cobordism is the three-sphere, the formula is not

affected by choices of framings, and we omit them from the notation.

Theorem 16.1. Let s be the unique self-conjugate Spinc structure on the 2-handle
cobordismW 0

2n.K/ from S32n.K/ to S3. Write BIn.K/ WD Cone.Q.idC�B/WBn.K/!

QBn.K//, and let
J W XIn.K/ ! BIn.K/

be the map J WD vn…
A
n CQ…B

n �X, where…A
s is projection onto As ˚QAs and…B

s

is similar. Then, there is a hypercube of F ŒU;Q�=Q2-equivariant maps

CFI�.S32n.K// CFI�.S3/

XI2n.K/ BIn.K/

'

CFI.W 0
2n
.K/;s/

'

J

Remark 16.2. In Theorem 16.1, �X denotes the involution on the mapping cone, i.e.,

�X D �A C �B CH2nzv. Note �A vanishes when composed with…B
n , and hence makes

no contribution to the map J .

Example 16.3. Consider the caseK DU and nD 0, so thatW 0
2n.K/ is the cobordism

W2 from S1 � S2 to S3 considered in Section 14. We recall that X0.K/may be taken

to be the cone of A0.K/
vCh0
���! B0.K/ [27, Section 4.8]. In [4, Section 22.9] we show

that CFI�.S30 .K// ' XI0.K/, to wit the complex

A0.K/ B0.K/

QA0.K/ QB0.K/:

H0zv

vCh0

Q.id C�A/ Q.id C�B/

vChm

With this in mind, BI0.K/ D B0.K/˚QB0.K/ with appropriate gradings and dif-

ferentials. We take A0.U / and B0.U / to be appropriately graded copies of F ŒU �. For

clarity, let a be the generator of A0.U / and b be the generator of B0.U /. Choosing

H0 � 0 satisfies the formula 16.1. With this in mind, the map J sends J.a/ D b and

J.b/ D Qb, and correspondingly, J.Qa/ D Qb and J.Qb/ D 0. This differs from

the map associated to the cobordism computed in Section 14 by a change of basis;

setting ‚C D a and ‚� D aCQb recovers the map as described there.

We will focus on proving the case that n ¤ 0. The case that n D 0 is similar.
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We begin by considering the non-involutive analog of the above theorem, which is

similar to [27, Theorem 1.1]. Ozsváth, Szabó constructed a map from CF
�.S32n.K//

to Cone.CF
�.S32nCm.K// ! CF

�.S3//, which we think of as a hypercube

CF
�.S32n.K//

CF
�.S32nCm.K// CF

�.S3/:

k (16.2)

In the above, CF
�.S3/ denotes a version of twisted Floer homology which is isomor-

phic to CF
�.S3/˝ F ŒT �=.Tm � 1/.

We may consider instead a version of the above hypercube with twisted coeffi-

cients lying in F ŒT �. We will write zCF
�.S3/ for this version. We can also construct

an analog of equation (16.2) over F ŒT �, though the resulting hypercube has a different

shape:

CF
�.S32n.K//

zCF
�.S3/

CF
�.S32nCm.K//

zCF
�.S3/:

k

F

M

G

(16.3)

In equation (16.3), F is denoted as

F D
X

s2Spinc.W 0
2n
.K//

T
A

W 0
2n

;†
.s/

CF.W 0
2n.K/; s/;

where

AW 0
2n
;†.s/ WD

hc1.s/;b†i C 2n

2
:

Additionally,

M D
X

s22ZC1

Um.s
2�1/=8Tm.sC1/=2:

Note that M D 0 if we set Tm D 1. Hence, the hypercube in equation (16.2) is

obtained from equation (16.3) if we set Tm D 1 and remove the top right corner of

the hypercube.

The formula for F is derived as follows. Ozsváth and Szabó proved (16.2) by con-

sidering a Heegaard quadruple .†;˛3;˛2;˛1;ˇ;w; z/, with a special genus 1 surgery

region, as in [27, Section 3]. In the diagrams .†;˛1;ˇ/ and .†;˛2;ˇ/, the points w

and z are immediately adjacent. The diagram .†;˛1;ˇ; w/ represents S32n.K/. The

diagram .†;˛2;ˇ;w/ represents S32nCm.K/. The diagram .†;˛3;ˇ;w; z/ represents

.S3; K/. One obtains the hypercube in equation (16.3) by considering the degenera-

tions of holomorphic quadrilaterals. The quantity Um.s
2�1/=8Tm.sC1/=2 arises from



Naturality and functoriality in involutive Heegaard Floer homology 117

a model count of holomorphic triangles on the diagram .†; ˛3; ˛2; ˛1; w; z/ (see

[27, Section 3]).

We now fix ı � 0, and we set U ı D 0. Write CFı for CF�=U ı , and make similar

notation for maps. We assume that m � 0, so the only terms of F with U -power less

than ı have s 2 ¹1;�1º. Hence,

F ı D .1C Tm/
X

s2Spinc.W 0
2n
.K//

T
A

W 0
2n

;†
.s/

CFı.W 0
2n.K/; s/:

OnD.�m;1/, Spinc structures may be identified with 2Z C 1, where s 2 2Z C 1

corresponds to the Spinc structure t satisfying

hc1.t/; S
2i D s �m:

We are most interested in the Spinc structures corresponding to s D ˙1, which are

the Spinc structures with maximal square. Note that the composition of the natural

cobordisms from S32n.K/ to S32nCm.K/ (which has an extra boundary component

L.m; 1/) and the cobordism from S32nCm.K/ to S3 is W 0
2n.K/#D.�m; 1/. We iden-

tify Spinc structures onW 0
2n.K/#D.�m;1/ as pairs s#Œs� where s 2 Spinc.W 0

2n.K//

and s 2 2Z C 1.

We recall the notation of Ozsváth and Szabó for Spinc structures on W 0
2n.K/.

They write xs and ys for the Spinc structures which satisfy

hc1.xs/; †i C 2n D 2s and hc1.ys/; †i � 2n D 2s;

respectively.

There are also analogous Spinc structures on W 0
2nCm.K/, for which we write Xs

and Ys . The Spinc structure Xs satisfies

hc1.Xs/; †i C 2nCm D 2s;

and Ys is similar. We write

GXs
; GYs

W CF
�.S32nCm.K// ! CF

�.S3/

for the corresponding cobordism maps.

If s 2 Z, we may define a projection map …sW zCFı.S3/ ! CFı.S3/ by reading

off only the component T s . Using this map, we may form a hypercube

CFı.S32n.K/; Œs�/ zCFı.S3/ CFı.S3/

CFı.S32nCm.K//
zCFı.S3/ CFı.S3/:

k

F

M

…sM

id

G …s
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If we compress the above hyperbox, we obtain the following diagram:

CFı.S32n.K/; Œs�/ CFı.S3/

CFı.S32nCm.K// CFı.S3/

…sk

CF.W 0
2n
;xs/

id

GXs

If we instead use …sC2nCm, we obtain a hypercube relating the maps CF.W 0
2n; ys/

and GYs
.

The next step of the knot surgery formula is to construct a hypercube of the fol-

lowing form:

CFı.S32nCm.K// CFı.S3/

A
ı.K/ B

ı.K/

GXs CGYs

�
j

�w

vCh2n

(16.4)

The map � is a holomorphic triangle counting map. The map �w is the map for trivi-

alizing the twisted coefficients defining CFı.S3/.
The above hypercube is built by gluing together hypercubes with the following

shape:

CFı.S32nCm.K// CFı.S3/

A
ı.K/ B

ı.K/

GXs

� �w

v

and

CFı.S32nCm.K// CFı.S3/

A
ı.K/ B

ı.K/

GYs

�
j

�w

h2n

We may combine the above hypercubes into a hyperbox of the following shape:

CFı.S32n.K/; Œs�/ CFı.S3/

�
CFı.S32nCm.K// CFı.S3/

�
CFı.S3/

�
A
ı.K/ B

ı.K/
�

Bın.K/

CFı.W2n;m/ k kxs #Œ�1�

CF.W 0
2n
;xs/

id

� j

G

GXs…Œs�
�w �w

vCh2n

v…A
s

(16.5)

In the above, …Œs� denotes projection of CFı.S32nCm.K// onto the Spinc structure

identified with Œs� 2 Z=.2nCm/. Also, we view each parenthesized group as being

a single point in the set E.1; 2/ Š ¹0; 1º � ¹0; 1; 2º.
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Symmetrically, there is another hypercube of the following form:

CFı.S32n.K/; Œs�/ CFı.S3/

�
CFı.S32nCm.K// CFı.S3/

�
CFı.S3/

�
A
ı.K/ B

ı.K/
�

Bın.K/

CF.W2n;m/ k kys #Œ1�

CF.W 0
2n
;ys/

id

� j …B
sC2nCm

j

G

GYs…Œs�
�w �w

vCh2n

h2n…
A
s

(16.6)

Equations (16.5) and (16.6) can be used to compute the cobordism maps for

W 0
2n.K/, very similarly to Ozsváth and Szabó’s [27, Theorem 1.1].

In particular, the fundamental objects to construct are the hypercubes in equa-

tions (16.2) and (16.3). The involutive extension of equation (16.2) is one of the main

theorems of [4]. We now describe how to extend equation (16.3) to an involutive

hypercube.

Proposition 16.4. There is a hypercube of the form

CFI
�.S32n.K//

eCFI
�.S3/

CFI
�.S32nCm.K//

eCFI
�.S3/:

k

F

M

G

Furthermore, G and F are the involutive cobordism maps summed over all Spinc

structures (as defined in this paper) and M is the map
X

s22ZC1

Um.s
2�1/=8Tm.sC1/=2 � id CEQ:

The map E decomposes into a sum

E D
X

s22ZC1

Es;

where each Es is of homogeneous grading �m.s2 � 1/=4C 1.

Proof. The proof is mostly by a straightforward reinterpretation of the techniques

of [4]. There is one point where our description in [4] is not convenient for our present

purpose, which is in the first subcube of the central hypercube. We recall the Heegaard

quintuple .
 00;
 0;
;ı;ı0/ used to define the first central hypercube. There is a natural

hypercube, obtained by pairing two hypercubes (in [4], we referred to this hypercube
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as the first auxiliary hypercube). Over F ŒT �, this hypercube takes the following form:

CF
�.
; ı/ zCF

�.
 00; ı/

CF
�.
 0; ı/ zCF

�.
 00; ı/

zCF
�.
; ı0/ zCF

�.
 00; ı0/

zCF
�.
 0; ı0/ zCF

�.
 00; ı0/

f ı

!
0

f ı!ı0



f ı

!
00

hı!ı0


!
00

hı

!
0!
00 M

f ı!ı0


00

f ı

0!
00

f ı!ı0


00

f ı0


!
0

f ı0


!
00

hı0


!
0!
00 M

f ı!ı0


0

f ı0


0!
00

hı!ı0


!
0 hı!ı0


0!
00

The length 3 map (not shown) is the pentagon counting map pı!ı0


!
 0!
 00 .

We recall that .
 0; ı00/ admits a 3-handle map to a diagram H0, and that both

.
; ı0/ and .
 0; ı0/ are genus 1 stabilizations of H0. Furthermore, f ı
0


!
 00 and f ı
0


 0!
 00

are the maps for surgering on a 0-framed unknot. Since the relevant Heegaard triples

are both stabilizations, both of these maps admit left inverses, which are a 3-handle

map followed by a stabilization. Write � for the stabilization map which has .
;ı0/ as

its codomain, and write � 0 for the stabilization map which has .
 0;ı0/ as its codomain.

As a replacement for the diagram C
.1/
cen in [4], we build the following diagram:

CF
�.
; ı/ zCF

�.
 00; ı/

CF
�.
 0; ı/ zCF

�.
 00; ı/

CF
�.
; ı/ zCF

�.
; ı0/

CF
�.
 0; ı/ zCF

�.
 0; ı0/

f ı

!
0

id

f ı

!
00

�F3hı!ı0


!
00

M

�F3f ı!ı0


00

� 0F3h1�F3f ı!ı0


00

f ı

0!
00

� 0F3f ı!ı0


00

hı

!
0!
00

f ı

!
0

f ı!ı0



hı!ı0


!
0 f ı0


!
0

id

f ı!ı0


0

� 0F3hı!ı0


0!
00
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The length 3 map (not shown) is

� 0F3p
ı!ı0


!
 0!
 00 C � 0F3h1�F3h
ı!ı0


!
 00 :

Following the notation of [4], the map h1 denotes hı
0


!
 0!
 00 . The hypercube relations

are straightforward to verify. Compare [4, Lemma 16.4].

The hypercubes C
.2/
cen and C

.3/
cen are more straightforward to modify, and we leave

the details to the reader. Upon compressing and stacking these hypercubes, we get the

diagram in the statement. It remains to verify the listed claims. The identification of

J and G as cobordism maps is straightforward, and we leave the details to the reader.

Compare [4, Lemma 16.14].

We now consider the map labeled M in the statement, the length one component

of this map (i.e., the non-Q component) may be identified with
X

s22ZC1

Um.s
2�1/=8Tm.sC1/=2

by the lattice point counting argument in [27, Section 3]. It remains to identify theQ-

term. The Q-term is essentially the same as the map E considered in [4, Section 19].

Therein, we showed that E is null-homotopic over F ŒU; T �=.Tm � 1/. Our argu-

ment used at several places that the coefficients were in F ŒU; T �=.Tm � 1/ instead of

F ŒU; T �, so we give an alternate argument that is sufficient for our present purposes.

The first observation is that the mapE decomposes over Spinc.D.�m;1//, which

we have already identified with 2Z C 1. The grading change formula is also a routine

consequence of this identification, and the standard grading change formulas for the

cobordism maps in Heegaard Floer homology [20].

Remark 16.5. We writeM DM0 CQM1. Since CF�.S3/' F ŒU � is supported only

in even gradings, andM1 may be viewed as a chain map from CF
�.S3/ to itself which

shifts the mod 2 grading by 1, we may conclude thatM1 ' 0. In particular, by adding a

term to the length 3 map of the hypercube, we may assume thatM1 D 0. Furthermore,

fixing ı and letting m be sufficiently large, we see that Eı is homogeneously graded,

so the null-homotopy may also be taken to be homogeneously graded.

In [4, Section 21], we also described how to extend the hypercube in (16.4) into

the involutive setting. Using this, together with Proposition 16.4, we may construct the

involutive analog of the hyperboxes in equations (16.5) and (16.6). We construct this

hyperbox so that the top face has the hyperbox from equation (16.5), which involves

the Spinc structures xs and Xs with s D n. There is an important subtlety in that the

bottom face of this hyperbox will be the hypercube from equation (16.6), involving

the Spinc structures y�n and Y�n. (Note that y�n D Nxn.)

The front face of this hyperbox will compress to have the diagonal map H2nzv,

where H2n is the length 2 map from the involutive mapping cone of [4].
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We add one more level to this hyperbox so that the top and bottom levels faces

coincide. We add this level to the bottom of the hyperbox. We build this new level as

a pair of hypercubes. The first hypercube has the following shape:

CFı.S32n.K/; Œn�/ CFı.S3/

�
CFı.S2nCm.K// CFı.S3/

�
CFı.S3/

CFı.S32n.K/; Œn�/ CFı.S3/

�
CFı.S32nCm.K// CFı.S3/

�
CFı.S3/

CF.W2n;2nCm/ k

id

CF.W 0
2n
;y�n/

ky�n#Œ1�
id

id

GY�n…Œ�n�

CF.W2n;2nCm/

CF.W 0
2n
;xn/

k
kxn#Œ�1� id

id

GXn…Œn�

id id…n

In the above diagram,…n denotes projection onto the Bn-summand of CF�.S3/. The

hypercube relations are straightforward.

We finally have one additional hypercube, as follows:

�
CFı.S32nCm.K// CFı.S3/

�
CFı.S3/

�
A
ı.K/ B

ı.K/
�

Bın.K/

�
CFı.S32nCm.K// CFı.S3/

�
CFı.S3/

�
A
ı.K/ B

ı.K/
�

Bın.K/

�

id

GY�n…Œ�n�

�w

id …n

�w

id
h…A

�n

j …B
n j

� j

GXn…Œn�

�w �w

id

v…A
n

id id

…B
n

The above shape can be easily checked to be a hypercube of chain complexes, so the

proof is complete.
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17. The SO.3/-twist

In this section, we show that the diffeomorphism map associated to tw 2 �1.SO.3//Š

Z=2 acts on CFI.Y / by Id CQˆ, proving Theorem 1.7. Our argument will actually

identify the map with Qˆ�, though this is homotopic to Qˆ on CFI.Y /. In Sec-

tion 17.7, we will further consider an analogous twisting diffeomorphism map on

involutive knot Floer homology, and show that it is trivial.

Before beginning with the computation, we recall several topological perspectives

about tw. The first is as a Dehn twist along a small S2 enclosing the basepoint. A

regular neighborhood of such a sphere is S2 � I . We recall that

Diff.S2/ ' O.3/;

so the generator of �1.SO.3// gives a diffeomorphism of S2 � I which is the identity

on the boundary.

There is another perspective on tw, is as follows. Write DiffC.Y;w/ for the orien-

tation preserving diffeomorphisms � such that �.w/Dw; likewise, write Difff .Y;w/

for the orientation preserving diffeomorphisms � such that �.w/ D w and dw� D id.

If we fix a trivialization of TwY , we obtain a Serre fibration

Difff .Y; w/ ! DiffC.Y; w/ ! SO.3/;

and hence, a map

�1.SO.3// ! �0.Difff .Y; w//:

17.1. Heegaard diagrams for the twist map

We first describe the Heegaard diagrams used to define tw�. Recall that in non-

involutive Heegaard Floer homology, if �W†!† is a diffeomorphism, then the action

of �� on Heegaard Floer homology is induced by composing the maps in the follow-

ing diagram:

CF.†;˛;ˇ/
f

ˇ!�.ˇ/

˛!�.˛/

������! CF.†; ��1.˛/; ��1.ˇ//
T�

��! CF.†;˛;ˇ/;

where f
ˇ!�.ˇ/

˛!�.˛/
is a composition of holomorphic triangle maps and change of almost

complex structure maps, and T� is the tautological map on intersection points. The

diffeomorphism maps on involutive Heegaard Floer homology are defined similarly,

except that we replace CF.†;˛;ˇ/with a one-dimensional hyperbox (whose maps of

non-zero length correspond to the involution), and we replace f
ˇ!�.ˇ/

˛!�.˛/
and T� with

morphisms of hyperboxes.

This has the following instantiation in our present setting. Let ı be a set of dou-

bling arcs (with boundary on w) and zı a set obtained by applying a boundary Dehn
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ı
zı

Figure 17.1. Top row: the doubling arcs ı (left) and zı (right). On the bottom row, we show the

doubled diagrams and indicate how z� is obtained from � by moving the basepoint in a loop

around the connected sum tube.

twist in a loop which encirclesw. Let � and z� be their corresponding doubled curves

on †#x†. Then, tw� is obtained by compressing the following diagram (where we are

omitting an extra column corresponding to the tautological portion of the diffeomor-

phism map):

CF.†;˛;ˇ/ CF.†;˛;ˇ/

CF.†#x†;˛ Ň ;ˇ Ň / CF.†#x†;˛ Ň ;ˇ Ň /

CF.†#x†;˛ Ň ;�/ CF.†#x†;˛ Ň ; z�/

CF.†#x†;˛ Ň ;˛ N̨ / CF.†#x†;˛ Ň ;˛ N̨ /

CF.x†; Ň ; N̨ / CF.x†; Ň ; N̨ /

(17.1)

The relevant Heegaard diagrams are shown in Figure 17.1.

Remark 17.1. Since tw� can be interpreted in terms of moving the basepoint around

the connected sum neck on†#x†, one might expect that the formula for the hypercube
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�1-action from [38, Section 13] would show that tw� is null-homotopic as a mor-

phism of 1-dimensional hypercubes. That is, if we view 
� as a 2-dimensional diagram

below, then there is a 3-dimensional hypercube taking the form shown on the right:


� D

CF.Y / CF.Y /

CF.Y / CF.Y /


�


�
� �


�

CF.Y / CF.Y /

CF.Y / CF.Y /

CF.Y / CF.Y /

CF.Y / CF.Y /

id

�


�


�

id

�

id

�

id


�

id

�

id

We observe however that the techniques of [38] do not guarantee the 3-dimensional

hypercube so constructed has the same maps on the top and bottom faces of the

hypercube. (This may seem surprising since the length one components of 
� are

the identity on the nose.) Concretely, the homotopy on the top face involves maps

related to relative homology actions on stabilized diagrams, which are in general

not preserved by the involution. In particular, such a hypercube does not give us an

F ŒU;Q�=Q2 equivariant homotopy id ' tw� on CFI.Y /.

17.2. Degenerating connected sums

Our argument depends on a somewhat complicated neck stretching argument. Our

strategy is adapted from work of Ozsváth and Szabó in the setting of bordered knot

Floer homology [26]. We have explored some of these ideas further in [4, 38].

We focus first on the case of two ordinary Heegaard diagrams

H D .†;˛;ˇ; w/ and H
0 D .†0;˛0;ˇ;0 ; w0/;

and we take the connected sum at w and w0 (deleting one of the basepoints).

We first degenerate the connected sum tubes by letting neck length approach 1.

We obtain maps which count perfectly matched moduli spaces. We write CF^.H#H
0/

for the resulting chain complex.

There are homotopy equivalences

‰†<†
0

; ‰†
0<†W CF^.H#H

0/ ! CF.H /˝FŒU � CF.H 0/:
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The map ‰†<†
0

counts holomorphic disk pairs .u; u0/ of expected dimension 0

such that the following hold.

(1) For Œ0; 1� � .�1; 0/, the punctures of u and u0 consist of perfectly matched

pairs; that is, each puncture of u is paired with a puncture of u0 which has

identical projection to Œ0; 1� � R (and vice-versa).

(2) There is an even number of u and u0 punctures on Œ0; 1� � ¹0º, the special
line. These punctures all have distinct projections to Œ0; 1�� ¹0º, and alternate

between u and u0. The left-most puncture is from u.

(3) In Œ0; 1� � .0;1/, u and u0 may have any number of punctures, and there is

no constraint.

The map ‰†
0<† is defined similarly, except that the left-most puncture on the special

line is from u0.

Proposition 17.2. The maps ‰†<†
0

and ‰†
0<† are chain maps. Furthermore, they

are homotopy equivalences, with homotopy inverses given by the maps which count
curves in 0-dimensional moduli spaces with matching conditions in the regions above
and below Œ0; 1� � ¹0º reversed.

A proof, modeled on Ozsváth and Szabó’s work [26], may be found in [38, Sec-

tion 11.2]. An extension of the connected sum maps‰†<†
0
to the setting of connected

sums of hypercubes (under certain topological assumptions) is also proven in [38,

Proposition 11.8].

17.3. Setting up the computation

In Section 15.2, we considered several stabilized models of the involution where we

used multiple connected sum tubes, but a single basepoint. To perform our computa-

tion, we will join† and x† using a tube atw and a tube at another point p. Considering

this stabilized model will allow us to localize the computation.

Write cp for the meridian of the p-tube. Note that we can get a valid Heegaard dia-

gram by replacing cp with a meridian of the other tube. There are two natural choices,

cw and Ncw , depending on which side of w we put the meridian (see Figure 17.2).

We recall that the stabilized model of the involution from Section 15 takes the

following form:

F
˛cp ;˛cp
3 ı f

�!.˛cp N̨ /

˛cp Ň ı f
.ˇcp Ň/!�

˛cp Ň ı F
cp Ň;cp Ň

1 :

We now modify the sequence of curves we use in this Heegaard diagram, by break-

ing the sequence

ˇcp Ň ! � ! ˛cp N̨

into a longer sequence. This will make some holomorphic curve counts easier.
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w

p w

ı

p w

zı

cp

D

w

zD

Ncw

cw

N†

†

D

Figure 17.2. A once stabilized model of the involution. On the top, we show the doubling arcs

on †. On the bottom left, we have an overview of the two tubes. On the bottom right, we zoom

in on the w-tube region.

We pick sets of doubled curves �1; : : : ;�n, containing 2g C 1 curves each, on

†#x† such that the following hold.

(1) �i D �0
i [ D, where �0

i are doubled curves on the unstabilized diagram,

obtained by doubling arcs with two endpoints at w. Here, D is a single curve

which is obtained by doubling an arc which connects p to w.

(2) .†#x†;ˇ Ň ;�0
1/ is algebraically rigid. (Compare [4, Definition 6.5].)

(3) .†#x†;˛ N̨ ;�0
n/ is algebraically rigid.

(4) Each �0
iC1 is obtained from �0

i by a small isotopy or a simple arc slide of the

doubling arcs on † n N.p/, not crossing over the endpoint corresponding to

D. (In particular, each .†#x†;�0
i ;�

0
iC1; w/ is algebraically rigid.) Note that

this implies that �0
iC1 is obtained from �0

i by an elementary handleslide.

We will use the following model of the involution:

F
˛cp ;˛cp
3 ı‰

.˛ Ncw N̨ /!.˛cp N̨ /

.˛ Ncw
Ň/!.˛cp Ň/

ı f
�n!.˛ Ncw N̨ /

˛ Ncw
Ň

ı � � � ı f
�1!�2

˛ Ncw
Ň ı f

.ˇ Ncw
Ň/!�1

˛ Ncw
Ň ı‰

.ˇcp Ň/!.ˇ Ncw
Ň/

.˛cp Ň/!.˛ Ncw
Ň/

ı F
cp Ň;cp Ň

1
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The motivation for using this model is that most of the holomorphic curve counts

in the above diagram occur on a connected sum of the ordinary doubled diagram for

Y on †#x† and a genus 1 diagram where the diffeomorphism acts non-trivially. The

genus 1 region is a neighborhood of D [ cw ; we call it T .

We now write z�i for tw.�i /. If we write �i D �0
i [ D, then z�i D �0

i [ zD,

where zD is obtained from D by applying the twist in the torus region.

Our argument will proceed as follows. We will view each of the holomorphic

polygon counts as occurring on a connected sum of †#x† and T . We will build a

3-dimensional hyperbox whose front and back faces are expanded versions of the

hyperbox in equation (17.1). The new dimension corresponds to the map ‰†# x†<T .

The back face will consist of the perfectly matched complexes. The front face will

consist of the trivially matched complexes with some extra terms. The extra terms

correspond to the Qˆ summand of tw�.

17.4. Initial and final hypercubes

In this section, we extend the following hypercubes (with holomorphic curves counted

with perfect matching) into a third dimension corresponding to the map ‰†# x†<T :

CF.˛;ˇ/ CF.˛;ˇ/

CF.˛cp Ň / CF.˛cp Ň /

id

F
cp Ň;cp Ň

1
F

cp Ň;cp Ň

1

id

CF.˛ Ncw N̨ ;˛ Ncw N̨ / CF.˛ Ncw N̨ ;˛ Ncw N̨ /

CF.˛cp N̨ ;˛cp N̨ / CF.˛cp N̨ ;˛cp N̨ /

CF. Ň ; N̨ / CF. Ň ; N̨ /:

id

id

F
˛cp;˛cp
3

F
˛cp;˛cp
3

id

In the above, there is no diagonal term because the diffeomorphism tw fixes all of

the attaching curves on the Heegaard diagram.

Lemma 17.3. If we stretch the almost complex structure sufficiently on the connected
sum tubes, we have the equality

‰
.ˇcp Ň/!.ˇ Ncw

Ň/

.˛cp Ň/!.˛ Ncw
Ň/

ı F
cp Ň;cp Ň

1 D F
Ncw

Ň; Ncw
Ň

1 :

Proof. This follows from our stabilization result for holomorphic triangles in Propo-

sition 6.5. Topologically, it is sufficient to observe that on x†, there is a sequence of

handleslides of cp over the other Ň curves (not crossing over w) which takes cp to Ncw
(i.e., handleslide cp over each Ň curve twice).

We now investigate the next terms in the sequence. In Figure 17.3, we draw the

diagram .T ; Ncw ;D; zD; Nc0
w ; w/.
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NcwNc0
w

D

zD

w

Figure 17.3. The special genus 1 region and the diagram .T 2; Ncw; D; zD; Nc0
w; w/. The dashed

circle is the connected sum point. Also shown is a holomorphic quadrilateral that will play a

role in our argument.

Next, we observe

F
˛cp ;˛cp
3 D F

cp ;cp
3 ı F

˛;˛
3 :

We note that after surgering out the ˛ curves, the curves cp become isotopic to cw .

Hence, we identify

F
cp ;cp
3 ı F

˛;˛
3 D F

cw ;cw

3 ı F
˛;˛
3 :

In a similar manner to Lemma 17.3, we have the strict commutation

F
˛;˛
3 ı‰

.˛ Ncw N̨ /!.˛cp N̨ /

.˛ Ncw
Ň/!.˛cp Ň/

D ‰
. Ncw N̨ /!.cw N̨ /

. Ncw
Ň/!.cw

Ň/
ı F

˛;˛
3 : (17.2)

We now prove a simple index bound for the diagram .T ; Ncw ; cw/. We view this

diagram as having both a basepoint w 2 T , as well as a connected sum point p 2 T .

Note that these do not coincide. See Figure 17.4.

Lemma 17.4. Suppose that � 2 �2.�
C; �/ is a class of disks on .T ; Ncw ; cw ; w/.

(1) Then, �.�/ D 2nw.�/C gr.�C; �/.

(2) If D.�/ � 0, then �.�/ � np.�/.

Proof. The first claim is the Maslov grading formula.

We now consider the second claim. Consider first the case that � D �C. Then,

any class � D e� C k � P C n � ŒT �, where P is the periodic domain class which has

nw D 0 and np D 1. We observe �.�/ D 2n, and np.�/ D nC k. Also, n, n� k and
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w

Ncw

cw

Figure 17.4. The diagram .T ; Ncw; cw; w/. The dashed circle is the connected sum point p.

nC k are multiplicities of this disk class, so all must be nonnegative. This implies, in

particular, that n � jkj. Ergo,

�.�/ D 2n � nC k D np.�/;

as claimed.

We now consider the case that � D ��. In this case, write �0 for the bigon which

has np D 1 and write � D �0 C k � P C n � ŒT � for a general class. In this case, n,

n � k and nC k C 1 are multiplicities on the diagram. Hence, n � k. We have

�.�/ D 1C 2n � 1C nC k D np.�/;

completing the proof.

We now perform a key computation.

Lemma 17.5. We have the relation

F
cw ;cw

3 ı‰
. Ncw N̨ /!.cw N̨ /

. Ncw
Ň/!.cw

Ň/
'

�
x ˝ �� 7! x

x ˝ �C 7! ˆ
N†
w.x/

�
ı‰

N†<T ;

where ˆx†
w is the standard basepoint action on CF.x†; Ň ; N̨ /, usually denoted by ˆw .

Proof. The map ‰
. Ncw N̨ /!.cw N̨ /

. Ncw
Ň/!.cw

Ň/
is a composition of two triangle maps. Figure 17.4

shows the diagram .†; Ncw ; cw ;w/. The transition map may be viewed as handlesliding

Ncw over the connected sum point.
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We first claim that index bound which implies that the 3-handle map is well

defined implies also that

F
cw ;cw

3 D F
cw ;cw

3 ı‰
N†<T : (17.3)

To see this, note that ‰
N†<T counts holomorphic disk-pairs .u†; uT / on

. N†; Ň ; N̨ /#.T ; cw ; cw/;

which have a special line matching condition. Suppose that u† has S marked points

below the special line and M marked points along the special line. The matching

condition implies that uT has the same number of marked points below and on the

special lines, respectively. If �T 2 �2.�; �
0/ is the class of uT , we observe that

�.�T / D 2nw.�T /C gr.�; � 0/ � 2M C 2S C gr.�; � 0/:

In the composition F
cw ;cw

3 ı‰
N†<T , only curves with � 0 D �� contribute. Therefore,

the above shows that

�.�T / � 2M C 2S:

By assumption, ‰
N†<T counts 0-dimensional moduli spaces, so we must have

0 D �.�†/C �.�T / � 2S � 2M � �.�†/:

By transversality, if �† admits a holomorphic representative, then �.�†/ � 0 with

equality if and only if �† is a constant class. Hence,

F
cw ;cw

3 ı‰
N†<T

counts only curves which represent the constant class on†. It is easy to see by consid-

ering the diagram .T ; cw ; cw/ that this also implies that these classes are also constant

on T . Hence, equation (17.3) follows.

Therefore, we may replace F
cw ;cw

3 in the left-hand side of the equation in the

statement with F
cw ;cw

3 ı ‰
N†<T . We now consider the 1-parameter moduli spaces

which would naturally be used to commute‰
N†<T past both of the triangle maps used

to define ‰
. Ncw N̨ /!.cw N̨ /

. Ncw
Ň/!.cw

Ň/
. These are the 1-dimensional moduli spaces of holomorphic

triangles which have a special line which has an even number of marked points, which

are N† < T matched. Here, we view the triangle � as Œ0; 1� � R with the puncture

¹1º � ¹0º removed. The special lines are of the form Œ0; 1� � ¹sº, s 2 R.

In these moduli spaces, there are ends corresponding to the composition

‰
. Ncw N̨ /!.cw N̨ /

. Ncw
Ň/!.cw

Ň/
ı‰

N†<T ;

as well as ends corresponding to a chain homotopy. There is also the possibility of an

additional end where a holomorphic disk forms at the same height as the special line,
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and some the punctures along the special line may also degenerate into a holomor-

phic disk. We claim that these ends are constrained to a broken curve containing the

following curves.

(u-1) An index one disk on .T ; Ncw ; cw/ which has a single marked point, which

is from T .

(u-2) A trivial disk on . N†; Ň ; Ň /.

(u-3) A pair of triangles on .T ; Ncw ; cw ; cw/ ^ . N†; N̨ ; Ň ; Ň / which have marked

points at the same height as the Ň - Ň vertex of the triangle. Furthermore, N†

and T marked points alternate along this line, and both the left-most and

right-most punctures are from †.

See Figure 17.6. We say that triangle pair satisfying (u-3) is . N† < T < � � � < N†/-

matched.

To establish that these are the only ends, we consider a potential degeneration

where the special line on the triangle� has the same height as the Ň - Ň puncture of�.

We consider a limiting curve, and write  lx†
;  l

T
for the homology classes of the

holomorphic triangles, and we write �rx†
and �r

T
for the classes of the holomorphic

disks that break off. We suppose that there are nrx†
and nr

T
marked points of the disk

classes along the special line, and S r D S rx†
D S r

T
marked points below the special line

(i.e., perfectly matched). The expected dimension of the disk class with this matching

condition is

�.�rN†/C �.�r
T
/ � nrx† � nr

T
C 1 � 2S r : (17.4)

The above quantity must be 1 in a generic degeneration. On the other hand, since �rx†
is a disk class on . N†; Ň ; Ň /, and the connected sum point is the basepoint, we have

�.�rN†/ � 2np.�
r
N†
/ � 2.nrN† C S r/

by the absolute grading formula. Similarly, Lemma 17.4 implies that

�.�r
T
/ � nr

T
C S r :

We observe that the expected dimension in equation (17.4) is at least

nrN† C 1C S r :

Hence, S r D nrN†
D 0 for a generic degeneration. Since jnr

T
� nrN†

j � 1, we must have

nr
T

2 ¹0; 1º.

We therefore conclude that

�.�rN†/ D np.�
r
N†
/ D 0 and �.�r

T
/ D 1;

and nr
T

D 1, for a generic degeneration.
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@ @

Figure 17.5. A schematic of the homotopy ‰
x†<T<:::< x† ' .id ˝ˆ

x†
w/ ı‰

x†<T .

From this broken curve, we may extend the moduli space, by considering the

. N† < T < : : : < N†/-matched moduli space of triangles where the special line has

height below the Ň - Ň boundary puncture of the triangle � (see Figure 17.5).

There is a natural map

‰
x†<T<���<x†W CF^. Ň cw ; N̨ Ncw/ ! CF˝. Ň cw ; N̨ Ncw/;

which counts curve pairs of expected dimension 0 with the following matchings.

(1) Punctures along the special line are .x† < T < : : : < x†/-matched.

(2) Punctures below the special line are perfectly matched.

(3) Punctures above the special line are trivially matched.

We claim that

‰
x†<T<���<x† ' .id ˝ˆ

x†
w/ ı‰

x†<T :

This is proven by splitting the special line into two special lines. The higher special

line contains a single x†-marked point. The lower special line is x† < T matched.

Other marked points are perfectly matched below the lower special line, and trivially

matched above it. (i.e., there is no change in matching as we cross the x†-matched

line.)

We count the ends of these 1-parameter moduli spaces with two special lines. The

only non-canceling ends are as follows.

(1) An index 1 disk breaking off while the special lines have finite, non-zero dis-

tance, giving a chain homotopy.
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Ň Ncw

N̨ Ncw

N̨ Ncw

N̨ cw

Ň cw

Ň cw

Ň Ncw

N̨ Ncw

N̨ Ncw

N̨ cw

Ň cw

Ň cw

@ @

Ň Ncw

N̨ Ncw

N̨ Ncw

N̨ cw

Ň cw

Ň cw

‚j�C

Ň Ncw

N̨ Ncw

N̨ Ncw

N̨ cw

Ň cw

Ň cw

@

‚j��

‚j�C

Figure 17.6. Canceling moduli space ends in Lemma 17.5. Squares denote special inputs of

the holomorphic polygon maps. The curves in the square indicate 1-dimensional moduli spaces,

and the arrows labeled with @ indicate codimension 1 degenerations. Solid dots are x†-punctures

and open dots are T -punctures.

(2) The vertical distance between the two canceling ends approaches 0 or 1. The

distance 0 end contributes‰
x†<T<:::<x† while the distance 1 end corresponds

to the composition .id ˝ˆ
x†
w/ ı‰

x†<T .

Counting ends as above yields

‰
x†<T<:::<x† ' .id ˝ˆ

x†
w/ ı‰

x†<T :

Finally, we put all the pieces together. When counting triangles with trivial match-

ing conditions, it is straightforward to see that

‰
. Ncw N̨ /!.cw N̨ /

. Ncw
Ň/!.cw

Ň/
D id ˝ id;

on the level of intersection points.

Counting the ends of the above moduli spaces, we have ends which contribute the

map

F
cw ;cw

3 ı‰
. Ncw N̨ /!.cw N̨ /

. Ncw
Ň/!.cw

Ň/
ı‰

x†<T :

This is equal to �
x ˝ �� 7! x

x ˝ �C 7! 0

�
ı‰

x†<T :
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Additionally, we have the contribution corresponding to extending the bigon degen-

eration. This gives an extra contribution of ‰
x†<T post-composed with

x ˝ �C 7! ˆ
x†
w.x/:

Summing this with the previous contribution gives the main statement.

Remark 17.6. Note that the proof of equation (17.3) adapts easily to show that

F
˛;˛
3 ı‰†# x†<T D ‰

x†<T ı F
˛;˛
3 :

17.5. Central hypercubes

In this section, we describe how to commute ‰†# x†<T past the levels of tw� which

involve the quadrilateral maps. The main result of this section is the following lemma.

Lemma 17.7. The map ‰†# x†<T extends to a homotopy equivalence of hyperboxes
from the perfectly matched hyperbox

CF.˛ Ncw Ň ;ˇ Ncw Ň / CF.˛ Ncw Ň ;ˇ Ncw Ň /

CF.˛ Ncw Ň ;ˇD Ň / CF.˛ Ncw Ň ;ˇ zD Ň /

CF.˛ Ncw Ň ;�1/ CF.˛ Ncw Ň ; z�1/

:::
:::

CF.˛ Ncw Ň ;�n/ CF.˛ Ncw Ň ; z�n/

CF.˛ Ncw Ň ;˛D N̨ / CF.˛ Ncw Ň ;˛ zD N̨ /

CF.˛ Ncw Ň ;˛ Ncw N̨ / CF.˛ Ncw Ň ;˛ Ncw N̨ /

to its trivially matched counterpart.

Proof. We observe that all of the attaching curves which appear in the statement

are disjoint from the connected sum tube which connects x† and T
2. In fact, we

may describe the entire hyperbox using a connected sum operation on hypercubes of
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attaching curves. This connected sum operation on hypercubes of attaching curves is

a small modification of the one considered by Lipshitz, Ozsváth and Thurston in [15,

Section 3.5] (see [38, Section 9.5] for our present notation). If Lˇ D .ˇ"; ‚";"0/"2En

and Lˇ 0 D .ˇ0
� ;‚�;�0/�2Em

are two hypercubes of attaching curves on Heegaard sur-

faces† and†0, then Lˇ#Lˇ 0 is a hypercube of attaching curves of dimension nCm.

The curves of Lˇ#Lˇ 0 are defined as

B.";�/ D ˇ" [ ˇ0
�

with small translations of curves taken to achieve admissibility. In our present setting,

if the connected sum of † and †0 is taken at either w or w0 (deleting this basepoint),

then the curves B.";�/ will also form an admissible diagram which is algebraically

rigid, so we take the length 1 Floer chains of Lˇ#Lˇ 0 to be the top degree generators,

and all higher length chains to vanish.

In the hyperbox in the statement of the lemma, each constituent hypercube of

chain complexes is obtained by pairing the 0-dimensional hypercube ˛ Ncw Ň with a 2-

dimensional hypercube of beta attaching curves. We view ˛ Ncw Ň as the connected sum

of 0-dimensional hypercubes ˛ Ň with Ncw . In the top-most and bottom-most hyper-

cubes, the beta hypercube of attaching curves are connected sums of a 0-dimensional

hypercube on†#x†with a 2-dimensional hypercube on T
2. The remaining beta hyper-

cubes are connected sums of a 1-dimensional hypercube on†#x† and a 1-dimensional

hypercube on T
2.

The work of the last author [38, Section 11.3] constructs, under suitable hypothe-

ses, a homotopy equivalence between the hyperbox in the lemma statement (i.e., the

hyperbox obtained by counting curve pairs with perfect matching) and the hyperbox

obtained by counting curve pairs with trivial matching. The precise statement may

be found in [38, Proposition 11.8] and involves the following somewhat technical

definitions.

(1) The alpha and beta hypercubes of attaching curves must be algebraically rigid
and consist of handleslide equivalent attaching curves.

(2) A technical condition about the placement of the connected sum points and the

basepoint must be satisfied. See [38, Definition 11.4]. We say that a hypercube

of algebraically rigid, handleslide equivalent attaching curves is graded by

the connected sum point p if for all nonnegative classes � 2 �2.‚"1;"2
; : : : ;

‚"n�1;"n
/ (where ‚"i ;"iC1

are chains from the hypercube), we have

�.�/ � 2np.�/:

We recall the statement of [38, Proposition 11.8]. Suppose that† and†0 are Hee-

gaard surfaces with distinguished points p 2 † and p0 2 †0, and L˛ and Lˇ are
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algebraically rigid hypercubes on † and L˛0 and Lˇ 0 are algebraically rigid hyper-

cubes on †0. If L˛ is graded by p and Lˇ 0 is graded by p0, then the map

‰†
0<†W CF^.L˛#L˛0 ;Lˇ#Lˇ 0/ ! CF˝.L˛#L˛0 ;Lˇ#Lˇ 0/

is a homotopy equivalence. Here, CF^ has differential counting perfectly matched

curve pairs, while CF˝ counts trivially matched curve pairs.

We now return to the original setting of the present lemma. By construction, each

hypercube is algebraically rigid. Furthermore, the alpha hypercubes ˛ Ň and Ncw are

vacuously graded by the connected sum point since they are 0-dimensional. All of

the hypercubes on †#x† are graded by the connected sum point since the connected

sum point is adjacent to the basepoint and the hypercubes are algebraically rigid.

The beta hypercubes on T
2 are not all graded by the basepoint, but all of the alpha

hypercubes which lie on T
2 are. The only difference in our present situation and [38]

is that the hypercubes of attaching curves do not all consist of handleslide equivalent

attaching curves. For example, ˇ Ň is not handleslide equivalent to �0
1. Nonetheless,

the proof of [38, Proposition 11.8] still goes through since Heegaard diagram formed

from a pair of curves in the diagram represents an algebraically rigid diagram for a

connected sum of S1 � S2’s and the grading assumption in (2) is satisfied. Hence, the

same argument as in [38, Proposition 11.8] provides the homotopy equivalence in the

statement.

Next, we view the above hyperbox as consisting of attaching curves on the disjoint

union of †#x† and T , instead of the connected sum of these two diagrams. Note that

compression commutes with pairing up to homotopy, so we may instead compress the

hyperbox of attaching curves:

ˇ Ncw Ň ˇ Ncw Ň

ˇD Ň ˇ zD Ň

�1
z�1

:::
:::

�n
z�n

˛D N̨ ˛ zD N̨

˛ Ncw N̨ ˛ Ncw N̨

(17.5)
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Note that we have not defined compression of hyperboxes of attaching curves. Non-

etheless, the function-composition approach from Section 2.1 generalizes to this set-

ting with minimal care. In our present case this amounts to viewing each of the nC 2

levels in the above diagram as a twisted complex in the Fukaya category. Each pair of

adjacent levels in the diagram determines a morphism between 1-dimensional hyper-

cubes of attaching curves. A pair of morphisms between hypercubes of attaching

curves may be composed, so we compose iteratively all of these morphisms. Note

that this is not the same as applying the ordinary A1-composition map �nC2. Rather,

it is the result of applying �2 repeatedly.

Lemma 17.8. The compression of the diagram in equation (17.5) takes the following
form:

ˇ Ncw Ň ˇ Ncw Ň

˛ Ncw N̨ ˛ Ncw N̨

1

X j��
X 0j�C

X j��

1

Here, X is the iterated composition of the vertical arrows on †#x†, and �˙ are the
intersection points of Ncw \ Nc0

w . Furthermore, the cycle X 0 is homologous to X .

Proof. We view the diagram as being obtained by composing nC 1 morphisms be-

tween 1-dimensional hypercubes of Lagrangians. Viewing this diagram as a sequence

of morphisms �nC1; : : : ; �1, we form the composition as

�2.�nC1; : : : ; �2.�2; �1//:

We first claim that except for the final composition, there are no diagonal terms in any

partial composition. To see this, consider the first composition; the same argument

will apply to all later compositions except for the final. There are three holomorphic

quadrilateral counts which contribute to the diagonal term, corresponding to the fol-

lowing quadrilaterals:

(1) .ˇ Ncw Ň ;ˇ Ncw Ň ;ˇ zD Ň ; z�1/,

(2) .ˇ Ncw Ň ;ˇD Ň ;ˇ zD Ň ; z�1/,

(3) .ˇ Ncw Ň ;ˇD Ň ;�1; z�1/.

Each of these Heegaard quadruples decomposes as a connected sum where both fac-

tors have one set of attaching curves which is a small translation of an adjacent set.

Since we are counting curves using trivial matchings, we use [4, Proposition 11.5]

to see that no holomorphic quadrilaterals contribute. Similarly, using a model count

on the genus 1 diagram, we observe that the two triangle compositions in the vertical

direction coincide.
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Therefore, the final composition is of a diagram of the following form:

ˇ Ncw Ň ˇ Ncw Ň

˛D N̨ ˛ zD N̨

˛ Ncw N̨ ˛ Ncw N̨

X j� X j�

(17.6)

where � denotes the intersection point of Ncw \D or Ncw \ zD.

As a first step, we consider the length 1 maps in the compression of (17.6). The

length one chain on the left side of the compression is given by counting triangles on

.†#x†;ˇ N̨ ;˛ N̨ ;˛ N̨ / and .T2; Ncw ;D; Ncw/. There is no matching condition, so we count

triangles on the two diagrams separately and see that the triangle maps applied to

.X j�;‚Cj�/ have output X j��. The computation on†#x† follows from nearest-point

triangle counts, and the computation on T
2 is a direct and straightforward triangle

count.

We now consider the length 2 map of the compression. The small translate theo-

rems [4, Propositions 11.1 and 11.5] prohibit holomorphic quadrilaterals except on

.†#x†;ˇ Ň ;˛ N̨ ;˛ N̨ ;˛ N̨ /#.T2; Ncw ;D; zD; Ncw/:

Since the diagram on †#x† has several adjacent sets of attaching curves which are

small translates of one another, the only curves counted consist of pairs .u; u0/ where

u is an index 0 quadrilateral on †#x† and u0 is an index �1 quadrilateral on T
2. Fur-

thermore, the two quadrilaterals share the same almost complex structure parameter

(viewing the moduli space of rectangles as R). There is a unique such curve u0, shown

in Figure 17.3. Write X 0j�� for the output.

To see that X 0 is homologous to X we deform the matching, by instead requiring

the quadrilaterals u and u0 to have almost ev�.u/ � ev�.u
0/ D t , where ev� denotes

the evaluation map to the moduli space of complex rectangles, identified with R. We

then send t ! 1. The effect is to change X 0 by a boundary. This shows that X 0 is

homologous to the composition

�2.�2.X ; ‚˛ N̨ ;˛ N̨ /;‚˛ N̨ ;˛ N̨ /;

which we identify with X via the nearest point map. This completes the proof.

17.6. Proof of Theorem 1.7

We now complete our proof of the computation of the map tw�.
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Proof of Theorem 1.7. It remains to put the pieces together to finish the proof. We

build a 3-dimensional hyperbox to realize the homotopy. The back face is the map

tw�, computed using perfect matching between †#x† and T
2.

The front face is defined very similarly, using the trivial (i.e., tensor product)

matchings, with a modification of one cube. In place of

CF^. Ncw Ň ; Ncw N̨ / CF^. Ncw Ň ; Ncw N̨ /

CF. Ň ; N̨ / CF. Ň ; N̨ /

id

F
cw;cw
3

‰
. Ncw N̨ /!.cw N̨ /

. Ncw Ň/!.cw Ň/
F

cw;cw
3

‰
. Ncw N̨ /!.cw N̨ /

. Ncw Ň/!.cw Ň/

id

we have

CF˝. Ncw Ň ; Ncw N̨ / CF˝. Ncw Ň ; Ncw N̨ /

CF. Ň ; N̨ / CF. Ň ; N̨ /

id

‰0 ‰0

id

where

‰0 D

�
x ˝ �� 7! x

x ˝ �C 7! ˆw.x/

�
ı‰

x†<T :

Lemmas 17.3, 17.7 and equation (17.3) show that the hyperbox relations are satisfied

for appropriate choices of length 3 maps on the interior of the cube.

Next, we compress the front face of the hypercube described above. We pair the

hypercube from Lemma 17.8 with ˛ Ncw Ň and then stack with the 2-dimensional hyper-

cube

CF.x†; Ň ; N̨ / CF.x†; Ň ; N̨ /

CF.†;˛;ˇ/ CF.†;˛;ˇ/

id

� �

id

The so-constructed cube has the form

CF.˛;ˇ/ CF.˛;ˇ/

CF.˛;ˇ/ CF.˛;ˇ/;

id

ˆw�
� �

id

completing the proof.
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K

Figure 17.7. A doubled knot diagram (for the unknot). Meridional twisting preserves the dia-

gram.

17.7. Knots and links

If K is a knot, then a priori there is an action tw
�
� corresponding to rotating a neigh-

borhood of K in the meridional direction (see Figure 17.7). (Rotation in the longi-

tudinal direction is well known to induce an interesting automorphism by work of

Sarkar [30].) Despite the interesting potential for a new map, we have the following

proposition.

Proposition 17.9. The map tw
�
� is chain homotopic to id on CF K	 .K/. The same

holds for links.

Proof. We consider the stabilized model of the involution. For knots and links, the

doubling arcs ı have endpoints at a point p which is not one of the basepoints of

the knot. Hence, applying tw� to each Heegaard diagram has no effect on any of the

attaching curves.

Remark 17.10. We can also recover the above result on the non-stabilized doubling

models of the knot involution, considered in Section 3.4 and [4, Section 2.2], though

the argument is more subtle. Here, we double at one of the basepoints (say w 2 †),

with the ı curves having endpoints at w. In this model, after attaching 1-handles, we

move w to the position of Nz. The map tw� still changes the curves �, but since there

is no basepoint in the tube region (unlike in the case of closed 3-manifolds), the effect

on the level of diagrams is to act by a surface diffeomorphism which is isotopic to the

identity relative to the basepoints on †#x†.
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