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Abstract

We present straightforward conditions which ensure that a strongly elliptic linear operator

L generates an analytic semigroup on Hölder spaces on an arbitrary complete manifold of

bounded geometry. This is done by establishing the equivalent property that L is ‘sectorial,’ a

condition that specifies the decay of the resolvent (λI − L)−1 as λ diverges from the Hölder

spectrum of L . A key step is that we prove existence of this resolvent if λ is sufficiently

large using a geometric microlocal version of the semiclassical pseudodifferential calculus.

The properties of L and e−t L we obtain can then be used to prove well-posedness of a wide

class of nonlinear flows. We illustrate this by proving well-posedness on Hölder spaces of

the flow associated with the ambient obstruction tensor on complete manifolds of bounded

geometry. This new result for a higher-order flow on a noncompact manifold exhibits the

broader applicability of our technique.
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1 Introduction

Methods from semigroup theory provide an elegant abstract method to establish well-

posedness, stability and convergence results for large classes of evolutionary partial

differential equations, such as those which govern geometric heat flows. For such purposes,

the most useful semigroups are those which admit a holomorphic continuation in the ‘time’

variable. There is a nice characterization of these analytic semigroups in terms of their

infinitesimal generators. More specifically, we write the semigroup as e−t A, where A is a

closed linear operator acting on a certain Banach space X . A classical theorem states that the

function t �→ e−t A from R
+ to the space L(X) of bounded linear operators on X admits a

holomorphic extension to a neighborhood of R
+ in C if and only if the operator A satisfies a

property known as sectoriality, which as indicated below, involves restrictions on the spec-

trum of A, along with an estimate on its resolvent (λI − A)−1. We refer to [17, Chapters 5

and 6] for an elementary introduction to sectoriality and analytic semigroups.

In this work, we consider a broad class of geometric operators defined on sections of

vector bundles over complete Riemannian manifolds with bounded geometry and show that

they are indeed sectorial. This is the content of our main result—Theorem A—which is

proved in Sect. 3 using tools from microlocal analysis. However, the main consequence of

our work is that if the operators corresponding to geometric heat flows on manifolds of

bounded geometry act on the naturally associated (little) Hölder spaces, and if their symbols

satisfy readily verified algebraic conditions, then the initial value problems for those flows

are well posed, and have good stability and convergence properties.

More precisely, in applications to PDE, the generator A is a (typically elliptic) differential

operator and the sectoriality of such operators is known in a variety of settings. Our first goal

in this paper is to prove the sectoriality estimate for strongly elliptic differential operators

which satisfy a certain uniformity property, acting between sections of vector bundles over

a complete Riemannian manifold of bounded geometry. We characterize such operators as

admissible. The Banach spaces on which we let these operators act are little Hölder spaces;

our emphasis on these is because of their use in applications to nonlinear problems. The

immediate examples of such operators are generalized Laplacians, i.e., operators of the form

∇∗∇ + R, where R is an endomorphism usually constructed from the curvature tensor of

the underlying metric and its covariant derivatives. However, the method of proof extends

naturally to allow us to prove this estimate for more general higher-order operators as well.

Our second goal is to apply this sectoriality to deduce stability estimates for nonlinear

parabolic evolution equations on these manifolds, acting on little Hölder spaces. We are

particularly interested in geometric curvature flows, e.g., the Ricci flow, the mean curvature

flow, and certain relatively unexplored higher-order flows such as the one associated with

the ambient obstruction tensor (see Sect. 5 for a description of this). As discussed below,

these flows typically require some sort of gauge fixing in order to become suitably parabolic.

The applications in this paper illustrate how one can easily establish well-posedness of quite

general flows, on spaces that are not necessarily compact, using this sectoriality property. In

a subsequent paper [8], we describe an application in which sectoriality is a key part of the

proof of a longtime stability and convergence result.

Sectoriality for admissible operators on manifolds on spaces of uniformly bounded geom-

etry has, in fact, been treated previously, notably by H. Amann and his collaborators; see for

example [2, 21]. Those techniques are spread out over several papers, are considerably more

abstract, and, from a geometric point of view, are perhaps less accessible. Our goal here is
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to provide a straightforward approach which is more convenient for geometric applications,

cf. Sect. 5.

Let us briefly recall the functional analytic setting in more detail. The fundamental idea

in applying semigroup theory to a partial differential equation is to recast the problem as

an ordinary differential equation with values in some Banach space. Let X be a complex

Banach space and D a dense linear subspace. Consider the X -valued autonomous ordinary

differential equation

du

dt
= F(u(t)), (1.1)

where u : [0, T ) → X is a C1 mapping. Here F : D → X is a (nonlinear) Fréchet

differentiable map satisfying certain structural assumptions. The most important of these

is that the linearization L = DFu of F is a sectorial operator on X . We now explain the

sectoriality hypothesis.

The resolvent set of a closed linear operator L : X → X is the subset resX (L) ⊂ C

consisting of all numbers λ such that (λI − L) : D → X has an inverse which is a bounded

operator on X . L is called sectorial on X if it satisfies:

S1. The resolvent set resX (L) contains a sector of opening angle 2θ < π which contains a

left half-plane Re λ ≤ ω for some ω ∈ R; i.e., there exists θ ∈ (0, π/2) such that

resX (L) ⊃ Sω,θ := {λ ∈ C\{ω} : | arg(ω − λ)| > θ}, and

S2. There exists a constant C > 0 so that for all λ ∈ Sω,θ , we have

‖(λI − L)−1‖L(X) ≤
C

|λ − ω|
.

These conditions on L turn out to be equivalent to the analyticity of the semigroup e−t L ,

and from this a wealth of well-posedness and regularity results are available. In particular,

we may then find suitable function spaces for the associated linear homogeneous problem

to Eq. (1.1) using maximal regularity theory, yielding existence and uniqueness results via

contraction mapping arguments. Many nonlinear parabolic partial differential operators can

be cast into this framework; see [31] for a thorough account of this general theory. Of

particular importance is that spectral stability analysis of L yields stability results for the

nonlinear problem in some cases.

As for the geometric applications, we recall that a complete Riemannian manifold (M, g)

is defined to have bounded geometry (of a certain order) if its injectivity radius is bounded

from below and there is a uniform bound for the norm of the curvature tensor and its covariant

derivatives up to a corresponding order. This is equivalent to uniform control of the coeffi-

cients of the metric and its inverse in an atlas of normal coordinate balls of uniform radius.

This class of spaces includes compact Riemannian manifolds, of course, but also complete

noncompact manifolds which are asymptotically Euclidean, conic, cylindrical or hyperbolic,

respectively, or more generally which are asymptotically modeled on other noncompact sym-

metric or homogeneous spaces.

On any such space (M, g), we consider elliptic differential operators, acting between

sections of vector bundles, which satisfy uniformity conditions on their coefficients in these

local uniform coordinate charts. The most obvious examples are operators determined directly

from the metric g, for example, generalized Laplace-type operators

L = ∇∗∇ + R,
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acting on sections of some tensor bundle E over M . Here ∇ is the induced covariant derivative

on this bundle, ∇∗ its adjoint, and R a symmetric endomorphism built out of tensor products

of contractions of the curvature tensor and its covariant derivatives. Many aspects of the

mapping properties of L on L2(M, dVg) can be deduced from Hilbert space techniques.

However, it is often more convenient for nonlinear geometric problems to consider this

operator acting on weighted Hölder spaces instead. Consider a general weighted Hölder

space X = w Ck,α(M, g), where w is a (strictly positive) weight function. The assumptions

imposed on w are specified in Definition 2.12. More generally, we consider L to be a strongly

elliptic operator which satisfies certain uniformity conditions specified in Definition 2.8,

acting on weighted Hölder sections of some vector bundle. Note that by replacing L with

w
−1Lw we may as well consider L as acting simply on Ck,α(M, g). The conditions on w

are precisely the ones necessary for this conjugated operator to satisfy the same uniformity

hypothesis.

The first main result of this paper states that any uniform strongly elliptic (that is, admis-

sible) operator is sectorial. See Definition 2.9 for the precise statement of admissibility.

Theorem A Let (Mn, g) be a complete Riemannian manifold of bounded geometry of order

�+α′ > m +k +α, where m ∈ N, k ∈ N0 = N∪{0} and 0 < α < α′ < 1, and suppose that

L is an admissible operator of order m which acts on the little Hölder space X = Ck,α(M, g)

of sections of some vector bundle E over M. Then L is sectorial on X.

We briefly enumerate the main ideas in the proof. We begin with the observation that

the sectoriality estimate is equivalent to a uniform estimate for the associated semiclassical

operator ζ I − εm L , where ε = |λ|−1/m and ζ = λ/|λ|. So the first step is to show that

this operator is invertible on X if ε is sufficiently small. This is deduced by constructing an

approximation for the inverse of this operator, which is called the semiclassical resolvent. This

involves a detour into the methods of geometric microlocal analysis, and the construction

itself is sketched in some detail in Sect. 4 in order for the paper to be as self-contained

as possible. This geometric microlocal analytic construction has appeared implicitly in the

literature, but does not seem to appear explicitly in a readily available form elsewhere. Having

established the existence of (ζ I − εm L)−1 as a bounded operator on X = C0,α(M, g) for

each ε > 0 that is sufficiently small, we need to establish uniformity of its norm in ε. This is

argued by contradiction: We show using a number of rescaling and blowup arguments that

the failure of uniformity of this estimate would lead to various impossible conclusions. A

key feature of this argument is that we parlay the (essentially tautological) uniform estimates

of this operator acting on semiclassical Hölder spaces (see Sect. 2) to uniformity for the

action of this operator on standard Hölder spaces. The passage from sectoriality on C0,α to

sectoriality on Ck,α is a trivial extension.

The key motivation for all this work is its application to proving well-posedness of geo-

metric flows on complete noncompact manifolds. The admissibility property in Theorem A

is a straightforward algebraic criterion for proving sectoriality, which then gives access to

powerful semigroup theory results. For example, we obtain the following theorem; see [31]:

Theorem B Let (Mn, g) be a complete Riemannian manifold of bounded geometry of order

k + m +α′, where m ∈ N, k ∈ N0 = N∪{0} and 0 < α < α′ < 1; let F : Cm+k,α(M, g) →

Ck,α(M, g) be a continuous and Fréchet differentiable map of order m such that the graph

norm of DFu is equivalent to the norm of D = Cm+k,α(M, g). Further, we assume that

for any u ∈ D there exists an open set containing u and a constant c > 0 such that

‖DFu(v) − DFu(w)‖L(D,X) ≤ c‖v − w‖D, for v,w in a sufficiently small ball about u in

D.
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If DFu is admissible for all u in some open subset O ⊂ D containing u0, then

(1) (Short-time existence, uniqueness) There exists a maximal time T > 0 so that the initial

value problem

du

dt
= F(u(t)) (1.2)

u(0) = u0

has a unique solution u : [0, T ) → Ck,α(M, g).

(2) (Continuous dependence) For any 0 < τ < T , there exist constants r , C > 0 depending

on u0 and τ such that if v0 ∈ Br (u0) ⊂ O, then the solution v(t) of (1.2) with initial

value v0 exists until at least time τ , and

‖v(t) − u(t)‖Cm+k,α ≤ C‖v0 − u0‖Cm+k,α , for all t ∈ [0, τ ].

There are many possible applications of this work. Consider the ambient obstruction tensor

On , developed by Fefferman and Graham [23]. As we review in Sect. 5, this is a conformally

invariant tensor that involves n derivatives of the metric. A flow for the metric involving the

ambient obstruction tensor was developed by the first author and Helliwell in [5, 6]. Due

to the higher-order nature of the system of equations for this flow, the usual technique of

using an exhaustion and maximum principles to prove existence are not easy to apply. To our

knowledge, our method is the only well-posed result to date for this flow on a noncompact

manifold. Our main result is:

Theorem C Let (Mn, g0) be an even-dimensional complete Riemannian manifold of bounded

geometry of order l + α′, and where 0 < α < α′ < 1. Then there exists T > 0 and a family

of unique Riemannian metrics

g : [0, T ) → C
n,α(M, Sym2(T ∗M))

solving the ambient obstruction flow

{
∂t g = On(g) + cn(−1)

n
2

(
(−�)

n
2 −1S

)
g

g(0) = g0,
(1.3)

where cn = (2n/2−1( n
2
−2)!(n−2)(n−1))−1, S is the scalar curvature of g, and Sym2(T ∗M)

is the bundle of symmetric 2-tensors.

The remainder of this paper is structured as follows. In Sect. 2, we describe the analytic

and geometric background. After discussing sectoriality, we define manifolds of bounded

geometry and define the operators of interest. We discuss pointed limits of manifolds of

bounded geometry and prove a relationship between the resolvent set of an operator and

its limiting operators under this construction, Proposition 2.11, that may be of independent

interest. In Sect. 3, we explain the reduction of sectoriality to semiclassical estimates and

prove Theorem A. In this section, we presume the existence of uniform bounds for the

semiclassical resolvent of an admissible operator, and we give a detailed construction of this

resolvent in Sect. 4 using the techniques of geometric microlocal analysis. Finally in Sect. 5

we apply our results to obtain Theorem B, and conclude with the proof of the well-posed

result for the ambient obstruction flow, Theorem C.

123



25 Page 6 of 39 Annals of Global Analysis and Geometry (2024) 65 :25

2 Background

2.1 Sectoriality

We begin by defining what it means for a closed unbounded operator acting on a Banach

space to be sectorial. The abstract notion of sectoriality, and its precise relationship with the

theory of analytic semigroups, is classical and can be found, for example, in [43, Chapter

IX]. The monographs [1, 31] contain applications of sectoriality to the study of evolution

equations, and the papers [7, 27] focus on its specific application to Ricci flow.

Let X be a complex Banach space and L(X) the space of bounded linear operators on

X ; we denote the operator norm by ‖ · ‖L(X). Suppose that L is a closed unbounded linear

operator on X which has dense domain D ↪→ X . The resolvent set of L , resX (L), is the set

of λ ∈ C for which the resolvent operator

RL(λ) := (λI − L)−1

lies in L(X). The range of RL(λ) is the domain D. The spectrum of L , denoted specX (L),

is the complement C\resX (L). As defined above:

Definition 2.1 A closed unbounded linear operator L : X → X with domain D is sectorial

in X if:

S1. The resolvent set resX (L) contains a sector of opening angle 2θ < π which contains a

left half-plane Re λ ≤ ω for some ω ∈ R; i.e., there exists θ ∈ (0, π/2) such that

resX (L) ⊃ Sω,θ := {λ ∈ C\{ω} : | arg(ω − λ)| > θ}, and

S2. There exists a constant C > 0 so that

‖RL(λ)‖L(X) ≤
C

|λ − ω|
for all λ ∈ Sω,θ . (2.1)

We often simply say that L is sectorial if the space X is understood.

Remark 2.2 We adopt the convention that the spectrum of L lies in a sector with an acute

opening angle and is strictly contained in a right half-plane Re λ ≥ ω. In the applications

below, L is a differential operator with the leading part equal to some power of an iterated

Laplacian �k , and our convention then agrees with the one where the L2 spectrum of � lies

in the positive half-line. Note that our convention is different from our earlier work [7] and

the monograph [31].

Sectoriality is equivalent to an apparently weaker condition:

Lemma 2.3 (Proposition 2.1.11 of [31]) Let X be a complex Banach space, and L : X → X

a closed linear operator with dense domain D such that resX (L) contains a closed half-plane

{λ ∈ C : Re λ ≤ ω}, for some ω ∈ R. If there exists a constant C > 0 such that

‖λ(λ − L)−1‖L(X) ≤ C, (2.2)

for all λ in this half-plane, then L is sectorial.

Proof By (2.2), ||RL(ω + iμ)||L(X) ≤ C
|ω+iμ| , so if |λ − (ω + iμ)| ≤ |ω + iμ|/2C , then

(λI − L) = ((ω + iμ)I − L) + (λ − (ω + iμ))I

= ((ω + iμ)I − L) (I + (λ − (ω + iμ)) RL(ω + iμ)) .
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The second factor on the right is of the form I +A where ||A|| ≤ 1/2, and the first factor on the

right is invertible by hypothesis, so their product is invertible and hence λ ∈ resX (L). Since

the radii of the balls around ω + iμ on which the resolvent is defined grow asymptotically

linearly in μ, the union of the original half-plane together with these balls contains a sector

Sω,θ for some θ ∈ (0, π/2). The estimate (2.1) follows. ��

2.2 Manifolds of bounded geometry

As stated in Introduction, we consider the sectoriality of a general class of admissible

differential operators of even order m = 2m′, m′ ∈ N, acting between Hölder spaces,

L : Cm+k,α(M, g) → Ck,α(M, g), where (M, g) is a complete manifold with bounded

geometry of order at least m + k + α′ for some α′ ∈ (α, 1). We may consider any such L to

be an unbounded operator on Ck,α(M, g).

In this paper, we work exclusively with the ‘little’ Hölder spaces, which by definition are

the closures of C∞ in the corresponding Hölder norms. (Here C∞ is the space of smooth

functions on M which are uniformly bounded along with all of their covariant derivatives.)

For a given k, α, this is a closed subspace of the full Hölder space, but if M is noncompact, it

is not separable. In fact, we never use separability below, only the fact that elements of these

little Hölder spaces can be approximated in the global Hölder norm by smooth functions.

As an aside, we could obtain a separable space by taking the closure of C
∞
0 in the Hölder

norm; this is, however, a much smaller space, with all elements decaying at infinity. In any

case, we use only the larger space taking the closure of C∞; to lighten the notational burden,

we denote this by the same symbol Ck,α , with the understanding that we never use the full

Hölder spaces in this paper.

In this section, we begin with a description of manifolds of bounded geometry, and direct

the reader to Sects. 2.3 and 2.4 for more detail on the operators and function spaces which

appear below. Briefly, key examples of the operators we consider are elliptic operators arising

naturally in geometric analysis of the form

L = (∇∗∇)m′
+ lower-order terms

where ∇ is the covariant derivative acting on sections of some Hermitian vector bundle V

over M , and where the lower-order terms involve the curvature tensor of the underlying

metric. More generally, we also consider such operators acting between weighted (little)

Hölder spaces:

L : w C
m+k,α(M, g) −→ w C

k,α(M, g), (2.3)

where w is a weight function satisfying certain uniformity hypotheses; see Definition 2.12.

The mapping (2.3) is equivalent to

(w)−1Lw = (∇∗∇)m′
+ S : C

m+k,α(M, g) −→ C
k,α(M, g),

where S is an operator of order m − 1 which includes both the conjugate of the lower-order

terms in L and also (w)−1[(∇∗∇)m′
,w].

Let us proceed by recalling the definition of a manifold of bounded geometry:

Definition 2.4 A complete Riemannian manifold (M, g) has bounded geometry of order

� + α′, where � ∈ N0 and 0 ≤ α′ < 1, if:
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(a) There exists a radius r0 > 0 such that for every q ∈ M , the exponential map expq : {v ∈

Tq M : |v| < r0} → Br0(q) is a diffeomorphism; i.e., the injectivity radius at q is greater

than r0;

(b) For every q ∈ M , the components of the pulled back metric exp∗
q g are bounded in C�,α′

and the components of the matrix inverse of exp∗
q g are bounded in C0 on {v ∈ Tq M :

|v| < r0}, where the bounds are independent of q , and hence uniform over M .

Remark 2.5 We have denoted the fractional part of this uniformity order by α′ to distinguish

it from the α index in the Hölder spaces we are using. We need the extra room given by the

inequality α′ > α in taking limits using the Arzela–Ascoli Theorem.

It is often easier to check an intrinsic version of condition (b). As discussed in [20], for

example, if � ≥ 1 and α′ = 0, then (b) is implied by

(b’) sup j≤� |∇ j Riem| ≤ C� for some constant C�.

There is very likely to be a straightforward extension of this result using Hölder norms instead

of the simpler Ck norms, but we have not checked this and do not pursue this further here.

Any compact Riemannian manifold has bounded geometry of order equal to the regularity

class of the metric. There are many other natural examples of manifolds with bounded

geometry. We list some familiar classes:

(i) Asymptotically Euclidean or asymptotically conic manifolds,

(ii) Manifolds with asymptotically cylindrical ends,

(iii) Asymptotically (real) hyperbolic manifolds,

(iv) Asymptotically complex hyperbolic manifolds,

(v) Any symmetric space M = G/K of noncompact type, with invariant metric g, or

indeed, any perturbation g = g0 + h of the symmetric metric g0, where |∇ j h|g0 ≤ C j

for j ≤ � (where � is the desired order of uniform geometry),

(vi) Any infinite cover (M, g) of a compact manifold (M0, g0).

Let us briefly discuss each of these classes. Before doing so, we observe that if (M, g)

has bounded geometry of order � + α′ and if g̃ = g + h, where |h|g ≤ 1 − ε for some

ε ∈ (0, 1) (so that g̃ is boundedly equivalent to g) and the C�,α′
norms of the components of

h are controlled in g normal coordinate charts, then g̃ also has bounded geometry of order

� + α′. This means that we may describe these various classes of spaces in their simplest

model forms. Bounded geometry then follows for any metrics which are perturbations of

these models in the above sense. We are particularly interested in perturbations which decay

to the appropriate model metrics in a suitable sense at infinity, and shall mention the rate of

decay in each of these cases.

Asymptotically Euclidean and asymptotically conic metrics. A Riemannian manifold

(Mn, g) is called conic at infinity if there exists a compact Riemannian manifold (Y , h0) of

dimension n − 1, a compact set K in M and a diffeomorphism from M\K to [r0,∞) × Y ,

such that

g = dr2 + r2h0.

More generally, (M, g) is called asymptotically conic (AC) if it can be written as the sum of

a metric which is conic at infinity and an extra term k which satisfies |∇ j k|g ≤ Cr−β− j for

some β > 0 and for 0 ≤ j ≤ �, and [∇�k]0,α′ ≤ Cr−β−�−α′
.

In the following examples, we shall simply state a decay rate, e.g., r−β , but with corre-

sponding decay rates on the derivatives implicit.
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An AC space is called asymptotically Euclidean (AE) if (Y , h0) is isometric to the standard

sphere. Elliptic theory on this class of spaces has been thoroughly studied for several decades;

see [9] for a survey of results from a ‘classical’ perspective, and [40] for another approach

which appears frequently below. There are important generalizations of AE and AC spaces

that arise in various geometric settings, including the classes of quasi-asymptotically conic

(QAC) manifolds [18], and certain of the four-dimensional ‘gravitational instantons’ (of types

ALE/F/G/H), along with their higher-dimensional generalizations [12].

Asymptotically cylindrical metrics. (Mn, g) is cylindrical at infinity if outside some com-

pact set it is isometric to a product cylinder (a,∞) × Y n−1 with metric dt2 + h0. Setting

r = e−t we arrive at the equivalent form

g =
dr2

r2
+ h0,

which is conformal to the exact conic metric dr2 + r2h0. This is useful for translating results

from one setting to the other. The allowable perturbations in this setting decay like e−βt as

t → ∞, or equivalently, like rβ as r → 0.

Asymptotically hyperbolic metrics. Next, suppose that M is a compact Riemannian man-

ifold with boundary. Fix a smooth boundary defining function ρ on M ; i.e., ρ ≥ 0 on M ,

ρ−1(0) = ∂ M , and dρ �= 0 at the boundary. Fix also a metric h0 on ∂ M . The class of ‘exact’

asymptotically hyperbolic (AH) metrics consists of metrics taking the form

g =
dρ2 + h0

ρ2

near ρ = 0. The metric g = ρ2g is called a conformal compactification of g. Allowable

perturbations in this case are tensors which decay like ρμ for some μ > 0.

This geometry mimics that of the Poincaré ball model of hyperbolic space, where

g =
4|dz|2

(1 − |z|2)2
.

Thus, ρ = (1−|z|2)/2 and the Euclidean metric |dz|2 equals a particular choice of conformal

compactification ḡ. Since ρ is not canonically defined in terms of g, only the conformal class

of g (and in particular, g|T ∂ M ) is intrinsic to g.

To see that an AH space has bounded geometry, one calculates that the sectional curvatures

of any AH metric tend to −1 and covariant derivatives of the curvature tensor tend to 0, all

as ρ → 0. If q ∈ M and ρ(q) = ε, then the g ball Bε/2(q) has an inradius and a diameter

that are uniformly bounded away from both 0 and ∞, and the restriction of g to any such

ball converges to a hyperbolic metric on a ball of nonzero radius. We refer the reader to [29]

for more details on this.

2.2.1 Asymptotically complex hyperbolic metrics

One generalization of this last example is to the class of asymptotically complex hyperbolic

manifolds. There are various ways to define these spaces; we refer to [10] for one approach

and a more extended discussion than the one below. Proceeding as in the AH case, let M

be a compact Riemannian manifold with boundary, of even real dimension 2n, and ρ a

boundary defining function. Suppose that η is a contact form on ∂ M , i.e., η is a 1-form such

that η ∧ (dη)n−1 is everywhere nonvanishing. Let T denote the Reeb vector field on ∂ M ,

123



25 Page 10 of 39 Annals of Global Analysis and Geometry (2024) 65 :25

i.e., the unique vector field such that η(T ) ≡ 1 and dη(T , ·) ≡ 0. Finally, choose a set of

smooth independent vector fields X1, . . . , X2n−2 which span the kernel of η in T ∂ M , all

on ∂ M . Let η, ω1, . . . , ω2n−2 be the coframe dual to T , X1, . . . , X2n−2. Fixing a product

decomposition of a collar neighborhood of ∂ M in M , we say that g is (exact) asymptotically

complex hyperbolic (ACH) if

g =
dρ2 +

∑
ω2

j

ρ2
+

η2

ρ4

in that neighborhood. (Here ω2
j = ω j ⊗ ω j and η2 = η ⊗ η.) The difference from the AH

case is that the metric blows up faster in the α2 direction. A CR (Cauchy–Riemann) structure

involves not only the hyperplane bundle ker η but also an endomorphism J on this subbundle

which satisfies J 2 = −I ; however, this almost complex structure is not relevant to these

metric asymptotics. An allowable perturbation k again decays like some ρμ as ρ → 0.

This mimics a standard representation of the complex hyperbolic metric on the unit ball

in C
n (with holomorphic sectional curvature − 4),

g =
gEuc

1 − r2
+

r2
(
dr2 + (Jdr)2

)

(1 − r2)2
,

where gEuc is the Euclidean metric, r = |z|, and z ∈ C
n . The monograph [10] explains the

relationship of this construction to CR geometry of the boundary. Bounded geometry of ACH

metrics can be proved similarly to the AH case. The ‘cubes’ of approximate radius 1 have

(approximate) dimensions ε in the ∂ρ and X j directions and ε2 in the T direction.

There are further generalizations to classes of exact and asymptotically quaternion hyper-

bolic metrics, and (asymptotically) octonion hyperbolic planes. These involve generalizing

the contact structures used to define the ACH metric; see [10].

2.2.2 Other examples

A Riemannian symmetric space M = G/K of noncompact type, or more generally a Rie-

mannian homogeneous space M = G/H with invariant metric, again has bounded geometry.

The definitions are a bit more intricate, and we point the reader to one of the many standard

references on the subject, [28], at least for the symmetric space case.

Infinite covers of compact Riemannian manifolds, where the metric is obtained by pullback

via the covering map, are an interesting class of spaces. General results about the L2-resolvent

of even the scalar Laplacian on such manifolds are almost nonexistent, except if the covering

group is ‘small’ (e.g., amenable). Perhaps surprisingly, we are able to carry out the analysis

below for the resolvents of admissible operators on C0,α , not only on these classes of spaces,

but even on general manifolds of bounded geometry.

2.2.3 Pointed limits of manifolds of bounded geometry

To conclude this subsection, we recall an important construction in the category of manifolds

with bounded geometry which shows that this class of spaces is complete in a certain sense.

Let (M, g) have bounded geometry of order � + α′ and consider the sequence of pointed

spaces (M, g, p j ) where p j is a sequence of points in M which diverges to infinity. Then

there is a complete Riemannian manifold (M∞, g∞, p∞), which is the pointed Gromov–

Hausdorff limit of the sequence (M, g, p j ) and has bounded geometry. More specifically,

for any R > 0, the g-ball of radius R around p j in M converges, at least up to passing
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to a subsequence, as a Riemannian manifold, to the g∞ ball of radius R around p∞. This

convergence can be shown to occur in C�,α′′
for any 0 < α′′ < α′.

This is a standard fact in the ‘convergence theory’ of Riemannian manifolds. This type of

construction is originally due to Cheeger, and admits many generalizations. A version that

encompasses the above particular statement appears as Theorem 11.36 in Petersen’s book

[41]. (We are grateful to Guofang Wei for pointing out this reference.)

As a brief sketch of how this is proved, one first shows that some subsequence of the

(M, g, p j ) converges in the Gromov–Hausdorff topology to (M∞, g∞, p∞); this topology

is, of course, quite weak and in fact one initially only obtains its metric space structure.

Further analysis shows that this convergence happens in a much stronger topology. Indeed,

using the bounds on the metric tensor in normal coordinates, we may extract a subsequence

of metrics on each ball Bg(p j , c) which converges in C�,α′′
. The curvature bounds imply that

any ball of larger radius R can be covered by a controlled number of balls of radius r0. By a

successive diagonalization argument, the metric tensor converges on each one of these. The

lower bound on the injectivity radius is used to show that there is no collapsing in the limit.

Here are two examples of this sort of convergence. If (M, g) has an asymptotically cylin-

drical end, and if p j diverges along this cylindrical end, then the corresponding limit space

M∞ is the Riemannian product cylinder R× Y . Similarly, if (M, g) is asymptotically hyper-

bolic, and p j diverges to some point p̄ on the boundary of the conformal compactification

of M , then M∞ is a copy of hyperbolic space H
n . These illustrate that the limit space can

‘lose’ a lot of the topology of the original manifold M .

2.3 Function spaces

The definition of bounded geometry of order � + α′ relies on the Hölder norms in uniform

local coordinate charts, and the standard local Euclidean definition can be used. To define

Hölder spaces globally on M we need to say a bit more.

Fix a manifold (M, g) with bounded geometry of order � + α′. We define the Hölder

spaces Cκ,α(M, g) for any 0 ≤ κ ≤ � and 0 < α < α′ < 1. Introduce the Cκ,α norm

||u||κ,α :=

κ∑

j=0

sup |∇ j u|g + sup
B

sup
x,y∈B
x �=y

|∇κu(x) − ∇κu(y)|

distg(x, y)α
.

The first supremum in the final term on the right is over all geodesic balls B ⊂ M of radius

r0 (as given in the definition of bounded geometry). We assume that the tensor bundles over

each such B are trivialized, for example using the exponential map based at the centers of

these balls. If we are considering sections of some other vector bundle V → M , we assume

the existence of a uniform set of local trivializations, relative to some ‘uniform’ cover of M

by balls Br0(q j ). The details are straightforward and left to the reader.

As noted in Introduction, in this paper we use the ‘little’ Hölder spaces, Cκ,α(M, g)

exclusively; by definition, these are the completion of C∞ with respect to the above Hölder

norms.

We recall the useful fact that an equivalent norm is obtained by taking the supremum over

all x �= y in M in the final Hölder seminorm, rather than just over x, y ∈ B; in other words,

we claim that

sup
x,y∈M

x �=y

|∇κu(x) − ∇κu(y)|

distg(x, y)α
≤ C ||u||κ,α
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for some fixed C > 0. If distg(x, y) < r0, this is obvious, while if distg(x, y) ≥ r0, then

|∇κu(x) − ∇κu(y)|

distg(x, y)α
≤ 2r−α

0 sup |∇κu|g.

It is also clear that for each B,

sup
x,y∈B
x �=y

|∇κu(x) − ∇κu(y)|

distg(x, y)α
≤ sup

x,y∈M
x �=y

|∇κu(x) − ∇κu(y)|

distg(x, y)α
.

Hence, taking the supremum over all balls B on the left, we conclude that we may define

the Cκ,α seminorm either as we have done initially, or else by replacing the final term in that

definition with one where the supremum is taken over all distinct x, y ∈ M .

It is clear that it makes sense to consider the spaces Cκ,α on a manifold of bounded

geometry of order � + α′ only if κ ≤ � and if κ = � then α ≤ α′. We assume the strict

inequality α < α′ because, as described in the last subsection, the pointed limit of spaces

of order � + α′ may only have order � + α′′ for any α′′ < α′. (Actually, by a standard real

analysis argument, the limiting space does have order � + α′ but the convergence only takes

place in the weaker norm, which may be important at certain points.)

We also define the family of semiclassical Hölder spaces Cκ,α
ε (M, g), where ε is a param-

eter in (0, 1]. The name comes from their natural association with families of operators

undergoing semiclassical degeneration, which is described below. These spaces appear in

a fundamental way in the arguments of Sect. 3. For any given κ ≤ � and α (as usual with

α ≤ α′ if κ = �), this family of spaces contains all functions u such that

||u||κ,α,ε :=

κ∑

j=0

ε j sup |∇ j u|g + εκ+α sup
B

sup
x,y∈B
x �=y

|∇κu(x) − ∇κu(y)|

distg(x, y)α
< ∞.

In other words, every derivative is accompanied by a power of ε and the α Hölder seminorm

has a factor of εα .

In fact, these semiclassical spaces are simply the ordinary Hölder spaces associated with

the family of rescaled metrics gε := ε−2g:

C
κ,α
ε (M, g) ∼= C

κ,α(M, gε).

Clearly each gε has bounded geometry of order �+α′, and the bounds are uniform as ε → 0.

Remark 2.6 From these last comments, it is clear that in the definition of the above semi-

classical Hölder seminorm, we may take the supremum either over all balls B of radius 1 or

alternately of radius ε with respect to g.

2.4 Admissible differential operators

We prove our main sectoriality estimate for any linear differential operator L which is strongly

elliptic, and satisfies an additional uniformity condition.

We begin by recalling that the principal symbol of L of order m is a smooth function

σm(L)(x, ξ) on T ∗M which restricts to be a homogeneous polynomial of order m (matrix-

valued if L acts between bundles) on each fiber T ∗
x M . There are various intrinsic ways

to define this principal symbol, but the most familiar depends on coordinate choices: the

principal symbol is obtained by dropping all terms of order less than m and then replacing

each derivative ∂α
x , |α| = m, by the monomial (iξ)α . (The factor of i is customary because
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of the relationship of this symbol with the Fourier transform.) It is straightforward to check

that this is well defined in the sense that it defines a smooth function on the cotangent bundle.

Definition 2.7 We say that a linear operator L is strongly elliptic if σm(L)(x, ξ) has numerical

range (or spectrum, if it is a matrix) contained in a sector in the right half-plane:

spec σm(L)(x, ξ) ⊂ {λ ∈ C : | arg(λ)| ≤ θ ′ < π/2}

for all (x, ξ) ∈ T ∗M .

It is straightforward to check that if L is strongly elliptic, then its order m is even. If L is

symmetric and has real-valued coefficients, then σm(L)(x, ξ) is real-valued. For example, if

L = (∇∗∇)m/2 + lower-order terms,

then σm(L)(x, ξ) = |ξ |m (or |ξ |m times the identity matrix), which clearly satisfies this

condition.

Definition 2.8 L is uniform of order � + α′ (relative to a metric g with bounded geometry of

order � + α′ on a manifold M) if the following two conditions are satisfied:

(i) the pullback by expq of the operator L has coefficients bounded in C�,α′
in each ball

Br0(q), with r0 as in Definition 2.4;

(ii) there exists a closed cone � strictly contained in {λ ∈ C : Re λ > 0} ∪ {0} such that

if ζ ∈ C\�, then the endomorphism ζ I − σm(L)(x, ξ) is invertible, with the inverse

satisfying

||(ζ I − σm(L)(x, ξ))−1|| ≤ C(1 + |ξ |)−m

for some fixed C (depending on ζ ) for all (x, ξ) in the cotangent bundle of M .

Definition 2.9 A linear differential operator L is admissible if it is both strongly elliptic and

uniform of order � + α′.

It is important for our purposes that admissibility is preserved under passage to a limiting

space:

Lemma 2.10 Suppose that (M, g) has bounded geometry of order � + α′, and let p j be a

diverging sequence of points in M. Let L be an admissible differential operator on M, as

described above. If (M, g, p j ) converges to some limiting space (M∞, g∞, p∞) in C�,α′′
,

0 < α′′ < α′, then (some subsequence of) the restrictions of the operator L to balls BR(p j )

converges in C�,α′′
, as both j → ∞ and R → ∞ to an operator L∞ on this limiting

space, and any such limiting operator L∞ obtained in this way is admissible on its space of

definition.

Proof By a diagonalization process using Arzela–Ascoli, it is clear that L induces a limiting

operator L∞ on M∞, and that L∞ is again strongly elliptic. (Its coefficients are only in C�,α′′

for any α′′ < α′.) ��

There is an additional important relationship between L and its limiting operators:

Proposition 2.11 There is an inclusion
⋂

resCk,α (L∞) ⊃ resCk,α (L),
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or equivalently,

⋃
specCk,α (L∞) ⊂ specCk,α (L),

In both cases, the intersection or union is over all possible limiting spaces M∞ and model

operators L∞.

Proof Using this second formulation, suppose that λ ∈ specCk,α (L∞) for some limit L∞;

i.e., λI − L∞ is not boundedly invertible on Ck,α(M∞, g∞). In the following considerations,

note that the natural domain of this unbounded map is Ck+m,α(M∞, g∞). There are three

ways that invertibility might fail:

(a) there exists a nontrivial function u ∈ Cm+k,α such that L∞u = λu;

(b) the range of λI − L∞ is dense in Ck,α , but not closed;

(c) the closure of the range of λI − L∞ is equal to some proper closed subspace of Ck,α .

We show that each of these three possibilities is incompatible with the assumption that

λ /∈ specCk,α (L). In the first case, suppose that u is a Cm+k,α solution of this limiting

equation. Choose a sequence of radii Ri → ∞, and let χi be a sequence of smooth cutoff

functions on M∞ such that

χi =

{
1 on BRi /2(p∞)

0 outside BRi
(p∞)

,

0 ≤ χi ≤ 1 everywhere, and

|∇qχi | ≤ C/R
q
i

for q ≤ m and with C independent of i . For fixed i , the ball BRi
(p∞) in M∞ is a limit

as j → ∞ of balls BRi
(p j ) in M . Using this, we may transplant χi u to BRi

(p j ) and then

extend it to equal 0 on the rest of M .

We now compute that

(λI − L)(χi u) := hi = χi (λI − L∞)u + χi (L∞ − L)u + [L, χi ]u.

Clearly, there exist constants c1, c2 such that 0 < c1 ≤ ||χi u||k,α ≤ c2, uniformly in i ,

and using the limiting properties in this construction, ||hi ||k,α → 0. Since the χi u span an

infinite-dimensional space, we conclude that (λI − L) does not have a closed range on Ck,α ,

contrary to the choice of λ.

Next suppose that (λI − L∞) has a dense but nonclosed range, so it does not have a

bounded inverse. There exists a sequence ui on M∞ with infinite-dimensional span such that

||ui ||k,α = 1 and ||(λI − L∞)ui ||k,α → 0. Precisely the same transplantation argument used

above shows that c1 ≤ ||χi ui ||k,α ≤ c2 and ||(λI − L)(χi ui )||k,α → 0 on M , which is once

again a contradiction.

Finally, suppose that the range of (λI − L∞) is equal to or at least dense in some proper

closed subspace. Then the dual operator (λ̄I − L∗
∞) has a nontrivial nullspace in (Ck,α)∗.

This dual space is distributional, of course, but since L∗
∞ is elliptic, any element v of its

nullspace is again as regular as the coefficients of the operator and the metric allow, and this

element must be bounded as well (or else it would be easy to find some φ ∈ Ck,α such that

〈v, φ〉 is undefined). We are then in the situation of the first case, once we observe that the

dual operator L∗ is admissible.

This completes the proof. ��

123



Annals of Global Analysis and Geometry (2024) 65 :25 Page 15 of 39 25

2.5 Examples of admissible operators

The main examples of admissible operators that we have in mind are generalized Laplacians

on Riemannian manifolds with bounded geometry, or more generally, operators of the form

(∇∗∇)m/2 + S, where S is an operator of order m − 1 usually closely associated with the

metric g. We begin with the second-order case.

By definition, a generalized Laplacian is an operator of the form

∇∗∇ + K,

acting on sections of some tensor bundle E over M (or slightly more generally, a twisted spin

bundle—the key feature is that its connection is induced from the Levi-Civita connection for

g.) Here ∇∗ is the adjoint of the covariant derivative with respect to the natural inner product

on each fiber of E , and with respect to the volume form dVg . The term K is a symmetric

endomorphism of E obtained via contractions of sums of tensor products of the curvature

tensor and its covariant derivatives.

The following is a list of standard examples of such operators:

(a) The scalar Laplacian �g = ∇∗∇ acts on the trivial rank 1 bundle; slightly more generally,

we also consider the Hodge Laplace operator �g,k = dδ + δd acting on sections of the

bundle of exterior p-forms, p = 0, . . . , n. The original Weitzenböck formula states that

�g,p = ∇∗∇ + Kp,

where Kp is an endomorphism of
∧p

M constructed from the curvature tensor. As an

example, for p = 1, K1 = Ric, considered as a symmetric endomorphism on 1-forms.

(b) Next, consider the Lichnerowicz Laplacian

∇∗∇ + 2(Ric − Riem)

where Ric is the Ricci tensor and Riem the full curvature tensor. These act as symmetric

endomorphisms on symmetric 2-tensors via

hi j �→ (Ric(h))i j =
1

2

(
Ricikhk

j + Ric jkhk
i

)
,

hi j �→ (Riem(h))i j = Ri pjq h pq .

(c) Generalizing (a) in a different way is the conformal Laplacian

∇∗∇ +
n − 2

4(n − 1)
Rg,

acting on scalar functions, where Rg is the scalar curvature of the metric.

Each of the operators in the above list is symmetric, i.e.,

〈Lu, v〉 = 〈u, Lv〉 for u, v ∈ C
∞
0 (M).

A classical theorem due to Chernoff [14] states that because g is complete, each of these has

a unique self-adjoint extension as an unbounded operator on L2(M, dVg). Self-adjointness

guarantees that the L2 spectrum lies on the real line. If g has bounded geometry of high

enough order, the pointwise norm of the endomorphism K is uniformly bounded. Since

∇∗∇ ≥ 0, we deduce that

∇∗∇ + K ≥ −C �⇒ specL2(∇∗∇ + K) ⊂ [−C,∞).
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There are many interesting higher-order elliptic operators associated with the metric g.

The most well known are the higher-order ‘GJMS operators,’ which generalize the conformal

Laplacian (see [24]). The GJMS operator Pm of order m is a conformally covariant operator

which is simply equal to (∇∗∇)m/2 if g is the flat Euclidean metric, but in general has a

(complicated) set of lower-order terms involving the curvature tensor. This operator exists

only for m ≤ n if n is even, and for all m if n is odd. A (very thoroughly studied) example

is the Paneitz operator

P4 = �2 − δ((n − 2)J − 4V )d + (n − 4)Q,

where V is the so-called Schouten tensor of the metric g, J is its trace, Q is an associated

scalar quantity called the Q-curvature, and d and δ are the exterior derivative and its formal

adjoint. It is known [26] that these operators are symmetric, and the same reasoning as above

implies that the L2 spectrum lies in a half-line [−C,∞).

Notice that we have said nothing about the spectrum of any of these operators on

C0,α(M, g), and in general the relationship between the C0,α and the L2 spectrum may

be quite difficult to understand. In many geometric problems, however, we actually wish to

study the action of L not on C0,α itself, but between some weighted Hölder spaces:

L : w C
m,α(M, g) −→ w C

0,α(M, g), (2.4)

where, by definition, w is a strictly positive C∞ (or C�,α′
) function and

w C
κ,α(M, g) = {u = w v : v ∈ C

κ,α(M, g)}.

Observe that the mapping in (2.4) is equivalent to

Lw := w
−1Lw : C

m,α(M, g) −→ C
0,α(M, g). (2.5)

Observe also that since λI − Lw = w
−1(λI − L)w, the spectra of (2.4) and (2.5) are the

same.

In most of the examples of manifolds of bounded geometry we have given, it is possible

to prove that there exist weight functions w for which the mappings in (2.4) [or equivalently

(2.5)] is Fredholm, i.e., has closed range and finite-dimensional kernel and cokernel. It is

sometimes possible to choose w so that w C0,α(M, g) ⊂ L2, and if this is the case, and if

f ∈ w C0,α(M, g), then so long as λ /∈ specL2(L), there exists a function u ∈ L2 with

(λI − L)u = f . Local elliptic regularity implies that u ∈ Cm,α on each ball Br0(p). If

we could then somehow show that u ∈ w Cm,α , we would have obtained information about

specC0,α (Lw).

Before doing so, we list some necessary assumptions on these weight functions.

Definition 2.12 A weight function w is uniform with respect to L if:

(a) the mappings in (2.4) and (2.5) are Fredholm;

(b) the conjugated operator Lw is admissible with respect to the metric g.

It is clear that Lw is strongly elliptic if L is, since they have the same leading-order terms.

The uniformity of the coefficients of Lw imposes a strong condition on the weight function

and its derivatives. For example, if L is the scalar Laplacian, then

�w = � + w
−1[�,w] = � + 2

∇w

w

· ∇ +
�w

w

involves first and second derivatives of w. Thus, all these lower-order terms must be uniform

in the sense we have described above.
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2.6 The resolvent on asymptotically hyperbolic spaces

We conclude this section with a description of one particular setting, namely the class of

asymptotically hyperbolic spaces, where there is a somewhat more direct path to understand-

ing the C0,α spectrum of generalized Laplacians.

Suppose that (M, g) is asymptotically hyperbolic, as described in Sect. 2.2, and let

L = ∇∗∇ + K. Choose coordinates (x, y) on M near the boundary of M , where x is a

boundary defining function and y is a local coordinate on the boundary extended to this

collar neighborhood. Using this, we identify the collar neighborhood with [0, 1) × ∂ M . It is

known that we can choose these functions in such a way that

g =
dx2 + h(x, y)

x2
,

where x �→ h(x, ·) is a family of tensors on ∂ M in this collar neighborhood decomposition

and h(0, y) is any prescribed metric representing the conformal class on ∂ M associated with

g.

We have already noted that the L2 spectrum of L lies in some half-line [−C,∞); hence,

resL2(L) ⊃ C\[−C,∞). Let RL denote both the resolvent of L as an abstract operator, but

also its Schwartz kernel, which is a distribution on M×M . This distribution, RL(λ; x, y, x̃, ỹ),

is singular along the diagonal, where x = x̃ and y = ỹ, and has additional singularities along

the boundaries where x → 0 or x̃ → 0. The nature of these singularities can be understood

in a detailed way using the methods of geometric microlocal analysis. We refer to [34] for

the construction of this distribution.

The question we wish to consider is whether there exists a range of μ for which

RL : xμ
C

k,α(M, g) −→ xμ
C

k,α(M, g), (2.6)

is bounded if Re λ ≤ −C , or equivalently, whether the conjugated Schwartz kernel

x−μ RL(λ; x, y, x̃, ỹ)(x̃)μ (2.7)

acting by convolution induces a bounded mapping on C0,α .

This is true for μ lying in a certain interval determined by the so-called indicial roots of

L . To describe this more carefully, recall that an indicial root of L is a number γ ∈ C such

that

L(xγ u(x, y)) = O(xγ+1),

where u is any function smooth up to ∂ M . (We consider only the scalar case for notational

simplicity.) It is not hard to see that this can only happen if there is some leading-order

cancelation, which depends only on some algebraic condition determined by γ and the

values at x = 0 of certain of the coefficients of L . For a second-order scalar operator, this

algebraic condition is a quadratic polynomial in γ , and hence, there are two indicial roots.

For a higher-order operator or system, there are more. In this second-order setting where L

is assumed to be symmetric on L2, these indicial roots take the form

γ ± =
n − 1

2
± ζ0

for some ζ0 which is either real and nonnegative or else purely imaginary. We can define the

indicial roots of λI − L in the same way, and write these as

γ ±(λ) =
n − 1

2
± ζ0(λ).
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If λ is real and sufficiently negative, then ζ0(λ) > 0. There exists some C0 ∈ R such that

if λ > C0 then ζ0(λ) is purely imaginary. If λ ∈ C\[C0,∞), then Re ζ0(λ) > 0 and tends

to infinity as the distance from λ to [C0,∞) gets larger. One consequence of this is that any

λ > C0 lies in the continuous L2-spectrum of L; see [36].

Fix the half-plane Re λ ≤ −B, and define

δ = inf
Re λ≤−B

Re ζ0(λ).

Note then, by the remarks immediately above, we can increase δ by increasing B along the

real axis.

We need a key structural theorem from [34] about the pointwise behavior of the Schwartz

kernel of RL(λ):

Proposition 2.13 The distribution RL(λ; x, y, x̃, ỹ) satisfies

|RL(λ; x, y, x̃, ỹ)| ≤ Cx
n−1

2 +δ, x → 0, x̃ ≥ c > 0,

|RL(λ; x, y, x̃, ỹ)| ≤ Cx̃
n−1

2 +δ, x̃ → 0, x ≥ c > 0.

There is a considerably sharper structural theorem which also describes the precise behav-

ior of RL as x, x̃ → 0, but for the present purposes we do not need this.

We now state and prove a basic result on the spectrum of L acting on weighted Hölder

spaces.

Theorem 2.14 Let (Mn, g) be an asymptotically hyperbolic space, and L be a generalized

Laplacian acting on some tensor bundle over M. For every δ > 0, there exists ω = ω(δ) > 0

so that if

μ ∈

(
n − 1

2
− δ,

n − 1

2
+ δ

)
, (2.8)

then resxμC0,α (L) ⊃ {λ : Re λ ≤ −ω}.

Proof For simplicity, we confine our discussion to the scalar case.

Given a choice of δ > 0, then by the above defining remarks concerning ζ0, we need

only increase the value of ω to ensure that the interval in Eq. (2.8) is nonempty. Hence, by

Proposition 2.13, the conjugated kernel (2.7) decays at least at the rate n−1
2

+δ+μ as x̃ → 0

and at least like n−1
2

+ δ − μ as x → 0. We have thus reduced the problem to understanding

whether the mapping from C0,α(M, g) to itself defined by the kernel

(x̃/x)μ RL(λ; x, y, x̃, ỹ)

is bounded, where this kernel acts by

u(x, y) �−→

∫
(x̃/x)μ RL(λ; x, y, x̃, ỹ)u(x̃, ỹ)

dx̃d ỹ

x̃n
.

(The singular measure is uniformly equivalent to the L2 measure for g.) In order for this

integral to converge as x̃ → 0, it is necessary that the product of factors in the integrand

(including the singular Jacobian factor) is bounded by x̃−1+ε for some ε > 0. However, by

assumption, u does not necessarily decay, which explains the necessity of the condition

n − 1

2
+ δ + μ − n > −1 ⇔ μ >

n − 1

2
− δ.
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On the other hand, the rate of growth (or decay) of the output is determined by the behavior

of this conjugated kernel in two regions: the first as both x, x̃ → 0 and the second as

x → 0, x̃ > 0. We refer to [34, Theorem 3.27] for the precise explanation. The kernel is

bounded in this first regime and is bounded by x (n−1)/2+δ−μ in the second, which explains

the requirement that

μ <
n − 1

2
+ δ.

The case of equality must be omitted here because in that special case the solution might

behave like log x as x → 0.

Altogether then, we have argued that

(x̃/x)μ RL(λ; x, y, x̃, ỹ) : C
0,0(M, g) −→ C

0,0(M, g)

is bounded if and only if

n − 1

2
− δ < μ <

n − 1

2
+ δ. (2.9)

Boundedness on Hölder spaces now follows readily from elliptic estimates. ��

We have described the asymptotically hyperbolic case in some detail, but note that it is

possible to prove similar results in the asymptotically conic, cylindrical, complex hyperbolic

and symmetric or homogeneous cases described above. There is no such argument (to our

knowledge) for infinite covers of compact manifolds.

This material is included to indicate that the spectral hypothesis of admissibility can be

verified in various ways. In Sect. 4, we describe a different sort of parametrix construction

which turns out to be sufficient for our purposes. It works for arbitrary manifolds of bounded

geometry, but only if λ has sufficiently large negative real part. In many ways, that parametrix

construction is simpler than the one needed in the AH case, but is perhaps less familiar.

3 Sectoriality of admissible operators on Hölder spaces

We now turn to the proof of the main sectoriality theorem, Theorem A.

The first key observation is that if L is an elliptic differential operator of order m, then

the sectoriality of L is equivalent to a certain estimate for the semiclassical resolvent of L ,

which means the following. Define ε = |λ|−1/m and ζ = λ/|λ|. We then rewrite the operator

that appears in Lemma 2.3 characterizing sectoriality as

λ(λI − L)−1 =
λ

|λ|
((λ/|λ|)I − |λ|−1L)−1 = ζ(ζ I − εm L)−1.

Disregarding the harmless unit prefactor ζ , the operator (ζ I − εm L)−1 is called the semi-

classical resolvent of L . Since Re λ ≤ ω, and we may assume that ω < 0, we only need

consider such ζ with Re ζ < 0. Altogether then, an equivalent formulation of the sectoriality

of L is that

(ζ − εm L)−1 : C
k,α(M, g) −→ C

k,α(M, g) (3.1)

exists and has a norm which is uniformly bounded independently of ε ∈ (0, ε0), for some

ε0 > 0, and ζ with |ζ | = 1, Re ζ ≤ −c < 0. In other words,
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sectoriality is equivalent to the uniform boundedness of the semiclassical resolvent on

regular, i.e., nonsemiclassical, function spaces.

Part of our assertion is that this resolvent exists as a bounded operator provided ε is sufficiently

small, i.e., λI − L is invertible on Ck,α(M, g) if Re λ is sufficiently negative.

As explained at the end of this section, the case k > 0 follows from the case k = 0, so we

assume that X = C0,α until the final part of this section.

We prove this equivalence in a series of steps, outlined here and carried out in the rest of

this section. In the first step, we show that (ζ I − εm L)−1 exists as a bounded operator for

each sufficiently small ε and for every ζ with Re ζ < 0, but with no claim about uniformity.

Here it is irrelevant whether standard or semiclassical Hölder spaces (as defined in Sect. 2.3)

are used since they are equivalent for each fixed ε. This is a ‘perturbative result’ and follows

from the existence of a semiclassical parametrix. We state this result carefully in the next

proposition and for the reader’s convenience sketch this parametrix construction using geo-

metric microlocal analytic techniques in Sect. 4; this methodology is explained there. Next

we recall the ‘easy’ semiclassical elliptic Schauder estimate associated with any strongly

elliptic semiclassical family ζ I − εm L . This is equivalent to the uniform boundedness of the

inverse of this semiclassical operator between semiclassical Hölder spaces. The main step of

the whole proof is to upgrade this to an estimate between standard Hölder spaces C0,α which

is independent of ε > 0. This is done by establishing uniform bounds for this semiclassical

resolvent as a map C j → C j for j = 0, 1, and applying interpolation.

Proposition 3.1 Let L be an admissible operator of order m on a manifold (M, g) of bounded

geometry of order �+α′. Then the unbounded operator ζ I−εm L : C0,α
ε (M, g) → C0,α

ε (M, g)

has a bounded inverse for each sufficiently small ε > 0 and for each ζ with |ζ | = 1 and

Re ζ < 0, where m < � and α < α′.

Proof This proof uses the machinery of microlocal analysis extensively. A detailed intro-

duction to these methods is provided in Sect. 4. As is carefully defined and explained in that

section, there exists a parametrix Gε for ζ I − εm L which is an element of order −m in the

semiclassical uniform pseudodifferential calculus �
∗,∗
sc−unif (M, g) (see Definition 4.5). Thus,

for each ε, Gε is an approximate inverse for ζ I − εm L; its discrepancy from being an exact

inverse is captured by the ‘residual operators’ Q j,ε ∈ �
−∞,∞
sc−unif (M, g), j = 1, 2, via the

identities

(ζ I − εm L)Gε = I − Q1,ε, Gε(ζ I − εm L) = I − Q2,ε.

Each Q j,ε is a smoothing operator (this is the meaning of the first superscript −∞) with

Schwartz kernel supported in some fixed neighborhood of the diagonal {(z, z̃) : distg(z, z̃) ≤

C}, and vanishing to all orders as ε↘0 (which is the meaning of the second superscript,

+∞).

In more detail, Gε and the Q j,ε are one-parameter families of operators, with Schwartz

kernels G(ε, z, z̃) and Q j (ε, z, z̃), z, z̃ ∈ M . For each ε > 0, G(ε, z, z̃) is an ordinary

pseudodifferential operator of order −m which is a parametrix for ζ I − εm L , and the Q j

are the smoothing error terms. These Schwartz kernels vary smoothly in ε for ε > 0. The

important new feature is their behavior as ε → 0. First, if z �= z̃, then G(ε, z, z̃) and

Q j (ε, z, z̃) decay faster than εN for any N . This convergence is uniform in any region where

distg(z, z̃) ≥ c′′ > 0 for any c′′ > 0. The behavior of G(ε, ·, ·) near the diagonal as ε → 0

requires a bit more work to describe; this is done in Sect. 4. On the other hand, for j = 1, 2,

Q j (ε, z, z̃) ∈ C∞([0, ε0) × M2), these kernels decay rapidly along with all derivatives as
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ε → 0, uniformly on M × M . This construction works assuming that Re ζ < 0, but the rate

of decay (which is actually exponential) diminishes as Re ζ → 0.

It is straightforward to deduce from this structure that ||Q j,ε||L(C0,α) → 0 as ε → 0.

Hence, both (I − Q1,ε)
−1 and (I − Q2,ε)

−1 exist as bounded operators on C0,α for any fixed

sufficiently small ε > 0. Thus, we can write

(ζ I − εm L)−1 = Gε(I − Q1,ε)
−1 = (I − Q2,ε)

−1Gε;

this proves that (λI − L)−1 exists for any λ with Re λ sufficiently negative. ��

In the next step, we continue in this same semiclassical vein:

Proposition 3.2 (Semiclassical elliptic estimate) There exists a constant C > 0 such that for

all ε ∈ (0, ε0), u ∈ C2,α
ε and ζ with |ζ | = 1 and Re ζ ≤ c′ < 0,

‖u‖m,α,ε ≤ C

(
‖(ζ I − εm L)u‖0,α,ε + sup

M

|u|

)
. (3.2)

Proof As already hinted in the definition given above of semiclassical Hölder spaces, we

show that (3.2) is simply the ‘standard’ Schauder estimate relative to the metric gε = ε−2g.

If z is a normal coordinate for g in a ball B(r0) of radius r0 about any point, then w = z/ε

is a normal coordinate for the metric gε = ε−2g on a ball of radius r0/ε. Indeed,

g = gab(z)dzadzb = (δab + Eab(z))dzadzb, |E |g = O(|z|2);

hence,

gε = (ε−2δab + ε−2 Eab(εw))dzadzb = (δab + Eab(εw))dwadwb.

Using the hypothesis of bounded geometry, this shows that the coefficients and derivatives

of gε are uniformly controlled in the rescaled normal coordinates. Denoting this dilation

operator on a given ball by Sε, then the admissibility hypothesis shows that the rescaled

operator εm S∗
ε L is strongly elliptic on each such ball.

The standard local elliptic estimate on any geodesic ball B for gε states that if B ′ is

the ball of half the radius and same center, then there exists a constant C such that for all

u ∈ Cm,α(gε),

‖u‖B′,m,α,gε
≤ C

(
‖(ζ I − εm L)u‖B,0,α,gε + sup

B

|u|

)
.

Taking the supremum of the right-hand side over all balls B of fixed radius (provided by

bounded geometry), and then taking the supremum over the corresponding balls B ′ on the

left yields the global estimate. Crucially, the constant C is independent of ε ≤ 1.

The proof is now completed by observing that the usual Hölder norm for Cm,α(gε) is

precisely the same as the semiclassical Hölder norm for Cm,α
ε (g). ��

We now establish the C0 version of the sectoriality estimate.

Proposition 3.3 There is a constant C > 0 such that

||u||0 ≤ C ||(ζ I − εm L)u||0

for all unit ζ with Re ζ ≤ c′ < 0, ε ∈ (0, 1] and u ∈ Cm,α(M, g).
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Proof If this assertion were false, then there would exist sequences ζ j , ε j , and u j ∈ Cm,α

such that

‖u j‖0 > j‖
(
ζ j − εm

j L
)
u j‖0. (3.3)

Replace u j by v j = u j/‖u j‖0 and set f j = (ζ j − εm
j L)v j , so that ‖v j‖0 = 1 and ‖ f j‖0 ≤

1/ j → 0. Passing to a subsequence, we assume that ζ j → ζ∗.

Next, choose a point p j ∈ M where |v j (p j )| > 1/2. By virtue of the bounded geometry

of (M, g), the restriction of the metric g and the coefficients of the operator L (expressed in

normal coordinates) on the balls B j := Br0(p j ) are bounded in Cm,α , independently of j .

There are two cases to consider. First, suppose that ε j → ε∗ > 0. If the p j remain in a

compact set of M , then it is straightforward to extract a limit v ∈ C0,α of the sequence v j

which is not identically zero, and which satisfies (ζ∗ I −εm
∗ L)v = 0. This is impossible given

our hypothesis that ε−m
∗ ζ∗ does not lie in the spectrum.

Now we turn to the case where the sequence p j diverges. Per the discussion in ‘Pointed lim-

its of manifolds of bounded geometry’ in Sect. 2.2, choose a subsequence so that (M, g, p j )

converges to a limiting space (M∞, g∞, p∞) as pointed Riemannian spaces in the C�,α′′
topol-

ogy, and so that L converges in this construction to an operator L∞ on M∞. By Lemma 2.10,

L∞ is admissible. Since 1/2 ≤ |v j (p j )| ≤ 1 = sup |v j |, it follows as above that some

subsequence of these functions converges to a nontrivial limiting function v∞ on M∞ which

satisfies (ζ∗ I − εm
∗ L∞)v∞ = 0. Clearly |v∞| ≤ 1 everywhere, and by local Schauder

estimates there exists a constant C such that 1 ≤ ||v∞||0,α ≤ C .

We may now employ the same transplantation argument as in the proof of Lemma 2.10

to show that the existence of this solution v∞ contradicts the fact that ε−2
∗ ζ∗ does not lie in

the spectrum of L . The only minor modification from the proof is that we now write

(
ζ j I − εm

j L
)

(χiv∞) := hi = χi

(
ζ∗ I − εm

∗ L∞

)
v∞

+
(
ζ j − ζ∗

)
χiv∞ − χi

(
εm

j − εm
∗

)
L∞v∞ − χiε

m
j (L − L∞)v∞

− εm
j [L, χi ]v∞;

but this tends to 0 in norm, as above. Thus, we reach a contradiction in this case too.

We have now reduced to the case where ε j → 0. If z is a normal coordinate in B j , then

as discussed above, w = z/ε j is a normal coordinate for the metric g j = ε−2
j g on a ball of

radius r0/ε j . Indeed,

g j = (δab + Eab(ε jw))dwadwb, Eab(ε jw) = O

(
ε2

j C
2
)

for |w| ≤ C .

Thus, g j converges uniformly to the Euclidean metric on any compact subset of R
n .

A similar computation shows that if L j denotes the operator L expressed in these rescaled

coordinates, then

εm
j L j → L E ,

a constant coefficient operator on R
n ; this limit is uniform on any compact subset of R

n .

Observe that any term in L involving a derivative of order less than m tends to 0 in this limit.

In fact, using multi-index notation,

if L =
∑

|J |≤m

aJ (z)∂ J
z , then L E =

∑

|J |=m

aJ (0)∂ J
w.
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(In the language developed in Sect. 4, L E is the constant coefficient operator associated with

the semiclassical symbol σ sc
m (L)(z, ξ) of L at z = 0; we refer to that section for more on

this.)

Now, passing to a subsequence, we may assume that ζ j → ζ∗ and that v j → v in C
m
loc(R

n).

Clearly |v| ≤ 1; furthermore, 1/2 ≤ |v j (0)| ≤ 1, so the function v is nontrivial. It also must

satisfy

(ζ∗ − L E )v = 0

on all of R
n . The existence of such a bounded solution is easily ruled out by Fourier analysis.

Indeed, if we regard v as a tempered distribution, then taking the Fourier transform transforms

this equation to

(ζ∗ − σm(L)(0, ξ))v̂(ξ) = 0.

Using the definition of strong ellipticity, and the fact that Re ζ∗ ≤ 0, ζ∗ �= 0, the factor

(ζ∗ − σm(L)(0, ξ)) is invertible for all ξ ∈ R
n ; hence, v̂ = 0, and so v = 0 as asserted. We

have arrived at a final contradiction and have thus established the C0 bound. ��

The (nearly) final step in the proof of Theorem A is to establish the corresponding C1

sectoriality estimate, by reducing it to the C0 estimate.

Proposition 3.4 For any fixed c′ < 0 that is sufficiently small, there exists a constant C such

that for all unit ζ with Re ζ ≤ c′ < 0 and ε ∈ (0, 1],

‖u‖1 ≤ C‖(ζ − εm L)u‖1 (3.4)

for all u ∈ Cm+1,α(M, g).

Proof We begin by differentiating both sides of the equation (ζ − εm L)u = f , and then

commuting derivatives to obtain

(ζ − εm L)(∇u) = ∇ f − εm[∇, L]u.

The C0 bound in the previous proposition implies that

||∇u||0 ≤ C ||∇ f ||0 + Cεm ||[∇, L]u||0.

However, [∇, L] is a differential operator of order m with uniformly C1 coefficients, and the

semiclassical estimate in Lemma 3.2 shows that for an appropriate constant C ,

εm ||[∇, L]u||0 ≤ C ||u||m,α,ε ≤ C ′

(
|| f ||0,α,ε + sup

M

|u|

)
≤ C ′|| f ||1.

We have used the C0 estimate from the previous Proposition in this last inequality to estimate

supM |u| ≤ supM | f |.

This completes the proof of Proposition 3.4. ��

The proof of the sectoriality estimate on C0,α is attained by applying an interpolation

argument. The above two results show that there exist constants C0, C1 such that

||(ζ − εm L)−1 f ||� ≤ C�|| f ||�, � = 0, 1, (3.5)

for all f ∈ C∞(M, g) and for all unit ζ with Re ζ ≤ c′ < 0, ε ∈ (0, 1]. The little Hölder

space C0,α(M, g) is identified with the real interpolation space (C0(M, g), C1(M, g))α ; see

for example [31, Chapter 1]. From estimate (3.5), we conclude that

||(ζ − εm L)−1 f ||0,α ≤ C1−α
0 Cα

1 || f ||0,α

123



25 Page 24 of 39 Annals of Global Analysis and Geometry (2024) 65 :25

for all unit ζ with Re ζ ≤ c′ < 0, ε ∈ (0, 1] and u ∈ C∞(M, g), and hence in little Hölder

spaces by the density of C∞ in the little Hölder spaces. This is the sectoriality estimate on

C0,α .

We conclude this section by showing how sectoriality on Ck,α , k ≥ 1, follows from the

case k = 0.

Corollary 3.5 If (M, g) has bounded geometry of order k + m + α′ for some 0 < α′ < 1,

and L is an admissible operator with coefficients uniform of order k +α′, then L is sectorial

on Ck,α(M, g).

Proof We have proved the uniform boundedness of the norm of λ(λI − L)−1 : C0,α → C0,α .

Suppose that f ∈ Ck,α(M, g), and write u = uλ = λ(λI − L)−1 f . The C0,α sectoriality

estimate we have just proved shows that ||uλ||0,α ≤ C‖ f ‖0,α uniformly in λ. Furthermore,

by local elliptic regularity, uλ ∈ C
k+m,α
loc , and if B is any ball of radius 1

2
r0 and B ′ the ball of

radius r0 with the same center, then

||uλ||B,k+m,α ≤ C(|| f ||B′,k,α + ||uλ||B′,0) ≤ C(|| f ||B′,k,α + ||uλ||B′,0,α).

Taking the supremum over all such balls, we obtain

||uλ||k+m,α ≤ C(|| f ||k,α + ||uλ||0,α) ≤ C(|| f ||k,α + || f ||0,α) = C ′|| f ||k,α,

which is the sectoriality estimate on Ck,α(M, g). ��

This concludes the proof of Theorem A.

4 The semiclassical parametrix construction

We now provide details about the construction of the semiclassical parametrix for the family

of operators (ζ I −εm L). There are two novel features in our presentation. The first is a minor

one: the semiclassical calculus is best documented in the setting of operators on R
n , cf. [19,

32], or in more modern expositions, on certain other special manifolds [44]. It adapts easily

to the setting of manifolds of bounded geometry. The second is that, unlike the approaches

in those citations, we carry out this construction using geometric microlocal analysis. This

particular application of that theory has been observed by Melrose and partially developed

in his lecture notes [39]. We review this method to keep this paper relatively self-contained.

Strictly speaking, the techniques here tacitly assume that both the operator L and the

Riemannian manifold (M, g) are C∞. Therefore, we shall assume that this is the case, i.e.,

that all data are smooth, until near the end of this section. Only there do we show how to obtain

the main conclusion of this section, namely the existence of the semiclassical resolvent, if L

and g only have finite regularity.

4.1 The semiclassical double space

A family of operators A = Aε is called a semiclassical family of pseudodifferential operators

if each Aε is a pseudodifferential operator in some standard calculus of such operators on

M (see below). The Schwartz kernel K Aε of each Aε is a distribution on M × M which has

a classical conormal, or polyhomogeneous, singularity along the diagonal diag ⊂ M2 (see

Definition 4.2 for the precise definitions of these terms). As ε ↘ 0, the distribution K Aε , and

in particular its singularity along the diagonal, must degenerate somehow. The ‘geometric’
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microlocal way to describe this involves regarding this family of Schwartz kernels as a single

distribution K A(ε, z, z̃) on the augmented double space [0, ε0)ε × M2. As such, it has a

singularity along the family of diagonals (0, ε0) × diag, and as we now describe, an extra

singularity along {0} × diag. Our goal is to describe this extra singularity.

To do this, we pass to a slightly larger space obtained by taking the real blowup of the sub-

manifold {0}× diag in [0, ε0)× M2. This process—which should be carefully distinguished

not only from the process of ‘complex blowup’ which is common in algebraic geometry, but

also from the use of the phrase blowup associated with various sorts of rescaling arguments

in PDE—amounts to introducing a singular cylindrical coordinate system around this sub-

manifold and ‘adding’ the points where ‘r = 0’ as a new boundary hypersurface. Assuming

that z, z̃ are identical coordinates on the two copies of M , we introduce polar coordinates

r = |(ε, z − z̃)| ≥ 0, ω = (ε, z − z̃)/r ∈ Sn
+, and declare this new semiclassical dou-

ble space, which we write as M2
sc, to be the manifold with corners on which (r , ω, z̃) is a

nonsingular smooth coordinate system. Note that M2
sc\{r = 0} is canonically isomorphic

to [0, ε0) × M2\({0} × diag), but each point on this diagonal at ε = 0 is replaced by its

inward-pointing spherical normal bundle at that point. The entire hypersurface {r = 0} is

called the front face and denoted by ff. It is the total space of a fibration over {0}×diag, with

each fiber a closed hemisphere Sn
+. The points of ff correspond to directions of approach to

{0} × diag.

Although the polar coordinates constitute a nonsingular coordinate system, it is usually

more convenient to use projective coordinates. Therefore, we introduce

ε,w = (z − z̃)/ε, z̃

as a coordinate system on M2
sc away from the ‘original’ face {ε = 0} × (M2\diag). These

are defined and are smooth up to points in the interior of ff, but are undefined at ε = 0 away

from the diagonal. In their region of definition, ε serves as a defining function for ff. Using

these, the interior of each hemisphere fiber in ff is identified with R
n , with linear coordinate

w. In fact, this projective identification of each fiber of ff with R
n is well defined up to linear

transformations. That is, if z′ is any other choice of local coordinates, and z̃′ is the same

coordinate system on the second copy of M , then w′ = (z′ − z̃′)/ε = Aw + O(ε), for some

A ∈ Gln , and hence w′ = Aw at ε = 0, where A is a matrix (that may depend smoothly on

z̃, i.e., vary with the hemisphere fibers).

Let π : M2
sc → [0, ε0) be the composition of the blowdown M2

sc → [0, ε0)×M2 followed

by projection to the first factor. Each level set π−1(ε), ε > 0, is a copy of M2. The preimage

π−1(0) is the union of two manifolds with boundary: namely, the manifold with boundary

obtained by blowing up M2 along its diagonal, and the closure of ff, which is a bundle of

closed hemispheres. The intersection of these two hypersurfaces is naturally identified with

the spherical normal bundle of the diagonal in M2.

4.2 Lifts of semiclassical differential operators

The blowup construction in this particular setting is motivated by a simple computation:

consider the lift of ζ I −εm L first to the left factor of M in M2 (i.e., differentiating in z rather

than z̃), then to [0, ε0) × M2 and finally to M2
sc. To compute this lift, first observe that

ε∂z j
= ∂w j

;
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hence, writing L =
∑

|β| aβ(z)∂
β
z using that z = z̃ + εw, we arrive at

εm
∑

|β|≤m

aβ(z)∂β
z =

∑

|β|=m

aβ(z̃)∂β
w +

∑

|β|≤m

cβ(z̃, w, ε)εm−|β|∂β
w.

The coefficients cβ(z̃, w, ε) depend smoothly on all three variables, and arise from the Taylor

expansions in ε of the functions aβ(z̃ +εw). The first set of terms on the right in this equality

are the terms of order 0 in this Taylor expansion if |β| = m; these contain no positive powers

of ε. On the other hand, the coefficient functions with |β| = m in the second sum on the right

arise only from the higher-order terms of the Taylor expansions of aβ(z̃ + εw) for the same

β, and hence, these vanish at least like ε. The key point in this calculation is that the lift of

εm L is the sum of a homogeneous operator of order m with coefficients which depend only

on z̃, and hence has constant coefficients on each fiber of ff at ε = 0, and a remainder term

which is a differential operator of order m with coefficients depending smoothly on ε, w and

z̃, and which vanishes at ε = 0. Using this, we now write

ζ I − εm L = (ζ I − σ sc
m (L)(∂w)) + (error term vanishing at ε = 0).

Here, by definition, the semiclassical symbol of L , σ sc
m (L)(∂w), is the constant coefficient

operator which appears in the above computation. A standard microlocal notation is to set

Dw j
= (1/i)∂w j

; under Fourier transform, this corresponds to the linear variable ξ j . This

semiclassical symbol is closely related to the principal symbol of L by

σm

(
σ sc

m (L)((1/i)∂w)
)

= σm(L)(z̃, ξ).

(Since σ sc
m is homogeneous and m is even, the factor of i reduces to an even more harmless

factor of ±1.)

The semiclassical symbol is well defined up to a linear change of coordinates in w. It also

depends smoothly on z̃, but the dependence is only parametric, and we frequently drop it

from the notation below.

The key point in all that follows below is that there exists a distribution Hζ (w) =

ε−n H ζ (w) (which depends smoothly on z̃) such that

(
ζ I − σ sc

m (L)(∂w)
)

H ζ (w) = H ζ (w)
(
ζ I − σ sc

m (L)(∂w)
)

= δ(w).

As we now discuss, this is a consequence of the strong ellipticity of L . We explain this

and develop some further properties of Hζ , in the next subsection. The appearance of the

slightly odd-looking factor of ε−n is explained there too. The full parametrix construction

itself is simply a perturbative construction which uses this distribution as the leading term

of a formal series in ε which is constructed to be a ‘formal’ inverse of ζ I − εm L . This is

then readily converted to a good parametrix with rapidly decaying error terms, and then to

an actual inverse if ε is small.

4.3 Green function for themodel problem

Here we establish the existence and certain properties of H ζ (w).

Lemma 4.1 There exists a distribution H ζ (w) on R
n such that H ζ (w − w̃) is the Schwartz

kernel of a translation-invariant pseudodifferential operator on R
n of order −m and which

has the following two properties. First

(
ζ I − σ sc

m (L)(∂w)
)
◦ H ζ = H ζ ◦

(
ζ I − σ sc

m (L)(∂w)
)

= δ(w). (4.1)
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In addition, H ζ depends smoothly on z̃, and satisfies |H ζ (w)| ≤ Ce−δ|w| where δ > 0

provided Re ζ < 0.

Proof Strong ellipticity of L implies that the function ξ �→ (ζ I − σ sc
m (L)(ξ))−1 is C∞ and

polynomially bounded, hence is an element of S ′, the space of tempered distributions. As

such, we may take its inverse Fourier transform and define

H ζ (w) =
1

(2π)n

∫

Rn

eiw·ξ
(
ζ I − σ sc

m (L)(ξ)
)−1

dξ.

This too is an element of S ′. This integral converges if m > n, but if this is not the case, we

can make sense of it as the distributional limit

lim
δ→0

1

(2π)n

∫

Rn

eiw·ξχ(δξ)
(
ζ I − σ sc

m (L)(ξ)
)−1

dξ,

where χ ∈ C
∞
0 (Rn) equals 1 in some neighborhood of the origin. In other words, pairing

this expression with a Schwartz function φ(w), we note that the limit in δ can be taken in the

classical sense on the right side of
∫

Rn

(∫

Rn

eiw·ξχ(δξ)
(
ζ I − σ sc

m (L)(ξ)
)−1

dξ

)
φ(w) dw

=

∫

Rn

φ̂(−ξ)χ(δξ)
(
ζ I − σ sc

m (L)(ξ)
)−1

dξ.

Using similar standard distributional manipulations, we can also justify that

(
ζ I − σ sc

m (L)(∂w)
)

H ζ (w) = H ζ (w)
(
ζ I − σ sc

m (L)(∂w)
)

= (2π)−n

∫

Rn

eiw·ξ dξ = I .

We recall also that since (ζ I − σ sc
m (L)(ξ))−1 is C∞, its Fourier transform decays rapidly.

Indeed, interpreted again as Fourier transforms of tempered distributions, this follows from

the (distributional) identity

H ζ (w) = |w|−2�(2π)−n

∫

Rn

(
��

ξ eiw·ξ
) (

ζ I − σ sc
m (L)(ξ)

)−1
dξ

= |w|−2�(2π)−n

∫

Rn

eiw·ξ��
ξ

(
ζ I − σ sc

m (L)(ξ)
)−1

dξ

for any � > 0, and the fact that the integral is classically convergent if −n > −m − 2�, i.e.,

� > (n−m)/2. Next, apply any derivative ∂
β
w to both sides of this equality, where β is a multi-

index, and choose � > (n − m + |β|)/2 so that the integral is still absolutely convergent,

to deduce that H ζ (w) is smooth away from w = 0. For an even more refined statement,

apply wα∂
β
w where |α| = |β|. Passing through the Fourier transform, this becomes a constant

multiple of ∂α
ξ ξβ acting on the exponential, which integrates by parts to an expression where

ξβ(−∂ξ )
α acts on ��

ξ (ζ I − σ sc
m (L)(ξ))−1. The resulting integral is once again convergent

if � > (n − m)/2. This shows that H ζ (w) has ‘stable regularity’ with respect to repeated

differentiation by the vector fields wi∂w j
, a property which is known as conormality with

respect to the origin {w = 0}. By a further analysis, which is left to the reader, the expansion

of ��
ξ (ζ I − σ sc

m (L)(ξ))−1 as |ξ | → ∞ is transformed to an expansion in powers of w as

w → 0, which is the assertion that H ζ (w) is polyhomogeneous at w = 0.

We now explain the assertion about exponential decay. The integrand is a smooth function

of ξ . By the uniformity of L as a function of z̃, there exists some δ′ > 0 sufficiently small
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depending on Re ζ < 0 so that if η ∈ R
n and |η| < δ′, then the deformed map ξ �→

(ζ I − σ sc
m (L)(ξ + iη))−1 remains smooth in ξ and decays as ξ → ∞ at the same rate as the

undeformed function.

Using these observations and a similar renormalization scheme to make the integral con-

vergent, we can deform the contour of integration from R
n to R

n + iη and write

H ζ (w) = e−w·η 1

(2π)n

∫

Rn

eiw·ξ
(
ζ I − σ sc

m (L)(ξ + iη)
)−1

dξ.

The integral is defined as above, using the same observations and calculations as above,

and is bounded as w → ∞, but is now accompanied by the prefactor e−w·η which decays

exponentially in any cone properly contained in the half-space w · η ≥ 0. Since η can point

in any direction, this shows that H ζ (w) decays exponentially, at some rate depending on

Re ζ < 0, as |w| → ∞. This solution is smooth in the parameters ζ and z̃. This establishes

the lemma. ��

Using these results, it is now straightforward to see that the convolution H ζ � f (w) is

exponentially decreasing in w if f ∈ C
∞
0 (Rn).

4.4 Manifolds with corners, blowups and polyhomogeneity

To get further into the details, we first recall the following terminology and notions.

All of these are described more carefully in [34]. First, suppose that X is a manifold

with corners. This means that near any point q ∈ X there is a local coordinate system

(x1, . . . , xk, y1, . . . , y�−k), � = dim X , such that each xi ≥ 0 and each yi ∈ (−ε, ε), and

(x, y) = (0, 0) at q . We say that q then lies on a corner of codimension k. We next define

the space Vb(X) of b-vector fields on X to consist of all smooth vector fields which are

unconstrained in the interior of X and which are tangent to all boundary faces. In terms of the

above coordinates, any V ∈ Vb(X) is, near q , a linear combination, with smooth coefficients,

of the basic vector fields xi∂x j
, i, j = 1, . . . , k and ∂yi

, i = 1, . . . , � − k.

Definition 4.2 A distribution u on X is said to be conormal to ∂ X if there exists some fixed

function space E such that

V1 . . . VN u ∈ E, for all Vi ∈ Vb(X) and all N ∈ N.

Typically we let E be a weighted L2 or L∞ space. Thus, if u is conormal, then u is C∞

on the interior of X , but may have singular behavior along the boundary. These singularities

are, however, ‘tangentially smooth.’

Definition 4.3 A distribution u on X is said to be polyhomogeneous at ∂ X if it is conormal,

and in addition has a classical expansion at each boundary face and product-type expansions

at the corners. Thus, near a codimension one face x = 0, for example, with y a coordinate

system along that face,

u(x, y) ∼
∑

Reγ j →∞

N j∑

k=0

a jk(y)xγ j (log x)k,

for some discrete set of exponents γ j , where each coefficient a jk is smooth. Near each corner,

where x1, . . . , xk = 0, u has an expansion involving various (possibly nonintegral) powers

of each x j and, for each monomial in the series, additional factors which are positive integer

powers of each log xi .
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These expansions hold for all derivatives of u as well, in the sense that any derivative of

u has an expansion where the summands are the corresponding derivatives of each term in

the series for u. These series are asymptotic, but (usually) not convergent.

The space of all such polyhomogeneous distributions is denoted Aphg(X , ∂ X). We may

easily extend this to define polyhomogeneous sections of vector bundles over X as well.

A submanifold Z ⊂ X is called a p-submanifold if near any q ∈ Z there is a set of

coordinates for X as above such that in some neighborhood of q , Z = {x1 = . . . = xr =

0, y1 = . . . = ys = 0}. Thus, locally near q , X is the product of (some small neighborhood

of) Z with another manifold with corners; the p stands for ‘product.’ If Z is such a p-

submanifold, then we may define the blowup of X around Z , denoted [X; Z ], to be the

union of X\Z and the inward-pointing spherical normal bundle of Z . Thus, [X; Z ] is a new

manifold with corners, with a new boundary hypersurface created by this blowup. As in our

special case of the semiclassical double space defined above, we may ‘construct’ this blowup

by taking cylindrical coordinates around Z in X , say (r , ω, z), where z ∈ Z , ω is a spherical

normal vector and r ≥ 0, and ‘adding the r = 0 face.’ We denote the new ‘front face’ of this

blowup by ff[X; Z ].

4.5 Pseudodifferential operators via their Schwartz kernels

Let M be a manifold (possibly open, but without boundary). We may define the blowup

[M2, diag]. This has a front face, ff, which is the spherical normal bundle of diag in M2.

Definition 4.4 A pseudodifferential operator A : C∞
c (M) → D′(M)on M is a linear operator

for which the Schwartz kernel K A of A is the sum of an element of Aphg([M2, diag], ff) and

a distribution which is conormal and supported along ff.

This is a purely intrinsic and ‘geometric’ definition of the space of pseudodifferential

operators. It is not easy to work with computationally, however, and it is customary to use

other definitions using oscillatory integrals, cf. [42] for example, which are better suited for

proving such things as showing that the composition of two pseudodifferential operators is

again pseudodifferential.

The inclusion in this definition of the extra terms which are supported on the front face

may seem a technical annoyance, but it is worth pointing out that the Schwartz kernel of

the identity operator, δ(z − z̃), has this property. In fact, if P is any differential operator

(with smooth coefficients) on M , then the Schwartz kernel of P is equal to P (acting in the

z variable) applied to δ(z − z̃), and hence is again supported on this front face.

4.6 Semiclassical pseudodifferential operators

We are in position to define semiclassical families of pseudodifferential operators on M . The

semiclassical double space M2
sc has a distinguished submanifold diagsc, which we call the

lifted diagonal. It is the closure in M2
sc of (0, ε0)× diag. This closure intersects the front face

of M2
sc at a submanifold which contains a single point {w = 0} on each hemisphere fiber.

Clearly diagsc is a p-submanifold of M2
sc, so we may pass to the blowup [M2

sc, diagsc]. This

has three boundary hypersurfaces: the original face at ε = 0 away from the diagonal, the

front face ff obtained by blowing up the diagonal at ε = 0, and the new front face obtained

in this final blowup.

We say that Aε is a semiclassical pseudodifferential operator if its Schwartz kernel

K A(ε, z, z̃) lifts to [M2
sc, diagsc] to be the sum of a distribution polyhomogeneous at all
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boundaries of this manifold with corners and a conormal distribution supported on the new

front face, and if K A vanishes faster than any power of ε along the original face. It makes

sense to restrict K A to each level set π−1(ε) for ε > 0, and on each of these we must obtain

the Schwartz kernel of a pseudodifferential operator. This definition now imposes precise

constraints on how these Schwartz kernels degenerate as ε → 0. In particular, if we change

to coordinates ε,w, z̃ on M2
sc, then the ‘pseudodifferential singularity’ occurs at w = 0 for

each ε, and at ε = 0 there is an expansion K A ∼
∑

εγ j K
( j)
A (w, z̃) where each coefficient is

a pseudodifferential operator on each hemisphere fiber of ff (and as above, {γ j } is a discrete

set of exponents with real parts tending to infinity).

In fact, we are only interested in Schwartz kernels for which the expansion as ε → 0 is

of the form

K A(ε, w, z̃) ∼

∞∑

j=−n

ε j K A, j (w, z̃).

The reason for starting this series at −n is as follows. As described above, the lift of εm L (as

a differential operator, not its Schwartz kernel) is an operator with coefficients smooth up to

ff; in particular, it has a series expansion as ε → 0 with leading term σ sc
m (L)(∂w). On the

other hand, the identity operator has Schwartz kernel

δ(z − z̃) = δ(εw) = ε−nδ(w).

Thus, if we expand each factor in the equation

(ζ I − εm L)G(ε, w, z̃) = ε−nδ(w) (4.2)

in powers of ε, and continue to think of the first factor on the left as a differential operator

instead of a Schwartz kernel, then at least formally we expect G to have a series expansion

involving the powers ε j for j ≥ −n.

In any case, this illustrates how the introduction of the space M2
sc provides a setting where

it is possible to ‘see’ the transition from the ordinary pseudodifferential operators on each

π−1(ε) to the limiting model problem on R
n .

Accordingly, we now define a class of semiclassical pseudodifferential operators whose

expansions at ff involve only integer powers:

Definition 4.5 If (M, g) is a manifold of bounded geometry, then �
k,�
sc−unif (M, g) consists of

those semiclassical pseudodifferential operators on M which have pseudodifferential order

k on each level set π−1(ε) and which have a series expansion in ε at ff with only integer

powers, with initial term ε�.

The subscript ‘unif’ indicates that we restrict further to allow only kernels which are

supported in some neighborhood distg(z, z̃) ≤ C of diagsc ∪ ff, where the constant C may

depend on the operator.

4.7 Parametrix construction

We commence with the parametrix construction. Our goal is to find an element G ∈

�
−m,−n
sc−unif (M, g) such that, for each ζ with |ζ | = 1 and Re ζ < 0,

(ζ I − εm L)G = I − Q1, G(ζ I − εm L) = I − Q2,

where Q1, Q2 ∈ �
−∞,∞
sc−unif (M, g). As explained above, we do this ‘formally,’ i.e., in a Taylor

series, at ff, and then take a Borel sum of the resulting formal expansion.
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More carefully, returning to (4.2), expand each factor into its formal series expansion:
⎛
⎝(ζ I − σ sc

m (L)(∂w)) +

∞∑

j=1

ε j E j

⎞
⎠

∞∑

k=−n

εk Gk(w, z̃) = ε−nδ(w).

Here the E j are the differential operators (of order ≤ m) arising in the Taylor expansion

of ζ I − εm L . Carrying out the composition and collecting like powers of ε, we obtain a

sequence of equations
(
ζ I − σ sc

m (L)(∂w)
)

G−n(w, z̃) = δ(w)
(
ζ I − σ sc

m (L)(∂w)
)

G−n+k(w, z̃) = Fk(w, z̃),

where each Fk =
∑k

i=1 Ei G−n+k−i is an ‘error term.’ This is a sequence of equations on

R
n
w , where the various terms all depend smoothly on z̃. These equations indicate that we

must set

G−n(w) = H ζ (w), and G−n+k(w) = H ζ (w)�Fk(w) k ≥ 1

for each z̃. Since the equations with k ≥ 1 involve constant coefficients in w, they are solved

by convolving with the fundamental solution H ζ (w).

Since each Ei G−n+k−i has pseudodifferential order at most 0 and H ζ has order −m,

each Fk is the Schwartz kernel of a translation-invariant (in w) pseudodifferential operator of

order no more than −m. We may solve this equation inductively, given the properties of H ζ

established in Lemma 4.1, but then are faced with showing that the Borel sum of this series of

singular kernels still has the correct behavior. There is a slightly easier way to proceed which

allows us to work more directly with C∞ kernels. Namely, we first find a pseudodifferential

operator G̃(ε, ·, ·) on each level set π−1(ε) which solves

(ζ I − εm L)G̃(ε) = ε−nδ(w) + ε−n
R(ε, w, z̃),

where R is smooth in all variables, ε,w, z̃. This involves carrying out the complete parametrix

construction for the nondegenerate operator on each level set in the standard pseudodiffer-

ential calculus, but carrying along ε as a smooth parameter. To compensate for the factors

ε−n on the right, we choose G̃ ∈ �
−m,−n
sc−unif . Said differently, this is the nondegenerate elliptic

parametrix construction (with parametrix cut off to have support in a neighborhood of the

diagonal), carried out smoothly in the parameter ε.

We now need to find additional terms in the parametrix which cancel off the full Taylor

series in ε of the remainder term ε−nR. This involves inductively solving a sequence of

equations
(
ζ I − σ sc

m (L)(∂w)
)

G̃−n(w, z̃) = R0(w, z̃)

(
ζ I − σ sc

m (L)(∂w)
)

G̃−n+k(w, z̃) =

k∑

i=1

Ei R−n+k−i ,

where R ∼
∑

εkRk . The advantage is that the right-hand sides are all smooth and we can

assume that they are compactly supported in, say, {|w| ≤ 1} for all z̃. The solutions are given

by

G̃−n = H ζ �R0(w), G̃−n+k = H ζ �

(
k∑

i=1

EkR−n+k−i

)
(w).
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4.8 Conclusion of parametrix construction

We have constructed both G̃ and the sequence of smooth, exponentially decaying terms

G̃−n+k , k ≥ 0. An important fact is that given any such sequence, it is possible to construct

a function G̃ ′(w) which is smooth in the interior of M2
sc, decays to all orders at the original

face, and has its expansion in powers of ε at ff of the form

G̃ ′(w) ∼

∞∑

k=0

ε−n+k G̃k(w).

This is the Borel sum of this series and is an element of �
−∞,−n
sc−unif .

Our final semiclassical parametrix is now defined by

G(ε, w, z̃) = G̃(ε, w, z̃) + G̃ ′(ε, w, z̃) ∈ �
−m,−n
sc−unif .

4.9 Boundedness properties

We conclude this section by sketching the proof of boundedness properties of elements of

�
∗,∗
sc−unif (M) on the semiclassical Hölder spaces C

k,α
sc (M, g), as defined in Sect. 2. First we

define the family of spaces

ελ
C

k,α
ε = {u(ε, z) = ελũ(ε, z) where ũ ∈ C

∞( [0, ε0) ; C
k,α
ε (M, g) )}.

In other words, an element of this space can be represented by a formal series u ∼∑
j≥0 ελ+ j u j with each u j ∈ Ck,α

ε .

Proposition 4.6 If A ∈ �
κ,μ
sc−unif for some κ ∈ Z, then

A : ελ
C

k,α
ε −→ ελ+μ+n

C
k−κ,α
ε

is bounded provided κ ≤ k.

Remark 4.7 We can extend this result to allow operators of nonintegral order, for example

using a standard interpolation result, but we omit this here since it is not needed.

Proof The first observation is that if κ ≤ k, and P =
∑

|α|≤κ aα(z)ε|α|∂α
z is a semiclassical

differential operator with coefficients which are uniformly bounded in C∞, then directly from

the definition,

P : C
k,α
ε (M, g) −→ C

k−κ,α
ε (M, g) (4.3)

is bounded. To relate this to a pseudodifferential boundedness theorem, we have noted that

the Schwartz kernel of P on M2
sc is a distribution supported along diagsc, namely

K P (ε, w, z̃) = ε−n
∑

|α|≤κ

aα(z̃ + εw)(∂α
wδ(w)) ∈ �

κ,−n
sc−unif .

Thus, (4.3) is a special case of the boundedness in Proposition 4.6, with λ = 0.

Recalling the definition of a semiclassical pseudodifferential operator, Definition 4.4, we

prove the boundedness property for kernels in �
−∞,−n
sc−unif (M, g) supported away from the

diagonal, and another for kernels in A ∈ �
κ,−n
sc−unif (M, g) supported near the diagonal.
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First suppose that A ∈ �
−∞,−n
sc−unif (M, g) has its Schwartz kernel K A supported away from

diagsc in M2
sc; to be specific, suppose supp(K A) ⊂ {ε ≤ dist(z, z̃) ≤ C}, or equivalently,

1 ≤ |w| ≤ C/ε. We then have that in projective coordinates (z, w̃), w̃ = (z̃ − z)/ε,
∣∣∣∣
∫

M

K A(ε, z, z̃)u(z̃) dVg(z̃)

∣∣∣∣ ≤ C‖u‖∞

∫

1≤|w̃|≤C/ε

|K A(ε, z, w̃)| εndV (w̃)

≤ C‖u‖∞

∫

1≤|w̃|≤C/ε

(1 + |w̃|)−N dw̃ ≤ C ′‖u‖∞ < ∞

since K A blows up like ε−n and εn |K A| is Schwartz in w̃, uniformly as ε ↘ 0. Furthermore,

any semiclassical derivative ε|α|∂α
z applied to K A yields a kernel of the same form. This

proves that if A ∈ �
−∞,−n
sc−unif has its kernel with this special support property, then

A : C
k,α
ε (M, g) −→ C

r ,α
ε (M, g)

for any r ∈ N.

Now let A ∈ �
κ,−n
sc−unif (M, g) have Schwartz kernel supported in the region |w| ≤ 1, and

as before, assume κ ≤ k. We do not need to assume that κ is an integer, but then must change

the Hölder indices accordingly and interpret the borderline cases where κ = k − i + α,

i ∈ N, in terms of Zygmund spaces. We can then proceed by a combination of a rescaling

argument and invoking the fact that an ordinary pseudodifferential operator of order κ in a

ball of size 2 induces a map C
k,α
0 (B1(0)) → Ck−κ,α(B1(0)), between ordinary Hölder spaces

(and where elements of the domain space are compactly supported in B1(0)). Indeed, given

any u ∈ Ck,α
ε , choose a locally finite cover B2ε(q j ) of bounded covering multiplicity and a

partition of unity χ j for which there are uniform bounds on its semiclassical derivatives up to

order k, and such that χ j = 1 on Bε(q j ). Then u =
∑

χ j u and since only at most some fixed

number of the A(χ j u) have support at any one point, it suffices to estimate the norms of each

of these summands. Recalling Remark 2.6, we may compute the semiclassical Hölder norms

by taking the supremum over balls of radius ε (or any fixed multiple of ε). Thus, rescaling

the coordinates of each summand by a factor of 1/ε, we reduce to the action of a standard

pseudodifferential operator of order κ on a standard Ck,α function on a ball of fixed radius,

where the result is well known.

Finally, if A ∈ �
κ,μ
sc−unif (M, g), then it is clear from all of the above, and the basic

definitions, that the assertion of Proposition 4.6 holds. ��

4.10 Operators with finite regularity coefficients

As explained at the beginning of this section, the geometric microlocal techniques used here

require the smoothness of both the metric g and the coefficients of L . Using that assumption,

we have shown that the inverse (ζ I −εm L)−1 exists and is bounded on Ck,α if ε is sufficiently

small. We now extend this to operators and metrics of lower regularity.

Proposition 4.8 Suppose that (M, g) has bounded geometry of order �+α′ where � ≥ k +m

and α′ ∈ (α, 1), and that L is an admissible operator of order m with coefficients uniformly

bounded in Ck,α′
. Then there exists ε0 > 0 such that Gζ,ε := (ζ I − εm L)−1 exists as a

bounded operator on Ck,α if 0 < ε < ε0.

While it is possible to carry out some version of the parametrix construction under these

regularity hypotheses, this would take extra work, particularly if the regularity order k is

small. Thus, we prove this another way, using techniques close to those in Sect. 3.
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Proof Choose an approximating sequence of metrics g(i) and operators L(i), which are all

smooth, but so that g(i) → g in C�,α′
and the coefficients of L(i) converge to those of L in

Ck,α′
. This can be done by selecting a locally finite open cover of M by normal coordinate

balls for g and using a mollifier in each such ball.

Although the norms on the spaces C j,β depend on the metric, it is clear that we may define

these all relative to any fixed smooth metric. In fact, we assume that the metric g is fixed (and

smooth) for simplicity, since the way it enters the argument below is minor.

As has been shown above in this section, for each i , and for 0 < ε < ε
(i)
0 , there exists a

bounded inverse

G
(i)
ε,ζ =

(
ζ I − εm L(i)

)−1
: C

k,α −→ C
k,α.

Denote the operator norm of this inverse by Aε,ζ,i . There are two main points we must

address. The first is that there exists ε0 where ε
(i)
0 ≥ ε0 > 0 for all i , and the second is that

the operator norms Aε,ζ,i are bounded for each ε and ζ as i → ∞.

Suppose that there exist sequences ε(i) → 0 and ζ (i) such that

Pi :=
(
ζ (i) I − (ε(i))m L(i)

)

does not have a bounded inverse. This failure occurs for one of three reasons: either Pi has its

nullspace in Ck,α , or its range is dense but not closed, or the closure of its range has positive

codimension. All of this is just as in Proposition 2.11, and the proofs to rule out each of these

cases are similar to the proof of that Proposition, as well as the arguments of Sect. 3. For that

reason, we shall be brief.

In the first of these cases, there exists a sequence u(i) ∈ Ck,α such that ||u(i)||k,α = 1 and

Pi u
(i) = 0. We may extract a limit u of this sequence by rescaling around a point qi ∈ M

where |u(i)(qi )| ≥ 1/2. Since ε(i) → 0, this limiting function u lies in Ck,α(Rn) and satisfies

(ζ I − L E )u = 0, where ζ is a limit of (a subsequence of the) ζ (i), and L E is the constant

coefficient strongly elliptic operator arising in this rescaling process. As shown in the proof

of Proposition 3.3, by the strong ellipticity of L (and hence L E ), there are no nontrivial

solutions of this equation.

Next, if the range of Pi is dense, there exist sequences u(i), f (i) ∈ Ck,α such that Pi u
(i) =

f (i), with ||u(i)||k,α = 1 and || f (i)||k,α → 0. Just as in the above paragraph, there is a

nontrivial limit u ∈ Ck,α(Rn) such that (ζ I − L E )u = 0, which is impossible.

Finally, if the closure of the range of Pi is a proper subspace, then we may apply the same

type of argument to the sequence of distributions v(i) ∈ (Ck,α)∗ which satisfy P∗
i v(i) = 0.

To do this, we must note that since v(i) satisfies this elliptic equation, it lies in Ck+m,α . There

is a limiting function v which satisfies (ζ̄ I − L∗
E )v = 0, which again cannot happen. This

proves that the inverses G
(i)
ε,ζ all exist for ε lying in some fixed interval (0, ε0).

Now fix any ε in this interval, and any ζ , and suppose that the norms Ai = ‖G
(i)
ε,ζ ‖L(Ck,α)

are unbounded as i → ∞. This implies that there is a sequence fi ∈ Ck,α such that

∥∥∥G
(i)
ε,ζ fi

∥∥∥
k,α

≥
1

2
Ai || fi ||k,α.

Writing ui = G
(i)
ε,ζ fi , this is the same as

||ui ||k,α ≥
1

2
Ai

∥∥∥
(
ζi I − εm L(i)

)
ui

∥∥∥
k,α

.
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Normalizing so that ||ui ||k,α = 1 for all i , then || fi ||k,α ≤ 2/Ai → 0. Passing to a limit, but

recalling that ε is fixed, there exists a limiting function in Ck+m,α , defined either on M or on

one of its limiting spaces M∞, such that (ζ I − εm L)u = 0 or (ζ I − εm L∞)u∞ = 0.

The proof is complete once we show that these last possibilities cannot occur. Let us focus

on the first, since the second is essentially the same. The point is simply that ζ I −εm L cannot

have a nonvanishing nullspace for arbitrarily small values of ε. Indeed, if this operator were

to have a nonvanishing nullspace in Ck,α for some sequence εi → 0, then the same rescaling

argument as we have done several times already would yield a limiting function u in Ck,α on

R
n such that (ζ I − L E )u = 0, which we know is impossible. ��

Remark 4.9 It is perhaps worth emphasizing the flow of logic in this argument. We first show

that for every one of the approximating operators L(i), the operator ζ I − εm L(i) is invertible

for ε < ε0 where ε0 does not depend on i . However, it may be necessary to restrict to a

slightly smaller interval 0 < ε < ε1 < ε0 in order to guarantee that ζ I − εm L does not have

nonvanishing nullspace.

The main point is that it is only the constant coefficient operators ζ I − L E which we

can check specifically do not have a nonvanishing nullspace. These operators only appear as

limits as ε → 0, and the argument to rule out a nonvanishing nullspace if ε is sufficiently

small, while it is not quantitative, is insensitive to the regularity of the coefficients of L .

5 Applications

In this section, we present an application of the results proved in this paper. We begin by

stating a general theorem which establishes short-time existence, uniqueness and continuous

dependence on initial conditions for a large class of geometric flows on manifolds with

bounded geometry. We then illustrate its application by obtaining a new result concerning

short-time existence and uniqueness of the higher-order ‘ambient obstruction flow’ on open

manifolds with bounded geometry.

We are now ready to prove Theorem B.

Proof of Theorem B By Theorem A, the linearization DFu is sectorial on Ck,α(M, g) for all

u ∈ O. The result therefore follows from Theorem 8.1.1 and Corollary 8.1.2 in [31]. ��

5.1 Ambient obstruction flows

In their study of conformal invariants of a compact manifold endowed with a conformal

structure, Fefferman and Graham introduce the ambient obstruction tensor, [23]. If n = 2� is

even, the ambient obstruction tensor On on a manifold (Mn, g) is a conformally covariant,

trace-free, divergence-free symmetric 2-tensor associated with the metric g. Its expression

involves n − 2 derivatives of the Ricci tensor. In the particular case of n = 4, the obstruction

tensor O4 coincides with the Bach tensor

Bi j = Pi j,k
k − Pik, j

k − Pkl Wki jl , (5.1)

where Pi j = 1
2

(
Rci j − S

6
gi j

)
is the Schouten tensor, Wi jkl is the Weyl tensor, and S is the

scalar curvature of g. We refer to [23], where the importance of the Bach tensor to conformal

geometry is explained.

We now study a flow associated with this ambient obstruction tensor. If this flow exists

and converges as t → ∞, the limit must be ‘obstruction-flat,’ a condition describing a natural

123



25 Page 36 of 39 Annals of Global Analysis and Geometry (2024) 65 :25

class of canonical metrics in higher dimensions. On compact manifolds, the well-posedness

and uniqueness of solutions to this flow is the topic of the two papers [5, 6] by the first

author and Helliwell. As an application of the methods of the present paper, we generalize

these results to the setting of complete manifolds of bounded geometry. We describe the flow

briefly here and refer the reader to [5, 6] for more detail.

The obstruction flow itself, namely ∂t g = On(g), is degenerate because of both the

underlying conformal covariance and its diffeomorphism invariance. To counter the first of

these, we introduce the modified obstruction flow
{

∂t g = On(g) + cn(−1)
n
2

(
(−�)

n
2 −1S

)
g

g(0) = g0,
(5.2)

where

cn =
1

2n/2−1
(

n
2

− 2
)
!(n − 2)(n − 1)

. (5.3)

In 4 dimensions this is the modified Bach flow
{

∂t g = B(g) − 1
12

(�S)g

g(0) = g0.
(5.4)

This modification breaks the conformal gauge in the sense that stationary points of this mod-

ified flow are obstruction-flat metrics with harmonic scalar curvature. The scalar curvature

term induces a normalization within a conformal class. The proof of this uses the fact that

On is trace-free.

The invariance under diffeomorphisms can be handled using a version of DeTurck’s

method, much as for the Ricci flow (see Chapter 2, Section 6 of [16]). We now describe this

method in the present setting. Fix a background metric g̃; then any smooth one-parameter

family of metrics g(t) defines a time-dependent vector field

V (t) =
∑

Vk(t, z)∂zk
, where V k(t, z) := g pq(t)

(
�(g(t))k

pq − �(g̃)k
pq

)
(5.5)

using the Christoffel symbols � of the indicated metrics. From this, we define the vector field

U = cn(n − 1)(−1)
n
2 −1(−�)

n
2 −1V +

cn(n − 2)(−1)
n
2

2
(−�)

n
2 −2 ∇S, (5.6)

and finally the obstruction-DeTurck flow
{

∂t g = On(g) + cn(−1)
n
2

(
(−�)

n
2 −1S

)
g + LU g

g(0) = g0.
(5.7)

As usual, one must show that solutions of this gauged flow lead to solutions of the original

(modified) flow (5.2). To this end, given a solution g(t) to (5.7), solve the ODE

{
d
dt

φt = −U ◦ φt

φ0 = id,
(5.8)

and let φt be the one-parameter family of diffeomorphisms generated by −U . The fact that

g̃ and g(t) have bounded geometry implies that φt exists at least for t in some small interval

around 0. A short calculation then shows that ḡ(t) = φ∗
t g(t) solves (5.2).

Uniqueness of solutions to the gauged flow (5.7) follows directly from the semigroup

method that we invoke below. Uniqueness of solutions to the ungauged flow (5.2) requires
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more work. This is explained carefully in [6], but the main ideas are as follows. Given a

particular solution g(t) to (5.2) and a choice of reference metric (M, g̃), one may again

use semigroup techniques to solve a higher-order analogue of the harmonic map heat flow

equation for a family of diffeomorphisms φt from (M, g(t)) to (M, g̃). This equation is

chosen so that the pullback g(t) = (φ−1
t )∗g(t) solves (5.7) with reference metric g̃ and

V and U in (5.5), (5.6). The various uniqueness statements then imply that g is uniquely

determined.

We now discuss further the existence and uniqueness statements. Taking the reference

metric g̃ equal to the initial metric, i.e., g̃ = g0, we define

F(g) := On(g) + cn(−1)
n
2

(
(−�)

n
2 −1S

)
g + LU g. (5.9)

As proved in [5],

DFg0 =
d

ds
F(g0 + sh)

∣∣∣∣
s=0

= (−1)
n
2 −1 Ag0 h + P

(
∂n−1h, ∂ng0, g−1

0 , ∂n g̃, g̃−1
)

,

(5.10)

where the leading term

(Ag0 h) jk := g
r1s1

0 g
r2s2

0 · · · g
rn/2sn/2

0 ∂r1∂s1 . . . ∂rn/2∂sn/2 h jk (5.11)

is an operator of order n and P is a polynomial expression in the input tensors and their

derivatives of appropriate order. Note that Ag0 is the leading term in �n/2 and is strongly

elliptic.

We may now prove Theorem C.

Proof of Theorem C Set D = Cn,α ⊂ X = C0,α , and note that by construction of little Hölder

spaces, D is dense in X . Take F as in Eq. (5.9), with background metric g0. As explained

in [5], the tensors appearing in F are polynomial natural tensors—natural tensors are those

such that the pullback of the tensor by any diffeomorphism is the tensor for the pullback of

the metric—of order n that can be locally expressed as linear combinations of contractions

of the metric, its inverse and coordinate derivatives of the metric up to order n. As such,

F is continuous and Fréchet differentiable at g0 and the linearization DFg0 satisfies a local

Lipschitz estimate. As remarked above, Eq. (5.11) shows that DFg0 is strongly elliptic, and

so by Theorem A, DFg0 is admissible and thus sectorial on X . We can choose a neighborhood

O ⊂ D of g0 so that ||DFg − DFg0 ||L(D,X) is small for every g ∈ O. Therefore, writing

DFg = DFg0 + (DFg − DFg0), then DFg is sectorial for each g ∈ O by Proposition 2.4.2

in [31], since it is a small perturbation of a sectorial operator.

Hence, by Theorem B, there is a short-time solution to the obstruction-DeTurck flow.

As explained above, Eq. (5.8) can then be solved to obtain the family of diffeomorphisms

φt , and we then deduce that ḡ(t) = φ∗
t g(t) is a short-time solution to the obstruction flow

with initial condition g0.

To argue uniqueness, suppose that gi (t), i = 1, 2 are two solutions to (5.2) with the same

initial condition g0. Again choose the reference metric g̃ = g0. Following Section 5.2 of [6],

for each i we set

E(φi ) := (−1)n/2c�
n/2
gi ,g

φi + P(φi ),

where �gi ,g is the Laplacian associated with the ‘map covariant derivative’ for the identity

map (M, gi (t)) → (M, g̃), as described in [6], and where P is a nonlinear differential
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operator of order n − 1 acting on φ. Combining this with the ODE for φ itself, we arrive at

the strictly parabolic initial value problem

∂tφi = E(φi ), (φi )(0) = id. (5.12)

Taking advantage of the explicit coordinate expression for E in [6], and using the bounded

geometry of M with respect to either of the metrics g(t) or g(t) (valid in some fixed time

interval), we see that DEid is an admissible operator, and hence, Theorem B may be applied

to (5.12) to conclude that this initial value problem has a unique solution on some short time

interval that remains a diffeomorphism. The remainder of the argument proceeds exactly as

in Section 5.3 of [6]. ��
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