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Abstract

We present straightforward conditions which ensure that a strongly elliptic linear operator
L generates an analytic semigroup on Holder spaces on an arbitrary complete manifold of
bounded geometry. This is done by establishing the equivalent property that L is ‘sectorial,” a
condition that specifies the decay of the resolvent (A\J — L)~ ! as A diverges from the Holder
spectrum of L. A key step is that we prove existence of this resolvent if A is sufficiently
large using a geometric microlocal version of the semiclassical pseudodifferential calculus.
The properties of L and e '~ we obtain can then be used to prove well-posedness of a wide
class of nonlinear flows. We illustrate this by proving well-posedness on Holder spaces of
the flow associated with the ambient obstruction tensor on complete manifolds of bounded
geometry. This new result for a higher-order flow on a noncompact manifold exhibits the
broader applicability of our technique.
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1 Introduction

Methods from semigroup theory provide an elegant abstract method to establish well-
posedness, stability and convergence results for large classes of evolutionary partial
differential equations, such as those which govern geometric heat flows. For such purposes,
the most useful semigroups are those which admit a holomorphic continuation in the ‘time’
variable. There is a nice characterization of these analytic semigroups in terms of their
infinitesimal generators. More specifically, we write the semigroup as e 4, where A is a
closed linear operator acting on a certain Banach space X. A classical theorem states that the
function 7 > e~ from R to the space £(X) of bounded linear operators on X admits a
holomorphic extension to a neighborhood of R in C if and only if the operator A satisfies a
property known as sectoriality, which as indicated below, involves restrictions on the spec-
trum of A, along with an estimate on its resolvent (Al — A)~L. We refer to [17, Chapters 5
and 6] for an elementary introduction to sectoriality and analytic semigroups.

In this work, we consider a broad class of geometric operators defined on sections of
vector bundles over complete Riemannian manifolds with bounded geometry and show that
they are indeed sectorial. This is the content of our main result—Theorem A—which is
proved in Sect.3 using tools from microlocal analysis. However, the main consequence of
our work is that if the operators corresponding to geometric heat flows on manifolds of
bounded geometry act on the naturally associated (little) Holder spaces, and if their symbols
satisfy readily verified algebraic conditions, then the initial value problems for those flows
are well posed, and have good stability and convergence properties.

More precisely, in applications to PDE, the generator A is a (typically elliptic) differential
operator and the sectoriality of such operators is known in a variety of settings. Our first goal
in this paper is to prove the sectoriality estimate for strongly elliptic differential operators
which satisfy a certain uniformity property, acting between sections of vector bundles over
a complete Riemannian manifold of bounded geometry. We characterize such operators as
admissible. The Banach spaces on which we let these operators act are little Holder spaces;
our emphasis on these is because of their use in applications to nonlinear problems. The
immediate examples of such operators are generalized Laplacians, i.e., operators of the form
V*V + R, where R is an endomorphism usually constructed from the curvature tensor of
the underlying metric and its covariant derivatives. However, the method of proof extends
naturally to allow us to prove this estimate for more general higher-order operators as well.

Our second goal is to apply this sectoriality to deduce stability estimates for nonlinear
parabolic evolution equations on these manifolds, acting on little Holder spaces. We are
particularly interested in geometric curvature flows, e.g., the Ricci flow, the mean curvature
flow, and certain relatively unexplored higher-order flows such as the one associated with
the ambient obstruction tensor (see Sect.5 for a description of this). As discussed below,
these flows typically require some sort of gauge fixing in order to become suitably parabolic.
The applications in this paper illustrate how one can easily establish well-posedness of quite
general flows, on spaces that are not necessarily compact, using this sectoriality property. In
a subsequent paper [8], we describe an application in which sectoriality is a key part of the
proof of a longtime stability and convergence result.

Sectoriality for admissible operators on manifolds on spaces of uniformly bounded geom-
etry has, in fact, been treated previously, notably by H. Amann and his collaborators; see for
example [2, 21]. Those techniques are spread out over several papers, are considerably more
abstract, and, from a geometric point of view, are perhaps less accessible. Our goal here is
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to provide a straightforward approach which is more convenient for geometric applications,
cf. Sect.5.

Let us briefly recall the functional analytic setting in more detail. The fundamental idea
in applying semigroup theory to a partial differential equation is to recast the problem as
an ordinary differential equation with values in some Banach space. Let X be a complex
Banach space and D a dense linear subspace. Consider the X-valued autonomous ordinary
differential equation

du

- F(u(t)), (1.1)
where u : [0,T) — X is a C! mapping. Here F : D — X is a (nonlinear) Fréchet
differentiable map satisfying certain structural assumptions. The most important of these
is that the linearization L = DF,, of F is a sectorial operator on X. We now explain the
sectoriality hypothesis.

The resolvent set of a closed linear operator L : X — X is the subset resx (L) C C
consisting of all numbers A such that (A\/ — L) : D — X has an inverse which is a bounded
operator on X. L is called sectorial on X if it satisfies:

S1. The resolvent set resy (L) contains a sector of opening angle 26 < 7 which contains a
left half-plane Re A < w for some w € R; i.e., there exists 0 € (0, 7/2) such that

resy(L) D Sy :={* € C\{w} : |arg(w — A)| > 0}, and

S2. There exists a constant C > 0 so that for all A € S, ¢, we have

C
I — L) Mgy < .
A — |

These conditions on L turn out to be equivalent to the analyticity of the semigroup e 'L,

and from this a wealth of well-posedness and regularity results are available. In particular,
we may then find suitable function spaces for the associated linear homogeneous problem
to Eq.(1.1) using maximal regularity theory, yielding existence and uniqueness results via
contraction mapping arguments. Many nonlinear parabolic partial differential operators can
be cast into this framework; see [31] for a thorough account of this general theory. Of
particular importance is that spectral stability analysis of L yields stability results for the
nonlinear problem in some cases.

As for the geometric applications, we recall that a complete Riemannian manifold (M, g)
is defined to have bounded geometry (of a certain order) if its injectivity radius is bounded
from below and there is a uniform bound for the norm of the curvature tensor and its covariant
derivatives up to a corresponding order. This is equivalent to uniform control of the coeffi-
cients of the metric and its inverse in an atlas of normal coordinate balls of uniform radius.
This class of spaces includes compact Riemannian manifolds, of course, but also complete
noncompact manifolds which are asymptotically Euclidean, conic, cylindrical or hyperbolic,
respectively, or more generally which are asymptotically modeled on other noncompact sym-
metric or homogeneous spaces.

On any such space (M, g), we consider elliptic differential operators, acting between
sections of vector bundles, which satisfy uniformity conditions on their coefficients in these
local uniform coordinate charts. The most obvious examples are operators determined directly
from the metric g, for example, generalized Laplace-type operators

L=V*V+R,
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acting on sections of some tensor bundle E over M. Here V is the induced covariant derivative
on this bundle, V* its adjoint, and R a symmetric endomorphism built out of tensor products
of contractions of the curvature tensor and its covariant derivatives. Many aspects of the
mapping properties of L on L*(M, d V,) can be deduced from Hilbert space techniques.
However, it is often more convenient for nonlinear geometric problems to consider this
operator acting on weighted Holder spaces instead. Consider a general weighted Holder
space X = 1o CK% (M, g), where v is a (strictly positive) weight function. The assumptions
imposed on tv are specified in Definition 2.12. More generally, we consider L to be a strongly
elliptic operator which satisfies certain uniformity conditions specified in Definition 2.8,
acting on weighted Holder sections of some vector bundle. Note that by replacing L with
o~ Lo we may as well consider L as acting simply on C¥%(M, g). The conditions on v
are precisely the ones necessary for this conjugated operator to satisfy the same uniformity
hypothesis.

The first main result of this paper states that any uniform strongly elliptic (that is, admis-
sible) operator is sectorial. See Definition 2.9 for the precise statement of admissibility.

Theorem A Let (M", g) be a complete Riemannian manifold of bounded geometry of order
L+a >m+k+a wherem € N, k € Ng = NU{0}and0 < a < o’ < 1, and suppose that
L is an admissible operator of order m which acts on the little Holder space X = C*(M, g)
of sections of some vector bundle E over M. Then L is sectorial on X.

We briefly enumerate the main ideas in the proof. We begin with the observation that
the sectoriality estimate is equivalent to a uniform estimate for the associated semiclassical
operator 1 — "L, where ¢ = |A|~Y/™ and ¢ = A/|A|. So the first step is to show that
this operator is invertible on X if ¢ is sufficiently small. This is deduced by constructing an
approximation for the inverse of this operator, which is called the semiclassical resolvent. This
involves a detour into the methods of geometric microlocal analysis, and the construction
itself is sketched in some detail in Sect.4 in order for the paper to be as self-contained
as possible. This geometric microlocal analytic construction has appeared implicitly in the
literature, but does not seem to appear explicitly in a readily available form elsewhere. Having
established the existence of (1 — e”L)~! as a bounded operator on X = co M, g) for
each ¢ > 0 that is sufficiently small, we need to establish uniformity of its norm in ¢. This is
argued by contradiction: We show using a number of rescaling and blowup arguments that
the failure of uniformity of this estimate would lead to various impossible conclusions. A
key feature of this argument is that we parlay the (essentially tautological) uniform estimates
of this operator acting on semiclassical Holder spaces (see Sect.2) to uniformity for the
action of this operator on standard Holder spaces. The passage from sectoriality on C%¢ to
sectoriality on C5¢ is a trivial extension.

The key motivation for all this work is its application to proving well-posedness of geo-
metric flows on complete noncompact manifolds. The admissibility property in Theorem A
is a straightforward algebraic criterion for proving sectoriality, which then gives access to
powerful semigroup theory results. For example, we obtain the following theorem; see [31]:

Theorem B Let (M", g) be a complete Riemannian manifold of bounded geometry of order
k+m+a, wherem € N, k e Ng = NU{0} and0 < o« < &' < 1;let F : C"*4(M, g) —
Ck*(M, g) be a continuous and Fréchet differentiable map of order m such that the graph
norm of DF, is equivalent to the norm of D = C"%%(M, g). Further, we assume that
for any u € D there exists an open set containing u and a constant ¢ > 0 such that
IDF,(v) — DFE,(w)llLp,x) < cllv—wllp, for v, w in a sufficiently small ball about u in
D.
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If DF, is admissible for all u in some open subset O C D containing ug, then

(1) (Short-time existence, uniqueness) There exists a maximal time T > 0 so that the initial

value problem
du Fu(r)) (1.2)
i u .
u(0) = uop

has a unique solution u : [0, T) — ckem, 2).

(2) (Continuous dependence) For any 0 < t© < T, there exist constants r, C > 0 depending
on ug and t such that if vo € Br(ug) C O, then the solution v(t) of (1.2) with initial
value vg exists until at least time t, and

lv(®) — u@)llem+ka < Cllvog — uollgm+ke, forallt e [0, ].

There are many possible applications of this work. Consider the ambient obstruction tensor
Oy, developed by Fefferman and Graham [23]. As we review in Sect. 5, this is a conformally
invariant tensor that involves n derivatives of the metric. A flow for the metric involving the
ambient obstruction tensor was developed by the first author and Helliwell in [5, 6]. Due
to the higher-order nature of the system of equations for this flow, the usual technique of
using an exhaustion and maximum principles to prove existence are not easy to apply. To our
knowledge, our method is the only well-posed result to date for this flow on a noncompact
manifold. Our main result is:

Theorem C Let (M™, go) be an even-dimensional complete Riemannian manifold of bounded
geometry of order | + o', and where 0 < a < &' < 1. Then there exists T > 0 and a family
of unique Riemannian metrics

g:10,T) = C™*(M, Sym*(T*M))

solving the ambient obstruction flow
08 = Ou(@) +e(-DE (—a)E15) g 13
8(0) = go.

where ¢, = (2"/2~1 (% —D!n=2)(n—=1))"Y, Sisthe scalar curvature of g, and Symz(T*M)
is the bundle of symmetric 2-tensors.

The remainder of this paper is structured as follows. In Sect.2, we describe the analytic
and geometric background. After discussing sectoriality, we define manifolds of bounded
geometry and define the operators of interest. We discuss pointed limits of manifolds of
bounded geometry and prove a relationship between the resolvent set of an operator and
its limiting operators under this construction, Proposition 2.11, that may be of independent
interest. In Sect.3, we explain the reduction of sectoriality to semiclassical estimates and
prove Theorem A. In this section, we presume the existence of uniform bounds for the
semiclassical resolvent of an admissible operator, and we give a detailed construction of this
resolvent in Sect.4 using the techniques of geometric microlocal analysis. Finally in Sect.5
we apply our results to obtain Theorem B, and conclude with the proof of the well-posed
result for the ambient obstruction flow, Theorem C.
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2 Background
2.1 Sectoriality

We begin by defining what it means for a closed unbounded operator acting on a Banach
space to be sectorial. The abstract notion of sectoriality, and its precise relationship with the
theory of analytic semigroups, is classical and can be found, for example, in [43, Chapter
IX]. The monographs [1, 31] contain applications of sectoriality to the study of evolution
equations, and the papers [7, 27] focus on its specific application to Ricci flow.

Let X be a complex Banach space and £(X) the space of bounded linear operators on
X; we denote the operator norm by || - || z(x). Suppose that L is a closed unbounded linear
operator on X which has dense domain D < X. The resolvent set of L, resx (L), is the set
of 1 € C for which the resolvent operator

Ri(A):= I —L)~!

lies in £(X). The range of Ry (A) is the domain D. The spectrum of L, denoted specy (L),
is the complement C\resy (L). As defined above:

Definition 2.1 A closed unbounded linear operator L : X — X with domain D is sectorial

in X if:

S1. The resolvent set resy (L) contains a sector of opening angle 20 < 7 which contains a
left half-plane Re A < w for some w € R; i.e., there exists 6 € (0, 7/2) such that

resy(L) D Sy = {A € C\{w} : |arg(w — 1)| > 6}, and

S2. There exists a constant C > 0 so that

C
IR M) lzx) < R forall A € S,0. 2.1

— ol
We often simply say that L is sectorial if the space X is understood.

Remark 2.2 We adopt the convention that the spectrum of L lies in a sector with an acute
opening angle and is strictly contained in a right half-plane Re A > w. In the applications
below, L is a differential operator with the leading part equal to some power of an iterated
Laplacian A¥, and our convention then agrees with the one where the L? spectrum of A lies

in the positive half-line. Note that our convention is different from our earlier work [7] and
the monograph [31].

Sectoriality is equivalent to an apparently weaker condition:

Lemma 2.3 (Proposition 2.1.11 of [31]) Let X be a complex Banach space, and L : X — X
a closed linear operator with dense domain D such that resx (L) contains a closed half-plane
{r € C:Re A < w}, for some w € R. If there exists a constant C > 0 such that

120 = L) Mz = €, (2.2)
for all A in this half-plane, then L is sectorial.

Proof By (2.2), ||RL(@ +i)llcen < 550 s0if |A — (@ + )] < |+ iul/2C, then

O —L)=(@+iwI —L)+*—(w+ip)l
=((w+im)l — L)+ A —(w+in) Re(w+ip)).
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The second factor on the right is of the form 7+ A where ||A|| < 1/2, and the first factor on the
right is invertible by hypothesis, so their product is invertible and hence A € resx (L). Since
the radii of the balls around @ + i on which the resolvent is defined grow asymptotically
linearly in p, the union of the original half-plane together with these balls contains a sector
S0 for some 6 € (0, /2). The estimate (2.1) follows. ]

2.2 Manifolds of bounded geometry

As stated in Introduction, we consider the sectoriality of a general class of admissible
differential operators of even order m = 2m’, m’ € N, acting between Holder spaces,
L:Ccnthey o) — ckeMm, g), where (M, g) is a complete manifold with bounded
geometry of order at least m + k + o’ for some &’ € («, 1). We may consider any such L to
be an unbounded operator on C*% (M, g).

In this paper, we work exclusively with the ‘little’ Holder spaces, which by definition are
the closures of C* in the corresponding Holder norms. (Here C*° is the space of smooth
functions on M which are uniformly bounded along with all of their covariant derivatives.)
For a given k, «, this is a closed subspace of the full Holder space, but if M is noncompact, it
is not separable. In fact, we never use separability below, only the fact that elements of these
little Holder spaces can be approximated in the global Holder norm by smooth functions.
As an aside, we could obtain a separable space by taking the closure of C3° in the Holder
norm; this is, however, a much smaller space, with all elements decaying at infinity. In any
case, we use only the larger space taking the closure of C*; to lighten the notational burden,
we denote this by the same symbol C5¢, with the understanding that we never use the full
Holder spaces in this paper.

In this section, we begin with a description of manifolds of bounded geometry, and direct
the reader to Sects.2.3 and 2.4 for more detail on the operators and function spaces which
appear below. Briefly, key examples of the operators we consider are elliptic operators arising
naturally in geometric analysis of the form

L = (V*V)" + lower-order terms

where V is the covariant derivative acting on sections of some Hermitian vector bundle V
over M, and where the lower-order terms involve the curvature tensor of the underlying
metric. More generally, we also consider such operators acting between weighted (little)
Holder spaces:

L:wc"the M, g) — nch* M, g), (2.3)

where tv is a weight function satisfying certain uniformity hypotheses; see Definition 2.12.
The mapping (2.3) is equivalent to

() 'L = (V') + S cmthem, o) —s koM, g),
where S is an operator of order m — 1 which includes both the conjugate of the lower-order

terms in L and also (o) "' [(V*V)"", o].
Let us proceed by recalling the definition of a manifold of bounded geometry:

Definition 2.4 A complete Riemannian manifold (M, g) has bounded geometry of order
{+o, where £ € Npand 0 < o < 1, if:
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(a) There exists aradius ro > 0 such that for every ¢ € M, the exponential map exp, : {v €
TyM : |v| < ro} = Byy(q) is a diffeomorphism; i.e., the injectivity radius at g is greater
than rg;

(b) Forevery g € M, the components of the pulled back metric exp;‘ g are bounded in cte'
and the components of the matrix inverse of exp;; g are bounded in C° on {v € M .
|v| < ro}, where the bounds are independent of ¢, and hence uniform over M.

Remark 2.5 We have denoted the fractional part of this uniformity order by &’ to distinguish
it from the « index in the Holder spaces we are using. We need the extra room given by the
inequality ¢’ > « in taking limits using the Arzela—Ascoli Theorem.

It is often easier to check an intrinsic version of condition (b). As discussed in [20], for
example, if £ > 1 and &’ = 0, then (b) is implied by

®) Sup;j <y |VJ/Riem| < C; for some constant Cy.

There is very likely to be a straightforward extension of this result using Holder norms instead
of the simpler C¥ norms, but we have not checked this and do not pursue this further here.

Any compact Riemannian manifold has bounded geometry of order equal to the regularity
class of the metric. There are many other natural examples of manifolds with bounded
geometry. We list some familiar classes:

(i) Asymptotically Euclidean or asymptotically conic manifolds,
(i1) Manifolds with asymptotically cylindrical ends,
(iii) Asymptotically (real) hyperbolic manifolds,

(iv) Asymptotically complex hyperbolic manifolds,

(v) Any symmetric space M = G/K of noncompact type, with invariant metric g, or
indeed, any perturbation g = go + & of the symmetric metric gg, where |VJ k| o =Cj
for j < £ (where ¢ is the desired order of uniform geometry),

(vi) Any infinite cover (M, g) of a compact manifold (Mo, go)-

Let us briefly discuss each of these classes. Before doing so, we observe that if (M, g)
has bounded geometry of order £ 4+ o and if § = g + h, where |h|, < 1 — € for some
€ € (0, 1) (so that g is boundedly equivalent to g) and the ¢t norms of the components of
h are controlled in g normal coordinate charts, then g also has bounded geometry of order
¢ + . This means that we may describe these various classes of spaces in their simplest
model forms. Bounded geometry then follows for any metrics which are perturbations of
these models in the above sense. We are particularly interested in perturbations which decay
to the appropriate model metrics in a suitable sense at infinity, and shall mention the rate of
decay in each of these cases.

Asymptotically Euclidean and asymptotically conic metrics. A Riemannian manifold
(M™", g) is called conic at infinity if there exists a compact Riemannian manifold (Y, h¢) of
dimension n — 1, a compact set K in M and a diffeomorphism from M\K to [rg, o0) X Y,
such that

g= dr® + rzho.

More generally, (M, g) is called asymptotically conic (AC) if it can be written as the sum of
a metric which is conic at infinity and an extra term k£ which satisfies IijIg < Cr=P=J for
some B > 0 and for 0 < j < ¢, and [V'k]g o < Cr Pt

In the following examples, we shall simply state a decay rate, e.g., %, but with corre-
sponding decay rates on the derivatives implicit.
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An AC space is called asymptotically Euclidean (AE) if (Y, hg) is isometric to the standard
sphere. Elliptic theory on this class of spaces has been thoroughly studied for several decades;
see [9] for a survey of results from a ‘classical’ perspective, and [40] for another approach
which appears frequently below. There are important generalizations of AE and AC spaces
that arise in various geometric settings, including the classes of quasi-asymptotically conic
(QAC) manifolds [18], and certain of the four-dimensional ‘gravitational instantons’ (of types
ALE/F/G/H), along with their higher-dimensional generalizations [12].

Asymptotically cylindrical metrics. (M", g) is cylindrical at infinity if outside some com-
pact set it is isometric to a product cylinder (a, 0c0) x Y~ ! with metric dr? + hg. Setting
r = e~ we arrive at the equivalent form

dr?
&= 2 + ho,

which is conformal to the exact conic metric dr? + r2hg. This is useful for translating results
from one setting to the other. The allowable perturbations in this setting decay like e~ #" as
t — 00, or equivalently, like rPasr — 0.

Asymptotically hyperbolic metrics. Next, suppose that M is a compact Riemannian man-
ifold with boundary. Fix a smooth boundary defining function p on M;i.e., p > 0 on M,
p~1(0) = M, and dp # 0 at the boundary. Fix also a metric so on d M. The class of ‘exact’
asymptotically hyperbolic (AH) metrics consists of metrics taking the form
dp* + ho
8= 2
0
near p = 0. The metric § = p’g is called a conformal compactification of g. Allowable
perturbations in this case are tensors which decay like p* for some p > 0.
This geometry mimics that of the Poincaré ball model of hyperbolic space, where

_ Ajdz)?
ST U=z

Thus, p = (1—|z|?)/2 and the Euclidean metric |dz|? equals a particular choice of conformal
compactification g. Since p is not canonically defined in terms of g, only the conformal class
of g (and in particular, g|75) is intrinsic to g.

To see that an AH space has bounded geometry, one calculates that the sectional curvatures
of any AH metric tend to —1 and covariant derivatives of the curvature tensor tend to 0, all
as p — 0.If g € M and p(q) = €, then the g ball B./>(g) has an inradius and a diameter
that are uniformly bounded away from both 0 and oo, and the restriction of g to any such
ball converges to a hyperbolic metric on a ball of nonzero radius. We refer the reader to [29]
for more details on this.

2.2.1 Asymptotically complex hyperbolic metrics

One generalization of this last example is to the class of asymptotically complex hyperbolic
manifolds. There are various ways to define these spaces; we refer to [10] for one approach
and a more extended discussion than the one below. Proceeding as in the AH case, let M
be a compact Riemannian manifold with boundary, of even real dimension 2n, and p a
boundary defining function. Suppose that 7 is a contact form on dM, i.e., n is a 1-form such
that A (dn)"~! is everywhere nonvanishing. Let T denote the Reeb vector field on 9M,
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i.e., the unique vector field such that n(7) = 1 and dn(T, -) = 0. Finally, choose a set of
smooth independent vector fields X1, ..., X2,—2 which span the kernel of n in ToM, all
on oM. Let n, wy, ..., wy,—> be the coframe dual to T, X1, ..., X2,—>. Fixing a product
decomposition of a collar neighborhood of M in M, we say that g is (exact) asymptotically
complex hyperbolic (ACH) if

dp2 + Z Cl)? ;72
§=—">5 T3

p? o
in that neighborhood. (Here w? = w; ® w; and n? = 1 ® n.) The difference from the AH

case is that the metric blows up faster in the o> direction. A CR (Cauchy—Riemann) structure
involves not only the hyperplane bundle ker 7 but also an endomorphism J on this subbundle
which satisfies J2 = —1; however, this almost complex structure is not relevant to these
metric asymptotics. An allowable perturbation k again decays like some p* as p — 0.

This mimics a standard representation of the complex hyperbolic metric on the unit ball
in C" (with holomorphic sectional curvature — 4),

_ gEwe |, rP(drr+(Jdr)?)
8512 -2

where ggyc is the Euclidean metric, r = |z|, and z € C". The monograph [10] explains the
relationship of this construction to CR geometry of the boundary. Bounded geometry of ACH
metrics can be proved similarly to the AH case. The ‘cubes’ of approximate radius 1 have
(approximate) dimensions € in the 9, and X ; directions and €2 in the T direction.

There are further generalizations to classes of exact and asymptotically quaternion hyper-
bolic metrics, and (asymptotically) octonion hyperbolic planes. These involve generalizing
the contact structures used to define the ACH metric; see [10].

2.2.2 Other examples

A Riemannian symmetric space M = G /K of noncompact type, or more generally a Rie-
mannian homogeneous space M = G /H with invariant metric, again has bounded geometry.
The definitions are a bit more intricate, and we point the reader to one of the many standard
references on the subject, [28], at least for the symmetric space case.

Infinite covers of compact Riemannian manifolds, where the metric is obtained by pullback
via the covering map, are an interesting class of spaces. General results about the L>-resolvent
of even the scalar Laplacian on such manifolds are almost nonexistent, except if the covering
group is ‘small’ (e.g., amenable). Perhaps surprisingly, we are able to carry out the analysis
below for the resolvents of admissible operators on C*, not only on these classes of spaces,
but even on general manifolds of bounded geometry.

2.2.3 Pointed limits of manifolds of bounded geometry

To conclude this subsection, we recall an important construction in the category of manifolds
with bounded geometry which shows that this class of spaces is complete in a certain sense.
Let (M, g) have bounded geometry of order £ + o’ and consider the sequence of pointed
spaces (M, g, p;) where p; is a sequence of points in M which diverges to infinity. Then
there is a complete Riemannian manifold (M, g0, Poo), Which is the pointed Gromov—
Hausdorff limit of the sequence (M, g, p;) and has bounded geometry. More specifically,
for any R > 0, the g-ball of radius R around p; in M converges, at least up to passing
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to a subsequence, as a Riemannian manifold, to the g, ball of radius R around p,. This
convergence can be shown to occur in C¢” for any 0 < o” < o'.

This is a standard fact in the ‘convergence theory’ of Riemannian manifolds. This type of
construction is originally due to Cheeger, and admits many generalizations. A version that
encompasses the above particular statement appears as Theorem 11.36 in Petersen’s book
[41]. (We are grateful to Guofang Wei for pointing out this reference.)

As a brief sketch of how this is proved, one first shows that some subsequence of the
(M, g, pj) converges in the Gromov-Hausdorff topology t0 (Mo, goos Poo); this topology
is, of course, quite weak and in fact one initially only obtains its metric space structure.
Further analysis shows that this convergence happens in a much stronger topology. Indeed,
using the bounds on the metric tensor in normal coordinates, we may extract a subsequence
of metrics on each ball B, (p;, ¢) which converges in ct" . The curvature bounds imply that
any ball of larger radius R can be covered by a controlled number of balls of radius ro. By a
successive diagonalization argument, the metric tensor converges on each one of these. The
lower bound on the injectivity radius is used to show that there is no collapsing in the limit.

Here are two examples of this sort of convergence. If (M, g) has an asymptotically cylin-
drical end, and if p; diverges along this cylindrical end, then the corresponding limit space
M is the Riemannian product cylinder R x Y. Similarly, if (M, g) is asymptotically hyper-
bolic, and p; diverges to some point p on the boundary of the conformal compactification
of M, then M, is a copy of hyperbolic space H". These illustrate that the limit space can
‘lose’ a lot of the topology of the original manifold M.

2.3 Function spaces

The definition of bounded geometry of order £ + o' relies on the Holder norms in uniform
local coordinate charts, and the standard local Euclidean definition can be used. To define
Holder spaces globally on M we need to say a bit more.

Fix a manifold (M, g) with bounded geometry of order ¢ + «’. We define the Holder
spaces C¥"*(M, g) forany 0 < x < £and 0 < @ < &’ < 1. Introduce the C*** norm

K
; [V<u(x) = V¥u(y)|
il =Y sup|V/uly +sup sup _ —
B x,yeB dlStg(X, y)

=0
J xF#y

The first supremum in the final term on the right is over all geodesic balls B C M of radius
ro (as given in the definition of bounded geometry). We assume that the tensor bundles over
each such B are trivialized, for example using the exponential map based at the centers of
these balls. If we are considering sections of some other vector bundle V. — M, we assume
the existence of a uniform set of local trivializations, relative to some ‘uniform’ cover of M
by balls By, (q;). The details are straightforward and left to the reader.

As noted in Introduction, in this paper we use the ‘little’ Holder spaces, C**(M, g)
exclusively; by definition, these are the completion of C* with respect to the above Holder
norms.

We recall the useful fact that an equivalent norm is obtained by taking the supremum over
all x # y in M in the final Holder seminorm, rather than just over x, y € B; in other words,
we claim that

IVEu(x) = Vou(y)l

x,yeM diStg(X, )’)"‘
XF#y

< Cllulle,a
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for some fixed C > 0. If distg (x, y) < rp, this is obvious, while if distg (x, y) > ro, then

[VEu(x) — Veu(y)|
distg (x, y)*

< 2ry % sup [V¥ul,.

It is also clear that for each B,

[V€u(x) — Veu(y)| - [VEu(x) — V¥u(y)|
su - < :
x,yeB distg (x, y)* x.yeM distg (x, y)*
xXFEy x#£y

Hence, taking the supremum over all balls B on the left, we conclude that we may define
the C*°“ seminorm either as we have done initially, or else by replacing the final term in that
definition with one where the supremum is taken over all distinct x, y € M.

It is clear that it makes sense to consider the spaces C*“ on a manifold of bounded
geometry of order £ + o’ only if k < € and if k = £ then ¢ < «’. We assume the strict
inequality ¢ < o' because, as described in the last subsection, the pointed limit of spaces
of order ¢ + o’ may only have order £ + «” for any o’ < «'. (Actually, by a standard real
analysis argument, the limiting space does have order £ + o’ but the convergence only takes
place in the weaker norm, which may be important at certain points.)

We also define the family of semiclassical Holder spaces CS°* (M, g), where ¢ is a param-
eter in (0, 1]. The name comes from their natural association with families of operators
undergoing semiclassical degeneration, which is described below. These spaces appear in
a fundamental way in the arguments of Sect.3. For any given x < £ and « (as usual with
a < o if k = £), this family of spaces contains all functions u such that

K
. . V¥u(x) — V¥u
etlleae =Y _ &/ sup|VVulg + & sup sup V2o a(”' <

i—0 B x,yeB dIStg(xv y)

J YAy
In other words, every derivative is accompanied by a power of ¢ and the « Holder seminorm
has a factor of &“.

In fact, these semiclassical spaces are simply the ordinary Holder spaces associated with

the family of rescaled metrics g, 1= ¢ 2g:

Co*(M, g) =C%(M, g).
Clearly each g, has bounded geometry of order £ +«’, and the bounds are uniform as ¢ — 0.

Remark 2.6 From these last comments, it is clear that in the definition of the above semi-
classical Holder seminorm, we may take the supremum either over all balls B of radius 1 or
alternately of radius ¢ with respect to g.

2.4 Admissible differential operators

We prove our main sectoriality estimate for any linear differential operator L which is strongly
elliptic, and satisfies an additional uniformity condition.

We begin by recalling that the principal symbol of L of order m is a smooth function
om(L)(x, &) on T*M which restricts to be a homogeneous polynomial of order m (matrix-
valued if L acts between bundles) on each fiber 7;*M. There are various intrinsic ways
to define this principal symbol, but the most familiar depends on coordinate choices: the
principal symbol is obtained by dropping all terms of order less than m and then replacing
each derivative 9, || = m, by the monomial (i§)“. (The factor of i is customary because
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of the relationship of this symbol with the Fourier transform.) It is straightforward to check
that this is well defined in the sense that it defines a smooth function on the cotangent bundle.

Definition 2.7 We say that a linear operator L is strongly elliptic if o,,, (L) (x, &) has numerical
range (or spectrum, if it is a matrix) contained in a sector in the right half-plane:

speco, (L)(x,€) C {L e C: |arg(L)| <0 < m/2)}
forall (x,&) e T*M.

It is straightforward to check that if L is strongly elliptic, then its order m is even. If L is
symmetric and has real-valued coefficients, then o,, (L)(x, &) is real-valued. For example, if

L = (V*V)"™/? 4+ lower-order terms,

then o, (L) (x, &) = |&]™ (or |E|™ times the identity matrix), which clearly satisfies this
condition.

Definition 2.8 L is uniform of order £ + o’ (relative to a metric g with bounded geometry of
order £ + o’ on a manifold M) if the following two conditions are satisfied:

(i) the pullback by exp, of the operator L has coefficients bounded in ¢t in each ball
By, (gq), with r¢ as in Definition 2.4;

(ii) there exists a closed cone T strictly contained in {A € C : ReA > 0} U {0} such that
if ¢ € C\T', then the endomorphism ¢I — o, (L)(x, &) is invertible, with the inverse
satisfying

1@ T = om L), )7l < CA+ 15D
for some fixed C (depending on ¢) for all (x, &) in the cotangent bundle of M.

Definition 2.9 A linear differential operator L is admissible if it is both strongly elliptic and
uniform of order £ + o'.

It is important for our purposes that admissibility is preserved under passage to a limiting
space:

Lemma 2.10 Suppose that (M, g) has bounded geometry of order £ + o', and let p; be a
diverging sequence of points in M. Let L be an admissible differential operator on M, as
described above. If (M, g, p;) converges to some limiting space (Mo, oos Poo) in ct’,
0 < o” < o, then (some subsequence of) the restrictions of the operator L to balls Br(p;)
converges in ¢t as both j — oo and R — o0 to an operator L, on this limiting
space, and any such limiting operator Lo, obtained in this way is admissible on its space of
definition.

Proof By a diagonalization process using Arzela—Ascoli, it is clear that L induces a limiting
operator L, on M, and that L, is again strongly elliptic. (Its coefficients are only in C¢
for any a” < a'.) O

There is an additional important relationship between L and its limiting operators:
Proposition 2.11 There is an inclusion

ﬂresck,a (Lso) D resgra (L),
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or equivalently,

U speccka (Loo) C specora (L),

In both cases, the intersection or union is over all possible limiting spaces M, and model
operators Lqo.

Proof Using this second formulation, suppose that A € specgk.o (L) for some limit Lo
i.e., Al — L is not boundedly invertible on ck (Mo, g0)- In the following considerations,
note that the natural domain of this unbounded map is cktme(pf . 8c0)- There are three
ways that invertibility might fail:

(a) there exists a nontrivial function u € C" K¢ such that Loou = Au;
(b) the range of Al — L, is dense in ¢k but not closed;
(c) the closure of the range of Al — L is equal to some proper closed subspace of C5%.

We show that each of these three possibilities is incompatible with the assumption that
A ¢ speccko(L). In the first case, suppose that u is a ¢tk solution of this limiting
equation. Choose a sequence of radii R; — 00, and let x; be a sequence of smooth cutoff
functions on M, such that

1 on BRi/Z(Poo)

Xi= 0 outside Bg, (Poo) ’

0 < x; <1 everywhere, and
Vx| < C/R!

for ¢ < m and with C independent of i. For fixed i, the ball Bg,(pxo) in Ms is a limit
as j — oo of balls Bg,(p;) in M. Using this, we may transplant x;u to Bg,(p;) and then
extend it to equal O on the rest of M.

We now compute that

A = L)(xiu) :=hi = xi(M — Loo)u + xi(Loo — L)u + [L, x;]u.

Clearly, there exist constants ¢y, ¢2 such that 0 < ¢ < [|xiu||k.« < c2, uniformly in i,
and using the limiting properties in this construction, ||A;||x,, — 0. Since the x;u span an
infinite-dimensional space, we conclude that (A./ — L) does not have a closed range on che,
contrary to the choice of A.

Next suppose that (A — L) has a dense but nonclosed range, so it does not have a
bounded inverse. There exists a sequence u; on M, with infinite-dimensional span such that
[luillk,o = 1and ||(A] — Loo)ti||k,o — 0. Precisely the same transplantation argument used
above shows that ¢; < || x;u;i||k,« < c2 and |[(A] — L)(x;ui)||k,« — 0 on M, which is once
again a contradiction.

Finally, suppose that the range of (A/ — L) is equal to or at least dense in some proper
closed subspace. Then the dual operator (A — L%.) has a nontrivial nullspace in ()
This dual space is distributional, of course, but since L7 is elliptic, any element v of its
nullspace is again as regular as the coefficients of the operator and the metric allow, and this
element must be bounded as well (or else it would be easy to find some ¢ € CX* such that
(v, ¢) is undefined). We are then in the situation of the first case, once we observe that the
dual operator L* is admissible.

This completes the proof. O
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2.5 Examples of admissible operators

The main examples of admissible operators that we have in mind are generalized Laplacians
on Riemannian manifolds with bounded geometry, or more generally, operators of the form
(V*V)"/2 4§, where S is an operator of order m — 1 usually closely associated with the
metric g. We begin with the second-order case.

By definition, a generalized Laplacian is an operator of the form

V*V + K,

acting on sections of some tensor bundle E over M (or slightly more generally, a twisted spin
bundle—the key feature is that its connection is induced from the Levi-Civita connection for
g.) Here V* is the adjoint of the covariant derivative with respect to the natural inner product
on each fiber of E, and with respect to the volume form dV,. The term K is a symmetric
endomorphism of E obtained via contractions of sums of tensor products of the curvature
tensor and its covariant derivatives.

The following is a list of standard examples of such operators:

(a) The scalar Laplacian Ag = V*V acts on the trivial rank 1 bundle; slightly more generally,
we also consider the Hodge Laplace operator Ag ; = dé + dd acting on sections of the
bundle of exterior p-forms, p = 0, ..., n. The original Weitzenbock formula states that

Agp=V*V +K,,

where K, is an endomorphism of A\” M constructed from the curvature tensor. As an
example, for p = 1, K1 = Ric, considered as a symmetric endomorphism on 1-forms.
(b) Next, consider the Lichnerowicz Laplacian

V*V + 2(Ric — Riem)

where Ric is the Ricci tensor and Riem the full curvature tensor. These act as symmetric
endomorphisms on symmetric 2-tensors via

. L. .
hij = Ric(n); = 5 (Ricich + Ricjehf)
hl'j = (Riem(h)),-j = Riquhpq.
(c) Generalizing (a) in a different way is the conformal Laplacian

vy 272 g
4(n—1)
acting on scalar functions, where R, is the scalar curvature of the metric.
Each of the operators in the above list is symmetric, i.e.,
(Lu,v) = (u, Lv) for u,v e Cy°(M).

A classical theorem due to Chernoff [14] states that because g is complete, each of these has
a unique self-adjoint extension as an unbounded operator on L(M, dVy). Self-adjointness
guarantees that the L? spectrum lies on the real line. If g has bounded geometry of high
enough order, the pointwise norm of the endomorphism K is uniformly bounded. Since
V*V > 0, we deduce that

V*V 4+ K > —C = spec;2(V*V + K) C [-C, 00).
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There are many interesting higher-order elliptic operators associated with the metric g.
The most well known are the higher-order ‘GJMS operators,” which generalize the conformal
Laplacian (see [24]). The GIMS operator P,, of order m is a conformally covariant operator
which is simply equal to (V*V)"/2 if g is the flat Euclidean metric, but in general has a
(complicated) set of lower-order terms involving the curvature tensor. This operator exists
only for m < n if n is even, and for all m if n is odd. A (very thoroughly studied) example
is the Paneitz operator

Py=A—5((n—2)J —4V)d+ (n — 40,

where V is the so-called Schouten tensor of the metric g, J is its trace, Q is an associated
scalar quantity called the Q-curvature, and d and § are the exterior derivative and its formal
adjoint. It is known [26] that these operators are symmetric, and the same reasoning as above
implies that the L2 spectrum lies in a half-line [—C, co).

Notice that we have said nothing about the spectrum of any of these operators on
Cc%%(M, g), and in general the relationship between the C®¢ and the L? spectrum may
be quite difficult to understand. In many geometric problems, however, we actually wish to
study the action of L not on C* itself, but between some weighted Holder spaces:

L:wC™M,g) — wC> (M, g), (2.4)
where, by definition, v is a strictly positive C*° (or ¢ty function and
wC*M,g)={u=wv:velC°%M,g))}
Observe that the mapping in (2.4) is equivalent to
Ly =t 'Lw:C™*M, g) — C%“(M, g). (2.5)

Observe also that since A/ — Ly, = w™!'(A] — L)w, the spectra of (2.4) and (2.5) are the
same.

In most of the examples of manifolds of bounded geometry we have given, it is possible
to prove that there exist weight functions tv for which the mappings in (2.4) [or equivalently
(2.5)] is Fredholm, i.e., has closed range and finite-dimensional kernel and cokernel. It is
sometimes possible to choose tv so that to CO’“(M, g) C L2, and if this is the case, and if
f € wC%%(M, g), then so long as A ¢ spec; (L), there exists a function u € L? with
(A — L)u = f. Local elliptic regularity implies that u € C"™% on each ball B,,(p). If
we could then somehow show that u € v C"%, we would have obtained information about
specco.o (Ly).

Before doing so, we list some necessary assumptions on these weight functions.

Definition 2.12 A weight function w is uniform with respect to L if:

(a) the mappings in (2.4) and (2.5) are Fredholm;
(b) the conjugated operator L, is admissible with respect to the metric g.

Itis clear that Ly, is strongly elliptic if L is, since they have the same leading-order terms.
The uniformity of the coefficients of Ly, imposes a strong condition on the weight function
and its derivatives. For example, if L is the scalar Laplacian, then
Aro

o

involves first and second derivatives of to. Thus, all these lower-order terms must be uniform
in the sense we have described above.

O Vio
Apw =A+10 [A’m]ZAJFZF'VJF
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2.6 The resolvent on asymptotically hyperbolic spaces

We conclude this section with a description of one particular setting, namely the class of
asymptotically hyperbolic spaces, where there is a somewhat more direct path to understand-
ing the C%% spectrum of generalized Laplacians.

Suppose that (M, g) is asymptotically hyperbolic, as described in Sect.2.2, and let
L = V*V + K. Choose coordinates (x, y) on M near the boundary of M, where x is a
boundary defining function and y is a local coordinate on the boundary extended to this
collar neighborhood. Using this, we identify the collar neighborhood with [0, 1) x 0M. It is
known that we can choose these functions in such a way that

dx? + h(x,y)
§=—"F>F

x2 ’

where x +— h(x, -) is a family of tensors on d M in this collar neighborhood decomposition
and x(0, y) is any prescribed metric representing the conformal class on d M associated with
g.

We have already noted that the L? spectrum of L lies in some half-line [—C, c0); hence,
res;2(L) D C\[-C, 00). Let Ry, denote both the resolvent of L as an abstract operator, but
alsoits Schwartz kernel, which is a distribution on M x M. This distribution, Ry (A; x, y, X, y),
is singular along the diagonal, where x = X and y = ¥, and has additional singularities along
the boundaries where x — 0 or X — 0. The nature of these singularities can be understood
in a detailed way using the methods of geometric microlocal analysis. We refer to [34] for
the construction of this distribution.

The question we wish to consider is whether there exists a range of u for which

Ry : x"Co% (M, g) — x*CF* (M, g), (2.6)
is bounded if Re A < —C, or equivalently, whether the conjugated Schwartz kernel
xR x, y, X, PR 2.7

acting by convolution induces a bounded mapping on C%¢.

This is true for u lying in a certain interval determined by the so-called indicial roots of
L. To describe this more carefully, recall that an indicial root of L is a number y € C such
that

L(x7u(x,y)) = O@xr*th,

where u is any function smooth up to dM. (We consider only the scalar case for notational
simplicity.) It is not hard to see that this can only happen if there is some leading-order
cancelation, which depends only on some algebraic condition determined by y and the
values at x = 0 of certain of the coefficients of L. For a second-order scalar operator, this
algebraic condition is a quadratic polynomial in y, and hence, there are two indicial roots.
For a higher-order operator or system, there are more. In this second-order setting where L
is assumed to be symmetric on L2, these indicial roots take the form
+ n—1

= +
12 > %o

for some ¢o which is either real and nonnegative or else purely imaginary. We can define the
indicial roots of A/ — L in the same way, and write these as

4 n—1
Yy () = > £ 5.
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If A is real and sufficiently negative, then {o(A) > 0. There exists some Cop € R such that
if . > Cp then ¢o(2) is purely imaginary. If A € C\[Cp, 00), then Re {p(1) > 0 and tends
to infinity as the distance from X to [Cp, 0o) gets larger. One consequence of this is that any
A > Cp lies in the continuous Lz-spectrum of L; see [36].

Fix the half-plane Re & < —B, and define

§= inf Re(A).
ReingB eso(h)

Note then, by the remarks immediately above, we can increase § by increasing B along the
real axis.

We need a key structural theorem from [34] about the pointwise behavior of the Schwartz
kernel of Ry ()):

Proposition 2.13 The distribution Ry (A; x, y, X, y) satisfies
[RL(A; x, v, X, )| < Cx%""s, x—>0,Xx>c>0,
[RL(%; x,y, X, Y)| < C)?%H, X—0,x>c>0.

There is a considerably sharper structural theorem which also describes the precise behav-
ior of Ry, as x, X — 0, but for the present purposes we do not need this.

We now state and prove a basic result on the spectrum of L acting on weighted Holder
spaces.

Theorem 2.14 Let (M™, g) be an asymptotically hyperbolic space, and L be a generalized
Laplacian acting on some tensor bundle over M. For every § > 0, there exists o = w(§) > 0
so that if

n—1 n—1
IS T_(S’ > +48), (2.8)

thenres,.coo (L) D {A:Re A < —w}.

Proof For simplicity, we confine our discussion to the scalar case.

Given a choice of § > 0, then by the above defining remarks concerning ¢y, we need
only increase the value of w to ensure that the interval in Eq.(2.8) is nonempty. Hence, by
Proposition 2.13, the conjugated kernel (2.7) decays at least at the rate % +d8+pasx - 0
and at least like % + 8 — nas x — 0. We have thus reduced the problem to understanding
whether the mapping from C%%(M, g) to itself defined by the kernel

(F/X)*RL (A x,y,%,3)

is bounded, where this kernel acts by

- - s . . dxdy
u(x,y) — /(x/x)“RL(A; X,y % uE 5 —=
(The singular measure is uniformly equivalent to the L?> measure for g.) In order for this
integral to converge as X — O, it is necessary that the product of factors in the integrand
(including the singular Jacobian factor) is bounded by ¥ ~!*€ for some € > 0. However, by
assumption, # does not necessarily decay, which explains the necessity of the condition

n—1

2

-1
+8+u—n>—l©u>nT—8.
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On the other hand, the rate of growth (or decay) of the output is determined by the behavior
of this conjugated kernel in two regions: the first as both x, ¥ — 0 and the second as
x — 0, X > 0. We refer to [34, Theorem 3.27] for the precise explanation. The kernel is
bounded in this first regime and is bounded by x*~D/2+3=1 i the second, which explains
the requirement that

n—1

nw < + 6.

The case of equality must be omitted here because in that special case the solution might
behave like log x as x — 0.
Altogether then, we have argued that

(F/0)" R (A x, 9, %, 5) : %M, g) — ™M, g)
is bounded if and only if

n—1 n—1
—8<M<T+8. 2.9)

Boundedness on Holder spaces now follows readily from elliptic estimates. O

We have described the asymptotically hyperbolic case in some detail, but note that it is
possible to prove similar results in the asymptotically conic, cylindrical, complex hyperbolic
and symmetric or homogeneous cases described above. There is no such argument (to our
knowledge) for infinite covers of compact manifolds.

This material is included to indicate that the spectral hypothesis of admissibility can be
verified in various ways. In Sect.4, we describe a different sort of parametrix construction
which turns out to be sufficient for our purposes. It works for arbitrary manifolds of bounded
geometry, but only if A has sufficiently large negative real part. In many ways, that parametrix
construction is simpler than the one needed in the AH case, but is perhaps less familiar.

3 Sectoriality of admissible operators on Holder spaces

We now turn to the proof of the main sectoriality theorem, Theorem A.

The first key observation is that if L is an elliptic differential operator of order m, then
the sectoriality of L is equivalent to a certain estimate for the semiclassical resolvent of L,
which means the following. Define ¢ = |A|~!/” and ¢ = X /|A|. We then rewrite the operator
that appears in Lemma 2.3 characterizing sectoriality as

AT — L)' = l%((k/lkl)l — T = —emnh

Disregarding the harmless unit prefactor ¢, the operator (¢ — g™ L)~ ! is called the semi-
classical resolvent of L. Since Re A < w, and we may assume that @ < 0, we only need
consider such ¢ with Re ¢ < 0. Altogether then, an equivalent formulation of the sectoriality
of L is that

(¢ —e"Lytchom, g) — kM, g) (3.1

exists and has a norm which is uniformly bounded independently of ¢ € (0, gg), for some
go > 0,and ¢ with |¢| = 1,Re ¢ < —c¢ < 0. In other words,
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sectoriality is equivalent to the uniform boundedness of the semiclassical resolvent on
regular, i.e., nonsemiclassical, function spaces.

Part of our assertion is that this resolvent exists as a bounded operator provided ¢ is sufficiently
small, i.e., A/ — L is invertible on C*%(M, g) if Re A is sufficiently negative.

As explained at the end of this section, the case k > 0 follows from the case k = 0, so we
assume that X = C%¢ until the final part of this section.

We prove this equivalence in a series of steps, outlined here and carried out in the rest of
this section. In the first step, we show that (¢1 — &™L)~! exists as a bounded operator for
each sufficiently small € and for every ¢ with Re ¢ < 0, but with no claim about uniformity.
Here it is irrelevant whether standard or semiclassical Holder spaces (as defined in Sect.2.3)
are used since they are equivalent for each fixed ¢. This is a ‘perturbative result’ and follows
from the existence of a semiclassical parametrix. We state this result carefully in the next
proposition and for the reader’s convenience sketch this parametrix construction using geo-
metric microlocal analytic techniques in Sect. 4; this methodology is explained there. Next
we recall the ‘easy’ semiclassical elliptic Schauder estimate associated with any strongly
elliptic semiclassical family ¢ 7 — &™ L. This is equivalent to the uniform boundedness of the
inverse of this semiclassical operator between semiclassical Holder spaces. The main step of
the whole proof is to upgrade this to an estimate between standard Hélder spaces C%¢ which
is independent of ¢ > 0. This is done by establishing uniform bounds for this semiclassical
resolvent as a map C/ — C/ for j = 0, 1, and applying interpolation.

Proposition 3.1 Let L be an admissible operator of order m on a manifold (M, g) of bounded
geometry of order £+a’. Then the unbounded operator L [ —e™ L - C?"" M, g) — C?’“ M, g)
has a bounded inverse for each sufficiently small ¢ > 0 and for each ¢ with |¢| = 1 and
Re¢ <0, wherem < Landa < o'.

Proof This proof uses the machinery of microlocal analysis extensively. A detailed intro-
duction to these methods is provided in Sect. 4. As is carefully defined and explained in that
section, there exists a parametrix G for {I — ¢™ L which is an element of order —m in the
semiclassical uniform pseudodifferential calculus \Ils*c’fumf (M, g) (see Definition 4.5). Thus,
for each ¢, G is an approximate inverse for { I — & L; its discrepancy from being an exact
inverse is captured by the ‘residual operators’ Q;, € W " 2(M,g), j = 1,2, via the
identities

(T e"L)Ge =1 — O1e, Ge(CI — e"L)y=1— QZ,S-

Each Q; , is a smoothing operator (this is the meaning of the first superscript —oo) with
Schwartz kernel supported in some fixed neighborhood of the diagonal {(z, ) : dist,(z, 2) <
C}, and vanishing to all orders as £\0 (which is the meaning of the second superscript,
+00).

In more detail, G, and the Q; . are one-parameter families of operators, with Schwartz
kernels G(¢,z,2) and Q(e,z,2), z,Z € M. For each ¢ > 0, G(g, z,Z) is an ordinary
pseudodifferential operator of order —m which is a parametrix for £/ — ¢ L, and the Q
are the smoothing error terms. These Schwartz kernels vary smoothly in ¢ for ¢ > 0. The
important new feature is their behavior as ¢ — 0. First, if z # Z, then G(e, z,z) and
Q (e, z, z) decay faster than eV for any N. This convergence is uniform in any region where
distg(z,2) = ¢” > 0 for any ¢”” > 0. The behavior of G (e, -, -) near the diagonal as ¢ — 0
requires a bit more work to describe; this is done in Sect.4. On the other hand, for j = 1, 2,
Qj(e, z,2) € C°([0,80) x M 2), these kernels decay rapidly along with all derivatives as
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& — 0, uniformly on M x M. This construction works assuming that Re ¢ < 0, but the rate
of decay (which is actually exponential) diminishes as Re { — 0.

It is straightforward to deduce from this structure that |[Q; e[| 2oy — 0 as e — 0.
Hence, both (1 — Ql,a)_1 and (1 — Qz,a)_1 exist as bounded operators on % for any fixed
sufficiently small € > 0. Thus, we can write

CI—e"L) ' =G.(I - Q1) = — 02:) 7' Ge;

this proves that (A\J — L)™' exists for any A with Re A sufficiently negative. O
In the next step, we continue in this same semiclassical vein:

Proposition 3.2 (Semiclassical elliptic estimate) There exists a constant C > 0 such that for
alle € (0,8), u € Cg’“ and ¢ with |£| = 1andRe¢ < ¢’ <0,

lullmae = C (II(CI —&"L)ullo,a.e + sup |M|> . (3.2)
M

Proof As already hinted in the definition given above of semiclassical Holder spaces, we
show that (3.2) is simply the ‘standard’ Schauder estimate relative to the metric g, = ¢ 2g.
If z is a normal coordinate for g in a ball B(r() of radius ry about any point, then w = z/¢

is a normal coordinate for the metric g, = £~ 2g on a ball of radius rg/e. Indeed,
g = 8ap(2)dz"dz" = (ap + Eap(2))dz"dz",  |Elg = O(lz);
hence,
8 = (¢ %8ap + & " Eap(ew))dz*dz" = Bup + Eap(ew))dwdu’.

Using the hypothesis of bounded geometry, this shows that the coefficients and derivatives
of g, are uniformly controlled in the rescaled normal coordinates. Denoting this dilation
operator on a given ball by S, then the admissibility hypothesis shows that the rescaled
operator ¢ S¥ L is strongly elliptic on each such ball.

The standard local elliptic estimate on any geodesic ball B for g, states that if B’ is
the ball of half the radius and same center, then there exists a constant C such that for all
u € C"™%(ge),

lullB'ma,e. < C (II(CI —&"L)ullp,0,a,5. +sup Iu|> :
B

Taking the supremum of the right-hand side over all balls B of fixed radius (provided by
bounded geometry), and then taking the supremum over the corresponding balls B’ on the
left yields the global estimate. Crucially, the constant C is independent of ¢ < 1.

The proof is now completed by observing that the usual Holder norm for C"™%(g,) is
precisely the same as the semiclassical Holder norm for CJ"(g). O

We now establish the C° version of the sectoriality estimate.

Proposition 3.3 There is a constant C > 0 such that
llullo < CIIGT —e™Lyullo

forall unit ¢ withRe¢ <c¢' <0,e € (0,1]andu € C"™*(M, g).
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Proof If this assertion were false, then there would exist sequences ¢;, €, and u; € C™*
such that

lujllo > jlI(¢; — €7 L)ujllo. (3.3)

Replace u; by v; = u;/llujllo and set f; = (¢; — 8’}1L)vj, so that |lv;llo = 1 and || fjllo <
1/j — 0. Passing to a subsequence, we assume that {; — .

Next, choose a point p; € M where |v;(p;)| > 1/2. By virtue of the bounded geometry
of (M, g), the restriction of the metric g and the coefficients of the operator L (expressed in
normal coordinates) on the balls B; := B,,(p;) are bounded in C"-*, independently of ;.

There are two cases to consider. First, suppose that &; — &, > 0. If the p; remain in a
compact set of M, then it is straightforward to extract a limit v € C%% of the sequence v j
which is not identically zero, and which satisfies (¢,./ — e}’ L)v = 0. This is impossible given
our hypothesis that ¢ 7" ¢, does not lie in the spectrum.

Now we turn to the case where the sequence p ; diverges. Per the discussion in ‘Pointed lim-
its of manifolds of bounded geometry’ in Sect.2.2, choose a subsequence so that (M, g, p;)
converges to alimiting space (Moo, 800, Poc) as pointed Riemannian spaces in the cte” topol-
ogy, and so that L converges in this construction to an operator L, on M. By Lemma 2.10,
Lo is admissible. Since 1/2 < |v;j(p;)| < 1 = sup|vj], it follows as above that some
subsequence of these functions converges to a nontrivial limiting function vy, on Mo, which
satisfies (¢! — €' Loo)Voo = 0. Clearly |vs| < 1 everywhere, and by local Schauder
estimates there exists a constant C such that 1 < [[vllo,¢ < C.

We may now employ the same transplantation argument as in the proof of Lemma 2.10
to show that the existence of this solution v, contradicts the fact that e 2;“* does not lie in
the spectrum of L. The only minor modification from the proof is that we now write

(657 = £7L) Giveo) i= hi = i (6] = &' L) v
+ (é‘] - ;*) XiVoo — Xi (ST - g*m) Loovoo — Xigijn(L — Loo) Voo
— &L, Xilveo:

but this tends to 0 in norm, as above. Thus, we reach a contradiction in this case too.

We have now reduced to the case where ¢; — 0. If z is a normal coordinate in B}, then
as discussed above, w = z/¢; is a normal coordinate for the metric g; = sj_zg on a ball of
radius ro/¢ ;. Indeed,

8 = Gu + Eaplejw)durdu®, Eapejw) = O (62C?) for [u] < C.

Thus, g; converges uniformly to the Euclidean metric on any compact subset of R".
A similar computation shows that if L ; denotes the operator L expressed in these rescaled
coordinates, then

STLJ' — LE,

a constant coefficient operator on R”; this limit is uniform on any compact subset of R”".
Observe that any term in L involving a derivative of order less than m tends to O in this limit.
In fact, using multi-index notation,

ifL =Y a;2/ thenLp= Y a0,

[J|<m [J|=m
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(In the language developed in Sect.4, L is the constant coefficient operator associated with
the semiclassical symbol o,;7(L)(z, §) of L at z = 0; we refer to that section for more on
this.)

Now, passing to a subsequence, we may assume that {; — ¢, and thatv; — vinCjn (R™).
Clearly |v| < 1; furthermore, 1/2 < |v;(0)| < 1, so the function v is nontrivial. It also must
satisfy

(G« —Lpv=0

on all of R”. The existence of such a bounded solution is easily ruled out by Fourier analysis.
Indeed, if we regard v as a tempered distribution, then taking the Fourier transform transforms
this equation to

(&4 — om(L)(0, §)0(§) = 0.

Using the definition of strong ellipticity, and the fact that Re ¢, < 0, ¢ # 0, the factor
(&x — 0 (L)(0, &)) is invertible for all £ € R"; hence, v = 0, and so v = 0 as asserted. We
have arrived at a final contradiction and have thus established the C° bound. ]

The (nearly) final step in the proof of Theorem A is to establish the corresponding C!
sectoriality estimate, by reducing it to the C? estimate.

Proposition 3.4 For any fixed ¢’ < 0 that is sufficiently small, there exists a constant C such
that for all unit ¢ withRe ¢ < ¢’ < Oande € (0, 1],

lullh < ClI¢ — ™ Lyull (3.4)
forallu e C"1 (M, g).

Proof We begin by differentiating both sides of the equation (¢ — ¢”L)u = f, and then
commuting derivatives to obtain

(¢ —e"L)(Vu) =V f —¢&"[V, Llu.
The ¢° bound in the previous proposition implies that
[|Vullo < CIIV fllo + Ce™[I[V, Llullo.
However, [V, L] is a differential operator of order m with uniformly C' coefficients, and the
semiclassical estimate in Lemma 3.2 shows that for an appropriate constant C,

"IV, Llullo < Cllullm,ae < C’ <||f||0,a,8 + Sup|u|> < C'lIfh-
M

We have used the C° estimate from the previous Proposition in this last inequality to estimate

supyy lul < supy | f1.
This completes the proof of Proposition 3.4. O

The proof of the sectoriality estimate on C%¢ is attained by applying an interpolation
argument. The above two results show that there exist constants Co, C; such that

1 —e™L) " flle < Cellflle, €=0,1, (3.5)

for all f € C*°(M, g) and for all unit ¢ with Re¢ < ¢’ < 0, ¢ € (0, 1]. The little Holder
space CO%(M, g) is identified with the real interpolation space (C°(M, g), C' (M, g))q: see
for example [31, Chapter 1]. From estimate (3.5), we conclude that

1€ — &™) fllow < Cy *CEIIf 0.0
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for all unit ¢ withRe¢ < ¢’ < 0,¢ € (0,1]and u € C*°(M, g), and hence in little Holder
spaces by the density of C* in the little Holder spaces. This is the sectoriality estimate on
coe,

We conclude this section by showing how sectoriality on ¢k k > 1, follows from the
case k = 0.

Corollary 3.5 If (M, g) has bounded geometry of order k + m + &' for some 0 < o’ < 1,
and L is an admissible operator with coefficients uniform of order k + ', then L is sectorial
onCk(M, g).

Proof We have proved the uniform boundedness of the norm of A(AJ — L)' : ¢%¢ — 0,
Suppose that f € Cke(M, g), and write u = u = A(AI — L)~ f. The C%¢ sectoriality
estimate we have just proved shows that ||u |0, < C|| fllo,« uniformly in A. Furthermore,
by local elliptic regularity, u; € Cﬁ;’c'm’a, and if B is any ball of radius %ro and B’ the ball of

radius r¢ with the same center, then

NurllBk4ma = CUL B ko + Huallp0) = CULfIB ke + Hunllp0,a)-

Taking the supremum over all such balls, we obtain

luallktma < CULf ke + unlloe) < CULf ke + 11 o.e) = C'l fllk.as

which is the sectoriality estimate on C*% (M, g). O

This concludes the proof of Theorem A.

4 The semiclassical parametrix construction

We now provide details about the construction of the semiclassical parametrix for the family
of operators (¢ I —&™ L). There are two novel features in our presentation. The first is a minor
one: the semiclassical calculus is best documented in the setting of operators on R”, cf. [19,
32], or in more modern expositions, on certain other special manifolds [44]. It adapts easily
to the setting of manifolds of bounded geometry. The second is that, unlike the approaches
in those citations, we carry out this construction using geometric microlocal analysis. This
particular application of that theory has been observed by Melrose and partially developed
in his lecture notes [39]. We review this method to keep this paper relatively self-contained.

Strictly speaking, the techniques here tacitly assume that both the operator L and the
Riemannian manifold (M, g) are C*. Therefore, we shall assume that this is the case, i.e.,
that all data are smooth, until near the end of this section. Only there do we show how to obtain
the main conclusion of this section, namely the existence of the semiclassical resolvent, if L
and g only have finite regularity.

4.1 The semiclassical double space

A family of operators A = A is called a semiclassical family of pseudodifferential operators
if each A; is a pseudodifferential operator in some standard calculus of such operators on
M (see below). The Schwartz kernel K 4, of each A, is a distribution on M x M which has
a classical conormal, or polyhomogeneous, singularity along the diagonal diag C M? (see
Definition 4.2 for the precise definitions of these terms). As & N\ 0, the distribution K 4, , and
in particular its singularity along the diagonal, must degenerate somehow. The ‘geometric’
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microlocal way to describe this involves regarding this family of Schwartz kernels as a single
distribution K 4 (e, z, Z) on the augmented double space [0, g9), X M?. As such, it has a
singularity along the family of diagonals (0, &9) x diag, and as we now describe, an extra
singularity along {0} x diag. Our goal is to describe this extra singularity.

To do this, we pass to a slightly larger space obtained by taking the real blowup of the sub-
manifold {0} x diag in [0, &9) x M. This process—which should be carefully distinguished
not only from the process of ‘complex blowup’ which is common in algebraic geometry, but
also from the use of the phrase blowup associated with various sorts of rescaling arguments
in PDE—amounts to introducing a singular cylindrical coordinate system around this sub-
manifold and ‘adding’ the points where ‘r = 0’ as a new boundary hypersurface. Assuming
that z, 7 are identical coordinates on the two copies of M, we introduce polar coordinates
r=1\¢&z-2| >0 0= (,2z—2)/r € ST, and declare this new semiclassical dou-
ble space, which we write as MSZC, to be the manifold with corners on which (r, w, 7) is a
nonsingular smooth coordinate system. Note that MSZC\{r = 0} is canonically isomorphic
to [0, g9) x M2\({0} x diag), but each point on this diagonal at & = 0 is replaced by its
inward-pointing spherical normal bundle at that point. The entire hypersurface {r = 0} is
called the front face and denoted by ff. It is the total space of a fibration over {0} x diag, with
each fiber a closed hemisphere S'{ . The points of ff correspond to directions of approach to
{0} x diag.

Although the polar coordinates constitute a nonsingular coordinate system, it is usually
more convenient to use projective coordinates. Therefore, we introduce

ew=(z2—-2)/¢2

as a coordinate system on MszC away from the ‘original’ face {¢ = 0} x (M?\diag). These
are defined and are smooth up to points in the interior of ff, but are undefined at ¢ = 0 away
from the diagonal. In their region of definition, € serves as a defining function for ff. Using
these, the interior of each hemisphere fiber in ff is identified with R", with linear coordinate
w. In fact, this projective identification of each fiber of ff with R" is well defined up to linear
transformations. That is, if 7’ is any other choice of local coordinates, and 7’ is the same
coordinate system on the second copy of M, then w’ = (7' — Z') /e = Aw + O(¢), for some
A € Gl,, and hence w’ = Aw at ¢ = 0, where A is a matrix (that may depend smoothly on
Z, i.e., vary with the hemisphere fibers).

Letw : M, gc — [0, o) be the composition of the blowdown M i — [0, g9) x M? followed
by projection to the first factor. Each level set 7 ~!(¢), & > 0, is a copy of M?. The preimage
77 1(0) is the union of two manifolds with boundary: namely, the manifold with boundary
obtained by blowing up M? along its diagonal, and the closure of ff, which is a bundle of
closed hemispheres. The intersection of these two hypersurfaces is naturally identified with
the spherical normal bundle of the diagonal in M2,

4.2 Lifts of semiclassical differential operators

The blowup construction in this particular setting is motivated by a simple computation:
consider the lift of ¢ I — &™ L first to the left factor of M in M 2 (i.e., differentiating in z rather
than %), then to [0, g9) x M? and finally to MZ.. To compute this lift, first observe that

£dz; = du3
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hence, writing L =} 5 ap (z)af using that z = Z 4+ ew, we arrive at

" Y ap@f = Y ap@of+ Y cpEow. o)™ IP1f.
|Bl=m |Bl=m 1Bl=m

The coefficients cg (Z, w, &) depend smoothly on all three variables, and arise from the Taylor
expansions in ¢ of the functions ag(Z + ew). The first set of terms on the right in this equality
are the terms of order O in this Taylor expansion if || = m; these contain no positive powers
of . On the other hand, the coefficient functions with | 8| = m in the second sum on the right
arise only from the higher-order terms of the Taylor expansions of ag(Z + ew) for the same
B, and hence, these vanish at least like ¢. The key point in this calculation is that the lift of
&™ L is the sum of a homogeneous operator of order m with coefficients which depend only
on z, and hence has constant coefficients on each fiber of ff at ¢ = 0, and a remainder term
which is a differential operator of order m with coefficients depending smoothly on &, w and
Z, and which vanishes at ¢ = 0. Using this, we now write

¢l —e"L = (¢I — o, (L)(3y)) + (error term vanishing at ¢ = 0).

Here, by definition, the semiclassical symbol of L, o}’ (L)(dy), is the constant coefficient
operator which appears in the above computation. A standard microlocal notation is to set
Dy; = (1/i)3y;; under Fourier transform, this corresponds to the linear variable &;. This
semiclassical symbol is closely related to the principal symbol of L by

O (055 (L) ((1/D)dw)) = 0w (L) (Z, &).

(Since o, is homogeneous and m is even, the factor of i reduces to an even more harmless
factor of 1.)

The semiclassical symbol is well defined up to a linear change of coordinates in w. It also
depends smoothly on Zz, but the dependence is only parametric, and we frequently drop it
from the notation below.

The key point in all that follows below is that there exists a distribution H;(w) =
8’”?; (w) (which depends smoothly on Z) such that

(61 = 0, (L)(3w)) He(w) = He (w) (&1 = 0,7 (L) (3w)) = 8(w).

As we now discuss, this is a consequence of the strong ellipticity of L. We explain this
and develop some further properties of H,, in the next subsection. The appearance of the
slightly odd-looking factor of ¢ ™" is explained there too. The full parametrix construction
itself is simply a perturbative construction which uses this distribution as the leading term
of a formal series in ¢ which is constructed to be a ‘formal’ inverse of ¢/ — ¢™ L. This is
then readily converted to a good parametrix with rapidly decaying error terms, and then to
an actual inverse if ¢ is small.

4.3 Green function for the model problem

Here we establish the existence and certain properties of H; (w).

Lemma 4.1 There exists a distribution ﬁ{ (w) on R" such that ﬁ{ (w — w) is the Schwartz
kernel of a translation-invariant pseudodifferential operator on R" of order —m and which
has the following two properties. First

(21— 05(L) (@) o Hy = Hy o (21 — 05 (L)(3,)) = 8(w). 4.1)
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In addition, ﬁ; depends smoothly on Z, and satisfies |ﬁ; w)] < Ce ¥ ywhere § > 0
provided Re ¢ < 0.

Proof Strong ellipticity of L implies that the function & — ({1 — o5’ (L)(§ )~ is € and
polynomially bounded, hence is an element of &', the space of tempered distributions. As
such, we may take its inverse Fourier transform and define

/ (el = o L)®) ' ds.

This too is an element of S’. This integral converges if m > n, but if this is not the case, we
can make sense of it as the distributional limit

fR e 0) (¢ — oy (L)®) e,

lim
8§—0 (2m)"
where x € C3°(R") equals 1 in some neighborhood of the origin. In other words, pairing

this expression with a Schwartz function ¢ (w), we note that the limit in § can be taken in the
classical sense on the right side of

fﬂ (fR e Ey (88) (¢ — oS (L))~ dé) ¢ (w) dw
/ S—E)x(58) (¢1 — o2o(L)E)) ™ de.

Using similar standard distributional manipulations, we can also justify that
(¢1 = op (L) @) He (w) = He (w) (61 — 0 (L) (@) = 21) ™" / e dE =1,
RH

We recall also that since (¢ — o, (L) (& )~ is ¢, its Fourier transform decays rapidly.
Indeed, interpreted again as Fourier transforms of tempered distributions, this follows from
the (distributional) identity

Hew) = w2 [ (ake) (o1 - o) ds
R"

= w7 Qm) " /R AL (e] - o (L)) de

for any £ > 0, and the fact that the integral is classically convergent if —n > —m — 24, i.e.,
£ > (n—m)/2.Next, apply any derivative 35, to both sides of this equality, where § is a multi-
index, and choose ¢ > (n — m + |B|)/2 so that the integral is still absolutely convergent,
to deduce that ﬁ; (w) is smooth away from w = 0. For an even more refined statement,
apply w® 85 where |«| = |B]. Passing through the Fourier transform, this becomes a constant
multiple of agsﬂ acting on the exponential, which integrates by parts to an expression where
Eﬂ( d¢)* acts on AK €I — oy (L)(E)™ I The resulting integral is once again convergent
if€ > (n—m)/2. Thls shows that H ¢ (w) has ‘stable regularity’ with respect to repeated
differentiation by the vector fields w;dy,;, a property which is known as conormality with
respect to the origin {w = 0}. By a further analysis, which is left to the reader, the expansion
of AZ @I — oy (L)(E)™ I as |&] — oo is transformed to an expansion in powers of w as
w — 0, which is the assertion that H, ¢ (w) is polyhomogeneous at w = 0.

‘We now explain the assertion about exponential decay. The integrand is a smooth function
of &. By the uniformity of L as a function of Z, there exists some 8’ > 0 sufficiently small
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depending on Re¢ < 0 so that if n € R" and || < &, then the deformed map &
@I —oy (L)E+ in))~! remains smooth in & and decays as & — oo at the same rate as the
undeformed function.

Using these observations and a similar renormalization scheme to make the integral con-
vergent, we can deform the contour of integration from R” to R" + in and write

ﬁ; (w) =e W

@ny fR " (1 — o (L) +im) ' dE.

The integral is defined as above, using the same observations and calculations as above,
and is bounded as w — o0, but is now accompanied by the prefactor e~ which decays
exponentially in any cone properly contained in the half-space w - n > 0. Since 1 can point
in any direction, this shows that ﬁ; (w) decays exponentially, at some rate depending on
Re¢ < 0, as |w| — oo. This solution is smooth in the parameters ¢ and z. This establishes
the lemma. O

Using these results, it is now straightforward to see that the convolution H:f(w) is
exponentially decreasing in w if f € C5°(R").

4.4 Manifolds with corners, blowups and polyhomogeneity

To get further into the details, we first recall the following terminology and notions.
All of these are described more carefully in [34]. First, suppose that X is a manifold
with corners. This means that near any point ¢ € X there is a local coordinate system
(X1, ey Xk» V15 - - -» Ye—k), £ = dim X, such that each x; > 0 and each y; € (—¢, €), and
(x,y) = (0,0) at g. We say that g then lies on a corner of codimension k. We next define
the space Vj,(X) of b-vector fields on X to consist of all smooth vector fields which are
unconstrained in the interior of X and which are tangent to all boundary faces. In terms of the
above coordinates, any V € V(X)) is, near g, a linear combination, with smooth coefficients,
of the basic vectorﬁeldsx,-axj, i,j=1,...,kanddy,,i =1,...,¢—k.

Definition 4.2 A distribution u on X is said to be conormal to 3 X if there exists some fixed
function space E such that

Vi...Vyue E, forall V; € Vy(X)and all N € N.

Typically we let E be a weighted L? or L™ space. Thus, if u is conormal, then u is C*
on the interior of X, but may have singular behavior along the boundary. These singularities
are, however, ‘tangentially smooth.’

Definition 4.3 A distribution u# on X is said to be polyhomogeneous at 3 X if it is conormal,
and in addition has a classical expansion at each boundary face and product-type expansions
at the corners. Thus, near a codimension one face x = 0, for example, with y a coordinate
system along that face,

Nj
u@ )~ D0 Y auyx’ ogx),

Reyj— 00 k=0

for some discrete set of exponents y;, where each coefficient a j is smooth. Near each corner,
where xp, ..., xx = 0, u has an expansion involving various (possibly nonintegral) powers
of each x; and, for each monomial in the series, additional factors which are positive integer
powers of each log x;.
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These expansions hold for all derivatives of u as well, in the sense that any derivative of
u has an expansion where the summands are the corresponding derivatives of each term in
the series for u. These series are asymptotic, but (usually) not convergent.

The space of all such polyhomogeneous distributions is denoted Aphg (X, dX). We may
easily extend this to define polyhomogeneous sections of vector bundles over X as well.

A submanifold Z C X is called a p-submanifold if near any g € Z there is a set of
coordinates for X as above such that in some neighborhood of ¢, Z = {x] = ... = x, =
0, y1 = ... =y, = 0}. Thus, locally near g, X is the product of (some small neighborhood
of) Z with another manifold with corners; the p stands for ‘product.” If Z is such a p-
submanifold, then we may define the blowup of X around Z, denoted [X; Z], to be the
union of X\ Z and the inward-pointing spherical normal bundle of Z. Thus, [X; Z] is a new
manifold with corners, with a new boundary hypersurface created by this blowup. As in our
special case of the semiclassical double space defined above, we may ‘construct’ this blowup
by taking cylindrical coordinates around Z in X, say (r, w, z), where z € Z, w is a spherical
normal vector and r > 0, and ‘adding the r = 0 face.” We denote the new ‘front face’ of this
blowup by ff[X; Z].

4.5 Pseudodifferential operators via their Schwartz kernels

Let M be a manifold (possibly open, but without boundary). We may define the blowup
(M 2 diag]. This has a front face, ff, which is the spherical normal bundle of diag in M 2,

Definition 4.4 A pseudodifferential operator A : CS°(M) — D'(M) on M is alinear operator
for which the Schwartz kernel K 4 of A is the sum of an element of Appg ([M 2, diag], ff) and
a distribution which is conormal and supported along ff.

This is a purely intrinsic and ‘geometric’ definition of the space of pseudodifferential
operators. It is not easy to work with computationally, however, and it is customary to use
other definitions using oscillatory integrals, cf. [42] for example, which are better suited for
proving such things as showing that the composition of two pseudodifferential operators is
again pseudodifferential.

The inclusion in this definition of the extra terms which are supported on the front face
may seem a technical annoyance, but it is worth pointing out that the Schwartz kernel of
the identity operator, §(z — Z), has this property. In fact, if P is any differential operator
(with smooth coefficients) on M, then the Schwartz kernel of P is equal to P (acting in the
7z variable) applied to §(z — Z), and hence is again supported on this front face.

4.6 Semiclassical pseudodifferential operators

We are in position to define semiclassical families of pseudodifferential operators on M. The
semiclassical double space MSZC has a distinguished submanifold diag,., which we call the
lifted diagonal. It is the closure in MszC of (0, g9) x diag. This closure intersects the front face
of M2 at a submanifold which contains a single point {w = 0} on each hemisphere fiber.
Clearly diag,, is a p-submanifold of M2, so we may pass to the blowup [MZ,, diag,.]. This
has three boundary hypersurfaces: the original face at ¢ = 0 away from the diagonal, the
front face ff obtained by blowing up the diagonal at ¢ = 0, and the new front face obtained
in this final blowup.

We say that A, is a semiclassical pseudodifferential operator if its Schwartz kernel
Ka(e, z, 2) lifts to [M2 diag.] to be the sum of a distribution polyhomogeneous at all

sC?
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boundaries of this manifold with corners and a conormal distribution supported on the new
front face, and if K4 vanishes faster than any power of ¢ along the original face. It makes
sense to restrict K 4 to each level set 7! (¢) for & > 0, and on each of these we must obtain
the Schwartz kernel of a pseudodifferential operator. This definition now imposes precise
constraints on how these Schwartz kernels degenerate as ¢ — 0. In particular, if we change
to coordinates &, w, Z on Mszc, then the ‘pseudodifferential singularity’ occurs at w = 0 for
each ¢, and at ¢ = O there is an expansion K4 ~ )_ &V Kg/)(w, Z) where each coefficient is
a pseudodifferential operator on each hemisphere fiber of f (and as above, {y;} is a discrete
set of exponents with real parts tending to infinity).

In fact, we are only interested in Schwartz kernels for which the expansion as ¢ — 0 is
of the form

[e.¢]
KA(S, w, Z) ~ Z stA,j(w, Z)

j=—n

The reason for starting this series at —n is as follows. As described above, the lift of ¢™ L (as
a differential operator, not its Schwartz kernel) is an operator with coefficients smooth up to
ff; in particular, it has a series expansion as ¢ — 0 with leading term o, (L)(dy). On the
other hand, the identity operator has Schwartz kernel

8(z —2) =68(ew) = &7 "S(w).
Thus, if we expand each factor in the equation
QCI—€e"L)G(e,w,2) =& "8(w) (4.2)

in powers of ¢, and continue to think of the first factor on the left as a differential operator
instead of a Schwartz kernel, then at least formally we expect G to have a series expansion
involving the powers ¢/ for j > —n.

In any case, this illustrates how the introduction of the space M2, provides a setting where
it is possible to ‘see’ the transition from the ordinary pseudodifferential operators on each
7~ 1(e) to the limiting model problem on R”.

Accordingly, we now define a class of semiclassical pseudodifferential operators whose
expansions at ff involve only integer powers:

Definition 4.5 If (M, g) is a manifold of bounded geometry, then \Ilfc’funif(M , &) consists of
those semiclassical pseudodifferential operators on M which have pseudodifferential order
k on each level set 7~ !(g) and which have a series expansion in ¢ at ff with only integer
powers, with initial term gl

The subscript ‘unif’ indicates that we restrict further to allow only kernels which are
supported in some neighborhood dist, (z, Z) < C of diag,. U ff, where the constant C may

depend on the operator.

4.7 Parametrix construction
We commence with the parametrix construction. Our goal is to find an element G €
w " (M, g) such that, for each ¢ with || = 1 andRe ¢ < 0,

@lI—=e"L)G=1-Q1, GGI—-¢"L)=1- 0y,

where Q1, Q> € \I/S_Ciou’sﬁc(M , 8). As explained above, we do this ‘formally,” i.e., in a Taylor

series, at ff, and then take a Borel sum of the resulting formal expansion.
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More carefully, returning to (4.2), expand each factor into its formal series expansion:

oo

@I = oy (L)) + Y el Ej | D e Grw.2) = e "5(w).

j=1 k=—n

Here the E; are the differential operators (of order < m) arising in the Taylor expansion
of ¢I — &™ L. Carrying out the composition and collecting like powers of &, we obtain a
sequence of equations

(C1 = 035(L)(00)) G—p(w, 7) = (w)
(¢1 = 03 (L) (0w)) Gopi(w, ) = Fi(w, 2),

where each F, = Zé‘:l E;G_,4r—; is an ‘error term.” This is a sequence of equations on
R? , where the various terms all depend smoothly on Z. These equations indicate that we
must set

Gw(w)=H;w), and G_yyx(w) = He(w)sFe(w) k > 1

for each z. Since the equations with £ > 1 involve constant coefficients in w, they are solved
by convolving with the fundamental solution ﬁ; (w).

Since each E;G_, +x—; has pseudodifferential order at most 0 and ﬁ; has order —m,
each Fy is the Schwartz kernel of a translation-invariant (in w) pseudodifferential operator of
order no more than —m. We may solve this equation inductively, given the properties of H
established in Lemma 4.1, but then are faced with showing that the Borel sum of this series of
singular kernels still has the correct behavior. There is a slightly easier way to proceed which
allows us to work more directly with C* kernels. Namely, we first find a pseudodifferential
operator 5(8, -, -) on each level set 7 ~! (&) which solves

(¢l —e"L)G(e) = £ "8(w) + ¢ "R(e, w, 7),

where R is smooth in all variables, ¢, w, Z. This involves carrying out the complete parametrix
construction for the nondegenerate operator on each level set in the standard pseudodiffer-
ential calculus, but carrying along & as a smooth parameter. To compensate for the factors
&~ on the right, we choose G e w_ ™ % Said differently, this is the nondegenerate elliptic
parametrix construction (with parametrix cut off to have support in a neighborhood of the
diagonal), carried out smoothly in the parameter ¢.

We now need to find additional terms in the parametrix which cancel off the full Taylor
series in & of the remainder term ¢~ "R. This involves inductively solving a sequence of
equations

(eI — o35 (L) (D)) G—n(w, 2) = Ro(w, 2)

k
(¢1 = oy (L)) Gopik(w, 2) = D ERpi—is
i=1

where R ~ 3 e¥Ry. The advantage is that the right-hand sides are all smooth and we can
assume that they are compactly supported in, say, {|w| < 1} for all Z. The solutions are given
by

k
G-y =H*Row), G_px = Her (Z Emm,») ().
i=1
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4.8 Conclusion of parametrix construction

We have constructed both G and the sequence of smooth, exponentially decaying terms
5_n+k, k > 0. An important fact is that given any such sequence, it is possible to construct
a function G'(w) which is smooth in the interior of M, Sc, decays to all orders at the original
face, and has its expansion in powers of ¢ at ff of the form

G (w) ~ Z e "G (w).

k=0

This is the Borel sum of this series and is an element of \Ilscocimnf
Our final semiclassical parametrix is now defined by

Ge,w,?) =G, w, ) + G (e, w, ) € W1

sc— umf'

4.9 Boundedness properties

We conclude this section by sketching the proof of boundedness properties of elements of
\IlS o umf(M ) on the semiclassical Holder spaces Cgc (M, g), as defined in Sect. 2. First we
define the family of spaces

e*CEY = {u(e, 2) = eii(e, 7) where it € C*°([0, &9) ; CE(M, g))}.
In other words, an element of this space can be represented by a formal series u ~
> js0& T uj with each u; € C5.
Proposition 4.6 If A € lIJSC wif Jor some i € Z, then
. oAk, 2 k—rk,
A:e Cga—>€ +M+ncg K,o
is bounded provided k < k.

Remark 4.7 We can extend this result to allow operators of nonintegral order, for example
using a standard interpolation result, but we omit this here since it is not needed.

Proof The first observation is thatif k < k,and P =}, -, de (2)e13% is a semiclassical
differential operator with coefficients which are uniformly bounded in C°°, then directly from
the definition,

P:CE (M, g) — CEM(M, g) 4.3)

is bounded. To relate this to a pseudodifferential boundedness theorem, we have noted that
the Schwartz kernel of P on M2 is a distribution supported along diag,., namely

Kpe,w. D) =" Y ay(Z+ew)(@38(w)) € Wil .

lee| <k

Thus, (4.3) is a special case of the boundedness in Proposition 4.6, with A = 0.
Recalling the definition of a semiclassical pseudodifferential operator, Definition 4.4, we
prove the boundedness property for kernels in W_> (M, g) supported away from the

sC— um
K,—n

diagonal, and another for kernels in A € W~ ..(M, g) supported near the diagonal.
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—00,—n
sc—unif
diag,. in MSZC; to be specific, suppose supp(K4) C {e < dist(z, z) < C}, or equivalently,
1 < |w| < C/e. We then have that in projective coordinates (z, w), w = (Z — z)/¢,

First suppose that A € W (M, g) has its Schwartz kernel K 4 supported away from

‘/'K“&Lawad%@>
M

< C”””oo/ |Ka(e, z, w)| e"dV (W)
1<[w|<C/e

sawwf (1 + 15D~ did < Clufloo < o0
1<jw|<C/e

since K 4 blows up like ¢ " and €| K 4| is Schwartz in w, uniformly as ¢ \ 0. Furthermore,
any semiclassical derivative 8'“'82‘ applied to K4 yields a kernel of the same form. This

proves thatif A € \Ds_ciour;f" has its kernel with this special support property, then

A:CRU(M, g) — CI¥(M, g)

for any r € N.

Now let A € W; "/ ..(M, g) have Schwartz kernel supported in the region |w| < 1, and
as before, assume k < k. We do not need to assume that « is an integer, but then must change
the Holder indices accordingly and interpret the borderline cases where k = k — i + «,
i € N, in terms of Zygmund spaces. We can then proceed by a combination of a rescaling
argument and invoking the fact that an ordinary pseudodifferential operator of order k in a
ball of size 2 induces a map CI(; “(B1(0)) — CF=%%(B(0)), between ordinary Holder spaces
(and where elements of the domain space are compactly supported in B;(0)). Indeed, given
any u € Ci"“, choose a locally finite cover By, (g;) of bounded covering multiplicity and a
partition of unity x ; for which there are uniform bounds on its semiclassical derivatives up to
order k, and such that x; = 1 on B¢(g;). Thenu = ) x ju and since only at most some fixed
number of the A(x ju) have support at any one point, it suffices to estimate the norms of each
of these summands. Recalling Remark 2.6, we may compute the semiclassical Holder norms
by taking the supremum over balls of radius € (or any fixed multiple of ¢). Thus, rescaling
the coordinates of each summand by a factor of 1/¢, we reduce to the action of a standard
pseudodifferential operator of order x on a standard C** function on a ball of fixed radius,
where the result is well known.

Finally, if A € WJ" ..(M,g), then it is clear from all of the above, and the basic
definitions, that the assertion of Proposition 4.6 holds. |

4.10 Operators with finite regularity coefficients

As explained at the beginning of this section, the geometric microlocal techniques used here
require the smoothness of both the metric g and the coefficients of L. Using that assumption,
we have shown that the inverse (¢ I —” L) ™! exists and is bounded on ckeifeis sufficiently
small. We now extend this to operators and metrics of lower regularity.

Proposition 4.8 Suppose that (M, g) has bounded geometry of order £ +a’ where £ > k+m
and ' € (a, 1), and that L is an admissible operator of order m with coefficients uniformly
bounded in C*%'. Then there exists g0 > 0 such that G, = (¢1 — L)~ exists as a
bounded operator on C** if 0 < & < &.

While it is possible to carry out some version of the parametrix construction under these
regularity hypotheses, this would take extra work, particularly if the regularity order k is
small. Thus, we prove this another way, using techniques close to those in Sect. 3.
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Proof Choose an approximating sequence of metrics g and operators L®, which are all
smooth, but so that gV — g in ¢4 and the coefficients of L converge to those of L in
¢k This can be done by selecting a locally finite open cover of M by normal coordinate
balls for g and using a mollifier in each such ball.

Although the norms on the spaces C/+# depend on the metric, it is clear that we may define
these all relative to any fixed smooth metric. In fact, we assume that the metric g is fixed (and
smooth) for simplicity, since the way it enters the argument below is minor.

As has been shown above in this section, for each i, and for 0 < ¢ < aéi), there exists a
bounded inverse

. S\ 1
Gl = (c1—e"L®) iche — ¢t

Denote the operator norm of this inverse by A ; ;. There are two main points we must
address. The first is that there exists &g where eg) > go > 0 for all i, and the second is that
the operator norms A ;; are bounded for each ¢ and ¢ as i — oo.

Suppose that there exist sequences ) — 0 and ¢@ such that
Pii= (01 =)L)

does not have a bounded inverse. This failure occurs for one of three reasons: either P; has its
nullspace in CK%, or its range is dense but not closed, or the closure of its range has positive
codimension. All of this is just as in Proposition 2.11, and the proofs to rule out each of these
cases are similar to the proof of that Proposition, as well as the arguments of Sect. 3. For that
reason, we shall be brief.

In the first of these cases, there exists a sequence u) e €5 such that ||u||; o = 1 and
P;u') = 0. We may extract a limit u of this sequence by rescaling around a point g; € M
where |u® (g;)| > 1/2. Since ¢ — 0, this limiting function u lies in C*®(R") and satisfies
(¢I — Lg)u = 0, where ¢ is a limit of (a subsequence of the) ¢@, and L is the constant
coefficient strongly elliptic operator arising in this rescaling process. As shown in the proof
of Proposition 3.3, by the strong ellipticity of L (and hence L), there are no nontrivial
solutions of this equation.

Next, if the range of P; is dense, there exist sequences u®, f(i) € ¢k such that Piu) =
FO, with [Ju®||;o = 1 and || fD||xo — 0. Just as in the above paragraph, there is a
nontrivial limit u € C5%(R") such that (I — Lg)u = 0, which is impossible.

Finally, if the closure of the range of P; is a proper subspace, then we may apply the same
type of argument to the sequence of distributions v) € (CK*)* which satisfy Pl.*v(i ) = 0.
To do this, we must note that since v”) satisfies this elliptic equation, it lies in C<*"% There
is a limiting function v which satisfies (I — L;)v = 0, which again cannot happen. This

proves that the inverses GS)C all exist for ¢ lying in some fixed interval (0, o).
Now fix any ¢ in this interval, and any ¢, and suppose that the norms A; = || Gg); | £crey
are unbounded as i — oco. This implies that there is a sequence f; € C5® such that

el = Las
g,gfl ka_i l||fl||k,ot~

Writing u; = Gg)g fi, this is the same as

1
Netillk,a > EAi

({il - 8'"L(i)) u;

k.o '
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Normalizing so that ||u;||x,« = 1 for all i, then || fi||x.o < 2/A; — 0. Passing to a limit, but
recalling that ¢ is fixed, there exists a limiting function in cktm.e defined either on M or on
one of its limiting spaces M, such that (¢ — &™L)u = 0or ({1 — €™ Loo)tioo = 0.

The proof is complete once we show that these last possibilities cannot occur. Let us focus
on the first, since the second is essentially the same. The point is simply that ¢ I — ™ L cannot
have a nonvanishing nullspace for arbitrarily small values of ¢. Indeed, if this operator were
to have a nonvanishing nullspace in C5* for some sequence &; — 0, then the same rescaling
argument as we have done several times already would yield a limiting function u in C%% on
R" such that (¢ — Lg)u = 0, which we know is impossible. O

Remark 4.9 1t is perhaps worth emphasizing the flow of logic in this argument. We first show
that for every one of the approximating operators L), the operator ¢ I — & L") is invertible
for ¢ < g9 where g9 does not depend on i. However, it may be necessary to restrict to a
slightly smaller interval 0 < ¢ < ] < &g in order to guarantee that ¢ I — ¢ L does not have
nonvanishing nullspace.

The main point is that it is only the constant coefficient operators ¢/ — Lg which we
can check specifically do not have a nonvanishing nullspace. These operators only appear as
limits as ¢ — 0, and the argument to rule out a nonvanishing nullspace if ¢ is sufficiently
small, while it is not quantitative, is insensitive to the regularity of the coefficients of L.

5 Applications

In this section, we present an application of the results proved in this paper. We begin by
stating a general theorem which establishes short-time existence, uniqueness and continuous
dependence on initial conditions for a large class of geometric flows on manifolds with
bounded geometry. We then illustrate its application by obtaining a new result concerning
short-time existence and uniqueness of the higher-order ‘ambient obstruction flow’ on open
manifolds with bounded geometry.

We are now ready to prove Theorem B.

Proof of Theorem B By Theorem A, the linearization D F,, is sectorial on C*(M, g) for all
u € O. The result therefore follows from Theorem 8.1.1 and Corollary 8.1.2 in [31]. ]

5.1 Ambient obstruction flows

In their study of conformal invariants of a compact manifold endowed with a conformal
structure, Fefferman and Graham introduce the ambient obstruction tensor, [23]. If n = 2£ is
even, the ambient obstruction tensor O,, on a manifold (M", g) is a conformally covariant,
trace-free, divergence-free symmetric 2-tensor associated with the metric g. Its expression
involves n — 2 derivatives of the Ricci tensor. In the particular case of n = 4, the obstruction
tensor Q4 coincides with the Bach tensor

Bij = Pij i — Py j* — PX Wi, (5.1)

where P;j = % (Rci = % gi j) is the Schouten tensor, W;j; is the Weyl tensor, and S is the
scalar curvature of g. We refer to [23], where the importance of the Bach tensor to conformal
geometry is explained.

We now study a flow associated with this ambient obstruction tensor. If this flow exists
and converges as t — 00, the limit must be ‘obstruction-flat,” a condition describing a natural
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class of canonical metrics in higher dimensions. On compact manifolds, the well-posedness
and uniqueness of solutions to this flow is the topic of the two papers [5, 6] by the first
author and Helliwell. As an application of the methods of the present paper, we generalize
these results to the setting of complete manifolds of bounded geometry. We describe the flow
briefly here and refer the reader to [5, 6] for more detail.

The obstruction flow itself, namely d,g = O,(g), is degenerate because of both the
underlying conformal covariance and its diffeomorphism invariance. To counter the first of
these, we introduce the modified obstruction flow

{ 08 = 0u() +en(=D} ((=)815) ¢ 52)
8(0) = go.
where
1
Cn = 25— - —1) (5.3)
In 4 dimensions this is the modified Bach flow
1

This modification breaks the conformal gauge in the sense that stationary points of this mod-
ified flow are obstruction-flat metrics with harmonic scalar curvature. The scalar curvature
term induces a normalization within a conformal class. The proof of this uses the fact that
O, is trace-free.

The invariance under diffeomorphisms can be handled using a version of DeTurck’s
method, much as for the Ricci flow (see Chapter 2, Section 6 of [16]). We now describe this
method in the present setting. Fix a background metric g; then any smooth one-parameter
family of metrics g(¢) defines a time-dependent vector field

VD) =Y Vil Dby, where Vi@ 2) =g (Tg@)h, ~T@%,)  (55)
using the Christoffel symbols I" of the indicated metrics. From this, we define the vector field

en(n —2)(=1)2
2

U=cy(n— (=D =A)i" v+ (—A)I72VS, (5.6)

and finally the obstruction-DeTurck flow

{a,g = 04(@) + (=D ((~)F71S) g + Lug )

g(0) = go.

As usual, one must show that solutions of this gauged flow lead to solutions of the original
(modified) flow (5.2). To this end, given a solution g(¢) to (5.7), solve the ODE

d = — (0]
{hosvee 58

and let ¢; be the one-parameter family of diffeomorphisms generated by —U. The fact that
g and g(r) have bounded geometry implies that ¢, exists at least for ¢ in some small interval
around 0. A short calculation then shows that g(¢) = ¢ g(¢) solves (5.2).

Uniqueness of solutions to the gauged flow (5.7) follows directly from the semigroup
method that we invoke below. Uniqueness of solutions to the ungauged flow (5.2) requires
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more work. This is explained carefully in [6], but the main ideas are as follows. Given a
particular solution g(z) to (5.2) and a choice of reference metric (M, g), one may again
use semigroup techniques to solve a higher-order analogue of the harmonic map heat flow
equation for a family of diffeomorphisms ¢, from (M, g(r)) to (M, g). This equation is
chosen so that the pullback g(t) = (¢, 1)*§(r) solves (5.7) with reference metric g and
V and U in (5.5), (5.6). The various uniqueness statements then imply that g is uniquely
determined.

We now discuss further the existence and uniqueness statements. Taking the reference
metric g equal to the initial metric, i.e., § = go, we define

F(g) = 0u(9) + ea(—D? ((=2)37'8) g + Lug. (5:9)

As proved in [5],

d n_ _ _ ~ o~
DFy = —F(go+sh)| = (=1? lAgOthP(a" 'h,9"g0. 85", 0"%. 3 1),

(5.10)

s=0

where the leading term
(Agoh)ji = g0 g2 -+ 80> "2y, 5y - O 0 05, o P jik (5.11)

is an operator of order n and P is a polynomial expression in the input tensors and their
derivatives of appropriate order. Note that Ag, is the leading term in A"/? and is strongly
elliptic.

We may now prove Theorem C.

Proof of Theorem C Set D = C"* C X = %, and note that by construction of little Holder
spaces, D is dense in X. Take F' as in Eq.(5.9), with background metric go. As explained
in [5], the tensors appearing in F are polynomial natural tensors—natural tensors are those
such that the pullback of the tensor by any diffeomorphism is the tensor for the pullback of
the metric—of order n that can be locally expressed as linear combinations of contractions
of the metric, its inverse and coordinate derivatives of the metric up to order n. As such,
F is continuous and Fréchet differentiable at go and the linearization D Fy, satisfies a local
Lipschitz estimate. As remarked above, Eq.(5.11) shows that D F, is strongly elliptic, and
so by Theorem A, D Fg is admissible and thus sectorial on X. We can choose a neighborhood
O C D of gg so that ||[DFg — DFgllz(p,x) is small for every g € O. Therefore, writing
DF, = DFy, + (DF, — DFy), then DF, is sectorial for each g € O by Proposition 2.4.2
in [31], since it is a small perturbation of a sectorial operator.

Hence, by Theorem B, there is a short-time solution to the obstruction-DeTurck flow.

As explained above, Eq. (5.8) can then be solved to obtain the family of diffeomorphisms
¢:, and we then deduce that g() = ¢/ g(¢) is a short-time solution to the obstruction flow
with initial condition gg.

To argue uniqueness, suppose that g; (¢), i = 1, 2 are two solutions to (5.2) with the same
initial condition go. Again choose the reference metric g = go. Following Section 5.2 of [6],
for each i we set
n/2

E(¢) = (=1)"?cA},

i +P(di),

where Ag, . is the Laplacian associated with the ‘map covariant derivative’ for the identity
map (M, g;(r)) — (M, 3), as described in [6], and where P is a nonlinear differential
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operator of order n — 1 acting on ¢. Combining this with the ODE for ¢ itself, we arrive at
the strictly parabolic initial value problem

d¢i = E(¢i), (¢)(0) =1id. (5.12)

Taking advantage of the explicit coordinate expression for E in [6], and using the bounded
geometry of M with respect to either of the metrics g(¢) or g(¢) (valid in some fixed time
interval), we see that D Ejq is an admissible operator, and hence, Theorem B may be applied
to (5.12) to conclude that this initial value problem has a unique solution on some short time
interval that remains a diffeomorphism. The remainder of the argument proceeds exactly as
in Section 5.3 of [6]. O
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