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Abstract

We explore the approximation power of deterministic obviously strategy-proof mechanisms in
auctions, where the objective is welfare maximization. A trivial ascending auction on the grand bundle
guarantees an approximation of min{m,n} for all valuation classes, where m is the number of items and n
is the number of bidders. We focus on two classes of valuations considered “simple”: additive valuations
and unit-demand valuations. For additive valuations, Bade and Gonczarowski [EC’17] have shown that
exact welfare maximization is impossible. No impossibilities are known for unit-demand valuations.

We show that if bidders’ valuations are additive or unit-demand, then no obviously strategy-proof
mechanism gives an approximation better than min{m,n}. Thus, the aforementioned trivial ascending
auction on the grand bundle is the optimal obviously strategy-proof mechanism. These results illustrate
a stark separation between the power of dominant-strategy and obviously strategy-proof mechanisms.
The reason for it is that for both of these classes the dominant-strategy VCG mechanism does not only
optimize the welfare exactly, but is also “easy” both from a computation and communication perspective.

In addition, we prove tight impossibilities for unknown single-minded bidders in a multi-unit auction
and in a combinatorial auction. We show that in these environments as well, a trivial ascending auction
on the grand bundle is optimal.

1 Introduction

Consider a second-price auction of a single good: there is one item, and each bidder i has a value of xi for the
item. Our goal is to give the item to the bidder with the highest value. We assume that bidders are strategic,
meaning that they aim to maximize their utility, which is the value they derive from the item minus their
payment. In a second-price auction, the highest bidder wins the item and pays the value reported by the
second highest bidder [Vic61]. By allocating the item to the highest bidder, we maximize the social welfare.
The implementation where all bidders send their bids simultaneously, known as the sealed-bid auction, is
dominant-strategy incentive compatible.

Dominant strategy mechanisms are desirable for multiple reasons: they are considered straightforward
for participants to understand and follow. Thus, the cognitive burden of participating in them is reduced.
Another advantage of dominant-strategy mechanisms is their predictability. If each participant chooses their
dominant strategy, the mechanism’s behavior becomes easier to anticipate, which is beneficial for decision-
making and planning purposes. Despite being a dominant-strategy mechanism, the sealed-bid second price
auction is rarely used in practice (see, e.g., [MM87, Aus04, AM05]).

However, the sealed-bid implementation is not the only way to realize a second-price auction. Another
realization, which is far more prevalent in real-life scenarios [Aus04, Li17] is an ascending auction: the price
gradually increases and players report at each round r whether they are interested in the item given the
current price pr. The ascending auction ends when there is one bidder left. This bidder wins the item
and pays the price presented in the last round. This implementation is also dominant strategy incentive
compatible, similarly to the sealed-bid implementation.

Even though both auctions satisfy the guarantee of dominant strategy incentive compatibility, it is
generally believed that players strategize less in an ascending auction compared to a sealed-bid auction
(see, e.g., [Li17, KHL87, Aus04]). [Li17] explains it as follows: although the sealed-bid implementation of a
second-price auction satisfies that reporting the true value of the item is a dominant strategy for all players,
this fact is neither obvious nor easy to explain. If the participants fail to comprehend that they should follow
their dominant strategies, the mechanism loses its desirable qualities. In contrast, the ascending auction is
self-explanatory: bidders readily see that strategizing in it is not beneficial for them.
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To shed light on this phenomenon, [Li17] has introduced the concept of obviously strategy-proof
mechanisms, which distinguishes sealed-bid and ascending auctions. Roughly speaking, obviously strategy-
proof mechanisms have dominant strategies that satisfy a special property: it is evident, even for cognitively
limited agents, that these strategies are dominant. What makes the effectiveness of the dominant strategy in
these mechanisms so readily apparent is that the worst-case scenario when following this strategy is always
at least as beneficial as the best-case scenario when using any other strategy.

Due to the appealing nature of of obviously strategy-proof mechanisms, they have been studied in various
contexts, e.g. matching [AG18, Tro19, MR22, Tho21], scheduling [KV19, FMPV19, FV21, FMPV23] and
allocation problems [BG17, PT19, KV19, FMPV19, dKKV20, FV21, FPV22, MR22, FMPV23, FV23]. The
goal of this paper is to understand the approximation power of obviously strategy-proof mechanisms in
auctions.

The case of an auction with a single item is fully understood: an ascending implementation of the
second-price auction achieves the optimal welfare and is obviously strategy-proof. But what happens if there
is more than one item in the auction? Is there an obviously strategy-proof mechanism that maximizes or
approximates the optimal social welfare? In other words, what is the power of obviously strategy-proof
mechanisms in combinatorial auctions? This is the main question that we explore in this work.

A combinatorial auction consists of a set of players that we denote with N , where |N | = n, and a set of
items that we denote with M (|M | = m). Each player i has a valuation function vi : 2

M → R
+ that specifies

her value for every subset of items. We assume that all valuation functions are normalized (vi(∅) = 0) and
monotone (meaning that for every two bundles of items T1, T2 ⊆ M , if T2 contains T1, then vi(T2) ≥ vi(T1)).
The valuation function of each bidder is private and belongs to a domain of valuations Vi. We sometimes
impose additional restrictions on Vi. Our goal is to allocate the items to the bidders in a way that maximizes
the social welfare, which is the sum of the values of the bidders given their bundles. We assume that the
bidders aim to maximize their utility, which is the value from the bundle that they get minus their payment.

Existing literature about obviously strategy-proof mechanisms in combinatorial auctions focused on the
case of single-minded bidders. A valuation is single-minded if there is a single bundle S∗ ⊆ M and a scalar
α > 0 such that:

∀X ⊆ M, v(X) =

{
α, S∗ ⊆ X,

0, otherwise.

A bidder is single-minded if all the valuations in her domains are single-minded. If all the valuations in the
domain of bidder i are parameterized with the same bundle, then we say that she is known single-minded.
If this is not the case, she is unknown single-minded.

[dKKV20] present a deterministic obviously strategy-proof mechanism that gives an approximation of
O(

√
m) for known single-minded bidders, and another mechanism with an approximation of k for unknown

single-minded bidders, if the largest set desired is of size k.
For the simple classes of additive bidders and unit-demand bidders, not much is known. [BG17] have

shown that even for two items and two additive bidders, there is no obviously strategy-proof mechanism
that maximizes the social welfare.1 No impossibilities are known for unit-demand bidders. For both of these
classes, achieving a min{m,n} approximation is trivial, using an ascending auction on the grand bundle:
taking all the items in M and running an ascending auction on all of them together.

Our Results I: Impossibilities for Combinatorial Auctions We show that for several classes of
valuations, including simple valuation classes such as additive and unit demand valuations, no deterministic
obviously strategy-proof mechanism has an approximation guarantee that is strictly better than min{m,n}.
Since this is the approximation ratio obtained by the ascending auction on the grand bundle, all of our
impossibility results are tight. In addition, all the impossibilities hold for mechanisms with unbounded
computation and communication.

Our impossibilities hold for mechanisms that satisfy individual rationality and no-negative-transfers,
meaning that the bidders’ utility is non-negative and that bidders do not get paid by the mechanism. We
begin our explorations by considering unit-demand bidders:

1This impossibility holds only for mechanisms that satisfy the standard assumption that bidders that gain no items pay

nothing.
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Theorem 1.1. An auction with m ≥ 2 items and n ≥ 2 unit-demand bidders has no obviously strategy-proof
mechanism that satisfies individual rationality and no-negative-transfers and gives an approximation strictly
better than min{m,n} to the social welfare.

This is the first impossibility for obviously strategy-proof mechanisms for unit-demand bidders. An
immediate corollary of Theorem 1.1 is that the impossibility extends to every class of valuations that contains
unit-demand valuations. In particular, the impossibility holds for all the classes presented in the hierarchy
of complement-free valuations of [LLN06] and for arbitrary monotone valuations.

Corollary 1.1. An auction with m ≥ 2 items and n ≥ 2 bidders with gross substitute valuations
or submodular valuations or fractionally subadditive valuations or subadditive valuations or arbitrary
monotone valuations has no obviously strategy-proof mechanism that satisfies individual rationality and no-
negative-transfers and gives an approximation strictly better than min{m,n} to the social welfare.

Our second main result concerns the case of additive bidders. For this class, [BG17] prove that exact
welfare maximization is impossible (under the assumption that losers pay zero). We show that:

Theorem 1.2. An auction with m ≥ 2 items and n ≥ 2 additive bidders has no obviously strategy-proof
mechanism that satisfies individual rationality and no-negative-transfers and gives an approximation strictly
better than min{m,n} to the social welfare.

We proceed by showing that we can circumvent the impossibility in Theorem 1.2 for a restricted class
of additive valuations:

Theorem 1.3. Let xh > xl be two positive scalars. Then, for every auction with additive bidders whose
values for each item belong in the set {0, xl, xh}, there exists an obviously strategy-proof mechanism that
maximizes the social welfare.

The obviously strategy-proof mechanism of Theorem 1.3 is a posted-price mechanism, where the price of
every item is set to be xl. The mechanism has two rounds: in the first round, each player takes only items
for which she has a value of xh, and in the second one she takes the remaining items for which she has a
value of xl. Informally, what makes this mechanism obviously strategy-proof is the fact that bidders increase
their profit only by taking items for which their value is xh.

We now switch gears by proving impossibilities for unknown single-minded bidders:

Theorem 1.4. A combinatorial auction with m ≥ 2 items and n ≥ 2 unknown single-minded bidders has no
obviously strategy-proof mechanism that satisfies individual rationality and no-negative-transfers and gives
an approximation strictly better than min{m,n} to the social welfare.

We remind that [dKKV20] provide an obviously strategy-proof mechanism that k-approximates the welfare
with unknown single-minded bidders, where k is the size of the largest desirable set. Indeed, in the proof of
Theorem 1.4, we use valuations whose demanded set is of size m, so our proof shows that the dependence of
the approximation ratio on the size of the largest desired set is necessary.

Another implication of Theorem 1.4 is that obviously strategy-proof mechanisms are more powerful for
known single-minded bidders compared to unknown single-minded bidders: for known single-minded bidders,
there is an O(

√
m) approximation to the welfare [dKKV20], whilst we show that for unknown single-minded

bidders, obviously strategy-proof mechanisms cannot get an approximation better than min{m,n}.

Our Results II: Impossibilities for Multi-Unit Auctions We wrap up by providing an equivalent
impossibility for unknown single-minded bidders in the multi-unit auction. In the multi-unit auction setting,
often called the knapsack auction, items are identical and the valuation function of each player vi : [m] → R

+

maps quantities of items to values.
For multi-unit auctions, i.e., auctions where all the items are identical, two special cases were previously

considered. The first one is the “single-parameter” case, with known single-minded bidders. For this class of
valuations, there exist obviously strategy-proof mechanisms that give O(min{logm, log n}) approximation
to the welfare [DGR14, CGS22], and no mechanism gives an approximation better than Ω(

√
log n) of the

welfare [FPV22]. For valuations that exhibit deceasing marginal values,2 [GMR17] have shown an obviously

2A valuation v satisfies decreasing marginal values if for every quantity j ∈ {0, . . . ,m− 1}, v(j+1)− v(j) ≤ v(j)− v(j− 1).
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strategy-proof clock auction that gives an approximation of O(log n) to the welfare and have claimed that
no obviously strategy-proof mechanism gives an approximation better than

√
2 to the welfare.

We now prove an impossibility for unknown-single-minded bidders:

Theorem 1.5. A multi-unit auction with m ≥ 2 items and n ≥ 2 unknown single-minded bidders has no
obviously strategy-proof mechanism that satisfies individual rationality and no-negative-transfers and gives
an approximation strictly better than min{m,n} to the social welfare.

Similarly to combinatorial auctions, Theorem 1.5 implies that obviously strategy-proof mechanisms are more
powerful for known single-minded than for unknown single-minded (because of the obviously strategy-proof
mechanism of [DGR14] for known single-minded bidders that gives Θ(logm) approximation to the welfare).
Moreover, Theorem 1.5 implies an impossibility for the class of arbitrary monotone valuations:

Corollary 1.2. A multi-unit auction with m ≥ 2 items and n ≥ 2 bidders with arbitrary monotone
valuations has no obviously strategy-proof mechanism that satisfies individual rationality and no-negative-
transfers and gives an approximation strictly better than min{m,n} to the social welfare.

The impossibilities in Theorem 1.5 and Corollary 1.2 are tight since the ascending auction on the grand
bundle gives min{m,n} approximation to the welfare.

Open Questions First, we have yet to understand the power of obviously strategy-proof mechanisms in
“single-parameter” domains.3 In particular, we do not know yet whether it is possible to improve the
approximation guarantee of O(

√
m) of the mechanism of [dKKV20] for known single-minded bidders. In

addition, for multi-unit auctions with decreasing marginal values, it is still uncertain whether obviously
strategy-proof mechanisms can give a constant approximation of the welfare or not.

Structure of the Paper In Section 2, we give some necessary preliminaries. Subsequently, we prove
impossibilities for unknown single-minded bidders both in a combinatorial auction and in a multi-unit auction
(Section 3). In Section 4, we explore obviously strategy-proof mechanisms for additive valuations: we provide
an impossibility and point out that for a sufficiently small set of valuations, there exists an obviously strategy-
proof mechanism. The proof of the impossibility for unit-demand valuations, which is very similar to the
proof for additive valuations, is in Appendix A.

2 Preliminaries and Basic Observations

We use communication protocols to represent mechanisms. A protocol is visualized as a tree, specifying
which player speaks at each node and determining the subsequent node based on the message. Each leaf in
the protocol is associated with an allocation of the items to the bidders and with a payment for each player.
Throughout this paper, we discuss only deterministic protocols. Throughout the paper, we assume that all
mechanisms satisfy perfect information, i.e., that all messages sent are observed by all the agents,4 and also
that they are sequential, meaning that exactly one bidder sends a message at each node. We denote with Ni

all the nodes in which player i sends a message.5 For ease of presentation, we define obviously strategy-proof
and dominant strategy mechanisms only for perfect information and sequential mechanisms.

We now delve deeper into the intricate details of mechanisms by defining strategies and behaviors. Given
a mechanism, a behavior Bi of player i specifies a message for each node in Ni. Denote with Bi the set of
all possible behaviors of player i. Note that each behavior profile B = (B1, . . . , Bn) corresponds to a path
of all the visited nodes given this behavior profile. We denote with Path(B) all the nodes in this path and
with Leaf(B) the leaf at the end of this path. In addition, let us denote by fi(B) and pi(B) the bundle and
the payment of player i that are associated with Leaf(B). See Figure 1 for an illustration.

3For a discussion of the definition of single-parameter domains, see [BDR23].
4In the communication complexity literature, this assumption is called the blackboard model.
5All the results in this paper hold regardless of these assumptions. We can assume perfect information without loss of

generality because of the revelation principle of [BG17] for obviously strategy-proof mechanisms. As for the assumption

of sequential mechanisms, it is easy to verify that every social choice function implemented by an obviously strategy-proof
mechanism that allows players to speak simultaneously can also be implemented by a sequential obviously strategy-proof

mechanism.
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Figure 1: An illustration of a tree protocol that realizes a second-price auction of a single item with two bidders: a duck with
sunglasses and a duck in a jacket. The values for the item of both of them belong in the set {1, 2}, and we assume that the

jacket duck wins the item in case of a tie. The payments are omitted for simplicity.

The behavior set Bs of the sunglasses-wearing duck specifies the possible messages she can send at node N1, i.e., Bs = {(N1 :
”1”), (N1 : ”2”)}. Analogously, the set of behaviors Bj of the jacket-wearing duck describes the message combinations at nodes

N2 and N3, so Bj = {(N2 : ”1”, N3 : ”1”), (N2 : ”1”, N3 : ”2”), (N2 : ”2”, N3 : ”1”), (N2 : ”2”, N3 : ”2”)}. For illustration,

consider the behavior profile B = {Bs = (N1 : ”2”), Bj = (N2 : ”2”, N3 : ”1”)}. Note that Path(B) = {N1, N3, L3} and
Leaf(B) = L3.

N1

N2

L1

wins

N3

L4

wins

L3

wins

L2

wins

1 2

1 22 1

Given a mechanism, a strategy of player i is a function Si : Vi → Bi that takes as input a valuation of
player i and outputs a message for each node in Ni. For example, the truthful strategy of the jacket-wearing
duck in Figure 1 maps the valuation that has a value 1 for the item to the behavior (N2 : ”1”, N3 : ”1”) and
the valuation that has a value of 2 for the item to the behavior (N2 : ”2”, N3 : ”2”).

We denote with T the set of all possible allocations of the items to the bidders. A mechanism M together
with strategies (S1, . . . ,Sn) realize a social choice function f : V1 × · · · × Vn → T together with payments
P1, . . . , Pn : V1 × · · · × Vn → R

n if for every (v1, . . . , vn) ∈ V1 × · · · × Vn, Leaf(S1(v1), . . . ,Sn(vn)) is labeled
with the allocation that f(v1, . . . , vn) outputs and with the payment that Pi(v1, . . . , vn) specifies for every
player i.

Given a valuation profile (v1, . . . , vn), the social welfare of an allocation T = (T1, . . . , Tn) is
∑n

i=1 vi(Ti).
We often abuse notation by writing vi(T ) instead of vi(Ti). A mechanism M together with strategies
(S1, . . . ,Sn) α-approximate the welfare if they realize a social choice function f : V1×· · ·×Vn → T such that
for every valuation profile (v1, . . . , vn) ∈ V1 × · · · × Vn, the social choice function f(v1, . . . , vn) outputs an
allocation (T1, . . . , Tn) with social welfare which is at least 1

α
fraction of the welfare of the optimal allocation.

In the context of auctions, the following properties of mechanisms are desirable: individual rationality
and no-negative-transfers. A mechanism M together with strategies (S1, . . . ,Sn) are individually rational if
they realizes a allocation rule f together with payment schemes P1, . . . , Pn such that for every player i and
for every valuation profile (v1, . . . , vn) ∈ V1 × · · · × Vn:

vi(f(vi, v−i))− Pi(vi, v−i) ≥ 0

In other words, a player never “loses” by participating in the auction. A mechanism M together with the
strategy profile (S1, . . . ,Sn) satisfy no-negative-transfers if they realize payment schemes such that for every
player i and for every valuation profile (v1, . . . , vn) ∈ V1 × · · ·×Vn, Pi(vi, v−i) ≥ 0, indicating that no player
is ever given money.

Dominant-Strategy Mechanisms We now define dominant-strategy mechanisms. A strategy S∗
i is

dominant for player i if for every strategy profile of the other players S−i, for every valuation profile

(v1, . . . , vn) ∈ V1 × · · · × Vn and for every alternative strategy Ŝi:

vi(fi(S∗
i (vi),S−i(v−i)))− pi(S∗

i (vi),S−i(v−i)) ≥ vi(fi(Ŝi(vi),S−i(v−i)))− pi(Ŝi(vi),S−i(v−i))
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where we remind that fi(S∗
i (vi),S−i(v−i)) and pi(S∗

i (vi),S−i(v−i)) specify the allocation and payment of
player i, respectively, when player i follows the actions specified by S∗

i (vi) and the other players follow the
actions specified in the vector S−i(v−i) = (S1(v1), . . . ,Si−1(vi−1),Si+1(vi+1), . . . ,Sn(vn)). The same holds

for fi(Ŝi(vi),S−i(v−i)) and pi(Ŝi(vi),S−i(v−i)).
Consider a mechanism M in which each player i has a dominant strategy S∗

i . Let (f, P1, . . . , Pn) be
the social choice function and the payment scheme they realize. In this case, the mechanism implements
(f, P1, . . . , Pn) in dominant strategies. In particular, the fact that a mechanism implements (f, P1, . . . , Pn)
in dominant strategies implies that for every player i, for every vi, v

′
i ∈ Vi and for every v−i ∈ V−i:

vi(f(vi, v−i))− Pi(vi, v−i) ≥ vi(f(v
′
i, v−i))− Pi(v

′
i, v−i)

Obviously Strategy-Proof Mechanisms We now define obviously dominant strategies. For that, we need
to delve even further into the nuances of mechanisms and behaviors. We begin by defining two properties of
behaviors.

A vertex u of a protocol is attainable given a behavior Bi if there exists a behavior profile of the other
players, B−i ∈ B−i, such that u ∈ Path(Bi, B−i). For example, in the mechanism depicted in Figure 1,
vertex N2 is attainable given the behavior (N1 : ”1”) of the sunglasses-wearing duck, whereas vertex N3 is
not attainable given this behavior.

In addition, given the paths of two behavior profiles B and B′, we denote with Path(B) ∩ Path(B′)
all the nodes that belong to both Path(B) and to Path(B′). For example, given the mechanism
described in Figure 1, the behavior profiles B = {Bs = (N1 : ”2”), Bj = (N2 : ”2”, N3 : ”2”)} and
B′ = {B′

s = (N1 : ”2”), B′
j = (N2 : ”1”, N3 : ”1”)} satisfy that Path(B) ∩ Path(B′) = {N1, N3}. We can

now define the notion of an obviously dominant behavior:

Definition 2.1. Consider a mechanism M, together with a behavior Bi and a valuation vi of some player
i. Fix a vertex u ∈ Ni that is attainable given the behavior Bi. Behavior Bi is an obviously dominant
behavior for player i at vertex u given the valuation vi if for every behavior profiles B−i ∈ B−i and
(B′

1, . . . , B
′
n) ∈ B1 × · · · × Bn such that:

1. u ∈ Path(B1, . . . , Bn) ∩ Path(B′
1, . . . , B

′
n) and

2. Bi and B′
i dictate sending different messages at vertex u.

The following inequality holds:

vi(fi(Bi, B−i))− pi(Bi, B−i) ≥ vi(fi(B
′
i, B

′
−i))− pi(B

′
i, B

′
−i)

If Bi is obviously dominant given that the valuation is vi for all (relevant) vertices simultaneously, then Bi

is an obviously dominant behavior. Formally:

Definition 2.2. Fix a behavior Bi together with the subset of vertices in Ni that are attainable for it, which
we denote with UBi

. Fix a valuation vi of player i. The behavior Bi is an obviously dominant behavior for
player i given the valuation vi if it is an obviously dominant behavior for player i given the valuation vi for
every vertex u ∈ UBi

.

Definition 2.3. A strategy Si of player i is an obviously dominant strategy if for every vi, the behavior
Si(vi) is an obviously dominant behavior for player i given the valuation vi.

Consider a mechanism M together with the obviously dominant strategies (S1, . . . ,Sn) and let
(f, P1, . . . , Pn) be the social choice function and the payment schemes they realize. In this case, the
mechanism implements (f, P1, . . . , Pn) in obviously dominant strategies, or put differently: the mechanism
is obviously strategy-proof. An allocation rule f that has payment schemes P1, . . . , Pn such that there exists
an obviously strategy-proof mechanism that implements them is OSP-implementable. In our proofs, we will
extensively use the following observation:

Lemma 2.1. Fix an obviously strategy-proof mechanism M with strategies (S1, . . . ,Sn) that realize an
allocation rule and payment schemes (f, P1, . . . , Pn) : V1 × · · · × Vn → T × R

n. Fix a player i, a vertex
u ∈ Ni and two valuation profiles (vi, v−i), (v

′
i, v

′
−i) such that the following conditions hold simultaneously:
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1. u ∈ Path(Si(vi),S−i(v−i)) ∩ Path(Si(v
′
i),S−i(v

′
−i)).

2. vi(f(vi, v−i))− Pi(vi, v−i) < vi(f(v
′
i, v

′
−i))− Pi(v

′
i, v

′
−i).

Then, the strategy Si dictates the same message for the valuations vi and v′i at vertex u.

The proof of Lemma 2.1 can be directly derived from the definition of obviously strategy-proof mechanisms.
See Figure 2 for an illustration.

Figure 2: Below is an illustration of a vertex in a mechanism for which the conditions specified in Lemma 2.1 hold, but Si(vi)

and S′

i(vi) dictate different messages, which we denote with m and with m′ respectively. Denote Leaf(Si(v
′

i),S−i(v
′

−i)) with

ℓG and Leaf(Si(vi),S−i(v−i)) with ℓB . By assumption, leaf ℓG is more profitable than leaf ℓB for bidder i with valuation vi.
As the figure illustrates, there is a contradiction, as the strategy Si is not obviously dominant. Roughly speaking, it is because

it is not obvious for bidder i given the valuation vi that she should send the message m as the strategy Si dictates, rather than

send message m′.

u

ℓG

Si(v
′

i),S−i(v
′

−i)
utility(vi, ℓ

G) = HIGH

ℓB

Si(vi),S−i(v−i)
utility(vi, ℓ

B) = LOW

m
′ m

The Connection of Dominant-Strategy and Obviously Strategy-Proof Mechanisms It is easy
to see that every strategy that is obviously dominant is also dominant, so every obviously strategy-proof
mechanism is a dominant-strategy mechanism. Interestingly, for mechanisms that are both sequential and
satisfy perfect information, the converse is also true:

Proposition 2.1. Consider a mechanism M together with the strategy profile (S1, . . . ,Sn) that implement
an allocation rule and payments (f, P1, . . . , Pn) : V1 × · · · ×Vn → T ×R

n. Then, the mechanism M together
with the strategies (S1, . . . ,Sn) implement (f, P1, . . . , Pn) in dominant strategies if and only if they implement
(f, P1, . . . , Pn) in obviously dominant strategies.

We defer the proof of Proposition 2.1 to Appendix B.2. Proposition 2.1 depends crucially on the assumption
that every node is associated with exactly one player that sends messages in it. Without this assumption,
Proposition 2.1 could have led to the erroneous conclusion that a sealed-bid implementation of a second-price
auction, where all players simultaneously submit their values, is obviously strategy-proof.

3 Impossibilities for Unknown Single-Minded Bidders

In this section, we consider unknown single-minded bidders in multi-unit auctions (Subsection 3.1) and
combinatorial auctions (Subsection 3.2). We show tight impossibilities for both settings under the standard
assumptions of no-negative-transfers and individual rationality. The proofs are almost identical: The only
difference between the proofs is the valuations we use.

3.1 The Multi-Unit Auction Setting The definition of unknown single-minded bidders in a multi-unit
auction is as follows. First, a valuation vi is single-minded if it is parameterized with a quantity q and a
value α such that:

vi(s) =

{
α s ≥ q,

0 otherwise.
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If the domain of valuations of a bidder contains solely single-minded valuations, we say that the bidder is
single-minded. If all the valuations are parameterized with the same quantity, then the bidder is known
single-minded, and otherwise she is unknown single-minded.

We remind that our impossibility result immediately implies that no obviously strategy-proof mechanism
gives an approximation better than min{m,n} for a multi-unit auction with arbitrary monotone valuations
(Corollary 1.2).

3.1.1 Proof of Theorem 1.5 Fix an auction with m items and n bidders. We assume that the domain
Vi of each bidder consists of single-minded valuations with values in {0, 1, . . . , poly(m,n)}.

Assume towards a contradiction that there exists an obviously strategy-proof, individually rational, no-
negative-transfers mechanismM together with strategy profile S = (S1, . . . ,Sn) that implement an allocation
rule and payment schemes (f, P1, . . . , Pn) : V1 × · · ·×Vn → T ×R

n, where f gives an approximation strictly
better than min{m,n} to the optimal social welfare.

For every player i, we define three valuations that will be of particular interest:

valli (s) =

{
k4 s = m,

0 otherwise.
vonei (s) =

{
1 s ≥ 1,

0 otherwise.
vONE
i (s) =

{
k2 + 1 s ≥ 1,

0 otherwise.

where k = max{m,n}. Observe that given the valuation profile (vone1 , . . . , vonen ), there are at least two bidders
such that f assigns to them at least one item because of its approximation guarantee. For convenience, assume
those bidders are bidder 1 and bidder 2.6

For the analysis of the mechanism, we define the following subsets of the domains of the valuations:
V1 = {vone1 , vONE

1 , vall1 }, V2 = {vone2 , vONE
2 , vall2 } and for every player i ≥ 3, we set Vi = {vonei }. We denote

V1 × · · · × Vn with V.
We will use the following lemma to show that at least one player i at some vertex in the mechanism has

to send different messages for different valuations in Vi. Formally:

Lemma 3.1. There exist (v1, . . . , vn), (v
′
1, . . . , v

′
n) ∈ V1 × · · · × Vn such that the behaviors (S1(v1),

. . . ,Sn(vn)) and (S1(v
′
1), . . . ,Sn(v

′
n)) do not reach the same leaf in the mechanism.

Proof. Consider the valuation profiles v = (vall1 , vone2 , . . . , vonen ) and v′ = (vone1 , vall2 , vone3 , . . . , vonen ). Given v,
the only allocation that gives an approximation of min{m,n} to the welfare is allocating all items to player
1, so f(v) = (m, 0, . . . , 0). Similarly, given the valuation profile v′, the only allocation rule that gives a
min{m,n} approximation is allocating all the items to player 2. Thus, the behavior profiles S(v) and S(v′)
reach different leaves.

We now use Lemma 3.1: Let u be the first vertex in the protocol such that there exist
(v1, . . . , vn), (v

′
1, . . . , v

′
n) ∈ V where the behavior profiles (S1(v1), . . . ,Sn(vn)) and (S1(v

′
1), . . . ,Sn(v

′
n)) di-

verge. Note that u ∈ Path(S1(v1), . . . ,Sn(vn)) ∩ Path(S1(v
′
1), . . . ,Sn(v

′
n)). We remind that each vertex is

associated with only one player that sends messages in it. The player that is associated with vertex u is
necessarily either player 1 or player 2 because every player i ≥ 3 has only one valuation in Vi, so the set
{Si(vi)}vi∈Vi

is a singleton.
We assume without loss of generality that vertex u is associated with player 1, meaning that there

exist v1, v
′
1 ∈ V1 such that S1(v1) and S1(v

′
1) dictate different messages at vertex u. We remind that

V1 = {vone1 , vONE
1 , vall1 }, so the following claims jointly imply a contradiction, completing the proof:

Claim 3.1. The strategy S1 dictates the same message at vertex u for the valuations vone1 and vONE
1 .

Claim 3.2. The strategy S1 dictates the same message at vertex u for the valuations vONE
1 and vall1 .

In the proofs of Claims 3.1 and Claim 3.2, we use the following lemma, which is a collection of observations
about the allocation and the payment scheme of player 1:

Lemma 3.2. The allocation rule f and the payment scheme P1 of bidder 1 satisfy that:

6If those bidders would have been any other bidders, say bidders 3 and 5, the proof would be identical, except for the

renaming of bidders.
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1. Given (vone1 , vone2 , . . . , vonen ), bidder 1 wins at least one item and pays at most 1.

2. Given (vONE
1 , vall2 , vone3 , . . . , vonen ), bidder 1 gets the empty bundle and pays zero.

3. Given (vall1 , vone2 , . . . , vonen ), bidder 1 wins m items and pays at most k2.

The lemma is a direct consequence of the properties of the mechanism. We use it now and defer the proof
to Appendix B.1.1.

Proof. [of Claim 3.1] Note that by Lemma 3.2 part 1, f(vone1 , . . . , vonen ) allocates at least one item to player
1 and P1(v

one
1 , . . . , vonen ) ≤ 1. Therefore:

(3.1) vONE
1 (f(vone1 , . . . , vonen ))− P1(v

one
1 , . . . , vonen ) ≥ k2

In contrast, by part 2 of Lemma 3.2, f(vONE
1 , vall2 , vone3 , . . . , vonen ) allocates no items to player 1 and

P1(v
ONE
1 , vall2 , vone3 , . . . , vonen ) = 0, so:

(3.2) vONE
1 (f(vONE

1 , vall2 , vone3 , . . . , vonen ))− P1(v
ONE
1 , vall2 , vone3 , . . . , vonen ) = 0

Combining inequalities (3.1) and (3.2) gives:

vONE
1 (f(vONE

1 , vall2 , vone3 , . . . , vonen ))−P1(v
ONE
1 , vall2 , vone3 , . . . , vonen ) <

vONE
1 (f(vone1 , . . . , vonen ))− P1(v

one
1 , . . . , vonen )

We remind that vertex u belongs in Path(S1(v
one
1 ),S2(v

one
2 ), . . . ,Sn(v

one
n )) and also in Path(S1(v

ONE
1 ),

S2(v
all
2 ),S3(v

one
3 ), . . . ,Sn(v

one
n )). Therefore, Lemma 2.1 gives that the strategy S1 dictates the same message

for vone1 and vONE
1 at vertex u. See Figure 3a for an illustration.

Figure 3: Illustrations of the tree rooted at vertex u of the mechanism M. Figure 3a depicts the case where strategy S1

dictates different messages for vone
1

and vONE
1

. Figure 3b describes the case where S1 dictates different messages for vall
1

and

vONE
1

. Both of them demonstrate that if bidder 1 sends different messages for either vone
1

and vONE
1

or for vONE
1

and vall
1

,
then the strategy S1 is not obviously dominant.

u

ℓ

(s1 ≥ 1, p1 ≤ 1)

ℓ′

(s′1 = 0, p′1 = 0)

S
1
(v
o
n
e

1

)
S
1 (v O

N
E

1

)

(a) Let us denote the leaves that (S1(vone
1

), . . . ,Sn(vone
n ))

and (S1(vONE
1

), S2(vall2
), S3(vone

3
) . . . ,Sn(vone

n )) reach

with ℓ and ℓ′ respectively. The outcome of leaf ℓ is more

profitable than the outcome of leaf ℓ′ for bidder i with

valuation vONE
i , which is why S1 is not obviously domi-

nant in this case.

u

ℓ

(s1 = m, p1 ≤ k2)

ℓ′

(s′1 = 0, p′1 = 0)

S
1
(v
a
ll

1

)
S
1 (v O

N
E

1

)

(b) We denote the leaves that
(S1(vall1

),S2(vone
2

), . . . ,Sn(vone
n )) and (S1(vONE

1
),

S2(vall2
), S3(vone

3
) . . . ,Sn(vone

n )) reach with ℓ and ℓ′

respectively. The outcome of leaf ℓ is more profitable
than the outcome of leaf ℓ′ for bidder i with valuation

vONE
i , which is why S1 is not obviously dominant in this

case.

Proof. [of Claim 3.2] Following the same approach as in the proof of Claim 3.1:

vONE
1 (f(vall1 , vone2 , . . . , vonen ))− P1(v

all
1 , vone2 , . . . , vonen ) ≥ k2 + 1− k2 (Lemma 3.2.3)

> 0

= vONE
1 (f(vONE

1 , vall2 , vone3 , . . . , vonen ))

− P1(v
ONE
1 , vall2 , vone3 , . . . , vonen ) (Lemma 3.2.2)
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Since by assumption vertex u belongs in Path(S1(v
all
1 ),S2(v

one
2 ), . . . ,Sn(v

one
n )) and in Path((S1(v

ONE
1 ),

S2(v
all
2 ),S3(v

one
3 ), . . . ,Sn(v

one
n ))). By Lemma 2.1, the strategy S1 dictates the same message for the

valuations vONE
1 and vall1 at vertex u. See Figure 3b for an illustration.

3.2 The Combinatorial Auction Setting In this section, we consider unknown single-minded bidders
in a combinatorial auction. The definition of unknown single-minded bidders is as follows: a valuation vi is
single-minded if it is parameterized with a bundle S∗ and a value α such that:

vi(S) =

{
α S∗ ⊆ S,

0 otherwise.

Similarly to the definition of unknown single-minded bidders in a multi-unit auctions, bidder is single-minded
if all the valuations in her domain are single-minded. If all the valuations are parameterized with the same
quantity, then the bidder is known single-minded and otherwise, she is unknown single-minded. We now
prove a tight impossibility for unknown single-minded bidders:

Proof. [of Theorem 1.4] Fix an auction with a set of items M and n bidders. Denote the elements in the set
of items with {e1, . . . , em}. We assume that the domain Vi of each bidder consists of single-minded valuations
with values in {0, 1, . . . , poly(m,n)}.

Assume towards a contradiction that there exists an obviously strategy-proof, individually rational, no-
negative-transfers mechanismM together with strategy profile S = (S1, . . . ,Sn) that implement an allocation
rule and payment schemes (f, P1, . . . , Pn) : V1 × · · ·×Vn → T ×R

n, where f gives an approximation strictly
better than min{m,n} to the optimal social welfare.

We define several valuations. For each player i ≤ m, we define:

vonei (S) =

{
1 ei ∈ S,

0 otherwise.

For each player i > m, we set:

vonei (S) =

{
1 em ∈ S,

0 otherwise.

Observe that given the valuation profile (vone1 , . . . , vonen ), there are at least two bidders that win a valuable
item because of the approximation guarantee of f . For convenience, assume those bidders are bidder 1 and
bidder 2 who win items e1 and e2 respectively. We now define two additional valuations for bidders 1 and 2:

vall1 (S) =

{
k4 S = M,

0 otherwise.
vONE
1 (S) =

{
k2 + 1 e1 ∈ S,

0 otherwise.

vall2 (S) =

{
k4 S = M,

0 otherwise.
vONE
2 (S) =

{
k2 + 1 e2 ∈ S,

0 otherwise.

where k = max{m,n}. For the analysis of the mechanism, we define the following subsets of the domains
of the valuations: V1 = {vone1 , vONE

1 , vall1 }, V2 = {vone2 , vONE
2 , vall2 } and for every player i ≥ 3, we set

Vi = {vonei }. The rest of the proof is identical to the proof of Theorem 1.5.

4 Obviously Strategy-Proof Mechanisms for Additive Valuations

In this section, we analyze mechanisms for additive valuations. We remind that a valuation vi : 2
M → R is

additive if vi(S) =
∑

j∈S vi({j}). We begin by showing that for a restricted class of additive valuations, there
is an obviously strategy-proof mechanism (Subsection 4.1). In Subsection 4.2, we show that under standard
assumptions, no obviously strategy-proof mechanism gives an approximation better than min{m,n}. The
proof of impossibility for unit-demand valuations (Theorem 1.1) is very similar to the proof of Theorem 1.2.
It can be found in Appendix A.
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4.1 Proof of Theorem 1.3: A Welfare-Maximizing Mechanism for a (Restricted) Class of
Additive Valuations Consider the following serial mechanism. Player 1 reports the items for which his
value is xh and gets them at a price of xl per item. Next, player 2 reports the remaining items for which his
value is xh, gets them at a price of xl, and the round procedure continues until no items or bidders are left.
If there are items left at the end of this round, we run a second serial round: this time, each bidder takes
the remaining items for which his value is xl.

This mechanism maximizes the welfare because every item is allocated to a bidder that has maximum
value for it: if an item has a bidder with value xh for it, by construction such a bidder wins it. If the highest
value for the item is xl, then it is allocated to a bidder at price xl.

The mechanism is obviously strategy-proof because the utility of each bidder that takes j high-valued
items in the first round is fixed to be j · (xh − xl), no matter what the other bidders do or how many items
with value xl he wins at the second round. Therefore, answering the queries of the mechanism truthfully is
an obviously dominant strategy for all bidders.

4.2 Impossibility Result: Proof of Theorem 1.2 Fix an auction with a set of items M and n bidders,
where the domain Vi of each bidder consists of additive valuations with values in {0, 1, . . . , poly(m,n)}. We
denote the elements of M with {e1, . . . , em}.

Assume towards a contradiction that there exists an obviously strategy-proof, individually rational, no-
negative-transfers mechanism M together with strategies S = (S1, . . . ,Sn) that implement an allocation
rule and payment schemes (f, P1, . . . , Pn) : V1 × · · ·×Vn → T ×R

n, where f gives an approximation strictly
better than min{m,n} to the optimal social welfare.

We start by defining several valuations. Since these valuations are additive, we can fully describe them
by specifying their value for each item. For every player i ≤ m, we define:

v
ei,one
i (x) =

{
1 x = ei,

0 otherwise.

Whereas for every player i > m:

v
ei,one
i (x) =

{
1 x = em,

0 otherwise.

Observe that given the valuation profile (ve1,one1 , . . . , ven,onen ), the approximation ratio of f guarantees that
there are at least two bidders such that f assigns to them a bundle that is valuable for them. For convenience,
we assume that bidders 1 and 2 are allocated e1 and e2.

7 For the analysis, We define additional valuations
of players 1 and 2:

v
e1,big
1 (x) =

{
3k4 x = e1,

0 otherwise.
v
e2,big
1 (x) =

{
3k4 x = e2,

0, otherwise.
vboth1 (x) =





2k2 + 2 x = e1,

2k2 x = e2,

0, otherwise.

v
e2,big
2 (x) =

{
3k4 x = e2,

0 otherwise.
v
e1,big
2 (x) =

{
3k4 x = e1,

0, otherwise.
vboth2 (x) =





2k2 + 2 x = e2,

2k2 x = e1,

0, otherwise.

where k = max{m,n}. We define the following subsets of the domains of the valuations:

V1 = {ve1,one1 , v
e1,big
1 , v

e2,big
1 , vboth1 }, V2 = {ve2,one2 , v

e2,big
2 , v

e1,big
2 , vboth2 }

and for every player i ≥ 3, we set Vi = {vei,onei }.8 We will use the following lemma to show that at least
one player i at some point has to send different messages for different valuations in Vi. Formally:

7Similarly to the proof of Theorem 1.5, this is without loss of generality because if it would have been any other pair of

bidders, the proof would have remained the same up to renaming of the bidders.
8Note that for every player i, all valuations in Vi except for v

both
1

and vboth
2

have only one valuable item. It is for this reason

that the proofs of Theorems 1.2 and 1.1 are so similar.
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Lemma 4.1. There exist (v1, . . . , vn), (v
′
1, . . . , v

′
n) ∈ V1 × · · · × Vn such that the behaviors (S1(v1),

. . . ,Sn(vn)) and (S1(v
′
1), . . . ,Sn(v

′
n)) do not reach the same leaf in the mechanism.

Proof. Consider the valuation profiles v = (ve1,big1 , v
e2,one
2 , . . . , ven,onen ) and v′ = (ve1,one1 , v

e1,big
2 , v

e3,one
3 ,

. . . , ven,onen ). Given the valuation profile v, player 1 wins item e1 because of the approximation guarantee of
the mechanism. Similarly, given the valuation profile v′, player 2 wins item e1. Thus, the behavior profiles
S(v) and S(v′) reach different leaves.

We now use Lemma 4.1. Let u be the first vertex in the protocol such that there exist
(v1, . . . , vn), (v

′
1, . . . , v

′
n) ∈ V where the behavior profiles (S1(v1), . . . ,Sn(vn)) and (S1(v

′
1), . . . ,Sn(v

′
n)) di-

verge. Note that u ∈ Path(S1(v1), . . . ,Sn(vn)) ∩ Path(S1(v
′
1), . . . ,Sn(v

′
n)). We remind that each vertex is

associated with only one player that sends messages in it. The player that is associated with vertex u is
necessarily either player 1 or player 2 because every player i ≥ 3 has only one valuation in Vi, so the set
{Si(vi)}vi∈Vi

is a singleton. We assume without loss of generality that vertex u is associated with player 1,
meaning that there exist v1, v

′
1 ∈ V1 such that S1(v1) and S1(v

′
1) dictate different messages at vertex u.

Lemmas 4.2 and 4.3 examine two complementary cases, demonstrating that in each scenario, the strategy
S1 dictates the same message at vertex u for all the valuations in V1. This leads to a contradiction, completing
the proof.

Lemma 4.2. If f(vboth1 , v
e1,big
2 , v

e3,one
3 , . . . , ven,onen ) outputs an allocation where bidder 1 wins a bundle that

contains e2, then the strategy S1 dictates the same message at vertex u for all the valuations in V1.

Lemma 4.3. If f(vboth1 , v
e1,big
2 , v

e3,one
3 , . . . , ven,onen ) outputs an allocation where bidder 1 wins a bundle not

containing e2, then the strategy S1 dictates the same message at vertex u for all the valuations in V1.

It remains to prove Lemma 4.2 and Lemma 4.3. The rest of the proof follows this outline. In Subsection
4.2.1, we state Lemma 4.4, which consists of observations about the allocation function and the payment
scheme of the mechanism. In Subsection 4.2.2, we prove Claim 4.1 which shows that the obviously dominant
strategy S1 always dictates the same message for the valuations ve1,one1 and v

e1,big
1 . Both of these facts will

be used in the proofs of Lemma 4.2 and Lemma 4.3, which are in Subsections 4.2.3 and 4.2.4 respectively.

4.2.1 Observations about the Allocation and Payments of the Mechanism We begin by deriving
straightforward observations about the bundle that bidder 1 wins and his payment:

Lemma 4.4. The allocation rule f and the payment scheme P1 of bidder 1 satisfy that:

1. Given (ve1,one1 , v
e2,one
2 , . . . , ven,onen ), bidder 1 wins a bundle that contains e1 and pays at most 1.

2. Given (ve1,big1 , v
e1,big
2 , v

e3,one
3 , . . . , ven,onen ), bidder 1 either: (a) gets a bundle not containing e1 and pays

0 or (b) gets a bundle that contains e1 and pays at least 2k3 + k2.

3. Given (ve2,big1 , v
e2,big
2 , v

e3,one
3 , . . . , ven,onen ), bidder 1 either: (a) gets a bundle not containing e2 and pays

0 or (b) gets a bundle that contains e2 and pays at least 2k3 + k2.

4. Given (vboth1 , v
e2,one
2 , . . . , ven,onen ), bidder 1 wins a bundle that contains e1 and pays at most 4k2 + 2.

5. Given (ve2,big1 , v
e2,one
2 , . . . , ven,onen ), bidder 1 wins e2 and pays at most k2.

6. Given (vboth1 , v
e1,big
2 , v

e3,one
3 , . . . , ven,onen ), bidder 1 does not win e1.

7. If f(vboth1 , v
e1,big
2 , v

e3,one
3 , . . . , ven,onen ) outputs an allocation where bidder 1 wins e2, then he pays at

most 2k2.

8. If f(vboth1 , v
e1,big
2 , v

e3,one
3 , . . . , ven,onen ) outputs an allocation where bidder 1 wins a bundle not containing

e2, then he pays zero.

The lemma is a direct consequence of the properties of the mechanism. We prove it in Appendix B.1.2.
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4.2.2 The Valuations v
e1,one
1 and v

e1,big
1 Send the Same Message We now use the observations about

the mechanism (Lemma 4.4) to show that S1 dictates the same message for ve1,one1 and v
e1,big
1 at vertex u.

We use Claim 4.1 to prove Lemma 4.2 and Lemma 4.3.

Claim 4.1. The strategy S1 dictates the same message at vertex u for both v
e1,one
1 and v

e1,big
1 .

Proof. Note that by Lemma 4.4 part 1, given (ve1,one1 , v
e2,one
2 . . . , ven,onen ), bidder 1 wins a bundle that

contains e1 and pays at most 1. Therefore:

(4.3) v
e1,big
1 (f(ve1,one1 , v

e2,one
2 . . . , ven,onen ))− P1(v

e1,one
1 , v

e2,one
2 . . . , ven,onen ) ≥ 3k4 − 1

In contrast, by Lemma 4.4 part 2:

(4.4) v
e1,big
1 (f(ve1,big1 , v

e1,big
2 , v

e3,one
3 , . . . , ven,onen ))− P1(v

e1,big
1 , v

e1,big
2 , v

e3,one
3 , . . . , ven,onen ) ≤ 3k4 − 2k3 − k2

Combining (4.3) and (4.4) gives:

v
e1,big
1 (f(ve1,one1 , v

e2,one
2 . . . , ven,onen ))− P1(v

e1,one
1 , v

e2,one
2 . . . , ven,onen ) >

v
e1,big
1 (f(ve1,big1 , v

e1,big
2 , v

e3,one
3 , . . . , ven,onen ))− P1(v

e1,big
1 , v

e1,big
2 , v

e3,one
3 , . . . , ven,onen )

We remind that vertex u belongs in Path(S1(v
e1,one
1 ),S2(v

e2,one
2 ), . . . ,Sn(v

en,one
n )) and in Path(S1(v

e1,big
1 ),

S2(v
e1,big
2 ),S3(v

e3,one
3 ), . . . ,Sn(v

en,one
n )), so by Lemma 2.1 the strategy S1 dictates the same message for

v
e1,one
1 and v

e1,big
1 at vertex u.

4.2.3 Proof of Lemma 4.2 The proof is as follows. We first show that the strategy S1 always dictates
the same message for vboth1 and v

e1,big
1 (Claim 4.2). We proceed by demonstrating that in the case under

consideration in Lemma 4.2, the strategy S1 dictates the same message for the valuations vboth1 and v
e2,big
1

(Claim 4.3). We remind that V1 = {ve1,one1 , v
e1,big
1 , v

e2,big
1 , vboth1 }, so combining Claims 4.1, 4.2 and 4.3 gives

that the strategy S1 dictates the same message for all the valuations in V1, as needed.

Claim 4.2. The strategy S1 dictates the same message at vertex u for both vboth1 and v
e1,big
1 .

Proof. Note that by Lemma 4.4 part 4, given (vboth1 , v
e2,one
2 , . . . , ven,onen ), bidder 1 wins a bundle that contains

e1 and pays at most 4k2 + 2. Therefore:

(4.5) v
e1,big
1 (f(vboth1 , v

e2,one
2 , v

e3,one
3 , . . . , ven,onen ))− P1(v

both
1 , v

e2,one
2 , . . . , ven,onen ) ≥ 3k4 − 4k2 − 2

Whereas by Lemma 4.4 part 2:

(4.6) v
e1,big
1 (f(ve1,big1 , v

e1,big
2 , v

e3,one
3 , . . . , ven,onen ))− P1(v

e1,big
1 , v

e1,big
2 , v

e3,one
3 , . . . , ven,onen ) ≤ 3k4 − 2k3 − k2

Combining (4.5) and (4.6) gives:

v
e1,big
1 (f(ve1,big1 , v

e1,big
2 , v

e3,one
3 , . . . , ven,onen ))− P1(v

e1,big
1 , v

e1,big
2 , v

e3,one
3 , . . . , ven,onen ) <

v
e1,big
1 (f(vboth1 , v

e1,big
2 , v

e3,one
3 , . . . , ven,onen ))− P1(v

both
1 , v

e1,big
2 , v

e3,one
3 , . . . , ven,onen )

We remind that by assumption vertex u belongs in Path(S1(v
e1,big
1 ),S2(v

e1,big
2 ), S3(v

e3,one
3 ), . . . ,Sn(v

en,one
n ))

and also in Path(S1(v
both
1 ),S2(v

e2,one
2 ),S3(v

e3,one
3 ), . . . ,Sn(v

en,one
n )), so Lemma 2.1 gives that the strategy

S1 dictates the same message for ve1,big1 and vboth1 at vertex u.

Claim 4.3. If f(vboth1 , v
e1,big
2 , v

e3,one
3 , . . . , ven,onen ) outputs an allocation where bidder 1 wins a bundle that

contains e2, then the strategy S1 dictates the same message at vertex u for both vboth1 and v
e2,big
1 .
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Proof. By Lemma 4.4 part 7 and by assumption, given (vboth1 , v
e1,big
2 , v

e3,one
3 , . . . , ven,onen ), bidder 1 wins a

bundle that contains e2 and pays at most 2k2, so:

(4.7) v
e2,big
1 (f(vboth1 , v

e1,big
2 , v

e3,one
3 , . . . , ven,onen ))− P1(v

both
1 , v

e1,big
2 , v

e3,one
3 , . . . , ven,onen ) ≥ 3k4 − 2k2

Whereas by Lemma 4.4 part 3:

(4.8) v
e2,big
1 (f(ve2,big1 , v

e2,big
2 , v

e3,one
3 , . . . , ven,onen ))− P1(v

e2,big
1 , v

e2,big
2 , v

e3,one
3 , . . . , ven,onen ) ≤ 3k4 − 2k3 − k2

Combining (4.7) and (4.8) gives:

v
e2,big
1 (f(ve2,big1 , v

e2,big
2 , v

e3,one
3 , . . . , ven,onen ))− P1(v

e2,big
1 , v

e2,big
2 , v

e3,one
3 , . . . , ven,onen ) <

v
e2,big
1 (f(vboth1 , v

e1,big
2 , v

e3,one
3 , . . . , ven,onen ))− P1(v

both
1 , v

e1,big
2 , v

e3,one
3 , . . . , ven,onen )

Similarly to before, vertex u is in Path(S1(v
e2,big
1 ),S2(v

e2,big
2 ),S3(v

e3,one
3 ), . . . ,Sn(v

en,one
n )) and also in

Path(S1(v
both
1 ),S2(v

e1,big
2 ),S3(v

e3,one
3 ), . . . ,Sn(v

en,one
n )), so applying Lemma 2.1 completes the proof.

4.2.4 Proof of Lemma 4.3 The proof of Lemma 4.3 has the same structure as the proof of
Lemma 4.2, except that we now analyze the case where bidder 1 does not win e2 in the instance
(vboth1 , v

e1,big
2 , v

e3,one
3 , . . . , ven,onen ). We first show that for this case, the strategy S1 dictates the same message

for vboth1 and v
e1,one
1 (Claim 4.4). We then show that it also implies that S1 dictates the same message for

both vboth1 and v
e2,big
1 (Claim 4.5). Combining Claims 4.4 and 4.5 with Claim 4.1 gives that S1 sends the

same message for all the valuations in V1, that completes the proof.

Claim 4.4. If f(vboth1 , v
e1,big
2 , v

e3,one
3 , . . . , ven,onen ) outputs an allocation where bidder 1 wins a bundle not

containing e2, then the strategy S1 dictates the same message at vertex u for both vboth1 and v
e1,one
1 .

Proof. Note that by Lemma 4.4 part 1, given (ve1,one1 , v
e2,one
2 , . . . , ven,onen ), bidder 1 wins a bundle that

contains e1 and pays at most 1. Therefore:

(4.9) vboth1 (f(ve1,one1 , v
e2,one
2 , . . . , ven,onen ))− P1(v

e1,one
1 , v

e2,one
2 , . . . , ven,onen ) ≥ 2k2 + 1

We now analyze the output of the mechanism for the valuation profile (vboth1 , v
e1,big
2 , v

e3,one
3 , . . . , ven,onen ). By

assumption and by Lemma 4.4 part 6, the function f outputs for this instance an allocation where bidder 1
wins neither item e1 nor item e2. Therefore, v

both
1 (f(vboth1 , v

e1,big
2 , v

e3,one
3 , . . . , ven,onen )) = 0. Combining with

Lemma 4.4 part 8, we get that:

(4.10) vboth1 (f(vboth1 , v
e1,big
2 , v

e3,one
3 , . . . , ven,onen ))− P1(v

both
1 , v

e1,big
2 , v

e3,one
3 , . . . , ven,onen ) = 0

Combining (4.9) and (4.10) gives:

vboth1 (f(vboth1 , v
e1,big
2 , v

e3,one
3 , . . . , ven,onen ))− P1(v

both
1 , v

e1,big
2 , v

e3,one
3 , . . . , ven,onen ) <

vboth1 (f(ve1,one1 , v
e2,one
2 , . . . , ven,onen )− P1(v

e1,one
1 , v

e2,one
2 , . . . , ven,onen )

We remind that vertex u belongs in Path(S1(v
e1,one
1 ),S2(v

e2,one
2 ), . . . ,Sn(v

en,one
n )) and also belongs in

Path(S1(v
both
1 ),S2(v

e1,big
2 ),S3(v

e3,one
3 ), . . . ,Sn(v

en,one
n )), so the proof is finished by applying Lemma 2.1.

Claim 4.5. If f(vboth1 , v
e1,big
2 , v

e3,one
3 , . . . , ven,onen ) outputs an allocation where bidder 1 wins a bundle not

containing e2, then the strategy S1 dictates the same message at vertex u for both vboth1 and v
e2,big
1 .

Proof. Due to the same reasons specified in the proof of Claim 4.4:

(4.11) vboth1 (f(vboth1 , v
e1,big
2 , v

e3,one
3 , . . . , ven,onen ))− P1(v

both
1 , v

e1,big
2 , v

e3,one
3 , . . . , ven,onen ) = 0
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Whereas by Lemma 4.4 part 5:

(4.12) vboth1 (f(ve2,big1 , v
e2,one
2 , . . . , ven,onen ))− P1(v

e2,big
1 , v

e2,one
2 , . . . , ven,onen ) ≥ 2k2 − k2 = k2

Combining (4.11) and (4.12) gives:

vboth1 (f(vboth1 , v
e1,big
2 , v

e3,one
3 , . . . , ven,onen ))− P1(v

both
1 , v

e1,big
2 , v

e3,one
3 , . . . , ven,onen ) <

vboth1 (f(ve2,big1 , v
e2,one
2 , . . . , ven,onen ))− P1(v

e2,big
1 , v

e2,one
2 , . . . , ven,onen )

Similarly to before, vertex u is in Path(S1(v
both
1 ),S2(v

e1,big
2 ),S3(v

e3,one
3 ), . . . ,Sn(v

en,one
n )) and also in

Path(S1(v
e2,big
1 ),S2(v

e2,one
2 ), . . . ,Sn(v

en,one
n )), so applying Lemma 2.1 completes the proof.
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A An Impossibility Result for Unit-Demand Bidders: Proof of Theorem 1.1

In this section, we prove an impossibility result for unit-demand bidders. We remind that a valuation vi is
unit-demand if vi(S) = maxj∈S vi({j}). This proof is extremely similar to the proof of the Theorem 1.2 in
Section 4. We write it for the sake of completeness. We note that the proofs are similar because most of the
valuations in the analysis of Theorems 1.1 and Theorem 1.2 are both unit-demand and additive.

Fix an auction with a set of items M and n bidders, where the domain Vi of each bidder has unit demand
valuations with values in {0, 1, . . . , poly(m,n)}. We denote the elements of M with {e1, . . . , em}.

Assume towards a contradiction that there exists an obviously strategy-proof, individually rational, no-
negative-transfers mechanism M together with strategies S = (S1, . . . ,Sn) that implement an allocation
rule and payment schemes (f, P1, . . . , Pn) : V1 × · · ·×Vn → T ×R

n, where f gives an approximation strictly
better than min{m,n} to the optimal social welfare.

We begin by defining several valuations that will be useful when analyzing the mechanism. We take
advantage of the fact that they are unit-demand, so they can be fully described by specifying the value for
each item separately. For every player i ≤ m and for every item x, we define:

v
ei,one
i (x) =

{
1 x = ei,

0 otherwise.

Whereas for every player i > m:

v
ei,one
i (x) =

{
1 x = em,

0 otherwise.

Observe that given the valuation profile (ve1,one1 , . . . , ven,onen ), the approximation ratio of f guarantees that
there are at least two bidders such that f assigns to them a bundle that is valuable for them. Similarly to
the proof of Theorem 1.2, we assume for convenience and without loss of generality that bidders 1 and 2 are
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allocated e1 and e2. We now define additional valuations of players 1 and 2:

v
e1,big
1 (x) =

{
3k4 x = e1,

0 otherwise.
v
e2,big
1 (x) =

{
3k4 x = e2,

0, otherwise.
vboth1 (x) =





2k2 + 2 x = e1,

2k2 x = e2,

0, otherwise.

v
e2,big
2 (x) =

{
3k4 x = e2,

0 otherwise.
v
e1,big
2 (x) =

{
3k4 x = e1,

0, otherwise.
vboth2 (x) =





2k2 + 2 x = e2,

2k2 x = e1,

0, otherwise.

where k = max{m,n}. We define the following subsets of the domains of the valuations:

V1 = {ve1,one1 , v
e1,big
1 , v

e2,big
1 , vboth1 }, V2 = {ve2,one2 , v

e2,big
2 , v

e1,big
2 , vboth2 }

and for every player i ≥ 3, we set Vi = {vei,onei }. We will use the following lemma to show that at least
one player i at some point in the mechanism has to send different messages for different valuations in Vi.
Formally:

Lemma A.1. There exist (v1, . . . , vn), (v
′
1, . . . , v

′
n) ∈ V1 × · · · × Vn such that the behaviors (S1(v1),

. . . ,Sn(vn)) and (S1(v
′
1), . . . ,Sn(v

′
n)) do not reach the same leaf in the mechanism.

The proof of Lemma A.1 is identical to the proof of Lemma 4.1. We now use it. Let u be the first vertex in the
protocol such that there exist (v1, . . . , vn), (v

′
1, . . . , v

′
n) ∈ V where the behavior profiles (S1(v1), . . . ,Sn(vn))

and (S1(v
′
1), . . . ,Sn(v

′
n)) diverge. Note that u ∈ Path(S1(v1), . . . ,Sn(vn)) ∩ Path(S1(v

′
1), . . . ,Sn(v

′
n)). We

remind that each vertex is associated with only one player that sends messages in it. The player that is
associated with vertex u is necessarily either player 1 or player 2 because every player i ≥ 3 has only one
valuation in Vi, so the set {Si(vi)}vi∈Vi

is a singleton. We assume without loss of generality that vertex u is
associated with player 1, meaning that there exist v1, v

′
1 ∈ V1 such that S1(v1) and S1(v

′
1) dictate different

messages at vertex u.
Lemmas A.2 and A.3 examine two complementary cases, demonstrating that in each scenario, the

strategy S1 dictates the same message at vertex u for all the valuations in V1. This leads to a contradiction,
completing the proof.

Lemma A.2. If f(vboth1 , v
e1,big
2 , v

e3,one
3 , . . . , ven,onen ) outputs an allocation where bidder 1 wins a bundle that

contains e2, then the strategy S1 dictates the same message at vertex u for all the valuations in V1.

Lemma A.3. If f(vboth1 , v
e1,big
2 , v

e3,one
3 , . . . , ven,onen ) outputs an allocation where bidder 1 wins a bundle not

containing e2, then the strategy S1 dictates the same message at vertex u for all the valuations in V1.

It remains to prove Lemma A.2 and Lemma A.3. Before we do so, we need two components. The first
one is the following claim:

Claim A.1. The strategy S1 dictates the same message at vertex u for both v
e1,one
1 and v

e1,big
1 .

The proof of Claim A.1 is identical to the proof of Claim 4.1. The second component comprises the following
straightforward observations regarding the bundle that bidder 1 wins and his payment:

Lemma A.4. The allocation rule f and the payment scheme P1 of bidder 1 satisfy that:

1. Given (ve1,one1 , v
e2,one
2 , . . . , ven,onen ), bidder 1 wins a bundle that contains e1 and pays at most 1.

2. Given (ve1,big1 , v
e1,big
2 , v

e3,one
3 , . . . , ven,onen ), bidder 1 either: (a) gets a bundle not containing e1 and pays

0 or (b) gets a bundle that contains e1 and pays at least 2k3 + k2.

3. Given (ve2,big1 , v
e2,big
2 , v

e3,one
3 , . . . , ven,onen ), bidder 1 either: (a) gets a bundle not containing e2 and pays

0 or (b) gets a bundle that contains e2 and pays at least 2k3 + k2.

4. Given (vboth1 , v
e2,one
2 , . . . , ven,onen ), bidder 1 wins a bundle that contains e1 and pays at most 1.
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5. Given (ve2,big1 , v
e2,one
2 , . . . , ven,onen ), bidder 1 wins e2 and pays at most k2.

6. Given (vboth1 , v
e1,big
2 , v

e3,one
3 , . . . , ven,onen ), bidder 1 does not win e1.

7. If f(vboth1 , v
e1,big
2 , v

e3,one
3 , . . . , ven,onen ) outputs an allocation where bidder 1 wins item e2, then he pays

at most 2k2.

8. If f(vboth1 , v
e1,big
2 , v

e3,one
3 , . . . , ven,onen ) outputs an allocation where bidder 1 wins a bundle not containing

e2, then he pays zero.

Lemma A.4 is a direct consequence of the properties of the mechanism. We defer the proof to Subsection
B.1.3. We can now prove Lemma A.2 and Lemma A.3.

A.1 Proof of Lemma A.2 The proof is as follows. We first show that the strategy S1 always dictates
the same message for vboth1 and v

e1,big
1 (Claim A.2). We proceed by demonstrating that in the case under

consideration in Lemma A.2, the strategy S1 dictates the same message for the valuations vboth1 and v
e2,big
1

(Claim A.3). We remind that V1 = {ve1,one1 , v
e1,big
1 , v

e2,big
1 , vboth1 }, so combining Claims A.1, A.2 and A.3

gives that the strategy S1 dictates the same message for all the valuations in V1, as needed.

Claim A.2. The strategy S1 dictates the same message at vertex u for both vboth1 and v
e1,big
1 .

Proof. Note that by Lemma A.4 part 4, given (vboth1 , v
e2,one
2 , v

e3,one
3 , . . . , ven,onen ), bidder 1 wins a bundle that

contains e1 and pays at most 1. Therefore:

(A.1) v
e1,big
1 (f(vboth1 , v

e2,one
2 , v

e3,one
3 , . . . , ven,onen ))− P1(v

both
1 , v

e2,one
2 , v

e3,one
3 , . . . , ven,onen ) ≥ 3k4 − 1

Whereas by Lemma A.4 part 2:

(A.2) v
e1,big
1 (f(ve1,big1 , v

e1,big
2 , v

e3,one
3 , . . . , ven,onen ))−P1(v

e1,big
1 , v

e1,big
2 , v

e3,one
3 , . . . , ven,onen ) ≤ 3k4 − 2k3 − k2

Combining (A.1) and (A.2) gives:

v
e1,big
1 (f(ve1,big1 , v

e1,big
2 , v

e3,one
3 , . . . , ven,onen ))− P1(v

e1,big
1 , v

e1,big
2 , v

e3,one
3 , . . . , ven,onen ) <

v
e1,big
1 (f(vboth1 , v

e1,big
2 , v

e3,one
3 , . . . , ven,onen ))− P1(v

both
1 , v

e1,big
2 , v

e3,one
3 , . . . , ven,onen )

We remind that vertex u belongs in Path(S1(v
e1,big
1 ),S2(v

e1,big
2 ), S3(v

e3,one
3 ), . . . ,Sn(v

en,one
n )) and also in

Path(S1(v
both
1 ),S2(v

e2,one
2 ),S3(v

e3,one
3 ), . . . ,Sn(v

en,one
n )), so Lemma 2.1 gives that the strategy S1 dictates

the same message for ve1,big1 and vboth1 at vertex u.

Claim A.3. If f(vboth1 , v
e1,big
2 , v

e3,one
3 , . . . , ven,onen ) outputs an allocation where bidder 1 wins a bundle that

contains e2, then the strategy S1 dictates the same message at vertex u for both vboth1 and v
e2,big
1 .

Proof. By Lemma A.4 part 7 and by assumption, given (vboth1 , v
e1,big
2 , v

e3,one
3 , . . . , ven,onen ), bidder 1 wins e2

and pays at most 2k2, so:

(A.3) v
e2,big
1 (f(vboth1 , v

e1,big
2 , v

e3,one
3 , . . . , ven,onen ))− P1(v

both
1 , v

e1,big
2 , v

e3,one
3 , . . . , ven,onen ) ≥ 3k4 − 2k2

Whereas by Lemma A.4 part 3:

(A.4) v
e2,big
1 (f(ve2,big1 , v

e2,big
2 , v

e3,one
3 , . . . , ven,onen ))−P1(v

e2,big
1 , v

e2,big
2 , v

e3,one
3 , . . . , ven,onen ) ≤ 3k4 − 2k3 − k2

Combining (A.3) and (A.4) gives:

v
e2,big
1 (f(ve2,big1 , v

e2,big
2 , v

e3,one
3 , . . . , ven,onen ))− P1(v

e2,big
1 , v

e2,big
2 , v

e3,one
3 , . . . , ven,onen ) <

v
e2,big
1 (f(vboth1 , v

e1,big
2 , v

e3,one
3 , . . . , ven,onen ))− P1(v

both
1 , v

e1,big
2 , v

e3,one
3 , . . . , ven,onen )

Similarly to before, vertex u is in Path(S1(v
e2,big
1 ),S2(v

e2,big
2 ),S3(v

e3,one
3 ), . . . ,Sn(v

en,one
n )) and also in

Path(S1(v
both
1 ),S2(v

e1,big
2 ),S3(v

e3,one
3 ), . . . ,Sn(v

en,one
n )), so applying Lemma 2.1 finishes the proof.
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A.2 Proof of Lemma A.3 Similarly to the previous case, the proof for this case also requires two
steps. Both steps rely on the assumption that bidder 1 does not win e2 given the valuation profile
(vboth1 , v

e1,big
2 , v

e3,one
3 , . . . , ven,onen ). We first show that the strategy S1 dictates the same message for vboth1

and v
e1,one
1 (Claim A.4). We proceed by demonstrating that S1 dictates the same message for both vboth1 and

v
e2,big
1 (Claim A.5). Combining Claims A.4 and A.5 with Claim A.1 gives that S1 sends the same message
for all the valuations in V1, that completes the proof.

Claim A.4. If f(vboth1 , v
e1,big
2 , v

e3,one
3 , . . . , ven,onen ) outputs an allocation where bidder 1 wins a bundle not

containing e2, then the strategy S1 dictates the same message at vertex u for both vboth1 and v
e1,one
1 .

Proof. Note that by Lemma A.4 part 1, given (ve1,one1 , v
e2,one
2 , . . . , ven,onen ), bidder 1 wins a bundle that

contains e1 and pays at most 1. Therefore:

(A.5) vboth1 (f(ve1,one1 , v
e2,one
2 , . . . , ven,onen ))− P1(v

e1,one
1 , v

e2,one
2 , . . . , ven,onen ) ≥ 2k2 + 1

Whereas by assumption and by Lemma A.4 parts 6 and 8:

(A.6) vboth1 (f(vboth1 , v
e1,big
2 , v

e3,one
3 , . . . , ven,onen ))− P1(v

both
1 , v

e1,big
2 , v

e3,one
3 , . . . , ven,onen ) = 0

Combining (A.5) and (A.6) gives:

vboth1 (f(vboth1 , v
e1,big
2 , v

e3,one
3 , . . . , ven,onen ))− P1(v

both
1 , v

e1,big
2 , v

e3,one
3 , . . . , ven,onen ) <

vboth1 (f(ve1,one1 , v
e2,one
2 , . . . , ven,onen ))− P1(v

e1,one
1 , v

e2,one
2 , . . . , ven,onen )

We remind that by assumption vertex u belongs in Path(S1(v
e1,one
1 ),S2(v

e2,one
2 ), , . . . ,Sn(v

en,one
n )) and also in

Path(S1(v
both
1 ),S2(v

e1,big
2 ),S3(v

e3,one
3 ), . . . ,Sn(v

en,one
n )), so applying Lemma 2.1 completes the proof.

Claim A.5. If f(vboth1 , v
e1,big
2 , v

e3,one
3 , . . . , ven,onen ) outputs an allocation where bidder 1 wins a bundle not

containing e2, then the strategy S1 dictates the same message at vertex u for both vboth1 and v
e2,big
1 .

Proof. By Lemma A.4 parts 6 and 8 and by assumption, given (vboth1 , v
e1,big
2 , v

e3,one
3 , . . . , ven,onen ), bidder 1

gets nothing and pays nothing, so:

(A.7) vboth1 (f(vboth1 , v
e1,big
2 , v

e3,one
3 , . . . , ven,onen ))− P1(v

both
1 , v

e1,big
2 , v

e3,one
3 , . . . , ven,onen ) = 0

Whereas by Lemma A.4 part 5:

(A.8) vboth1 (f(ve2,big1 , v
e2,one
2 , . . . , ven,onen ))− P1(v

e2,big
1 , v

e2,one
2 , . . . , ven,onen ) ≥ 2k2 − k2 = k2

Combining (A.7) and (A.8) gives:

vboth1 (f(vboth1 , v
e1,big
2 , v

e3,one
3 , . . . , ven,onen ))− P1(v

both
1 , v

e1,big
2 , v

e3,one
3 , . . . , ven,onen ) <

vboth1 (f(ve2,big1 , v
e2,one
2 , . . . , ven,onen ))− P1(v

e2,big
1 , v

e2,one
2 , . . . , ven,onen )

Similarly to before, vertex u is in Path(S1(v
both
1 ),S2(v

e1,big
2 ),S3(v

e3,one
3 ), . . . ,Sn(v

en,one
n )) and also in

Path(S1(v
e2,big
1 ),S2(v

e2,one
2 ),S3(v

e3,one
3 ), . . . ,Sn(v

en,one
n )), so applying Lemma 2.1 completes the proof.

B Missing Proofs

B.1 Proofs of Basic Observations about Mechanisms (Lemma 3.2, 4.4 and A.4) The deduction
of all components in the statements of all three lemmas is a direct consequence of the fact that the mechanisms
in all of them are obviously strategy-proof (and thus also dominant-strategy incentive compatible), satisfy
individual rationality and no-negative-transfers and provide welfare approximation better than min{m,n}.
We write them for the sake of completeness.

In all the following lemmas, we say for abbreviation that certain inequalities hold because of individual
rationality instead of saying that they hold because the allocation rule together with the payment scheme
are realized by a mechanism and strategies that satisfy individual rationality. We do the same for the
no-negative-transfers property.
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B.1.1 Proof of Lemma 3.2 We slightly abuse notation throughout the proof by writing f(v1, v2) for
f(v1, v2, v

one
3 , . . . , vonen ) and P1(v1, v2) for P1(v1, v2, v

one
3 , . . . , vonen ) for every pair of valuations v1 ∈ V1 and

v2 ∈ V2.
For part 1, note that because of individual rationality:

(B.9) vone1 (f(vone1 , vone2 ))− P1(v
one
1 , vone2 ) ≥ 0

We remind that by assumption f allocates to bidder 1 at least one item given (vone1 , vone2 ), so:

(B.10) vone1 (f(vone1 , vone2 )) = 1

Combining (B.9) and (B.10) gives part 1.
For part 2, note that given (vONE

1 , vall2 ), player 1 gets the empty bundle because f gives approximation
better than min{m,n} only if player 2 wins all the items. Because of individual rationality:

vONE
1 (f(vONE

1 , vall2 ))− P1(v
ONE
1 , vall2 ) ≥ 0

Since vONE
1 (f(vONE

1 , vall2 )) = 0, we get that 0 ≥ P1(v
ONE
1 , vall2 ), and because of the no-negative-transfers

property, P1(v
ONE
1 , vall2 ) = 0, as needed.

To prove part 3, we define another valuation:

v̂1(s) =

{
k2 s = m,

0 otherwise.

Given (v̂1, v
one
2 ), player 1 wins m items because of the guaranteed approximation ratio of f . The inequality

v̂1(f(v̂1, v
one
2 ))− P1(v̂1, v

one
2 ) ≥ 0 holds because of individual rationality, and therefore P1(v̂1, v

one
2 ) ≤ k2.

Note that f clearly also allocates all items to player 1 given (v1
all, vone2 ) because of its approximation

guarantee. The fact that the mechanisms is dominant-strategy incentive compatible and f outputs the same
allocation for both (v̂1, v

one
2 ) and (v1

all, vone2 ) implies that P1(v1
all, vone2 ) = P1(v̂1, v

one
2 ), so P1(v1

all, vone2 ) is
also smaller than k2, which completes the proof.

B.1.2 Proof of Lemma 4.4 We slightly abuse notation throughout the proof by writing f(v1, v2) for
f(v1, v2, v

e3,one
3 , . . . , ven,onen ) and P1(v1, v2) for P1(v1, v2, v

e3,one
3 , . . . , ven,onen ) for every pair of valuations

v1 ∈ V1 and v2 ∈ V2.
For part 1, note that because of individual rationality:

(B.11) v
e1,one
1 (f(ve1,one1 , v

e2,one
2 ))− P1(v

e1,one
1 , v

e2,one
2 ) ≥ 0

We remind that f allocates a bundle that contains item e1 to bidder 1 given (ve1,one1 , v
e2,one
2 ), so:

(B.12) v
e1,one
1 (f(ve1,one1 , v

e2,one
2 )) = 1

Combining (B.11) and (B.12) gives part 1.

For part 2, note that the approximation guarantee of f implies that given (ve1,big1 , v
e1,big
2 ), either bidder

1 or bidder 2 wins e1. If bidder 2 wins e1, then v
e1,big
1 (f(ve1,big1 , v

e1,big
2 ) = 0, so this inequality combined

with the fact that the mechanism is individually rational gives that:

v
e1,big
1 (f(ve1,big1 , v

e1,big
2 ))− P1(v

e1,big
1 , v

e1,big
2 ) ≥ 0

=⇒ P1(v
e1,big
1 , v

e1,big
2 ) ≤ 0

Because of no-negative-transfers, P1(v
e1,big
1 , v

e1,big
2 ) = 0.

We now explain the other case in which f(ve1,big1 , v
e1,big
2 ) outputs an allocation where bidder 1 wins e1.

To this end, we define the following valuation of bidder 1:

v̂1(x) =

{
2k3 + k2 x = e1,

0 otherwise.
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Observe that because of the approximation guarantee, f(v̂1, v
e1,big
2 ) outputs an allocation such that bidder

2 gets e1, so v̂1(f(v̂1, v
e1,big
2 )) = 0. The fact that the mechanism is individually rational and satisfies no-

negative-transfers implies that P1(v̂1, v
e1,big
2 ) = 0. We remind that the allocation rule f is realized by a

dominant-strategy mechanism, so we also have that:

v̂1(f(v̂1, v
e1,big
2 ))− P1(v̂1, v

e1,big
2 )) ≥ v̂1(f(v

e1,big
1 , v

e1,big
2 )− P1(v

e1,big
1 , v

e1,big
2 )

=⇒ 0 ≥ 2k3 + k2 − P1(v
e1,big
1 , v

e1,big
2 ) (by assumption)

so P1(v
e1,big
1 , v

e1,big
2 ) ≥ 2k3 + k2, which completes the proof of part 2. The proof of part 3 is analogous.

We now prove part 4. We will first show that f(vboth1 , ve2one2 ) allocates bidder 1 a bundle that contains
item e1. To this end, observe that:

(B.13)
vboth1 (f(vboth1 , v

e2,one
2 ))− P1(v

both
1 , v

e2,one
2 ) ≥ vboth1 (f(ve1,one1 , v

e2,one
2 ))− P1(v

e1,one
1 , v

e2,one
2 )

≥ 2k2 + 1

The first inequality holds because the mechanism M is a dominant-strategy mechanism, and the second
one holds because of part 1 that we previously proved. Combining (B.13) with the property of no-negative-
transfers implies that vboth1 (f(vboth1 , v

e2,one
2 )) ≥ 2k2+1. Note that vboth1 has a value of at most 2k2 to bundles

that do not contain e1, so it has to be the case that f(vboth1 , v
e2,one
2 ) allocates item e1 to bidder 1. For the

upper bound on the payment, observe that because of individual rationality:

4k2 + 2− P1(v
both
1 , v

e2,one
2 ) ≥ vboth1 (f(vboth1 , v

e2,one
2 ))− P1(v

both
1 , v

e2,one
2 ) ≥ 0

so indeed P1(v
both
1 , v

e2,one
2 ) ≤ 4k2 + 2.

We turn our attention to part 5. To prove it, we define another valuation:

ṽ1(x) =

{
k2 x = e2,

0 otherwise.

Given (ṽ1, v
e2,one
2 ), bidder 1 wins a bundle that contains e2 because of the guaranteed approximation ratio

of f . Due to the individual rationality property:

(B.14) ṽ1(f(ṽ1, v
e2,one
2 ))− P1(ṽ1, v

e2,one
2 ) ≥ 0 =⇒ k2 ≥ P1(ṽ1, v

e2,one
2 )

Note that f clearly also allocates a bundle that contains item e2 to bidder 1 given (v1
e2,big, v

e2,one
2 ) because

of its approximation guarantee. By dominant-strategy incentive compatibility, we have that:

v1
e2,big(f(v1

e2,big, v
e2,one
2 ))− P1(v

e2,big
1 , v

e2,one
2 ) ≥ v1

e2,big(f(ṽ1, v
e2,one
2 ))− P1(ṽ1, v

e2,one
2 )

The allocation rule f outputs an allocation where bidder 1 wins item e2 for both (ṽ1, v
e2,one
2 ) and

(v1
e2,big, v

e2,one
2 ), so v1

e2,big(f(v1
e2,big, v

e2,one
2 )) = v1

e2,big(f(ṽ1, v
e2,one
2 )). By that, P1(ṽ1, v

e2,one
2 ) ≥

P1(v
e2,big
1 , v

e2,one
2 ). Combining this inequality with B.14 gives that P1(v

e2,big
1 , v

e2,one
2 ) ≤ k2, as needed.

To prove parts 6,7 and 8, we analyze the valuation profile (vboth1 , v
e1,big
2 ). Note that because of the

approximation guarantee of f , it allocates item e1 to bidder 2, so we have part 6. For part 7, assume that
f(vboth1 , v

e1,big
2 ) allocates e2 to bidder 1. Since only items e1 and e2 are valuable for the valuation vboth1 , we

have that vboth1 (f(vboth1 , v
e1,big
2 )) = 2k2, so by individual rationality, P1(v

both
1 , v

e1,big
2 ) ≤ 2k2, as needed.

Analogously, for part 8: if bidder 1 does not win e2, then he wins no items that are valuable for him,
so in this case vboth1 (f(vboth1 , v

e1,big
2 )) = 0. By individual rationality and no-negative-transfers, we get that

P1(v
both
1 , v

e1,big
2 ) = 0, as needed.

B.1.3 Proof of Lemma A.4 Similarly to the proof of Lemma A.4, we abuse notation by writing f(v1, v2)
for f(v1, v2, v

e3,one
3 , . . . , ven,onen ) and P1(v1, v2) for P1(v1, v2, v

e3,one
3 , . . . , ven,onen ) for every pair of valuations

v1 ∈ V1 and v2 ∈ V2.
The proof of parts 1, 2, 3 and 5 are identical to the proofs of these parts in Lemma 4.4, since all the

valuations in all of these cases are both unit demand and additive. We now prove the remaining parts.
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For part 4, we first show that bidder 1 wins a bundle that contains the item e1. Note that since the
allocation rule f and the payment scheme P1 are realized by a dominant-strategy mechanism, we have that:
(B.15)

vboth1 (f(vboth1 , v
e2,one
2 ))− P1(v

both
1 , v

e2,one
2 ) ≥ vboth1 (f(ve1,one1 , v

e2,one
2 ))− P1(v

e1,one
1 , v

e2,one
2 )

≥ 2k2 + 1 (by part 1)

Combining (B.15) with the property of no-negative-transfers implies that vboth1 (f(vboth1 , v
e2,one
2 )) ≥ 2k2 + 1.

Note that vboth1 has a value of at most 2k2 to bundles that do not contain e1, so f(vboth1 , v
e2,one
2 ) necessarily

outputs an allocation where bidder 1 wins a bundle that contains e1.
For the upper bound on the payment, note that vboth1 (f(vboth1 , v

e2,one
2 )) = vboth1 (f(ve1,one1 , v

e2,one
2 ))

and that by part 1, P1(v
e1,one
1 , v

e2,one
2 ) ≤ 1. Combining these inequalities with (B.15) gives that

P1(v
both
1 , v

e2,one
2 ) ≤ 1, that completes the proof of part 4.

To prove parts 6,7 and 8, we analyze the valuation profile (vboth1 , v
e1,big
2 ). Note that because of the

approximation guarantee of f , it allocates item e1 to bidder 2, so we have part 6. For part 7, assume that
f(vboth1 , v

e1,big
2 ) allocates e2 to bidder 1. Since only items e1 and e2 are valuable for the valuation vboth1 , we

have that vboth1 (f(vboth1 , v
e1,big
2 )) = 2k2, so by individual rationality, P1(v

both
1 , v

e1,big
2 ) ≤ 2k2, as needed.

Analogously, for part 8: if bidder 1 does not win e2, then he wins no items that are valuable for him,
so in this case vboth1 (f(vboth1 , v

e1,big
2 )) = 0. By individual rationality and no-negative-transfers, we get that

P1(v
both
1 , v

e1,big
2 ) = 0, as needed.

B.2 Proof of Proposition 2.1 Showing that an obviously strategy-proof implementation is a dominant
strategy implementation is trivial, so we only show the other direction: that a dominant-strategy
implementation is, in fact, an obviously strategy-proof implementation.

Fix a mechanism together with the dominant strategies S1, . . . ,Sn that realize an allocation rule f

together with payment schemes P1, . . . , Pn.
Assume towards a contradiction that there exists a player i such that the strategy Si is not obviously

dominant. Thus, by definition, there exists a valuation vi such that the behavior Si(vi) is not obviously
dominant for it. It implies that there is a vertex u ∈ Ni that is attainable given the behavior Si(vi) and
behavior profiles (B′

1, . . . , B
′
n) ∈ B1 × · · · × Bn and B−i ∈ B−i such that:

(B.16) vi(fi(Si(vi), B−i))− pi(Si(vi), B−i) < vi(fi(B
′
i, B

′
−i))− pi(B

′
i, B

′
−i)

where u ∈ Path(Si(vi), B−i) ∩ Path(B′
i, B

′
−i) and Si(vi) and B′

i dictate different messages at vertex u.
To reach a contradiction, we construct a strategy profile for the bidders in N \{i}, which we denote with

S ′
−i. This strategy profile is “constant”, in the sense that for every valuation profile v−i ∈ V−i, it outputs

the same behavior profile, which we denote with B′′
−i.

The behavior profile B′′
−i is as follows. First, for every vertex that is not a descendant of u, B′′

−i outputs
the same messages as the messages specified by B−i. We now describe the behavior of B′′

−i in the subtree
rooted at vertex u. For that, let us denote with n, n′ be the subsequent nodes of u given the message that
the behaviors Si(vi) and B′

i dictate, respectively. For all the vertices at the subtree rooted at vertex n, the
behavior profile B′′

−i specifies the same message as B−i. Similarly, at the subtree rooted at vertex n′, the
behavior profile B′′

−i outputs at every vertex the same message as B′
−i dictates. For every other vertex, B′′

−i

outputs some arbitrary message.
Fix an arbitrary valuation profile v−i of the players in N \ {i}. The construction of the strategy

profile S ′
−i guarantees that the behavior profile (Si(vi),S ′

−i(v−i)) reaches the same leaf as (Si(vi), B−i), so
fi(Si(vi), B−i)) = fi(Si(vi),S ′

−i(v−i)) and pi(Si(vi), B−i) = pi(Si(vi),S ′
−i(v−i)). Denote with S ′

i be the
strategy of player i that outputs for every vi ∈ Vi the behavior B′

i. Similarly to before, fi(B
′
i, B

′
−i) =

fi(S ′
i(vi),S ′

−i(v−i)) and pi(B
′
i, B

′
−i) = pi(S ′

i(vi),S ′
−i(v−i). Plugging these equalities in (B.16) gives:

vi(fi(Si(vi),S ′
−i(v−i)))− pi(Si(vi),S ′

−i(v−i)) < vi(fi(S ′
i(vi),S ′

−i(v−i)))− pi(S ′
i(vi),S ′

−i(v−i))

So by definition, the strategy Si is not dominant, so we get a contradiction, completing the proof.
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