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We study the role of regulatory inspections in a contract design problem in which a principal interacts
separately with multiple agents. Each agent’s hidden action includes a dimension that determines
whether they undertake an extra costly step to adhere to safety protocols. The principal’s objective
is to use payments combined with a limited budget for random inspections to incentivize agents
towards safety-compliant actions that maximize the principal’s utility. We first focus on the single-
agent setting with linear contracts and present an efficient algorithm that characterizes the optimal
linear contract, which includes both payment and random inspection. We further investigate how
the optimal contract changes as the inspection cost or the cost of adhering to safety protocols vary.
Notably, we demonstrate that the agent’s compensation increases if either of these costs escalates.
However, while the probability of inspection decreases with rising inspection costs, it demonstrates
nonmonotonic behavior as a function of the safety action costs. Lastly, we explore the multi-agent
setting, where the principal’s challenge is to determine the best distribution of inspection budgets
among all agents. We propose an efficient approach based on dynamic programming to find an
approximately optimal allocation of inspection budget across contracts. We also design a random
sequential scheme to determine the inspector’s assignments, ensuring each agent is inspected at most
once and at the desired probability. Finally, we present a case study illustrating that a mere difference
in the cost of inspection across various agents can drive the principal’s decision to forego inspecting a
significant fraction of them, concentrating its entire budget on those that are less costly to inspect.
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1 Introduction

The rapid growth of data-oriented applications has led to a surge in new products and
services offered by companies that provide personalized user experiences. Alongside the
benefits of personalization, however, there are growing concerns about potential unwanted
side effects that are not necessarily revealed or declared by these companies. For example,
many users wonder whether their data is stored securely every time they enter their
sensitive information on an online platform, especially given that instances of data breaches
and cyberattacks have become common.
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In the realm of healthcare, the failure of companies to reveal negative and undesired side
effects of drugs has had devastating consequences, as in the Vioxx case in the early 2000s and
the opioid epidemic exacerbated by Purdue Pharma in the United States. These episodes
demonstrate how inadequate disclosure and transparency can have severe consequences
for public health.

Another concerning example pertains to the design practices of leading tech companies.
There are valid concerns about whether they pay enough attention to safety, security, and
reliability when creating new products and algorithms. Releasing cutting-edge technologies
without adequate testing or safeguards raises questions about potential risks to users and
the wider public.

Beyond simply documenting such concerns, the question arises as to how we might
incentivize platforms to follow safety and security measures. In this work, we propose
a mechanism design framework based on contract theory to provide such incentives,
focusing on an incentive-producing role for inspections. Building on the classical principal-
agent model, where the agents (in this case, the platforms) take hidden and costly actions
that result in a reward for the principal, we introduce an additional dimension to the
model. Specifically, each agent must also decide whether to take a costly step to adhere
to safety and security measures or disregard them. In the event that the agent neglects
these measures, negative side effects may occur with a non-negligible probability, leading
to adverse consequences for the principal.

The principal offers compensation to each agent based on the reward generated from the
principal’s action. Moreover, the principal retains the option to conduct a random and costly
inspection, revealing whether the agent has complied with the safety and security measures
without disclosing any information about the agent’s underlying action. In addition,
although the principal maintains a separate contract with each agent, the collective design
of these contracts is constrained by the principal’s limited inspection budget; in particular
the number of inspectors. In essence, the principal’s objective is to identify the optimal
set of contracts, consisting of payments and inspections, that maximizes its overall utility
subject to its inspection budget.

Our work introduces a framework to model and analyze the role of regulatory and partial
inspections in contract design. These inspections aim to confirm the agent’s compliance
with laws emphasizing societal considerations, such as safety. Our first set of results focuses
on the design of linear contracts in a single-agent setting. We characterize the optimal
probability of inspection as a function of the ratio of the reward paid to the agent, and show
that it is a piecewise convex and decreasing function. Our detailed characterization enables
us to design an algorithm that finds the optimal linear contract in quasi-linear time in the
number of actions.

Furthermore, we determine that when the inspection becomes more costly for the princi-
pal, they tend to reduce the inspection probability but compensate the agent more to ensure
they are motivated to adhere to safety regulations. Similarly, if the cost associated with
observing safety protocols rises for the agent, the principal modifies the optimal contract by
increasing the agent’s compensation to guarantee adherence to safe practices. Surprisingly,
in such scenarios, the optimal probability of inspection does not necessarily increase. In fact,
it turns out that the increase in payment might even allow the principal to decrease the in-
spection level. This observation underscores that merely ramping up regulatory inspection
is not always the most effective strategy, especially in contexts where safety comes at a high
cost.
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Next, we turn our attention to a multi-contract setting with multiple agents. Here, due
to their budget constraints, the principal cannot assign the optimal inspection level to
each agent’s contract and must thus determine the best allocation of inspections. We
demonstrate that the principal’s utility from each contract, when considered as a function of
the maximum permissible inspection, is a piecewise concave and weakly increasing function.
Further, we establish that the principal’s problem in this context is closely related to the
multiple-choice knapsack problem. We then introduce a dynamic-programming-based
algorithm that finds an n-approximate solution, with a time complexity that is polynomial
in terms of the number of agents, the number of actions, and 1/n. We further use a random
procedure to assign inspectors to agents, ensuring that each agent is inspected with the
targeted probability of inspection. It’s important to note that we cannot determine each
inspector’s schedule independently since each agent must be inspected no more than once.
Accordingly, our procedure determines the assignment of inspectors sequentially. For every
pair of consecutive inspectors, there is at most one common agent they might inspect.
Nevertheless, we design each inspector’s assignment distribution based on the preceding
inspector to prevent overlaps and ensure that the desired inspection level is attained.

Finally, we present a case study illustrating an intriguing dynamic: even when dealing
with identical agents who solely differ in terms of the cost incurred by the principal to
inspect them, the principal may decide to abstain from inspecting a substantial proportion of
those with higher inspection costs. This observation suggests that agents have the potential
leverage to influence the principal’s action by increasing the cost barriers to monitor their
adherence to safety protocols. In fact, by doing so, they can dissuade the principal from
monitoring them and hence increase their welfare.

1.1 Related Work

Our model builds on the hidden-action principal-agent model [Grossman and Hart, 1992].
Within this general framework, the study of costly state verification dates back to the work
of Gale and Hellwig [1985], Townsend [1979] for debt contracts (see also chapter 5.3 in
[Bolton and Dewatripont, 2004] for discussion on costly verification or disclosure).

Our paper aligns most closely with the literature on contract design with random mon-
itoring [Barbos, 2022, Jost, 1991, 1996, Strausz, 1997]. In [Jost, 1991] the principal decides
randomly to monitor the agent’s action through a costly inspection, and it is argued that
in the optimal contract, the principal either performs the inspection or pays the inspection
cost to the agent. The work in [Jost, 1996] considers a model where the principal has private
information regarding their monitoring costs. In [Barbos, 2022], the inspection uncovers
the agent’s exact action with a certain probability, and in other cases, provides no infor-
mation. Our work departs from the existing literature in three primary respects: First, we
introduce a model of partial inspection in contract theory. In our framework, the inspection
fully discloses adherence to safety standards but reveals no information about the other
dimension of the agent’ actions. Second, we establish the computational complexity of both
equilibrium characterization and its comparative statics. And third, our results span both
single-agent and multi-agent settings.

It is also worth mentioning that while our work focuses on one-period contract design,
the optimal randomized inspection in dynamic contracts over time has been considered in
the literature as well [Ball and Knoepfle, 2023, Chen et al., 2020, Orlov, 2022, Varas et al.,
2020].

In mechanism design, our paper relates to the literature on mechanism design with costly
inspection or verification [Ben-Porath et al., 2014, Li, 2020, Mylovanov and Zapechelnyuk,
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2017]. The focus in this line of work is on the principal’s problem of allocating an object
based on the reports from the agents of their private types, reports which are subject to
potential inspection by the principal. These papers along with others such as [Erlanson and
Kleiner, 2020, Halac and Yared, 2020] use inspection as a tool when monetary payments are
not feasible; our work, on the other hand, allows for both payments and inspections. This
brings our work closer to [Alaei et al., 2020] in the mechanism design literature, where the
assumption is that an auctioneer can use both payments and a (full yet deferred) inspection.

Our work is also related to the literature on partial or probabilistic verification in mecha-
nism design [Ball and Kattwinkel, 2019, Caragiannis et al., 2012, Ferraioli and Ventre, 2018,
Green and Laffont, 1986]. In these models, an agent has a private type, and inspections can
differentiate certain type pairs from each other but might be ineffective with others. Our
safety inspection model can also be viewed in this model: pairs comprising a safe action
and an unsafe action are discernible, whereas pairs consisting of two safe or two unsafe
actions remain indistinct. In these works, however, inspections are presumed to be cost-free,
and their primary focus is to characterize the class of social choice functions that can be
implemented truthfully.

Our motivations are similar to those in the literature on regulatory inspections for incen-
tivizing companies to adhere to standard policies [Choe and Fraser, 1999, Ferraro, 2008,
Harrington, 1988]. For instance, in [Harrington, 1988], companies are partitioned into two
groups. One group is inspected more frequently, and its members face steeper fines if found
to be violating protocols. Adhering to standard protocols incurs a cost, and firms can be
shifted from one group to another—either via a reward or a punishment—based on their
performance.

Our work also relates to the literature on computational aspects of contract theory
[Babaioff et al., 2006, Dütting et al., 2022, Dutting et al., 2021, Zhu et al., 2023]. As in this line
of work, we focus on the class of linear contracts, given their simplicity and interpretability,
and the fact that linear contracts have been shown to be robust to the unknown actions
[Carroll, 2015] or unknown distributions [Dütting et al., 2019].

The remainder of the paper is organized as follows: Section 2 introduces the model and
setting considered in this study. Section 3 examines the single-agent scenario, characterizing
the optimal linear contract with partial safety inspection and exploring certain comparative
statics. In Section 4, we expand our analysis to a multi-contract context with a limited
inspection budget, drawing connections to the multiple-choice knapsack problem which
helps us in developing an algorithm for finding the optimal contract. We conclude the paper
in Section 5, and Appendix A contains proofs omitted from the main text.

2 The Model

We consider a multi-agent setting with < agents and one principal. For agent ℓ ∈

[<]:= {1, · · · ,<}, we use the notation (0ℓ , Bℓ ) to represent the agent’s action, where 0ℓ ∈

Aℓ
= {0ℓ1, · · · , 0

ℓ
=} determines the effort the agent invests in providing its service,1 and

Bℓ ∈ {0, 1} indicates whether the agent considers safety measures. Accordingly, we call
actions with Bℓ = 1 and Bℓ = 0 as safe and unsafe actions, respectively. For any 8 ∈ [=], the cost
of action 0ℓ8 is denoted by 2ℓ8 ≥ 0. Additionally, the cost of complying with safety measures
(i.e., Bℓ = 1) is denoted by ^ℓ

(
≥ 0. Hence, the total cost of action (0ℓ8 , B

ℓ ) is given by 2ℓ8 +1Bℓ=1^
ℓ
(
.

1Here, to simplify the notation, we assume all agents have = actions. However, our analysis will remain the same
when they have different numbers of actions.
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When agent ℓ takes action (0ℓ , Bℓ ), a random reward A ℓ ∈ Rℓ ⊆ R≥0 ∪ {−∞} accrues to the
principal. Specifically, if the agent takes action (0ℓ , 1) which includes adherence to safety
protocols, a nonnegative reward A ℓ is generated with probability 5 ℓ (A ℓ |0ℓ ). Conversely, if the
agent takes action (0ℓ , 0), neglecting safety measures, there is a probability U ℓ that negative
side effects occur, leading to a reward of −∞. With the complementary probability, these
side effects do not materialize, and a nonnegative reward A ℓ is generated with probability
5 ℓ (A ℓ |0ℓ ), similar to the case where the agent followed the safety measures.

The contract between each agent and the principal comprises two elements. The principal,
upon observing the reward A ℓ from agent ℓ , compensates them for their action by paying
them C ℓ (A ℓ ) ≥ 0 with the condition C ℓ (−∞) = 0. In other words, the principal pays nothing if
side effects occur. Additionally, the principal has the option to perform an inspection, with
probability Vℓ and at a cost of ^ℓ

�
, before the reward realization, which reveals whether the

agent adhered to safety measures or not, i.e., it reveals the value of Bℓ . What connects all
of the contracts is the fact that the principal has a limited capacity for only � ∈ Z+ unit
of inspection, meaning that the condition

∑<
ℓ=1 V

ℓ ≤ � should hold (one can think of this
as having � inspectors available). We also assume that the two events of inspection and
occurrence of side effects are independent.

We denote the expected reward to the principal and the expected payment to the ℓ-th
agent as a result of agent ℓ taking action (0ℓ8 , 1) by 'ℓ

8 and ) ℓ
8 , respectively, i.e.,

'ℓ
8 := EA∼5 ℓ (. |0ℓ8 )

[A ] and ) ℓ
8 := EA∼5 ℓ (. |0ℓ8 )

[C ℓ (A )] . (1)

2.1 Implementable Actions

We denote agent ℓ’s expected utility when taking action (0ℓ8 , B
ℓ ) by Uℓ

0 (0
ℓ
8 , B

ℓ ), which is
defined as follows:

Uℓ
0 (0

ℓ
8 , B

ℓ ) =

{

) ℓ
8 − 2ℓ8 − ^ℓ

(
Bℓ = 1,

(1 − Vℓ ) (1 − U ℓ )) ℓ
8 − 2ℓ8 Bℓ = 0.

(2)

We say an action (0ℓ , Bℓ ) is implementable for agent ℓ if there exists a contract, consisting of
(C ℓ (·), Vℓ ), such that the following two conditions hold:

• Incentive compatibility (IC): the agent has no incentive to deviate and choose another
action, i.e., Uℓ

0 (0
ℓ , Bℓ ) ≥ Uℓ

0 (0
′, B′), for any other 0′ ∈ Aℓ and B′ ∈ {0, 1}.

• Individual rationalism (IR): the agent is not better off by not taking the contract at all,
i.e., Uℓ

0 (0
ℓ , Bℓ ) ≥ 0.

In other words, IC and IR together ensure that, the best response of the agent to the offered
contract is to take the action (0ℓ , Bℓ ). We let Iℓ denote the set of implementable actions for
agent ℓ .

It is worth noting that having (0ℓ , Bℓ ) ∈ Iℓ for all ℓ ∈ [<] does not necessarily imply that
the tuple of actions ((0ℓ , Bℓ ))<ℓ=1 is implementable for all agents simultaneously, as we have
not yet taken into account the constraint

∑<
ℓ=1 V

ℓ ≤ �. To this end, we also say a tuple of
actions ((0ℓ , Bℓ ))<ℓ=1 is fully implementable (and denote the set of such tuples by I) if, for any ℓ ,
(0ℓ , Bℓ ) is implementable by some contract (C ℓ (·), Vℓ ) such that

∑<
ℓ=1 V

ℓ ≤ �.

2.2 The Principal’s Problem

Let us denote the principal’s expected utility from agent ℓ when that agent takes action
(0ℓ8 , B

ℓ ) by Uℓ
? (0

ℓ
8 , B

ℓ ). For Bℓ = 0, this utility is −∞ as the side effects arise with a non-zero
probability and lead to a reward of −∞. Hence, the principal would strictly prefer safe
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actions over unsafe ones. For the case of Bℓ = 1, the expected utility of principal is given by

Uℓ
? (0

ℓ
8 , 1) = 'ℓ

8 −) ℓ
8 − Vℓ^ℓ� . (3)

In addition, we denote the total expected utility of the principal when agents take actions
((0ℓ8 , B

ℓ
8 ))

<
ℓ=1 by U?

(

((0ℓ8 , B
ℓ
8 ))

<
ℓ=1

)

, defined as follows:

U?

(

((0ℓ8 , B
ℓ
8 ))

<
ℓ=1

)

=

{

∑<
ℓ=1 U

ℓ
? (0

ℓ
8 , 1) if Bℓ8 = 1 for all ℓ,

−∞ otherwise.
(4)

Now, the principal’s problem can be seen as designing a contract that incentivizes agents
to play the tuple of actions that maximizes her expected utility among all implementable
tuples of actions. In other words, the principal’s problem can be cast as finding the contract
that implements the solution to the following maximization problem:

max
( (0ℓ8 ,B

ℓ
8 ) )

<
ℓ=1

U?

(

((0ℓ8 , B
ℓ
8 ))

<
ℓ=1

)

(5)

s.t. ((0ℓ8 , B
ℓ
8 ))

<
ℓ=1 ∈ I .

We make the following assumptions throughout the paper:

ASSUMPTION 1. For every agent, we assume different actions have different costs, and moreover,
an action with a higher cost also has a higher expected reward. Also, we assume that no two actions
of any given agent have the same cost.

Assumption 1 ensures that no action dominates another one, meaning that it leads to
a higher expected reward at a lower cost. Under this assumption, and without loss of
generality, we assume 2ℓ1 < 2ℓ2 < · · · < 2ℓ= and 'ℓ

1 < 'ℓ
2 < · · · < 'ℓ

= for every ℓ ∈ [<].

ASSUMPTION 2. For every agent ℓ , we have max8 ('
ℓ
8 − 2ℓ8 ) > ^ℓ

(
.

Note that if this assumption does not hold for an agent, it implies that, even if that agent
receives the entire reward as payment, their utility would remain nonpositive for any safe
action. In simpler terms, this assumption guarantees there is a way to make at least one safe
action implementable for every agent.

Our focus is on linear contracts, which are contracts for which the agent’s payment is
directly proportional to the reward received by the principal. General contracts can often be
complex and challenging to understand or implement, while linear contracts offer a simpler
and more practical alternative. Moreover, under reasonable assumptions, linear contracts
are known to be worst-case optimal [Dütting et al., 2019]. In our setting, focusing on linear
contracts allow us to better isolate the role of partial inspection in contract design over a
useful and intuitive class of contracts.

More formally, we consider payment function C ℓ (A ) = W ℓA , for some W ℓ ∈ [0, 1] chosen by
the principal. Hence, the principal has two sets of parameters to choose: W ℓ , the ratio of the
reward paid to agent ℓ , and Vℓ , the probability of performing inspection regarding the safety
of agent ℓ’s action. Note also that in this case, ) ℓ

8 = W ℓ'ℓ
8 .

3 The Single-Agent Setting

To gain a better understanding of the nature of the problem, we begin with the single-agent
setting, i.e., < = 1. Without loss of generality, we assume � = 1 in this case. To simplify the
notation, we drop the superscripts throughout this section.

Let us first consider what happens if the principal is not allowed to do the inspection,
i.e., V is set to 0. In this case, the principal should intuitively offer a higher payment ratio to
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W

ℎ1 (W) := '1W − 21
ℎ2 (W) := '2W − 22
ℎ3 (W) := '3W − 23
ℎ4 (W) := '4W − 24

Fig. 1. Illustration of Dℎ (·)

W1
W2

W3

W4

W5

(W,Dℎ (W))

^(

(1 − V) (1 − U)W

W

Fig. 2. How to characterize V (W)

persuade the agent to adhere to safety protocols. However, as the following result shows,
this may not be enough.

LEMMA 1. If U <
^(
'=

, then there is no safe action that is implementable by a linear contract

without inspection.

This result shows that, when the negative side effects are rare enough, the principal
would need to perform the inspection to keep the agent committed to the safety measures.
Otherwise, when the occurrence probability of side effect is small enough, the agent takes
a chance in not abiding the safety protocols. Next, we continue by characterizing the
properties of the linear contract. By IC constraint, if a linear contract (W, V) implements the
safe action (08 , 1), then U0 (08 , 1) ≥ U0 (0 9 , 1) for any 9 ≠ 8. This simplifies to W'8 −28 ≥ W' 9 −2 9
for any 9 ≠ 8.

Now, inspired by [Dütting et al., 2019], we develop the following geometric characteri-
zation: for any 8 ∈ [=], let us define the linear function ℎ8 : [0, 1] → R as ℎ8 (W) = W'8 − 28 . As
we stated above, if the action (08 , 1) is implementable by (W, V), then ℎ8 (W) ≥ ℎ 9 (W) for any
9 ≠ 8. As a result, to find the set of implementable actions, we need to characterize the upper
envelope of the set of functions {ℎ 9 (·)}

=
9=1, denoted by Dℎ (·), which is a piecewise linear

and increasing function (see Figure 1 for an example). Each segment of Dℎ (·) corresponds
to a specific ℎ8 (·), representing the dominant function within that segment. This implies
that, in that segment, (08 , 1) stands as the sole implementable safe action (for the W values
pertaining to that segment), with no incentive to divert to an alternative safe action. Note
that, to satisfy the IC constraint, we must also ensure that there are no profitable deviations
to unsafe actions. Additionally, the IR constraint needs to be examined as well.

Next, using this derivation, we establish the following result on implementable safe
actions and their corresponding linear contracts:
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PROPOSITION 1. Suppose Assumptions 1 and 2 hold. There exist 0 = W0 < W1 < W2 < · · · < W: <

W:+1 = 1 such that the following holds:

(1) No safe action is implementable for W < W1.
(2) There exists a set of actions 81 < · · · 8: such that, for any 9 ∈ [:], the action (08 9 , 1) is

implementable with W ∈ [W 9 , W 9+1]. Moreover, (08 9 , 1) is the only implementable safe action for
W ∈ (W 9 , W 9+1).

(3) For any W ≥ W1, there exists V (W) such that (W, V) implements a safe action if and only if
V ≥ V (W).

PROOF. First, note that, in order for a safe action (0, 1) to be implementable, IR should
hold as well. Hence, if Dℎ (W) ≤ ^( , no safe action would be implementable by W . As a result,
no safe action is implementable for W below

W1 := (Dℎ)
−1 (^( ). (6)

Also, note that Dℎ (1) = max9 (' 9 − 2 9 ), which by assumption is greater than ^( . Therefore,
W1 < 1.

Now, let us focus on W ≥ W1. As we stated earlier, Dℎ (·) is a piecewise linear and increasing
function. Hence, there exist 81 < · · · 8: and W1 < W2 < · · · < W: < W:+1 = 1 such that, for any
9 ∈ [:], we have

Dℎ (W) = ℎ8 9 (W) for any W ∈ [W 9 , W 9+1] . (7)

In other words, on segment [W 9 , W 9+1], Dℎ (·) is equal to ℎ8 9 (·). Hence, for W ∈ [W 9 , W 9+1] the
only safe action that can potentially be implemented is (08 9 , 1). What remains is to rule out
deviation to unsafe actions. Recall that the agent’s utility from an unsafe action (0E, 0) is
given by

(1 − V) (1 − U)W'E − 2E (8)

which is, in fact, ℎE
(

(1−V) (1−U)W
)

. As a consequence, the maximum utility that an agent can
obtain from an unsafe action is given by maxE ℎE

(

(1− V) (1−U)W
)

which is Dℎ
(

(1− V) (1−U)W
)

.
Now, the IC constraint would require us to have

Dℎ (W) − ^( ≥ Dℎ
(

(1 − V) (1 − U)W
)

. (9)

Notice that the left-hand side is nonnegative, since W ≥ W1. Also, Dℎ is an increasing function,
which starts from a negative value, i.e., Dℎ (0) = max9 (−2 9 ). Hence, we can choose V large
enough such that (9) holds (see Figure 2 for an illustration). □

Note that, for any 9 ∈ [:], any W ∈ [W 9 , W 9+1] with V ≥ V (W) makes action (08 9 , 1) im-
plementable for the agent. Since increasing V would only decrease the principal’s utility,
without loss of generality, we could assume the principal picks V = V (W). Next, we charac-
terize how this probability of inspection V (W) changes as a function of W .

LEMMA 2. Suppose Assumptions 1 and 2 hold, and recall the definition of V (W) from Proposition
1. Then, V (W) is a decreasing function of W . Moreover, it is strictly decreasing when V (W) > 0.

This result formalizes an intuitive observation: if the principal aims to reduce agent’s
payment, they should increase the inspection probability; conversely, if the principal wishes
to avoid expensive inspections, they should offer higher compensation to the agent, encour-
aging adherence to safety protocols.

A natural question arises at this point: how should the principal determine the optimal
trade-off between the agent’s payment and the cost of inspection? Let W fall within the
interval [W 9 , W 9+1] for some 9 . Recall that, in this case, the principal’s utility is given by
(1 − W)'8 9 − V (W)^� . Consequently, the marginal cost associated with increasing the agent’s
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Fig. 3. How {{W 9,@}
E9
@=1}

:
9=1’s are defined
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0
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0.3

(
)

1
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4

Fig. 4. V (W) as a function of W (see Remark 1 for

the details)

payment is '8 9 , while the marginal cost of inspection is ^� . The next result helps us to find
the appropriate W that balances this trade-off.

LEMMA 3. Under the premise of Proposition 1, and for any 9 ∈ [:], V (W) is a convex function
over the interval [W 9 , W 9+1]. Moreover, it is strictly convex when V (W) > 0.

Proof sketch: Recall that, as illustrated in Figure 2, V (W) is given by

V (W) = max

{

1 −
D−1
ℎ

(Dℎ (W) − ^( )

W (1 − U)
, 0

}

. (10)

Now, let us determine where V (·) could be nondifferentiable. As W sweeps over the interval
[W 9 , W 9+1], the corresponding W̃ := D−1

ℎ
(Dℎ (W) − ^( ) may fall in this segment [W 9 , W 9+1] or one of

the previous segments [W8 , W8+1] for some 8 < 9 . For instance, in the example illustrated in
Figure 2, for W marked on the plot, W̃ falls within the previous segment. Hence, there exists a
sequence W 9 = W 9,0 < W 9,1 < · · · < W 9,E9 < W 9,E9+1 = W 9+1 such that W̃ falls within the same segment
for any W ∈ (W 9,@, W 9,@+1). See Figure 3 for an illustration on how the {W 9,@} are defined.

Now, for any @, the V (·) function is differentiable over the interval (W 9,@, W 9,@+1). To prove
Lemma 3, we first establish that V (·) is indeed convex over each interval (W 9,@, W 9,@+1) by
showing that its derivative is increasing there. Finally, we present an argument detailing
how the convexity of V (·) over the entire interval [W 9 , W 9+1] can be inferred from its derivative
across these subintervals. □

REMARK 1. It is worth noting that while V (·) is a convex function over each interval [W 9 , W 9+1],
it is not necessarily convex over the whole interval [W1, 1]. See Figure 4 for an example with = = 6

actions with the following parameters:

['8 ]
6
8=1 = [2, 3, 7, 9, 11, 13], [28 ]

6
8=1 = [1, 1.2, 2.1, 3.1, 4.8, 6.6], and ^� = ^( = 1. (11)

Now, having the characterization of the set of implementable actions, we focus on finding
the optimal contract which maximizes the principal’s utility. We start by showing that it can
be found efficiently.

THEOREM 1. Suppose Assumptions 1 and 2 hold. Then, the optimal linear contract (W∗, V∗) can
be characterized in time O(= log=).
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ALGORITHM 1: Computing the optimal contract in the single-agent setting

Input: The reward and cost of different actions ('8 , 28 )
=
8=1

Find the upper envelope function Dℎ (·) by finding the convex hull of ('8 , 28 )
=
8=1 using the Graham

Scan Algorithm [Graham, 1972];

Denote the convex hull by ('8 9 , 28 9 )
:
9=1 such that 81 < · · · < 8: ;

Find W1 < · · · < W: as defined in Proposition 1 and illustrated in Figure 2.

Find all the nondifferentiable points {{W 9,@}
E9+1

@=0 }:9=1 as illustrated in Figure 3;

Let S denote the set of contracts corresponding to {{(W 9,@}}
E9+1

@=0 }:9=1 and the associated utility of

the principal;
for 9 = 1 to : do

for @ = 1 to E 9 do
If the following equation has a solution over [W 9,@, W 9,@+1], then add it to S:

28 9 − 28 9@ + ^(

'8 9@W
2 (1 − U)

=

'8 9

^�
;

end

end
Output: Pick the contract(s) in S that maximizes the principal’s utility

PROOF. The first step is to characterize Dℎ . Notice that, using a duality argument, we
could transfer the problem of finding the upper envelope function to the problem of finding
the convex hull of the set of points ('8 , 28 )

=
8=1, which can be done in O(= log=) using the

Graham Scan Algorithm [Graham, 1972]. This allows us to find the set {81, · · · , 8: } as defined
in Proposition 1, and hence, the points W1, · · · , W: in time O(: log:) which is bounded by

O(= log=). In addition, note that we could find the points {{W 9,@}
E9
@=1}

:
9=1 in O(= log=) defined

in the proof of Lemma 3, by computing {D−1
ℎ

(Dℎ (W 9 ) + ^( )} (as illustrated in Figure 3).

Furthermore, the total number of such points, i.e.,
∑:

9=1 E 9 , is also : , so this part can also be
completed in time O(= log=).

Next, for any 9 ∈ [:], we first find the optimal contract (W, V (W)), and condition on
W ∈ [W 9 , W 9+1]. After doing so, the principal, among all such contracts, can pick the one
that leads to the highest expected utility for her. Therefore, it suffices to focus on the case
W ∈ [W 9 , W 9+1]. Recall that, in this case, the principal’s utility is given by

U? = (1 − W)'8 9 − V (W)^� . (12)

Note that, by Lemma 3, U? is a concave function over [W 9 , W 9+1]. Hence, to find its maximum,

we just need to find the point 3
3W
U? = 0, where V (·) is differentiable, and also check the

endpoints and points of nondifferentiable points. Thus, we would need to check for the
solutions of

V ′ (W) = −
'8 9

^�
. (13)

Using the notation in the proof of Lemma 3, we have an explicit characterization of V ′ (W)
over all intervals (W 9,@, W 9,@+1), and so we can find the potential solution to (13) in time O(1).
As a result, the total computation time that we need to check all the intervals (W 9,@, W 9,@+1),
for all 9 and 0 ≤ @ ≤ E 9 , and their endpoints, is O(=). This completes the proof. □

A summary of the above steps is provided in Algorithm 1. It is worth noting that the
optimal contract is not always unique.
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With the computational guarantees for determining the optimal contracts in hand, we
next investigate the comparative statics of the optimal contract, showing how the agent’s
payment and the probability of inspection vary as the parameters of the model correspond-
ing to the inspection costs change. Note that these results do not require any assumption on
the uniqueness of the optimal contract.

THEOREM 2. Suppose Assumptions 1 and 2 hold. Let (W∗, V∗) be an optimal contract.

(1) Suppose the principal’s cost of inspection ^� increases, and let (W ′∗, V ′∗) denote an optimal
contract under this new setting. Then, we have W ′∗ ≥ W∗ and V ′∗ ≤ V∗.

(2) Suppose the agent’s cost of complying with safety measure ^( increases, and let (W ′′∗, V ′′∗)
denote an optimal contract under this new setting. Then, we have W ′′∗ ≥ W∗.

PROOF. Proof of part (1): Notice that changing ^� does not change the {W 9 } 9 and the
V (·) function. As a consequence, changing ^� does not change the actions that (W∗, V∗) and
(W ′∗, V ′∗) implement. That said, let us denote the reward of the actions implemented by
(W∗, V∗) and (W ′∗, V ′∗) by ' and '′, respectively. Also, note that it suffices to show V ′∗ ≤ V∗,
and the other result W ′∗ ≥ W∗ will be implied using the fact that V (·) is a decreasing function.

Suppose ^� is increased to to ^′� . Since (W∗, V∗) is the optimal action with ^� , we have

(1 − W∗)' − V∗^� ≥ (1 − W ′∗)'′ − V ′∗^� . (14)

We prove the desired result by contradiction. Suppose V ′∗ > V∗. Hence, we have

−V∗ (^′� − ^) > −V ′∗ (^′� − ^). (15)

Adding the two sides of (14) and (15) implies

(1 − W∗)' − V∗^′� > (1 − W ′∗)'′ − V ′∗^′� . (16)

However, this is in contradiction with the assumption that (W ′∗, V ′∗) is an optimal contract
when the cost of inspection is ^′� . This completes the proof of this part.
Proof of part (2): Increasing ^( to ^′( does not change {W 9 }’s and the upper envelope function
Dℎ (·), and therefore, does not change the actions that (W∗, V∗) and (W ′′∗, V ′′∗) implement. Let
us denote the reward of the actions implemented by these two contracts by ' and '′′,
respectively. On the other hand, changing ^( changes the V (·) function to a new function

V̂ (·). It is straightforward to see that V̂ (·) is pointwise larger than V (·).
Using the optimality of (W∗, V∗) with ^( , we have

(1 − W∗)' − V (W∗)^� ≥ (1 − W ′′∗)'′′ − V (W ′′∗)^� . (17)

The optimality of (W ′′∗, V ′′∗) with ^′( implies

(1 − W ′′∗)'′′ − V̂ (W ′′∗)^� ≥ (1 − W∗)' − V̂ (W∗)^� . (18)

Summing the two sides of (17) and (18) and simplifying it gives us:

V̂ (W∗) − V (W∗) ≥ V̂ (W ′′∗) − V (W ′′∗). (19)

We next make the following claim:

CLAIM 1. V̂ (W) − V (W) is a decreasing function of W .

Notice that this claim, along with (19), gives us the desired result. It remains to show that
the claim holds.

Proof of Claim 1: Recall from Lemma 2 that both V (·) and V̂ (·) are decreasing functions

of W . Also, as stated above, for any W , V̂ (W) ≥ V (W). Hence, we could divide [0, 1] to at most

three intervals: (1) [0, WCℎ1 ) where both V (W) and V̂ (W) are positive, (2) [WCℎ1 , WCℎ2 ) where V (W) = 0
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but V̂ (W) is positive, and (3) [WCℎ2 , 1] where both V (W) and V̂ (W) are zero. We need to verify that

Claim 1 holds over all these three intervals. Note that since V (W) and V̂ (W) are continuous,
once we have the claim established in all these three intervals, it also holds over the whole
interval [0, 1].

Obviously Claim 1 holds for the third interval [WCℎ2 , 1] . It also holds over the second

interval, i.e., [WCℎ1 , WCℎ2 ), since V̂ (W) − V (W) = V̂ (W) which is a decreasing function of W . Hence,

it remains to show that our claim holds over the first interval, i.e., when V (W) and V̂ (W) are
both positive. In this case V (W) is given by

V (W) = 1 −
D−1
ℎ

(Dℎ (W) − ^( )

W (1 − U)
. (20)

Therefore, we need to show that 6(W, ^′( ) − 6(W, ^( ), with

6(W, ^( ) :=
D−1
ℎ

(Dℎ (W) − ^( )

W (1 − U)
, (21)

is an increasing function of W . Notice that D−1
ℎ

(·) is a continuous function which is nondif-
ferentiable at finitely many points. Hence, 6(W, ^( ), as a function of ^( , is continuous and
nondifferentiable at all but finitely many points. Next, we claim

6(W, ^′( ) − 6(W, ^( ) =

∫ ^′
(

^(

m

m^
6(W, ^)3^, (22)

where the integral in (22) is the Lebesgue integral. To establish this result, we can partition
the interval [^( , ^

′
( ] into subintervals where 6(W, ^) is differentiable with respect to to ^ over

each of them. Subsequently, we can apply the fundamental theorem of calculus to each of
these subintervals and then integrate them using the continuity of 6 to derive (22). Another
way to establish (22) is to first recognize that D−1

ℎ
is an absolutely continuous function as

it is a piecewise linear function. Then we use the generalized version of the fundamental
theorem of calculus (see Theorem 7.18 in [Rudin, 1986]).

Now, note that the derivative of 6 with respect to ^ is given by

m

m^
6(W, ^) =

−1

W (1 − U)Dℎ (D
−1
ℎ

(Dℎ (W) − ^( ))
. (23)

Since Dℎ (·) is increasing function, it is straightforward to see m
m^
6(W, ^) is an increasing

function of W . This, along with (22), shows that 6(W, ^′( ) − 6(W, ^( ) is an increasing function of
W which completes the proof of Claim 1. □

In essence, the first part of Theorem 2 shows that an increase in the inspection pricing ^�
prompts the principal to reduce the inspection probability. Simultaneously, the principal
increases the agent’s payment to ensure the agent remains incentivized to observe safety
protocols. The second part of the theorem shows that when the agent has to pay higher
costs for adhering to safety protocols, the principal increases the agent’s payment, thereby
motivating continued adherence to safety protocols. In this case, and at first glance, one
might intuitively presume that the principal would also increase the inspection probability,
based on the same rationale. However, as highlighted in the next example, this is not
necessarily the case.

EXAMPLE 1. Consider a setting where agent has = = 6 actions with rewards and costs given by

['8 ]
6
8=1 = [1.5, 3, 4, 6, 7, 9], [28 ]

6
8=1 = [1, 1.3, 1.5, 2.5, 3.4, 5.2] . (24)
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(b) V∗ as a function of ^(

Fig. 5. An example depicting how the optimal contract changes as ^( increases.

Figure 5 illustrates the optimal share of payment to the agent W∗ and the probability of inspection
V∗ as we increase ^( . In particular, as Figure 5a shows W∗ is a (weakly) increasing function of ^(
which is aligned with our result in Theorem 2. On the other hand, as we discussed above and Figure
5b shows, V∗ is not necessarily a monotone function of the cost ^( . The underlying cause of this
phenomenon is the interplay of two opposing forces. On one hand, by increasing the cost of safety for
the agent, i.e., ^( , the beta function V (·) increases pointwise. Put another way, had the payment ratio
W remained unchanged, the probability of inspection would have gone up. However, as we established
earlier, the optimal W∗ at equilibrium may also increase. In this context, an increased payment implies
that we reduce the probability of inspection. The combined impact of these two forces dictates whether
the optimal probability of inspection V∗ ascends or descends as a function of ^( .

4 The Multi-Contract Setting

We turn to the multi-contract setting. Although we understand how to determine the opti-
mal contract for each agent, we must ensure that the cumulative probability of inspection
does not exceed the inspection budget. For every agent ℓ ∈ [<], let Vℓ

min
represent the lowest

possible probability of inspection across all contracts that implement one of the actions for
agent 9 . As established by Lemma 2, the probability of inspection diminishes as the agent’s
payment increases. Thus, it reaches its minimum when the agent receives the maximum
payment, which is the total reward. Consequently, we deduce that Vℓ

min
= Vℓ (1), where

Vℓ (·) is the V (·) function introduced in Proposition 1 in relation to agent ℓ .2 The subsequent
assumption ensures the presence of at least one feasible set of contracts.

ASSUMPTION 3. We have
∑<

ℓ=1 V
ℓ
min

≤ �.

Using Theorem 1, we can find optimal contracts for different agents separately and do so
in time O(<= log=). However, the total probability of inspection could potentially exceed
�. In such cases, compromises would be necessary, meaning we would have to consider
suboptimal contracts that can be implemented with a lower probability of inspection than

2We reuse the major notation from the single-agent setting by using superscripts to distinguish among the different
agents. In particular, recalling Proposition 1, and for any agent ℓ ∈ [<], we have 0 < W ℓ1 < W ℓ2 < · · · < W ℓ

:ℓ
< W ℓ

:ℓ +1
=

1, where for any 9 ∈ [:ℓ ], the action (0ℓ
8ℓ
9

, 1) is implementable for agent ℓ with W ∈ [W ℓ9 , W
ℓ+1
9 ].
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Fig. 6. Principal’s utility for agent’s ℓ action

the optimal ones. Consequently, the following natural question arises: For any agent ℓ ∈ [<],
and given some V̄ℓ , which contract maximizes the principal’s utility Uℓ

? among all those whose

probability of inspection is at most V̄ℓ?
Notice that, with W ∈ [W ℓ9 , W

ℓ
9+1], the utility of principal from agent ℓ’s action is given by

Uℓ
? (W, V

ℓ (W)) = (1 − W)'ℓ
8ℓ9
− Vℓ (W)^ℓ� . (25)

For the sake of our analysis, we find it more convenient to interpret the principal’s utility as
a function of V. Let us denote V (W ℓ9 ) by Vℓ9 . Notice that, since Vℓ (·) is a decreasing function,

we have

Vℓ1 > · · · > Vℓ
:ℓ

> Vℓ
:ℓ+1

= Vℓmin . (26)

We also denote the inverse of Vℓ (·) by W ℓ (·). Using Lemma 2 and 3, it is straightforward to
verify that W ℓ (·) is also a decreasing function and it is convex over each interval [Vℓ9+1, V

ℓ
9 ].

Next, we can rewrite the principal’s utility from agent ℓ’s action given in (25) as a function
of V. In particular, for any V ∈ [Vℓ9+1, V

ℓ
9 ], we have

Uℓ
? (W

ℓ (V), V) = (1 − W ℓ (V))'ℓ
8ℓ9
− V^ℓ� . (27)

This is a concave function over each interval [Vℓ9+1, V
ℓ
9 ]. Figure 6a depicts this function for

the example provided in Remark 1. The dashed lines highlight the intervals [Vℓ9+1, V
ℓ
9 ]’s.

Now, going back to our question above, with a slight abuse of notation, we denote the
maximum utility that the principal can obtain from agent ℓ given the condition V ≤ V̄ by
Uℓ

? (V̄) which is given by

Uℓ
? (V̄) = max

V≤V̄
Uℓ

? (W
ℓ (V), V). (28)

It is straightforward to see that this function is (weakly) increasing. Moreover, since
Uℓ

? (W
ℓ (V), V) is concave over each interval [Vℓ9+1, V

ℓ
9 ], the function Uℓ

? (V̄) consists of seg-

ments that are either constant or both concave and increasing. Figure 6b illustrates this
function Uℓ

? (V̄) for the same example of Figure 6a.
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Now, the principal’s problem can be formulated as

max
(V̄ℓ )<ℓ=1

<
∑

ℓ=1

Uℓ
? (V̄

ℓ ) such that
<
∑

ℓ=1

V̄ℓ ≤ �. (29)

The optimization problem (29) bears a resemblance to the multiple-choice knapsack prob-
lem (MCKP), a variant of the classic knapsack problem. In the MCKP, items are categorized
into classes, and the goal is to maximize the cumulative value of the chosen items without
surpassing the knapsack’s capacity and under the constraint of selecting at most one item
from each class. To make the connection to our setting clearer, consider discretizing each
function Uℓ

? (·) and grouping all the samples into a single class. For a given class ℓ ∈ [<],

each item takes the form (V,Uℓ
? (V)), where the probability of inspection V is seen as the

weight and Uℓ
? (V) is interpreted as this item’s value. The knapsack’s capacity in our scenario

is set to �, representing the total inspection budget. The constraint of selecting one item
from each class translates to the constraint that we can inspect each agent at most once.

A comprehensive survey of various methods to address the MCKP can be found in
[Kellerer et al., 2004]. We choose to use a dynamic programming approach which is inspired
by the algorithm presented in [Dudziński and Walukiewicz, 1987] for the MCKP. This yields
the following complexity result.

THEOREM 3. Suppose Assumptions 1-3 hold. Then, for any n > 0, an n-approximate solution to

the principal’s problem (29) can be found in time O
(

(<= + <3�
n2

) log=
)

.

PROOF. First recall that, similar to Algorithm 1, we can characterize the function Uℓ
? (·) in

time O(= log=) for any ℓ , and hence, in time O(<= log=) for all ℓ ∈ [<]. Consequently, we
can compute Uℓ

? (V) at any given V in time O(log=).
To ensure each agent receives the minimum inspection, we rewrite the optimization

problem (29) as

max
(G ℓ )<ℓ=1

<
∑

ℓ=1

Uℓ
? (V

ℓ
min + G ℓ ) such that

<
∑

ℓ=1

G ℓ ≤ �̃ := � −

<
∑

ℓ=1

Vℓmin . (30)

We next discretize the inspection levels with stepsize X > 0. Let us denote the grid corre-

sponding to agent ℓ by Gℓ . For any ; ∈ [<] and nonegative 9 ≤ �̃
X

, let + (;, 9) be the solution
to the following maximization problem:

+ (;, 9) := max
(G ℓ ∈Gℓ );ℓ=1

;
∑

ℓ=1

Uℓ
? (V

ℓ
min + G ℓ ) +

<
∑

ℓ=;+1

Uℓ
? (V

ℓ
min) such that

;
∑

ℓ=1

G ℓ ≤ 9X . (31)

In other words,+ (;, 9) represents the highest utility the principal can achieve when searching
over the grid, provided they only consider the first ; agents for any inspections beyond the
minimum and allocate only 9X from their additional inspection budget.

Note that + (;, 9) admits the following recursive characterization:

+ (;, 9) = max
[=0,· · · ,min{ 9,1/X }

(

+ (; − 1, 9 − [) + U;
? (V

;
min + [X) − U;

? (V
;
min)

)

. (32)

Using (32), + (;, 9) can be computed in time O(log=/X). As a result, we can compute

+ (<, ⌊�̃/X⌋) in time O(<�̃/X2 log=) (and by going back recursively, we find the correspond-
ing optimal probability of inspection for each agent). Finally, we bound the error of such a
discretization.
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LEMMA 4. Let OPT denote the solution to (30). Then, the solution found over the grid
∏<

ℓ=1 G
ℓ

with stepsize X is lower bounded by

OPT − X

(

<
∑

ℓ=1

[

('ℓ
=)

2

^ℓ
(

− ^ℓ�

])

. (33)

We defer the proof of the lemma to the appendix. Given this result, by setting

X = n U1
?

(

� −

<
∑

ℓ=2

Vℓmin

)

(

<max
ℓ

('ℓ
=)

2

^ℓ
(

)−1

, (34)

in which U1
? (� −

∑<
ℓ=2 V

ℓ
min

) serves as a lower bound for the OPT, we obtain the desired
approximation. □

Having obtained the approximately optimal solution, a natural question arises regard-
ing its implementation: Given a specific allocation of the inspection budgets (V̄ℓ )<ℓ=1, how
should the � inspectors be (randomly) allocated among the< agents to ensure that agent
ℓ is inspected with probability V̄ℓ? When � = 1, the solution is straightforward: one can
generate a uniform random variable * over [0, 1] and inspect agent ℓ if * falls within the
interval [

∑ℓ−1
8=1 V̄8 ,

∑ℓ
8=1 V̄8 ]. However, when � is greater than one, the situation becomes

more complex because we must ensure that each agent is inspected by at most one inspector.
We can formulate this problem within the framework of the well-known Birkhoff-von-
Neumann algorithm [Birkhoff, 1946] by constructing a matrix where each entry represents
the probability that a specific agent is inspected by a particular inspector. This algorithm
presents a method to decompose an < ×< bistochastic matrix into a convex combination of
permutation matrices, with a time complexity of O(<2). However, in our setting, there are
no constraints on the joint distribution of inspectors and agents, apart from the provided
marginals. This allows us to derive an intuitive and simpler algorithm that runs in O(<)

time complexity.

LEMMA 5. For any given vector of (V̄ℓ )<ℓ=1, there exists a random algorithm to assign inspectors

to agents in time O(<) such that each agent ℓ ∈ [<] is inspected with probability V̄ℓ .

Proof sketch: Consider the first inspector who wants to allocate their one unit of inspection
across agents. They start with agent one, dedicating a V̄1 fraction of their inspection budget,
and then proceed to agent two, continuing in this manner until their budget is over. This
procedure, however, implies that the final agent they inspected (let us call it agent ℓ) might
be inspected at a probability lower than the target, V̄ℓ , due to the depletion of their inspection
unit. Consequently, the second inspector should start from this agent, taking care of the
residual inspection probability, and then advance to subsequent agents.

It is critical to ensure that agent ℓ undergoes inspection by no more than a single inspector.
We design a joint inspection plan for the initial two inspectors ensuring that, in each instance,
at most one of them inspects agent ℓ . In essence, the inspection schedule of the second
inspector is contingent on the actions of the first. The second inspector is allowed to inspect
agent ℓ only when the first inspector had inspected one of the initial ℓ − 1 agents. The
scheduling for subsequent inspectors is designed similarly, ensuring that in cases where
two consecutive inspectors are in charge of inspecting one agent, they do not conduct the
inspection simultaneously. The details of this method are provided in the appendix for the
sake of completeness. □
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4.1 An Illustrative Example

In general, the structure of the optimal allocation of the inspection budget across agents
could be complex or even counter-intuitive. For example, even when we have a set of
homogeneous agents, the optimal inspection allocation does not necessarily involve in-
specting all agents equally. To illustrate, consider Figure 6b. Imagine we have two identical
agents whose corresponding principal utilities are depicted in this figure. Specifically, the
utility of the principal from one agent when inspected with probability Vmin + 0.1 is above
3, which is more than twice the utility from one agent when inspected with probability
Vmin + 0.05, a value below 1.3. This suggests that, given two homogeneous agents with these
characteristics, inspecting both equally could be suboptimal compared to inspecting one at
the minimum level and allocating all the extra inspection budget to the other.

We next provide a case study that illuminates the phenomenon where the principal
might opt to forgo inspecting a subset of agents, especially when there is a disparity in
inspection costs. Imagine a scenario in which agents are identical in all respects except for
their inspection costs. Specifically, assume that the inspection costs for agents take on one
of two distinct values: high and low. Half of the agents have high inspection costs, while
the other half have low costs. In this case, we show the following result:

PROPOSITION 2. Given the scenario described above and assuming Vℓ
min

= 0 for all ℓ ∈ [<],
there exists a threshold " such that for every < ≥ " , the principal does not inspect half of the
agents associated with a higher inspection cost. Specifically, in any optimal solution to the principal’s
optimization problem (29), these agents’ allocated level of inspection is zero.

The proof can be found in the appendix. This outcome emphasizes that as the number
of agents increases, the principal may choose to not monitor a substantial subset of agents
that entail high inspection costs, directing its entire inspection budget towards those that
are less costly to inspect. Conversely, this suggests that agents who manage to elevate the
inspection costs for the principal might escape the inspection and, as a result, secure a
higher payment.

5 Conclusion

We study the role of safety and regulatory inspections in contract design problems. In
particular, we consider a principal who can use random and costly inspections, in addition
to payments, to incentivize agents to take safe actions. For the single-agent setting, we
provide an efficient algorithm to find the optimal linear contract, and also establish how the
payment fraction and inspection probability vary as the costs of inspection or adherence to
safety protocols increase. We extend our results to the multi-agent setting, where we draw
connections with the Knapsack problem to find an approximately optimal set of contracts
in that case. Our case study on the structure of the solution illustrates how agents who are
most costly to inspect may escape monitoring.

We believe our framework can be used and extended to study further problems surround-
ing regulatory actions in contract design. In particular, one interesting future direction
would be to study the dynamic setting where the principal interacts with the agents across
multiple rounds and must decide how often to inspect different agents.
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A Deferred Proofs

A.1 Proof of Lemma 1

Suppose some safe action (08 , 1) is implementable. Then, by IC, we should have

U0 (08 , 1) ≥ U0 (08 , 0), (A1)

which implies

W'8 − 28 − ^( ≥ (1 − U)W'8 − 28 . (A2)

As a consequence, we should have

UW'8 ≥ ^( . (A3)

Using 1 ≥ W and '= ≥ '8 , implies that U'= ≥ ^( which contradicts the assumption given in
the lemma’s statement.

A.2 Proof of Lemma 2

As depicted in Figure 2, we can cast V (W) as:

V (W) = max

{

1 −
D−1
ℎ

(Dℎ (W) − ^( )

W (1 − U)
, 0

}

. (A4)

Hence, it suffices to show that

5 (W) :=
D−1
ℎ

(Dℎ (W) − ^( )

W (1 − U)
(A5)

is strictly increasing in W . Note that Dℎ (·) is a piecewise linear function, and therefore, it is
differentiable on all but finitely many points. As a result, and due to the strict monotonicity
of Dℎ (·), the function 5 (·) is likewise differentiable, except at a finite number of points.
Consequently, there exists a sequence 0 = d1 < d2 < · · · < dE = 1 such that 5 is differentiable
within each interval (d 9 , d 9+1). Furthermore, since Dℎ (·) and its inverse are both continuous,
5 (·) is also continuous. We claim that it suffices to show that the derivative of 5 (·) is positive
wherever it is differentiable. By proving this, we establish that 5 is increasing on each
interval (d 9 , d 9+1), which, combined with the continuity of 5 , concludes our proof.

To show the aforementioned claim holds, note that the derivative of 5 is given by:

5 ′ (W) =

D′
ℎ
(W )

D′
ℎ
(D−1

ℎ
(Dℎ (W )−^( ) )

W − D−1
ℎ

(Dℎ (W) − ^( )

W2 (1 − U)
. (A6)

Let us denote D−1
ℎ

(Dℎ (W) − ^( ) by W̃ . To show the derivative (A6) is positive, we need to show
that WD′

ℎ
(W) > W̃D′

ℎ
(W̃). First, notice that, since Dℎ (·) is increasing, W̃ < W . Second, notice that

Dℎ (·) is convex as it is the maximum of a collection of linear (and hence convex) functions.
Consequently, D′

ℎ
(·) is increasing, and thus, D′

ℎ
(W) > D′

ℎ
(W̃) as well, which completes the

proof.

A.3 Proof of Lemma 3

Recall the definition of function 5 from the proof of Lemma 2. It suffices to show 5 (·) is
strictly concave over the interval [W 9 , W 9+1]. To do so, we first show 5 (·) is strictly concave
over the interval (W 9,@, W 9,@+1) for any @.
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Let W ∈ (W 9,@, W 9,@+1) and suppose W̃ falls within the interval [W 9@ , W 9@+1 ] where 9@ ≤ 9 . Recall
the derivative of 5 in (A6) is given by

5 ′ (W) =

D′
ℎ
(W )

D′
ℎ
(W̃ )

W − W̃

W2 (1 − U)
. (A7)

Note that D′
ℎ
(W) = '8 9 and D′

ℎ
(W̃) = '8 9@ . Therefore, we can rewrite the derivative of 5 at W as:

5 ′ (W) =
'8 9W − '8 9@ W̃

'8 9@W
2 (1 − U)

. (A8)

Recall that Dℎ (W̃) = '8 9@ W̃ − 28 9@ is equal to Dℎ (W) − ^( where Dℎ (W) = '8 9W − 28 9 . As a result, we

can simplify the numerator of (A8) to 28 9 − 28 9@ + ^( . Thus, we have

5 ′ (W) =
28 9 − 28 9@ + ^(

'8 9@W
2 (1 − U)

. (A9)

Therefore, 5 ′ (W) is decreasing over (W 9,@, W 9,@+1), and hence, 5 ′ (·) is concave over this interval.
Moreover, as we go from one interval to another, i.e., as @ increases, '8 9@ and 28 9@ both

increase, meaning that 5 ′ (W) further decreases. This, along with the fact that minimum
of concave functions is also concave, implies that 5 (·) is concave over the whole interval
[W 9 , W 9+1]. This completes our proof.

A.4 Proof of Lemma 4 in Theorem 3

It is sufficient to prove that for any ℓ , Uℓ
? (·) is Lipschitz with a parameter bounded by

('ℓ
=)

2

^ℓ
(

− ^ℓ� .

By taking the optimal solution and rounding agent ℓ’s inspection level down to the nearest

element of the grid Gℓ , the discretization error will be limited to X
[

('ℓ
= )

2

^ℓ
(

− ^ℓ
�

]

given that the

grid has a resolution of X . Note that by rounding down, we ensure the inspection budget is
not exceeded.

Further, according to (28), Uℓ
? (V) is either equal to Uℓ

? (W
ℓ (V), V) or remains constant.

Hence, to determine the upper bound on the Lipschitz parameter of Uℓ
? (·), it is enough to

find the upper bound for the derivative of Uℓ
? (W

ℓ (V), V) as a function of V. While it might not
be a continuously differentiable function, it is piecewise differentiable. Given its continuity,
bounding its derivative across each segment suffices for our objective. Recall from (27)

Uℓ
? (W

ℓ (V), V) = (1 − W ℓ (V))'ℓ
8ℓ9
− V^ℓ� ,

where W ℓ (V) is a decreasing function of V. Hence, when differentiable, we have

3

3V
Uℓ

? (W
ℓ (V), V) ≤

�

�

�

�

3

3V
W ℓ (V)

�

�

�

�

'ℓ
= − ^ℓ� , (A10)

where we used the fact that 'ℓ
= ≥ 'ℓ

8ℓ9
. Next, using the inverse function theorem, we have

�

�

�

�

3

3V
W ℓ (V)

�

�

�

�

≤

�

�

�

�

1

5 ′ℓ (W)

�

�

�

�

at W ℓ (V )

, (A11)
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where 5 ℓ (·) is defined for agent ℓ and similar to (A5) in the proof of Lemma 2 for the
single-agent case. Note that, by (A9), we have

5 ′ℓ (W) ≥
^ℓ
(

'ℓ
=W

2 (1 − U)
≥

^ℓ
(

'ℓ
=

,

which, along with (A10) completes the proof of the lemma.

A.5 Proof of Lemma 5

For any 1 ∈ [�], define ℓ1 as the smallest integer ℓ such that
∑ℓ

9=1 V̄
9 ≥ 1 (and let ℓ0 = 1 for

convenience).
Inspectors’ assignments are decided sequentially, progressing from inspector 1 to �.

Specifically, inspector 1 is assigned to agent F1 ∈ {ℓ1−1, ℓ1−1 + 1, . . . , ℓ1}. Starting with the
first inspector, they inspect agent ℓ < ℓ1 with probability V̄ℓ and agent ℓ1 with probability

Z1 := 1 −
∑ℓ1−1

8=1 V̄8 . This assignment can be carried out using the uniform random variable
generator as stated earlier.

Assuming we have determined assignments for inspectors 1, . . . , 1 − 1, we next decide the
agent for inspector 1. A key challenge arises because agent ℓ1−1 is inspected with probability

Z1−1 := 1 − 1 −
∑ℓ1−1−1

8=1 V̄8 , which could be less than its targeted inspection probability V̄ℓ1−1 .

Therefore, inspector 1 should inspect agent ℓ1−1 with the remaining probability V̄ℓ1−1 − Z1−1,
but this should only occur when inspector 1 − 1 has opted to inspect other agents. To do so,
we use the following procedure:

i) If F1−1 = ℓ1−1, then inspector 1 inspects one of the agents in the set {ℓ1−1 + 1, . . . , ℓ1}.
In other words, in this scenario, inspector 1’s single unit of inspection is distributed
among these agents. In particular, for agent ℓ < ℓ1 , their probability of inspection
is proportional to V̄ℓ , and for agent ℓ1 , it is proportional to Z1 . More formally, agent
ℓ ∈ {ℓ1−1 + 1, . . . , ℓ1 − 1} is inspected with probability

V̄ℓ

1 − V̄ℓ1−1 + Z1−1
,

and agent ℓ1 is inspected with probability

Z1

1 − V̄ℓ1−1 + Z1−1
.

ii) If F1−1 ≠ ℓ1−1, then agent ℓ1−1 is inspected by probability

V̄ℓ1−1 − Z1−1

1 − Z1−1
.

The remaining probability of inspection in this case is divided between agents {ℓ1−1 +

1, . . . , ℓ1} in a proportional way similar in part (i).

The above procedure ensures that agent ℓ1−1 is not inspected by both inspectors 1 − 1 and 1.
Also, it is straightforward to verify that each agent ℓ’s probability of inspection matches the
given desired level V̄ℓ1−1 . This completes the proof.

A.6 Proof of Proposition 2

For simplicity of notation, assume that< is even. All results proceed similarly if< is odd.
We denote the high and low inspection costs by ^�

�
and ^!

�
, respectively. Without loss of
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generality, let us assume the inspection cost corresponding to the first</2 agents is ^!
�

and

the inspection cost corresponding to the second half is ^�
�

.
Since agents differ only in their inspection costs, we deduce that

U1
? (W

1 (V), V) = · · · = U
</2
? (W</2 (V), V) > U

</2+1
? (W</2+1 (V), V) = · · · = U<

? (W< (V), V),

for any V > 0. This leads directly to

U1
? (V) = · · · = U

</2
? (V) > U

</2+1
? (V) = · · · = U<

? (V) (A12)

for any V > 0.
Let (V̄1, · · · , V̄<) be a solution to the optimization problem (29). Using (A12), we infer

V̄8 ≥ V̄ 9 for any 8 ∈ [</2] and 9 ∈ {</2 + 1, · · · ,<}. The inequality becomes strict when the
values are positive. To see this, note that, otherwise, the principal could swap V̄8 with V̄ 9 to
increase their utility.

Without loss of generality, let us assume that V̄</2 is the minimum inspection level
among the first half of the agents, i.e., V̄</2

= min V̄1, · · · , V̄</2, and V̄</2+1 is the maximum
inspection level among the second half, i.e., V̄</2+1

= max V̄</2+1, · · · , V̄< . As previously
discussed, V̄</2 ≥ V̄</2+1, and the inequality is strict if the value on the left-hand side is
positive.

Now, if V̄</2+1
= 0, then we are done. Otherwise, we have

2�

<
≥ V̄</2

> V̄</2+1
> 0.

Given that Uℓ
? (·) is piecewise differentiable, for sufficiently large <, both V̄</2 and V̄</2+1

will fall in the first differentiable segments of U</2
? (·) and U

</2+1
? (·) respectively. As a result,

and given that agents are similar aside from their inspection costs, for ; ∈ {</2,</2 + 1} we
have

3

3V
U;

? (V̄
; ) = −

3

3V
W (V)' − ^ℓ� , (A13)

for some ' and W (·).
On the other hand, note that we have

3

3V
U

</2
? (V̄</2) =

3

3V
U

</2+1
? (V̄</2+1), (A14)

because if this were not the case, a slight increase in the inspection level of the one with
the higher derivative, along with the decrease by the same amount in the one with the
lower derivative, would boost the total principal utility. (The Karush–Kuhn–Tucker (KKT)
conditions can also be used to arrive at this result, as, in fact, the proof of the KKT theorem
uses a rationale analogous to the one proposed here [cf. Bertsekas, 1997]).

Putting (A13) and (A14) together, we have

^�� − ^!� = '

(

3

3V
W (V</2)' −

3

3V
W (V</2+1)'

)

. (A15)

Notice that, as< grows, the right-hand side goes to zero as 3
3V

W (·)' is a continuous function

and both V</2, V</2+1 ∈ [0, 2�/<]. However, the left-hand side remains constant which leads
to a contradiction. This completes the proof.
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