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Bridging Network Science and Vision Science:
Mapping Perceptual Mechanisms to Network

Visualization Tasks
S. Sandra Bae, Kyle Cave, Carsten Görg, Paul Rosen, Danielle Albers Szafir, and Cindy Xiong Bearfield

Abstract—Network visualizations are understudied in graph-
ical perception. As a result, most network visualization designs
still largely rely on designer intuition and algorithm optimizations
rather than being guided by knowledge of human perception. The
lack of perceptual understanding of network visualizations also
limits the generalizability of past empirical evaluations, given
their focus on performance over causal interpretation. To bridge
this gap between perception and network visualization, we intro-
duce a framework highlighting five key perceptual mechanisms
used in node-link diagrams and adjacency matrices: attention,
visual search, perceptual organization, ensemble coding, and
object recognition. Our framework describes the role these
perceptual mechanisms play in common network analytical tasks.
We use the framework to revisit four past empirical investigations
and outline future design experiments that can help produce more
perceptually effective network visualizations. We anticipate this
connection will afford translational understanding to guide more
effective network visualization design and offer hypotheses for
perception-aware network visualizations.

Index Terms—Network visualizations, perceptual mechanisms,
design framework

V ISUAL representations of networks often default to node-
link diagrams, adjacency matrices, and their respective

derivatives [1]. The visual characteristics behind many network
layouts [2], [3] or re-ordering algorithms [4] are based on
aesthetic metrics grounded in designer experience and con-
vention rather than empirical data about how people perceive
networks. These metrics often focus on individual microscale
characteristics (e.g., do two edges cross) rather than on the
macroscale relationships between characteristics that define
the visual structure of a network visualization. We currently
have limited insight into how people perceive patterns even
in common network visualizations as they are understudied in
graphical perception [5].

This limited insight is challenging, in part, because com-
pared to other visualization types, conventional network vi-
sualizations use physical space differently. Most common
visualizations represent values using absolute space (e.g., mark
position or length). For example, scatterplots and bar charts
directly map values to spatial positions. In contrast, the spatial
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placement of nodes in a node-link diagram does not di-
rectly encode values. Rather, network layout algorithms often
leverage relative spatial relationships among nodes to reveal
higher-level features, such as clusters. Density in adjacency
matrices is loosely correlated with connectedness but is highly
dependent on the matrix row and column order. For example,
a continuous path in the network may be encoded by non-
adjacent cells in the matrix. We turn to vision science—
the study of how humans perceive and reason about the
visual world—to systematically understand how we can design
network visualizations that leverage human perception.

Elements of vision science have long been applied to
network visualization perception, with prior work bridging
vision science and visualization yielding actionable guidelines
to inform the design and development of more effective
visualizations [5], [6]. The present paper acknowledges the
critical interplay between foundational principles rooted in
vision science and algorithmic intuition, re-emphasizing the
importance of applying a cohesive interdisciplinary framework
to network visualizations. By leveraging vision science princi-
ples, we can renew our understanding and inspire new frontiers
to advance techniques that augment network visualizations
through their unique use of physical space.

We introduce a framework (Table I) that maps five relevant
perceptual mechanisms when using node-link diagrams and
adjacency matrices for common network analysis tasks [7]:
attention, visual search, perceptual organization, ensemble
coding, and object recognition.

Our framework concentrates on relatively simple networks
to establish a foundational mapping of perceptual mechanisms
to network visualizations. For instance, the scale of networks
discussed in this work is in line with most experiment studies
of network visualizations [8]. This paper assumes networks
with the following characteristics:

• Scale: Medium, sparse networks where the number of
nodes is [21, 50] and the linear density is [1.01, 2.0] (note:
we adhere to the definitions provided by Yoghourdjian et
al.’s survey [8])

• Network Structure: Unweighted
• Network Visualizations: Static adjacency matrices and

node-link diagrams
We start with these basic characteristics for our framework

to serve as a roadmap for the network visualization and vision
science communities. The goal is to (i) revisit results from past
investigations to connect past findings and generalize results
across a broader set of use cases (Sec. IV-A) and (ii) pose
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novel investigations into network visualization efficacy and
design (Sec. IV-B). These two goals lay the foundation for
bootstraping new research directions at the intersection of
network visualizations and human perception. Consequently,
novices and experts in network visualization can benefit from
our framework by having a succinct understanding of the
current landscape and challenges.

By achieving both goals, our framework offers a new lens
for evaluating network visualizations beyond task performance
such as time and accuracy. The five perceptual mechanisms
discussed in the context of network visualizations can equip
researchers with the tools to identify why certain features or
aspects of a visualization design can change people’s inter-
pretation and task performance. For example, existing work
has produced a widely-known guideline that reducing link
crossings in node-link diagrams can enhance perceivability [9],
[10]. However, empirical work by Dwyer et al. [11] revealed
that participants performed with worse time and accuracy
when searching for cliques with the orthogonal layout than the
force-directed layout, even though the former has fewer link
crossings. This finding contradicts best-practice guidelines.

Our framework can help reconcile contradictions like these
by identifying the perceptual mechanisms underlying the em-
pirical observations, helping improve best practice guidelines
by understanding when to generalize. In this case, the “object
recognition” mechanism can explain the contradiction. Partici-
pants performed better with force-directed layouts because the
layout creates more clusters that resemble familiar perceptual
structures users have learned to recognize in network anal-
ysis. We discuss this case more deeply and offer additional
examples in Sec. IV-A. From these case studies, we note
two actionable insights in Sec. V-B on how others can build
upon this work, specifically experimental design suggestions
for future interdisciplinary work. Together, these case studies
and future experimental designs demonstrate the value of our
interdisciplinary framework in guiding researchers to study
network visualization.

This framework can also lay the foundation for developing
perception-aware network visualizations: visualizations that
are more than simply informed by perceptual principles, but
rather designed to actively coordinate with an analyst’s percep-
tual processes as they accomplish a given set of tasks. Future
research can systematically examine the effect of network
design features on these perceptual operations to generate
guidelines for perception-aware network visualizations.
Contributions: We contribute (i) an interdisciplinary frame-
work that considers how perceptual mechanisms affect net-
work tasks in canonical network visualizations, including
(ii) preliminary application of the cognitive and perceptual
mechanisms behind common network tasks and (iii) theo-
retical investigations of how we can design experiments to
ground hypotheses and generate generalizable design guidance
emerging from these applications.

I. BACKGROUND & RELATED WORK

To generate an interdisciplinary framework for reasoning
about how people perceive network visualizations, we draw

on existing literature on network visualizations, network tasks,
perceptual studies for visualizations, and graph aesthetics.

A. Network Visualizations
A network is a data structure that contains a set of data

points (i.e., entities of interest) and their relational data.
In this paper, we exclusively use network terminology and
denote these data points as nodes and the pairwise con-
nections between them as edges. People visualize networks
in a wide range of domains (e.g., biology, engineering, so-
cial sciences) [12], [13], and as such, network visualiza-
tions hold strong precedence within visualization research
and practice [1], [14]. While networks can also be geospa-
tial [15], multi-variate [16], [17], dynamic [18], or even hyper-
graphs [19], our focus on undirected and unweighted networks
aligns with the network complexity used in most evalua-
tions [8]. Though many network representations exist [20]–
[22], the two most common representations of undirected
networks are node-link diagrams and adjacency matrices.

Adjacency matrices visualize a network as a table with n⇥n
cells, where n is the number of nodes. The matrix as a whole
(i.e., the n2 cells) provides an overview of all possible connec-
tions (i.e., edges) between nodes. A cell is filled only if an edge
exists between the nodes of the corresponding row and column
within the dataset. The order of rows and columns dictates the
patterns displayed. Reordering the elements of the matrix can
assist with high-level tasks (e.g., network comparison [23],
identifying groups or highly connected vertices [24]). The
ordering of the rows and columns can be arbitrarily decided
(e.g., alphabetically) or algorithmically computed [4].

Node-link diagrams provide a structural layout of a network.
Each node within the dataset is traditionally visualized as a
circle, and edges connecting the nodes are represented with
lines (straight or curved). A node-link’s spatial structure, or
layout, is determined algorithmically. The most popular layout
is the force-directed layout, which treats the network as a
physical system [3]. Nodes repel each other with a pre-
determined force while edges act as springs pulling con-
nected nodes together. There are other layouts, including,
but not limited to, hierarchical layouts [25], centrality-based
layouts [26], grid-like layouts [2], topology-based layouts [27].
Despite the popularity of node-link diagrams, they become
easily cluttered. We refer readers to Tamassia’s handbook [28]
for an overview of the various graph drawing algorithms to
address this challenge. Similarly, graph aesthetics quantify
the visual characteristics of a node-link layout and can be
used to tune algorithms to reduce measurable clutter, such as
edge crossings, while maximizing desirable properties, such
as clusters [9], [10].

B. Network Tasks
Bertin [29] proposed three levels at which tasks operate:

(i) an elementary level, comprised of individual graphic el-
ements and the task to understand their specificities; (ii) an
intermediate level, for comparisons among subsets of graphic
elements; and (iii) an overall level, comprised of global trends
and relations. This hierarchy echoes observations in more
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modern task taxonomies for networks [7], [30], [31]. Our
work is built upon the task taxonomy proposed by Lee et
al. [7], which describes four groups of network-related tasks—
topology-based, attribute-based, browsing, and overview—
while considering well-established theories of visualization
tasks broadly, including canonical low-level visual analytic
tasks [32] and Bertin’s task hierarchy [29].

The work by Lee et al. [7] serves as a common foundation
for extended discussions of network tasks [18], [30], [33],
[34], which we briefly summarize below. Topology-based tasks
concern a network’s topology— the structure of how nodes and
edges are arranged within a network. Topological properties
can apply to the network as a whole or to individual nodes and
edges. Lee et al.’s topology-based tasks address (i) individual
elements, such as nodes (e.g., “Find the set of nodes adjacent
to a node”) and links (e.g., “Find the shortest path between
two nodes”), (ii) sub-networks, such as groups or cliques (e.g.,
“Identify clusters,” “Are the given two groups neighbors?”)
and (iii) the entire network (e.g., “Estimate the size of the
network”). Attribute-based tasks focus on deriving specific val-
ues from selected data through either filtering, computing, or
finding the range or distribution on a network’s edges or links
(e.g., “Filter sets of nodes”, “Find the nodes having a specific
attribute value”). Similarly, browsing tasks focus on tracing
the network’s connections to follow a given network path (e.g.,
“Follow a given path,” “Return to a previously visited node”).
Lastly, overview focuses on summative properties of a network
(e.g., “Find larger-scale structural features”).

C. Perception in Visualization

Once uncommon [35], visualization researchers are in-
creasingly incorporating perceptual and cognitive methods to
evaluate visual perception for data-driven displays [5], [6].
Now, a growing number of interdisciplinary studies illustrate
how vision science methods can lead to improved design
recommendations [36], [37] and reduce bias [38]. However,
these efforts are not tailored for nor do they typically include
network visualizations as part of their investigations.

Networks are understudied in graphical perception [5]. Most
network user studies focus on comprehension, particularly
on network layouts and aesthetics [39], or determining the
upper limit of a network’s size and complexity [8], [40].
Some studies investigated physiological measurements like
eye-tracking [41]–[43] but are limited. We argue the lack of
perceptual studies for networks stems largely from one reason:
network representations use physical space differently. In con-
trast, past perceptual studies for other visualization idioms are
predominantly spatially oriented (e.g., scatterplots, bar charts,
line graphs). The spatial positioning of a node for a node-
link diagram does not necessarily convey visual significance
with many layout algorithms. For example, variants of force-
directed layouts [44]–[46] focus on better distributing the
nodes’ positions while retaining the relative positions to their
neighbors. The algorithms behind several network layouts,
including force directed, are generally developed based on
some heuristic or aesthetic criteria [9], [10]. A similar rea-
soning applies to adjacency matrices. Thus, past visualization

investigations do not translate well to network visualizations.
Network visualizations require a different set of approaches to
understand how people perceive and reason with them.

Previous evaluations of network visualizations (see these
surveys [8], [40] for a comprehensive overview) often focus
on visual features of nodes or edges (e.g., color) as opposed to
how the visual system processes the visualization. Visual fea-
tures certainly impact the efficiency of perceptual operations
(discussed further in Sec. III) [47], [48] but note that visual
features act as building blocks for perceptual mechanisms.

Past evaluations mainly focused on performance measures
(e.g., response time and accuracy) to evaluate different net-
work layouts [11] and compare different visualization ap-
proaches [24], [49]. Recent studies offer insight into the
processes people use to perceive and reason about networks.
For example, Huang et al. [50] use cognitive load to measure
a network visualization’s effectiveness at different scales and
levels of complexity. Research has also focused more on the
human aspects of network layouts (e.g., memorability [51])
by asking participants to produce network visualizations [52],
[53], verifying that node-link diagrams should reduce link
crossings and support visual features that highlight clusters.
Though these studies also share our goal of connecting per-
ceptual and cognitive processes to network visualizations, their
small number also highlights our relatively limited empirical
understanding of how people make sense of network data. We
aim to connect relevant concepts from perception to a range of
network task types to highlight opportunities for more effective
network visualization guidelines and practices.

D. Graph Aesthetics

The graph drawing community recognizes the challenges of
producing readable network visualizations, notably node-link
diagrams. As mentioned in Sec. I-A, as networks get larger
and more densely connected, node-link diagrams become
easily cluttered. To amend this challenge, the graph drawing
community proposed graph aesthetics. Graph aesthetics are
heuristics intended to help designers create more readable
network visualizations. Examples of these aesthetic metrics
include symmetry [54], [55], minimizing edge crossing [56],
and minimizing bends [57]. Though most graph aesthetics
target node-link diagrams, Beck et al. [58] introduced an
aesthetic dimensions framework to help translate existing
graph aesthetics to dynamic adjacency matrices.

Prior work [59]–[61] aimed to perceptually validate various
graph aesthetics with empirical studies. We refer our readers
to these two surveys [10], [40] for a more comprehensive
list of related studies. As an overview, participants are eval-
uated based on how well they solve certain tasks using
different network visualizations. These network visualizations
may differ based on layout or aesthetic criteria. For instance,
Purchase [61] investigated which graph aesthetics heuristics
had the greatest effect on the shortest-path task. The study
revealed that minimizing edge crossings was the most impor-
tant criterion. While such studies provide empirical evidence,
they still largely reflect the limitation of solely relying on
performance measures (e.g., response time and accuracy; see
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TABLE I: Summary of highlighting the perceptual mechanisms that play a role for common network tasks (see Sec. I-B) for node-link diagrams and adjacency matrices.
Legend: Attention; Visual Search; Perceptual Organization; Ensemble Coding; Object Recognition.

Network Task Task Description Node-link Diagram Adjacency Matrix
Topology

Direct connection Find a set of nodes directly adjacent to a given node – – – – – –
Find the number of nodes adjacent to a node – – – –
Find the maximally/minimally connected nodes – – – – – –

Accessibility Find sets of nodes accessible from a node – – – – – –
Find number of nodes accessible from node A to node B – – – –
Find sets of nodes accessible within a distance  n – – – – – –

Common Connection Find the shortest path between two nodes – –
Identify clusters – – –
Identify connected components – – – – –
Find bridges – – – –

End Points Find articulation points – – – – –

Attributes
Nodes Find nodes having a specific attribute value – – – – – –

Filter sets of nodes – – – – – –
Find a range of values for a set of nodes – – – – –
Look at the distribution of a set of nodes – – – – – – –

Edges Find the nodes connected by certain kinds of links – – – – – –

Browsing
Edges Follow a given path – – – – – –

Return to a previous node – – – – – –

Overview
Estimation Estimate size of the graph – – – – –

Find larger-scale structural features – – – – – – – –

Hypothesis Testing Compare network features to a mental representation
(e.g., discover a network’s topology) – – – –

Comparison Isomorphism – – – –

Disambiguate Structure Determining the level of detail needed to disentangle a
network’s structure at multiple resolutions – – – –

Sec. I-C). As a result, we still lack fundamental understanding
of why certain graph aesthetic criteria outperform others.

Huang [62] also mirrors our motivation, emphasizing the
need to evaluate fundamental perceptual mechanisms behind
these network tasks and even graph aesthetics. A limited
number of studies [63]–[66] use vision science methods,
namely eye-tracking, to target perceptual operations. While
eye tracking reveals perceptual complexities from acuity and
attentional limitations, it fails to account for broader knowl-
edge built through processes like ensemble coding or memory.
There are other aspects of perceiving networks that are not as
directly reflected in eye movements. We build upon these past
efforts to create a stronger connection between key topics and
highlight other vision science methods researchers can use for
future work (Sec. IV-B).

II. FRAMEWORK OVERVIEW

We introduce a framework (Table I) describing the visual
perceptual mechanisms involved in conducting analytic tasks
(see Sec. I-B) with network visualizations, with a focus on
node-link diagrams and adjacency matrices. As discussed in
Sec. I, most network visualizations are designed based on algo-
rithms [67], aesthetics [68], or a combination of the two [69].
We take an interdisciplinary perspective by proposing a frame-
work structured by perceptual operations from theories of

human visual cognition. This broader perspective aims to
identify visualization design opportunities for networks and
theoretical gaps in our understanding of network perception.

A. Key Network Tasks and Perceptual Mechanisms
We scope our framework to cover two common network

visualization representations: adjacency matrices and node-
link diagrams. The authors, with backgrounds spanning across
human perception and cognition, information visualization,
and network visualization, reflectively synthesized existing
work to identify a set of common analytic tasks with networks.
We consider shared, underlying perceptual mechanisms asso-
ciated with each task to come up with seven task categories
and five perceptual mechanisms.

The seven task categories are inspired by Lee et al.’s task
taxonomies for network tasks [7], the low-level visual analytic
tasks in information visualization from Amar et al. [32], the
multi-level typology from Brehmer & Munzner [70], as well
as extensive discussion at the Network Perception Dagstuhl
workshop in 2023 [71]. These categories include: topology,
attributes, browsing, overview, hypothesis testing, comparison,
and disambiguating structures at multiple resolutions (e.g.,
identifying a network’s topology).

For the perceptual mechanisms, four of the authors first
collectively identified 27 specific perceptual phenomena from
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human vision science that may play a role in network analysis
through group discussions and referring to prior work in vision
science (see the supplemental material for an overview). For
example, centrality comparison and density comparison are
both examples of ensemble coding [72]. We then grouped
these phenomena into six classes of perceptual operations—
perceptual functions that rely on related visual processes—
to provide more concrete and direct connections between
networks and visual processes.

The classes include scene perception, visual search, object
recognition, internal representation, perceptual organization,
and ensemble coding. During the grouping process, we also
identified a set of low-level visual features that could impact
the efficiency of perceptual operations. These features include
visual density, numerosity, connectedness, path traceability,
distance, contrast, area, and centrality. While this paper fo-
cuses on higher-level perceptual operations and does not
extensively discuss the effect of these low-level visual features,
we recognize that design decisions manipulating these visual
feature parameters can impact the efficiency of all perceptual
operations. The perceptual operations we discuss offer a
context for future researchers to systematically examine the
effect of individual visual features on network visualization
design and interpretation. Readers can reference the work by
Burch et al. [40] for a comprehensive survey of the effect of
these low-level features.

The authors—one of whom is a researcher in perception and
cognition, three of whom work at the intersection of perception
and visualization, and two of whom have extensive experience
in network visualization—iterated on the six classes, refining
them into five core operations for network visualization per-
ception listed below. See Sec. III for more details and Fig. 1
for visual examples.
• Attention: Restricting visual processing to only a subset of

information at any one time to prevent distractor interfer-
ence [37], [73]

• Visual search: Adjusting attentional allocation over time as
some items are deemed irrelevant and when other new items
are considered

• Perceptual organization: Linking items together to allow
them to be processed as a visual configuration [52]

• Ensemble coding: Estimating distributional characteristics
of visual features (e.g., orientation, size, color) over a set
of objects or regions [74]

• Object recognition: Categorizing a visual object based
on its match to object representations stored in long-term
memory [75]
While not exhaustive, this list reflects common themes we

observed across different network tasks per network visual-
ization type and reflects the common areas of vision sci-
ence research [72], [76]. Attentional selection, visual search,
ensemble coding, and perceptual organization are categories
of perceptual mechanisms that align with past theoretical
works linking vision science and visualization broadly [74],
[75], [77]. Perceptual organization, in particular, is especially
critical to consider as it encompasses Gestalt principles (and
subsequent work on perceived grouping and relatedness) that
have directly influenced past network visualization approaches

and experiments [10], [52], [78]–[81]. We add object recogni-
tion because of the role that previously stored visual represen-
tations play in identifying and differentiating specific nodes
and analyzing the shape properties of complex configurations
of nodes and links.

III. PERCEPTUAL MECHANISMS

Table I outlines the relevant mechanisms for each network
analysis task. To enable a better understanding of each percep-
tual mechanism, we describe its basic principles and discuss
how the perceptual mechanism operates when an analyst
engages with network tasks.

A. Attention
Attention [73] restricts high-level processing to only a

subset of information at a time, such that a target stimulus, like
a mark, can be processed without interference from distractors.

Basic Principles. Attention can be internal or external.
External attention refers to attention allocated to stimuli
originating in the world, but internal attention refers to our
ability to attend to a given line of thought. Visual attention
can be overt or covert [82] by shifting attentional focus (e.g.,
sets of co-located nodes). Covert attention allows us to select
a specific region within a single glance. Overt attention, in
contrast, refers to eye movements such as saccades, which
determine what part of the visualization is projecting visual
information to the high-resolution retinal region of the fovea.

Selection is one aspect of attentional control, and can
flexibly allocate cognitive resources to a range of informa-
tion that is selected. For instance, attention can be selective
or divided. In selective attention, we focus our processing
resources on one object or group of objects (e.g., a set of
nodes) and prevent other objects (e.g., irrelevant nodes) from
interfering with processing [83]. In divided attention, we
attempt to attend to multiple objects (e.g., attending to three
fully-linked visualizations), which can degrade our abilities to
efficiently process each object [84]. Attentional zoom refers
to the size of the region selected by attention, which can be
broad or narrow. With broad attentional zoom, we distribute
our attention broadly to select a large portion of a visual scene.
With narrow attentional zoom, we are narrowly focused on a
single mark or small region.

How is attention used in network visualizations? An
effective visualization directs attention to key parts of a
network to accomplish the intended tasks. An analyst might
process the entire node-link diagram or adjacency matrix as
a single large object, setting the attentional zoom broadly to
include the entire diagram. They could use selective attention
to narrowly focus on just a single object, such as a node
and its neighboring nodes. In Fig. 1, the red bar over the
adjacency matrix illustrates specifically attending to that row.
They could use divided attention to focus more broadly
on multiple objects, such as two clusters connected by a
bridge. During network exploration tasks, such as overview
or browsing tasks, an analyst might position their eyes to
take in a large portion of the network. For more localized
tasks such as direct connection (e.g., finding a set of nodes
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Fig. 1: Visual examples of perceptual mechanisms (Sec. III). Top row illustrates each perceptual operation’s basic principles. Bottom row shows how these perceptual
mechanisms are applied to network visualizations. Attentional selection illustrates how people can attend to only a subset of information at a time (e.g., we cannot read
the two sentences nor look at two cells in adjacency matrix simultaneously). Visual search illustrates how our eyes will serially search for the target object amongst other
objects (try finding the letter “T” or the target node in a node-link diagram). Perceptual organization illustrates our ability to form a visual configuration from the spatial
organization of individual components (e.g., people can see different clusters within a node-link diagram based on the node’s color and spatial proximity). Ensemble

coding allows the estimation of distributional characteristics of visual features (e.g., orientation, size, or color) over a set of objects (e.g., the different colored clusters
summarize high-density regions in the adjacency matrices). Object recognition occurs when a visual object’s representation matches an individual’s representation of
the object in long-term memory (e.g., we recognize all the figures are fish; analysts can recognize two connected components in the network visualization).

connected to a given node) or common connection tasks (e.g.,
finding bridges), an analyst might move their eyes to the most
relevant region to obtain higher acuity (i.e., spatial resolution)
to make out fine details, such as tracing paths between nodes
which may require moving our attention carefully down the
edge to understand specific relationships robust to artifacts like
edge crossings. Given the limited meaning of physical space in
network visualizations, analysts must fluidly employ different
forms of attention to complete most network tasks.

B. Visual Search

Visual search is one aspect of attentional control that is key
for interpreting network visualizations. While visual attention
generally focuses on what we look at, the goal of visual
search specifically is to find and attend to one or more target
objects that are surrounded by distractor objects. In difficult
searches, attention may be directed serially from one distractor
to another before the target is found.

Basic Principles. Depending on the relationship between
the target and distractors, it can be much harder to find a target
as the set size (i.e., the number of marks in a visual display)
increases. However, search efficiency can often be improved
with two types of search guidance: bottom-up and top-down.
If the target is sufficiently different from distractors, bottom-
up guidance (i.e., guidance originating from the features of
a visual object) can move attention to it quickly (i.e., pop
out), regardless of how many distractors there are [85]. If a
target does not pop out, top-down guidance (i.e., guidance
originating from a target goal) can help direct attention if one
or more features (e.g., color, size, orientation) of the target are
known [86]. In guided search, the known target features are
stored in a target representation in visual working memory,
and attention is restricted to the items sharing those features
[87]. Unguided search can be inefficient (e.g., slow reaction
times to find the correct target because attention may first

be allocated to a number of distractors). Unguided searches
typically involve a serial self-terminating search, in which
items are serially examined one after another until the target
is found or all items have been checked. To experience this
phenomenon, look for the letter “T” in Fig. 1.

How is visual search used in network visualizations?
Search is at the heart of most network tasks (e.g., finding a
set of nodes or clusters). Search is also often necessary before
other network tasks can take place. For example, to find the
shortest path between two nodes, analysts must first search to
locate the two target nodes within the network. People may
often employ search to look for more compound topological
structures within a network, such as cycles or cliques.

Visual search within node-link diagrams and adjacency
matrices is mainly unguided and time-consuming. Though
there are exceptions, such as Sugiyama style layouts [42],
visual search remains difficult for most network visualizations.
While interactive queries can change the visual features of
target nodes to support bottom-up search, this unguided search
can be extremely difficult for two reasons. First, the set size
of networks is often non-trivial. A “small” network dataset
can contain 200 nodes [8], while “large” datasets can contain
thousands or more [88]. It is challenging to visually search for
a particular node amongst thousands without a directed cue
(e.g., highlight from an interactive query, Fig. 1). Relatedly,
the features of target and distracting elements for network
visualizations are largely the same for most common network
visualizations (e.g., all nodes in node-link diagrams are circles,
and all edges in adjacency matrices are square cells). Node-
link diagrams and adjacency matrices can use labels to provide
cues or may even use color to indicate group attributes.
However, search can still be slow if the user does not have a
priori knowledge of where to look.
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C. Perceptual Organization
Understanding a visual configuration requires recognizing

both individual components and the relationships among those
components. Perceptual organization refers to our ability to
see how different elements within a scene relate to one
another. Perceptual organization is determined only in part by
the pixels in a visualization; in many cases, the viewer can
use attention and other aspects of top-down control to shape
the organization imposed on the visualization (e.g., finding
clusters via colors or shapes may elicit different perception
of clusters). Through perceptual organization, visual elements
are grouped and structure is imposed to build high-level visual
objects (e.g., perceiving a house as a combination of windows,
doors, roof, etc.).

Basic Principles. Perceptual organization creates hierarchi-
cal visual representations from lower-level components. Theo-
ries of perceptual organization have been influenced by Gestalt
Principles of grouping [89]. Although a detailed account of
how these principles shape visual perception has been elusive,
these principles continue to guide current research in visual
perception and also help to understand how data visualizations
are interpreted. For instance, the Principle of Similarity states
that objects with similar shapes or colors are perceived as
groups. The Principle of Proximity suggests that elements that
are close to each other are perceived as a group. The Principle
of Continuity highlights how elements will group together if
they lie on the same contour. Fig. 1 illustrates these principles.
Modern research has extensively refined these principles, and
their core ideas continue to serve as a foundation for modern
theories of perceptual organization [90].

How is perceptual organization used in networks? In
node-link diagrams, each line representing a link connects
one node to another, leveraging the Principle of Uniform
Connectedness [91]. Other Gestalt principles come into play in
organizing nodes into groups and larger units. For example, the
Principle of Symmetry plays a key role in network perception.
People perceive symmetry in network visualizations as salient
and design guidelines have suggested networks take care to
display symmetry in network structures [40].

The layout chosen for a particular node-link diagram or
adjacency matrix determines whether the organization created
by similarity, proximity, symmetry, and continuity emphasizes
the most informative aspects of the network structure. In many
cases, different aspects of a network structure will be best
perceived by grouping the nodes and links together in different
ways. Thus, proximity might be used to emphasize one set
of groupings, while similarity from shared colors [48] (e.g.,
Fig. 1) or shapes might emphasize another, and in a node-link
diagram, a set of nodes might be aligned to allow grouping
supported by continuity. Such a layout gives viewers the option
of using top-down control of the perceptual organization to
explore different aspects of the network structure.

D. Ensemble Coding
Ensemble coding allows the estimation of distributional

characteristics of visual features (e.g., orientation [92], size
[93], or color [94]) over a set of marks in a visualization. These

characteristics are quickly and efficiently estimated prior to
active attention. Like perceptual organization, ensemble coding
captures group- or set-level properties rather than individual
details about a given object; however, ensemble coding focuses
on the distribution of visual features across a set of marks
(e.g., the mean color or density) rather than grouping. For
example, ensemble coding allows people to quickly estimate
the mean size or position of a group of scatterplot points
without attending to each point individually (see Szafir et al.
[74] for a survey).

Basic Principles. Ensemble coding studies how individuals
can extract information on sets of marks based on their shared
properties. This perceptual mechanism uses broad attentional
zoom (c.f., Sec. III-A) to extract information at large. Four
categories of ensemble coding are prevalent for visualizations:
identify sets of values (e.g., in- and out-groups), summa-
rize across values based on their distribution (e.g., means
and variance), segment collections (e.g., estimate clusters),
and estimate high-level structure or patterns (e.g., identify
trends) [74]. Though these principles largely pertain to spatial
relationships, ensemble coding can also summarize features
over an entire set of marks. For example, people can rapidly
estimate the mean size or color of a set of glyphs [93], [95].
In Fig. 1, we can notice that all lines are slanting upwards to
the right at a glance. These mechanisms allow us to quickly
estimate the gist of a scene (e.g., data distribution) to help
orient us to group properties. However, ensemble processes
only operate over a set of elements. These processes extract
information about the features of the distribution, such as the
mean size or position, but not attributes of individual items,
such as the size of a specific mark [93].

How is ensemble coding used in network visualizations?
When someone initially sees a network visualization, ensemble
coding allows them to rapidly gain a high-level sense of the
data. Spatial ensembles allow people to orient themselves to
the position of elements in the visualization [96]. Featural
ensembles allow people to gain a nearly immediate sense of
the distribution of node shapes, sizes, and colors, and edge
lengths and orientations [97].

In a node-link diagram, ensembles cue connectedness be-
tween clusters (e.g., by summarizing edge orientation [98]) or
regions of high and low density to indicate connectivity (e.g.,
by summarizing color variations introduced by drawing nodes
and edges). Ensembles can also summarize metadata mapped
to nodes and edges, such as mean and variance in color or size
mappings. If attention is restricted to one part of a network,
ensemble coding can provide estimates of properties within
that selected region. In an extreme case, attention might be
focused on a single node in order to determine the number
of connections emanating from that node. If the number is
less than four, the number can quickly be determined through
subitizing [99]. For larger numbers of connections, the number
can be estimated through ensemble coding, but with lower
precision.

In adjacency matrices, these spatial and featural ensembles
summarize regions of high- and low-edge density (e.g., the
different colored clusters in Fig. 1). For node-link diagrams,
ensembles can also summarize additional mark information,
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such as colors or shapes, in more complex representations.

E. Object Recognition
Object recognition occurs when a visual object representa-

tion is categorized (e.g., recognized as a house or a connected
component) after it is matched to object representations stored
in long-term memory.

Basic Principles. Object recognition is complicated by
changes in viewpoint and the reconstruction of depth informa-
tion. Many of these challenges are avoided in network visu-
alizations, but interpreting node-link diagrams and adjacency
matrices requires matching stimuli against long-term memory
representations. Thus, some aspects of object recognition are
critical to interpreting network visualizations.

How is object recognition used in network visualiza-
tions? At a local level, different types of nodes are some-
times distinguished from one another by depicting them with
different shapes and/or colors. Object recognition uses this
shape and color information, along with any attached labels,
to categorize each node. On a more global level, the in-
terpretation of a group of nodes and their connections can
vary considerably depending on the shape created by their
depiction in a node-link diagram [100]. A pattern of nodes
will be more easily remembered if it is perceived as a real
object [101]. One configuration may resemble a particular
object that we are familiar with, while another configuration
of the same nodes and links may evoke an entirely different
object. For example, a network analyst may recognize there are
two connected components in Fig. 1 due to the white space.
Similarly, an experienced analyst may recognize higher-level
network structures (i.e., motifs), such as a triangle subgraph,
for clustering and community detection (e.g., [102]). These
objects can serve to support recall and evoke a sense of a
group of nodes forming a single object or structure.

IV. EXAMINING FRAMEWORK UTILITY THROUGH CASE
STUDIES

We demonstrate our framework’s utility through a combina-
tion of case studies and speculative analyses. First, we review
four past studies to demonstrate how our framework can offer
more generalizable insight into network visualization design
(Sec. IV-A). These case studies cover the five perceptual
mechanisms. We looked specifically for studies relevant to
the perceptual mechanisms mentioned in this paper. We also
considered factors such as the recency and relevance to visual-
ization design. Second, we outline future design experiments
as potential steps toward designing more effective network
visualizations grounded in conceptual replication (Sec. IV-B).
Though some of these studies supported interactivity, the
fundamental tasks can be done statically. We assume static
analysis given our paper’s scope.

Both aspects align with our motivation for this work serving
as a roadmap to the network visualization and vision science
community. The case studies in Sec. IV-A can guide how
the community can think about both perception and network
visualization problems in conjunction. Furthermore, the ex-
periment design proposals in Sec. IV-B also serve as guides

a

c

b

Start End
Start End

Start End

Orthogonal Layout Force-directed layout

Tapered Biased Curvature Animated

Node-link diagram Adjacency Matrix

d

483

SfdpBackboneLinlog

Fig. 2: Past empirical investigations that we revisit using our framework (Sec. IV-A).
(a) network visualization comparison; (b) layout comparison; (c) edge representa-
tion comparison; (d) network cluster. Image A courtesy of Yoghourdijan et al. [22],
B by Dwyer et al. [11], C by Holten et al. [103], D by Al-Naami et al. [104].

on how as a community we can move forward to design and
conduct better experiments within this research space.

A. Case Studies
We apply our framework to four past studies to demonstrate

how understanding the perceptual mechanisms underlying
network perception can offer more generalizable insights. We
encourage readers to use our framework as a guide to similarly
revisit past works and their results. Our framework allows us to
directly hypothesize why these performance differences occur
to re-evaluate the generalizability of the results. We share
aspects of these case studies that are most relevant to the paper.
See the corresponding papers for more comprehensive insights
and findings.

Example 1 (Perceptual Organization): Yoghourdjian et
al. [22] evaluated people’s ability to interpret structural details
using the network visualizations in Fig. 2a. One task involved
counting the number of 1-connected components in the net-
work visualizations (the answer in these examples is 2).

Relation to Framework: To make sense of the network
structure, people must first leverage perceptual organization
to form visual groups of spatially promixal nodes. Next,
they can leverage object recognition to locate where the 1-
connected component(s) occur in the network. We outlined
the two 1-connected components in the node-link diagram
representations in Fig. 2a.

Results: Participants completed this task faster and more
accurately with the node-link diagram than with the adjacency
matrix. The lack of white space to separate components in
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the adjacency matrix hindered the perceptual organization
operation.

Insight: This example demonstrates that spatial cues are
more saliently perceived than colors [79], [105], [106], such
that people are more likely to prioritize spatially proximate
units as a group compared to similar units using other chan-
nels. This serves as a prime example that considering founda-
tional principles of vision science can inspire new perspectives
to improve network visualization design. Examining encoding
techniques that leverage spatial cues to facilitate the perceptual
organization of network structure can improve performance in
analytic tasks.

Example 2 (Object Recognition): Dwyer et al. [11] ex-
amined people’s ability to identify cliques in a network using
different node-link layouts. Fig. 2b shows two of the twelve
layouts used in the study. The left is an orthogonal layout
with only 7 link crossings, and the right is generated using a
force-directed layout with 13 link crossings.

Relation to Framework: This task taps into a range of
perceptual operations, including attention and visual search,
but most saliently object recognition.

Results: Despite the widely-accepted guideline to reduce
link crossings to enhance perceivability [9], [10], the study
revealed that participants were more than three times slower
in finding cliques with the orthogonal layout (x̄ = 26.88 sec)
than the force-directed layout (x̄ = 8.12 sec). Participants also
more accurately detected cliques with the force-directed layout
(97%) than with the orthogonal layout (80%).

Insight: The mismatch between design heuristics and be-
havioral outcomes Dwyer et al. [11] observed calls for a
deeper understanding of the perceptual mechanisms behind
clique recognition. Similar to Example 1, this case study
illustrates the importance of supporting quick recognition of
different network “objects.” The clique can be recognized
by clustering and dense edge crossings in the force-directed
layout (highlighted in blue).

Example 3 (Visual search, Attention): A study by Holten
et al. [103] compared edge representations for node-link
diagrams. Fig. 2c showcases the three edge representations
used in their study: tapered, biased curvature, and animated.
Participants were asked to determine if two highlighted nodes
were connected.

Relation to Framework: Our perceptual framework enables
researchers to generate testable hypotheses to uncover the
underlying mechanisms behind the performance of each edge
design. For example, one could hypothesize that retaining
attention is pivotal for path-tracing (Table I), therefore edge
representations that sustain viewer attention for a longer time
would be associated with higher performance.

Results: Both edge representation and path length impacted
behavior. Participants were faster and more accurate with the
tapered and animated links than with the biased curvature.
For medium-length links, the tapered edge condition was
significantly faster than the animated condition. The authors
noted the need for future work to understand why tapered was
faster in this case.

Insight: The work by Holten et al. [103] highlights how
a general recommendation (e.g., tapered edges) can be risky

without understanding the driving factors behind their higher
performance. An experiment can test whether tapered and
animated edges require less attention shifting compared to
biased curvatures (see Sec. IV-B1) by measuring eye-gaze
shifts and participants’ perceived effort in completing this task.
The experiment can be extended to examine a range of path
lengths. Longer paths would likely be associated with a higher
attention demand, and thus poorer performance.

Example 4 (Ensemble Coding): Al-Naami et al. [104]
evaluated people’s ability to count network clusters using three
variants of orderable node-link layouts versus three variants of
force-directed layouts (Fig. 2d). They define orderable node-
link layouts where “nodes can be ordered along such a curve
e.g., based on topological or attributed-based critera” [104].
Fig. 2d shows the three variants of orderable node-link layouts:
a baseline node order (Original), a cross-reduction ordering
(CR), and an optimal leaf ordering (OLO).

Relation to Framework: People will need to quickly extract
the gist of the network visualization and then count its clusters.
This task uses ensemble coding to initially perceive clusters at
a high level. This perception will be influenced based on the
distribution of shapes, size, number, and density.

Results: People identified graph clusters faster and more
accurately with orderable layouts than force-directed layouts
when networks have loose and/or inseparable clusters. The
orderable layouts create locally concentrated link clusters that
form more distinct density regions. A viewer can quickly
extract the gist of the network visualization based on mean
density patterns and then count the resulting clusters. The
four clusters form dense, white circles connected by less dense
regions, which makes them easy to see in the original baseline
layout (GEN). The clusters become more ambiguous in the CR
and OLO layouts, despite them being designed to optimize
node cluster patterns as the edge density is more uniformly
distributed.

Insight: We re-emphasize the same call for future work that
Al-Naami et al. [104] expressed to better understand why the
orderable layouts facilitate cluster identification. Following our
framework, we caution network designers from relying on a
specific algorithm without computing its ability to support
segmentation (and other ensemble coding operations) that
describe the global feature distribution people perceive.

B. Design Experiments

Our framework allows us to reflect on past studies and
also to guide new experiments to generate more generalizable
insight into network visualization design. We illustrate several
open questions our framework can help address to demonstrate
how a mechanistic approach helps bridge network and vision
science for more effective visualization.

1) Attention: Experiments can reveal how attention is al-
located to different parts of a node-link diagram or adjacency
matrix while people extract different types of information (e.g.,
Fig. 3a). We generally expect that performance will be faster
and less error-prone when a task can be accomplished with
fewer shifts of attention. Consider a task in which people
must determine which nodes in a network have the most
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Fig. 3: Experiments to study how perceptual mechanisms operate with network vi-
sualizations. (a) eye tracking to study attention fixation; (b) visual search efficiency
comparing colored versus all-black node-link diagram; (c) perceptual organization
of clusters using different matrix-reordering; (d) different network layouts to extract
ensemble features and object recognition of clusters. Image A courtesy of Pohl et
al. [41] and C by Behrisch et al. [4].

connections. Eye tracking will provide a fairly accurate record
of which nodes are examined and how much time is spent. Fix-
ation records can determine if nodes with many connections
are missed, and if some nodes with few connections capture
attention unnecessarily and delay the final response. These data
can indicate which strategies people adopt to accomplish the
task, which might involve starting at one part of the network
and systematically working their way through, or starting with
a quick scan of the whole network and then focusing on just
a few selected regions (e.g., Examples 1 and 2 in Sec. IV-A).
Highlighting common strategies will help researchers identify
design opportunities to facilitate those strategies during anal-
ysis. We advocate for leveraging perceptual mechanisms as
a basis for metrics that measure the efficiency of a strategy.
For example, a strategy might be deemed more efficient if a
person can accomplish it with fewer shifts of attention.

As seen in Example 3 [103] in Sec. IV-A, attention plays
a major role in tasks that involve curve and link tracing, such
as finding the shortest path between two nodes, browsing a
given path, and finding the number of adjacent nodes to a
node in a node-link diagram. Curve tracing determines whether
nodes are connected by a link. A handful of studies have
measured curve tracing [107] and their results indicate that
people can quickly trace curves (average rate of 40� of visual
angle per second). Though these studies do not directly test
visualizations, the results are likely applicable to tracing links
in node-link diagrams and perhaps in adjacency matrices.
However, link tracing has an additional layer of complexity
because there are more opportunities for confusion from links
crossing links in node-link diagrams than by adjacent rows
and columns in adjacency matrices.

2) Visual Search: Visual search is relevant for the majority
of network visualization tasks. The following design experi-
ments specifically focus on how to design nodes that pop out
to accelerate search for individual nodes. Though related, we
discuss design experiments on recognizing different network
objects (e.g., cliques, bridges) based on a network’s topology
in Sec. IV-B5.

In conventional node-link diagrams or adjacency matrices,
all items are the same color and all nodes are the same
shape, offering little opportunity to guide search for a specific

node. If the target node can only be identified by a string of
letters indicating its name, then search is likely to be long
and laborious and visual clutter amongst nodes may make it
impossible. Distinguishing different categories of nodes and
links by color and/or shape can make search more efficient. If
a small number of nodes have a sufficiently contrasting color
from the rest, they will pop out and be found easily. Even if
nothing pops out, coding different categories by color, shape,
or size can drastically reduce search time if the analyst knows
the feature designating the category of the target (e.g., finding
red versus blue nodes).

Future work can test the optimal number of colors, shapes,
or sizes for a given network visualization design by using
methods from perception research (see [6]). Search efficiency
can be evaluated in a number of ways, including response
time and accuracy. The gain in search efficiency from color-
coding different categories of nodes can also be measured by
comparing the number of eye fixations between color-coded
and mono-colored versions of a network diagram or adjacency
matrix (Fig. 3b). This has been similarly investigated in
Example 1 in Sec. IV-A. A more detailed analysis of the
eye-tracking record can reveal which fixations can be avoided
in the color-coded version, and how the path of the search
changes as the structure of the visualization changes.

3) Perceptual Organization: How viewers organize nodes
and links into larger units will affect the conclusions they
draw about global patterns within a network. The perceptual
organization of a network can be manipulated by changing
the spatial relationships among the nodes, and the effects can
be measured experimentally. Experiments can uncover optimal
layout designs that support perceptual organization processes
for a given dataset or set of tasks (e.g., spatial or by color).

Consider the following: each node represents one student
in a university, and each link represents a social connection
between two students. In one node-link diagram or adjacency
matrix, nodes can be clustered together according to the stu-
dents’ majors. Viewers can assess the degree to which students
socialize with others in their same major versus other majors
by comparing the number of connections among clusters.
Using the same data, another version of the visualizations
can cluster students according to where they live on campus.
Experiments could test how to design the diagrams (e.g.,
what parameters to designate for their visual features) to
facilitate perceptual organization that most effectively supports
comparisons between these two groupings (Fig. 3c).

4) Ensemble Coding: We expect that people can quickly
and easily extract summary information about groups of nodes
or links [74], [93]. If the rows and columns of an adjacency
matrix are organized so that items in different categories are
grouped together, then we can test if subjects can easily judge
whether there is more connectivity within some categories
than others by quickly judging the density of connections in
each category. However, we anticipate ensemble coding may
play a more nuanced role in adjacency matrices depending
on how the node-edge connections are spatially encoded.
These judgments likely change as features of the ensemble
change, as with variations in color or glyph use. Identifying the
optimal categories to group rows and columns to facilitate user
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performance through these experiments will allow network
designs to build more effective visualization tools.

Ensemble coding also likely plays a strong role in node-
link interpretation, especially in helping people ascertain the
coarse-grained structure of a network. For example, layout
algorithms often group nodes based on their connectedness
or relatedness as captured by a range of metadata. Ensemble
processes can leverage these groupings to identify dense
and sparse clusters, detect highly connected components (by
finding areas of high edge density), assess general patterns
in connectedness (by means of edge density and orientation),
identify bridges (by identifying connections between dense
regions), and quickly find outlier nodes (Fig. 3d). However,
ensembles may also falsely suggest connectedness in dense
spatial ensembles by treating all edges in an area as a distri-
bution of pixels rather than as individual items.

Designers may leverage complementary attributes of a node-
link diagram to support a wider range of network tasks.
Imagine a diagram in which each node is a cell phone user,
with links to other users with whom they regularly exchange
texts. The nodes might be color-coded by age. The size of each
node might indicate the number of text messages that each user
generates. Experiments could test whether ensemble coding
allows viewers to accurately judge how text usage varies across
different age groups. We might expect that they will be able
to focus their attention on nodes of one color (age group) and
use ensemble processes to quickly estimate the average size
of these nodes. By shifting attention from one color group to
another, they can form successive estimates of text usage for
each age group. Our abilities to estimate featural ensembles
may also translate to edge encodings. For example, featural
ensembles may explain our abilities to assess homophily—the
degree to which similar nodes are connected—in a network
when edge color indicates in- and out-group relations [108].

5) Object Recognition: Experiments can investigate how to
optimally arrange the network so people can quickly recognize
different topological “objects” (e.g., cliques). See “Common
Connection” in Table I for a full list.

Experiments could investigate how to globally arrange
nodes when participants are looking for emergent topological
features. If subsets of nodes have many connections and fewer
connections across each subset, the nodes can be arranged so
that the different subsets are perceived as different parts of
the larger object, with the boundaries between the different
parts being salient. Experiments can test the effect of these
arrangements on task performance. These experiments can
investigate well-known heuristics, such as reducing edge-
crossings to avoid clutter. In Example 2 in Sec. IV-A, we
speculate that this heuristic may not have been appropriate for
this task given how the high clutter enabled participants to
identify the clique. At a local level, experiments can test if
layout algorithms might manipulate the shapes of important
substructures of a network (e.g., connected components) to
make them easier to detect or if using consistent mark design
(e.g., changing node shape or color) to match data semantics
accelerates network search tasks.

V. DISCUSSION

A. Design Implications

Our framework provides a roadmap by identifying the un-
derlying perceptual operations required to accomplish network
analytic tasks and providing actionable designs for future
experiments. Future researchers can systematically examine
the effect of network design features on these perceptual op-
erations to generate guidelines and techniques for perception-
aware network visualizations. We use the term perception-
aware to imply more than simply being informed by perceptual
principles, but rather working in active coordination with an
analyst’s perceptual processes as they accomplish a given set
of tasks.

For example, a perception-aware network visualization can
dynamically account for analysts’ perceptual operations to
optimize task performance. For a common connection task
where one has to find the shortest path between two nodes in
a node-link diagram, a perception-aware network visualization
tool might increase the saliency of the target and source nodes
by highlighting them in a different color to aid visual search.
The tool might also help sustain attention through gaze-based
interactions, using techniques similar to foveated rendering
[109]. As the analyst moves their gaze around, the tool can
continue to highlight relevant edges that construct the desired
shortest path following the analyst’s gaze (which also offloads
work from memory by externalizing the knowledge of which
paths remain relevant) and de-emphasize paths that the analyst
is no longer fixating on or do not relevantly connect to the
source node towards the target node.

A perception-aware network visualization can also gather
a user’s perceptual data to predict the analytic tasks they are
aiming to accomplish, similar to interaction-based methods for
intent prediction in scatterplots [110]. Generated output values
would be associated with that task to reduce the cognitive
or computational effort required from the user. For example,
a user might want to perform a filtering task to filter out
certain sets of nodes before determining how many relevant
clusters are left. The network visualization might dynamically
rearrange the display to optimize for perceptual organization
so a user can easily identify the number of clusters excluding
the nodes to be filtered. Alternatively, the tool can track
the user’s eye gaze or interaction patterns and use them to
predict their goal of counting the number of relevant clusters
excluding some sets of nodes to generate an answer for the
user either through a numeric output (i.e., “6 clusters”) or by
highlighting the remaining clusters.

Furthermore, researchers and educators can leverage find-
ings associating perceptual operations with network tasks to
train data scientists to more effectively accomplish analytic
tasks. For example, in relatively small networks, certain
combinations of nodes and links might represent a special
pattern (e.g., a connector pattern). People could leverage
object recognition to learn to identify such patterns. Through
training, people can become extremely efficient at identifying
combinations of patterns by seeing such combinations as a
distinct object, similar to how chess masters learn set moves
by memorizing combinations of chess piece placements [111].
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B. Actionable Insights

We note two actionable insights derived from our work.
First, we offer a research pipeline that empowers scientists

to generate more effective and generalizable design guidelines.
Often, network visualization scientists design multiple solu-
tions and compare their effectiveness through an A/B compar-
ison. However, without decoding why two designs differ in per-
formance, the resulting recommendations or guidelines might
not generalize. Researchers can face challenges of reconciling
findings conflicted with existing best practices. We therefore
recommend employing the framework as follows to enhance
the evaluative process: 1) generate designs and compare their
effectiveness per usual practices, 2) identify potential per-
ceptual operations that might explain the increased/decreased
performance (e.g., visual search), 3) conduct a follow-up
experiment where the researchers manipulate that perceptual
operation (e.g., making it easier or harder to perform visual
search) and see if performance changes with the manipulation.
This will allow the researchers to identify the driving factor
behind the improved performance. 4) once the driving factor
is identified, the researchers can adjust their design and/or
recommendations to be more effective and generalizable. We
encourage readers to revisit the four case studies as examples
of this suggestion (Sec. IV-A).

Second, we offer several perceptual-awareness metrics
based on our framework for future network visualization
evaluation. Many existing layouts are optimizations of quality
criteria, such as minimizing edge crossings. However, as
discussed in Sec. I-D, graph aesthetics are not always directly
related to the tasks people perform on networks. Therefore, we
advocate for a new category of network optimization criteria
based on perceptual performance. Points of consideration
might include:

• Attention: How quickly does the network direct user
attention to key parts of the network useful for a task?

• Visual Search: How many eye movements did it require
to complete a given task? How close in spatial proximity
was the initial point of exploration from the target?

• Perceptual Organization: How many visual features
(e.g., color, spatial proximity) are present that compete
for perceptual grouping?

• Ensemble Coding: How quickly can the user orient
themselves to the global structure of the network, includ-
ing the distribution of node shapes, sizes, colors, edge
length, and orientations?

• Object Recognition: Given a pre-defined pattern (e.g.,
bridges), how quickly can users recognize it in a partic-
ular configuration of the network?

These criteria could eventually become a scalable evaluation
for network visualization design. We posit that a better under-
standing of, and more importantly, quantitative measurements
of layout quality for task-based perception would lead to
new optimization criteria, design approaches, and interaction
techniques. Furthermore, these criteria can be used when re-
examining past empirical studies [112].

As illustrated in Sec. IV-A, re-examining prior work can
help reflect on experimental designs and lead to more robust

insights. For example, prior works on user-generated network
layouts build upon each other [11], [52], [113] to uncover what
features should be prioritized when developing network layout
algorithms. As highlighted by Purchase et al. [114], such
algorithms are “inspired by assumptions about what a human
would do in generating a drawing”. Extending this logic to all
aspects of network visualization can lead to a foundation for
establishing perception-aware network visualizations.

C. Limitations and Future Work

Our framework is non-exhaustive. First, we discuss five key
perceptual mechanisms, and we listed future experiments as
a result to investigate to lead to more breadth (Sec. IV-B).
We also focus on canonical network visualizations at their
most basic state, with some connection to additional network
characteristics where most notable. This limited scope is by
necessity when considering the vast array of possible network
designs and layout algorithms. As our knowledge of network
perception evolves, we anticipate the framework will grow
along several core dimensions of complexity.

Network Representations and Interactions. This frame-
work only considers two static basic network visualization
representations. Future work will be necessary to consider
how interactions will affect perceptual mechanisms for net-
work tasks and how the perceptual mechanisms will change
for alternative representations. For example, NodeTrix [20]
combines adjacency matrices and node-link diagrams into one
representation. Perceptual organization and ensemble coding,
for example, for this representation likely differ compared
to its traditional counterparts. With NodeTrix, it is likely
difficult to infer the network structure by applying Gestalt
principles as clusters of nodes are represented as adjacency
matrices. People are unlikely to use the same spatial and
feature ensembles as traditional node-link diagrams given how
significant information about local network properties is in
tabular form.

Network Scale. Our framework does not consider large
networks [8], [88], [115]. As stated earlier, we assume the
basic characteristics of a medium-size, sparse network, such
that people can reasonably see both the local and global
network structure within a traditional display. The mapping
of perceptual mechanisms and tasks for large networks (e.g.,
103 nodes) is sufficiently ambiguous that research recom-
mends that visualizations prioritize inspecting local details
as opposed to the global structure of large networks [116],
[117]. Future research should extend our framework to large
networks to understand how mechanisms break down at scale
and how computational and visual techniques can overcome
these breakdowns.

Visualization already outlines the importance of studying
scalability from a vision science perspective with large net-
works [8], [118]. Larger networks are likely to use edge
bundling [119]. Edge bundling offers an opportunity to mea-
sure the efficiency of internal processes (e.g., speed and
accuracy) to trace curves and grouped edges in network visu-
alizations (see Sec. IV-B). Additionally, with larger networks,
visual queries will contain more distractor nodes and edges and
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will require more thoughtful considerations of visual search
and attention. However, Yoghourdjian et al. [8] highlights the
challenges of inferring cognitive scalability of large network
visualizations. These visualizations generally require inter-
activity due to their scale, but interactivity leads people to
perform the tasks on a subset of the network (e.g., zooming
into a specific subregion) rather than the entire network.

Dynamic Networks. Our framework does not consider
other types of networks, such as dynamic networks [18].
Animation commonly conveys temporality (e.g., GraphDi-
aries [120]) for these evolving networks. Research shows that
real-time monitoring for time-series visualization often leads
to change blindness and cognitive overload [121], [122] but
animation can be beneficial when used for short periods [123].
Building upon a psychological insight that multiple-object
tracking is influenced by coherent scene perception [124],
research also highlights the importance of preserving one’s
mental map (i.e., drawing stability) [125]. Future work will
be necessary to continue to cross-pollinate knowledge across
communities to advance robust visualizations.

VI. CONCLUSION AND FUTURE DIRECTIONS

We introduce a framework describing five key perceptual
operations for analytic tasks with node-link diagrams and adja-
cency matrices, synthesizing knowledge from visualization and
visual sciences. Intended as a roadmap, we describe how this
framework enables future experimental research by leveraging
theories of human perception to advance network visualiza-
tion research. This framework can serve as a preliminary
foundation for bridging vision and network science, providing
common ground for generating new theories, guidelines, and
experiments to better understand how people reason with
network visualizations.
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