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In this paper, we study the total displacement statistic of parking functions from the perspective of cooperative game

theory. We introduce parking games, which are coalitional cost-sharing games in characteristic function form derived

from the total displacement statistic. We show that parking games are supermodular cost-sharing games, indicating

that cooperation is difficult (i.e., their core is empty). Next, we study their Shapley value, which formalizes a notion of

“fair” cost-sharing and amounts to charging each car for its expected marginal displacement under a random arrival

order. Our main contribution is a polynomial-time algorithm to compute the Shapley value of parking games, in

contrast with known hardness results on computing the Shapley value of arbitrary games. The algorithm leverages the

permutation-invariance of total displacement, combinatorial enumeration, and dynamic programming. We conclude

with open questions around an alternative solution concept for supermodular cost-sharing games and connections to

other areas in combinatorics.
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1 Introduction

Consider a one-way street with n ∈ N := {1, 2, . . .} numbered parking spots. A sequence of n cars arrive

one at a time, each with a preferred spot. Upon the arrival of car i ∈ [n] := {1, 2, . . . , n}, it drives to

its preferred spot ai ∈ [n]. If spot ai is unoccupied, it parks there. Otherwise, it is displaced down the

one-way street until it finds the first unoccupied spot in which to park, if one exists. If no such spot exists,

the car is unable to park and the parking process fails. Let α = (a1, a2, . . . , an) ∈ [n]n be the n-tuple

encoding the parking preference of every car. If all cars are able to park, then α is a parking function of

length n.
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Parking functions were independently introduced by Konheim and Weiss (1966) in their study of hash-

ing functions and by Pyke (1959) in his study of Poisson processes. Since then, parking functions have be-

come classical objects in combinatorics, displaying rich mathematical structure of their own, as well as di-

verse connections to other research areas; including hashing Knuth (1998), hyperplane arrangements Stan-

ley (1996), noncrossing partitions Stanley (1997), spanning trees Kreweras (1980), Dyck paths Armstrong

et al. (2016), polyhedral combinatorics Amanbayeva and Wang (2022); Stanley and Pitman (2002), sand-

pile groups Cori and Rossin (2000), the Bruhat order Elder et al. (2023), Brownian motion Diaconis and

Hicks (2017), and sorting Harris et al. (2024), to name just a few. Refer to Martı́nez Mori (2024); Carlson

et al. (2021) for expository introductions to parking functions and their many variants, and to Yan (2015)

for a survey of results.

In this paper, we study the “fair” distribution of parking costs. Specifically, we take the total dis-

placement collectively incurred by all cars as the basis for the cost of parking. As a motivating example,

consider the all-ones parking function (1, 1, . . . , 1) ∈ PFn. In this case, car 1 is lucky and parks in spot

1 without incurring any displacement. However, car 2 is not as lucky, and it is displaced one unit before

parking in spot 2. Similarly, car i is displaced i − 1 units before parking in spot i. Therefore, the total

displacement of (1, 1, . . . , 1) is
n∑

i=1

(i− 1) =
n(n− 1)

2
.

Certainly, one can recover the total displacement by charging each car for the displacement it incurs:

that is, charging i − 1 units to each car i. However, this seems rather unfair given that all cars have the

same preference; it just so happens that certain cars arrive before others (and the arrival order might be

beyond the cars’ control). Therefore, in this case, it seems only fair to charge (n − 1)/2 units to each

car i, which again recovers the total displacement. Now, suppose some car changed its preference from

spot 1 to spot 2. This would ever so slightly alleviate the parking demand around spot 1, and in fact the

total displacement would decrease by one unit. How should this car be “fairly” compensated for its more

favorable preference?

1.1 Summary of Results

We answer this question through the lens of cooperative game theory (refer to Peleg and Sudhölter (2007)

for a comprehensive treatment of this area, and to Myerson (1991) for its broader context in game theory).

Our contributions are as follows.

We first note that the total displacement of a parking function is invariant under the action of the per-

mutation group, even when there are more spots than cars (Theorem 3.2). In turn, this allows us to define

parking games as a class of (transferable utility) cooperative games in characteristic function form (Defi-

nition 3.3).

We then show that parking games are supermodular cost-sharing games (Lemma 3.5). As such, their

core Shapley (1955); Gillies (1959) is typically empty, indicating that cooperation is difficult. Supermod-

ularity arises whenever costs are exacerbated by “congestion” effects, such as in scheduling Goemans

et al. (2002); Queyranne (1993); Schulz and Uhan (2010, 2013). In much the same way, parking games

are supermodular because a car that arrives at an already busy street tends to be displaced significantly

before it finds an unoccupied spot.

Next, we adopt the Shapley value Shapley (1953) as a notion of “fair” cost-sharing. In parking games,

the Shapley value amounts to charging each car for its expected marginal displacement assuming its
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arrival order is determined uniformly at random. However, a simple computation of this quantity requires

exponential time. Therefore, our main contribution is a polynomial-time algorithm to compute the Shapley

value of parking games (Theorem 3.10). Our algorithm leverages the permutation-invariance of total

displacement, combinatorial enumeration, and dynamic programming. We contrast this positive result

for the special case of parking games with known hardness results on computing the Shapley value for

arbitrary cooperative games Deng and Papadimitriou (1994); Faigle and Kern (1992).

Finally, we note that unlike the scheduling games studied by Schulz and Uhan (2010), which are similar

to parking games in that they are supermodular and their Shapley value can be computed in polynomial

time, the Shapley value of parking games is not a least core allocation (i.e., a cost-share distribution

that minimizes the worst-case dissatisfaction from cooperation) (Lemma 4.1). We conclude with open

questions around the least core and least core value of parking games.

1.2 Organization

The remainder of this paper is organized as follows. In Section 2, we present some necessary background

on parking functions and cooperative game theory. In Section 3, we define parking games, establish

supermodularity, and introduce our algorithm. We conclude in Section 4 with some additional properties

and open questions.

2 Background

Notation

We briefly outline some notational conventions. All tuples considered have positive integer entries and

are denoted in boldface, as in β = (b1, b2, . . . , bn) ∈ Nn. Throughout, weakly increasing tuples are

furthermore decorated with an apostrophe, as in β′ = (b′1, b
′
2, . . . , b

′
n). If β = (b1, b2, . . . , bn) is an

n-tuple and i ∈ [n], then |β| = n denotes its size and

βî = (b1, . . . , bi−1, bi+1, . . . , bn)

denotes the (n− 1)-tuple obtained from β upon the removal of its ith entry. For any n ∈ N, let Sn denote

the symmetric group over [n]. If π ∈ Sn, then π−1 denotes its inverse.

2.1 Parking Functions

Let PFn ⊆ [n]n denote the set of parking functions of length n. Similarly, let PF↑
n ⊆ PFn denote

the set of weakly increasing parking functions of length n. Konheim and Weiss (1966) showed that

|PFn| = (n+1)n−1 (OEIS A000272). We refer the reader to Riordan (1969) for an elegant proof credited

to Pollak. Stanley (1997) showed, through a connection to noncrossing partitions, that |PF↑
n| = Cn, where

Cn = 1
n+1

(
2n
n

)
is the nth Catalan number (OEIS A000108).

Let α = (a1, a2, . . . , an) ∈ [n]n and α′ = (a′1, a
′
2, . . . , a

′
n) be its weakly increasing rearrangement. It

is well-known (for instance, refer to Yan (2015)) that α ∈ PFn if and only if a′i ≤ i for all i ∈ [n]. As a

consequence, PFn consists of the orbits of the elements of PF↑
n under the action of Sn (which permutes

the subscripts). In particular, PFn is closed under the action of permutations. Later in this work, we use

the following definition. For any fixed α ∈ PFn, let r : [n] → [n] be a bijective rank function that maps

each index i in α to its index r(i) in α′ with ties broken arbitrarily, so that ai = a′
r(i). Given any subset

S ⊆ [n], we denote r(S) = {r(i) : i ∈ S}.
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Konheim and Weiss (1966) also considered parking functions where there are more parking spots than

cars. Let n,m ∈ N with m ≥ n. Suppose there are m numbered parking spots on the one-way street

and n cars arrive one at a time, each with a preferred spot in [m]. Let α = (a1, a2, . . . , an) ∈ [m]n

be the n-tuple encoding the parking preferences of every car. Each car i follows the same parking rule

as before: it parks in the first unoccupied spot at or past its preferred spot ai ∈ [m], if one exists. Let

PFn,m ⊆ [m]n denote the set of preference tuples with n cars and m spots under which all cars are able to

park; we refer to these as (n,m)-parking functions. (Konheim and Weiss, 1966, Lemma 2) showed that

|PFn,m| = (m + 1)n−1(m + 1 − n). Similarly, let PF↑
n,m ⊆ PFn,m denote the set of weakly increasing

(n,m)-parking functions.

2.2 Shapley Value and Core

Let n ∈ N. A (transferable utility) coalitional cost-sharing game over a set of players [n] is specified by

a characteristic function c : 2[n] → R satisfying c(∅) = 0. Here, c(S) is the collective cost incurred by

the members of the coalition S ⊆ [n] should they act in unison. The set [n] is referred to as the grand

coalition. In simpler terms, the assumption of transferable utility is the existence of a tradable commodity

(e.g., money), assumed to be subject to identical valuation from each player, so that the single number

c(S) suffices to capture the feasible cost-share allocations for the members of a coalition S ⊆ [n]. A

solution concept is a function φ that associates with each game c a subset of player cost-share allocations.

This theory assumes coalitions can reach binding agreements. Even in scenarios where cooperation may

be undesirable for individual agents, as Schulz and Uhan (2010) put it, it might be in the interest of an

external party such as a government authority to encourage/enforce cooperation (e.g., through contracts,

monetary penalties) to alleviate the negative of externalities of failure to cooperate.

Shapley (1953) (a 2012 Nobel laureate for contributions to game theory Roth (2016)) considered solu-

tion concepts in cost-sharing games through an axiomatic approach. In particular, he posited the following

as desirable properties of a solution concept.

Axiom 2.1 (Efficiency)
∑n

i=1 φi(c) = c([n]).

Axiom 2.2 (Nullity) If c(S + {i}) = c(S) for every S ⊆ [n] \ {i}, then φi(c) = 0.

Axiom 2.3 (Symmetry) If c(S ∪ {i}) = c(S + {j}) for every S ⊆ [n] \ {i, j}, then φi(c) = φj(c).

Axiom 2.4 (Additivity) If c′ is another characteristic function over the set of players [n], then

φi (c+ c′) = φi(c) + φi(c
′)

for each i ∈ [n].

Axiom 2.1 states that the sum of cost-shares recover the total cost incurred by the grand coalition. Ax-

iom 2.2 states that if player i never increases the cost of cooperation, in the sense that the marginal cost

c(S + {i})− c(S) is zero for all coalitions S ⊆ [n] \ {i} that player i could join, then player i is corre-

spondingly charged nothing. Axiom 2.3 states that if players i and j are equivalent with respect to c, in

the sense that c(S+{i}) = c(S+{j}) for all coalitions S ⊆ [n]\{i, j} that players i and j could join (so

that all of such coalitions are ambivalent between which of the two players joins them), then players i and

j are correspondingly charged the same. Lastly, Axiom 2.4 captures the idea that, if the players participate

in a game that combines two independent (possibly completely different) games, then the outcome of one

the games does not affect the outcome of the other.
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Shapley showed that there is a unique solution concept satisfying Axioms 2.1-2.4. This solution concept

is now known as the Shapley value.

Theorem 2.5 (Shapley (1953)) Let C be the set of characteristic functions over the set of players [n]. The

function φ : C → Rn given by

φi(c) =
1

n!

∑

π∈Sn

c ({j ∈ [n] : π(j) ≤ π(i)})− c ({j ∈ [n] : π(j) < π(i)}) (1)

for each i ∈ [n] is the unique function satisfying Axioms 2.1-2.4.

In other words, in the Shapley value, each player is charged their expected marginal cost assuming the

order in which they join the grand coalition is determined uniformly at random. Refer to (Myerson, 1991,

Chapter 9.4) for an approachable presentation of Axioms 2.1-2.4 and of Theorem 2.5.

The Shapley value can be readily computed with exponentially-many oracle calls to the character-

istic function (i.e., querying the value c(S) for a given S ⊆ [n]), so it is natural to ask whether this

many evaluation is generally necessary. (Faigle and Kern, 1992, Theorem 3) showed that any algorithm

that computes the Shapley value for arbitrary characteristic functions requires exponentially-many calls.

Moreover, (Deng and Papadimitriou, 1994, Theorem 9) showed that, in general, computing the Shapley

value is #P -complete. However, there are nontrivial special cases for which polynomial-time algorithms

are known (e.g., (Deng and Papadimitriou, 1994, Theorem 1)). In this work, we show that parking games

are another such special case.

Gillies (1959); Shapley (1955) introduced another solution concept, known as the core, with desirable

“stability” properties. The core of a cooperative game c is the set

{

φ ∈ Rn :

n∑

i=1

φi = c([n]),
∑

i∈S

φi ≤ c(S) for all S ⊆ [n]

}

.

Intuitively, it is the set of cost-share allocations that are simultaneously efficient (Axiom 2.1) and robust

against coalitional defections. In other words, no coalition is charged more than the cost that they would

incur by themselves.

The Bondareva-Shapley theorem Bondareva (1963); Shapley (1967) (refer also to (Peleg and Sudhölter,

2007, Chapter 3.1)) provides necessary and sufficient conditions for the non-emptiness of the core. In

particular, it implies that if c is submodular, then the core is non-empty. Note that c is submodular if

c(S ∪ {i})− c(S) ≥ c(T ∪ {i})− c(T )

for all i ∈ [n] and all S ⊆ T ⊆ [n] \ {i}. Conversely, it is supermodular if

c(S ∪ {i})− c(S) ≤ c(T ∪ {i})− c(T )

for all i ∈ [n] and all S ⊆ T ⊆ [n] \ {i}. It is modular if it is simultaneously submodular and super-

modular. Intuitively, submodularity and supermodularity capture the notions of decreasing and increasing

marginal costs, respectively. It can be verified that the core of a supermodular game is empty unless it is

modular, indicating that cooperation is difficult.
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3 Parking Games

3.1 Displacement, Total Displacement, and Arrival Order

Fix any α = (a1, a2, . . . , an) ∈ PFn. Then, by definition, car i with preference ai ∈ [n] parks in some

spot pi ∈ [n] with pi ≥ ai. Therefore, the displacement incurred by car i upon its arrival under α is given

by

pi − ai ≥ 0. (2)

Now, let d : PFn → N be the total displacement function, where d(α) is the total displacement incurred

by all cars upon their arrival with preferences α ∈ PFn. Using Equation (2), for any fixed α ∈ PFn we

have

d(α) :=

n∑

i=1

pi − ai. (3)

For example, given a weakly increasing parking functionα′ = (a′1, a
′
2, . . . , a

′
n) ∈ PF↑

n, the cars 1, 2, . . . , n
park in the order 1, 2, . . . , n. Therefore, in this case we have d(α′) =

∑n

i=1(i− a′i).
We show that the total displacement statistic is invariant under rearrangement of the entries of a parking

function. This result is standard (e.g., it is stated in (Yan, 2015, Chapter 13.2.2)), but we formally state

and prove it for completeness and later use.

Lemma 3.1 If α = (a1, a2, . . . , an) ∈ PFn and π ∈ Sn acts on α by permuting its subscripts, i.e.

π(α) = (aπ−1(1), aπ−1(2), . . . , aπ−1(n)), then d(α) = d(π(α)).

Proof: Note that under α, car i with preference ai ∈ [n] parks in some spot pi ∈ [n]. Since α ∈ PFn, this

implies {p1, p2, . . . , pn} = [n] and we have

d(α) =

n∑

i=1

(pi − ai) =

n∑

i=1

i−
n∑

i=1

ai =
n(n+ 1)

2
−

n∑

i=1

ai.

Similarly, note that under π(α), car i with preference aπ−1(i) parks in some spot qi ∈ [n]. Since π(α) ∈
PFn, this implies {q1, q2, . . . , qn} = [n] and we have

d(π(α)) =

n∑

i=1

(
qi − aπ−1(i)

)
=

n∑

i=1

i−
n∑

i=1

aπ−1(i) =
n(n+ 1)

2
−

n∑

i=1

aπ−1(i).

Lastly, note that
n∑

i=1

ai =

n∑

i=1

aπ−1(i)

since π is a bijection from [n] to [n]. ✷

We now generalize this result to the case of (n,m)-parking functions. For n,m ∈ N with m ≥ n, let

d : PFn,m → N be the total displacement function, where d(α) is the total displacement incurred by all

cars upon their arrival with preferences α ∈ PFn,m.

Theorem 3.2 If α = (a1, a2, . . . , an) ∈ PFn,m and π ∈ Sn acts on α by permuting its subscripts, i.e.

π(α) = (aπ−1(1), aπ−1(2), . . . , aπ−1(n)), then d(α) = d(π(α)).
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Proof: Upon replicating the proof technique from Lemma 3.1, it suffices to show that the subset of

occupied spots under α is the same as the subset of occupied spots under π(α) (this is immediate in

Lemma 3.1 since it assumes α, π(α) ∈ PFn).

Suppose that under α, the cars park in spots in S ⊆ [m] whereas under π(α), the cars park in spots in

T ⊆ [m]. Note that |S| = |T | = n. If S = T , then the result follows. Suppose by way of contradiction

that S 6= T , and let p be the smallest value in (S \ T ) ∪ (T \ S). Without loss of generality, suppose

p ∈ S \ T (otherwise we swap the roles in the following argument). Since p ∈ S, there are k cars with

preference less than or equal to p in α for some 1 ≤ k ≤ n. Conversely, since p /∈ T and p is the smallest

value in S \T , there are k− 1 cars with preference less than or equal to p in π(α). This is a contradiction,

for α and π(α) are equal as multisets. ✷

Given Theorem 3.2, we now define parking games as coalitional games in characteristic function form,

where each car is treated as a player.

Definition 3.3 (Parking Game) Let α = (a1, a2, . . . , an) ∈ PFn be a parking function. The parking

game of α is given by the characteristic function cα : 2[n] → N, where

cα(S) = d((ai : i ∈ S)) (4)

for each S ⊆ [n].

In other words, cα(S) is the total displacement of the (|S|, n)-parking function (ai : i ∈ S) ∈ PF|S|,n.

Note that this definition relies on Theorem 3.2 to treat cα as a set function that is independent of the arrival

order of the cars in S. As noted in the following remark, the parking game of a parking function can be

obtained through the parking game of its weakly increasing rearrangement.

Remark 3.4 Let α = (a1, a2, . . . , an) ∈ PFn be a parking function and α′ = (a′1, a
′
2, . . . , a

′
n) ∈ PF↑

n

be its weakly increasing rearrangement. Then, by Theorem 3.2, it follows that

cα(S) = d((ai : i ∈ S)) = d((a′i : i ∈ r(S))) = cα′(r(S))

for each S ⊆ [n].

3.2 Supermodularity

We now show that parking games are supermodular cost-sharing games.

Lemma 3.5 Let α = (a1, a2, . . . , an) ∈ PFn be a parking function. Then, cα is supermodular, i.e.,

cα(S ∪ {i})− cα(S) ≤ cα(T ∪ {i})− cα(T )

for all i ∈ [n] and S ⊆ T ⊆ [n] \ {i}.

Proof: Fix any i ∈ [n] and S ⊆ T ⊆ [n] \ {i}. Consider the arrival of car i immediately after the arrival

of the cars in S. If spot ai is empty, then cα(S ∪ {i}) = cα(S) and the inequality is verified. Conversely,

suppose there is a sequence of contiguously occupied spots starting at some spot s satisfying 1 ≤ s ≤ ai
and ending at some spot t satisfying ai ≤ t ≤ n − 1, implying the displacement of car i is t − ai + 1.

Now, similarly consider the arrival of car i immediately after the arrival of the cars in T ⊇ S. Then, there

is again a sequence of contiguously occupied spots, except this time starting at some spot s′ satisfying



8 Elder, Harris, Kretschmann, and Martı́nez Mori

1 ≤ s′ ≤ s and ending at some spot t′ satisfying t ≤ t′ ≤ n − 1, implying the displacement of car i is

t′ − ai + 1 ≥ t− ai + 1. ✷

Supermodularity captures the notion of increasing marginal costs, and it arises whenever costs are exac-

erbated by “congestion” effects, such as in scheduling Goemans et al. (2002); Queyranne (1993); Schulz

and Uhan (2010, 2013). Intuitively, parking games are supermodular because a car that arrives at an al-

ready busy street tends to displace significantly before it finds an unoccupied spot. (Schulz and Uhan,

2010, Theorem 1) showed that supermodular games are in some sense common: the problem of minimiz-

ing a non-negative linear function over a supermodular polyhedron, which arises often in combinatorial

optimization, has a supermodular objective value. In effect, parking games are a special family within the

broader class of supermodular games.

It follows from Lemma 3.5 that the core of parking games is typically empty (with the exception of

modular cases in which α ∈ Sn). For example, this can be verified from the fact that each car in isolation

incurs no displacement.

3.3 Expected Marginal Displacement

Let α ∈ PFn be a parking function and cα : 2[n] → N be its parking game. In this section, we present a

polynomial-time algorithm to compute the Shapley value of cα.

In this setting, based on Equation (1), each car i is assigned a cost-share of

φi(cα) =
1

n!

∑

π∈Sn

cα ({j ∈ [n] : π(j) ≤ π(i)})− cα ({j ∈ [n] : π(j) < π(i)}) . (5)

Note that given any arrival order π ∈ Sn, the difference

cα ({j ∈ [n] : π(j) ≤ π(i)})− cα ({j ∈ [n] : π(j) < π(i)})

corresponds to the displacement of car i upon its arrival in the order given by π. In effect, Equation (5) is a

formula for the expected marginal displacement of car i assuming its arrival order is determined uniformly

at random. We leverage this interpretation in what follows.

Example 3.6 Let α = (1, 4, 3, 3, 1, 2, 7) ∈ PF7. Based on (3) we have that d(α) = 7. Based on (5) we

have that:

• φ1(cα) = 7896/7! = 47/30.

• φ2(cα) = 2856/7! = 17/30.

• φ3(cα) = 5628/7! = 67/60.

• φ4(cα) = 5628/7! = 67/60.

• φ5(cα) = 7896/7! = 47/30.

• φ6(cα) = 5376/7! = 16/15.

• φ7(cα) = 0/7! = 0.



Cost-sharing in Parking Games 9

Note that
∑n

i=1 φi(cα) = 7 (this reflects Axiom 2.1). Moreover, note that cars with the same preference

have the same cost-share allocation, such as cars 3 and 4 (this reflects Axiom 2.3). Lastly, note that car

7 is lucky (i.e., parks in its preferred spot) regardless of the arrival order. Therefore, φ7 = 0 (this reflects

Axiom 2.2).

We first introduce some notation. Given a tuple β and an integer t ∈ [n], let

Λt(β) = |{b ∈ β : b ≥ t+ 2}|

be the number of entries of β that are greater than or equal to t+2. Similarly, given an integer s ∈ [n], let

Γs(β) = |{b ∈ β : b ≤ s− 2}|

be the number of entries of z that are less than or equal to s − 2. Moreover, given a weakly increasing

tuple β′, and three nonnegative integers s, t, k ∈ N with s ≤ t, let Q(β′, s, t, k) denote the number of size

k sub-tuples of β′ that, when treated as a preference k-tuple, cars park in spots s, . . . , t. Formally,

Q(β′, s, t, k) = |{(i1, i2, . . . , ik) : (b
′
i1
− b′i1 + 1, b′i2 − b′i1 + 1, . . . , b′ik − b′i1 + 1) ∈ PF

↑
k,t−s+1}|.

We obtain the following enumeration.

Lemma 3.7 Let α = (a1, a2, . . . , an) ∈ PFn be a parking function and α′ = (a′1, a
′
2, . . . , a

′
n) ∈ PF↑

n

be its weakly increasing rearrangement. Fix any car j ∈ [n] and let i := r(j) ∈ [n] be its rank. Then,

Equation (5) for car j is given by

φj(cα) = φi(cα′) =
1

n!

a′

i∑

s=1

n−1∑

t=a′

i

(t− a′i + 1)Q(α′
î
, s, t, t− s+ 1)R(α′

î
, s, t), (6)

where

R(α′
î
, s, t) =

Λt(α
′

î
)

∑

λ=0

Γs(α
′

î
)

∑

γ=0

(
Λt(α

′
î
)

λ

)

Q(α′
î
, 1, s− 2, γ)(t− s+ 1 + λ+ γ)!(n− t+ s− λ− γ − 2)!.

Proof: Note that the cost-share φj(cα) of car j under α is equal to the cost-share φi(cα′) of car i under

α′. Therefore, consider the displacement of car i upon its arrival under α′.

Upon its arrival, car i drives to its preferred spot a′i. If spot a′i is empty, car i parks there incurring

zero displacement. Conversely, suppose spot a′i is occupied. Then, there is a sequence of contiguously

occupied spots starting at some spot s satisfying 1 ≤ s ≤ a′i and ending at some spot t satisfying

a′i ≤ t ≤ n− 1; note that t 6= n since, by assumption, car i is able to park. Now, fix any pair of possible

values for s and t. This implies the following (for otherwise the block does not start at s and end at t):

• Spot t+ 1 is empty. As a consequence, car i parks in spot t+ 1 incurring t− a′i + 1 displacement.

• If spot s− 1 exists, it is empty as well.

In turn, the choice of s and t leads to three contiguous segments of parking spots in which cars may

park prior to the arrival of car i:
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1. Spots 1, . . . , s− 2 (if these exist),

2. spots s, . . . , t, and

3. spots t+ 2, . . . , n (if these exist).

Note that unlike spots s, . . . , t, spots 1, . . . , s − 2 need not be contiguously occupied. Similarly, spots

t + 2, . . . , n need not be contiguously occupied. We now count the number of different subsets of cars

that can occupy each of these three segments.

1. Since spot s−1 is empty, only those cars with preferences less than or equal to s−2 could possibly

park in spots 1, . . . , s− 2; there are Γs(αî) such cars. Only some number 0 ≤ γ ≤ Γs(αî) of cars

park in these spots prior to the arrival of car i. Therefore, for any fixed possible value of γ, the

number of size-γ subset of cars that park in this segment is given by Q(α′
î
, 1, s− 2, γ).

2. Since spot s − 1 is empty, spots s, . . . , t are contiguously occupied, and spot t + 1 is empty, we

need the number of size-(t − s + 1) subsets of cars that park in this segment. This is given by

Q(α′
î
, s, t, t− s+ 1).

3. Since spot t + 1 is empty, only those cars with preferences greater than or equal to t + 2 could

possibly park in spots t+2, . . . , n; there are Λt(αî) such cars. Only some number 0 ≤ λ ≤ Λt(αî)
of cars park in these spots prior to the arrival of car i. Therefore, for any fixed possible value of λ,

the number of size-λ subset of cars that park in this segment is given by Q(α′
î
, t+ 2, n, λ). In fact,

since α′ ∈ PF↑
n, any size-λ subset of cars with preference greater than or equal to t + 2 is able to

park in the segment t+ 2, . . . , n, and it follows that

Q(α′
î
, t+ 2, n, λ) =

(
Λt(αî)

λ

)

.

Note that in (1) above, the term Q(α′
î
, 1, s − 2, γ) does not generally simplify into a binomial because,

depending on the preferences, certain cars might displace into spot s− 1, which we thus far assume to be

empty.

Now, the choice of s, t, λ, and γ imply (t−s+1)+λ+γ cars park prior to the arrival of car i, in one of

(t−s+1+λ+γ)! different arrival orders. Similarly, n−1−((t−s+1)+λ+γ) = n− t+s−λ−γ−2
cars arrive after the arrival of car i, in one of (n− t+ s− λ− γ − 2)! different arrival orders.

Summing over the possible values for s, t, λ, and γ yields the sum portion of Equation 6:

a′

i∑

s=1

n−1∑

t=a′

i

(t− a′i + 1)Q(α′
î
, s, t, t− s+ 1)R(α′

î
, s, t)

where

R(α′
î
, s, t) =

Λt(α
′

î
)

∑

λ=0

Γs(α
′

î
)

∑

γ=0

(
Λt(α

′
î
)

λ

)

Q(α′
î
, 1, s− 2, γ)(t− s+ 1 + λ+ γ)!(n− t+ s− λ− γ − 2)!

Finally, there are n! different orders in which all cars could arrive, and the arrival order is realized uni-

formly at random. This completes the proof. ✷
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Example 3.8 We demonstrate an execution of (6) using the instance in Example 3.6. Let

α = (1, 4, 3, 3, 1, 2, 7) ∈ PF7

and note that its weakly increasing rearrangement is

α′ = (1, 1, 2, 3, 3, 4, 7) ∈ PF
↑
7.

Consider j = 2, so that α2 = 4 and r(j) = 6. To compute φ2(α) we equivalently compute φ6(α
′). Here

we only show one term of its computation.

Suppose s = 2 and t = 4 in (6). Then, upon its arrival, car 6 is displaced t− a′6 + 1 = 4− 4 + 1 = 1
unit. Now, by our choice of s and t, spots 2, 3, 4 are contiguously occupied whereas spot 1 and 5 are

unoccupied. Note the following:

• Neither of cars 1 or 2 could have arrived, for otherwise spot 1 would be occupied. In particular,

Γs(α
′
6̂
) = ∅ and we only need to consider γ = 0.

• Car 7 could have arrived, for in either case spot 5 would remain unoccupied. In particular,

Λt(α
′
6̂
) = {7} and we only need to consider λ = 0, 1.

• Cars 3, 4, 5 must have arrived, as this is the only way in which spots 2, 3, 4 would be contiguously

occupied. In particular, Q(α′
6̂
, s, t, t− s+ 1) = 1.

In the case in which γ = 0, λ = 0, a total of 3 cars arrive prior to car 6 whereas a total of 3 cars arrive

after car 6. In the case in which γ = 0, λ = 1, a total of 4 cars arrive prior to car 6 whereas a total of 2
cars arrive after car 6. To summarize, this choice of s and t contributes

1
︸︷︷︸

t−a′

6
+1

1
︸︷︷︸

Q(α′

6̂
,s,t,t−s+1)



1 · 1 · 3! · 3!
︸ ︷︷ ︸

γ=0,γ=0

+ 1 · 1 · 4! · 2!
︸ ︷︷ ︸

λ=1,γ=0



 = 84

to the total sum.

Assuming oracle access to Q, Equation (6) can be evaluated in polynomial time in α for any car j ∈ [n]
(note that each of the summations involves at most n terms). As a final step, we show that Q can be

evaluated in polynomial time as well.

We first introduce a some additional notation. Given a tuple β, let b∗ = min{b ∈ β} be the value of its

smallest entry and

U(β) = (max{b, 1 + b∗} : b ∈ β)

be the copy of β in which all entries with value equal to b∗ are increased by one. For example, if β =
(3, 3, 4, 4, 5), then b∗ = 3 and U(β) = (4, 4, 4, 4, 5). We evaluate Q using the following recursive

relation.
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Lemma 3.9 Let β′ = (b′1, b
′
2, . . . , b

′
|β′|) ∈ [w]|β

′| be a nonnegative, weakly increasing tuple where w ∈

N, and let s, t, k ∈ N with s ≤ t. Then, Q(β′, s, t, k) satisfies the following recursive relation:

Q(β′, s, t, k) =







1, if k = 0,

0, if k > t− s+ 1 ∨ k > |β′|,

Q(β′
1̂
, s, t, k), if b′1 < s,

Q(β′, s+ 1, t, k), if b′1 > s,

Q(U(β′)1̂, s+ 1, t, k − 1) +Q(β′
1̂
, s, t, k), if b′1 = s.

(7)

Using dynamic programming, Q(β′, s, t, k) can be evaluated in time polynomial in |β′| and k.

Proof: We first consider the base case. If we attempt to park more cars than there are spots (i.e., k >
t − s + 1), or more cars than there are preferences (i.e., k > |β′|), the count is zero. Similarly, if we

attempt to park no cars (i.e., k = 0), the count is one.

Therefore, suppose 1 ≤ k ≤ min{t−s+1, |β′|}. In this case, there are three possibilities, each leading

to a distinct recursive call (recall b′1 is the first entry of β′):

• If b′1 < s, then the first car cannot park in the segment s, . . . , t. Therefore, in this case, the count is

the same as the count Q(β′
1̂
, s, t, k) upon the removal of the first car.

• If b′1 = s, then there are two possibilities for the first car: it is selected as part of the size-k subset

of cars, or it is not. In the first sub-case, no subsequent car can park in the spot s that starts the

segment s, . . . , t. Therefore, in this sub-case, the count is the same as the count Q(U(β′)1̂, s +
1, t, k − 1) upon increasing the preference of any car that prefers spot s by one, removing the first

car, increasing the segment start by one spot, and decreasing the number of cars to select by one. In

the second sub-case, the count is the same as the count Q(β′
1̂
, s, t, k) upon the removal of the first

car.

• If b′1 > s, then the first car cannot park in the spot s that starts the segment s, . . . , t. Therefore, in

this case, the count is the same as the count Q(β′, s+ 1, t, k) upon increasing the segment start by

one spot.

Finally, note that a dynamic programming table of polynomial size can be implemented since its indices

require at most |β′| suffixes of β′, s, t ≤ |β′|, and U need only be applied k-many times. ✷

While w does not play any explicit role in the proof of Lemma 3.9, the values it can possibly take are

implicitly restricted by the problem definition which, for any given n ∈ N, is restricted to PF↑
n ⊆ [n]n.

We thus obtain our main result.

Theorem 3.10 There exists a polynomial-time algorithm to compute the Shapley value of parking games.

Namely, the one given by the formulas in Lemma 3.7 and Lemma 3.9.

Proof: The correctness of the algorithm follows from the proofs of the lemmas. Its running time follows

from Lemma 3.9 and the fact that, in Equation (6), the recursive relation Equation (7) is always evaluated

passing weakly increasing β′ and k satisfying |β′|, k ≤ n. ✷
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4 Conclusion

One can envision real-world systems in which displacement is a costly negative externality and, as a

result, the parking rate at a given spot is a function of the displacement derived from its popularity. For

example, in transportation settings, this might be because of increased environmental emissions. The

results presented in this work form a methodological basis for operating such a system.

The results in this paper readily extend to (n,m)-parking functions by splitting them into small in-

dependent “parking functions,” in the style underlying Theorem 3.2. Moreover, because of Axiom 2.4,

Theorem 3.10 can be applied given any characteristic function that is an affine function of the total dis-

placement.

We conclude with directions for future research. As noted in Lemma 3.5, parking games are supermod-

ular, which indicates that their core is empty (except for modular cases in which α ∈ Sn). Therefore,

the least core Shapley and Shubik (1966); Maschler et al. (1979) is an appropriate alternative solution

concept. The least core is the set of optimal solutions to

z∗ = min

{

z :
n∑

i=1

φi = c([n]),
∑

i∈S

φi ≤ c(S) + z, for all S ⊆ [n]

}

, (8)

and z∗ is the least core value. Unlike the core, the least core is always non-empty. A least core alloca-

tion minimizes the worst-case dissatisfaction over all coalitions, and the least core value can be seen as

the minimum amount that needs to be charged for defection (e.g., by a governing authority) in order to

incentivize cooperation.

Schulz and Uhan (2010, 2013) study the least core and least core value of supermodular cost-sharing

games. They show that computing the least core value of an arbitrary supermodular game is strongly NP-

hard (Schulz and Uhan, 2010, Theorem 2). Interestingly, for scheduling games, not only can their Shapley

value be computed in polynomial time, but it moreover happens to be a least core allocation (Schulz and

Uhan, 2010, Theorem 3). (However, they note that computing the least core value of scheduling games

remains weakly NP-hard). Parking games are similar to scheduling games in that, as we have shown,

they are supermodular and their Shapley value can be computed in polynomial time. However, they are

different in that their Shapley value is not a least core allocation.

Lemma 4.1 The Shapley value of parking games is not a least core allocation.

Proof: It suffices to show a counterexample. Let α = (1, 1, 2) ∈ PF3 and consider its parking game cα.

We have cα(∅) = cα({1}) = cα({2}) = cα({3}) = cα({1, 3}) = cα({2, 3}) = 0, cα({1, 2}) = 1, and

cα({1, 2, 3}) = 2. Its Shapley value is φ1(cα) = φ2(cα) = 5/6 and φ3(cα) = 2/6. However, its least

core value is z∗ = 1 with the least core allocation φ1 = φ2 = 1 and φ3 = 0. In particular, for S = {1, 3}
we have

φ1(cα) + φ3(cα) = 5/6 + 2/6 = 7/6 � 1 = 0 + 1 = cα({1, 3}) + z∗.

✷

However, given the positive result on the complexity of computing the Shapley value of parking games,

we ask whether a least core allocation or the least core value of parking games can be computed in poly-

nomial time and/or interpreted combinatorially. First, we ask whether the least core allocation(s) relate to

individual parking statistics, including but not limited to those concerning individual displacement. We
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also ask about the coalitions S ⊆ [n] for which the least core value z∗ is attained in (8) for a particular least

core allocation: do such coalitions fully determine z∗ in terms of parking statistics that distinguish them

from other coalitions? Similarly, we ask whether the Shapley value of parking games is an approximate

least core allocation (refer to (Schulz and Uhan, 2013, Section 2)).

Finally, given the abundance of connections between parking functions and other combinatorial ob-

jects (refer to Section 1 for some examples), future work might consider mappings that preserve the total

displacement statistic, in this way defining equivalent cooperative games except with a different combi-

natorial interpretation.
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