Demo Abstract: Online Training and Inference for
On-Device Monocular Depth Estimation

Allen-Jasmin Farcas, Geffen Cooper, Hyun Joon Song, Afnan Mir, Vincent Liew, Chloe Tang,
Prithvi Senthilkumar, Tiani Chen-Troester, Radu Marculescu
The University of Texas at Austin
Email: {allen.farcas, geffen, radum}@utexas.edu

Abstract—A central challenge in machine learning deployment
is maintaining accurate and updated models as the deployment
environment changes over time. We present a hardware/software
framework for simultaneous training and inference for monoc-
ular depth estimation on edge devices. Our proposed frame-
work can be used as a hardware/software co-design tool that
enables continual and online federated learning on edge devices.
Our results show real-time training and inference performance,
demonstrating the feasibility of online learning on edge devices.

Index Terms—Federated Learning, Continual Learning, Hard-
ware/Software Co-Design, Edge Devices, Internet-of-Things

I. INTRODUCTION

Training and deploying models in the real world is the de
facto solution for enabling machine learning (ML) on edge
devices. Currently, the most common approach is to train a
model on a cloud server and then optimize and deploy it
on edge devices. However, deployed models are often static,
resulting in degraded performance as the environment changes.

Continual learning (CL) can extend the learning process at
the deployment stage, thus enabling models to adapt continu-
ally to changing conditions or tasks. A central challenge in CL
is how to learn new tasks without forgetting and having a lower
performance on older tasks. Practical approaches to CL must
consider the memory and computational overhead involved
in data, parameter storage, and model updates. However, the
deployment of CL on edge devices is limited [1] and even
recent surveys on CL [2] lack coverage of hardware-aware
approaches with actual hardware validation on state-of-the-art
CL methods. Furthermore, realistic data streams for real-time
sensing, e.g., a robot moving in indoor/outdoor space, are not
thoroughly explored in existing approaches [2].

With growing privacy concerns, federated learning (FL)
[3] has emerged as the de facto approach to enable on-
device training on local data. However, the most common
scenario is for on-device training to run when it has minimal
impact on user experience, usually at night while the device
is charging and connected to Wi-Fi. Thus, in [4] the authors
propose joint training and inference optimization for FL while
providing model as a service, with a focus on maximizing
inference performance. Since model as a service is a cloud-
based framework, the approach requires internet connection.

However, on-device simultaneous training and inference still
represents a challenge. In order to enable realistic continual
FL, there is a clear need for developing online training

Fig. 1: Online training and inference for on-device monocular
depth estimation. We show the RGB-D camera and Jetson Orin
Nano training. We monitor memory, power and temperature
variation while running real-time depth estimation inference
and simultaneously training the model on current data.

and inference (OTI) frameworks. Therefore, we propose an
OTI framework for monocular depth estimation (MDE) and
validate it using real edge devices.

II. APPROACH

Hardware Prototype Considerations: Our hardware proto-
type, shown in Fig. 1, consists of an NVIDIA Jetson Orin
Nano edge device with 8GB RAM and a Microsoft Azure
Kinect Developer Kit. We continuously monitor the memory
consumption, power consumption and temperature of the edge
device. For empirical evaluation, we show the real-time video
feed and the depth from the RGB-D camera and the real-time
predictions of the MDE model.

Software Framework for Online Training and Inference:
We depict in Fig. 2 the practical approach towards OTI. First,
we get the RGB-D image from the camera and preprocess
the RGB image and the depth map for the model (i.e., both
inference and training). This includes inpainting to fill in any
missing depth values. Next, we temporarily store on a data
buffer (with a fixed size) the RGB and depth images. We use
the data buffer as a blocking mechanism, i.e., queue, enabling
synchronized data exchange between the inference thread and
training thread. Naturally, we limit the size of the data buffer
due to the limited on-device memory. We use the entire buffer
to create a data loader that is used to train the MDE model.

Inference Thread

Load New Weights Inference on Image

* Updated
* Model

Yes

Make Dataset and
Empty Buffer

Fig. 2: Overall workflow of our software framework. We use
one thread for inference and one thread for training. Both
threads use the data buffer to temporarily store images that
are used for training when the buffer is full.

TABLE I: GuideDepth quantitative performance on NYUv2
dataset. Overall, structural pruning and fine-tuning are required
to improve the model performance.

30% Pruned 30% Pruned

‘ Full w/o Fine-Tuning w/ Fine-Tuning

Abs Rel | - 2.406 0.145
Sq Rel | - 13.354 0.105
RMSE | 0.501 5.187 0.599
RMSE log | | 0.058 1.211 0.202
o1 T 0.823 0.015 0.796

o2 T 0.961 0.045 0.958

63 T 0.990 0.121 0.990

Finally, the updated model is saved on-device and the inference
thread loads the new model weights.

Optimizing for Online Training and Inference: In gen-
eral, MDE models are quite large and heavily optimized for
inference only. However, for OTI we have to ensure that
both inference and training are co-optimized. For this, we
are using structured pruning [5] to keep the performance in
terms of prediction accuracy, but optimize for on-device OTI.
The structured pruning simultaneously reduces the model size
(in terms of number of parameters), the memory consumption
during training, and the computational complexity.

The continuous stream of RGB images and ground truth
depth maps enables continual updating of the model at run-
time. However, if the images and depth maps in the buffer
only contain the most recently captured data, this can result in
overfitting and catastrophic forgetting. Thus, a CL approach is
required; we experiment with a simple replay-buffer [6] which
adds a set of previously collected images and depth maps to
diversify the data in the buffer and help mitigate forgetting.

III. EXPERIMENTAL SETUP AND RESULTS

For all experiments, we use a state-of-the-art efficient and
lightweight MDE model, namely GuideDepth [7]. We use
the GuideDepth trained on 240x320 resolution images from
NYUv2 dataset as a baseline. For OTI, we structurally prune
30% of all layers except the first four convolutional layers
using the Torch-pruning library [5] with L1 norm importance.
We then fine-tune the pruned model for 1 epoch on the NYUv2
dataset. We use a maximum size of 8 for the data buffer;
therefore, the batch size for training is also 8.

In Table I we use the evaluation metrics from [7] to
evaluate the performance on NYUv2 dataset. As shown in

TABLE II: Number of Parameters, FLOPs, MACs and size
on disk for Full GuideDepth and Pruned GuideDepth. Over-
all, structured pruning reduces the memory consumption and
computational requirements of the model.

‘ Params GFLOPs GMACs Size on disk [MB]
Full 5.8M 5.32 2.66 229
Pruned (30%) 3.5M 3.74 1.87 13.7

TABLE III: Average latency, power and memory consump-
tion during inference, training, and OTI for full and opti-
mized (Opt.) GuideDepth. We show the average latency of OTI
for both inference and training, separated by forward slash (/).
Overall, OTI runs both inference and training in real-time.

\ Avg. Latency [ms] Avg. Power [W] Avg. Memory [GB]
Inference (Full) 33.76+1.8 8.5 33
Train (Full) 521.07£13.23 11.6 4.6
OTI (Full) 46.49+46.61 / 657.68+194.24 10.2 5
Inference (Opt.) 34.074£1.37 8.3 32
Train (Opt.) 502.34£8.94 11.6 43
OTI (Opt.) 45.88+43.26 / 617.69+84.37 9.8 4.6

Table II, through structured pruning, we drastically reduce
the number of parameters and consequently the size of the
model on disk, FLOPs and MAC:s. Finally, Table III shows our
proposed OTI framework consuming less power compared to
continuously training either the full or optimized model (i.e.,
30% pruned with fine-tuning), while running faster for the
optimized model. Our demo shows OTI improves performance
over time. However, for larger performance leaps in latency,
power and memory consumption, there is a clear need for more
advanced OTI approaches.

IV. CONCLUSION

In this demo, we have proposed an online training and
inference framework for monocular depth estimation. Our
prototype demonstrates the feasibility of online learning on
edge devices with live streaming data which we hope will
stimulate new research in on-device continual learning.

ACKNOWLEDGMENT

This research was supported by seed funding provided by
the Chandra Family Department of Electrical and Computer
Engineering at the University of Texas at Austin.

REFERENCES

[1] Y. D. Kwon et al., “Exploring system performance of continual learning
for mobile and embedded sensing applications,” in 2021 IEEE/ACM SEC,
pp. 319-332, 2021.

[2] L. Wang et al., “A comprehensive survey of continual learning: Theory,
method and application,” IEEE TPAMI, 2024.

[3] B. McMabhan et al., “Communication-efficient learning of deep networks
from decentralized data,” in Aistats, pp. 1273-1282, PMLR, 2017.

[4] P. Han et al, “Federated learning while providing model as a
service: Joint training and inference optimization,” arXiv preprint
arXiv:2312.12863, 2023.

[5] G. Fang et al., “Depgraph: Towards any structural pruning,” in Proceed-
ings of the IEEE/CVF CVPR, pp. 16091-16101, 2023.

[6] D. Rolnick, A. Ahuja, J. Schwarz, T. Lillicrap, and G. Wayne, “Experi-
ence replay for continual learning,” NEURIPS, vol. 32, 2019.

[71 M. Rudolph et al., “Lightweight monocular depth estimation through
guided decoding,” in 2022 ICRA, pp. 2344-2350, IEEE, 2022.

