
Demo Abstract: Online Training and Inference for
On-Device Monocular Depth Estimation

Allen-Jasmin Farcas, Geffen Cooper, Hyun Joon Song, Afnan Mir, Vincent Liew, Chloe Tang,
Prithvi Senthilkumar, Tiani Chen-Troester, Radu Marculescu

The University of Texas at Austin

Email: {allen.farcas, geffen, radum}@utexas.edu

Abstract—A central challenge in machine learning deployment
is maintaining accurate and updated models as the deployment
environment changes over time. We present a hardware/software
framework for simultaneous training and inference for monoc-
ular depth estimation on edge devices. Our proposed frame-
work can be used as a hardware/software co-design tool that
enables continual and online federated learning on edge devices.
Our results show real-time training and inference performance,
demonstrating the feasibility of online learning on edge devices.

Index Terms—Federated Learning, Continual Learning, Hard-
ware/Software Co-Design, Edge Devices, Internet-of-Things

I. INTRODUCTION

Training and deploying models in the real world is the de

facto solution for enabling machine learning (ML) on edge

devices. Currently, the most common approach is to train a

model on a cloud server and then optimize and deploy it

on edge devices. However, deployed models are often static,

resulting in degraded performance as the environment changes.

Continual learning (CL) can extend the learning process at

the deployment stage, thus enabling models to adapt continu-

ally to changing conditions or tasks. A central challenge in CL

is how to learn new tasks without forgetting and having a lower

performance on older tasks. Practical approaches to CL must

consider the memory and computational overhead involved

in data, parameter storage, and model updates. However, the

deployment of CL on edge devices is limited [1] and even

recent surveys on CL [2] lack coverage of hardware-aware

approaches with actual hardware validation on state-of-the-art

CL methods. Furthermore, realistic data streams for real-time

sensing, e.g., a robot moving in indoor/outdoor space, are not

thoroughly explored in existing approaches [2].

With growing privacy concerns, federated learning (FL)

[3] has emerged as the de facto approach to enable on-

device training on local data. However, the most common

scenario is for on-device training to run when it has minimal

impact on user experience, usually at night while the device

is charging and connected to Wi-Fi. Thus, in [4] the authors

propose joint training and inference optimization for FL while

providing model as a service, with a focus on maximizing

inference performance. Since model as a service is a cloud-

based framework, the approach requires internet connection.

However, on-device simultaneous training and inference still

represents a challenge. In order to enable realistic continual

FL, there is a clear need for developing online training

Fig. 1: Online training and inference for on-device monocular

depth estimation. We show the RGB-D camera and Jetson Orin

Nano training. We monitor memory, power and temperature

variation while running real-time depth estimation inference

and simultaneously training the model on current data.

and inference (OTI) frameworks. Therefore, we propose an

OTI framework for monocular depth estimation (MDE) and

validate it using real edge devices.

II. APPROACH

Hardware Prototype Considerations: Our hardware proto-

type, shown in Fig. 1, consists of an NVIDIA Jetson Orin

Nano edge device with 8GB RAM and a Microsoft Azure

Kinect Developer Kit. We continuously monitor the memory

consumption, power consumption and temperature of the edge

device. For empirical evaluation, we show the real-time video

feed and the depth from the RGB-D camera and the real-time

predictions of the MDE model.

Software Framework for Online Training and Inference:

We depict in Fig. 2 the practical approach towards OTI. First,

we get the RGB-D image from the camera and preprocess

the RGB image and the depth map for the model (i.e., both

inference and training). This includes inpainting to fill in any

missing depth values. Next, we temporarily store on a data

buffer (with a fixed size) the RGB and depth images. We use

the data buffer as a blocking mechanism, i.e., queue, enabling

synchronized data exchange between the inference thread and

training thread. Naturally, we limit the size of the data buffer

due to the limited on-device memory. We use the entire buffer

to create a data loader that is used to train the MDE model.



Inference Thread

Inference on ImageLoad New Weights
Yes

No

Data
Buffer

Updated 
Model

Define Model Save Model Buffer 
Full?

Make Dataset and
Empty Buffer Train

Training Thread

No

Yes

New 
Model?

Fig. 2: Overall workflow of our software framework. We use

one thread for inference and one thread for training. Both

threads use the data buffer to temporarily store images that

are used for training when the buffer is full.

TABLE I: GuideDepth quantitative performance on NYUv2

dataset. Overall, structural pruning and fine-tuning are required

to improve the model performance.

Full 30% Pruned
w/o Fine-Tuning

30% Pruned
w/ Fine-Tuning

Abs Rel ↓ – 2.406 0.145
Sq Rel ↓ – 13.354 0.105
RMSE ↓ 0.501 5.187 0.599

RMSE log ↓ 0.058 1.211 0.202

δ1 ↑ 0.823 0.015 0.796
δ2 ↑ 0.961 0.045 0.958
δ3 ↑ 0.990 0.121 0.990

Finally, the updated model is saved on-device and the inference

thread loads the new model weights.

Optimizing for Online Training and Inference: In gen-

eral, MDE models are quite large and heavily optimized for

inference only. However, for OTI we have to ensure that

both inference and training are co-optimized. For this, we

are using structured pruning [5] to keep the performance in

terms of prediction accuracy, but optimize for on-device OTI.

The structured pruning simultaneously reduces the model size

(in terms of number of parameters), the memory consumption

during training, and the computational complexity.

The continuous stream of RGB images and ground truth

depth maps enables continual updating of the model at run-

time. However, if the images and depth maps in the buffer

only contain the most recently captured data, this can result in

overfitting and catastrophic forgetting. Thus, a CL approach is

required; we experiment with a simple replay-buffer [6] which

adds a set of previously collected images and depth maps to

diversify the data in the buffer and help mitigate forgetting.

III. EXPERIMENTAL SETUP AND RESULTS

For all experiments, we use a state-of-the-art efficient and

lightweight MDE model, namely GuideDepth [7]. We use

the GuideDepth trained on 240×320 resolution images from

NYUv2 dataset as a baseline. For OTI, we structurally prune

30% of all layers except the first four convolutional layers

using the Torch-pruning library [5] with L1 norm importance.

We then fine-tune the pruned model for 1 epoch on the NYUv2

dataset. We use a maximum size of 8 for the data buffer;

therefore, the batch size for training is also 8.

In Table I we use the evaluation metrics from [7] to

evaluate the performance on NYUv2 dataset. As shown in

TABLE II: Number of Parameters, FLOPs, MACs and size

on disk for Full GuideDepth and Pruned GuideDepth. Over-

all, structured pruning reduces the memory consumption and

computational requirements of the model.

Params GFLOPs GMACs Size on disk [MB]

Full 5.8M 5.32 2.66 22.9
Pruned (30%) 3.5M 3.74 1.87 13.7

TABLE III: Average latency, power and memory consump-

tion during inference, training, and OTI for full and opti-

mized (Opt.) GuideDepth. We show the average latency of OTI

for both inference and training, separated by forward slash (/).

Overall, OTI runs both inference and training in real-time.

Avg. Latency [ms] Avg. Power [W] Avg. Memory [GB]

Inference (Full) 33.76±1.8 8.5 3.3
Train (Full) 521.07±13.23 11.6 4.6
OTI (Full) 46.49±46.61 / 657.68±194.24 10.2 5

Inference (Opt.) 34.07±1.37 8.3 3.2
Train (Opt.) 502.34±8.94 11.6 4.3
OTI (Opt.) 45.88±43.26 / 617.69±84.37 9.8 4.6

Table II, through structured pruning, we drastically reduce

the number of parameters and consequently the size of the

model on disk, FLOPs and MACs. Finally, Table III shows our

proposed OTI framework consuming less power compared to

continuously training either the full or optimized model (i.e.,

30% pruned with fine-tuning), while running faster for the

optimized model. Our demo shows OTI improves performance

over time. However, for larger performance leaps in latency,

power and memory consumption, there is a clear need for more

advanced OTI approaches.

IV. CONCLUSION

In this demo, we have proposed an online training and

inference framework for monocular depth estimation. Our

prototype demonstrates the feasibility of online learning on

edge devices with live streaming data which we hope will

stimulate new research in on-device continual learning.

ACKNOWLEDGMENT

This research was supported by seed funding provided by

the Chandra Family Department of Electrical and Computer

Engineering at the University of Texas at Austin.

REFERENCES

[1] Y. D. Kwon et al., “Exploring system performance of continual learning
for mobile and embedded sensing applications,” in 2021 IEEE/ACM SEC,
pp. 319–332, 2021.

[2] L. Wang et al., “A comprehensive survey of continual learning: Theory,
method and application,” IEEE TPAMI, 2024.

[3] B. McMahan et al., “Communication-efficient learning of deep networks
from decentralized data,” in Aistats, pp. 1273–1282, PMLR, 2017.

[4] P. Han et al., “Federated learning while providing model as a
service: Joint training and inference optimization,” arXiv preprint
arXiv:2312.12863, 2023.

[5] G. Fang et al., “Depgraph: Towards any structural pruning,” in Proceed-
ings of the IEEE/CVF CVPR, pp. 16091–16101, 2023.

[6] D. Rolnick, A. Ahuja, J. Schwarz, T. Lillicrap, and G. Wayne, “Experi-
ence replay for continual learning,” NEURIPS, vol. 32, 2019.

[7] M. Rudolph et al., “Lightweight monocular depth estimation through
guided decoding,” in 2022 ICRA, pp. 2344–2350, IEEE, 2022.


