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Abstract— This paper introduces a new theoretical framework
for optimizing second-order behaviors of wireless networks.
Unlike existing techniques for network utility maximization,
which only consider first-order statistics, this framework models
every random process by its mean and temporal variance. The
inclusion of temporal variance makes this framework well-suited
for modeling Markovian fading wireless channels and emerg-
ing network performance metrics such as age-of-information
(AoI) and timely-throughput. Using this framework, we sharply
characterize the second-order capacity region of wireless access
networks. We also propose a simple scheduling policy and prove
that it can achieve every interior point in the second-order
capacity region. To demonstrate the utility of this framework,
we apply it to an unsolved network optimization problem
where some clients wish to minimize AoI while others wish
to maximize timely-throughput. We show that this framework
accurately characterizes AoI and timely-throughput. Moreover,
it leads to a tractable scheduling policy that outperforms other
existing work.

Index Terms— Age-of-information (AoI), timely-throughput,
Brownian motion, wireless networks.

I. INTRODUCTION

THERE are two seemingly contradictory trends happening
in the field of wireless network optimization. On one

hand, the study of network utility maximization (NUM)
has witnessed tremendous success in the past two decades.
Techniques based on dual decomposition, Lyapunov func-
tion, etc., have been shown to produce tractable and optimal
solutions in complex networks for a wide range of objec-
tives, including maximizing spectrum efficiency, minimizing
power consumption, enforcing fairness among clients, and
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the combination of these objectives. Recent studies have also
established iterative algorithms that not only converge to the
optimum, but also have provably fast convergence rate [2],
[3], [4], [5], [6]. On the other hand, there have been growing
interests in new performance metrics for emerging network
applications, such as quality-of-experience (QoE) [7], [8],
[9], [10], [11] for video streaming and age-of-information
(AoI) [12], [13], [14], [15], [16] for real-time state estimation,
and timely-throughput [17], [18], [19], [20], [21] for real-
time communications. Surprisingly, except for a few special
cases, the problem of optimizing these new performance
metrics remains largely open. This raises the question: Why
do existing NUM techniques fail to solve the optimization
problem for these new performance metrics?

The fundamental reason is that current NUM techniques
are only applicable to first-order performance metrics, while
emerging new performance metrics involve higher-order
behaviors. Existing NUM problems typically define the utility
of a flow n as Un(xn), where xn is an asymptotic first-order
performance metric, such as throughput (long-term average
number of packet deliveries per unit time), power consumption
(long-term average amount of energy consumption per unit
time), and channel utilization (long-term average number of
transmissions per unit time). However, emerging performance
metrics like QoE and AoI require the characterization of
short-term network behaviors, and hence cannot be fully
captured by asymptotic first-order statistics.

To bridge the gap between NUM techniques and emerg-
ing performance metrics, we present a new framework of
second-order wireless optimization. This framework consists
of the second-order models, that is, the means and the
temporal variances, of all random processes, including the
channel qualities and packet deliveries of wireless clients. The
incorporation of temporal variances enables this framework to
better characterize Markovian fading wireless channels, such
as Gilbert-Elliott channels, and emerging performance metrics.

Using this framework, we sharply characterize the
second-order capacity region of wireless networks, which
entails the set of means and temporal variances of packet deliv-
eries that are feasible under the constraints of the second-order
models of channel qualities. As a result, the problem of
optimizing emerging performance metrics is reduced to one
that finds the optimal means and temporal variances of packet
deliveries within the second-order capacity region. We also
propose a simple scheduling policy and show that it can
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achieve every interior point of the second-order capacity
region.

To demonstrate the utility of our framework, we apply it
to an unsolved network optimization problem. This problem
considers a wireless system where some clients wish to
minimize their AoIs while other clients wish to maximize their
timely-throughputs. Moreover, the wireless channel of each
client follows the Gilbert-Elliott (GE) model. We theoretically
derive the closed-form expressions of the means and temporal
variances for Gilbert-Elliott channels. We also show that both
AoI and timely-throughput can be well-approximated by the
mean and the temporal variance of the packet delivery process.
As a result, we are able to directly apply our theoretical
framework to obtain the optimal scheduling policy under the
approximations. Simulation results show that our policy sig-
nificantly outperforms existing policies. Importantly, despite
being a generic policy for second-order network optimization,
our policy is able to achieve smaller AoI than those specifically
designed to minimize AoI, and higher timely-throughput than
those specifically designed to maximize timely-throughput.

The rest of the paper is organized as follows: Section II
formally defines the second-order models of channel quali-
ties and packet deliveries and the problem of second-order
optimization. Section III uses the second-order models to
formulate a yet unsolved network optimization problem: the
problem of minimizing AoI of real-time sensing clients and
maximizing timely-throughput of live video streaming clients
over Gilbert-Elliott channels. Section IV derives an outer
bound of the second-order capacity region. Section V proposes
a simple scheduling policy and shows that it achieves every
interior point of the second-order capacity region. Section VI
presents our simulation results. Section VII surveys some
related studies. Finally, Section VIII concludes the paper.

II. SYSTEM MODEL FOR SECOND-ORDER WIRELESS
NETWORK OPTIMIZATION

We begin by describing a generic network optimization
problem. Consider a wireless system where one access point
(AP) serves N clients, numbered as n = 1, 2, . . . , N . Time
is slotted and denoted by t = 1, 2, 3, . . . . We consider
the ON-OFF channel model where the AP can schedule a
client for transmission if and only if the channel for the
client is ON. Let Xn(t) be the indicator function that the
channel for client n is ON at time t. We assume that the
sequence {Xn(1), Xn(2), . . . } is governed by a stochastic
positive-recurrent Markov process with finite states. In each
time slot, if there is at least one client having an ON channel,
then the AP selects a client with an ON channel and transmits
a packet to it. Let Zn(t) be the indicator function that client
n receives a packet at time t. The empirical performance
of client n is modeled as a function of the entire sequence
{Zn(1), Zn(2), . . . }. The network optimization problem is to
find a scheduling policy that maximizes the total performance
of the network.

Solving this generic network optimization problem may
be difficult because it requires solving a high-dimensional
Markov decision process, as the state of the system consists
of the states of all channels and the delivery processes of all

clients. As a result, except for a few special cases, there remain
no tractable optimal solutions for many emerging network
performance metrics like AoI. To circumvent this challenge,
we propose capturing each random process by its second-order
model, namely, its mean and temporal variance.

We first define the second-order model for channels. With a
slight abuse of notations, let XS(t) := max{Xn(t)|n ∈ S} be
the indicator function that at least one client in S has an ON
channel at time t. Since all channels are governed by stochastic
positive-recurrent Markov processes, the strong law of large
numbers for Markov chains states that

∑T
t=1 XS(t)

T converges
to a constant almost surely as T → ∞. Hence, we can define
the mean of XS as

mS := lim
T→∞

∑T
t=1 XS(t)

T
. (1)

The Markov central limit theorem further states that∑T
t=1 XS(t)−TmS√

T
converges in distribution to a Gaussian ran-

dom variable as T → ∞. Hence, we define the temporal
variance of XS as

v2
S := lim

T→∞
E[(

∑T
t=1 XS(t) − TmS√

T
)2]. (2)

The second-order channel model is then expressed as the
collection of the means and temporal variances of all XS ,
namely, {(mS , v2

S)|S ⊆ {1, 2, . . . , N}}.
The second-order model for packet deliveries is defined

similarly. We assume that the AP employs a scheduling
policy under which the packet delivery process of each client
n, {Zn(1), Zn(2), . . . }, follows a positive-recurrent Markov
process. Then, we can define the mean and the temporal
variance of Zn as

µn := lim
T→∞

∑T
t=1 Zn(t)

T
, (3)

and

σ2
n := lim

T→∞
E[(

∑T
t=1 Zn(t) − Tµn√

T
)2]. (4)

The second-order delivery model is {(µn, σ2
n)|1 ≤ n ≤ N}.

The performance of client n is modeled as a function of
(µn, σ2

n), which we denote by Fn(µn, σ2
n).

Since clients want to have large means and small variances
for their delivery processes, we define the second-order capac-
ity region of a network as follows:

Definition 1 (Second-Order Capacity Region): Given a
second-order channel model {(mS , v2

S)|S ⊆ {1, 2, . . . , N}},
the second-order capacity region is the set of all
{(µn, σ2

n)|1 ≤ n ≤ N} such that there exists a scheduling
policy under which limT→∞

∑T
t=1 Zn(t)

T = µn, almost surely,

and limT→∞ E[(
∑T

t=1 Zn(t)−Tµn√
T

)2] ≤ σ2
n, ∀n. □

The second-order network optimization problem
entails finding the scheduling policy that maximizes∑N

n=1 Fn(µn, σ2
n).
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Fig. 1. The Gilbert-Elliott model.

III. A MOTIVATING EXAMPLE AND ITS
SECOND-ORDER MODEL

To show the effectiveness of our methodology, we apply
it to a network optimization problem that is yet to be
solved. The network consists of two types of clients: real-
time sensing clients indexed as n = 1, 2, . . . , I , and live video
streaming clients indexed as n = I + 1, I + 2, . . . , I + J
with the total number of clients N = I + J . Real-time
sensing clients generate surveillance updates to the AP to
make control decisions, and each client aims to minimize the
age-of-information to ensure data freshness for good decision-
making. Live video streaming clients require both low video
latency and smooth playback, and are measured by their
relative deadline and timely-throughput. Previous research has
focused on optimizing real-time sensing [22], [23] and live
streaming clients [21], [24] separately. However, due to the
substantial differences between the two client types, achieving
network-wide performance optimization when both are present
remains as a significant challenge.

To make the optimization problem even harder, we fur-
ther consider that each wireless link follows the Markovian
Gilbert-Elliott channel model, whose channel quality is not
i.i.d. over time. In this section, we will derive the second-order
models of Gilbert-Elliott channels, real-time sensing clients,
and live video streaming clients. This enables us to address
all of them in a unified theoretical framework.

A. The Second-Order Model of Gilbert-Elliott Channels

In Gilbert-Elliott channels [25], [26], the channel for each
client n is modeled as a two-state Markov process, as shown
in Fig. 1. The channel is ON if it is in the good (G) state, and
is OFF if it is in the bad (B) state. The transition probabilities
from G to B and from B to G are pn and qn, respectively. The
channels are independent from each other. We now show the
second-order model of Gilbert-Elliott channels.

Lemma 1: Under the Gilbert-Elliott channels, for all S,

mS = 1 −
∏
n∈S

pn

pn + qn
, (5)

v2
S = 2

∞∑
k=1

( ∏
n∈S

Gn(k + 1) −
∏
n∈S

pn

pn + qn

) ∏
n∈S

pn

pn + qn

+
∏
n∈S

pn

pn + qn
− (

∏
n∈S

pn

pn + qn
)2, (6)

where Gn(k) = pn

pn+qn
+ qn

pn+qn
(1 − pn − qn)k−1.

Proof: Let Yn(t) := 1−Xn(t) be the indicator function
that client n has an OFF channel at time t. Let YS(t) :=
1−XS(t) be the indicator function that all clients in the subset
S have OFF channels at time t. Hence, we have YS(t) =

∏
n∈S Yn(t). Suppose the Markov process of each channel is

in the steady-state at time t, then we have Prob(Yn(t) = 1) =
pn

pn+qn
. Hence, E[YS(t)] =

∏
n∈S

pn

pn+qn
and E[XS(t)] =

1 − E[YS(t)] = 1 −
∏

n∈S
pn

pn+qn
. This establishes (5).

Next, we establish (6). We have (
∑T

t=1 XS(t)− TmS)2 =
(
∑T

t=1 YS(t) − T (1 − mS))2. By the Markov central limit
theorem [27], we can calculate v2

S by assuming that the
Markov process of each channel is in the steady-state at time
1 and using the following formula:

v2
S = V ar(YS(1)) + 2

∞∑
k=1

Cov(YS(1), YS(1 + k)). (7)

Since YS(1) is a Bernoulli random variable with mean∏
n∈S

pn

pn+qn
, we have

V ar(YS(1)) =
∏
n∈S

pn

pn + qn
− (

∏
n∈S

pn

pn + qn
)2. (8)

Let Gn(k) = Prob(Yn(k) = 1|Yn(1) = 1). Then,

E[YS(1)YS(1 + k)] = Prob(YS(1 + k) = 1|YS(1) = 1)
× Prob(YS(1) = 1)
= Prob(Yn(1 + k) = 1, ∀n ∈ S|Yn(1) = 1, ∀n ∈ S)

×
∏
n∈S

pn

pn + qn

=
∏
n∈S

Gn(k + 1)
∏
n∈S

pn

pn + qn
, (9)

and

Cov(YS(1), YS(1 + k))
= E[YS(1)YS(1 + k)] − E[YS(1)]E[YS(1 + k)]

=
( ∏

n∈S

Gn(k + 1) −
∏
n∈S

pn

pn + qn

) ∏
n∈S

pn

pn + qn
. (10)

Combining (8) and (10) establishes (6).
It remains to find the closed-form expression of Gn(k).

We have

Gn(k) = Prob(Yn(k) = 1|Yn(1) = 1)
= Gn(k − 1)(1 − qn) + (1 − Gn(k − 1))pn

= pn + (1 − pn − qn)Gn(k − 1), (11)

if k > 1, and Gn(k) = 1, if k = 1. Solving this recursive
equation yields Gn(k) = pn

pn+qn
+ qn

pn+qn
(1 − pn − qn)k−1.

This completes the proof. □
When pn + qn = 1, the Gilbert-Elliott channel reduces to

the i.i.d. channel model where Xn(t) = 1 with probability qn,
independent from any prior events. By replacing pn = 1− qn,
we obtain the second-order model of i.i.d. channels as below:

Corollary 1: Under the i.i.d. channels with Prob(Xn(t) =
1) = qn,

mS = 1 −
∏
n∈S

(1 − qn), v2
S =

∏
n∈S

(1 − qn) −
∏
n∈S

(1 − qn)2,

(12)

for all S. □
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B. The Second-Order Model of Real-Time Sensing

Real-time sensing clients are sensors that generate infor-
mation updates to be transmitted to the AP. The performance
of a sensor n is measured by its long-term average age-of-
information (AoI), denoted by AoIn.

In a nutshell, the AoI corresponding to a sensor at a
given time is defined as the age of the newest information
update that it has ever delivered to the centralized server.
We consider that each sensor n generates new updates by
a Bernoulli random process. In each time slot t, sensor n
generates a new update with probability λn, independent
from any prior events. In most scenarios, newer updates are
more relevant to the server’s decision making. Hence, each
sensor only keeps the most recent update in its memory, and
it transmits the most recent update whenever it is sched-
uled for transmission. The controller knows λn but not the
exact times at which sensors generate new updates. Hence,
we assume that the scheduling decision is independent from
update generation processes. Let gn(k) be the time when
sensor n generates the k−th update and let AoIn(t) be
the AoI of sensor n at time t. Then we have AoIn(t) =
t − max{gn(k)|gn(k) < t, k = 1, 2, , . . . }, if sensor n
delivers a packet at time t, and AoIn(t) = AoIn(t − 1) + 1,
otherwise.

Let An(m) := min{τ |
∑τ

t=1 Zn(t) = m} be the time
of the m-th delivery for client n, and let Bn(m) :=
An(m + 1) − An(m) be the time between the m-th and
the (m + 1)-th deliveries. Since scheduling decisions are
independent from update generation processes, we have the
following:

Lemma 2: If {Bn(0), Bn(1), . . . } is independent from the
update generation processes of sensor n, then the long-term
average AoI of sensor n is

AoIn =
E[B2

n]
2E[Bn]

+
1
λn

− 1
2
, (13)

where E[B2
n] := limb→∞

∑b
m=1 Bn(m)2/b and E[Bn] :=

limb→∞
∑b

m=1 Bn(m)/b.
Proof: This lemma can be established by combining

techniques in the proof of Proposition 2 in [28] and the fact
that Bn(m) is independent from update generation processes.

□
We aim to express AoIn as a function of the

second-order delivery model of client n, (µn, σ2
n). Since

there can be multiple sequences of {Zn(1), Zn(2), . . . }
with the same (µn, σ2

n), we will derive AoIn with respect
to a second-order reference delivery process as defined
below.

Let BMµn,σ2
n
(t) be a Brownian motion random process

with mean µn and variance σ2
n [29] and initial value of

BMµn,σ2
n
(0) = 0. An important property of the Brownian

motion random process is that for any t1 < t2, BMµn,σ2
n
(t2)−

BMµn,σ2
n
(t1) is a Gaussian random variable with mean (t2 −

t1)µn and variance (t2−t1)σ2
n. Given such a Brownian motion

random process, we define the reference delivery process such
that, if, at the end of a time slot, the Brownian motion random

process has increased by one since the last packet delivery,
then there is a packet delivery in the reference delivery process.
The formal definition of the reference delivery process is
shown below:

Definition 2: Given (µn, σ2
n), the second-order reference

delivery process, denoted by {Z ′
n(1), Z ′

n(2), . . . } is defined
to be

Z ′
n(t) =

{
1 if BMµn,σ2

n
(t) − BMµn,σ2

n
(t−) ≥ 1,

0 else,
(14)

where t− := max{τ |τ < t, Z ′
n(τ) = 1}. To address the

boundary condition, we define Z ′
n(0) = 1. □

We now derive AoIn with respect to the sequence
{Z ′

n(1), Z ′
n(2), . . . }. Consider the time between the m-th and

the (m + 1)-th deliveries, which is denoted by Bn(m), under
the sequence {Z ′

n(1), Z ′
n(2), . . . }. From (14), Bn(m) can be

approximated by the amount of time needed for the Brownian
motion random process to increase by 1, which is equivalent
to the first-hitting time for a fixed level 1 and we denote
it by Hn. It has been shown that the the first-hitting time
for a fixed level 1 follows the inverse Gaussian distribution
IG( 1

µn
, 1

σ2
n
) [30], [31]. Hence, we have E[Hn] = 1/µn and

E[H2
n] = σ2

n/µ3
n + 1/µ2

n. We now have

AoIn =
E[B2

n]
2E[Bn]

+
1
λn

− 1
2

≈ E[H2
n]

2E[Hn]
+

1
λn

− 1
2

=
1
2
(
σ2

n

µ2
n

+
1
µn

) +
1
λn

− 1
2
. (15)

C. The Second-Order Model of Live Video Streaming

Some clients watch live video streams that have stringent
deadline delivery requirements from the centralized server
to the clients. Live video streams generate video frames at
a constant rate and these frames should be played by the
end users after a fixed delay. Specifically, we say that the
stream of client n generates one packet every wn slots. Each
packet has a strict relative deadline of ℓn · wn slots, that
is, a packet generated at time t needs to be delivered by
time t + ℓn · wn. Packets that cannot be delivered by their
deadlines are considered to be expired and are dropped from
the system. When the AP schedules client n for transmission,
it transmits the packet with the earliest deadline among all
available packets for client n so as to minimize packet drops.
If the AP schedules client n for transmission but there are
no available packets, i.e. all packets for client n are either
delivered or dropped, then the AP transmits a dummy packet
that contains no information.

In the context of video streaming, each packet drop causes
an outage in the video playback. Hence, when ℓn is given and
fixed, we measure the performance of a live video streaming
client n by its outage rate, defined as the average number of
packet drops per time slot. We use Outn to denote the outage
rate of clients n = I +1, I +2, . . . , I +J . Hsieh and Hou [32]
has shown that, when µn = 1/wn,

Outn ≈ σ2
n

2ℓn
. (16)
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Fig. 2. Model validation for single real-time sensing client.

We also note that the timely-throughput, i.e. the throughput
of timely packet deliveries, of client n is 1/wn − Outn.

D. Model Validation

We now verify whether the second-order model provides
a good approximation of AoI and timely-throughput over
Gilbert-Elliott channels. We consider a system with only
one client. The centralized server schedules the client for
transmission whenever the client has an ON channel. Hence,
we have µ1 = m{1} and σ2

1 = v2
{1}. We will further validate

the model in multi-user systems in Section VI.
We first evaluate the case when the sole client is a real-time

sensing client. Given, p1, q1, and λ1, we can combine (5),
(6), and (15) to obtain a theoretical approximation of the
AoI. We note that (6) involves a summation of infinite terms∑∞

k=1(G1(k)− p1
p1+q1

). Since G1(k) converges to p1
p1+q1

expo-
nentially fast, we replace this term with

∑K
k=1(G1(k)− p1

p1+q1
)

when calculating v2
{1} and evaluate the cases when K =

100 and when K = 1000. For each (p1, q1, λ1), we obtain
the empirical AoI by simulating the system for 1000 runs,
where each run contains 50,000 time slots.

The results averaged over a 1000 runs are shown in Fig. 2
for four channel and packet generation probability settings.
It can be observed that the theoretical AoI is very close to the
empirical AoI in almost all cases. The only point when there
is a considerable difference betwen the theoretical AoI and the
empirical AoI is when p1 = q1 = 0.01 and K = 100. This is
because, when p1 = q1 = 0.01, we have G1(101) − p1

p1+q1
=

Fig. 3. Model validation for single live video streaming client.

0.066. Thus, setting K = 100 results in a non-negligible error
in calculating v2

{1}. On the other hand, we have G1(1001) −
p1

p1+q1
< 10−9. Thus, setting K = 1000 makes the theoretical

AoI and the empirical AoI almost identical. We recommend
choosing a K with G1(K)− p1

p1+q1
< 0.001 when calculating

the temporal variance.
Next, we evaluate the case when the sole client is a live

video streaming client. Given w1 and ℓ1, we first choose
appropriate p1 and q1 values so that the resulting m1 = 1/w1.
We then combine (5), (6), and (16) to obtain theoretical
approximation of the outage rate Out. We also obtain the
empirical outage rate by simulating the system for 1000 runs,
each containing 500, 000 time slots.

Simulation results averaged over a 1000 runs are shown in
Fig. 3 for four channel and period settings. It is shown that
the empirical and theoretical outage rate become virtually the
same when the delay ℓ1 increases under all considered channel
and period settings.

E. Problem Formulation

We consider a system with I real-time sensing clients,
numbered as n = 1, 2, . . . , I , and J live video streaming
clients, numbered as n = I +1, I +2, . . . , I +J , with the total
number of clients N = I + J . Real-time sensing clients want
to have a low AoIn while live video streaming clients want
to maximize their timely-throughput, or equivalently want to
have both a low Outn and a low delay ℓn. Hence, we aim
to minimize the network objective function for I real-time
sensing and J live video streaming clients

I∑
n=1

αn · AoIn +
I+J∑

n=I+1

βnOutn + γnℓ2n (17)

≈
I∑

n=1

αn

(1
2
(
σ2

n

µ2
n

+
1
µn

) +
1
λn

− 1
2

)
+
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I+J∑
n=I+1

βn

( σ2
n

2ℓn

)
+ γnℓ2n, (18)

with the values αn, βn, and γn being weights chosen for
each client. Although the system has two types of clients
with very different behaviors and preferences, our framework
of second-order optimization allows us to characterize the
optimization problem as one that only involves the means and
temporal variances of the delivery process of each client.

A previous work [32] has studied the above optimization
problem when there are only live video streaming clients.
However, it requires ℓn/ Outn = ℓu/ Outu for any n ̸= u.
We note that our formulation does not require this condition.
Hence, even for the special case when there are only live
video streaming clients, our formulation generalizes the result
of [32].

IV. AN OUTER BOUND OF THE SECOND-ORDER
CAPACITY REGION

In this section, we derive a necessary condition for the
second-order delivery model {(µn, σ2

n)|1 ≤ n ≤ N} to be
in the second-order capacity region.

Theorem 1: Given a second-order channel model
{(mS , v2

S)|S ⊆ {1, 2, . . . , N}}, if a second-order delivery
model {(µn, σ2

n)|1 ≤ n ≤ N} is in the second-order capacity
region, then the following needs to hold:∑

n∈S

µn ≤ mS , ∀S ⊆ {1, 2, . . . , N}, (19)

N∑
n=1

µn = m{1,2,...,N}, (20)

N∑
n=1

√
σ2

n ≥
√

v2
{1,2,...,N}, (21)

µn ≥ 0, ∀n. (22)
Proof: We first establish (19). The AP can transmit a

packet to a client n at time t only if the client has an ON
channel, that is, Xn(t) = 1. Moreover, the AP can transmit
to at most one client in each time slot. Hence, we have∑

n∈S Zn(t) ≤ XS(t) under any scheduling policy. This gives
us ∑

n∈S

µn = lim
T→∞

∑
n∈S

∑T
t=1 Zn(t)

T

≤ lim
T→∞

∑T
t=1 XS(t)

T
= mS , ∀S ⊆ {1, 2, . . . , N}. (23)

We can similarly establish (20) by noting that∑N
n=1 Zn(t) = X{1,2,...,N}(t), since the AP always

transmits one packet as long as at least one client has an ON
channel.

Finally, we establish (21). Let X̂S be the random
variable limT→∞

∑T
t=1 XS(t)−TmS√

T
and Ẑn be the random

variable limT→∞

∑T
t=1 Zn(t)−Tµn√

T
. Since

∑N
n=1 Zn(t) =

X{1,2,...,N}(t) and (20),
∑N

n=1 Ẑn and X̂{1,2,...,N} have the

same distribution. We then have

(
N∑

n=1

√
σ2

n)2 = (
N∑

n=1

√
E[Ẑ2

n])2

=
N∑

n=1

E[Ẑ2
n] + 2

∑
n̸=u

√
E[Ẑ2

n]E[Ẑ2
u]

≥
N∑

n=1

E[Ẑ2
n] + 2

∑
n̸=u

E[ẐnẐu] (Cauchy-Schwarz inequality)

= E[(
N∑

n=1

Ẑn)2] = E[X̂2
{1,2,...,N}] = v2

{1,2,...,N}. (24)

This completes the proof. □

V. SCHEDULING POLICY WITH TIGHT INNER BOUND

In this section, we derive a sufficient condition for the
second-order delivery model {(µn, σ2

n)|1 ≤ n ≤ N} to be in
the second-order capacity region. We also propose a simple
scheduling policy that delivers the desirable second-order
delivery models as long as they satisfy the sufficient condition.
We state the sufficient condition as follows:

Theorem 2: Given a second-order channel model
{(mS , v2

S)|S ⊆ {1, 2, . . . , N}}, a second-order delivery
model {(µn, σ2

n)|1 ≤ n ≤ N} is in the second-order capacity
region if ∑

n∈S

µn < mS , ∀S ⊊ {1, 2, . . . , N}, (25)

N∑
n=1

µn = m{1,2,...,N}, (26)

N∑
n=1

√
σ2

n ≥
√

v2
{1,2,...,N}, (27)

µn ≥ 0, σ2
n > 0∀n. (28)

□
Before proving Theorem 2, we first discuss its implications.

Comparing the conditions in Theorems 1 and 2, we note that
the only difference is that the sufficient condition requires strict
inequality for (19) for all proper subsets. Hence, the sufficient
condition describes an inner bound that is almost tight except
on some boundaries.

We prove Theorem 2 by proposing a scheduling that
achieves every point in the inner bound. Given {(µn, σ2

n)|1 ≤
n ≤ N}, define the deficit of a client n at time t as dn(t) =
tµn −

∑t
τ=1 Zn(τ). In each time slot t, the AP chooses the

client with the largest dn(t − 1)/
√

σ2
n among those with ON

channels and transmits a packet to the chosen client. We call
this scheduling policy the variance-weighted-deficit (VWD)
policy.

We now analyze the performance of the VWD policy. Let
D(t) :=

∑N
n=1 dn(t)/

∑N
n=1

√
σ2

n. We then have

∆dn(t) := dn(t) − dn(t − 1) = µn − Zn(t), (29)
∆D(t) := D(t) − D(t − 1)

=
∑N

n=1 µn −
∑N

n=1 Zn(t)∑N
n=1

√
σ2

n
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=
m{1,2,...,N} − X{1,2,...,N}(t)∑N

n=1

√
σ2

n

. (30)

Consider the Lyapunov function L(t) :=
1
2

∑N
n=1

√
σ2

n

(
dn(t)√

σ2
n

−D(t)
)2

. Let Ht be the system history,

that is, all events of channels, packet generations/deliveries,
and scheduling decisions, up to time t. We can derive the
expected one-step Lyapunov drift as

∆(L(t)) := E[L(t) − L(t − 1)|Ht−1]

= E[
1
2

N∑
n=1

√
σ2

n

(dn(t)√
σ2

n

− D(t))
)2

− 1
2

N∑
n=1

√
σ2

n

(dn(t − 1)√
σ2

n

− D(t − 1)
)2

|Ht−1]

= E[
N∑

n=1

√
σ2

n

(dn(t − 1)√
σ2

n

− D(t − 1)
)(∆dn(t)√

σ2
n

− ∆D(t)
)

+
1
2

N∑
n=1

√
σ2

n

(∆dn(t)√
σ2

n

− ∆D(t))
)2

|Ht−1]

≤ B + E[
N∑

n=1

(dn(t − 1)√
σ2

n

− D(t − 1)
)
∆dn(t)

−
N∑

n=1

√
σ2

n

(dn(t − 1)√
σ2

n

− D(t − 1)
)
∆D(t)|Ht−1]

= B + E[
N∑

n=1

(dn(t − 1)√
σ2

n

− D(t − 1)
)
∆dn(t)|Ht−1],

(31)

where B is a bounded constant. The last two steps follow
because |∆dn(t)| ≤ 1 and |∆D(t)| ≤ 1∑N

n=1

√
σ2

n

are bounded

and because
∑N

n=1 dn(t − 1) =
∑N

n=1

√
σ2

nD(t − 1).
The VWD policy schedules the client with the largest

dn(t − 1)/
√

σ2
n, which is also the client with the largest

dn(t − 1)/
√

σ2
n − D(t − 1), among those with ON channels.

Hence, under the VWD policy, the system can be modeled as
a Markov process whose state consists of the channel states
and dn(t−1)/

√
σ2

n−D(t−1) of all clients. Further, the VWD
policy is the policy that minimizes E[

∑N
n=1

(
dn(t−1)√

σ2
n

−D(t−

1)
)
∆dn(t)|Ht−1] for all t. We first show that the Markov

process is positive-recurrent.
Lemma 3: Assume that (25) – (28) are satisfied. Also

assume that µn and
√

σ2
n are rational numbers for all n. Then,

under the VWD policy, the system-wide Markov process, whose
state consists of the channel states and dn(t−1)/

√
σ2

n−D(t−
1) of all clients, is positive-recurrent.

Proof: Due to (25), we can define

δ := min{mS −
∑
n∈S

µn|S ⊊ {1, 2, . . . , N}} > 0. (32)

Further, since the channel of each client follows a
positive-recurrent Markov process with finite states, there

exists a finite number T such that

TmS − δ

2
≤ E[

τ+T∑
t=τ+1

XS(t)|Hτ ] ≤ TmS +
δ

2
, (33)

for any Hτ .
Let LV (t) and ∆dV

n (t) be the values of L(t) and dn(t)
under the VWD policy. From (31), we can bound the T-step
Lyapunov drift by

E[LV (τ + T) − LV (τ)|Hτ ]

≤ BT+E[
τ+T∑

t=τ+1

N∑
n=1

(dn(t − 1)√
σ2

n

− D(t − 1)
)
∆dV

n (t)|Hτ ]

≤ BT+E[
τ+T∑
t=τ+1

N∑
n=1

(dn(t − 1)√
σ2

n

− D(t − 1)
)
∆dη

n(t)|Hτ ]

≤ A + E[
N∑

n=1

(dn(τ)√
σ2

n

− D(τ)
)
(

τ+T∑
t=τ+1

∆dη
n(t))|Hτ ], (34)

for any other scheduling policy η, where dη
n(t) is the value

of dn(t) under η and A is a bounded constant. The last
inequality follows because T, |dn(t) − dn(τ)|, and ∆dn(t)
are all bounded for all t ∈ [τ + 1, τ + T].

We now consider the scheduling policy η that schedules
the flow with the largest dn(τ)/

√
σ2

n among those with ON
channels in all time slots t ∈ [τ + 1, τ + T].

Without loss of generality, we assume that d1(τ)/
√

σ2
1 ≥

d2(τ)/
√

σ2
2 ≥ . . . . Under η, a client n will be scheduled

in time slot t if it has an ON channel and all clients in
{1, 2, . . . , n− 1} have OFF channels, that is, X{1,2,...n}(t) =
1 and X{1,2,...n−1}(t) = 0. We hence have

∑τ+T
t=τ+1 Zn(t) =∑τ+T

t=τ+1 X{1,2,...n}(t) −
∑τ+T

t=τ+1 X{1,2,...n−1}(t). Therefore,

E[
N∑

n=1

(dn(τ)√
σ2

n

− D(τ)
)
(

τ+T∑
t=τ+1

∆dη
n(t))|Hτ ]

= E[
N−1∑
n=1

(dn(τ)√
σ2

n

− dn+1(τ)√
σ2

n+1

)
(T

n∑
u=1

µu

−
τ+T∑

t=τ+1

X{1,2,...,n}(t)) +
(dN (τ)√

σ2
N

− D(τ)
)

× (T
N∑

u=1

µu −
τ+T∑

t=τ+1

X{1,2,...,N}(t))|Hτ ]

≤
N−1∑
n=1

(dn(τ)√
σ2

n

− dn+1(τ)√
σ2

n+1

)
(−δ/2)+

(dN (τ)√
σ2

N

−D(τ)
)
(−δ/2)

=
(d1(τ)√

σ2
1

− D(τ)
)
(−δ/2), (35)

where the inequality holds due to (26), (32), and (33).
Combining (34) and (35), and we have

E[LV (τ + T) − LV (τ)|Hτ ] < −δ, (36)

if maxn

(
dn(τ)√

σ2
n

− D(τ)
)

> 2(A/δ + 1), and

E[LV (τ + T) − LV (τ)|Hτ ] ≤ A, (37)
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if maxn

(
dn(τ)√

σ2
n

− D(τ)
)

≤ 2(A/δ + 1). Recall that∑
n

(
dn(τ−1)√

σ2
n

−D(τ −1)
)

= 0 and the channel of each client

follows a Markov process with finite states. Hence, all states of
the system with maxn

(
dn(τ)√

σ2
n

−D(τ)
)
≤ 2(A/δ + 1) belong

to a finite set of states. By the Foster-Lyapunov Theorem,
the system-wide Markov process is positive-recurrent if it is
irreducible. Since the channel state of a client is irreducible
and dn(t − 1)/

√
σ2

n − D(t − 1) is a rational number that
decreases every time a packet is delivered for client n and
increases every time a packet is delivered for a client other than
n, it is trivial to show that the system-wide Markov process
is irreducible. This completes the proof. □

We now show that the VWD policy delivers all desirable
second-order delivery models that satisfy the sufficient condi-
tions (25) – (28), and thereby establishing Theorem 2.

Theorem 3: Assume that (25) – (28) are satisfied. Then,
under the VWD policy, limT→∞

∑T
t=1 Zn(t)

T = µn and

E[(limT→∞

∑T
t=1 Zn(t)−Tµn√

T
)2] ≤ σ2

n, ∀n.
Proof:

Since the system-wide Markov process is positive recurrent
under the VWD policy, we have:

lim
T→∞

dn(T )/
√

σ2
n − D(T )

T
→ 0, ∀n, (38)

lim
T→∞

dn(T )/
√

σ2
n − D(T )√
T

→ 0, ∀n. (39)

First, we show that limT→∞

∑T
t=1 Zn(t)

T = µn, ∀n.
Recall that dn(t) = tµn −

∑t
τ=1 Zn(τ) and D(t) =∑N

n=1 dn(t)/
∑N

n=1

√
σ2

n. By (26), we have:

lim
T→∞

D(T )
T

= lim
T→∞

∑N
n=1 Tµn −

∑T
t=1

∑N
n=1 Zn(t)

T
∑N

n=1

√
σ2

n

= lim
T→∞

Tm{1,2,...,N} −
∑T

t=1 X{1,2,...,N}

T
∑N

n=1

√
σ2

n

= 0. (40)

Hence, by (38), we have limT→∞
dn(T )

T = µn −
limT→∞

∑T
t=1 Zn(t)

T = 0, for all n.

Next, we show that E[(limT→∞

∑T
t=1 Zn(t)−Tµn√

T
)2] ≤

σ2
n, ∀n. We have, by (27),

E[( lim
T→∞

D(T )√
T

)2] =
v2
{1,2,...,N}

(
∑N

n=1

√
σ2

n)2
≤ 1, (41)

and, hence,

E[( lim
T→∞

∑T
t=1 Zn(t) − Tµn√

T
)2] = E[( lim

T→∞

dn(T )√
T

)2]

= σ2
nE[( lim

T→∞

D(T )√
T

)2] ≤ σ2
n. (42)

□
We conclude this section by leveraging theorems 2 and 3 to

solve the second-order optimization problem. The optimization
problem can be written as

min
N∑

n=1

Fn(µn, σ2
n)

s.t. (25) – (28). (43)

The condition (25) involves strict inequalities, which cannot
be used by standard optimization solvers. We change (25) to∑

n∈S µn ≤ mS−δ, where δ is a small positive number. After
the change, the optimization problem can be directly solved
by standard solvers to find the optimal {µn, σ2

n|1 ≤ n ≤ N}.
After finding the optimal {µn, σ2

n|1 ≤ n ≤ N}, one can use
the VWD policy to attain the optimal network performance
for N wireless clients.

VI. SIMULATION RESULTS

In this section, we present the simulation results for the
proposed scheduler VWD for three different cases, one where
all clients are real-time sensing clients, one where all clients
are live video streaming clients, and one where both kinds
of clients are present. We compare our policy, VWD, against
baseline policies designed for either AoI minimization or
timely-throughput maximization.

A. Real-Time Sensing Clients Optimization

The objective is to minimize the system-wide AoI of N =
I real-time sensing clients,

∑
n αnAoIn, where αn is the

weight of client n. The system model is the one discussed
in Section III. Each client has a Gilbert-Elliott channel with
transition probabilities pn and qn. In each time slot, each
client n generates a new packet with probability λn. VWD is
evaluated against three recently designed scheduling policies
on the AoI minimization problem. We provide a description of
each policy, along with modifications needed to fit the testing
setting.

• Whittle index policy: This policy is based on the Whittle
index policy by Hsu in [33]. Under our setting, the
policy calculates an index for ON clients based on their
AoIs as Wn(t) = AoI2

n(t)
2 − AoIn(t)

2 + AoIn(t)
qn/(pn+qn) , and

then schedules the ON client with the largest index. Hsu
in [33] has shown that Wn(t) is indeed the Whittle index
of a client when the channel is i.i.d., i.e., pn + qn = 1,
and λn = 1.

• Stationary randomized policy: This policy calculates a
weight µn for each client. In each time slot, it randomly
picks an ON client, with the probability of picking n
being proportional to µn. In the setting of Kadota and
Modiano [28], it has been shown that, when µn is
properly chosen, this policy achieves an approximation
ratio of four in terms of total weighted AoI. In our setting,
we choose µn to be the optimal µn from solving (43).

• Max weight policy [28]: This policy schedules the ON
client with the largest (AoIn(t)−zn(t))/µn. In the setting
of Kadota and Modiano [28], zn(t) is the time since client
n generates the latest packet. It has been shown that the
total weighted AoI under this policy is no larger than that
under the stationary randomized policy, and therefore this
policy also achieves an approximation ratio of four. In our
setting, the AP does not know when each client generates
a new packet. Hence, we choose zn(t) to be 1

λn
, which

is the expected time since client n generates the latest
packet.
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Fig. 4. Total non-weighted empirical age of information (AoI) for real-time sensing clients.

Fig. 5. Empirical variance of all real-time sensing clients.

We consider three different systems, each with 5, 10, and
20 real-time sensing clients, respectively. For each system, pn

and qn are randomly chosen from the range (0.05, 0.95), and
{λn} is randomly chosen from ( 0.1

N , 1
N ). After determining

the values of pn, qn and λn, we generate 1000 independent
traces of channels and packet arrivals. The performance of
each policy is the average over these 1000 independent traces.
We consider both the non-weighted case, i.e., αn ≡ 1, ∀n, and
the weighted case. In addition to the evaluated policies, we also
include the numerical solutions from solving the problem (43),
which is referred to as the Theoretical VWD.

1) Non-Weighted Clients: Fig. 4 shows the average total
AoI for different network sizes N = I = {5, 10, 20} when
αn = 1. It can be observed that VWD achieves the smallest
total AoI in all systems. VWD’s superiority becomes more
significant as N increases. It can also be observed that the
empirical AoI under VWD becomes virtually the same as the
theoretical AoI based on the solution to (43) as the number of
clients N increases.

To understand why VWD performs better than the other
three policies, we evaluate the total empirical variance under
each policy. Specifically, let dn(t) be the total number of
packet deliveries for client n from time 1 to time t. The
empirical variance of a client n at time t is defined as the
variance of dn(t)√

t
across all 1000 independent runs. The total

empirical variance is then the sum of the empirical variances of
all clients. Fig. 5 shows that VWD has much smaller variances

than the other three policies. The ability to properly control
variance enables VWD to achieve small AoIs.

We also evaluate the convergence time of VWD. For each
system, we randomly select two clients and plot their empirical
means, i.e., the average of dn(t)

t across all independent runs,
and empirical variances. Since the objective is to minimize the
non-weighted sum of AoIs, the optimal solution to (43) has
µn = µu and σ2

n = σ2
u for all n ̸= u. We call the optimal µn

and σ2
n obtained from solving (43) the theoretical mean and

the theoretical variance, respectively. The results are shown
in Figs. 6 and 7. It can be observed that both the empirical
means and the empirical variances of clients indeed converge
to their respective theoretical values. The empirical means
converges to the theoretical ones very fast. On the other hand,
it takes up to 355 slots for the empirical variances to be within
0.001 from the theoretical variances. Convergence time may be
the reason why empirical AoI is larger than the theoretical one
for N = 5.

2) Weighted Clients: We now present the results for the
weighted real-time sensing clients. The weights α1, α2, . . . are
randomly chosen from the range (1, 5) and independently from
each other. All other parameters are the same as in the non-
weighted case. Fig. 8 shows results for network sizes N = I =
{5, 10, 20}. VWD still outperforms other policies for all tested
systems. Similar to the non-weighted case, it can be observed
that the superiority of VWD becomes more significant, and
the empirical VWD and the theoretical VWD performance
becomes virtually the same with more clients in the system.
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Fig. 6. Mean convergence of two randomly selected real-time sensing clients.

Fig. 7. Variance convergence of two randomly selected real-time sensing clients.

Fig. 8. Total weighted empirical age of information (AoI) for real-time sensing clients.

3) Channels and Predictable Packet Generation: As noted
above, all three baseline policies, namely, Whittle index,
stationary randomized, and max weight, were all developed for
the special case when the channels are i.i.d. and the controller
knows the packet generation times. Under our model, we can
create such a scenario by making pn + qn = 1 and λn = 1,
for all n. We have evaluated such scenarios for 5, 10, and
20 clients. We choose pn randomly from the range [0.05, 0.95]
and set qn = 1−pn and λn = αn = 1. The simulation results
are shown in Fig. 9. We note that the Whittle index and max
weight policies perform slightly better than VWD because they
are specifically designed for this setting. Still, VWD performs
very close to these two policies and the difference between
VWD and these two policies is less than 6% in all three
systems.

B. Live Video Streaming Clients Optimization
In this section, the objective is to maximize the

timely-throughput of live video streaming clients, or equiv-
alently minimize the outage rate for N = J clients,∑

n βnOutn + γnℓ2n. Each client also has a Gilbert-Elliott
channel with transition probabilities pn and qn.

We compare our policy, VWD, against two other policies
on this problem. We first provide a description of the policies
we compare against.

• Weighted Largest Deficit (WLD): This policy was intro-
duced by Hsieh and Hou in [32]. The policy considers
clients in the ON channel state, and picks the client with
the largest (µnt −

∑t
τ=1 z(τ))/ℓn at time slot t.

• Delivery Based Largest Debt First (DBLDF): Similar
to the WLD policy, the DBLDF policy consider clients
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Fig. 9. Total empirical age of information (AoI) with i.i.d. channels and predictable packet generation.

Fig. 10. Sum of live video streaming clients’ weighted outage rate with fixed delays.

in the ON channel state, and schedules one client with
the largest (µnt −

∑t
τ=1 z(τ)) at time slot t.

We consider three systems, each with 5, 10, and 20 live
video streaming clients, respectively. For each client, we set
each of the clients’ period values to be wn = 1/(N +1) to sat-
isfy the means’ constraints (25)–(26). In addition, we choose
the clients’ channel parameters pn, qn so that the system
is operating in the heavy-traffic regime. More specifically,
the heavy-traffic regime has

∑
n 1/wn = 1 −

∏
n∈S

pn

pn+qn
.

After determining the wn, pn and qn values, we obtain the
σ2

n values from solving the problem
∑

n βnOutn+γnℓ2n given
the constraints (27) – (28). We run the simulations for
20 independent runs each with 109 timeslots, and plot the
empirical outage rates given parameters βn and γn for each
client n. The performance of each policy is the average of the
20 independent runs. Finally, we also include the solution to
the problem (43) given the constraints (25) – (28) for temporal
variance values, and refer to them as the theoretical VWD in
the figures.

1) Fixed Delay Values: We first test the policies for the
case when the delay values ℓn are known in advance. The
objective is to minimize the weighted outage rate

∑
n βnOutn

given constraints (25) – (28) with βn = ℓ2n and γn = 0.
For the 5 and 20 clients’ systems, the delay value for the
first client was selected as ℓ1 = 10, with an increment of
10 for each subsequent client. For the 10 clients’ setup, the
first client’s delay value was set to ℓ1 = 15 with an increment
of 10.

Fig. 10 shows the averaged weighted outage rate for
different network size N = {5, 10, 20}. From the figure,
it is shown that VWD has the lowest empirical system-wide
outage rate of all considered policies. We observe also that
VWD performance is close to the theoretical value, with
the performance gap decreasing as the number of clients
increases.

2) Configurable Delay Values: We now show the policies’
performance for the case when the delay values ℓn must be set
by the centralized server for each live video streaming client.
The objective here is to minimize

∑
n βnOutn + γnℓ2n given

constraints (27) – (28). Here, the parameters are chosen as
βn = 1∀n, and γn is chosen from the range [10−7, 10−13] for
each client n. After solving the network optimization problem
and obtaining the temporal variance and delay values, we sum
the obtained configurable delay values and refer to it as ℓtot.
In order to ensure we have approximately the same total delay
for other policies, we allocate delay values using ℓtot. For
WLD, we solve the problem (43) with delay values picked
according to σn

σtot
· ℓtot for client n. For DBLDF, we set the

delay values per client as ℓtot/N .
We provide the averaged results in Fig. 11 for all three

systems with 5,10, and 20 clients. It can be seen that VWD
performs the best in terms of system-wide average outage
rate compared to other policies. Additionally, VWD per-
formance gap between the empirical and theoretical VWD
values decreases with a more clients in the system. The other
baselines, WLD and DBLDF, have a lower perforamnce for
all three systems.
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Fig. 11. Sum of live video streaming clients’ outage rate with added configurable delays.

C. System With Both Kinds of Clients

For the last case, we evaluate our policy, VWD, on the
unsolved optimization problem where we minimize I real-
time sensing clients’ AoIn, and J live video streaming client
maximize their timely-throughput or equivalently, minimize
their outage rate. The network objective function is then to
minimize the sum of real-time sensing AoIs and live video
streaming outage rates

(∑I
n=1 AoIn +

∑I+J
n=I+1 βnOutn +

γnℓ2n
)
.

We emphasize that optimizing different clients’ objective
functions was not studied in prior works. For this reason,
we can only evaluate VWD against a policy we designed
and call stationary-DBLDF. The stationary-DBLDF policy
combines both the stationary random from the real-time
sensing clients’ case, and the DBLDF policy from the live
video streaming clients’ case. We combine these two poli-
cies together since they were the best-performing baselines
in the real-time sensing and live video streaming cases.
In odd timeslots, the stationary-DBLDF policy picks an ON
client according to the stationary random policy described in
Section VI-A. In even timeslots, the policy picks a client in the
ON channel state according to the DBLDF policy described
in Section VI-B.

We consider three systems with 6, 10, and 20 clients. In each
system, the first half of clients are real-time sensing clients,
while the second half are live video streaming clients, i.e.
I = J = N/2. The I real-time sensing clients {λn} values
were randomly chosen from the range ( 0.01

N , 0.1
N ). For the J

live video streaming clients, their respective packet arrival rate
was set to wn = 1/(N +1). For the real-time sensing clients,
we solve for the mean values µn such that the sum of client
means is equal to the channel mean

∑I
n=1 µn−

∑I+J
n=I+1 wn =

ms. We run the simulations for 20 independent runs each with
108 timeslots, and plot the sum of empirical AoI and outage
rates for the three considered network systems. The plotted
performance of the two policies, VWD and stationary-random,
is the average of 20 independent runs.

We test the two policies, VWD and stationary-random, with
αn = 1 for all real-time sensing clients n = 1, 2, . . . , I . For
live video streaming clients, we set βn = ℓ2n and γn = 0 for all
n = I +1, I +2, . . . , I +J . For the 6 and 20 clients’ systems,
the first live video streaming delay values ℓn=I+1 was set to
10 with an increment of 10. For the 10 clients’ system, the first

live video streaming client’s delay ℓn=I+1 was set to 15 with
an increment of 10 for each subsequent live video streaming
client.

The averaged results are shown in Fig. 12 along with
the theoretical VWD value obtained by plugging in mean
and temporal variance values into Eq. (43). In this setting,
VWD outperforms the stationary-DBLDF policy in all three
clients’ systems. Moreover, VWD’s empirical performance gap
compared to the stationary-random policy also increases as the
number of clients N increases.

VII. RELATED WORKS

There have been many works on scheduling in wireless
networks for minimizing AoI. In [34], Tripathi and Moharir
schedule over multiple orthogonal channels and propose
Max-Age Matching and Iterative Max-Age Scheduling, which
they show to be asymptotically optimal. Hsu, Modiano and
Duan [35] studied the problem of scheduling updates for
multiple clients where the updates arrive i.i.d. Bernoulli, and
formulate the Markov decision process (MDP) and prove
structural results and finite-state approximations. In [33], Hsu
follows up this work by showing that a Whittle index pol-
icy can achieve near optimal performance with much lower
complexity. Sun et al. [36] studied scheduling for multiple
flows over multiple servers, and show that maximum age
first (MAF)-type policies are nearly optimal for i.i.d. servers.
In [37], Talak, Karaman and Modiano study scheduling a
set of links in a wireless network under general interference
constraints. The optimization of AoI and timely-throughput
were studied in [38] and [39]. All of these works assume i.i.d.
channels while our work focuses on different Gilbert-Elliot
channels per client.

There have been a limited number of works on Markov
channel and source models related to AoI. In the recent
work [40], Pan et al. study scheduling a single source and
choosing between a Gilbert-Elliott channel and a determin-
istic lower rate channel. Buyukates and Ulukus [23] study
the age-optimal policy for a system where the server is a
Gilbert-Elliott model and one where the sampler follows a
Gilbert-Elliott model. In [41], Nguyen et al. analyze the Peak
Age of Information (PAoI) of a two-state Markov channel with
differing cases of channel state information (CSI) knowledge.
Kam et al. [42] study the remote estimation of a Markov
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Fig. 12. Sum of real-time sensing clients’ AoI and live video streaming clients’ weighted outage rate.

source, and they propose effective age metrics that capture
the estimation error. Our work differs in that we focus on
scheduling for multiple clients from a single AP over parallel
non-i.i.d. channels. There have been some recent efforts on
studying short-term performance through Brownian motion
approximation [32], [43], [44], [45]. However, each of these
listed works is limited to a specific channel model and a
specific application.

Recent works proposed scheduling policies for maximizing
timely-throughput over wireless networks. Hou et al. proposed
a model for wireless networks with strict per-packet deadlines
and studied the capacity of wireless networks to support
timely-throughputs [46]. Kim et al. [47] studied the multi-
cast scheduling problem for traffic with hard deadlines over
unreliable wireless channels and provided a greedy policy that
maximizes immediate weighted sum throughput per timeslot.
Lu et al. [48] considered ad hoc wireless networks with
real-time traffic with hard scheduling deadlines, and demon-
strated that their algorithm achieves the QoS requirements.
Talak and Modiano [49] considered a single-server queuing
system serving one packet and studied the tradeoff between
AoI and packet delay rates, and showed that as the AoI
approaches its minimum, the packet delay and its variance
approach infinity. Additionally, Liu et al. [50] studied the
scheduling problem of scheduling in wireless networks under
both packet deadline and power constraints. Sun et al. [20]
also considered minimizing weighted average AoI subject to
timely throughput constraints and provided two scheduling
policies that are close to the theoretical AoI bound. All of
these works considered the same delay value for all packets
generated within a fixed time frame.

Another line of work studied timely-throughput for wire-
less networks with delays assigned per packet. Singh and
Kumar [51] described decentralized policies for maximizing
throughput with deadline constraints by solving a Lagrangian
dual of a Markov Decision Process (MDP). Chen and
Huang [17] studied a stochastic single-server multi-user sys-
tem, and identified the timely-throughput improvement from
predictive scheduling. Singh and Kumar [18] proposed an
optimal scheduling policy for multihop wireless network
serving multiple flows with hard packet deadlines. Singh
and Kumar [21] also studied the problem of maximizing
the throughput of packets with hard end-to-end deadlines

in multihop wireless networks. The studied model consid-
ered stochastic links and provided a decentralized network
controller to maximize timely throughput of the network.
The solution was obtained from the decomposition of the
Lagrangian of a constrained MDP. All the previous works
solves a per-packet decomposition of an MDP that captures
the system’s evolution.

VIII. CONCLUSION

In this paper, we presented a theoretical second-order
framework for wireless network optimization. This frame-
work captures the behaviors of all random processes by
their second-order models, namely, their means and temporal
variances. We analytically established a simple expression of
the second-order capacity region of wireless networks. A new
scheduling policy, VWD, was proposed and proved to achieve
every interior point of the second-order capacity region. The
framework utility is demonstrated by applying it to the prob-
lems of real-time sensing optimization, live video streaming
optimization, and the problem of jointly optimizing a system
with real-time sensing clients and live video streaming clients
over Gilbert-Elliott channels.

We derived closed-form expressions of second-order models
for both Gilbert-Elliott channels, AoIs, and timely-throughput.
Moreover, we formulated the objective function as an opti-
mization problem over the means and temporal variances of
delivery processes. The solution of this optimization problem
can then be used as parameters for VWD. Simulation results
show that VWD achieves better system-wide performance
compared to the baselines in all cases. This result is significant
when one considers that the baselines are limited to only
minimizing AoI or maximizing timely throughput, while our
general-purpose second-order policy achieves a better perfor-
mance in all settings.
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