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ABSTRACT Although nodal spin-triplet topological superconductivity appears probable in 

UTe2, its superconductive order-parameter Δ𝑘𝑘 remains unestablished. In theory, a distinctive 

identifier would be the existence of a superconductive topological surface band (TSB), which 

could facilitate zero-energy Andreev tunneling to an s-wave superconductor, and also 

distinguish a chiral from non-chiral Δ𝑘𝑘 via enhanced s-wave proximity. Here we employ s- 

wave superconductive scan-tips and detect intense zero-energy Andreev conductance at the 

UTe2 (0-11) termination surface. Imaging reveals sub-gap quasiparticle scattering 

interference signatures with a-axis orientation. The observed zero-energy Andreev peak 

splitting with enhanced s-wave proximity, signifies that Δ𝑘𝑘 of UTe2 is a non-chiral state: B1u, 

B2u or B3u. However, if the quasiparticle scattering along the a-axis is internodal, then a non- 

chiral B3u state is the most consistent for UTe2. 

 
The internal symmetry of electron-pair wavefunctions in non-trivial superconductors 

( 1 ) is represented by the momentum 𝒑𝒑 = ℏ𝒌𝒌 dependence of the electron-pairing order 
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parameter Δ𝒌𝒌 , where ℏ is the reduced Planck constant. For spin-triplet superconductors, 

where electron-pairs have three spin-1 eigenstates ( | ↑↑⟩ , | ↓↓⟩ , | ↑↓ +↓↑⟩ ), Δ𝒌𝒌 is a 2×2 

matrix: Δ  = �
Δ𝒌𝒌↑↑ Δ𝒌𝒌↑↓� with ΔT = −Δ  and Δ  = ΔT (1-5). This may also be represented 

𝒌𝒌 Δ𝒌𝒌↓↑ Δ𝒌𝒌↓↓ −𝒌𝒌 𝒌𝒌 𝑘𝑘 𝑘𝑘 

in the d-vector notation as Δ𝒌𝒌 ≡ Δ0(𝒅𝒅 ∙ 𝝈𝝈)𝒊𝒊𝜎𝜎2 where 𝜎𝜎𝑖𝑖 are the Pauli matrices. Many such 

systems should be intrinsic topological superconductors (ITS), where a bulk 

superconducting energy gap with non-trivial topology co-exists with symmetry-protected 

TSB of Bogoliubov quasiparticles within that energy gap. Unlike proximitized topological 

insulators or semiconductors, when three-dimensional (3D) superconductors are 

topological ( 6 ) it is not because of electronic band-structure topology but because Δ𝒌𝒌 

exhibits topologically non-trivial properties (7). The prototypical example would be a 3D 

spin-triplet nodal superconductor (1-6) and the search for such ITS which are also 

technologically viable is a forefront of quantum matter research (8). 

 
Three-dimensional spin-triplet superconductors are complex states of quantum 

matter (1,4,5). Thus, for pedagogical purposes, we describe a nodal spin-triplet 

superconductor using a spherical Fermi surface within a cubic 3D Brillouin zone (Fig. 1A). 

The zeros of Δ𝒌𝒌 are then represented by red points at ±kn. The Bogoliubov-de Gennes (BdG) 

Hamiltonian is given by: 

 
𝐻𝐻 = ∑𝑘𝑘 ∑𝒌𝒌  𝜓𝜓+(𝑘𝑘𝑥𝑥, 𝒌𝒌⊥) ℎ(𝑘𝑘𝑥𝑥, 𝒌𝒌⊥)𝜓𝜓(𝑘𝑘𝑥𝑥, 𝒌𝒌⊥). (1) 

 
Here 𝜓𝜓𝑇𝑇(𝒌𝒌) = (𝑐𝑐𝒌𝒌↑, 𝑐𝑐𝒌𝒌↓, 𝑐𝑐+  , 𝑐𝑐+  ) and ℎ(𝑘𝑘𝑥𝑥, 𝒌𝒌⊥) is a 4 × 4 matrix, containing both band 

−𝒌𝒌↑ −𝒌𝒌↓ 

structure and Δ𝒌𝒌 . We distinguish 𝒌𝒌 = ( 𝑘𝑘𝑥𝑥, 𝒌𝒌⊥ ) because they play different roles in the 

following didactic presentation. Considering one particular 2D slice of the 3D Brillouin zone 

with a fixed 𝑘𝑘𝑥𝑥 : its Hamiltonian ℎ(𝑘𝑘𝑥𝑥, 𝒌𝒌⊥) is that of a 2D superconductor within a 2D 

Brillouin zone spanned by 𝒌𝒌⊥. The 2D states |𝑘𝑘𝑥𝑥| < |𝑘𝑘𝑛𝑛| (blue Fig. 1A) are topological and 

those |𝑘𝑘𝑥𝑥| > |𝑘𝑘𝑛𝑛| (green Fig. 1A) are non-topological. The essential signature of such physics 

is a superconductive TSB (or Andreev bound state (ABS) (7)), on the edges of each 2D slice 

for |𝑘𝑘𝑥𝑥|< |𝑘𝑘𝑛𝑛|, and its absence when |𝑘𝑘𝑥𝑥| > |𝑘𝑘𝑛𝑛|. The 2D Brillouin zone of any crystal surface 
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parallel to the nodal axis of Δ𝒌𝒌 is shown in Fig. 1B along with the quasiparticle dispersion 

𝒌𝒌(𝐸𝐸) of a single TSB. The equatorial circle in Fig. 1B is the 𝑘𝑘𝑥𝑥 − 𝑘𝑘𝑦𝑦 contour satisfying 

𝜖𝜖�𝑘𝑘𝑥𝑥, 𝑘𝑘𝑦𝑦, 0� = 0 with 𝜖𝜖(𝑘𝑘) being the quasiparticle band dispersion. A line of zero-energy TSB 

states then connects the two projections of the nodal wavevectors ±𝑘𝑘𝑛𝑛 onto this 2D zone 

(this is often called a “Fermi-arc” although it is actually a two-fold degenerate Majorana-arc 

of charge-neutral Bogoliubov quasiparticles). Calculation of the density of such TSB 

quasiparticle states 𝑁𝑁(𝐸𝐸) from 𝒌𝒌(𝐸𝐸) in Fig. 1B yields a continuum in the range −Δ0 ≤ 𝐸𝐸 ≤ 

Δ0, with a sharp central peak at E = 0 due to this arc (Fig. 1C). Thus, 3D nodal spin-triplet 

superconductors should exhibit a TSB on any surface parallel to their nodal-axis and such 

TSBs exhibit a zero-energy peak in 𝑁𝑁(𝐸𝐸) (Section 1 of (11)). The conceptual phenomena 

presented in Figs. 1, A-C, depend solely on whether the symmetry protecting the TSB is 

broken, and not on material details. Hence, the presence or absence of a gapless TSB on a 

given surface of a 3D superconductor, of a zero-energy peak in 𝑁𝑁(𝐸𝐸) from its Majorana-arcs, 

and of the response of the TSB to breaking specific symmetries, can reveal the symmetry and 

topology of Δ𝒌𝒌. 

 
UTe2 is now the leading candidate 3D nodal spin-triplet superconductor (9,10). Its 

crystal symmetry point-group is D2h and the space-group is Immm (Section 2 of ( 11 )). 

Associated with the three basis vectors 𝒂𝒂, 𝒃𝒃, 𝒄𝒄 are the three orthogonal k-space axes 

𝒌𝒌𝑥𝑥, 𝒌𝒌𝑦𝑦, 𝒌𝒌𝑧𝑧 . Within D2h there are four possible odd-parity order parameter symmetries 

designated Au, B1u, B2u and B3u (Section 2 of (11)). All preserve time-reversal symmetry: Au 

is fully gapped whereas B1u, B2u and B3u have zeros (point nodes) in ∆𝒌𝒌 , whose axial 

alignment is along 𝒄𝒄, 𝒃𝒃 or 𝒂𝒂 respectively (Section 2 of (11)). Linear combinations of Au, B1u, 

B2u and B3u are also possible, which break point-group and time-reversal symmetries 

resulting in a chiral TSB (7,8). For UTe2, there are two chiral states of particular interest with 

∆𝒌𝒌 nodes aligned with the crystal c-axis, and two with nodes aligned with the a-axis (Section 

2 of (11)). Although identifying which (if any) of these superconductive states exists in UTe2 

is key to its fundamental physics, this objective has proven extraordinarily difficult to 

achieve (12). 
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Identifying the Δ𝒌𝒌 symmetry of UTe2 using macroscopic experiments has been 

problematic because, depending on the sample preparation method, the UTe2 samples 

appear to have various degrees of heterogeneity. Samples grown by chemical vapor 

transport (CV) exhibit small residual resistivity ratios (RRR) (~35) and transition 

temperatures 𝑇𝑇c ≈ 1.6~2 K (13- 15), whereas samples grown by the molten flux method 

(MF) have larger RRR (~1000) and higher transition temperatures 𝑇𝑇c ≈ 2 K (16). And from 

macroscopic studies the status Δ𝒌𝒌 for UTe2 remains indeterminate (17-27) (Section 3 of 

(11)). To date, Δ𝒌𝒌 symmetry of UTe2 has been conjectured as non-chiral Au (17,20), B1u (24), 

B3u (18,24), chiral Au + iB3u (21), B2u + iB3u (22), Au + iB1u (22) and B1u + iB2u (26). Strikingly, 

however, no tunneling spectroscopic measurements of Δ𝒌𝒌 which could differentiate directly 

between these scenarios, have been reported. 

 
An efficient tunneling spectroscopic technique for establishing Δ𝒌𝒌 in unconventional 

superconductors (28-33) is quasiparticle interference imaging (QPI); but this has proven 

ineffective for unraveling the conundra of UTe2. This is because conventional single-electron 

tunneling spectroscopy of UTe2, even at T = 280 mK (𝑇𝑇/𝑇𝑇𝑐𝑐 ≲ 1/7) , yields a typical 

quasiparticle density of states spectrum 𝑁𝑁(𝐸𝐸 ≤ Δ0) that is essentially metallic with only 

tenuous hints of opening the bulk superconductive energy gap (Fig. 1F) (34,35). Further, 

UTe2 surface impedance measurements detect a non-superconductive component of surface 

conductivity 𝜎𝜎1(𝜔𝜔, 𝑇𝑇) deep in the superconductive phase (36). Yet the classic QPI signature 

(37) of a bulk superconductive Δ𝒌𝒌 has been impossible to detect, apparently because the 

high 𝑁𝑁(𝐸𝐸 ≤ Δ0) overwhelms any tunneling conductance signal from the 3D quasiparticles. 

Given these challenges to determining the symmetry of Δ𝒌𝒌 using a normal scan-tip, we 

explored the possibility of using a superconductive scan-tip (38-43 and Section 4 of (11)). 

Theoretically, we consider two primary channels for conduction from the fully gapped s- 

wave superconductive tip to a nodal spin-triplet superconductor. The first is single-electron 

tunneling for which the minimum voltage required is 𝑉𝑉 = Δtip/𝑒𝑒. The second, importantly, is 

Andreev reflection of pairs of sub-gap quasiparticles (Section 4 of (11)) transferring charge 

2𝑒𝑒 across the junction: this occurs because creating or annihilating Cooper pairs costs no 
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Nb 

Nb,𝒌𝒌∥ 

energy in a superconductor. Conceptually, therefore, there are notable advantages to using 

scanned Andreev tunneling spectroscopy for ITS studies, including that TSB quasiparticles 

within the interface predominate the Andreev process, that the order parameter symmetry 

difference between sample and tip does not preclude the resulting zero-bias Andreev 

conductance, and that the enhanced zero-energy conductance peak due to TSB can be 

detected simply and directly in this way. 

 
To explore this opportunity, we have developed a general guiding theoretical model 

to describe an s-wave superconducting tip (e.g. Nb) connected by tunneling to a nodal p- 

wave superconductor (e.g. UTe2) which sustains a TSB within the interface. We refer to this 

throughout as the SIP model. To simplify computational complexity, we consider a planar 

interface shown schematically in Fig. 2A with in-plane momenta as good quantum numbers. 

The BdG Hamiltonian of this SIP model has three elements: H = HNb + 𝐻𝐻UTe2 + HT. Here HNb is 

the  Hamiltonian  for  an  ordinary  s-wave  superconductor  given  by  𝐻𝐻Nb(𝒌𝒌) = 

� 
𝜖𝜖Nb(𝒌𝒌)𝜎𝜎0 ΔNb(𝑖𝑖𝜎𝜎2) 

Δ∗  (−𝑖𝑖𝜎𝜎2) −𝜖𝜖Nb(−𝒌𝒌)𝜎𝜎0 

�. Here 𝜖𝜖𝑁𝑁𝑁𝑁 (𝒌𝒌) is the band structure model for Nb, ΔNb is the Nb 

superconducting order parameter. 𝐻𝐻UTe2 is the Hamiltonian of the putative p-wave 

𝜖𝜖UTe2 
(𝒌𝒌)𝜎𝜎0 ΔUTe2 (𝒌𝒌) superconductor with �. Here 𝜖𝜖 (𝒌𝒌) is the band structure � 

Δ+ (𝒌𝒌) −𝜖𝜖 (−𝒌𝒌)𝜎𝜎 UTe2 

UTe2 UTe2 0 

and ΔUTe2 
(𝒌𝒌) is a 2 × 2 spin-triplet pairing matrix given by ΔUTe2 (𝒌𝒌) ≡ ΔUTe2 𝑖𝑖(𝒅𝒅 ∙ 𝝈𝝈)𝜎𝜎2. HT is 

the   tunneling   Hamiltonian   between   the   two   superconductors   𝐻𝐻T = 

−|𝑀𝑀| ∑𝒌𝒌∥[𝜓𝜓∗   𝜎𝜎3⨂𝜎𝜎0𝜓𝜓UTe2,𝒌𝒌∥(𝒌𝒌) + ℎ. 𝑐𝑐. ] . Further, 𝒌𝒌∥ is the momentum in the plane 

parallel to the interface, 𝜓𝜓 is the four-component fermion field (Eq. S.2) localizing on the 

adjacent planes of the s-wave and p-wave superconductors, while |𝑀𝑀| is the tunneling matrix 

element. To simplify the SIP calculation, 𝜖𝜖Nb(𝒌𝒌) and 𝜖𝜖UTe2 (𝒌𝒌) are approximated as single 

bands (Section 4 of (11)) yet this alters neither the fundamental characteristics of the TSB 

nor the symmetry properties of the problem, both of which are controlled primarily by the 

symmetry and topology of ∆𝒌𝒌 (Section 4 of (11)). Finally, our simple band structure model 

𝜖𝜖UTe2 
(𝒌𝒌) represents a closed 3D Fermi surface (Section 11 of (11)) upon which depends the 

non-trivial topology of ∆𝒌𝒌. 
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For 𝐻𝐻UTe2 
we consider two scenarios: (1) chiral pairing state Au + iB3u with 𝒅𝒅(𝒌𝒌) = 

(0, 𝑘𝑘𝑦𝑦 + 𝑖𝑖𝑘𝑘𝑧𝑧, 𝑖𝑖𝑘𝑘𝑦𝑦 + 𝑘𝑘𝑧𝑧) and, (2) non-chiral pairing state B3u with 𝒅𝒅(𝒌𝒌) = (0, 𝑘𝑘𝑧𝑧, 𝑘𝑘𝑦𝑦). In both 
examples the two nodes of Δ  lie along the a-axis as in Fig. 1A, and we use Δ 

1 
. 

𝒌𝒌 UTe2 = 
5 
ΔNb 

First, for |𝑀𝑀| = 0 we solve the spectrum of 𝐻𝐻UTe2 exactly. Figure 2B shows the quasiparticle 

eigenstates 𝐸𝐸(𝑘𝑘𝑥𝑥 = 0, 𝑘𝑘𝑦𝑦) plotted versus 𝑘𝑘𝑦𝑦 for the chiral order parameter with Au + iB3u 

symmetry: a chiral TSB spans the full energy range −ΔUTe2 ≤ 𝐸𝐸 ≤ ΔUTe2 , crossing the Fermi 

level (E = 0) and generating a finite density of quasiparticle states 𝑁𝑁�|𝐸𝐸| < ΔUTe2 
�. Similarly, 

Fig. 2C shows the quasiparticle spectrum versus 𝑘𝑘𝑦𝑦 at 𝑘𝑘𝑥𝑥 = 0 for non-chiral order parameter 

with B3u symmetry: two non-chiral TSBs span −ΔUTe2 ≤ 𝐸𝐸 ≤ ΔUTe2 , and feature E = 0 states 

generating a finite 𝑁𝑁�|𝐸𝐸| < ΔUTe2 �. Although these TSBs have dispersion in both the positive 

and negative 𝑘𝑘𝑦𝑦 directions and can backscatter, their gaplessness is protected by time- 

reversal symmetry with 𝑇𝑇2 = −𝐼𝐼. Hence, solely based on 𝑁𝑁�|𝐸𝐸| < Δ𝑈𝑈𝑇𝑇𝑒𝑒 � of the TSB, one 

cannot discriminate between the two symmetries of ∆𝒌𝒌. 

 
Instead, we explore how to distinguish a chiral from non-chiral Δ𝒌𝒌 by using scanned 

Andreev tunneling microscopy and spectroscopy. Specifically within the SIP model, we 

calculate the Andreev conductance 𝑎𝑎(𝑉𝑉) = 𝑑𝑑𝐼𝐼/𝑑𝑑𝑉𝑉|SIP between Nb and UTe2 using the non- 

chiral TSB and demonstrate that a sharp 𝑎𝑎(𝑉𝑉) peak should occur surrounding zero-bias 

(Section 7 of (11)). Because the TSB quasiparticles subtending this peak are protected by 

time-reversal symmetry and because Andreev reflection of TSB quasiparticles allows 

efficient transfer of charge 2𝑒𝑒 across the junction, its sharpness is robust. This makes 

scanned Andreev tunneling spectroscopy an ideal approach for studying superconductive 

topological surface bands in ITS. 

 
Depending on whether UTe2 is hypothesized as a chiral or non-chiral superconductor, 

the TSB quasiparticles are themselves chiral (Fig. 2B) or non-chiral (Fig. 2C). As the tunneling 

matrix element to the s-wave electrode |𝑀𝑀| → 0 these phenomena are indistinguishable but, 
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as |𝑀𝑀| increases, the wavefunctions of the Nb overlap those of UTe2 allowing detection of the 

TSB quasiparticles at the s-wave electrode. Figure 3A shows the predicted quasiparticle 

bands within the SIP interface for Au + iB3u symmetry (Fig. 3C) versus increasing |𝑀𝑀| 

(Sections 4 and 5 of (11)). With increasing |𝑀𝑀|~1/𝑅𝑅 where R is the SIP tunnel junction 

resistance, the proximity effect of the s-wave electrode generates two chiral TSBs for all 

|𝐸𝐸| < ΔUTe2 , both of which cross E = 0. Hence, for the chiral Δ𝒌𝒌, the zero-energy 𝑁𝑁(𝐸𝐸) will be 

virtually unperturbed by increasing |𝑀𝑀| . Equivalently, Fig. 3B presents the TSB of 

quasiparticle within the SIP interface as a function of |𝑀𝑀| for the non-chiral order parameter 

with B3u symmetry (Fig. 3C). When |𝑀𝑀| → 0 the non-chiral TSB crosses E = 0. But, with 

increasing |𝑀𝑀|~1/𝑅𝑅, time-reversal symmetry breaking due to the s-wave electrode splits the 

TSB of quasiparticle into two, neither of which cross 𝐸𝐸 = 0. This reveals that the 𝑁𝑁(0) peak 

must split as the zero-energy quasiparticles of the TSB disappear, generating two particle- 

hole symmetric 𝑁𝑁(𝐸𝐸) maxima at finite energy. The pivotal concept is thus: whereas the chiral 

TSB in Fig. 2B requires no symmetry to protect it, the non-chiral TSB of Fig. 2C will open a 

gap if time-reversal symmetry is broken. This occurs because the SIP model for a non-chiral 

Δ𝒌𝒌 (Fig. 2C) predicts strong |𝑀𝑀| locking of the relative phase 𝛿𝛿𝛿𝛿 between the two 

superconductors at 𝛿𝛿𝛿𝛿 = 𝜋𝜋/2 to minimize the total energy of the SIP junction (Sections 4 

and 5 of (11)), thus breaking time-reversal symmetry. Contrariwise, the value of 𝛿𝛿𝛿𝛿 is 

irrelevant for a chiral Δ𝒌𝒌 (Fig. 2B) because the TSB at the interface remains gapless for any 

𝛿𝛿𝛿𝛿 (i.e., the chiral TSB requires no symmetry to protect it). Figure 3D shows the 

quantitatively predicted splitting of 𝑁𝑁(0) into two particle-hole symmetric 𝑁𝑁(𝐸𝐸) maxima as 

a function of |𝑀𝑀| for a chiral Δ𝒌𝒌 (orange) and for a non-chiral Δ𝒌𝒌 (blue), within the SIP model 

of Fig. 2A (Sections 4 and 5 of (11)). The decisive fact revealed by this SIP model for Andreev 

tunneling between an s-wave electrode and a p-wave topological superconductor through 

the latter’s TSB, is that a non-chiral pairing state can be clearly distinguished from a chiral 

pairing state. 

 
To search for such phenomena, UTe2 samples are introduced to a superconductive- 

tip (38-43) scanning tunneling microscope, cleaved at 4.2 K in cryogenic ultrahigh vacuum, 

inserted to the scan head, and cooled to T = 280 mK. A typical topographic image 𝑇𝑇(𝒓𝒓) of the 
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(0-11) cleave surface as measured by a superconductive Nb tip is shown in Ref. 11 Section 8 

with atomic periodicities defined by vectors a*, b*, where a*=a= 4.16 Å is the 𝑥𝑥� - axis unit-cell 

vector and b*= 7.62 Å is a vector in the 𝑦𝑦� :  𝑧𝑧  plane. As the temperature is reduced several 

peaks appear within the overall energy gap: these are clear characteristics of the UTe2 

surface states because when the tip is traversed across an adsorbed (non-UTe2) metal cluster 

the sub-gap peaks disappear (Section 8 of (11)). Most significantly, for Nb scan tips on the 

atomically homogenous (0-11) UTe2 surface, a sharp zero-energy peak appears in the 

spectrum as shown in Fig. 4A. This robust zero-bias 𝑑𝑑𝐼𝐼/𝑑𝑑𝑉𝑉|SIP peak is observed universally, 

as exemplified for example by Figs. 4B, C. These phenomena are not due to Josephson 

tunneling because the zero-bias conductance 𝑎𝑎(0) of Nb/UTe2 is orders of magnitude larger 

than it could possibly be due to Josephson currents through the same junction, and because 

𝑎𝑎(0) grows linearly with falling R before diminishing steeply as R is further reduced while 

𝑔𝑔(0) due to Josephson currents should grow continuously as 1/R2 (Section 8 of (11)). 

Moreover, the SIP model predicts quantitatively that such an intense 𝑎𝑎(0) peak should occur 

if UTe2 Δ𝒌𝒌 supports a TSB within the interface (Fig. 2A), and because Andreev transport due 

to its quasiparticles allows zero-bias conductance to the Nb electrode (Fig. 2D, Section 7 of 

(11)). 

 
This discovery provides an exceptional opportunity to explore the TSB quasiparticles 

of a nodal odd-parity superconductor. To do so we focus on a 44 nm square field of view 

(FOV) and, for comparison, first image conventional differential conductance at zero-bias 

𝑔𝑔(𝒓𝒓, 0) at T = 4.2 K in the normal state of UTe2 as shown in Fig. 4D. The normal-state QPI 

signature 𝑔𝑔(𝒒𝒒, 0) shown in Fig. 4E, is found from Fourier transform of 𝑔𝑔(𝒓𝒓, 0) in Fig. 4D. Next, 

Andreev differential conductance 𝑎𝑎(𝒓𝒓, 𝑉𝑉) ≡ 𝑑𝑑𝐼𝐼/𝑑𝑑𝑉𝑉|SIP(𝒓𝒓, 𝑉𝑉) measurements using a 

superconductive Nb tip are carried out in the identical FOV at T = 280 mK, deep in the UTe2 

superconducting state (Fig. 4F and Section 10 of (11)). Note that 𝑎𝑎(𝒓𝒓, 𝑉𝑉) represents a two- 

electron process and is thus not proportional trivially to the density of TSB quasiparticle 

states 𝑁𝑁(𝒓𝒓, 𝐸𝐸) but, instead, to the Andreev conductance. Our 𝑎𝑎(𝒓𝒓, 0) imaging is then carried 

out in bias-voltage range 𝑉𝑉 = 0 ± 150 μV inside the 𝑑𝑑𝐼𝐼/𝑑𝑑𝑉𝑉|SIP peak (Fig. 4A). Such images 

introduce atomic-scale visualization of zero-energy quasiparticles of a superconductive TSB. 
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The Andreev QPI signature 𝑎𝑎(𝒒𝒒, 0) of these zero-energy quasiparticles is shown in Fig. 4G. 

Here, three new scattering wavevectors S1,2,3 are indicated by red circles. Since 𝑺𝑺𝟑𝟑 exists only 

in the superconducting state and only for |𝐸𝐸| ≲ 150 μeV it cannot be due to any new charge 

ordered state (Section 10 of (11)) but is generated by TSB quasiparticles. And, because a 

closed Fermi surface has been hypothesized for UTe2 from both angle-resolved 

photoemission and quantum oscillation research (44,45,46), S3 is not inconsistent with an 

a-axis internodal scattering wavevector on such a Fermi surface. 

 
Finally, to determine spectroscopically whether the UTe2 order parameter is chiral, 

we measure the evolution of Andreev conductance 𝑎𝑎(𝑉𝑉) at T = 280 mK as a function of 

decreasing junction resistance R or equivalently increasing tunneling matrix element |𝑀𝑀|. 

Figure 5A shows vividly the strong energy splitting 𝛿𝛿𝐸𝐸 observable in 𝑎𝑎(𝑉𝑉), that first appears 

and then evolves with increasing 1/𝑅𝑅. Figure 5B shows the measured 𝑎𝑎(𝒓𝒓, 𝑉𝑉) splitting across 

the (0 -1 1) surface of UTe2 along the yellow arrow indicated in Fig. 5C for R = 3 MΩ, 

demonstrating that 𝑎𝑎(𝒓𝒓, 𝑉𝑉) split-peaks are pervasive. Decisively, from measurements in Fig. 

5A, we plot in Fig. 5D the measured 𝛿𝛿𝐸𝐸 between peaks in 𝑎𝑎(𝒓𝒓, 𝑉𝑉) at T = 280 mK versus 1/𝑅𝑅. 

On the basis of predictions for energy splitting 𝛿𝛿𝐸𝐸 within the SIP model presented in Fig. 3D 

for chiral Δ𝒌𝒌 (Fig. 3A) and non-chiral Δ𝒌𝒌 (Fig. 3B), a chiral Δ𝒌𝒌 appears ruled out. However, 

here we note that the SIP model assumes a planar junction with translational invariance 

parallel to the interface: this implies mirror symmetry (kx→−kx) which the STM tip could 

break, compromising the protection of the non-chiral state and splitting a zero-bias peak 

(Section 6 of (11)). Nonetheless, since a chiral TSB is symmetry-independent, our conclusion 

holds: splitting of the zero-bias Andreev conductance peak indicates non-chiral pairing in 

UTe2. 

 
Thus, the chiral order parameters Au + iB1u and B3u + iB2u proposed for UTe2 seem 

inapplicable because of the observed Andreev conductance 𝑎𝑎(0) splitting (Fig. 5A). Within 

the four possible odd-parity time-reversal preserving symmetries Au, B1u, B2u and B3u, the 

isotropic Au order parameter appears insupportable because its TSB is a Majorana-cone of 

Bogoliubons with zero density-of-states at zero energy (7) meaning that Andreev 
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conductance 𝑎𝑎(0) would be highly suppressed. Among the remaining three possible order 

parameters B1u, B2u and B3u, all should exhibit the Andreev conductance 𝑎𝑎(0) splitting that is 

observed. However, if the S3 modulations are due to a-axis internodal scattering, then the 

B3u state is favored since its nodes occur along the a-axis. 

 
Modeling Andreev conductance from an s-wave superconductor through the 

intervening topological surface band of an intrinsic topological superconductor, reveals a 

zero-energy Andreev conductance maximum at surfaces parallel to the nodal axis. Further, 

splitting of this Andreev conductance peak due to proximity of an s-wave superconductor 

signifies a 3D ITS with Δ𝒌𝒌 preserving time-reversal symmetry. Although the B1u, B2u or B3u 

states could all be consistent with such a phenomenology, should the 𝑎𝑎(𝒓𝒓, 0) modulations at 

wavevector S3 result from a-axis oriented energy-gap nodes, then the complete experimental 

data implies that Δ𝒌𝒌 of UTe2 is in the B3u state. Future experiments employing energy- 

resolved quasiparticle interference imaging of the TSB may explore this premise even more 

directly. Most generally, use of SIP Andreev conductance spectroscopy for quasiparticle 

surface band detection and Δ𝒌𝒌 symmetry determination opens new avenues for discovery 

and exploration of 3D intrinsic topological superconductors. 
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FIGURES 
 
 

FIG. 1 Pair Wavefunction Symmetry in UTe2 

A. Pedagogical model of a nodal spin-triplet superconductor with order parameter Δ𝒌𝒌 having 

a-axis nodes identified by red dots; the red arrow labels the internodal scattering 

wavevector . The 2D states | 𝑘𝑘𝑥𝑥| < |𝑘𝑘𝑛𝑛| indicated for example by a blue plane are 

topological whereas those |𝑘𝑘𝑥𝑥| > |𝑘𝑘𝑛𝑛| indicated by a green plane are non-topological. 

B. The 2D Brillouin zone of the crystal surface parallel to the Δ𝒌𝒌 nodal axis, namely, the a-b 

plane, showing a single TSB dispersion 𝒌𝒌(𝐸𝐸) with color code for E. A line of zero-energy 

TSB states dubbed the Fermi arc connects the two points representing the projections of 

the 3D Δ𝒌𝒌 nodal wavevectors ±𝑘𝑘𝑛𝑛(𝐸𝐸) onto this 2D zone. The equatorial circle in this plot 

is the 𝑘𝑘𝑥𝑥 − 𝑘𝑘𝑦𝑦 contour satisfies of 𝜖𝜖�𝑘𝑘𝑥𝑥, 𝑘𝑘𝑦𝑦, 0� = 0 where 𝜖𝜖(𝑘𝑘𝑥𝑥, 𝑘𝑘𝑦𝑦, 𝑘𝑘𝑧𝑧) is the band 

dispersion used in the model. 

C. The density of TSB quasiparticle states 𝑁𝑁(𝐸𝐸) calculated from Fig. 1B exhibits a continuum 

|𝐸𝐸| ≤ Δ0 with a sharp peak at E = 0 owing to the TSB Fermi arc. 

D. Schematic symmetry of a possible UTe2 order parameter Δ𝒌𝒌 which has two a-axis nodes. 

The a-axis oriented internodal scattering 𝒒𝒒𝑛𝑛 is indicated by a red arrow. 

E. Schematic of (0 -1 1) cleave surface of UTe2 shown in relative orientation to the STM tip 

tunneling direction and Δ𝒌𝒌 in Fig. 1D. 

F. Measured 𝑁𝑁(𝐸𝐸) of normal (T = 4.2 K) and superconducting (T = 280 mK) states of UTe2 

using a non-superconducting STM tip at the (0 -1 1) cleave surface as seen in Fig. 1E. At 

the UTe2 surface virtually all states |𝐸𝐸| ≤ Δ0 are ungapped. 

 
FIG. 2 SIP Model: Interfacial Quasiparticle TSB between p-wave and s-wave Electrodes 

A. Schematic SIP model for interface between an s-wave electrode (S) and a p-wave 

superconductor (P) separated by an interface (I), containing the TSB on the surface of 

the p-wave superconductor. There is a variable tunneling matrix element |𝑀𝑀| between 

them, where |𝑀𝑀|~1/𝑅𝑅 and 𝑅𝑅 is the junction resistance. This model is designed to 

characterize a tunnel junction between superconductive Nb (S) scan-tip and UTe2 surface 
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(P). Any superconductive TSB quasiparticles existing within the interface undergo 

Andreev scattering between s-wave and p-wave electrodes. 

B. Calculated quasiparticle bands within the SIP interface for a chiral, time-reversal 

symmetry breaking, p-wave order parameter with Au + iB3u symmetry (Table S2). The Nb 

electrode has trivial s-wave symmetry. For this plot 𝑘𝑘𝑥𝑥 is set to zero. Throughout all the 

calculated band dispersions, the red dispersion lines denote the superconductive TSB. 

The shading of the blue dispersion lines is used to highlight the low-energy band structure 

phenomena, which are central to the tunnelling process within SIP interface. 

C. Calculated quasiparticle bands within the SIP interface for a non-chiral, time-reversal 

symmetry conserving, p-wave order parameter with B3u symmetry (Table S1). Here the 

gapless TSB is protected by time-reversal symmetry. The value of 𝑘𝑘𝑥𝑥 in this plot is set to 

zero. 

D. Schematic of the zero-energy differential Andreev tunneling conductance 𝑎𝑎(𝑉𝑉) ≡ 

𝑑𝑑𝐼𝐼/𝑑𝑑𝑉𝑉|SIP to the s-wave electrode. The magnitude of this zero-bias peak in 𝑎𝑎(𝑉𝑉) is 

determined by the density 𝑁𝑁(0) of TSB quasiparticle states within the SIP interface, 

through a two-quasiparticle Andreev scattering process as shown. 

 
FIG. 3 Order Parameter Specific TSB Effects with Enhanced Tunneling 

A. Calculated quasiparticle bands within the SIP interface between Nb and UTe2 with 𝛿𝛿𝛿𝛿 = 

𝜋𝜋/2 as a function of tunneling matrix element |𝑀𝑀|. Here the chiral order parameter has Au 

+ iB3u symmetry. As |𝑀𝑀| → 0, 𝑅𝑅 → ∞ the chiral TSB crosses E = 0. With increasing |𝑀𝑀| 

(diminishing R) the effect of the s-wave electrode in the SIP model generates two chiral 

TSBs inside the UTe2 superconducting gap for all 𝐸𝐸 < ΔUTe2 
, meaning that the zero- 

energy 𝑑𝑑𝐼𝐼/𝑑𝑑𝑉𝑉|SIP peak will be virtually unperturbed (the points where the TSB crossing E 

= 0 are indicated by orange circles). 

B. As in Fig. 3A but with a non-chiral TSB which also crosses E = 0. With increasing |𝑀𝑀| 

(diminishing R) the effect of the s-wave electrode splits the quasiparticle bands into two 

(the split is indicated by blue circles), neither of which crosses E = 0. This key observation 

means that the zero-energy 𝑎𝑎(0) = 𝑑𝑑𝐼𝐼/𝑑𝑑𝑉𝑉|SIP Andreev conductance peak must split into 

two particle-hole symmetric maxima separating as |𝑀𝑀| is increased. 
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C. Examples of possible order parameter k-space phase evolution for UTe2 as used in Figs. 

3, A and B. Top panel shows the equatorial (kx = 0) complex phase values of Δ𝒌𝒌 and spin- 

triplet configurations for chiral order parameter Au + iB3u (Table S2). Bottom panel shows 

the equatorial (kx = 0) values of Δ𝒌𝒌 and spin-triplet configurations for non-chiral order 

parameter B3u (see 11 Table S1). The chiral Au + iB3u order parameter has a continuous 

phase winding in contrast to the discontinuous phase change in the B3u order parameter. 

D. Calculated energy splitting 𝛿𝛿𝐸𝐸 of the zero-energy 𝑎𝑎(0) = 𝑑𝑑𝐼𝐼/𝑑𝑑𝑉𝑉|SIP Andreev conductance 

peak as a function of tunneling matrix element |𝑀𝑀|~1/𝑅𝑅. The 𝛿𝛿𝐸𝐸 is zero for Au + iB3u 

(orange) at all tunneling matrices |𝑀𝑀| . However, 𝛿𝛿𝐸𝐸 increases as a function of |𝑀𝑀|~1/𝑅𝑅 

for a B3u (blue) order parameter, within the SIP model shown in Fig. 2A. The orange 

circles correspond to the predicted TSB crossing points in Fig. 3A. The blue circles 

correspond to the predicted TSB termination points in Fig. 3B. 

 

FIG. 4 Discovery of Andreev conductance spectrum 𝒂𝒂(𝑽𝑽) for Nb/UTe2 tunneling 

A. Typical SIP Andreev conductance spectrum 𝑎𝑎(𝑉𝑉) ≡ 𝑑𝑑𝐼𝐼/𝑑𝑑𝑉𝑉|SIP measured with Nb scan-tip 

on UTe2 (0 -1 1) surface for junction resistance R = 6 MΩ and T = 280 mK. A high intensity 

zero-bias 𝑑𝑑𝐼𝐼/𝑑𝑑𝑉𝑉|SIP peak is detected. 

B. Typical topographic image T(r) of (0 -1 1) surface (Is = 0.2 nA, Vs = 5 mV). 

C. Evolution of measured 𝑎𝑎(𝒓𝒓, 𝑉𝑉) across the (0 -1 1) surface of UTe2 indicated by the yellow 

arrow in Fig. 4B for junction resistance R = 6 MΩ and T = 280 mK. The zero-bias 𝑑𝑑𝐼𝐼/𝑑𝑑𝑉𝑉|SIP 

peaks are universal and robust, indicating that the zero energy ABS is omnipresent. 

D. Measured 𝑔𝑔(𝒓𝒓, 0) at T = 4.2 K in the normal state of UTe2. 

E. Measured 𝑔𝑔(𝒒𝒒, 0) is the Fourier transform of 𝑔𝑔(𝒓𝒓, 0) in Fig. 4D. 

F. Superconductive tip measured 𝑎𝑎(𝒓𝒓, 0) at T = 280 mK in the UTe2 superconducting state. 

This image introduces visualization of the spatial configurations of a zero-energy TSB at 

the surface of UTe2. 

G. Superconductive tip measured 𝑎𝑎(𝒒𝒒, 0) at T = 280 mK in UTe2: the Fourier transform of 

𝑎𝑎(𝒓𝒓, 0) in Fig. 4F. Three specific new incommensurate scattering wavevectors S1,2,3 are 

indicated by red circles. 
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FIG. 5 Evolution and splitting of 𝒂𝒂(𝑽𝑽) peak with enhanced s-wave hybridization 

A. Measured evolution of 𝑎𝑎(𝑉𝑉) ≡ 𝑑𝑑𝐼𝐼/𝑑𝑑𝑉𝑉|SIP at T = 280 mK in UTe2 as a function of 

decreasing junction resistance R (i.e. decreasing the tip-sample distance) and thus 

increasing tunneling matrix element |𝑀𝑀| ~ 1/𝑅𝑅 . The 𝑎𝑎(𝑉𝑉) spectra start to split when the 

junction resistance falls below R ~ 5 MΩ. 

B. Evolution of measured 𝑎𝑎(𝒓𝒓, 𝑉𝑉) splitting across the (0 -1 1) surface of UTe2 along the 

yellow arrow indicated in Fig. 5C, at junction resistance R = 3 MΩ and T = 280 mK, 

demonstrating that 𝑎𝑎(𝒓𝒓, 𝑉𝑉) split-peaks are pervasive at low junction resistance R and high 

tunneling matrix |𝑀𝑀|. 

C. Topographic image T(r) of (0 -1 1) surface (Is = 0.2 nA, Vs = 3 mV, T = 280 mK) showing 

the trajectory of the 𝑎𝑎(𝒓𝒓, 𝑉𝑉) spectra that demonstrate the universality of 𝑎𝑎(𝑉𝑉) splitting in 

Fig. 5B. 

D. Measured energy splitting of 𝑎𝑎(𝑉𝑉) at T = 280 mK in UTe2 versus 1/𝑅𝑅. These data may be 

compared with predictions of 𝑎𝑎(𝑉𝑉) splitting within the SIP model for Au + iB3u and B3u order 

parameters of UTe2 (Fig. 3D). 
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Figure 3  
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Figure 5 
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Materials and Methods 

 

Our measurements on UTe2 crystals were carried out in a custom-built scanned 

Josephson/Andreev tunneling microscope. The UTe2 samples were grown by the chemical vapor 

transport (CV) method as in Ref. 10 and exhibit a 𝑇c � 1.6 K. The (0-11) surface of the sample 

was cleaved in cryogenic ultrahigh vacuum at a temperature of ~4.2 K. The sample was then 

immediately transferred into the STM head. Measurements were carried out using Nb tips at base 

temperatures of ~4.2 K and ~280 mK. The superconducting Nb tips were prepared by field 

emission. 

 

 

Supplementary Text 

 

1. Topological surface bands of nodal spin-triplet superconductors 

 

Three-dimensional (3D) nodal, odd parity superconductors are analogous to the 3D Weyl 

semimetal state. As shown in Main Text Fig. 1A, for real-space surfaces parallel to the nodal 𝑥� - 

axis the in-plane momenta are good quantum numbers. The momentum axis passing perpendicular 

through the nodes separate the two-dimensional (2D) reciprocal spaces spanned by the in-plane 

momentum into topologically distinct regions. This is manifested by the presence or absence of 

topological surface bands (TSBs). In general, the boundary between these topologically 

inequivalent regions marks the topological phase transition, where the superconducting gap closes. 

 

The 2D Brillouin zone of a crystal surface parallel to the Δ𝒌 nodal axis, namely, the a-b plane, 

shows a line of zero-energy TSB states dubbed a Fermi arc, which connects the two points 

representing the projections of the 3D Δ𝒌 nodal wavevectors ±𝑘n onto this 2D zone. Moreover, 

the TSB of nodal odd parity superconductors on the surface of a-b plane is represented by a 2D 

band dispersion for 𝐸TSB(𝑘x, 𝑘y) within the radius of the Fermi surface in the 𝑘z = 0 plane (Main 

Text Fig. 1B). An approximate density-of-states of TSB quasiparticle states can be calculated using 
 

𝑁(𝐸) == ∑k  𝛤/𝜋  (S.1) x,y 
(𝐸-𝐸 (𝑘 ,𝑘 ) 

2
+𝛤2 

𝑇𝑆𝐵  𝑥  𝑦 ) 

where 𝛤 is a momentum independent quasiparticle broadening parameter (5 μeV is used here). At 

the surface, when integrated over (𝑘x, 𝑘y) in the 2D Brillouin zone, the flat Fermi arc at E = 0 

contributes strongly to a sharp zero-energy peak surface density of states 𝑁(𝐸) (Main Text Fig. 

1C). 
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2. Candidate superconductive order parameters for UTe2 with D2h symmetry 

 

The crystal symmetry point-group for UTe2 is D2h with space group Immm which, if we 

consider spin-orbit coupling, features four possible, odd-parity order-parameter symmetries: Au, 

B1u, B2u, and B3u (Table S1). All single-component representations below preserve time-reversal 

symmetry and three have zeros (nodes) in ∆k whose axial alignment is outlined in Table S1. 

 

 

OP d ∆k Nodal 

Axis 

Au 𝛼𝑘x 𝒙�  

𝛽𝑘y 𝒚�  

𝛾𝑘z 𝒛�  

(-𝑘x + 𝑖𝑘y)|↑↑⟩ 

+(𝑘x + 𝑖𝑘y)|↓↓⟩ 

+𝑘z(|↑↓⟩ + |↓↑⟩) 

If 𝛼 = = 𝛽  == 𝛾  == 1 

None 

B1u 𝛼𝑘y 𝒙�  

𝛽𝑘x 𝒚�  

𝛾𝑘x𝑘y𝑘z𝒛� 

(-𝑘y + 𝑖𝑘x)|↑↑⟩ 

+(𝑘y + 𝑖𝑘x)|↓↓⟩ 

If 𝛼 = = 𝛽  ==  1, 𝛾 ==  0 

c 

B2u 𝛼 𝑘z 𝒙�  

𝛽𝑘x𝑘y 𝑘z𝒚� 

𝛾𝑘x 𝒛�  

𝑘z(|↓↓⟩ - |↑↑⟩) 

+𝑘x(|↑↓⟩ + |↓↑⟩) 

If 𝛼 = = 𝛾  == 1, 𝛽 == 0 

b 

B3u 𝛼𝑘x𝑘y 𝑘z𝒙� 

𝛽𝑘z 𝒚�  

𝛾𝑘y 𝒛�  

𝑖𝑘z(|↑↑⟩ + |↓↓⟩) 

+𝑘y(|↑↓⟩ + |↓↑⟩) 

If 𝛼 ==  0, 𝛽 = =𝛾  ==  1 

a 

Table S1. Single-component odd-parity spin-triplet superconductive order parameters for D2h 

symmetry, considering the spin-orbit coupling. 

 

 

Linear combinations of these D2h order-parameters are also possible which break time- 

reversal symmetries, resulting in chiral states, shown in Table S2. Two have nodes aligned with 

the crystal c-axis, and two aligned with the a-axis. A time-reversal symmetry breaking chiral order 

parameter breaks down symmetries of the lattice, while remaining an irreducible representation 

(IR) of the D2h point symmetry group. 
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OP d ∆k Nodal 

Axis 

Au+iB1u (𝛼1𝑘x + 𝑖𝛼2𝑘y)𝒙� 

(𝛽1𝑘y + 𝑖𝛽2𝑘x)𝒚� 

(𝛾1𝑘z + 𝑖𝛾2𝑘x𝑘y𝑘z)𝒛� 

-2𝑘x|↑↑⟩ 

+𝑖2𝑘y|↓↓⟩ 

If 𝛼1,2 == 𝛽1,2 == 1 𝛾1,2 == 0 

c 

B2u+iB3u (𝛼𝑘z + 𝑖𝛼2𝑘x𝑘y𝑘z) 𝒙� 

(𝛽1𝑘x𝑘y𝑘z + 𝑖𝛽2𝑘z)𝒚� 

(𝛾1𝑘x + 𝛾2𝑖𝑘y)𝒛� 

(𝑘x + 𝑖𝑘y)(|↑↓⟩ + |↓↑⟩) 

 

If 𝛼1,2 == 𝛽1,2 == 0 𝛾1,2 == 1 

c 

Au+iB3u (𝛼1𝑘x + 𝑖𝛼2𝑘x𝑘y𝑘z)𝒙� 

(𝛽1𝑘y + 𝑖𝛽2 𝑘z )𝒚� 

(𝛾1𝑘z + 𝑖𝛾2𝑘y)𝒛� 

(𝑖𝑘y - 𝑘z)(|↑↑⟩ + |↓↓⟩) + 

(𝑘z + 𝑖𝑘y)(|↑↓⟩ + |↓↑⟩) 

If 𝛼1,2 == 0, 𝛽1,2 == 𝛾1,2 == 1 

a 

B1u+iB2u (𝛼1𝑘y + 𝑖𝛼2𝑘z) 𝒙� 

(𝛽1𝑘x + 𝑖𝛽2𝑘x𝑘y𝑘z)𝒚� 

(𝛾1𝑘x𝑘y𝑘z + 𝛾2𝑘x)𝒛� 

(𝑘y + 𝑖𝑘z)(-|↑↑⟩ + |↓↓⟩) 

 

If 𝛼1,2 == 1, 𝛽1,2 == 𝛾1,2 == 0 

a 

 

Table S2. Linear combinations of D2h order-parameters give rise to chiral spin-triplet 

superconductive order parameters with a-axis and c-axis nodes. 

 

 

Finally, given the number of free parameters in Tables S1 and S2 there are, of course, an 

enormous number of other possibilities. For example in the B3u state with d = (0, βkz, 𝛾ky), by 

choosing real β imaginary 𝛾, their relative phase could (instead of being set at 0 as we do 

throughout) be chosen as π/2. Another somewhat equivalent example would be a choice of real α 

imaginary β for the Au state. However, in these and equivalent cases one is enforcing the breaking 

of time-reversal symmetry so that the consequent order parameters are not IR of the D2h symmetry 

group. Furthermore, an admixture of two single components that is non-chiral is allowable but 

may break further symmetries of the lattice, such as mirror and rotational symmetries. While such 

order parameters could obviously exist in nature, they are not the subject of our studies nor those 

of any other UTe2 researchers that we are aware of. 

 

3. Experimental evidence of superconductive order parameters 

 

Identifying the Δ𝒌 symmetry of UTe2 with a specific IR of D2h or with some linear 

combinations thereof in macroscopic experiments is complicated, and the status of UTe2 Δ𝒌 

remains indeterminate. For example, a magnetic susceptibility upon entering the superconducting 

phase that is equivalent to Pauli paramagnetism, is deduced from minimal suppressions of the 

Knight shift (14,15,17) and used to adduce spin-triplet pairing (because spin-1 eigenstates typically 

retain their magnetic moments). Some NMR studies measuring this change of the spin 

susceptibility across 𝑇c report a decrease in the Knight shift in all directions and hypothesize the 
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Nb 

isotropically gapped Au state (17), while other NMR studies detect a reduction in the Knight shift 

along the b and c axes only, thence hypothesizing B3u pairing symmetry (18). Magnetic field 

orientation of the thermal conductivity (CV) indicates a superconducting energy gap with point 

nodes parallel to the crystal a-axis (19), while other field-oriented thermal conductivity (MF) 

measurements (20) report isotropic results and hypothesize an Au order parameter symmetry. 

Field-oriented specific heat measurements reveal peaks around the crystal a-axis implying point 

nodes oriented along this direction and hypothesize an order parameter with chiral Au + iB3u or 

helical B3u symmetries (21). Some electronic specific heat studies (CV) report two specific heat 

peaks and hypothesize a chiral Au + iB1u or B2u + iB3u order parameter (22), while other specific 

heat studies (MF) detect only a single specific heat peak and thus hypothesize a single component 

order parameter (23). London penetration depth measurements of superfluid density report 

anisotropic saturation consistent with nodes along the a-axis suggesting B3u symmetry pairing for 

a cylindrical Fermi surface (24), while other penetration depth measurements exhibiting an 𝑛 :s:2 

power law dependence of the penetration depth on temperature motivate a hypothesis of B3u + iAu 

pairing symmetry (25). Scanning tunneling microscopy experiments (CV) in the (0-11) plane 

parallel to a-axis show energy-reversed particle-hole symmetry breaking at opposite mirror- 

symmetric UTe2 step edges (26) with the consequent hypothesis of a chiral surface state B1u + iB2u 

whose nodes are aligned to the a-axis. Polar Kerr effect measurements (CV) report a field-induced 

Kerr rotation indicating the presence of time-reversal symmetry breaking and hypothesize chiral 

B2u + iB3u or Au + iB1u pairing (22) with nodes aligned to the c-axis, while other polar Kerr effect 

measurements (MF) report no detectable spontaneous Kerr rotation (27). 

 

4. SIP model 

 

We model a planar interface between an s-wave and a nodal p-wave superconductor (SIP), in 

which is located a topological surface band. Firstly, we construct the general four component 

Bogoliubov-de Gennes (BdG) Hamiltonian for a superconductor, 

𝐻 == ∑k 𝜓+(𝒌)𝐻(𝒌)𝜓(𝒌), 𝜓(𝒌) == (𝑐𝒌↑, 𝑐𝒌↓, 𝑐+  , 𝑐+  )T (S.2) 

 

𝐻Nb is the Hamiltonian of an s-wave superconductor Nb with 

-𝒌↑ -𝒌↓ 

 

 

𝐻Nb (𝒌) == ( 
𝜖Nb(𝒌)𝜎O  ΔNb(𝑖𝜎2) 

Δ∗ (-𝑖𝜎2) -𝜖Nb(-𝒌)𝜎O 
) (S.3) 

 

Here 𝜖Nb(𝒌) is the band structure of Nb, ΔNb is the Nb superconducting order parameter (in the 

computation we take ΔNb to be momentum independent), and 𝜎O,1,2,3 are the four components of 

Pauli matrices. 𝐻UTe2 
is the Hamiltonian of the putative p-wave superconductor with 

𝜖UTe2 
(𝒌)𝜎O ΔUTe2 

(𝒌) 𝐻 ( ) UTe2 
𝒌 == ( 

Δ+ (𝒌) -𝜖UTe (-𝒌)𝜎O
) (S.4) 

UTe2 2 
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Here 𝜖UTe2 
(𝒌) is the band structure containing a model spherical Fermi surface of UTe2, and 

ΔUTe2 
(𝒌) is a 2 x 2 odd parity pairing matrix given by ΔUTe2 

(𝒌) ≡ ΔUTe2 
𝑖(𝒅 ∙ 𝝈)𝜎2 . Both 

𝜖UTe2 
(𝒌) and 𝜖Nb(𝒌) are nearest neighbor tight binding dispersions on a simple cubic lattice with 

the same lattice constant and are modeled as cos(𝑘x) + cos(𝑘y) + cos(𝑘z) - 2 in the unit of 

meV. Given the focus of this project on the interplay of pairing symmetry, the exact band structures 

for Nb and UTe2 are irrelevant. 

 

We compare two candidate order parameters for UTe2, one built from the IR B3u of Table S1. 

This is the non-chiral gap function with nodes in the 𝒂 direction. The second order parameter 

considered is the chiral state Au + iB3u with nodes also in the 𝒂 direction (for B1u + iB2u pairing the 

conclusions are the same). Below we present the 2 x 2 pairing matrix in momentum space derived 

using Δk ∝ 𝑖[𝒅(𝒌) ∙ 𝝈]𝜎2. 

 

For B3u: 𝒅 == (0, 𝑘z, 𝑘y) 

Δ 
𝑖𝑘z 𝑘y 

𝒌 ∝ ( 
𝑘y 𝑖𝑘z

) (S.5) 

 

For Au + iB3u: 𝒅 == (0, 𝑘y + 𝑖𝑘z, 𝑘z + 𝑖𝑘y) 
-𝑘z + 𝑖𝑘y 𝑘z + 𝑖𝑘y 

Δ𝒌 ∝ ( 
𝑘z + 𝑖𝑘y -𝑘z + 𝑖𝑘y

) (S.6) 

Lastly, we model the tunneling Hamiltonian between the Nb and UTe2 interfaces as 

 
𝐻T == -|𝑀| ∑𝒌 [𝜓t 𝜎3 ⊗ 𝜎O 𝜓UTe ,𝒌 + h.c.] (S.7) 

∥ Nb,𝒌∥ 2  ∥ 

 
where 𝒌∥ == (𝑘x, 𝑘y, 0) is the quasiparticle momentum parallel to the interface. The model 

developed consists of twenty Nb layers adjacent to fifty UTe2 layers stacked in the 𝒄� direction, 

with tunneling between the surface layer of each superconductor (Fig. S1A). We then derive the 

eigenvalues and eigenvectors of the total Hamiltonian H = HNb + 𝐻UTe2 
+HT. We keep those 

eigenenergies whose wavefunction weight exceeds a certain lower bound (10-3 weight on the top 

surfaces of Nb and UTe2) and plot the eigenvalues of the Hamiltonian against 𝑘y with 𝑘x as a 

parameter. For all calculations we set the superconducting gap magnitude of UTe2 to be 0.25 meV 

to approximate the gap magnitude of the sample, and set the Nb gap to 1.25 meV to approximate 

the gap of the STM tip. 

 

At 𝑘x == 0, when the tunneling matrix 𝑀 == 0, the band dispersion on Nb top layer shows a 

continuum within the full Nb gap energy (Fig. S1B). Fig. S1C shows the band dispersion on UTe2 

top layer, TSBs are formed on the UTe2 surface indicated by red lines and the extra bulk bands are 
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indicated by blue lines. The observables are dominated by the topological surface band consisting 

of one sheet for the Au + iB3u model or two sheets for B3u alone. 

 

To highlight TSB states, Figures 2B,C of the main text show the band dispersion on the top 

surface of UTe2 at 𝑘x == 0 for chiral Au + iB3u and non-chiral B3u state when M is set to zero, 

without the effect of Nb. We have checked that the nature of the spectrum remains independent of 

the bound so long as the number of layers is sufficiently large. 

 

For a chiral superconducting order parameter with symmetry Au + iB3u, the TSB has a two- 

fold degenerate chiral TSB starting from negative ΔUTe2 
, positive 𝑘y to positive ΔUTe2 

, negative 

𝑘y (Main Text Fig. 2B). This is the expected chiral surface state dispersion in which the TSB 

quasiparticles break time-reversal symmetry. In comparison, the non-chiral order parameter with 

symmetry B3u develops two TSB branches, which are symmetric with respect to the 𝑘y == 0 axis 

and thus do not break time-reversal symmetry (Main Text Fig. 2C). The spectra for both chiral and 

non-chiral order parameters feature TSBs for -0.5𝜋 < 𝑘x < 0.5𝜋 where (±0.5𝜋, 0, 0) are the 

locations of the gap nodes. For |𝑘x| > 0.5𝜋 there are no in-gap states and at 𝑘x == ±0.5𝜋 the gap 

closes. Figures S1E,F show the 3D representation of these two chiral and non-chiral TSB. 

 

To investigate the tunneling effect between Nb and UTe2, we calculate the band dispersion 

on Nb top surface in Fig. S1D when |M| is nonzero (0.2 meV is used in the calculation). The 

tunneling process can be categorized into two types based on the energy range. Outside the Nb gap 

ΔNb, the UTe2 bulk states are overlapped with Nb states via single-particle tunneling. Inside ΔNb, 

the bulk states of UTe2 states cannot penetrate into the bulk of Nb and contribute to the tunneling 

conductance. However, and most importantly, we find that the TSBs of UTe2 can tunnel into the 

bulk of Nb in the form of Cooper pairs by the Andreev reflection process without the energy cost 

of the Nb gap. (Fig. S1D). 

 

5. Hybridization of a p-wave TSB with an s-wave electrode 

 

To investigate the effect of tunneling between a Nb tip and UTe2 we set a finite tunneling 

amplitude |𝑀| > 0 and plot the 𝑘x == 0 BdG spectrum derived from the three-term Hamiltonian H 

= HNb + 𝐻UTe2 
+HT. In Main Text Figs. 3A and B we demonstrate the effect of increasing the 

magnitude of |𝑀| (which corresponds to decreasing the tunnel junction resistance experimentally). 

When |𝑀| increases in the SIP model for a chiral Au + iB3u superconductor, the surface state 

develops two branches at different momenta while maintaining zero-energy crossings (Main Text 

Fig. 3A). Thus, the Andreev conductance peak in 𝑑𝐼/𝑑𝑉|SIP remains as a single maximum at zero- 

energy with reducing STM junction resistance. As |𝑀| increases in the SIP model for a non-chiral 

B3u superconductor, the TSB splits into two particle-hole symmetric energy bands with symmetric 

momentum dependence with respect to the 𝑘y == 0 axis. Thus, the zero-energy Andreev 
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a,𝒌 p,-𝒌 

conductance peak in 𝑑𝐼/𝑑𝑉|SIP must split into two finite energy 𝑑𝐼/𝑑𝑉|SIP maxima which further 

move apart in energy as the junction resistance is reduced. From the N(E) calculation of the TSB 

as implemented in Eqn. S1, we find that with increasing |M|, the single maximum at zero-energy 

in N(E) remains unchanged for chiral Au + iB3u state while it splits into two peaks for non-chiral 

B3u state. 

 

The key to understanding the TSB splitting is the relative phase 𝛿𝜙 between the Nb and UTe2 

order parameters at the interface. When |M| = 0, the gapless edge states of the B3u pairing 

superconductor are protected by time-reversal symmetry (𝑇2 == -𝐼 and Z2 classification). When 

|𝑀| > 0 for the B3u state the relative phase 𝛿𝜙 evolves to 
rr 

(Fig. S2B) lowering the total electronic 
2 

energy of the system by reducing the energies of all occupied TSB states E < 0. When 𝛿𝜙 == rr the 
2 

time-reversal symmetry within the SIP junction is broken because upon the time-reversal 𝑒i&p == 

𝑖 → 𝑒-i&p == -𝑖 . Thus, if UTe2 is an odd-parity superconductor with non-chiral B3u state whose 

isolated Δ preserves time-reversal symmetry, the SIP relative phase becomes 𝛿𝜙 == rr due to 
2 

proximity of the s-wave electrode. Under such condition the gapless TSB is no longer protected. 

Conversely, if UTe2 is a chiral superconductor with an order parameter such as Au + iB3u then TRS 

is broken without the influence of the s-wave superconducting STM tip. In that case the topological 

classification is Z, and the gapless TSB does not require any symmetry to remain protected and so 

remains gapless regardless of |𝑀| (Fig. S2A). 

 

6. The effect of mirror symmetry breaking by the STM tip 

 

Another potential cause of the TSB splitting phenomenology is possible if the gap function 

of UTe2 exhibits B3u pairing. In that case the gap function is independent of kx. Consequently, the 
BdG  Hamiltonian  is  invariant  under  an  anti-unitary  symmetry  (T1): 𝑇� -1Ψk ,k ,k 𝑇1 == 

1 x  y  z 

𝑖𝐼𝜎yΨkx,-ky,-kz . Furthermore, since the SIP model assumes planar tunneling, where translational 

symmetry parallel to the surface is preserved, an additional mirror symmetry (Mr) exists: 

𝑀-1Ψ 𝑀 == Ψ  . Together, 𝑀 ∙ 𝑇  restores time-reversal symmetry. In an STM 
r kx,ky,kz r -kx,ky,kz r 1 

setup involving point tunneling, the mirror symmetry (Mr) can be broken, which compromises 

time-reversal symmetry. This symmetry breaking allows a gap to open in the non-chiral TSB. In 

general, this effect also becomes more pronounced as the tip-sample conductance increases. 

 

7. Andreev conductance of s-wave electrode through a p-wave TSB 

 

A key consideration is the effect of hybridization of a p-wave TSB with an s-wave electrode 

on the Andreev conductance across the junction between the p-wave and s-wave superconductors. 

The  origin  of  Andreev  reflection  for  superconductors  is  the  anomalous  term 

∑𝒌 ∑a,p[ Δap(𝒌)𝑐+  𝑐+ + ℎ. 𝑐. ] (here 𝛼 and 𝛽 label the spin of the electron) in the 
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eff 

Hamiltonian. This term allows an incident electron (hole) impacting on an order parameter 

Δa,p(𝒌) to reflect as a hole (electron) as depicted in Main Text Fig. 2A. 

 

Most simply, a single Andreev reflection transfers two electrons (holes) between the tip and 

the sample (Main Text Fig. 2D). Based on a S-matrix approach, the formula to compute the 

Andreev conductance of the SIP Model is 

8𝜋2𝑡4  𝑒2 
𝑎(𝑉) == � 

ℎ 
n 

⟨𝜙n|𝑃h|𝜙n⟩⟨𝜙n|𝑃e|𝜙n⟩ 
 

 

(𝑒𝑉 - 𝐸n)2 + 𝜋2𝑡4 [⟨𝜙n|𝑃h|𝜙n⟩ + ⟨𝜙n|𝑃e|𝜙n⟩]2 
(S8) 

Here |𝜙n⟩ is the projection of the nth TSB eigenfunction onto the top UTe2 surface, and 𝑃e and 𝑃h 

are the electron and hole projection operators acting on the UTe2 surface and V is the bias voltage. 

Note that the Andreev conductance 𝑎(𝑉) is different from N(E) in Eqn. S1. However, both 

equations count the related eigenvalues through the integral over the whole TSB. 

 

Thus, in principle, the sharp zero-energy peak of the calculated N(E) in Main Text Fig. 1C 

will be clearly reflected in the sharp zero-energy peak of Andreev conductance 𝑎(𝑉). Figure S3A 

shows the schematic of the TSB generated Andreev reflection to the s-wave electrode. Specifically 

within the SIP model, we plot in Fig. S3B the calculated 𝑎(𝑉) from Eqn. S8 which predicts a sharp 

peak in Andreev conductance surrounding zero-bias. In this figure we have divided the total 

Andreev conductance by the number of transverse 𝑘∥ channels to mimic the point tunneling of 

STM. 

 

8. Topological surface band and Andreev phenomenology at UTe2 (0-11) surface 

 

A typical topograph of the UTe2 crystal cleave surface (0 -1 1) is presented in Fig. S4A and 

its Fourier transform is shown in Fig. S4B. To demonstrate empirically that the zero-energy state 

detected in 𝑑𝐼/𝑑𝑉|SIP is a result specifically of the UTe2 TSB we present a linecut across a cluster 

of impurity atoms in Fig. S5. This cluster is likely made up of Nb atoms which have been 

accidentally transferred from the Nb STM tip to the surface of the sample. The sub-gap 

conductance quickly collapses to zero and the 𝑑𝐼/𝑑𝑉|SIP spectra become fully gapped as the tip 

measures across the metallic cluster (Fig. S5). The zero-energy 𝑑𝐼/𝑑𝑉|SIP peak on the unperturbed 

surfaces is therefore not an artefact of the Nb scanning tip, but an omnipresent feature of the UTe2 

(0 -1 1) surface. 

 

Here it is important to emphasize the zero bias peak cannot be attributed to the Josephson 

current. This can be demonstrated clearly by plotting typical measured Andreev zero-bias 

conductance 𝑎(0), as shown in Fig. S6A, versus tip-sample junction resistance R on the same plot 

with the maximum possible zero-bias conductance which could be generated by the Josephson 

effect 𝑔(0), here exemplified by measured Nb/NbSe2 Josephson zero-bias conductance data. 

These results are presented in Fig. S6B. At high R, the intensity of measured 𝑎(0) of Nb/UTe2 is 
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many orders of magnitude larger than it could possibly be due to Josephson currents. Moreover 

measured 𝑎(0) for Nb/UTe2 first grows linearly in decreasing R but then diminishes steeply as R 

is reduced further, whereas the zero-bias conductance due to Josephson currents 𝑔(0) grows 

rapidly as 1/R2 as exemplified in the Nb/NbSe2 𝑔(0) data. Most importantly one does not expect 

the zero-bias peak due to the Josephson effect to split when R is low. These highly repeatable and 

internally consistent experimental facts demonstrate the absence of detectable Josephson currents 

between Nb electrodes and the UTe2 (0-11) termination surface. 

 

9. Phase fluctuation effect on tip-induced time-reversal symmetry breaking 

 

These data and SIP model raise the issue of fluctuations in the relative phase 𝛿𝜙 between the 

Nb and UTe2 order parameters when interacting predominantly by Andreev coupling. Recall that 

if UTe2 is an odd-parity superconductor with a nodal, non-chiral, time-reversal conserving state 

Δ  , the minimum energy SIP relative phase is 𝛿𝜙 == rr due to proximity of the s-wave electrode. 
2 

This effect will spit the zero-bias Andreev conductance as shown in Fig. S6A. To evaluate if 

thermal fluctuations in 𝛿𝜙 should wipe out the peak splitting effect for the realistic 

parameterization of Δk of UTe2, temperature T and junction resistance R, we calculate the TSB 

density-of-states N(E) when 𝛿𝜙 == rr and when N(E) is averaged over the whole range 0 < 𝛿𝜙 < 
2 

𝜋. The result as presented in Fig. S7 demonstrates that realistic phase fluctuations will not wipe 

out s-wave tip-induced N(E) splitting, thus preserving the Andreev a(V) conductance splitting. 

 

10. Imaging and Fourier analysis of 𝒅𝑰/𝒅𝑽|𝐒𝐈𝐏: Andreev conductance modulation S3 

 

Imaging Andreev conductance reveals spatial modulations in the zero-energy 𝑑𝐼/𝑑𝑉|SIP 

(Fig. S8). These data are measured at a junction resistance of 5 MΩ in the same field of view as 

the topograph in Fig. S8A. Fourier transformation of this 𝑎(𝒓, 0) Andreev conductance map, 

𝑎(𝒒, 0), shows new features that only exist in the superconducting state. Among them is the new 

wavevector S3 (Fig. S8) whose identification requires the following considerations. 

 

First, if S3 is a normal-state CDW, it must appear above TC. But in all our experimental studies 

S3 is only observed in the superconducting phase (Main Text Fig. 4G). Moreover, a CDW is highly 

unlikely to exist only in the very narrow energy range of ~ ±150 µeV (Fig. S8D) where S3 is 

observed. Thus, S3 cannot be considered a normal-state CDW. 

 

Second, interaction between uniform superconductivity of UTe2 with a pre-existing CDW 

(35) or PDW (34) both occurring with the same wavevector Q, cannot induce a CDW or a PDW 

at Q/2 as this is ruled out by Ginzburg-Landau theory (48). 
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Third, in the SIP model the projected gap nodes on the surface BZ are not isolated k points 

since they are connected by a zero energy Fermi arc leading to finite DOS. Thus, the narrow energy 

distribution of S3 is more consistent with QPI pertinent to the gap nodes along the 𝑘x direction, 

because quasiparticle scattering between the projected gap nodes and/or the Fermi arc connecting 

the two gap nodes naturally occur at E = 0, and it will be quickly diminished when the energy 

moves away from zero. 

 

Based on the above experimental arguments, the new wavevector S3 we detect cannot 

represent a preexisting CDW nor a superconductivity induced CDW or PDW. However, it could 

represent quasiparticle scattering resulting from  two superconducting gap nodes along 

the 𝒂� direction. 

 

11. Spherical Fermi surface of UTe2 

 

Measurements of UTe2 Fermi surfaces have reached broad agreement regarding the existence 

of two cylindrical, quasi-2D bands with a hole-type band around the X point and an electron-type 

band around the Y point of the Brillouin zone (45, 49). However, these quasi-2D Fermi surfaces 

are associated with U-6d and Te-5p orbitals, despite consensus that heavy f-electron correlations 

and the Kondo effect should play an important role in the low-temperature electronic structure. 

How this heavy electron physics impacts the Fermi surface is a matter of ongoing debate. We 

therefore first review the experimental results. 

 

Angle-resolved photoemission spectroscopy (ARPES) reports of the Fermi surface support 

the existence of a heavy U band centered on either the Γ (44) or Z point (45) of the Brillouin zone. 

This band is found to be approximately spherical and, from gradient analysis of the intensity map, 

has a k-space radius of ~0.2 Å-1. Quantum oscillation experiments by Broyles et al. (46) found 

three low frequency, angle-independent peaks Fα, Fβ, Fγ indicative of a spherical pocket with 

radius ~0.2 Å-1. However, Weinberger et al. (50) observe only one low frequency peak (206 T) 

and notably this peak does not exhibit the same angular dependence as those observed in Ref. 46. 

Instead of a closed Fermi surface Weinberger et al. propose that f-electron hybridization induces 

significant warping of the quasi-2D Fermi surfaces along the kz axis. The low frequency signal 

observed by Broyles et al. is then attributed to quantum interference effects between these 

hybridized bands (50). 

 

Theoretical work has found that these interpretations of the Fermi surface are dependent on 

the degree of low-temperature hybridization. Calculations employing density functional theory 

(DFT) introduce an on-site Coulomb repulsion term U to describe f-electron correlations (51). 

Tuning this variable from 1 eV to 2 eV results in a Liftshitz transition of the Fermi surface at U ~ 

1.6 eV. An intermediate value of U produces both the quasi-2D Fermi surface sheets and a pocket 

which encloses the Z point consistent with ARPES measurements. An intermediate value for U 
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reflects more itinerant f-electrons expected for the Kondo effect at low temperature. Furthermore, 

both tight binding and DFT+DMFT (dynamical mean field theory) calculations of the Fermi 

surface reproduce this 3D Fermi surface component at low temperature and ambient pressure while 

also supporting B3u symmetry of the triplet order parameter (52,53). 

 

Theoretical calculations therefore indicate that Kondo hybridization at low temperature 

increases the 3D character of the Fermi surface. This 3D character may manifest as a simple 

warping of the quasi-2D sheets or, for stronger hybridization, the Fermi surface may be forced to 

enclose the Z point generating a truly 3D Fermi surface. In any case, the presence of a Fano peak 

in differential conductance measurements as well as c-axis transport measurements highlight the 

role of Kondo coherence at low temperatures and suggest that the low-temperature electronic 

structure of UTe2 must take these hybridization effects into account (26,54). Whether this 

hybridization is enough to enforce the presence of a closed, 3D Fermi surface is unresolved. Future 

experiments, including further low frequency quantum oscillation measurements or STM 

quasiparticle interference imaging, should contribute further to determining the true Fermi surface 

of UTe2. 
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Fig. S1. Slab calculations of SIP model. 

(A) Layered structure of SIP model stacked in the z direction, and continuous in x, y directions. 

(B) The surface band dispersion of Nb (indicated by the orange layer) when M = 0. In all the band 

dispersion calculations, the red dispersion lines denote the superconductive TSB. The shading of 

the blue dispersion lines highlight the low-energy band structure phenomena, and the excitations 

further from the Fermi level are less relevant to the tunneling process. (C) The surface band 

dispersion of UTe2 (indicated by the blue layer) for non-chiral B3u pairing when M = 0. The TSB 

is presented in red to distinguish these states from those of the bulk. (D) The surface band 

dispersion of Nb on the orange layer when M = 0.2 meV. Bulk states of UTe2 within the energy of 

the Nb superconducting gap are forbidden to tunnel into Nb. Only the TSB of UTe2 can tunnel into 

the Nb surface, which contributes to the tunneling current near zero energy. It can lead to sharp 

zero bias peak in differential conductance measurements between UTe2 and Nb. In the calculation, 

we plot the bands whose wavefunction weight exceeds a certain lower bound ( 10-3 weight on the 

top surfaces of Nb and UTe2, respectively). (E) 3D representation of the non-chiral TSB model 

used throughout. (F) 3D representation of the chiral TSB model used throughout. 
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Fig. S2. Evolution of in-gap states vs. the relative phase 𝜹𝝓 between Nb and UTe2. 

(A) Calculated quasiparticle bands within the SIP interface for chiral order parameter Au + iB3u. 

The chiral order parameter breaks time-reversal symmetry. The existence of its zero-energy states 

is therefore unaffected by tunneling to the s-wave Nb tip. (B) Calculated quasiparticle bands within 

the SIP interface for non-chiral order parameter B3u. The tunneling matrix element |𝑀| is fixed 

while 𝛿𝜙 evolves from 0 to π. The zero-energy states disappear due to broken time-reversal 

symmetry of the Nb-UTe2 system at 𝛿𝜙 == 𝜋/2. (C-E) Energy splitting of zero-energy surface 

state derived from the model presented in Section 5. The relative phase 𝛿𝜙 is kept fixed at π/2 

while the tunneling matrix element |M| is increased. We present three cases of split energy 

dependence on the tunneling matrix element 1/𝑅 ∝ |𝑀|n with 𝑛 == 2, 1, 0.5. 1/𝑅 ∝ |𝑀| in D is 

quantitively similar to the experimental data in Main Text Fig. 5D. Thus we choose to present D 

in Main Text Fig. 3D. 
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Fig. S3. TSB generated Andreev conductance in the SIP model. 

(A) Schematic of the TSB generated Andreev tunneling to the s-wave electrode, through two 

quasiparticle transport process. (B) Calculated Andreev conductance 𝑎(𝑉) in the SIP model. 

Hence, the SIP model predicts a sharp peak in Andreev conductance surrounding zero-bias if the 

TSB is that of a p-wave, nodal, topological superconductor that mediates the s-wave to p-wave 

electronic transport processes. In this figure we have divided the total Andreev conductance by the 

number of transverse 𝑘∥channels to mimic the point tunneling of STM. 
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Fig. S4. Topographic image measured by using superconducting tip. 

(A) Typical topographic image T(r) of UTe2 (0-11) surface measured with a superconducting STM 

tip. (B) Measured T(q), the Fourier transform of T(r), with the surface reciprocal-lattice points 

labelled as dashed circles. 
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Fig. S5. Linecut over impurity adatom cluster. 

(A) Topographic image of UTe2 (0 –1 1) surface measured at T = 280 mK. The high intensity near 

the center is a cluster of impurity atoms. (B) Differential conductance spectra recorded away from 

(red) and upon (black) the adatom cluster. Observed sub-gap features across the cleave surface of 

the UTe2 falls to zero on the adatom cluster. (C) Evolution of the Andreev conductance across the 

impurity cluster measured along the blue arrow indicated in A. The conductance of sub-gap 

features collapses to zero as the STM tip measures across the impurity cluster. 
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Fig. S6. Intensity and evolution of 𝒅𝑰/𝒅𝑽|𝐒𝐈𝐏 rules out Josephson currents. 

(A) Measured evolution of differential Andreev conductance (𝑎(𝑉) ≡ 𝑑𝐼/𝑑𝑉|SIP) spectra as a 

function of decreasing junction resistance R. (B) Comparison between the measured Andreev zero- 

bias conductance 𝑎(0) of Nb/UTe2 and Josephson zero-bias conductance 𝑔(0) of Nb/NbSe2 

versus junction resistance R. The behaviour of the zero-bias conductance in the two effects are 

distinctly different and both the magnitude and R dependence of 𝑎(0) are strongly inconsistent 

with what is expected in the case of Josephson tunneling between Nb and UTe2. 
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Fig. S7. Phase fluctuation effect on tip-induced time-reversal symmetry breaking. 

(A) The calculated TSB density-of-states N(E) when 𝛿𝜙 == rr . (B) The calculated TSB density-of- 
2 

states N(E) when 𝛿𝜙 is averaged with equal probability over the range 0 < 𝛿𝜙 < 𝜋. The fact that 

the zero-bias peak splitting survives under these two extreme limits demonstrates that phase 

fluctuations will not destroy the signature of tip-induced time-reversal symmetry breaking in the 

SIP model. 
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Fig. S8. S3 not consistent with superconductivity induced CDW. 

(A) Topograph of the (0 -1 1) cleave surface. (B) Andreev conductance 𝑎(𝒓,0 mV) map 

demonstrating the real space modulation of the zero-energy peak. It is measured at the same FOV 

as in A. (C) Power spectral density Fourier transform of B. Reciprocal lattice points are indicated 

by orange circles, CDW modulations are indicated by blue circles, and the three new scattering 

wavevectors Si (i = 1,2,3) are labelled by red circles. (D) Linecut from (0, 0) to (0, 1) Å-1 in C. The 

putative internodal scattering S3 wavevector is indicated by a red arrow. The prevenient CDW 

modulation Q3 is indicated by a blue arrow. 


