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ABSTRACT

In a prophet inequality problem, n independent random vari-
ables are presented to a gambler one by one. The gambler decides
when to stop the sequence and obtains the most recent value as
reward. We evaluate a stopping rule by the worst-case ratio be-
tween its expected reward and the expectation of the maximum
variable. In the classic setting, the order is fixed, and the optimal
ratio is known to be 1/2. Three variants of this problem have been
extensively studied: the prophet-secretary model, where variables
arrive in uniformly random order; the free-order model, where the
gambler chooses the arrival order; and the i.i.d. model, where the
distributions are all the same, rendering the arrival order irrelevant.

Most of the literature assumes that distributions are known to
the gambler. Recent work has considered the question of what is
achievable when the gambler has access only to a few samples per
distribution. Surprisingly, in the fixed-order case, a single sample
from each distribution is enough to approximate the optimal ratio,
but this is not the case in any of the three variants. We provide
a unified proof that for all three variants of the problem, a con-
stant number of samples (independent of n) for each distribution is
good enough to approximate the optimal ratios. Prior to our work,
this was known to be the case only in the i.i.d. variant. Previous
works relied on explicitly constructing sample-based algorithms
that match the best possible ratio. Remarkably, the optimal ratios
for the prophet-secretary and the free-order variants with full in-
formation are still unknown. Consequently, our result requires a
significantly different approach than for the classic problem and
the i.i.d. variant, where the optimal ratios and the algorithms that
achieve them are known. We complement our result showing that
our algorithms can be implemented in polynomial time.

A key ingredient in our proof is an existential result based on a
minimax argument, which states that there must exist an algorithm
that attains the optimal ratio and does not rely on the knowledge of
the upper tail of the distributions. A second key ingredient is a re-
fined sample-based version of a decomposition of the instance into
“small” and “large” variables, first introduced by Liu et al. [EC’21].
The universality of our approach opens avenues for generalization
to other sample-based models. Furthermore, we uncover structural
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properties that might help pinpoint the optimal ratios in the full-
information cases.
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1 INTRODUCTION

The Prophet Inequality is a fundamental problem in optimal
stopping theory, in which a gambler is successively proposed with
n realizations of positive independent random variables and has to
pick one of them. The gambler knows in advance the order and the
distribution of each variable but upon observing each realization
must decide irrevocably whether to pick it. A classic result by
Krengel and Sucheston [29] asserts that the gambler can get at least
half of the expected maximum of the variables, and that this is
the best possible guarantee that is independent of the variables’
distributions. Remarkably, Samuel-Cahn [33] proved this can be
achieved using a very simple rule: pick any variable that is above
the median of the distribution of the maximum. In the last decade,
due to its connections with mechanism design and posted price
mechanisms [7, 13, 23], the prophet inequality and its many variants
have become an intensely studied topic and a staple framework to
study online selection problems beyond worst-case analysis.

Three variants of this problem have been extensively studied.
First, the i.i.d. problem, in which variables have i.i.d. distributions.
There, the optimal ratio is f ~ 0.745, where 1/ is the unique solu-
tion of /01 W(iy = 1. The upper bound was shown
in [24, 27], and the lower bound in [12]. Second, the Prophet Secre-
tary problem, in which variables appear in uniformly random order.
Esfandiari et al. [18] initiated the study of this variant, showing
that the gambler can guarantee a factor of 1 — 1/e, and later Ehsani
et al. [17] showed this can be achieved with a single-threshold rule.
Azar et al. [3] slightly improved the 1 — 1/e factor by using a multi-
threshold algorithm, and then Correa et al. [14] proved the optimal
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factor lies in [0.669, 0.732]. The current known best upper bound is
0.724 [4, 20], and it remains one of the most important open prob-
lems in the area to close this gap. Last, in the Free-order problem,
variables are ordered by the gambler. The best-known upper bound
is the i.i.d. model ratio 1/f. Lower bounds have been successively
obtained by [3, 7, 14], and huge progress was made quite recently
by Peng and Tang [31], who established a lower bound of 0.724,
which was later improved to 0.725 [4].

In parallel, an exciting recent line of work has considered the
more realistic case where the gambler does not have full access
to the distributions, but instead observes samples from past data
beforehand. Rubinstein, Wang and Weinberg [32] showed that a
single sample per distribution is enough to achieve the best possible
factor of 1/2 in the classic prophet inequality. Moreover, they prove
that in the i.i.d. case, O(1/£°) are enough to achieve the best possible
guarantee of 0.745 — ¢. Recently, Correa et al. [10] showed that
O(1/¢) are enough to guarantee 0.745 — ¢. Correa et al. [9] showed
that in the prophet secretary problem, one sample per distribution
is enough to guarantee a factor of 0.635.

The focus of our work is on sample-based versions of the Prophet
Secretary problem and of the Free-Order problem. In both models,
our main question is what fraction of the expected maximum can be
guaranteed using a constant (independent of n) number of samples
per distribution.

1.1 Our Result and Technical Highlights

Let Cs be the optimal fraction of the expected maximum that
can be guaranteed in the prophet secretary problem. We prove
that for any ¢ > 0, it is possible to guarantee a Cs — ¢ factor in
the sample-based prophet secretary problem, using no more than
O(1/€>) samples from each distribution. The exact same result holds
for the sample-based free-order problem, with the corresponding
optimal ratio. Our proof is “universal”, in the sense that it deals si-
multaneously with both models, and also works for the i.i.d. model.

Analogous results for the prophet inequality and the i.i.d. prophet
inequality rely on either converting an existing algorithm with the
optimal guarantee into a sample-based one, or on constructing a
sample-based algorithm and showing it matches the best-possible
guarantee. Remarkably, since the best-possible guarantee for the
prophet secretary problem and the free-order problem are unknown,
such approaches cannot be used to show our result, and instead,
we establish new properties of the problem. Moreover, the opti-
mal algorithms for the classic and the i.i.d. variants use no more
than n thresholds, one for each variable. In contrast, in the random
order case, the optimal algorithm uses an exponential number of
thresholds, one for each variable and each possible arrival order.
Similarly, the optimal algorithm for the free-order model has to
choose among the exponentially many arrival orders.

Before describing the main lines of the proof, let us highlight
the difficulty of proving the result with an example in the prophet-
secretary variant. First, consider the instance (X3, ...,Xy), such
that Xi,...,Xp—1 are iid. and equal to n with probability n—2,
and 0 otherwise. The variable X}, is deterministic, equal to V3-1.
Assume that the gambler knows the distributions. This corresponds
to the example in [14], where it is shown that the gambler cannot
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guarantee a ratio better than V3 — 1 + o(1), which proves that
Cs <V3-1

Now, consider the following other problem: given a positive
number a, Xi, ..., X,—1 are i.i.d. and equal to a - n with probability
n~2, and 0 otherwise. The variable Xp is deterministic, equal to
43— 1. The number a is unknown to the gambler, who has access to
a constant number of samples of each distribution. For n large, with
probability at least 1 — O(1/n), the samples of Xj, ..., X,_1 are all
equal to 0, hence uninformative. As a result, this problem is seem-
ingly much harder than the previous one, and one may expect that
the ratio guaranteed by the gambler goes way below V3 — 1, possi-
bly below Cs. Our result shows that it is not the case: the gambler
can still guarantee Cs. Surprisingly, one of the proof steps shows
that he can even guarantee 43 — 1: hence, when a is adversarially
chosen, knowing a or not knowing a does not change the guarantee.

Our proof consists of three main steps, which are, to some extent,
important facts about the prophet-secretary and the free-order
variants by themselves.

Step 1 of our proof is to show that essentially we do not need to
know the upper tails of the distributions in order to achieve the best-
possible guarantee. This alleviates a heavy burden on the design of
sample-based algorithms, as the upper tails potentially contribute
most of the expectation of the maximum, and precisely estimating
them might require an arbitrary high number of samples. The
proof of this fact is based on a minimax argument: if by observing
the upper tails of the distributions we can design an algorithm
that guarantee the optimal constant, by choosing a randomized
algorithm, we can also guarantee the optimal constant against an
adversary that decides how large is the contribution of the upper
tail of each distribution to the expected maximum.

Step 2 relies on the notion of e-small distributions, introduced by
Liu et al. [30]. A variable is e-small if the probability that it is larger
than zero is at most ¢. Liu et al. show that in the prophet secretary
problem, if all variables are e-small, it is possible to guarantee
a fraction of 0.745 of the expected maximum, which is the best
possible guarantee also if the variables are i.i.d. Our result in this
step is to show that if a large proportion of the variables are ¢-small,
then we can pretend those variables are i.i.d. by losing only an ¢
fraction of the expected maximum. The main idea is to show that for
a fixed algorithm, replacing the ¢-small variables with i.i.d. variables
in a way that does not change the distribution of the maximum, we
stop the sequence only earlier, and conditional on stopping with an
e-small variable, its expectation is almost the same as if the ¢-small
variables were i.i.d.

In Step 3, we show how to actually use the samples to construct
the algorithm. We further divide step 3 into step 3(a) and step
3(b). In step 3(a) we show that using constantly many samples
per distribution, we can split the set of variables into two sets,
one containing at least n — O ((1/¢) log(1/¢)) e-small variables.
Because of step 2, we can replace this large set of variables with
i.i.d. variables. In step 3(b), we show that using constantly many
samples per distribution, we can estimate very well the distribution
of the auxiliary i.i.d. variables, as well as the distribution of the
constantly-many variables that are not e-small, except for their
upper tails.
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Finally, notice these three steps alone only guarantee the exis-
tence of a sample-based algorithm. In fact, step 1 uses a minimax
argument that is non-constructive. We complement this by describ-
ing in Step 4 a procedure that finds such an algorithm and runs in
polynomial time. The starting point is a linear program of exponen-
tial size that captures the algorithm from step 1. We show how to
reduce the linear program to one of polynomial size by leveraging
the fact that we are only interested in solving instances where all
variables have supports of polynomial size, and most of them are
iid.

1.2 Further Related Work

The framework of the prophet inequality has been generalized
to a wide variety of online selection problems beyond single se-
lection. Important generalizations include prophet inequalities for
k-selection [6, 25], matroid and matroid intersection [28, 34], match-
ing [1, 22], and online combinatorial auctions [8, 19]. In these gen-
eralizations, the gambler can select multiple variables under some
combinatorial constraint on the selected set, instead of just one.

Pioneered by Azar, Kleinberg and Weinberg [2], several recent
works study the question of what guarantees are possible in prophet
inequality models under limited sample access to the distributions.
Azar et al. [2] showed that there was a connection between this
model and the secretary problem, as many algorithms for the secre-
tary problem can be adapted to obtain constant-factor sample-based
prophet inequalities. Caramanis et al. [5] consider sample-based
greedy algorithms, which are, in a sense, a refinement of the frame-
work of Azar et al [2]. With this framework, they obtained improved
factors for various classes of matroids.

For the case of selecting a matching on a graph, where edges
have random weights, Duetting et al. [15] and Kaplan, Naori and
Raz [26] recently considered the case where the gambler has a
single sample of each edge beforehand and showed constant-factor
approximations in edge-arrival and vertex-arrival models.

For the case of combinatorial auctions, where the gambler is a
seller with a set of items for sale and the random variables cor-
respond to the valuation functions of buyers, Feldman et al. [19]
and Correa et al. [11], besides showing approximation factors for
the full-information case, gave sample-based versions, using poly-
nomially many samples per distribution and assuming bounded
supports.

Gravin et al. [21] recently studied the prophet inequality with less
than one sample per distribution, i.e., we have a sample from each
distribution with probability p independently, in the classic fixed
order version. They showed that this model smoothly interpolates
between a guarantee of 0 if there are no samples, and the guarantee
of 1/2 if we have one sample per distribution. Similarly, Correa et
al. [10] considered a similar question for the i.i.d. variant, where the
gambler has access to n - p/(1 — p) samples of the distribution, and
showed that this model smoothly interpolates between a guarantee
of 1/e and 0.745, which correspond to the optimal guarantees for
the secretary problem and the full-information case.

493

STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

1.3 Prophet Secretary and Free Order: The Case
of Known Distributions

Let n > 1 and k > 1. Consider n independent positive random
variables X1, X2, . . ., X, which distributions are known to the gam-
bler. The problem proceeds as follows:

e A permutation o is drawn uniformly among the set of per-
mutations of {1,...,n},

e At each time t = 1,...,n, the gambler is informed of the
realization of X, (;), as well as o/(¢). He has to choose whether
to pick X (;) or not. If he picks it, this is his final reward,
and otherwise, we go to stage t + 1.

The gambler aims at finding a stopping rule T that maximizes E(Xr).
It is well-known that such a maximum can be realized with an
adaptive threshold algorithm, that is, an algorithm that at each stage
makes a decision based on a threshold depending only on the iden-
tity of the variables that have arrived so far. Formally, an adaptive
threshold algorithm is a mapping 7 : Uj_; {1,..., n}t — Ry, with
the following interpretation: at stage ¢, if variables (1), ..., o(t—1)
have been observed, then the gambler picks variable X, ;) if and
only if X5 () > 7(o(1),...,0(t —1),0(t)). In all this paper, we will
restrict to adaptive threshold algorithms and randomized adaptive
threshold algorithms, which correspond to probability distributions
over adaptive threshold algorithms. To avoid repetition, we will sim-
ply call them “algorithm” and “randomized algorithm”, respectively.

If the gambler knew the realizations of the X; beforehand, he
would be able to secure E(max X;). The main question in this prob-
lem is what is the maximal constant Cs € [0, 1] such that, for any
Fi,..., Fy, there exists a stopping rule T satisfying

E(Xr) 2 Cs - E(max X;).

Though such a constant has not been determined yet, it has been
shown that 0.669 < Cs < 0.724.

The Free-Order problem proceeds similarly, to the difference that
the permutation o is chosen by the gambler, instead of being drawn
uniformly. In this context, a threshold stopping rule can be viewed
as a pair (o, 1), where o is a permutation of [n], and 7 € R}.
The permutation represents the order of the variables, while 7;
represents the threshold used at stage i. Note that thresholds are
assumed to be non-adaptive. This is without loss of generality,
since there is no relevant information that the gambler can learn
online. Indeed, the order is fixed beforehand by the gambler, and
the observed past values are irrelevant, by independence.

We will call algorithm such a stopping rule, and randomized
algorithm a probability distribution over algorithms. We call Cr
the corresponding constant (F stands for “Free”). It is known that
0.725 < Cr £ 0.745.

1.4 Sample-Based Prophet Secretary and
Free-Order: The Case of Unknown
Distributions

Let us modify the Prophet Secretary setting described previously
by assuming that the gambler does not know the distributions
Fi,..., Fy, but instead has access to some number of samples for



STOC ’24, June 24-28, 2024, Vancouver, BC, Canada

each variable. Formally, let Sl.l, el Sf be k independent copies of Xj,
that we will call samples of X;. Before the game starts, the gambler
is informed of the realizations of samples S{, i=1...n, j=1...k
Then, the problem proceeds as in the previous setting: the gambler
is presented with the Xj, ..., X, in random order, and at each step
has to decide whether to stop and pick the variable, or discard it
and continue.

The sample-based Free Order model is defined similarly. A natu-
ral question is then to ask how many samples the gambler needs in
order to achieve the same ratio as in the full information case. Our
main result is the following:

THEOREM 1.1. Assume that k > O(¢™>). In the Prophet Secretary
model, the gambler can achieve an expected payoff at least equal
to (Cs — €)E(max1<i<n X;). Moreover, we can compute a stopping
policy that attains this bound in time polynomial in n.

The same results hold in the Free Order model, replacing Cs by Cr.

The algorithm that achieves such a ratio is randomized. The fact
that randomization is required essentially comes from the fact that
to an extent the sample-based problem is adversarial: from the sam-
ples we can estimate but not exactly calculate the expectation of the
maximum or the expectation of what is obtained by the algorithm,
and we must be prepared for the worst case over the n distributions.

A characteristic feature of our proof is that it treats Prophet
Secretary and Free Order in an almost identical way. To avoid un-
necessary repetition, we will specify which of these two problems
we are addressing only when some case distinction has to be made.

2 PROOF OF OUR RESULT

2.1 Step 1: Upper Tails Distributions Do Not
Need to Be Known

By a slight abuse, we will use the same notation for an algorithm
ALG, and the realized payoff it achieves. We will hence denote
by Ex(ALG) its expected payoff, where X = (Xi,...,Xy) is the
instance under consideration. When there is no ambiguity, we will
drop the index X in the expectation. We will also use notation
X* := maxj<j<p X;. In Step 1, all statements are valid both for
Prophet Secretary and the Free Order models. The notation C*
stands for the optimal ratio of the model under consideration, that
is, Cg for Prophet Secretary, and Cp for Free Order. Fix some o > 0
and ¢ > 0.

The goal of this section is to prove the following proposition:

PropPOSITION 2.1. Let (Fy, ..., Fy) be an instance distribution, and
My, ..., My = 0 such that [1}_; F;(M;) > 1 — a. Assume that the
gambler has access to Mj, . .., My, and to some instance distribution
(Fi,...,F}) satisfying that for all i, for all x < M;,

(1-e)(1-F/(x)) <1-Fi(x) < (1+¢e)(1-F(x)).

Then, there exists an algorithm that depends only on (F}, ..., Fy) such
that, if the realizations come from Fy, . . ., Fy, the gambler guarantees
a ratio C*(1 — a)(1 — ¢)2.

The above proposition means that, in order to secure a C*(1 —
@) (1 — ¢) (hence, losing only an O(« + ¢) factor with respect to C*
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when « and ¢ are small), the gambler only needs to know a “multi-
plicative” e-approximation of each distribution, and furthermore,
does not need to know “upper tails”

We start by proving such a proposition for ¢ = 0, namely:

PRropoOSITION 2.2. Consider an instance (Fy, ..., Fp) and numbers
M, ..., My = 0 such that [, F;(M;) > 1 — a. Assume that the
gambler has access to M, ..., My, and Fi(x), for all i and x < M;.
Then, there exists an algorithm such that when presented with real-
izations of Fy, .. ., Fp, the gambler guarantees a ratio of (1 — a)C*.

The proof of Proposition 2.2 relies on two intermediary results.
The first one is a technical lemma, while the second one is a propo-
sition that is of independent interest for the study of Prophet Sec-
retary and Free Order problems.

LEmMA 2.3. Let (Fy,...,F,) be an instance, and My, ..., M, > 0
such that [17_, Fi(M;) > 1—a. Let ALG be some algorithm such that
for alli € [n], when X; is proposed and X; > M;, then the algorithm
picks X;. For each i € [n], let A; be the event “ALG does not stop
before variable X; appears”, B; be the event “Vj # i,X; < M;”, and
D be the event “3i, X; > M;” Then,

E(1pALG) > (1-a) ) E(1x,>m,Xi)P(Ai|B;)
i=1

Proor. We have

Z E(1{x,>Mm;}nB;ALG)

E(1pALG) >
i=1
n
> E(1{x,>M,}nA;nB;Xi)-
i=1
Moreover,
E(Lix>MynansX) = B(lxsum)XilAi 0 B)P(A; N By)
> E(1yx,>m;)Xi)P(Ai|B)P(B;)
> (1-a)B(1yx,>m,) Xi)P(Ai|B)).

Thus, we get

n
E(1pALG) = (1= @) ) E(1x,>m X P(AilB).
i=1
m]

PROPOSITION 2.4. Let (Y1,...,Y,) be an instance such that all
variables are bounded by some y € R,.. Then, there exists a random-
ized algorithm that guarantees a ratio C* for this instance, and that
in addition satisfies that for alli € {1,...,n}, Py(A;) = C".

Proor. Recall that in the Prophet Secretary problem, we con-
sider adaptive threshold algorithms, that correspond to mappings
from U?:o {1,..., n}j to Ry. In the Free order problem, an algo-
rithm is a pair (o, 7) € £, XRY, where X, is the set of permutations
of {1,...,n}. Because all the ¥; are bounded by y, we can assume
without loss of generality that all thresholds take values in [0, y].
This makes the set of algorithms a compact set, that we denote by
A.
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Define the zero-sum game where Player 1 chooses an algorithm
ALG in A, and Player 2 chooses b € R}. The payoff is

n n
y(ALG, b) = Ey (ALG) + Z biPy (A;) — C* - B(Y*) = C* - Z bi.
i=1 i=1

Player 1’s action set A is compact, Player 2’s action set RY is convex,
and the payoff function is linear in Player 2’s action. In order to
apply Sion’s minmax theorem, we would need Player 1’s action
set to be convex, and the payoff function to be linear in Player 1’s
action. To this aim, we extend the set of actions of Player 1, by
considering M the set of probability measures over A. For y € M
and b € RY, define y*(y, b) as being the expectation of y(ALG, b),
where ALG is distributed according to p. The normal-form zero-
sum game (M, R, y*) then satisfies all the assumptions of Sion’s
theorem, hence has a value o:

v = max inf

(2.1)
pe M beR?

% . *

Y (nb) = blenﬂgz max ¥ (. b).
We claim that v > 0. To this aim, it is enough to show that for any
§ > 0, for any b € R}, there exists an algorithm ALG satisfying
Y(ALG,b) > —6. Given 6 > 0 and b € R, let p € (0, 1] be small
enough so that [1 - (1-p)"~!]|C* Y bi <6/2,np-E(Y") <§/2
and b;/p > ¥ bi +y. Let Zy,...,Zy be iid. Bernoulli random
variables of parameter p. Define variables (Y7,...,Y;) by ¥/ :=
Y + (bi/p) - Z;.
We claim that there exists an algorithm ALG € A that guarantees a
ratio C* for the instance Y’ = (Y/,...,Y}). This fact is not entirely
straightforward, since in A, thresholds are restricted to be below y.
First, the fact that b;/p > X% b; + y implies that b;/p > E(Y"*).
Hence, it is optimal for the gambler to pick any value Y] such that
Z; is active. These values are the only ones that are above y, and
we deduce our claim.

We can couple the execution of ALG on the instance Y’ with
its execution on the instance Y by ignoring the term (b;/p) - Z;
when Z; is active. Notice that on Y/, ALG always stops earlier (or
at the same time) as on Y. Also, notice that if on Y’ it stops earlier,
it must be at an element i for which Z; is active and the algorithm
has not stopped yet on Y. In that case, the execution on Y’ gets
Y; + b;/p, which is at most Y* + b; /p. Therefore, on Y’, ALG gets
at most whatever it gets on Y, plus Y* + b;/p on elements i where
Z; is active and ALG does not stop before i arrives. Since A; is
independent of Z1, . . ., Z,, we get that

S

< i

NgE

SN2

Ey (ALG) Ey (ALG) + - pPy(Ay) +np - E(YY)

= 0
A

1

IA

Ey (ALG) +

1

p-Py(Ap) +6/2.

X
|

Moreover, by definition of ALG, we have

Ey/(ALG) > C'E(Y")
n
> C*E(Y*)+C*(l—p)”‘12b,~
i=1
n
> C*E(Y*)+C*Zbi-5/z

i=1
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It follows that y(ALG, b) > —6. Hence, v > 0.

Consequently, there exists ALG a randomized algorithm such
that for all b € R, y*(ALG,b) > v > 0. Leti € [n] and N > 1.
Consider b € R} defined by b; = N, and bj = 0 for j # i. We have

Y (ALG,b) = Ey(ALG) + NPy (A;) - C* -E(Y*) - C*N > 0,
and taking N to infinity, we deduce that Py (A;) > C*. Hence, the
proposition is proved. m]

We are now ready to prove Proposition 2.2.

PROOF OF PROPOSITION 2.2. Define (Y3, ...,Y,) as the random
variables given by Y; := 1x,<m,X;,i € [n]. By Proposition 2.4,
there exists ALG a randomized algorithm such that Ey (ALG) >
C*-E(Y*) and for all i € [n], Py(A;) > C*. By Lemma 2.3, we have

Ex (ALG) Ex (1qvix,<m}ALG) + E(1{3; x,>M,;} ALG)

v

Ey(ALG) + (1 - @) ) B(1x;>m, X Px (AilBy).
i=1

Since Px (A;j|B;) = Py (A;) = C*, we deduce that

C*E(Y)+C*(1-a)- Z E(1x,>m,Xi)

Ex(ALG) >
i=1
> C'(1-a) -E(Y*)+E(;n[ax] {1Xi>MiXi})]
> C'(1-a)B(X"Y).

We deduce that ALG guarantees a factor C* (1 — ). o

Let us now proceed with the proof of Proposition 2.1. We need
first the following lemma:

LEMMA 2.5. Let ALG be some algorithm. There is an algorithm
ALG" such that for any two instances (Fy, ..., Fy) and (F],...,F})
that satisfy that for all x,

(1-e)(1-F/(x)) <1-Fi(x) < (1+¢)(1-F(x)),
we have that Ex (ALG*) > (1 — ¢)Ex (ALG).

This lemma means that if two instances F and F’ are ¢-close “in
a multiplicative way”, then we can design an algorithm for F’, and
the performance of the algorithm against F will be ¢-close to the
one of the same algorithm against F’. Note that if one considers
instead an “additive” condition, such as |Fi(x) ~F] (x)| < ¢, then
the result would not hold (see [16]).

Proor. We define ALG* by modifying ALG in the following
way: we draw i.i.d. Bernoulli( 1%5) random variables Z1, . .., Z,, and
multiply the i-the realization by Z;. If we run ALG* on realizations

of Fy,. .., Fy, the expectation we get is the same as running ALG
on realizations drawn from Fj, ..., F; defined by (1 - F}) = ll_TZl

for each i. We have that
1-¢ "
1+€(1 - F{(x)) <1-F/(x) <1-F/(x).

Now we argue about the performance of ALG on both instances
by coupling the realizations and the permutation. Since F; statis-
tically dominates F; for every i, we can couple the realizations
X{, X andX;‘, ..., X such that Xl.’ > X for all i with probabil-
ity 1. This means that ALG will always stop later when presented
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with Xf ..
ALG obtains from it a reward that is at least a fraction 11—15 of what
it obtains from a realization X], conditional on reaching it. This

stems from the fact that F} approximately statistically dominates

., X, Finally, conditional on reaching a realization Xl.*,

F!, ie., if we multiply X] by a Bernoulli( ﬁ), then X7 statistically
dominates the result. We conclude by noticing that by definition
Ex (ALG*) = Ex+ (ALG).

]

We are now ready to prove the main result of this section.

Proor oF ProrosITION 2.1. Consider (Fy,...,Fy), (F{,...,F)
and Mj,..., My as defined in the statement of Proposition 2.1.
For each i € [n], define F]" by F/’(x) = F/(x) if x < M;, and
1-F/"(x) = (1-¢)(1 - Fi(x)) if x > M;. We have [, F/'(M;) =
[T, Fi(M;) = 1 - @, and by assumption, the gambler knows M;
and can compute (F;’(x),...,F;/(x)), for all x < M;. Applying
Proposition 2.2 to F”/, there exists an algorithm ALG such that
Ex»(ALG) > C*(1 — a)B(X"*) > C*(1 — a)(1 — )E(X*). Ap-
plying Lemma 2.5 to (Fy,...,F,) and (F{',...,F}), we get that
Ex(ALG) = (1-¢)Ex» (ALG) = (1-a)(1—¢)?Ex (ALG), and the
proposition is proved. ]

2.2 Step 2: Small Variables Can Be Treated as
LLD. Variables

Notice that, in any given instance, by replacing any set of distri-
butions with their geometric mean, the distribution of the maximum
does not change. In this section, we prove Proposition 2.6, which
guarantees that if most random variables are ¢-small, by treating
these variables as i.i.d. realizations of the geometric mean of their
distributions, we do not lose much in the competitive ratio. Recall
that a random variable is e-small if the probability it equals zero is
at least (1 — ¢).

For an instance I = (Fy,...,F,), an arrival order ¢ and an al-
gorithm ALG defined as a sequence of thresholds, we denote by
ALG(I, o) the reward obtained from applying ALG to a sequence
of variables drawn from I with arrival order o, i.e., to a sequence
Xo(1)s -5 Xo(n)s where X; ~ Fy,..., X, ~ Fy independently. We
also denote by I the instance obtained by reordering I according
to o.

PROPOSITION 2.6. Given an instance I = (Fy, .
let G = ([1;, F)'/s and define a new instance
I' = (G,G,...,G,Fsy1,Fsy2,...,Fn). If s > n/2, and, for a given
& > 1/+/n, all distributions F; withi < s are e-small, then for any de-
terministic algorithm ALG (a sequence of thresholds) and permutation
o,

..,Fy) ands € [n],

E(ALG(IP, cr)) > ]E(ALG(I’, 0')) ~0(e) -E (1?%}(’1&) ,

where p is an independent random permutation of [n] that restricted
to the first s indices is uniformly random, and for indices i > s equals
the identity.

This proposition implies that it is enough to design an algorithm
for the case where the e-small variables are i.i.d. If the e-small
variables arrive in uniformly random order, then we obtain almost
the same expected reward, even if we condition on the arrivals of
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the large variables. Thus, if the expected reward of the algorithm is
a y fraction of the expected maximum when the e-small variables
are i.i.d., its expected reward is at least a y — O(¢) fraction of the
expected maximum when they are not.

Proposition 2.6 is stated for deterministic algorithms and permu-
tations to make it easier to read. However, note that by linearity of
expectation, the inequality also holds for a randomized algorithm
ALG and a random permutation o (possibly non-uniform), even in
the case where ALG is arbitrarily correlated with o. This means the
proposition can be applied to any of the three variants.

Before giving the proof, we restate a useful result from [14]
using our notation and prove two intermediate lemmas. Intuitively,
Lemma 2.7 says that on I’, the algorithm stops earlier than on
I. Next, Lemma 2.8 states that the expected reward we get from
stopping with a uniformly random e-small variable is at least a
(1 — ¢) fraction of the expected reward we get from a variable
drawn from the geometric mean. These two lemmas are the main
ingredients of the proof of the proposition. Lastly, Lemma 2.9 is a
technical result about the geometric mean that allows us to apply
Lemma 2.7 even if we condition on the arrival of one of the e-small
variables.

LEMMA 2.7. [14, Lemma 4.3] Given distributions Fy, ..., Fs and
thresholds 11, ..., 75, define G = (15, Fi)l/s. Ifo : [s] = [s]
is a uniformly random permutation and X; ~ F; for all i € [s]
independently, then for every k € [s],

k
P(Xs(i) < 7 foralli < k) > I_[ G(1).

i=1

LEMMA 2.8. Given e-small distributions Fy, . . ., Fs and a threshold
7, let Xi,...,Xs ~ Fi ..., Fs independently, and Y ~ (3, F)l/s.
We have that

1 S
S B Lxse) 2 (1) - E(Y - Tys).
i=1

PrRoOOF. We can rewrite the left-hand side of the inequality as

SN EX L)

$ i=1

=< ) (r(l -rm)+ [a —Fi(x>>dx)

Iy a-R@+ [ L Ya-Red @)
i=1 4 i=1
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Now, from the fact that for y € [1 — ¢ 1] it holds that (1 — y) <
—log(y) < (1+¢) - (1-y), we have that for all x > 0,

1N 1 1%
¢ LR 2 g (), legFi()

i=1

s 1/s

1%5(— 1og(£[ Fi(x)) )
1 s 1/s
m(l— (gFi(x)) )

s 1/s
(1—5)(1—(HF1'(3€)) )
i=1

Replacing this back in Equation (2.2), we obtain that

[\

\2

\%

l S
5 D UE(X - 1x,50)
i=1

s 1/s
2(1—5)-1-(1—(]—[3@)) )
i=1
. s 1/s
+(1-¢)- 1- Fi(x) dx
[ (1] )

=(1-¢) - E(Y-1yso),
which concludes the proof of the lemma. O

LEMMA 2.9. Ifn > 1/52 ands > n/2, then
forallxy,...xs € [0,1], it holds that

o1 \1/(s=1) S 1/s
(nxl-) >(1-¢)- (nxi) - 0(e/n?).

i=1 i=1
ProoF. We have that since 15 — 1 = ﬁ,
s—1 1/(s—-1) s 1/(s-1)
i=1 i=1

»

1 1,1
s17sts
=1

s 1/s 1/(s=1) s 1/s
i=1 i=1
To conclude, notice that if

s 1/s\1/(s=1)
((I_[ xi) ) <(1-e),

i=1
then
s 1/s
( x,-) <(1-et<(1- 5)"/2_1,
i=1
which is in O(e/n?). !
o

!t is of course much smaller, but this bound will be sufficient for the proof.
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PROOF OF PROPOSITION 2.6. Denote by 71, ..., 7, the sequence
of thresholds that define ALG. Let (X, . . . X5) be a sequence drawn
from (Fy, ..., F,) and (Y3,. .., Y,) asequence drawn from the vector
of distributions (G, ..., G, Fst1, . .., Fy), all independent. By linear-
ity of expectation, we have that

E(ALG(Ip, 0))

n
= 2B (X  Lixpiom) Moo <rpviciy) - (23
i=1
We now analyze separately the terms of this sum that correspond
to e-small variables, i.e., for which o(i) < s and the terms that
correspond to large variables, i.e., where o (i) > s. For i such that
o(i) <s,

E (Xp(a(m L, oy 2a} ]1{Xp(a<,->><r,-,w<i})
S

1 . .
=3 Z E (Xi/ Lixy o) WX o) <o Vi<i} ‘P(U(l)) = l/)

i’

—

= ZS_JE(XI" ']l{Xi/ZTi})

i
i’=1

@ | =

-P(xp<[,(j)) <TVj< i‘p(o(i)) - 1) (2.4)

Now;, splitting again into small and large variables and applying
Lemma 2.7, we have that

P (Xp(a(j)) <7, Vj< i‘p(a(i)) = i/)
- P(X(,(j) <t Vji<i:io(j) > s)
.P(Xp((,(j)) <tVj<i:io() < s|p(a(i)) - i')

2P (Xo() <. Vj <i:0() > )

1/(s-1)
I_[ rl Fj (1))
Jj<io(j)<s \J'<s:j'#1
= (Xo() < Vi <iio()) > 5)

1/(s—1)
) 1_[ 1_[ Fy ()
J'Ssij'#\ j<i:o(j)<s

ZP(XO.(j) <71;,Vj< i:o0(j) >S)

o1 11

J'<s \j<iio(j)<s

1/s
Fj'(Tj))) ~0(¢e/n?)
—(1-¢)-P (Y(,(j) <1 V)< i) —0(e/n?),

where in the last inequality we applied Lemma 2.9, and in the
last equality we used the definition of Y and p. Replacing the last
inequality back in Equation (2.4), and then applying Lemma 2.8 we
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have that if o(i) < s,

E (XP("(”) Loy 2a} ]I{Xp<a(j>><fj»vi<i})
> ((1 —-¢)-P (Ya(j) <r15,Vj< i) - O(E/nz))

S

: %ZE(XI-» : Il{x,»,Zn})

i'=1
> (1-2¢) ~P(Y0(j) <7, Vj< i)
‘E (Yo(i) : H{YG(,-)ZT,-}) -0(¢/n*) -E (Ya(i)) :

Now, consider i such that (i) > s. By the definition of p, p(o(i)) =
(i), and by the definition of Y, we have that Y, (;) ~ X;(;). There-
fore,

E (XP(U(i)) ’ IL{Xp(a(i))ZTi} ’ ]l{Xp(o(j))<Tjsvj<i})
=E (Xo(z) : ]I{Xa(i)ZTi} : IL{Xp(c(j))<’l'j,\7/j<i})
=E (Yam 'H{Ya(i)zn}) P (Xp<a<j>> <7 V) < i)~ (2.5)

Like before, we split j into small and large variables, and then apply
Lemma 2.7 to obtain that

P(Xp(a(j)) < Tj,Vj < i)
ZP(XU(j) <r,Vj<i: o(j) > S)
'P(Xp(a(j)) <r,Vj<i: o(j) < S)
ZP(XC,(J-) <r1,Vj<i:o(j) >S)- 1_[ G(rj)
j<i:o(j)<s
= P(Ya(j) <7, Vj< i).
Replacing this back into Equation (2.5), we have that if o (i) > s,
E (XP(G(i)) ' IL{Xp(cr(mZTi} ) l{Xp(a(j))<Tj,Vj<i})
2 E(Ya(i) 'ﬂ{Yomzm) P (Yam <7Vj< i)-
Putting everything back in Equation (2.3), we get that

E(ALG(IP, 0'))
> (1-2¢)- ZH:E (Yot - Ly ze ) - B (Yo < Vi <)
i=1
~ O(e/n?) iE(Yi)
i=1

> E(ALG(I’, 0')) —0(e)-E (lrgiasxn Y,») ‘

This concludes the proof of the proposition, as max;<j<p X; and

maxi<i<n Y; are identically distributed. |

2.3 Step 3: Sample-Based Approximation of the
Distributions

Equipped with the machinery developed in the first two steps,
let us go back to our main goal: proving Theorem 1.1. In this step,
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we focus on proving that k > O(¢7>) is enough to build an algo-
rithm that guarantees a ratio C* — ¢. The fact that it can found in
polynomial time in n will be done in the last step.

Recall that the gambler faces an instance Xj, ..., X,, with un-
known distributions Fj, ..., Fy, and has access to samples S{, i€
[n],j € [k]. We fix some ¢ > 0. The first sub-step is to detect
variables that are not e-small. The second sub-step is to estimate
distributions of an auxiliary instance where all e-small variables
have been replaced by an i.i.d. distribution, and apply Proposition
2.1. The proof then stems from Proposition 2.6.

Throughout this step, we assume the distributions are all abso-
lutely continuous. If this is not the case, we can always approximate
the distributions with absolutely continuous distributions. One way
to do this is to first draw a single sample of X* and then add i.i.d.
noise drawn from a Uniform|0, §] to every subsequent sample and
every realization, where § = £2 - X*. By Markov’s inequality, the
probability that X* > E(X™)/¢ is at most ¢. Therefore, with prob-
ability at least (1 — ¢), the extra noise is only an ¢ fraction of the
expected maximum.

2.3.1 Classification of Variables.
Let T* be such that [][L, Fi(T*) = ¢. We show in the following
lemma that we can basically ignore all values below T*.

Lemma 2.10. If[1, Fi(T*) = ¢, then

max Xi . 1{T*<Xi}) .

1<i<n 1<i<n

(l—s)-E(max Xi) SE(

Proor. We split the expectation into values below T* and values
above T*.

= o ) =2 gt o2 g 1

max X;

:E(
1<i<n

o8 max X1rcxa

max X; < T*) 'P(max Xi < T*)
1<i<n 1<i<n

<e¢- ; P . .
<8 {mas ) + 5 oy -t

Rearranging the terms concludes the proof of the lemma. O

Using ki samples of each distribution, we get k; samples of the
distribution of the maximum, i.e., of H?:l F;. We estimate T* from
below with the [k; - ¢ (1 — ¢)]-th smallest of the k; samples of the
maximum and call this quantity T. The following lemma establishes
how large we have to set k; so that T is a good estimate of T*.

LEMMA 2.11. Ifk; > 6(1/¢)% - log(1/e), then with probability at
least 1 — ¢,

(-8 <R <e
i=1

Proor. Denote by T;ow the value such that H?:l Fi(Tiow) =
(1 - ¢)? - &. The statement of the lemma is equivalent to

P(Tow <T<T*)>1-¢
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Let M;ow be the number of samples of the maximum below Ty ow,
and M* be the number of samples below T*. We have that

P(Tow < T £ T*) = P(Miow < lk1e(1 —¢)] < M¥)
> 1—-P(Mpow > k1e(1 —¢))
—P(M* < k1e(1 - ¢)).
Since E(Myow) = k1e(1 — €)% and E(M*) = ky¢, Chernoff bounds
imply that

P(Tow <T<T")>1- e—szkle/(2+€) _ e—€2k18/2

v

1- 252,

[\

which for small ¢ is at least 1 — &. |

Let L* = {i: 1 — F;(T") > ¢}. We draw k; fresh samples of each
distribution, and for each i = 1,...,n denote as I:“,- the empirical
distribution that results from them. Let L = {i : 1-F;(T) > (1—¢)-¢},
and denote by A the event associated with Lemma 2.11.

LEmMA 2.12. Ifky > 6(1/¢)3 - log(1/¢), then conditional on event
A, with probability at least (1 — ¢),

L* C L, and|L| < O((1/¢)log(1/e)).

ProoF. We first bound |L*|. By the definition of L*, F;(T*) < 1—¢
for all i € L*. Therefore,

n
¢ = n Fi(T*) <
i=1

Taking the logarithm on both sides and rearranging the terms, we
obtain that

]_[ Fi(T*) < (1-¢)lE"1

iel*

(2.6)

| < —o8t/e) < (1/e)log(1/e). 2.7)

log(1/(1- o)

We show now that, conditional on A, L* C L with probability
at least 1 — ¢/2. Take i € L* and define the random variable Y; as
the number of samples of F; that are larger than T*. Conditional on
A, T < T%, so the definition of L implies that if Y; > ky - (1 —¢) - ¢,
then i € L. But since i € L*, we have that E(Y;) > k3 - ¢. A simple
Chernoff bound implies that

P(Yi<ky (1—¢)-¢) <e € kel2 <3,

Taking a union bound over the elements of L*, we conclude that
L* C L with probability at least 1 — e2log(1/e) = 1 — ¢/2.

Denote by T;ow the value such that H?:1 Fi(Thow) = (1—¢)2 - ¢.
Notice that the event A is exactly the event that Tyow < T < T".
Define the set Liow = {i : 1 — Fi(Tiow) > (1 — ¢) - £}. The event
A implies that L C L;ow, so to conclude it is enough to bound
|Liow|. Denote by Z; the number of samples from F;, out of the
ks, that are larger than T;ow. We have that i € Loy if and only if
Z;i > kg - (1 —¢) - e. Therefore,

1 n
|Liow| < b (-0 -¢ ;Zi.

Notice that

E

ZH:Z,-) = kg . i(l - Fi(TLOW))‘
i=1

i=1
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From the definition of T, ow we have that

1
l —_— =
°g((1—e>2 ~s)
Thus, a Chernoff bound implies that

n n

> —log(Fi(Tiow)) = )" (1= Fi(Tyow)).
i=1

i=1

P

n
ZZ" > 6k; -log(l/f)) < e Phlog(1/e)/(242) < ¢ /p
i=1

Therefore, |Liow| < O((1/¢)log(1/e)) with probability at least
1-¢/2. o

2.3.2 Estimating the Auxiliary Instance.

The previous sub-step tells us that for ¢ small enough, by drawing
no more than ¢~* samples, one can construct a (random) number
T and a (random) subset L C [n] such that with probability higher
than 1 — ¢, the following holds:

(1) (1-¢)-E(maxi<i<nX;) <E (maX1gi5nXi : 11{T<x,-})
@) Miefn) Fi(T) = (1-#)%¢
@) L] <e?
(4) Forallie S:=[n]\L,1-F;(T) <¢
Hence, up to considering Y; := X;1x,>7, one can assume without
loss of generality that all variables X, i € S are ¢-small, and that
moreover, for all x, [T;e[n) Fi(x) = (1 - ¢)%e. Using £ =% more sam-
ples for each variable, an analogous argument as in Lemma 2.11

allows to construct a random number M satisfying that with proba-
bility at least 1 — &, (1 — &) < [[;es Fi(M) < 1—e.

Let H := [];cs Fi be the cumulative distribution of max;es Xj,
1

and G := HF. Let H be the empirical cumulative distribution of
max;es X;, obtained by considering another independent set of
k > £ samples of each X;. Let G := A1,

ProposITION 2.13. The following statement holds with probability
larger than 1 —¢: forallx < M,

(1-6)(1-G(x)) £1-G(x) < (1+6)(1-G(x)).

Proor. By the DKW inequality, with probability larger than
1-2k72 > 1—¢, we have
1/2
) < é%/4.

Conditional on this event, since H(x) > [;e[n) Fi(x) = (1 - €)2e,
the above inequality implies H(x) > & — £2/4. By the Mean Value
theorem, we have for all x,

. In(k)
Al < (5

G(x) - G| < sup s |- A
te[H(x),H(x)]
< max(H(x)"LHx)™HISI7H|H - |,
< ¢s712.

L

Take x < M. Then, H(x) < H(M) < 1—¢,hence G(x) < (1-¢) I <
1-¢|S|71, and G(x) < 1 —¢|S|~'/2. We deduce that

1-G(x) 1-G(x) + €257 /2
(1+)(1-G(x)),

<

IN
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and similarly,
1-G(x) = (1-¢)(1-G(x)).
Hence,
(1-6)(1-G6(x) <1-G(x) < (1+6)(1-G(x))

O

Let us now estimate the variables in L, using another set of
> samples for each variable, and considering the empirical dis-
tributions F;, i € L. Because |L| < &2, the multivariate DKW
inequality gives that with probability higher than 1 —¢, foralli € L,
e — F,~||oo < &4, Moreover, another set of ¢~ fresh samples al-
lows to compute M;, i € L such that with probability 1 — ¢, for all
ieL, (1-¢%)3 < Fi(M;) <1- ¢ We deduce that

(1-e)(1-Fi(x)) £1-Fi(x) < (1+¢)(1 - Fi(x)).

Since G(M)IS! [T, Fi(M;) = (1-6)3(1 -3 > 1-0(e), we
are in position to apply Proposition 2.1 to the instance composed
with variables F;,i € L and |S| i.i.d. copies of G. This gives the
existence of an algorithm that guarantees a factor C* — O(¢). By
Proposition 2.6, the same algorithm guarantees a factor C* — O(¢)
when presented with realizations of Fy, .. ., Fy, and the first part of
Theorem 1.1 is proved.

=

2.4 Step 4: Polynomial-Time Computation

In the previous sections, we showed that there is a strategy that
guarantees a C*-approximation using a constant number of samples
per distribution. In this section, we complement our main result,
proving the following proposition that states that we can compute
such a strategy in polynomial time.

PROPOSITION 2.14. For an instance (G,G,...,G, Fsi1,..., Fn), if
(n —s) is bounded by a constant, and the size of the support of each
distribution is polynomial in n, then we can find in polynomial time
in n an algorithm with expected reward at least C* - E(max;¢ ] Xi)
and such that for alli € [n], P(A;) > C*, where A; is the event that
the algorithm observes X; before stopping.

Notice that such an algorithm is guaranteed to exist by Proposi-
tion 2.4. Notice also that the instance for which we need to compute
an algorithm satisfies the assumptions of Proposition 2.14, as we
can replace all e-small variables with i.i.d. random variables, and
we use the empirical distributions, which are supported on the
polynomially many samples.

We first introduce linear program formulations that capture
the algorithms satisfying the conditions of the proposition for the
prophet-secretary and the free-order variants in the case where all
distributions have finite support. However, these linear programs
have exponential size, as we need to model every possible arrival
order. Using the assumption that almost all variables are i.i.d., we
can reduce the state space and obtain linear programs of polynomial
size.

For each i € [n], let V; be a set of indices, {x;; : j € V;} the
support of distribution F;, and p; j the probability that a variable
drawn from F; equals x; j. The following linear program captures
the algorithm guaranteed to exist by Proposition 2.4 for the prophet-
secretary variant.
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(PSLP) max &
a.p.y.6

s.t.

1
d < . Vi
B Sg[nZ]::iesaS ISI i€lnl

o E(lrélari(]Xl) Z ZZIBIJS Xi,j
Sc[n] i€S jeV;

afp) =1

*s = Z Z Yij.su{i}s VS C [n]

ie[n\S jeV;

1
g p YSSInhiesjev;

as, Bij,s: vi j,s: 6 € [0,1],

In this linear program, the variable ¢ is the guarantee of the al-
gorithm. Thus, by Proposition 2.4, § > C*. For S € [n], during
the execution of the algorithm, we say it is in state S if it has not
stopped yet and the set of variables it has not observed yet is ex-
actly S. The variable g is the probability that the algorithm reaches
state S at some point in its execution. For i € S and j € V;, the
variable f; j s is the probability that the algorithm reaches state
S, then it observes variable i with realization x; j, and stops. The
variable y; ; s is the probability that the algorithm reaches the same
situation but does not stop. The first two constraints are the con-
ditions of Proposition 2.4. The third, fourth, and fifth constraints
ensure that the variables are consistent with their interpretations
as probabilities.

For the free-order variant, we can write an analogous linear
program. We denote by X, the set of permutations of [n].

Bij.s +Vijs =as

VS C [n],i€S,jeV.

(FOLP) max &
a,p.y.0
s.t.
5< ) Agi(iye Vi € [n]
oEX,

2 2 D Puie %o,

6-E (max Xi) <
o€%, ic[n] j€Va)

i€[n]

Z ae =1

o€,

Qjoc = Z Yi-1,j,0>

JE€Vs(i-1)
Bijjo * Yijo = %o Po(i),j»
@i, Bij,o» Virj,on 0 € [0,1],

The variables of this program have an analogous interpretation as
in the previous one. The only difference is that here, the algorithm
first chooses an arrival order o € 3, and then follows that order.
Therefore, the state space is given by the pair (i, o), which means
that the algorithm chose the order given by o, and observes the
i-th variable before stopping.

With the given interpretation of the variables of the linear pro-
grams, it is not hard to see that every algorithm has a corresponding
feasible solution, and every feasible solution has a corresponding

Vi>2,0€eX,

Vo € Xp,i€ [n],j € Vo
Yo € Zp,i € [n],j € Vg(y)-
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algorithm. We now must argue that when all but a constant number
of distributions are identical, we can reduce the state space to have
polynomial support.

If the first s distributions have the same distribution, that means
that V; = Vi for every i,i’ < s, and that for every j € V;, x; j = xy ;
and p; j = py_ j. This implies that the linear programs are symmetric
on indices i < s, and therefore, since we can relabel the variables
and then average, there must be a symmetric solution. Thus, we
can write a program that contains only symmetric solutions by
replacing all “repeated” variables with a single one.

In the following reduced linear program, we take as state space
the subsets of the multiset U that contains [n] \ [s] and s copies of
1. We denote as mg(i) the multiplicity of i in S, and by Supp(S) the
set of distinct elements in S. Notice that if (n — s) is bounded by a
constant, then the number of different subsets of U is bounded by a
polynomial in n, so we obtain a linear program of polynomial size.

(PSLP) max 4
a.py.0
s.t.
1 )
5ST' as’m|ss(|l) VieU
my (1 ScU:i€Supp(S)
5- E(max Xz) Z Z Z ,Bz,]S Xi,j
i€[n] SCU ieSupp(S) jeV;
ay =1
as = Z Yijsip  VSEU
ieSupp(U\S) j€Vi
ms (i) j ‘
Bijs+vijs=as- Is| P VS U.i€Supp(S).j € Vi

as, Bijs vi,j,s- 6 € [0,1], VS C U,i € Supp(S),j € V;.

Similarly, to obtain a reduced version of (FOLP), we take as
state space the set of orderings of U, that is, the set of functions
o : [n] — Supp(U) such that |c71(i)| = my (i) for all i € Supp(U).

We denote this set as Zg7. Notice that X7 has polynomially many
elements.

(rFOLP) max o
a,p.y.0
s.t.
1
< —( are, Vi€ Supp(U)
my (i) o€Xy te[nl:o(t)=i
§-E (max X,) Z Z Z Bijio - Xo(i),j
ie[n] o€y i€[n] j€Vs(i)
Z ae =1
oeEXy
Qg = Z Yi-1,j.05 Vi>20€ely
J€Ve(i-1)

Bijo +Vijo = %o Poi),j> Yo € Zy,i€ [n],j € Vs

Qi ﬁi’j,o', yi,j,g,é € [0,1], VYoeX,i€(n],je Va(i)-
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3 CONCLUDING REMARKS

The proof adapts straightforwardly to the i.i.d. model, showing
that O(1/¢%) samples are good enough to guarantee the constant
0.745 — ¢. Even more, in a non-i.i.d. instance, if all variables are
e-small, O(1/¢°) samples are also enough to guarantee the constant
0.745 — ¢ in the prophet-secretary variant. This comes from the fact
that the optimal guarantee for this type of instances is 0.745 — ¢ in
the full-information case, which was proved by Liu et al. [30], but
is also a consequence of Step 2. From here, it is easy to conclude the
claim that our approach works for the i.i.d. case: when we truncate
the distributions in Step 3, at most a constant number of them can
be large, which implies that they are all e-small (because they are
iid.).

Another exciting direction is to modify Step 1 to apply it to other
online selection models. The fact that the same technique applies
to different well-known models gives promising perspectives on
extending our result to multi-choice models, such as matroids, or
combinatorial auctions.

Lastly, a surprising observation is that a result like ours is im-
possible if we want to approximate the optimal online algorithm.
Consider the following example: all variables are 0 with probability
(1 — ¢) and 1/¢ with probability ¢, except for one, which is 0 with
probability 1 —1/e”, and n - e” with probability 1/e™. Almost all the
value comes from this last variable, so the optimal online algorithm
will wait to see it before stopping, but even a polynomial number
of samples is not enough to identify it.
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