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ABSTRACT

In a prophet inequality problem, = independent random vari-

ables are presented to a gambler one by one. The gambler decides

when to stop the sequence and obtains the most recent value as

reward. We evaluate a stopping rule by the worst-case ratio be-

tween its expected reward and the expectation of the maximum

variable. In the classic setting, the order is �xed, and the optimal

ratio is known to be 1/2. Three variants of this problem have been

extensively studied: the prophet-secretary model, where variables

arrive in uniformly random order; the free-order model, where the

gambler chooses the arrival order; and the i.i.d. model, where the

distributions are all the same, rendering the arrival order irrelevant.

Most of the literature assumes that distributions are known to

the gambler. Recent work has considered the question of what is

achievable when the gambler has access only to a few samples per

distribution. Surprisingly, in the �xed-order case, a single sample

from each distribution is enough to approximate the optimal ratio,

but this is not the case in any of the three variants. We provide

a uni�ed proof that for all three variants of the problem, a con-

stant number of samples (independent of =) for each distribution is

good enough to approximate the optimal ratios. Prior to our work,

this was known to be the case only in the i.i.d. variant. Previous

works relied on explicitly constructing sample-based algorithms

that match the best possible ratio. Remarkably, the optimal ratios

for the prophet-secretary and the free-order variants with full in-

formation are still unknown. Consequently, our result requires a

signi�cantly di�erent approach than for the classic problem and

the i.i.d. variant, where the optimal ratios and the algorithms that

achieve them are known. We complement our result showing that

our algorithms can be implemented in polynomial time.

A key ingredient in our proof is an existential result based on a

minimax argument, which states that there must exist an algorithm

that attains the optimal ratio and does not rely on the knowledge of

the upper tail of the distributions. A second key ingredient is a re-

�ned sample-based version of a decomposition of the instance into

“small" and “large" variables, �rst introduced by Liu et al. [EC’21].

The universality of our approach opens avenues for generalization

to other sample-based models. Furthermore, we uncover structural
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properties that might help pinpoint the optimal ratios in the full-

information cases.

CCS CONCEPTS

• Theory of computation → Online algorithms; Algorithmic

game theory and mechanism design; Sample complexity and gen-

eralization bounds.

KEYWORDS

prophet inequality, prophet secretary, sample-based algorithms,

optimal stopping, sample complexity

ACM Reference Format:

Andrés Cristi and Bruno Ziliotto. 2024. Prophet Inequalities Require Only

a Constant Number of Samples. In Proceedings of the 56th Annual ACM

Symposium on Theory of Computing (STOC ’24), June 24–28, 2024, Vancouver,

BC, Canada. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/

3618260.3649773

1 INTRODUCTION

The Prophet Inequality is a fundamental problem in optimal

stopping theory, in which a gambler is successively proposed with

= realizations of positive independent random variables and has to

pick one of them. The gambler knows in advance the order and the

distribution of each variable but upon observing each realization

must decide irrevocably whether to pick it. A classic result by

Krengel and Sucheston [29] asserts that the gambler can get at least

half of the expected maximum of the variables, and that this is

the best possible guarantee that is independent of the variables’

distributions. Remarkably, Samuel-Cahn [33] proved this can be

achieved using a very simple rule: pick any variable that is above

the median of the distribution of the maximum. In the last decade,

due to its connections with mechanism design and posted price

mechanisms [7, 13, 23], the prophet inequality and its many variants

have become an intensely studied topic and a staple framework to

study online selection problems beyond worst-case analysis.

Three variants of this problem have been extensively studied.

First, the i.i.d. problem, in which variables have i.i.d. distributions.

There, the optimal ratio is V ≃ 0.745, where 1/V is the unique solu-

tion of
∫ 1

0
1

~ (1−ln(~) )+(V−1) 3~ = 1. The upper bound was shown

in [24, 27], and the lower bound in [12]. Second, the Prophet Secre-

tary problem, in which variables appear in uniformly random order.

Esfandiari et al. [18] initiated the study of this variant, showing

that the gambler can guarantee a factor of 1 − 1/4 , and later Ehsani

et al. [17] showed this can be achieved with a single-threshold rule.

Azar et al. [3] slightly improved the 1 − 1/4 factor by using a multi-

threshold algorithm, and then Correa et al. [14] proved the optimal
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factor lies in [0.669, 0.732]. The current known best upper bound is

0.724 [4, 20], and it remains one of the most important open prob-

lems in the area to close this gap. Last, in the Free-order problem,

variables are ordered by the gambler. The best-known upper bound

is the i.i.d. model ratio 1/V . Lower bounds have been successively

obtained by [3, 7, 14], and huge progress was made quite recently

by Peng and Tang [31], who established a lower bound of 0.724,

which was later improved to 0.725 [4].

In parallel, an exciting recent line of work has considered the

more realistic case where the gambler does not have full access

to the distributions, but instead observes samples from past data

beforehand. Rubinstein, Wang and Weinberg [32] showed that a

single sample per distribution is enough to achieve the best possible

factor of 1/2 in the classic prophet inequality. Moreover, they prove

that in the i.i.d. case,$ (1/Y6) are enough to achieve the best possible
guarantee of 0.745 − Y. Recently, Correa et al. [10] showed that

$ (1/Y) are enough to guarantee 0.745 − Y. Correa et al. [9] showed

that in the prophet secretary problem, one sample per distribution

is enough to guarantee a factor of 0.635.

The focus of our work is on sample-based versions of the Prophet

Secretary problem and of the Free-Order problem. In both models,

our main question is what fraction of the expected maximum can be

guaranteed using a constant (independent of =) number of samples

per distribution.

1.1 Our Result and Technical Highlights

Let �( be the optimal fraction of the expected maximum that

can be guaranteed in the prophet secretary problem. We prove

that for any Y > 0, it is possible to guarantee a �( − Y factor in

the sample-based prophet secretary problem, using no more than

$ (1/Y5) samples from each distribution. The exact same result holds

for the sample-based free-order problem, with the corresponding

optimal ratio. Our proof is “universal”, in the sense that it deals si-

multaneously with both models, and also works for the i.i.d. model.

Analogous results for the prophet inequality and the i.i.d. prophet

inequality rely on either converting an existing algorithm with the

optimal guarantee into a sample-based one, or on constructing a

sample-based algorithm and showing it matches the best-possible

guarantee. Remarkably, since the best-possible guarantee for the

prophet secretary problem and the free-order problem are unknown,

such approaches cannot be used to show our result, and instead,

we establish new properties of the problem. Moreover, the opti-

mal algorithms for the classic and the i.i.d. variants use no more

than = thresholds, one for each variable. In contrast, in the random

order case, the optimal algorithm uses an exponential number of

thresholds, one for each variable and each possible arrival order.

Similarly, the optimal algorithm for the free-order model has to

choose among the exponentially many arrival orders.

Before describing the main lines of the proof, let us highlight

the di�culty of proving the result with an example in the prophet-

secretary variant. First, consider the instance (-1, . . . , -=), such
that -1, . . . , -=−1 are i.i.d. and equal to = with probability =−2,
and 0 otherwise. The variable -= is deterministic, equal to

√
3 − 1.

Assume that the gambler knows the distributions. This corresponds

to the example in [14], where it is shown that the gambler cannot

guarantee a ratio better than
√
3 − 1 + > (1), which proves that

�( ≤
√
3 − 1.

Now, consider the following other problem: given a positive

number 0, -1, . . . , -=−1 are i.i.d. and equal to 0 · = with probability

=−2, and 0 otherwise. The variable -= is deterministic, equal to√
3−1. The number 0 is unknown to the gambler, who has access to

a constant number of samples of each distribution. For = large, with

probability at least 1 −$ (1/=), the samples of -1, . . . , -=−1 are all
equal to 0, hence uninformative. As a result, this problem is seem-

ingly much harder than the previous one, and one may expect that

the ratio guaranteed by the gambler goes way below
√
3 − 1, possi-

bly below �( . Our result shows that it is not the case: the gambler

can still guarantee �( . Surprisingly, one of the proof steps shows

that he can even guarantee
√
3 − 1: hence, when 0 is adversarially

chosen, knowing 0 or not knowing 0 does not change the guarantee.

Our proof consists of three main steps, which are, to some extent,

important facts about the prophet-secretary and the free-order

variants by themselves.

Step 1 of our proof is to show that essentially we do not need to

know the upper tails of the distributions in order to achieve the best-

possible guarantee. This alleviates a heavy burden on the design of

sample-based algorithms, as the upper tails potentially contribute

most of the expectation of the maximum, and precisely estimating

them might require an arbitrary high number of samples. The

proof of this fact is based on a minimax argument: if by observing

the upper tails of the distributions we can design an algorithm

that guarantee the optimal constant, by choosing a randomized

algorithm, we can also guarantee the optimal constant against an

adversary that decides how large is the contribution of the upper

tail of each distribution to the expected maximum.

Step 2 relies on the notion of Y-small distributions, introduced by

Liu et al. [30]. A variable is Y-small if the probability that it is larger

than zero is at most Y. Liu et al. show that in the prophet secretary

problem, if all variables are Y-small, it is possible to guarantee

a fraction of 0.745 of the expected maximum, which is the best

possible guarantee also if the variables are i.i.d. Our result in this

step is to show that if a large proportion of the variables are Y-small,

then we can pretend those variables are i.i.d. by losing only an Y

fraction of the expected maximum. The main idea is to show that for

a �xed algorithm, replacing the Y-small variables with i.i.d. variables

in a way that does not change the distribution of the maximum, we

stop the sequence only earlier, and conditional on stopping with an

Y-small variable, its expectation is almost the same as if the Y-small

variables were i.i.d.

In Step 3, we show how to actually use the samples to construct

the algorithm. We further divide step 3 into step 3(a) and step

3(b). In step 3(a) we show that using constantly many samples

per distribution, we can split the set of variables into two sets,

one containing at least = − $ ((1/Y) log(1/Y)) Y-small variables.

Because of step 2, we can replace this large set of variables with

i.i.d. variables. In step 3(b), we show that using constantly many

samples per distribution, we can estimate very well the distribution

of the auxiliary i.i.d. variables, as well as the distribution of the

constantly-many variables that are not Y-small, except for their

upper tails.
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Finally, notice these three steps alone only guarantee the exis-

tence of a sample-based algorithm. In fact, step 1 uses a minimax

argument that is non-constructive. We complement this by describ-

ing in Step 4 a procedure that �nds such an algorithm and runs in

polynomial time. The starting point is a linear program of exponen-

tial size that captures the algorithm from step 1. We show how to

reduce the linear program to one of polynomial size by leveraging

the fact that we are only interested in solving instances where all

variables have supports of polynomial size, and most of them are

i.i.d.

1.2 Further Related Work

The framework of the prophet inequality has been generalized

to a wide variety of online selection problems beyond single se-

lection. Important generalizations include prophet inequalities for

:-selection [6, 25], matroid and matroid intersection [28, 34], match-

ing [1, 22], and online combinatorial auctions [8, 19]. In these gen-

eralizations, the gambler can select multiple variables under some

combinatorial constraint on the selected set, instead of just one.

Pioneered by Azar, Kleinberg and Weinberg [2], several recent

works study the question of what guarantees are possible in prophet

inequality models under limited sample access to the distributions.

Azar et al. [2] showed that there was a connection between this

model and the secretary problem, as many algorithms for the secre-

tary problem can be adapted to obtain constant-factor sample-based

prophet inequalities. Caramanis et al. [5] consider sample-based

greedy algorithms, which are, in a sense, a re�nement of the frame-

work of Azar et al [2].With this framework, they obtained improved

factors for various classes of matroids.

For the case of selecting a matching on a graph, where edges

have random weights, Duetting et al. [15] and Kaplan, Naori and

Raz [26] recently considered the case where the gambler has a

single sample of each edge beforehand and showed constant-factor

approximations in edge-arrival and vertex-arrival models.

For the case of combinatorial auctions, where the gambler is a

seller with a set of items for sale and the random variables cor-

respond to the valuation functions of buyers, Feldman et al. [19]

and Correa et al. [11], besides showing approximation factors for

the full-information case, gave sample-based versions, using poly-

nomially many samples per distribution and assuming bounded

supports.

Gravin et al. [21] recently studied the prophet inequalitywith less

than one sample per distribution, i.e., we have a sample from each

distribution with probability ? independently, in the classic �xed

order version. They showed that this model smoothly interpolates

between a guarantee of 0 if there are no samples, and the guarantee

of 1/2 if we have one sample per distribution. Similarly, Correa et

al. [10] considered a similar question for the i.i.d. variant, where the

gambler has access to = · ?/(1 − ?) samples of the distribution, and

showed that this model smoothly interpolates between a guarantee

of 1/4 and 0.745, which correspond to the optimal guarantees for

the secretary problem and the full-information case.

1.3 Prophet Secretary and Free Order: The Case

of Known Distributions

Let = ≥ 1 and : ≥ 1. Consider = independent positive random

variables -1, -2, . . . , -= , which distributions are known to the gam-

bler. The problem proceeds as follows:

• A permutation f is drawn uniformly among the set of per-

mutations of {1, . . . , =},
• At each time C = 1, . . . , =, the gambler is informed of the

realization of-f (C ) , as well asf (C). He has to choosewhether
to pick -f (C ) or not. If he picks it, this is his �nal reward,
and otherwise, we go to stage C + 1.

The gambler aims at �nding a stopping rule) thatmaximizesE(-) ).
It is well-known that such a maximum can be realized with an

adaptive threshold algorithm, that is, an algorithm that at each stage

makes a decision based on a threshold depending only on the iden-

tity of the variables that have arrived so far. Formally, an adaptive

threshold algorithm is a mapping c : ∪=C=1 {1, . . . , =}
C → R+, with

the following interpretation: at stage C , if variables f (1), . . . , f (C−1)
have been observed, then the gambler picks variable -f (C ) if and
only if -f (C ) > c (f (1), . . . , f (C − 1), f (C)). In all this paper, we will

restrict to adaptive threshold algorithms and randomized adaptive

threshold algorithms, which correspond to probability distributions

over adaptive threshold algorithms. To avoid repetition, we will sim-

ply call them “algorithm” and “randomized algorithm”, respectively.

If the gambler knew the realizations of the -8 beforehand, he

would be able to secure E(max-8 ). The main question in this prob-

lem is what is the maximal constant �( ∈ [0, 1] such that, for any

�1, . . . , �= , there exists a stopping rule ) satisfying

E(-) ) ≥ �( · E(max-8 ).

Though such a constant has not been determined yet, it has been

shown that 0.669 ≤ �( ≤ 0.724.

The Free-Order problem proceeds similarly, to the di�erence that

the permutation f is chosen by the gambler, instead of being drawn

uniformly. In this context, a threshold stopping rule can be viewed

as a pair (f, c), where f is a permutation of [=], and c ∈ R=+.
The permutation represents the order of the variables, while c8
represents the threshold used at stage 8 . Note that thresholds are

assumed to be non-adaptive. This is without loss of generality,

since there is no relevant information that the gambler can learn

online. Indeed, the order is �xed beforehand by the gambler, and

the observed past values are irrelevant, by independence.

We will call algorithm such a stopping rule, and randomized

algorithm a probability distribution over algorithms. We call ��

the corresponding constant (� stands for “Free”). It is known that

0.725 ≤ �� ≤ 0.745.

1.4 Sample-Based Prophet Secretary and

Free-Order: The Case of Unknown

Distributions

Let us modify the Prophet Secretary setting described previously

by assuming that the gambler does not know the distributions

�1, . . . , �= , but instead has access to some number of samples for
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each variable. Formally, let (18 , . . . , (
:
8 be : independent copies of-8 ,

that we will call samples of -8 . Before the game starts, the gambler

is informed of the realizations of samples (
9
8 , 8 = 1 . . . =, 9 = 1 . . . : .

Then, the problem proceeds as in the previous setting: the gambler

is presented with the -1, . . . , -= in random order, and at each step

has to decide whether to stop and pick the variable, or discard it

and continue.

The sample-based Free Order model is de�ned similarly. A natu-

ral question is then to ask how many samples the gambler needs in

order to achieve the same ratio as in the full information case. Our

main result is the following:

Theorem 1.1. Assume that : ≥ $ (Y−5). In the Prophet Secretary

model, the gambler can achieve an expected payo� at least equal

to (�( − Y)E(max1≤8≤= -8 ). Moreover, we can compute a stopping

policy that attains this bound in time polynomial in =.

The same results hold in the Free Order model, replacing�( by�� .

The algorithm that achieves such a ratio is randomized. The fact

that randomization is required essentially comes from the fact that

to an extent the sample-based problem is adversarial: from the sam-

ples we can estimate but not exactly calculate the expectation of the

maximum or the expectation of what is obtained by the algorithm,

and we must be prepared for the worst case over the = distributions.

A characteristic feature of our proof is that it treats Prophet

Secretary and Free Order in an almost identical way. To avoid un-

necessary repetition, we will specify which of these two problems

we are addressing only when some case distinction has to be made.

2 PROOF OF OUR RESULT

2.1 Step 1: Upper Tails Distributions Do Not

Need to Be Known

By a slight abuse, we will use the same notation for an algorithm

�!� , and the realized payo� it achieves. We will hence denote

by E- (�!�) its expected payo�, where - = (-1, . . . , -=) is the
instance under consideration. When there is no ambiguity, we will

drop the index - in the expectation. We will also use notation

- ∗ := max1≤8≤= -8 . In Step 1, all statements are valid both for

Prophet Secretary and the Free Order models. The notation �∗

stands for the optimal ratio of the model under consideration, that

is, �( for Prophet Secretary, and �� for Free Order. Fix some U > 0

and Y > 0.

The goal of this section is to prove the following proposition:

Proposition 2.1. Let (�1, . . . , �=) be an instance distribution, and
"1, . . . , "= ≥ 0 such that

∏=
8=1 �8 ("8 ) ≥ 1 − U . Assume that the

gambler has access to"1, . . . , "= , and to some instance distribution

(� ′1, . . . , �
′
=) satisfying that for all 8 , for all G ≤ "8 ,

(1 − Y) (1 − � ′8 (G)) ≤ 1 − �8 (G) ≤ (1 + Y) (1 − � ′8 (G)).
Then, there exists an algorithm that depends only on (� ′1, . . . , �

′
=) such

that, if the realizations come from �1, . . . , �= , the gambler guarantees

a ratio �∗ (1 − U) (1 − Y)2.
The above proposition means that, in order to secure a �∗ (1 −

U) (1 − Y) (hence, losing only an $ (U + Y) factor with respect to �∗

when U and Y are small), the gambler only needs to know a “multi-

plicative” Y-approximation of each distribution, and furthermore,

does not need to know “upper tails.”

We start by proving such a proposition for Y = 0, namely:

Proposition 2.2. Consider an instance (�1, . . . , �=) and numbers

"1, . . . , "= ≥ 0 such that
∏=

8=1 �8 ("8 ) ≥ 1 − U . Assume that the

gambler has access to "1, . . . , "= and �8 (G), for all 8 and G ≤ "8 .

Then, there exists an algorithm such that when presented with real-

izations of �1, . . . , �= , the gambler guarantees a ratio of (1 − U)�∗.

The proof of Proposition 2.2 relies on two intermediary results.

The �rst one is a technical lemma, while the second one is a propo-

sition that is of independent interest for the study of Prophet Sec-

retary and Free Order problems.

Lemma 2.3. Let (�1, . . . , �=) be an instance, and"1, . . . , "= ≥ 0

such that
∏=

8=1 �8 ("8 ) ≥ 1−U . Let�!� be some algorithm such that

for all 8 ∈ [=], when -8 is proposed and -8 > "8 , then the algorithm

picks -8 . For each 8 ∈ [=], let �8 be the event “ALG does not stop

before variable -8 appears”, �8 be the event “∀9 ≠ 8, - 9 ≤ "9 ”, and

� be the event “ ∃ 8, -8 > "8 ”. Then,

E(1��!�) ≥ (1 − U)
=∑
8=1

E(1-8>"8
-8 )P(�8 |�8 )

Proof. We have

E(1��!�) ≥
=∑
8=1

E(1{-8>"8 }∩�8
�!�)

≥
=∑
8=1

E(1{-8>"8 }∩�8∩�8
-8 ).

Moreover,

E(1{-8>"8 }∩�8∩�8
-8 ) = E(1{-8>"8 }-8 |�8 ∩ �8 )P(�8 ∩ �8 )

≥ E(1{-8>"8 }-8 )P(�8 |�8 )P(�8 )
≥ (1 − U)E(1{-8>"8 }-8 )P(�8 |�8 ).

Thus, we get

E(1��!�) ≥ (1 − U)
=∑
8=1

E(1-8>"8
-8 )P(�8 |�8 ).

□

Proposition 2.4. Let (.1, . . . , .=) be an instance such that all

variables are bounded by some ~ ∈ R+. Then, there exists a random-

ized algorithm that guarantees a ratio �∗ for this instance, and that
in addition satis�es that for all 8 ∈ {1, . . . , =}, P. (�8 ) ≥ �∗.

Proof. Recall that in the Prophet Secretary problem, we con-

sider adaptive threshold algorithms, that correspond to mappings

from ∪=9=0 {1, . . . , =}
9 to R+. In the Free order problem, an algo-

rithm is a pair (f, g) ∈ Σ= ×R=+, where Σ= is the set of permutations

of {1, . . . , =}. Because all the .8 are bounded by ~, we can assume

without loss of generality that all thresholds take values in [0, ~].
This makes the set of algorithms a compact set, that we denote by

A.
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De�ne the zero-sum game where Player 1 chooses an algorithm

�!� in A, and Player 2 chooses 1 ∈ R=+. The payo� is

W (�!�,1) = E. (�!�) +
=∑
8=1

18P. (�8 ) −�∗ · E(. ∗) −�∗ ·
=∑
8=1

18 .

Player 1’s action setA is compact, Player 2’s action setR=+ is convex,
and the payo� function is linear in Player 2’s action. In order to

apply Sion’s minmax theorem, we would need Player 1’s action

set to be convex, and the payo� function to be linear in Player 1’s

action. To this aim, we extend the set of actions of Player 1, by

considering M the set of probability measures over A. For ` ∈ M
and 1 ∈ R=+, de�ne W∗ (`, 1) as being the expectation of W (�!�,1),
where ALG is distributed according to `. The normal-form zero-

sum game (M,R=+, W
∗) then satis�es all the assumptions of Sion’s

theorem, hence has a value E :

E = max
`∈M

inf
1∈R=+

W∗ (`, 1) = inf
1∈R=+

max
`∈M

W∗ (`, 1) . (2.1)

We claim that E ≥ 0. To this aim, it is enough to show that for any

X > 0, for any 1 ∈ R=+, there exists an algorithm �!� satisfying

W (�!�,1) ≥ −X . Given X > 0 and 1 ∈ R=+, let ? ∈ (0, 1] be small

enough so that [1− (1− ?)=−1]�∗ ∑=
8=1 18 ≤ X/2, =? ·E(. ∗) ≤ X/2

and 18/? ≥ ∑=
8=1 18 + ~. Let /1, . . . , /= be i.i.d. Bernoulli random

variables of parameter ? . De�ne variables (. ′
1 , . . . , .

′
=) by . ′

8 :=

.8 + (18/?) · /8 .
We claim that there exists an algorithm�!� ∈ A that guarantees a

ratio �∗ for the instance . ′
= (. ′

1 , . . . , .
′
=). This fact is not entirely

straightforward, since in A, thresholds are restricted to be below ~.

First, the fact that 18/? ≥ ∑=
8=1 18 + ~ implies that 18/? ≥ E(. ′∗).

Hence, it is optimal for the gambler to pick any value . ′
8 such that

/8 is active. These values are the only ones that are above ~, and

we deduce our claim.

We can couple the execution of �!� on the instance . ′ with
its execution on the instance . by ignoring the term (18/?) · /8
when /8 is active. Notice that on . ′, �!� always stops earlier (or

at the same time) as on . . Also, notice that if on . ′ it stops earlier,
it must be at an element 8 for which /8 is active and the algorithm

has not stopped yet on . . In that case, the execution on . ′ gets
.8 + 18/? , which is at most . ∗ + 18/? . Therefore, on . ′, �!� gets

at most whatever it gets on . , plus . ∗ + 18/? on elements 8 where

/8 is active and �!� does not stop before 8 arrives. Since �8 is

independent of /1, . . . , /= , we get that

E. ′ (�!�) ≤ E. (�!�) +
=∑
8=1

18

?
· ? · P. (�8 ) + =? · E(. ∗)

≤ E. (�!�) +
=∑
8=1

18

?
· ? · P. (�8 ) + X/2.

Moreover, by de�nition of �!� , we have

E. ′ (�!�) ≥ �∗
E(. ′∗)

≥ �∗
E(. ∗) +�∗ (1 − ?)=−1

=∑
8=1

18

≥ �∗
E(. ∗) +�∗

=∑
8=1

18 − X/2.

It follows that W (�!�,1) ≥ −X . Hence, E ≥ 0.

Consequently, there exists �!� a randomized algorithm such

that for all 1 ∈ R=+, W∗ (�!�,1) ≥ E ≥ 0. Let 8 ∈ [=] and # ≥ 1.

Consider 1 ∈ R=+ de�ned by 18 = # , and 1 9 = 0 for 9 ≠ 8 . We have

W∗ (�!�,1) = E. (�!�) + #P. (�8 ) −�∗ · E(. ∗) −�∗# ≥ 0,

and taking # to in�nity, we deduce that P. (�8 ) ≥ �∗. Hence, the
proposition is proved. □

We are now ready to prove Proposition 2.2.

Proof of Proposition 2.2. De�ne (.1, . . . , .=) as the random
variables given by .8 := 1-8≤"8

-8 , 8 ∈ [=]. By Proposition 2.4,

there exists �!� a randomized algorithm such that E. (�!�) ≥
�∗ ·E(. ∗) and for all 8 ∈ [=], P. (�8 ) ≥ �∗. By Lemma 2.3, we have

E- (�!�) = E- (1{∀8,-8≤"8 }�!�) + E(1{∃8,-8>"8 }�!�)

≥ E. (�!�) + (1 − U)
=∑
8=1

E(1-8>"8
-8 )P- (�8 |�8 ).

Since P- (�8 |�8 ) = P. (�8 ) ≥ �∗, we deduce that

E- (�!�) ≥ �∗ · E(. ∗) +�∗ (1 − U) ·
=∑
8=1

E(1-8>"8
-8 )

≥ �∗ (1 − U)
[
·E(. ∗) + E

(
max
8∈[=]

{
1-8>"8

-8
})]

≥ �∗ (1 − U)E(- ∗) .
We deduce that ALG guarantees a factor �∗ (1 − U). □

Let us now proceed with the proof of Proposition 2.1. We need

�rst the following lemma:

Lemma 2.5. Let �!� be some algorithm. There is an algorithm

�!�∗ such that for any two instances (�1, . . . , �=) and (� ′1, . . . , �
′
=)

that satisfy that for all G ,

(1 − Y) (1 − � ′8 (G)) ≤ 1 − �8 (G) ≤ (1 + Y) (1 − � ′8 (G)),
we have that E- (�!�∗) ≥ (1 − Y)E- ′ (�!�).

This lemma means that if two instances � and � ′ are Y-close “in
a multiplicative way”, then we can design an algorithm for � ′, and
the performance of the algorithm against � will be Y-close to the

one of the same algorithm against � ′. Note that if one considers
instead an “additive” condition, such as

���8 (G) − � ′8 (G)
�� ≤ Y, then

the result would not hold (see [16]).

Proof. We de�ne �!�∗ by modifying �!� in the following

way: we draw i.i.d. Bernoulli( 1
1+Y ) random variables/1, . . . , /= , and

multiply the 8-the realization by /8 . If we run �!�
∗ on realizations

of �1, . . . , �= , the expectation we get is the same as running �!�

on realizations drawn from � ∗1 , . . . , �
∗
= de�ned by (1 − � ∗8 ) =

1−�8
1+Y

for each 8 . We have that
1 − Y

1 + Y
(1 − � ′8 (G)) ≤ 1 − � ∗8 (G) ≤ 1 − � ′8 (G) .

Now we argue about the performance of �!� on both instances

by coupling the realizations and the permutation. Since � ′8 statis-
tically dominates � ∗8 for every 8 , we can couple the realizations

- ′
1, . . . , -

′
= and- ∗

1 , . . . , -
∗
= such that- ′

8 ≥ - ∗
8 for all 8 with probabil-

ity 1. This means that �!� will always stop later when presented
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with - ∗
1 , . . . , -

∗
= . Finally, conditional on reaching a realization - ∗

8 ,

�!� obtains from it a reward that is at least a fraction 1−Y
1+Y of what

it obtains from a realization - ′
8 , conditional on reaching it. This

stems from the fact that � ∗8 approximately statistically dominates

� ′8 , i.e., if we multiply - ′
8 by a Bernoulli( 1−Y1+Y ), then - ∗

8 statistically

dominates the result. We conclude by noticing that by de�nition

E- (�!�∗) = E- ∗ (�!�).
□

We are now ready to prove the main result of this section.

Proof of Proposition 2.1. Consider (�1, . . . , �=), (� ′1, . . . , �
′
=)

and "1, . . . , "= as de�ned in the statement of Proposition 2.1.

For each 8 ∈ [=], de�ne � ′′8 by � ′′8 (G) = � ′8 (G) if G ≤ "8 , and

1 − � ′′8 (G) = (1 − Y) (1 − �8 (G)) if G > "8 . We have
∏=

8=1 �
′′
8 ("8 ) =∏=

8=1 �8 ("8 ) ≥ 1 − U , and by assumption, the gambler knows "8

and can compute (� ′′1 (G), . . . , � ′′= (G)), for all G ≤ "8 . Applying

Proposition 2.2 to � ′′, there exists an algorithm �!� such that

E- ′′ (�!�) ≥ �∗ (1 − U)E(- ′′∗) ≥ �∗ (1 − U) (1 − Y)E(- ∗). Ap-
plying Lemma 2.5 to (�1, . . . , �=) and (� ′′1 , . . . , �

′′
= ), we get that

E- (�!�) ≥ (1− Y)E- ′′ (�!�) ≥ (1−U) (1− Y)2E- (�!�), and the
proposition is proved. □

2.2 Step 2: Small Variables Can Be Treated as

I.I.D. Variables

Notice that, in any given instance, by replacing any set of distri-

butions with their geometric mean, the distribution of themaximum

does not change. In this section, we prove Proposition 2.6, which

guarantees that if most random variables are Y-small, by treating

these variables as i.i.d. realizations of the geometric mean of their

distributions, we do not lose much in the competitive ratio. Recall

that a random variable is Y-small if the probability it equals zero is

at least (1 − Y).
For an instance � = (�1, . . . , �=), an arrival order f and an al-

gorithm �!� de�ned as a sequence of thresholds, we denote by

�!� (� , f) the reward obtained from applying �!� to a sequence

of variables drawn from � with arrival order f , i.e., to a sequence

-f (1) , . . . , -f (=) , where -1 ∼ �1, . . . , -= ∼ �= independently. We

also denote by �f the instance obtained by reordering � according

to f .

Proposition 2.6. Given an instance � = (�1, . . . , �=) and B ∈ [=],
let � = (∏B

8=1 �8 )1/B and de�ne a new instance

� ′ = (�,�, . . . ,�, �B+1, �B+2, . . . , �=). If B ≥ =/2, and, for a given

Y > 1/
√
=, all distributions �8 with 8 ≤ B are Y-small, then for any de-

terministic algorithm�!� (a sequence of thresholds) and permutation

f ,

E

(
�!� (�d , f)

)
≥ E

(
�!� (� ′, f)

)
−$ (Y) · E

(
max
1≤8≤=

-8

)
,

where d is an independent random permutation of [=] that restricted
to the �rst B indices is uniformly random, and for indices 8 > B equals

the identity.

This proposition implies that it is enough to design an algorithm

for the case where the Y-small variables are i.i.d. If the Y-small

variables arrive in uniformly random order, then we obtain almost

the same expected reward, even if we condition on the arrivals of

the large variables. Thus, if the expected reward of the algorithm is

a W fraction of the expected maximum when the Y-small variables

are i.i.d., its expected reward is at least a W −$ (Y) fraction of the

expected maximum when they are not.

Proposition 2.6 is stated for deterministic algorithms and permu-

tations to make it easier to read. However, note that by linearity of

expectation, the inequality also holds for a randomized algorithm

�!� and a random permutation f (possibly non-uniform), even in

the case where�!� is arbitrarily correlated with f . This means the

proposition can be applied to any of the three variants.

Before giving the proof, we restate a useful result from [14]

using our notation and prove two intermediate lemmas. Intuitively,

Lemma 2.7 says that on � ′, the algorithm stops earlier than on

� . Next, Lemma 2.8 states that the expected reward we get from

stopping with a uniformly random Y-small variable is at least a

(1 − Y) fraction of the expected reward we get from a variable

drawn from the geometric mean. These two lemmas are the main

ingredients of the proof of the proposition. Lastly, Lemma 2.9 is a

technical result about the geometric mean that allows us to apply

Lemma 2.7 even if we condition on the arrival of one of the Y-small

variables.

Lemma 2.7. [14, Lemma 4.3] Given distributions �1, . . . , �B and

thresholds g1, . . . , gB , de�ne � =
(∏B

8=1 �8
)1/B

. If f : [B] → [B]
is a uniformly random permutation and -8 ∼ �8 for all 8 ∈ [B]
independently, then for every : ∈ [B],

P(-f (8 ) ≤ g8 for all 8 ≤ :) ≥
:∏
8=1

� (g8 ) .

Lemma 2.8. Given Y-small distributions �1, . . . , �B and a threshold

g , let -1, . . . , -B ∼ �1 . . . , �B independently, and . ∼ (∏B
8=1 �8 )1/B .

We have that

1

B

B∑
8=1

E(-8 · 1-8>g ) ≥ (1 − Y) · E(. · 1.>g ).

Proof. We can rewrite the left-hand side of the inequality as

1

B

B∑
8=1

E(-8 · 1-8>g )

=
1

B

B∑
8=1

(
g (1 − �8 (g)) +

∫ ∞

g
(1 − �8 (G)) 3G

)

= g · 1
B

B∑
8=1

(1 − �8 (g)) +
∫ ∞

g

1

B

B∑
8=1

(1 − �8 (G)) 3G. (2.2)
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Now, from the fact that for ~ ∈ [1 − Y, 1] it holds that (1 − ~) ≤
− log(~) ≤ (1 + Y) · (1 − ~), we have that for all G ≥ 0,

1

B

B∑
8=1

(1 − �8 (G)) ≥
1

1 + Y
· 1
B

B∑
8=1

− log �8 (G)

=
1

1 + Y

©­«
− log

(
B∏
8=1

�8 (G)
)1/Bª®¬

≥ 1

1 + Y

©­«
1 −

(
B∏
8=1

�8 (G)
)1/Bª®¬

≥ (1 − Y) ©­«
1 −

(
B∏
8=1

�8 (G)
)1/Bª®¬

.

Replacing this back in Equation (2.2), we obtain that

1

B

B∑
8=1

E(-8 · 1-8>g )

≥ (1 − Y) · g · ©­«
1 −

(
B∏
8=1

�8 (g)
)1/Bª®¬

+ (1 − Y) ·
∫ ∞

g

©­«
1 −

(
B∏
8=1

�8 (G)
)1/Bª®¬

3G

= (1 − Y) · E(. · 1.>g ),
which concludes the proof of the lemma. □

Lemma 2.9. If = ≥ 1/Y2 and B ≥ =/2, then
for all G1, . . . GB ∈ [0, 1], it holds that(

B−1∏
8=1

G8

)1/(B−1)
≥ (1 − Y) ·

(
B∏
8=1

G8

)1/B
−$ (Y/=2) .

Proof. We have that since 1
B−1 − 1

B =
1

B · (B−1) ,(
B−1∏
8=1

G8

)1/(B−1)
≥

(
B∏
8=1

G8

)1/(B−1)

=

(
B∏
8=1

G8

) 1
B−1 −

1
B
+ 1
B

=
©­
«
(

B∏
8=1

G8

)1/Bª®
¬
1/(B−1)

·
(

B∏
8=1

G8

)1/B
.

To conclude, notice that if

©­
«
(

B∏
8=1

G8

)1/Bª®
¬
1/(B−1)

< (1 − Y),

then (
B∏
8=1

G8

)1/B
< (1 − Y)B−1 ≤ (1 − Y)=/2−1,

which is in $ (Y/=2). 1
□

1It is of course much smaller, but this bound will be su�cient for the proof.

Proof of Proposition 2.6. Denote by g1, . . . , g= the sequence

of thresholds that de�ne�!� . Let (-1, . . . -=) be a sequence drawn
from (�1, . . . , �=) and (.1, . . . , .=) a sequence drawn from the vector

of distributions (�, . . . ,�, �B+1, . . . , �=), all independent. By linear-

ity of expectation, we have that

E

(
�!� (�d , f)

)

=

=∑
8=1

E

(
-d (f (8 ) ) · 1{-d (f (8 ) ) ≥g8 } · 1{-d (f ( 9 ) )<g 9 ,∀ 9<8 }

)
. (2.3)

We now analyze separately the terms of this sum that correspond

to Y-small variables, i.e., for which f (8) ≤ B and the terms that

correspond to large variables, i.e., where f (8) > B . For 8 such that

f (8) ≤ B ,

E

(
-d (f (8 ) ) · 1{-d (f (8 ) ) ≥g8 } · 1{-d (f ( 9 ) )<g 9 ,∀ 9<8 }

)

=
1

B

B∑
8′=1

E

(
-8′ · 1{-8′ ≥g8 } · 1{-d (f ( 9 ) )<g 9 ,∀ 9<8 }

��� d (f (8)) = 8′
)

=
1

B

B∑
8′=1

E

(
-8′ · 1{-8′ ≥g8 }

)

· P
(
-d (f ( 9 ) ) < g 9 ,∀9 < 8

��� d (f (8)) = 8′
)
. (2.4)

Now, splitting again into small and large variables and applying

Lemma 2.7, we have that

P

(
-d (f ( 9 ) ) < g 9 ,∀9 < 8

��� d (f (8)) = 8′
)

= P

(
-f ( 9 ) < g 9 ,∀9 < 8 : f ( 9) > B

)
· P

(
-d (f ( 9 ) ) < g 9 ,∀9 < 8 : f ( 9) ≤ B

��� d (f (8)) = 8′
)

≥ P
(
-f ( 9 ) < g 9 ,∀9 < 8 : f ( 9) > B

)

·
∏

9<8:f ( 9 )≤B

©­«
∏

9 ′≤B :9 ′≠8′
� 9 ′ (g 9 )ª®¬

1/(B−1)

= P

(
-f ( 9 ) < g 9 ,∀9 < 8 : f ( 9) > B

)

· ©­«
∏

9 ′≤B :9 ′≠8′

©­«
∏

9<8:f ( 9 )≤B
� 9 ′ (g 9 )ª®¬

ª®¬
1/(B−1)

≥ P
(
-f ( 9 ) < g 9 ,∀9 < 8 : f ( 9) > B

)

· (1 − Y) · ©­
«
∏
9 ′≤B

©­
«

∏
9<8:f ( 9 )≤B

� 9 ′ (g 9 )ª®¬
ª®¬
1/B

−$ (Y/=2)

= (1 − Y) · P
(
.f ( 9 ) < g 9 ,∀9 < 8

)
−$ (Y/=2),

where in the last inequality we applied Lemma 2.9, and in the

last equality we used the de�nition of . and d . Replacing the last

inequality back in Equation (2.4), and then applying Lemma 2.8 we
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have that if f (8) ≤ B ,

E

(
-d (f (8 ) ) · 1{-d (f (8 ) ) ≥g8 } · 1{-d (f ( 9 ) )<g 9 ,∀ 9<8 }

)
≥

(
(1 − Y) · P

(
.f ( 9 ) < g 9 ,∀9 < 8

)
−$ (Y/=2)

)

· 1
B

B∑
8′=1

E

(
-8′ · 1{-8′ ≥g8 }

)

≥ (1 − 2Y) · P
(
.f ( 9 ) < g 9 ,∀9 < 8

)
· E

(
.f (8 ) · 1{.f (8 ) ≥g8 }

)
−$ (Y/=2) · E

(
.f (8 )

)
.

Now, consider 8 such that f (8) > B . By the de�nition of d , d (f (8)) =
f (8), and by the de�nition of . , we have that .f (8 ) ∼ -f (8 ) . There-
fore,

E

(
-d (f (8 ) ) · 1{-d (f (8 ) ) ≥g8 } · 1{-d (f ( 9 ) )<g 9 ,∀ 9<8 }

)
= E

(
-f (8 ) · 1{-f (8 ) ≥g8 } · 1{-d (f ( 9 ) )<g 9 ,∀ 9<8 }

)
= E

(
.f (8 ) · 1{.f (8 ) ≥g8 }

)
· P

(
-d (f ( 9 ) ) < g 9 ,∀9 < 8

)
. (2.5)

Like before, we split 9 into small and large variables, and then apply

Lemma 2.7 to obtain that

P

(
-d (f ( 9 ) ) < g 9 ,∀9 < 8

)
= P

(
-f ( 9 ) < g 9 ,∀9 < 8 : f ( 9) > B

)
· P

(
-d (f ( 9 ) ) < g 9 ,∀9 < 8 : f ( 9) ≤ B

)
≥ P

(
-f ( 9 ) < g 9 ,∀9 < 8 : f ( 9) > B

)
·

∏
9<8:f ( 9 )≤B

� (g 9 )

= P(.f ( 9 ) < g 9 ,∀9 < 8) .

Replacing this back into Equation (2.5), we have that if f (8) > B ,

E

(
-d (f (8 ) ) · 1{-d (f (8 ) ) ≥g8 } · 1{-d (f ( 9 ) )<g 9 ,∀ 9<8 }

)
≥ E

(
.f (8 ) · 1{.f (8 ) ≥g8 }

)
· P

(
.f ( 9 ) < g 9 ,∀9 < 8

)
.

Putting everything back in Equation (2.3), we get that

E

(
�!� (�d , f)

)

≥ (1 − 2Y) ·
=∑
8=1

E

(
.f (8 ) · 1{.f (8 ) ≥g8 }

)
· P

(
.f ( 9 ) < g 9 ,∀9 < 8

)

−$ (Y/=2)
=∑
8=1

E(.8 )

≥ E
(
�!� (� ′, f)

)
−$ (Y) · E

(
max
1≤8≤=

.8

)
.

This concludes the proof of the proposition, as max1≤8≤= -8 and
max1≤8≤= .8 are identically distributed. □

2.3 Step 3: Sample-Based Approximation of the

Distributions

Equipped with the machinery developed in the �rst two steps,

let us go back to our main goal: proving Theorem 1.1. In this step,

we focus on proving that : ≥ $ (Y−5) is enough to build an algo-

rithm that guarantees a ratio �∗ − Y. The fact that it can found in

polynomial time in = will be done in the last step.

Recall that the gambler faces an instance -1, . . . , -= , with un-

known distributions �1, . . . , �= , and has access to samples (
9
8 , 8 ∈

[=], 9 ∈ [:]. We �x some Y > 0. The �rst sub-step is to detect

variables that are not Y-small. The second sub-step is to estimate

distributions of an auxiliary instance where all Y-small variables

have been replaced by an i.i.d. distribution, and apply Proposition

2.1. The proof then stems from Proposition 2.6.

Throughout this step, we assume the distributions are all abso-

lutely continuous. If this is not the case, we can always approximate

the distributions with absolutely continuous distributions. One way

to do this is to �rst draw a single sample of - ∗ and then add i.i.d.

noise drawn from a Uniform[0, X] to every subsequent sample and

every realization, where X = Y2 · - ∗. By Markov’s inequality, the

probability that - ∗
> E(- ∗)/Y is at most Y. Therefore, with prob-

ability at least (1 − Y), the extra noise is only an Y fraction of the

expected maximum.

2.3.1 Classification of Variables.

Let ) ∗ be such that
∏=

8=1 �8 () ∗) = Y. We show in the following

lemma that we can basically ignore all values below ) ∗.

Lemma 2.10. If
∏=

8=1 �8 () ∗) = Y, then

(1 − Y) · E
(
max
1≤8≤=

-8

)
≤ E

(
max
1≤8≤=

-8 · 1{) ∗
<-8 }

)
.

Proof. We split the expectation into values below) ∗ and values
above ) ∗.

E

(
max
1≤8≤=

-8

)
= E

(
max
1≤8≤=

-8 · 1{-8≤) ∗ }

)
+ E

(
max
1≤8≤=

-8 · 1{) ∗
<-8 }

)

= E

(
max
1≤8≤=

-8

���� max
1≤8≤=

-8 ≤ ) ∗
)
· P

(
max
1≤8≤=

-8 ≤ ) ∗
)

+ E
(
max
1≤8≤=

-8 · 1{) ∗
<-8 }

)

≤ Y · E
(
max
1≤8≤=

-8

)
+ E

(
max
1≤8≤=

-8 · 1{) ∗
<-8 }

)
.

Rearranging the terms concludes the proof of the lemma. □

Using :1 samples of each distribution, we get :1 samples of the

distribution of the maximum, i.e., of
∏=

8=1 �8 . We estimate ) ∗ from
below with the ⌊:1 · Y · (1 − Y)⌋-th smallest of the :1 samples of the

maximum and call this quantity) . The following lemma establishes

how large we have to set :1 so that ) is a good estimate of ) ∗.

Lemma 2.11. If :1 ≥ 6(1/Y)3 · log(1/Y), then with probability at

least 1 − Y,

(1 − Y)2 · Y ≤
=∏
8=1

�8 () ) ≤ Y.

Proof. Denote by )low the value such that
∏=

8=1 �8 ()low) =

(1 − Y)2 · Y. The statement of the lemma is equivalent to

P()low ≤ ) ≤ ) ∗) ≥ 1 − Y.
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Let"low be the number of samples of the maximum below )low,

and"∗ be the number of samples below ) ∗. We have that

P()low ≤ ) ≤ ) ∗) = P("low ≤ ⌊:1Y (1 − Y)⌋ ≤ "∗)
≥ 1 − P("low > :1Y (1 − Y))
− P("∗

< :1Y (1 − Y)).

Since E("low) = :1Y (1 − Y)2 and E("∗) = :1Y, Cherno� bounds

imply that

P()low ≤ ) ≤ ) ∗) ≥ 1 − 4−Y
2:1Y/(2+Y ) − 4−Y

2:1Y/2

≥ 1 − 2Y2,

which for small Y is at least 1 − Y. □

Let !∗ = {8 : 1 − �8 () ∗) > Y}. We draw :2 fresh samples of each

distribution, and for each 8 = 1, . . . , = denote as �̂8 the empirical

distribution that results from them. Let! = {8 : 1−�̂8 () ) > (1−Y)·Y},
and denote by � the event associated with Lemma 2.11.

Lemma 2.12. If :2 ≥ 6(1/Y)3 · log(1/Y), then conditional on event

�, with probability at least (1 − Y),

!∗ ⊆ !, and |! | ≤ $ ((1/Y) log(1/Y)) .

Proof. We�rst bound |!∗ |. By the de�nition of !∗, �8 () ∗) < 1−Y
for all 8 ∈ !∗. Therefore,

Y =

=∏
8=1

�8 () ∗) ≤
∏
8∈!∗

�8 () ∗) < (1 − Y) |!∗ | . (2.6)

Taking the logarithm on both sides and rearranging the terms, we

obtain that

|!∗ | < log(1/Y)
log(1/(1 − Y)) ≤ (1/Y) log(1/Y) . (2.7)

We show now that, conditional on �, !∗ ⊆ ! with probability

at least 1 − Y/2. Take 8 ∈ !∗ and de�ne the random variable .8 as

the number of samples of �8 that are larger than)
∗. Conditional on

�, ) ≤ ) ∗, so the de�nition of ! implies that if .8 > :2 · (1 − Y) · Y,
then 8 ∈ !. But since 8 ∈ !∗, we have that E(.8 ) > :2 · Y. A simple

Cherno� bound implies that

P(.8 ≤ :2 · (1 − Y) · Y) ≤ 4−Y
2 ·:2 ·Y/2 ≤ Y3 .

Taking a union bound over the elements of !∗, we conclude that
!∗ ⊆ ! with probability at least 1 − Y2 log(1/Y) ≥ 1 − Y/2.

Denote by)low the value such that
∏=

8=1 �8 ()low) = (1 − Y)2 · Y.
Notice that the event � is exactly the event that )low ≤ ) ≤ ) ∗.
De�ne the set !low = {8 : 1 − �̂8 ()low) > (1 − Y) · Y}. The event
� implies that ! ⊆ !low, so to conclude it is enough to bound

|!low |. Denote by /8 the number of samples from �8 , out of the

:2, that are larger than )low. We have that 8 ∈ !low if and only if

/8 > :2 · (1 − Y) · Y. Therefore,

|!low | ≤ 1

:2 · (1 − Y) · Y

=∑
8=1

/8 .

Notice that

E

(
=∑
8=1

/8

)
= :2 ·

=∑
8=1

(1 − �8 ()low)) .

From the de�nition of )low we have that

log

(
1

(1 − Y)2 · Y

)
=

=∑
8=1

− log(�8 ()low)) ≥
=∑
8=1

(1 − �8 ()low)) .

Thus, a Cherno� bound implies that

P

(
=∑
8=1

/8 > 6:2 · log(1/Y)
)
≤ 4−2

2:2 log(1/Y )/(2+2) ≤ Y/2.

Therefore, |!low | ≤ $ ((1/Y) log(1/Y)) with probability at least

1 − Y/2. □

2.3.2 Estimating the Auxiliary Instance.

The previous sub-step tells us that for Y small enough, by drawing

no more than Y−4 samples, one can construct a (random) number

) and a (random) subset ! ⊂ [=] such that with probability higher

than 1 − Y, the following holds:

(1) (1 − Y) · E (max1≤8≤= -8 ) ≤ E
(
max1≤8≤= -8 · 1{)<-8 }

)
(2)

∏
8∈[=] �8 () ) ≥ (1 − Y)2Y

(3) |! | ≤ Y−2

(4) For all 8 ∈ ( := [=] \ !, 1 − �8 () ) ≤ Y

Hence, up to considering .8 := -81-8>) , one can assume without

loss of generality that all variables -8 , 8 ∈ ( are Y-small, and that

moreover, for all G ,
∏

8∈[=] �8 (G) ≥ (1 − Y)2Y. Using Y−4 more sam-

ples for each variable, an analogous argument as in Lemma 2.11

allows to construct a random number" satisfying that with proba-

bility at least 1 − Y, (1 − Y)3 ≤ ∏
8∈( �8 (") ≤ 1 − Y.

Let � :=
∏

8∈( �8 be the cumulative distribution of max8∈( -8 ,

and � := �
1
|( | . Let �̂ be the empirical cumulative distribution of

max8∈( -8 , obtained by considering another independent set of

: ≥ Y−5 samples of each -8 . Let �̂ := �̂1/|( | .

Proposition 2.13. The following statement holds with probability

larger than 1 − Y: for all G ≤ " ,

(1 − Y) (1 − �̂ (G)) ≤ 1 −� (G) ≤ (1 + Y) (1 − �̂ (G)) .

Proof. By the DKW inequality, with probability larger than

1 − 2:−2 ≥ 1 − Y, we have



� − �̂



∞ ≤

(
ln(:)
:

)1/2
≤ Y2/4.

Conditional on this event, since � (G) ≥ ∏
8∈[=] �8 (G) ≥ (1 − Y)2Y,

the above inequality implies �̂ (G) ≥ Y − Y2/4. By the Mean Value

theorem, we have for all G ,���̂ (G) −� (G)
�� ≤ sup

C ∈[� (G ),�̂ (G ) ]
C

1
|( | −1 |( |−1



� − �̂



∞

≤ max(� (G)−1, �̂ (G)−1) |( |−1


� − �̂




∞

≤ Y |( |−1/2.

Take G ≤ " . Then,� (G) ≤ � (") ≤ 1−Y, hence� (G) ≤ (1−Y)
1
|( | ≤

1 − Y |( |−1, and �̂ (G) ≤ 1 − Y |( |−1/2. We deduce that

1 −� (G) ≤ 1 − �̂ (G) + Y2 |( |−1/2
≤ (1 + Y) (1 − �̂ (G)),
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and similarly,

1 −� (G) ≥ (1 − Y) (1 − �̂ (G)) .
Hence,

(1 − Y) (1 − �̂ (G)) ≤ 1 −� (G) ≤ (1 + Y) (1 − �̂ (G))
□

Let us now estimate the variables in !, using another set of

Y−5 samples for each variable, and considering the empirical dis-

tributions �̂8 , 8 ∈ !. Because |! | ≤ Y−2, the multivariate DKW

inequality gives that with probability higher than 1− Y, for all 8 ∈ !,

�̂8 − �8



∞ ≤ Y9/4. Moreover, another set of Y−5 fresh samples al-

lows to compute"8 , 8 ∈ ! such that with probability 1 − Y, for all

8 ∈ !, (1 − Y3)3 ≤ �8 ("8 ) ≤ 1 − Y3. We deduce that

(1 − Y) (1 − �̂8 (G)) ≤ 1 − �8 (G) ≤ (1 + Y) (1 − �̂8 (G)).

Since � (") |( | ∏8∈! �8 ("8 ) ≥ (1 − Y)3 (1 − Y3)Y−2 ≥ 1 −$ (Y), we
are in position to apply Proposition 2.1 to the instance composed

with variables �8 , 8 ∈ ! and |( | i.i.d. copies of � . This gives the
existence of an algorithm that guarantees a factor �∗ −$ (Y). By
Proposition 2.6, the same algorithm guarantees a factor �∗ −$ (Y)
when presented with realizations of �1, . . . , �= , and the �rst part of

Theorem 1.1 is proved.

2.4 Step 4: Polynomial-Time Computation

In the previous sections, we showed that there is a strategy that

guarantees a�∗-approximation using a constant number of samples

per distribution. In this section, we complement our main result,

proving the following proposition that states that we can compute

such a strategy in polynomial time.

Proposition 2.14. For an instance (�,�, . . . ,�, �B+1, . . . , �=), if
(= − B) is bounded by a constant, and the size of the support of each

distribution is polynomial in =, then we can �nd in polynomial time

in = an algorithm with expected reward at least �∗ · E(max8∈[=] -8 )
and such that for all 8 ∈ [=], P(�8 ) ≥ �∗, where �8 is the event that

the algorithm observes -8 before stopping.

Notice that such an algorithm is guaranteed to exist by Proposi-

tion 2.4. Notice also that the instance for which we need to compute

an algorithm satis�es the assumptions of Proposition 2.14, as we

can replace all Y-small variables with i.i.d. random variables, and

we use the empirical distributions, which are supported on the

polynomially many samples.

We �rst introduce linear program formulations that capture

the algorithms satisfying the conditions of the proposition for the

prophet-secretary and the free-order variants in the case where all

distributions have �nite support. However, these linear programs

have exponential size, as we need to model every possible arrival

order. Using the assumption that almost all variables are i.i.d., we

can reduce the state space and obtain linear programs of polynomial

size.

For each 8 ∈ [=], let +8 be a set of indices, {G8, 9 : 9 ∈ +8 } the
support of distribution �8 , and ?8, 9 the probability that a variable

drawn from �8 equals G8, 9 . The following linear program captures

the algorithm guaranteed to exist by Proposition 2.4 for the prophet-

secretary variant.

(PSLP) max
U,V,W,X

X

s.t.

X ≤
∑

(⊆[=]:8∈(
U( · 1

|( | , ∀8 ∈ [=]

X · E
(
max
8∈[=]

-8

)
≤

∑
(⊆[=]

∑
8∈(

∑
9∈+8

V8, 9,( · G8, 9

U [=] = 1

U( =

∑
8∈[=]\(

∑
9∈+8

W8, 9,(∪{8 } , ∀( ⊊ [=]

V8, 9,( + W8, 9,( = U( · 1

|( | · ?8, 9 , ∀( ⊆ [=], 8 ∈ (, 9 ∈ +8

U( , V8, 9,( , W8, 9,( , X ∈ [0, 1], ∀( ⊆ [=], 8 ∈ (, 9 ∈ +8 .

In this linear program, the variable X is the guarantee of the al-

gorithm. Thus, by Proposition 2.4, X ≥ �∗. For ( ∈ [=], during
the execution of the algorithm, we say it is in state ( if it has not

stopped yet and the set of variables it has not observed yet is ex-

actly ( . The variable U( is the probability that the algorithm reaches

state ( at some point in its execution. For 8 ∈ ( and 9 ∈ +8 , the

variable V8, 9,( is the probability that the algorithm reaches state

( , then it observes variable 8 with realization G8, 9 , and stops. The

variable W8, 9,( is the probability that the algorithm reaches the same

situation but does not stop. The �rst two constraints are the con-

ditions of Proposition 2.4. The third, fourth, and �fth constraints

ensure that the variables are consistent with their interpretations

as probabilities.

For the free-order variant, we can write an analogous linear

program. We denote by Σ= the set of permutations of [=].
(FOLP) max

U,V,W,X
X

s.t.

X ≤
∑
f∈Σ=

Uf−1 (8 ),f , ∀8 ∈ [=]

X · E
(
max
8∈[=]

-8

)
≤

∑
f∈Σ=

∑
8∈[=]

∑
9∈+f (8 )

V8, 9,f · Gf (8 ), 9
∑
f∈Σ=

U1,f = 1

U8,f =

∑
9∈+f (8−1)

W8−1, 9,f , ∀8 ≥ 2, f ∈ Σ=

V8, 9,f + W8, 9,f = U8,f · ?f (8 ), 9 , ∀f ∈ Σ=, 8 ∈ [=], 9 ∈ +f (8 )
U8,f , V8, 9,f , W8, 9,f , X ∈ [0, 1], ∀f ∈ Σ=, 8 ∈ [=], 9 ∈ +f (8 ) .

The variables of this program have an analogous interpretation as

in the previous one. The only di�erence is that here, the algorithm

�rst chooses an arrival order f ∈ Σ= , and then follows that order.

Therefore, the state space is given by the pair (8, f), which means

that the algorithm chose the order given by f , and observes the

8-th variable before stopping.

With the given interpretation of the variables of the linear pro-

grams, it is not hard to see that every algorithm has a corresponding

feasible solution, and every feasible solution has a corresponding
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algorithm. We nowmust argue that when all but a constant number

of distributions are identical, we can reduce the state space to have

polynomial support.

If the �rst B distributions have the same distribution, that means

that+8 = +8′ for every 8, 8
′ ≤ B , and that for every 9 ∈ +8 , G8, 9 = G8′, 9

and ?8, 9 = ?8′, 9 . This implies that the linear programs are symmetric

on indices 8 ≤ B , and therefore, since we can relabel the variables

and then average, there must be a symmetric solution. Thus, we

can write a program that contains only symmetric solutions by

replacing all “repeated" variables with a single one.

In the following reduced linear program, we take as state space

the subsets of the multiset* that contains [=] \ [B] and B copies of
1. We denote as<( (8) the multiplicity of 8 in ( , and by Supp(() the
set of distinct elements in ( . Notice that if (= − B) is bounded by a

constant, then the number of di�erent subsets of* is bounded by a

polynomial in =, so we obtain a linear program of polynomial size.

(rPSLP) max
U,V,W,X

X

s.t.

X ≤ 1

<* (8) ·
∑

(⊆* :8∈Supp(( )
U( · <( (8)

|( | , ∀8 ∈ *

X · E
(
max
8∈[=]

-8

)
≤

∑
(⊆*

∑
8∈Supp(( )

∑
9∈+8

V8, 9,( · G8, 9

U* = 1

U( =

∑
8∈Supp(* \( )

∑
9∈+8

W8, 9,(+{8 } , ∀( ⊊ *

V8, 9,( + W8, 9,( = U( · <( (8)
|( | · ?8, 9 , ∀( ⊆ * , 8 ∈ Supp((), 9 ∈ +8

U( , V8, 9,( , W8, 9,( , X ∈ [0, 1], ∀( ⊆ * , 8 ∈ Supp((), 9 ∈ +8 .

Similarly, to obtain a reduced version of (FOLP), we take as

state space the set of orderings of * , that is, the set of functions

f : [=] → Supp(* ) such that |f−1 (8) | =<* (8) for all 8 ∈ Supp(* ).
We denote this set as Σ* . Notice that Σ* has polynomially many

elements.

(rFOLP) max
U,V,W,X

X

s.t.

X ≤ 1

<* (8)
∑

f∈Σ*

∑
C ∈[=]:f (C )=8

UC,f , ∀8 ∈ Supp(* )

X · E
(
max
8∈[=]

-8

)
≤

∑
f∈Σ*

∑
8∈[=]

∑
9∈+f (8 )

V8, 9,f · Gf (8 ), 9
∑

f∈Σ*
U1,f = 1

U8,f =

∑
9∈+f (8−1)

W8−1, 9,f , ∀8 ≥ 2, f ∈ Σ*

V8, 9,f + W8, 9,f = U8,f · ?f (8 ), 9 , ∀f ∈ Σ* , 8 ∈ [=], 9 ∈ +f (8 )
U8,f , V8, 9,f , W8, 9,f , X ∈ [0, 1], ∀f ∈ Σ=, 8 ∈ [=], 9 ∈ +f (8 ) .

3 CONCLUDING REMARKS

The proof adapts straightforwardly to the i.i.d. model, showing

that $ (1/Y5) samples are good enough to guarantee the constant

0.745 − Y. Even more, in a non-i.i.d. instance, if all variables are

Y-small,$ (1/Y5) samples are also enough to guarantee the constant

0.745− Y in the prophet-secretary variant. This comes from the fact

that the optimal guarantee for this type of instances is 0.745 − Y in

the full-information case, which was proved by Liu et al. [30], but

is also a consequence of Step 2. From here, it is easy to conclude the

claim that our approach works for the i.i.d. case: when we truncate

the distributions in Step 3, at most a constant number of them can

be large, which implies that they are all Y-small (because they are

i.i.d.).

Another exciting direction is to modify Step 1 to apply it to other

online selection models. The fact that the same technique applies

to di�erent well-known models gives promising perspectives on

extending our result to multi-choice models, such as matroids, or

combinatorial auctions.

Lastly, a surprising observation is that a result like ours is im-

possible if we want to approximate the optimal online algorithm.

Consider the following example: all variables are 0 with probability

(1 − Y) and 1/Y with probability Y, except for one, which is 0 with

probability 1− 1/4= , and = · 4= with probability 1/4= . Almost all the

value comes from this last variable, so the optimal online algorithm

will wait to see it before stopping, but even a polynomial number

of samples is not enough to identify it.
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