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Abstract—The load frequency control (LFC) is crucial for
stabilizing the frequency of the power grid in the intermittency
of renewable energy sources. Modern LFC systems utilize
open communication and automation networks that expose
power systems to potential cyberattacks, which could lead to
frequency instability throughout the network. Current research
often treats frequency control and cybersecurity independently,
which could lead to ineffective solutions and increased system
instability. This paper introduces a cyber-resilient LFC strategy
that improves both control performance and security. We
employ reinforcement learning for adaptive frequency control
and integrate it with a graph convolutional neural network
to enhance control responses during a cyberattack event. Our
strategy also includes a graph autoencoder-based attack detector
that is trained in various scenarios and has shown more
than 92% in detection rate while tested on the Iberian power
system topology, which includes 486 buses. This highlights the
robustness and reliability of our approach in ensuring resilience
against cyberattacks within the realm of frequency control in
power systems.

Index Terms—Cybersecurity, false data injection attacks,
frequency control, graph autoencoder, graph neural network,
reinforcement learning, renewable energy sources,

I. INTRODUCTION

The high penetration of renewable energy sources in power
systems introduces significant variability and uncertainty in
power generation [1]. Unfortunately, the intermittent nature of
renewable sources and their rapid power fluctuations can lead
to frequency deviations, thereby posing a risk to the stability
and reliability of the power system. Moreover, the integration
of advanced automation and communication technologies
makes the modern power system more susceptible to different
cyberattacks. Nevertheless, during a cyberattack, the distur-
bances rapidly take a cyber-physical form and compromise
the normal operation of the system.

Within the context of load frequency control (LFC) sys-
tems, attackers tamper with sensor measurements to disrupt
the system operation. In false data injection attacks (FDIAs),
hackers can falsify power measurements by making them
appear higher (i.e., additive attacks), lower (i.e., deductive
attacks), or a combination of both (i.e., camouflage attacks).
Thus, overlooking the potential impact of FDIAs can lead to
unauthorized manipulation of the LFC system.

A. Related Works

Existing literature on cyberattacks and LFC in power
systems has predominantly addressed these two aspects sep-
arately. In the case of LFC, proportional–integral–derivative
(PID) controllers have been widely adopted due to their
simple control structures [2]. However, these controllers do
not support dynamic information sharing or adaptation to
changing conditions. Recently, significant attention has been
given to reinforcement learning (RL)-based LFCs, which
adapt to varying grid conditions [3]. However, such ap-
proaches fail to account for cyber threats that can lead to
frequency instability and struggle to respond effectively to
sudden changes in demand.

The domain of cybersecurity in critical infrastructure,
particularly power systems, has undergone a profound trans-
formation in detection methodologies over the past decade,
reflecting the escalating sophistication of cyber threats. Early
research predominantly relied on signature-based and rule-
based approaches, which demonstrated significant limita-
tions in addressing the increasingly complex landscape of
FDIAs [4], [5]. These initial strategies, while foundational,
proved inadequate in detecting novel attack vectors that
deviated from predefined patterns, prompting a paradigm shift
toward more adaptive detection mechanisms. Statistical and
machine learning techniques that introduced more nuanced
anomaly detection frameworks, capable of identifying subtle
deviations in system behaviors overlooked by traditional
methods, were pioneered in [6] and [7].

The subsequent emergence of deep learning architectures
marked a revolutionary phase in cybersecurity research, with
authors in [8], [9] developing hybrid computational intelli-
gence frameworks that demonstrated unprecedented detec-
tion accuracy rates exceeding 95%. These advanced models
leveraged complex neural network architectures, including
convolutional and recurrent neural networks, to process mul-
tidimensional power system data with remarkable precision.
Despite these advancements, persistent challenges remain, in-
cluding minimizing false positive rates, developing real-time
detection capabilities, and creating adaptive learning systems
that can comprehend the intricate dynamics of power infras-
tructure. References [10]–[12] emphasize the critical need for



interdisciplinary approaches that synergize advanced machine
learning algorithms, domain-specific expertise, and contex-
tual understanding of system vulnerabilities. The evolving
research trajectory suggests a future where cyberattack de-
tection transitions from reactive strategies to proactive, an-
ticipatory frameworks capable of mitigating threats before
they manifest, ensuring the resilience and reliability of critical
energy infrastructure [13], [14].

We employ reinforcement learning for adaptive frequency
control and integrate it with a graph convolutional neural
network to enhance control responses during a cyberattack
event. Our strategy also includes a graph autoencoder-based
attack detector that is trained in various scenarios and has
shown more than 92% in detection rate while tested on the
Iberian power system topology, which includes 486 buses.

B. Contributions

In light of the aforementioned limitations in existing works,
we propose a cyber-resilient LFC strategy that improves both
control performance and security. Specifically, the contribu-
tions of this paper are summarized as follows.

• We develop a state–action–reward–state–action
(SARSA)-based data-driven LFC method to minimize
frequency deviations considering power system
constraints.

• We develop a graph convolutional neural network
(GCNN) model that predicts future load demands to
improve the LFC responsiveness to cyberattacks.

• We develop a graph autoencoder (GAE)-based detector
with Chebyshev filters to capture temporal and spatial
grid data to enhance the FDIA detection.

This paper is organized as follows. Section II describes the
frequency control problem formulation. Section III introduces
the system modeling along with the data preparation. Section
IV introduces the proposed cyber-resilient LFC strategy.
Section V analyzes the performance of the proposed model
against various attack types. Conclusions are drawn in Sec-
tion VI.

II. FREQUENCY CONTROL PROBLEM FORMULATION

The network buses, N , are categorized into generator
buses (NG) and load buses (NL). Generator buses follow
dynamic differential equations, while load buses, which in-
clude frequency-sensitive loads, are governed by algebraic
equations. For each bus, the dynamics of the voltage angle, ηi,
and the frequency deviation, κi, from the nominal frequency,
f0, are determined by the net power input, Pi, as follows:

η̇i = 2πf0κi, ∀i ∈ N (1a)

−γiκi −
n∑

j=1

vivjBij sin (ηi − ηj) + Pi + ρi = hiκ̇i,∀i ∈ NG

(1b)

−γiκi −
n∑

j=1

vivjBij sin (ηi − ηj) + Pi + ρi = 0,∀i ∈ NL.

(1c)

Here, hi = 2Hi > 0 represents the inertia constant of
generator i, γi is the frequency sensitivity coefficient (varies

by bus type), vi and Bij are the voltage magnitude and
susceptance at buses i and j, and ρi denotes the controllable
power injection used for frequency regulation.

The primary goal of frequency control is to maintain
the system frequency close to its nominal value, ensuring
stability. From the analysis in [15], [16], the equilibrium
frequency deviation in the system is expressed as:

κ=

∑n
i=1 Pi +

∑n
i=1 ρi∑n

i=1 γi
, (2)

where κ represents the target frequency deviation, and ρi is
the required value of controllable power injections to achieve
the desired frequency control. As shown in Eq. (2), without
active frequency control, any disturbance in power, Pi, will
result in a non-zero frequency deviation (κ̸ = 0). A zero
frequency deviation (κ=0) is only achievable when the sum
of power disturbances and the optimal controllable power
injections, ρ, balance to zero. In this study, we implement
power injections through two methods, namely, adjusting
generator outputs to match system demand and utilizing
energy storage systems, where renewable energy is stored
and later released through battery storage systems to help
maintain frequency control.

III. SYSTEM MODELING

A. Power System Modeling

We represent the power graph via the triplet G =
(N , E ,W ). Each node in the set N represents a bus, and the
set of edges E denotes the lines interconnecting these buses,
enabling power flow. The adjacency matrix W ∈ R|N |×|N|

models the weighted relationships between buses, with entry
Wij denoting the weight associated to the edge e = (i, j)
[17]. A graph representation of the considered system is
presented in Fig. 1. In modeling the Iberian power system,
we utilized a 486-bus representation to capture the network’s
complexity and operational characteristics accurately. This
level of granularity allows for detailed analysis of power
flows, voltage levels, and system stability. The undirected
representation of the power system reflects the bidirectional
nature of power flow in transmission lines, where electricity
can flow in either direction depending on system conditions.

Fig. 1. Graph representation of the Iberian power system.



B. Threat Modeling

In the context of FDIAs in LFC systems, attackers target
the power input variable, P , to introduce errors in power lev-
els. These manipulations deceive the controller into adjusting
the control signal, u∗, to counteract a disturbance perceived
based on the falsified data. While the system appears to
achieve zero frequency deviation, an actual deviation persists
undetected. Over time, this concealed frequency deviation
increases operational stress on the power grid, reducing
efficiency and increasing the likelihood of unexpected system
failures.

During an attack scenario, the equilibrium frequency de-
viation, as given by Eq. (2), is altered to the following
expression:

κ∗
false =

∑
i = 1nPfalse,i +

∑n
i=1 ρ

∗
i∑n

i=1 γi
, (3)

where Pfalse,i denotes the falsified measurement of the
actual power input Pi. This falsification leads to incorrect
calculations, distorting the system’s control dynamics. Next,
we discuss three distinct types of manipulations on Pi to
assess their impacts on the LFC system.

Let the field-measured power at bus i and timestamp
t be denoted as P t

i and the true power measurement as
P t

true,i. Under normal conditions, the true power P t
true,i should

match the measured power at the control end P t
m,i, such that

V t
true,i = V t

m,i. However, during the considered attack sce-
narios, these measurements are manipulated by the attackers
using additive, deductive, and camouflage attack strategies.
The manipulated power measurements are expressed as:

P t
false,i = P t

true,i + bi · δP t
i , bi =


+1, if i ∈ Aa,

−1, if i ∈ Ad,

±1, if i ∈ Ac.

where P t
true,i denotes the true power measurement at bus i at

time t, δP t
i represents the falsified data injected by attackers

at bus i, and bi is a variable representing the type of attack
at bus i. Buses are grouped into three sets, Aa for additive
attacks, Ad for deductive attacks, and Ac for camouflage at-
tacks. During additive attacks (i ∈ Aa), power measurements
are falsely increased, creating the illusion of higher demand.
For deductive attacks (i ∈ Ad), power measurements are
falsely decreased, leading to an underestimation of demand.
For camouflage attacks (i ∈ Ac), the total number of attacked
buses equals the number in either the additive or deductive
sets, but buses are randomly assigned to additive (bi = +1)
or deductive (bi = −1) categories. This randomization results
in some areas experiencing over-generation and others facing
under-generation, effectively masking the attack pattern and
increasing detection complexity. This formulation provides
a consistent and unified representation of diverse attack
scenarios, enabling detailed analysis and the development of
robust mitigation strategies.

Moreover, we consider two type of attack strategies,
namely, random node attacks (RNAs) and vulnerable node
attacks (VNAs). In RNAs, the attacker randomly selects buses
in the power grid. These nodes are then manipulated by
injecting falsified data into their power measurements. The

goal of RNAs is to disrupt the system’s operation generically.
On the other hand, in VNAs, the attacker specifically targets
nodes that are identified as critical or vulnerable within
the power system. These vulnerable nodes are determined
by analyzing various electrical and topological metrics, as
discussed in [18]. By focusing on vulnerable nodes, the
attacker can maximize the impact of the attack, potentially
causing widespread disruptions.

C. Data Preparation

The dataset used in this study models the Iberian power
system [19], comprising 486 buses and associated transmis-
sion lines, providing a detailed topology of the grid spanning
Spain and Portugal. It includes active and reactive power
flows as node features. Node features include active and
reactive power injections, capturing the operational state of
each bus. Power flow calculations were performed using
MATLAB, employing the Newton-Raphson method, a ro-
bust iterative algorithm for solving nonlinear equations. The
process begins with an initial guess for bus voltages and
iteratively calculates mismatches in active and reactive power
injections based on the grid’s admittance matrix and bus data.
Voltage magnitudes and angles are updated at each iteration
to minimize these mismatches. Convergence is achieved when
the power mismatches fall below a predefined tolerance,
ensuring numerical stability. The algorithm accounts for both
PQ buses (loads with specified active and reactive power) and
PV buses (generators with specified active power and voltage
magnitude), while maintaining slack buses to balance the
overall system power. Moreover, active and reactive power
flows are normalized to ensure compatibility with machine
learning models and to avoid scale imbalances. Additionally,
the dataset includes the system’s admittance matrix, generator
data, and load data, which are essential for reproducing
the grid’s behavior and ensuring the physical accuracy of
simulations. The dataset is split into three subsets to ensure
a balanced evaluation, where 70% of the data is used for
training the model, 15% is allocated for validation to fine-
tune the parameters, and the remaining 15% is reserved for
testing to assess the model’s generalization performance.

IV. PROPOSED METHODOLOGY

A. SARSA RL-based LFC

The considered LFC system consists of generators, renew-
able energy sources, battery storage systems, and loads. The
proposed controller is designed as a policy network with
the goal of maintaining the local frequency as close as
possible to the nominal value by fine-tuning generator output
and engaging the energy storage systems. At each step, the
algorithm observes a state, selects an action based on the
policy, and receives a reward from the environment. The
action taken at a time-step influences the environment, which
leads to a transition to a new state. The reward is calculated
as:

R = e−|κ∗|, (4)

where k∗ is the frequency deviation from the nominal value.
The proposed reinforcement learning framework imple-

ments a novel Q-learning update strategy tailored to power
system dynamic control. The value function evolution is



characterized by an update rule that captures the nature of
power system interactions:

Q (St,At)←Q (St,At)+

η [Rt + ϱQ (St+1,At+1)−Q (St,At)] , (5)

where Q (St,At) represents the state-action value function,
η denotes the adaptive learning rate, and ϱ represents the
discount factor of the model.

By iteratively applying the update rule, the agent engages
with the environment, leading to the convergence of the pol-
icy that maximizes cumulative rewards to a value of 1. This
process effectively stabilizes the power system frequency,
even under fluctuating demand and generation conditions.
In the proposed control framework, an LFC controller is
assigned to each conventional generator in the power system.
The proportional contribution of each generator is determined
by dividing its capacity by the total capacity of all generators
in the system. This ratio represents the precise amount of
power each generator supplies to meet the grid’s demand.
Importantly, distributed generators (DGs) are not directly
associated with individual conventional generators. Instead,
they contribute power to the grid as a whole. The total
power generated by DGs is allocated among the conventional
generators based on their respective proportional shares. This
methodology ensures an equitable and systematic distribu-
tion of renewable energy across the grid while maintaining
frequency stability. By targeting frequency control at the
individual generator level, the collective action stabilizes the
overall frequency of the power system.

B. GAE-Based Cyberattack Detection

Our goal is to develop a model that distinguishes between
power system states with and without cyberattacks. The input
sample X consists of time-series measurements of active and
reactive power values [Pt,Qt] ∈ R|N |×2 at t timestamp. The
input data is processed through graph encoder layer lE , latent
layer lH , and graph decoder layer lD. The objective function
of the GAE-based detector is defined as

min
{ξ}

β (X, fD (fE(X))) , (6)

where EG = fE(X) and DG = fD(X) represent the graph
encoder and decoder function, respectively, and ξ denotes the
set of training parameters. The cost function β (·) represents
the mean squared error and quantifies the difference between
X and the output of the composed functions fD (fE(X)).

C. Cyberattack Aware Control Strategy

The increasing vulnerability of power systems to cyber-
attacks necessitates innovative defense mechanisms in LFC
architectures. Current LFC systems typically rely on real-time
demand measurements as critical state variables, rendering
them susceptible to FDIAs. To counteract this vulnerability,
the proposed approach introduces a dynamic data protection
strategy that employs sophisticated GAE-based techniques to
detect potential cyber intrusions. When an attack is identi-
fied, the system autonomously transitions from compromised
current measurements to pre-computed demand predictions
generated using GCNN. This adaptive mechanism ensures

Algorithm 1 Cyber-attack aware frequency control algorithm 
Input: learning rate ℒ, discount factor ϭ, exploration rate λ, number 
of episodes υ, threshold for the frequency deviation ϑ, predicted 
demand sequence 𝐷𝑃

𝑡 , binary output from the cyber-attack detection 
model ϕ. 
 
Initialize: 𝒬(𝒮, 𝒜)  for all action value pairs; initial state 𝒮0 =
[𝐷0, 𝐺𝐶

0, 𝐺𝐷𝐺
0 , 𝜅∗,0]. 

 
Procedure: Read binary output from the cyber attack detection 
model. ϕ =1 during an attack and 0 otherwise.  

1: if  ϕ=1 do 
2:     set 𝐷𝑡 ← 𝐷𝑃

𝑡  
3: else do 
4:     loop (for each episode) 
5:         initialize 𝓢𝒕 and 𝓐𝒕 
6:         loop (for each step of episode) 
7:             do take action 𝓐𝒕 and observe 𝓡, 𝓢𝒕+𝟏 
8:             choose 𝓐𝒕+𝟏 based on 𝓢𝒕+𝟏 using ε-  
9:             greedy policy algorithm 
10:             update 𝒬(𝒮, 𝒜) using the formulation in (13) 
11:             𝓢𝒕 ← 𝓢𝒕+𝟏   \\ transition to next state 
12:             𝓐𝒕 ← 𝓐𝒕+𝟏 
13:             if 𝜿∗,𝒕< |𝜗|  
14:                 break    
15:             else  
16:                 Repeat 
17:         end loop 
18:     end loop 

 
continuous frequency control by replacing potentially manip-
ulated real-time data with reliable predictive models, thereby
maintaining system reliability and operational integrity under
adverse cyber threat conditions. The reinforcement learning-
based algorithm iteratively refines its decision-making pro-
cess, utilizing an ϵ-greedy policy to select optimal actions and
minimize frequency deviations, ultimately providing a robust
defense against sophisticated cyberattacks in critical power
infrastructure. The pseudocode algorithm highlighting the
steps within the cyberattack-aware LFC scheme is depicted
in Algorithm 1.

V. PERFORMANCE ASSESSMENT

Table I highlights the model’s performance under additive,
deductive, and camouflage attacks, evaluated using metrics
including detection rate (DR), false alarm rate (FAR), and
accuracy (ACC) for the RNA and VNA cases. On average,
the model achieves better performance in RNA scenarios,
with an average DR of 96.12%, FAR of 10.26%, and ACC of
94.03%, compared to VNA scenarios, where the average DR
is 92.34%, FAR is 14.28%, and ACC is 91.19%. Additive and
deductive attacks exhibit consistently higher DR and ACC
with lower FAR, as these attacks involve uniform manipula-
tions that are easier to detect. In contrast, camouflage attacks,
which mix additive and deductive manipulations, pose greater
challenges due to their complexity, resulting in lower DR
(i.e., 94.98% in RNA and 91.25% in VNA) and ACC (e.g.,
90.28% in RNA and 88.08% in VNA), and higher FAR
(e.g., 17.68% in RNA and 21.66% in VNA). The model’s
better performance in RNA scenarios can be attributed to the
random distribution of attacks, whereas VNA targets critical
nodes, making manipulations harder to detect.

The frequency control performance against additive attack
is shown in Fig. 2 while comparing it with the PID con-



troller. Initially, the PID controller exhibits some fluctuations
while the proposed controller demonstrates stable initiation
with minimal fluctuation. The proposed controller initiates
tracking of backup future load prediction data, which remains
unaffected by the attack. Conversely, the PID controller starts
to track falsified nominal frequency levels. This misguided
response is due to its reliance on immediate input data
without contextual or predictive insight that the proposed
controller offers.

TABLE I. Performance of proposed model against different
types of attacks and attack injection levels.

Attack type Metric 

Attack data percentage 

RNA VNA 

5% 10% 5% 10% 

Additive 

DR 98.19 95.38 93.41 92.60 

FAR 5.92 8.87 9.93 11.95 

ACC 97.79 94.72 92.62 91.59 

Deductive 

DR 97.20 94.42 92.35 91.57 

FAR 7.19 10.21 11.25 13.18 

ACC 96.03 92.95 92.86 90.79 

Camouflage 

DR 94.98 93.25 91.25 88.47 

FAR 17.68 20.65 21.66 23.54 

ACC 90.28 88.98 88.08 87.08 
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Fig. 2. Actual frequency deviation curve during additive
attacks.

VI. CONCLUSIONS

This paper presented a cyber-resilient LFC strategy that
exhibits superior performance against cyberattacks compared
to benchmark controllers. The proposed model integrates
load prediction that enhances frequency control by anticipat-
ing demand fluctuations. Specifically, we employ reinforce-
ment learning for adaptive frequency control and integrate
it with a graph convolutional neural network to enhance
control responses during cyberattacks. We also employ a
graph autoencoder that facilitates precise attack detection by
leveraging Chebyshev filters, which efficiently capture both
local and global topological patterns in the power system.
These filters enable the model to aggregate operational data
across the nodes while maintaining computational efficiency.
The forthcoming paper will detail the implementation of
SARSA reinforcement learning for LFC, alongside extensive
results on control performance and future load prediction.
Additionally, it will provide a comprehensive analysis of the
attack detection mechanism. Future research will enhance

system adaptability across various network configurations and
increase its resilience against diverse threats.
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