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ABSTRACT. In this article we study base change of Poincaré series along a
quasi-complete intersection homomorphism ¢: Q — R, where Q is a local ring
with maximal ideal m. In particular, we give a precise relationship between the
Poincaré series PI%I (t) of a finitely generated R-module M to PI, (¢) when the
kernel of ¢ is contained in manng(M). This generalizes a classical result of
Shamash for complete intersection homomorphisms. Our proof goes through
base change formulas for Poincaré series under the map of dg algebras Q — E,
with E the Koszul complex on a minimal set of generators for the kernel of .

INTRODUCTION

This article is concerned with change of base formulas for Poincaré series in
commutative algebra. Recall the Poincaré series of a finitely generated module,
over a local ring, is the generating series of its sequence of Betti numbers. For a
complete intersection homomorphism, this problem has been extensively studied
and the relationship between the Poincaré series over the source and target is well
understood; see, for example, [4,24,31]. In this article we study this problem for
the much larger class of homomorphisms called quasi-complete intersection (abbre-
viated to g.c.i.) homomorphisms. These homomorphisms are precisely the ones
that satisfy the conclusion of a long-standing conjecture of Quillen [27], and have
been a topic of much recent research [6,9,11,13,16,20,32].

Let ¢: @ — R be a surjective local homomorphism, and let £ denote the Koszul
complex on a minimal set of generators for I = Ker . If the homology of E is
isomorphic to the exterior algebra (over R) on H; (E) and Hy (F) is free over R, then
 is said to be q.c.i. Such a homomorphism can equivalently be defined in terms of
admitting a two-step Tate resolution; see 3.1. In [6], the authors investigated such
homomorphisms and gave relationships between the Poincaré series P?/[ and PJI@
of finitely generated R-modules M over Q and R. More precisely, when M = k or
the minimal generators of I can be extended to minimal generators of the maximal

Received by the editors March 25, 2024, and, in revised form, June 27, 2024.

2020 Mathematics Subject Classification. Primary 13D40; Secondary 13D02, 13D07, 16E45.

Key words and phrases. Quasi-complete intersection homomorphism, Koszul complex, dg al-
gebra, dg module, Poincaré series, large homomorphisms, inertness.

This material is based upon work supported by the National Science Foundation under Grant
No. DMS-1928930 and by the Alfred P. Sloan Foundation under grant G-2021-16778, while the
second author was in residence at the Simons Laufer Mathematical Sciences Institute (formerly
MSRI) in Berkeley, California, during the Spring 2024 semester. The first author was supported
by the National Science Foundation under Grant No. DMS-2302567.

(©2024 American Mathematical Society

31



32 J. POLLITZ AND L. SEGA

ideal m of @, they proved the formula:

_ 4\edim R
(0.0.1) PR (1) - % —PL(1) -

(1 _ t)edimQ
(1 _ t2)depthQ'

In particular, when ¢ is q.c.i., formula (0.0.1) holds precisely when M is inert by
¢, in the sense of Lescot [21]. The aforementioned formula generalizes results of
Tate [33] and Nagata [24] that hold when ¢ is complete intersection (meaning that I
is generated by a regular sequence). Formula (0.0.1) is also known in the complete
intersection case when I C manng(M), due to Shamash [31]; the authors in [6]
comment that it is not known if Shamash’s result can be extended to the q.c.i.
case. Our main result establishes this extension:

Theorem A. Let (Q,m, k) be a local ring, ¢: Q — R a surjective quasi-complete
intersection map, and set I = Kerp. Then a finitely generated R-module M with
I Cmanng(M) is inert by ¢; equivalently, M satisfies (0.0.1).

This is Theorem 3.5 in the paper and is presented with a slightly different (but
equivalent) formulation, cf. Remark 3.4. We also show in Proposition 3.8 that
there is a more general inequality that holds for any q.c.i. map ¢: Q@ — R = Q/I;
namely, if n and m denote the minimal number of generators of I and its first Koszul
homology, respectively, then for any finitely generated R-module M we have

A+ g

P%(t) < (1 . t)m M(t)v

with equality whenever I Nm? C mI.

The proofs of these results are given after first establishing, in Section 2, inter-
mediary results that describe P% in terms of the Poincaré series of M regarded as
a differential graded (abbreviated to dg) module over E. Here F is viewed as a dg
@-algebra in the usual way, i.e. an exterior algebra on F; with differential equal to
the unique @-linear derivation determined by mapping a basis of F; bijectively to
a minimal generating set for . The main result from Section 2, applied to prove
aforementioned results in Section 3, is the following:

Theorem B. Fiz a local ring (Q,m, k), an ideal I of Q minimally generated by a
sequence of length n, and set E to be the Koszul complex on a minimal generating
set of I and R = Q/I. For each bounded below complex of finitely generated R-
modules M, there are coefficient-wise inequalities:

PR (8) < PR () - (1—3)7"
P (1) S P () (1+)"
Furthermore,

1) if I Cmanng(M), then equality holds in the first inequality above;
Q
(2) if INm? Cml, then equality holds in the second inequality above.

The equalities in Theorem B generalize the known results for complete intersec-
tion homomorphisms mentioned above after (0.0.1) to arbitrary surjective maps;
the only catch is that one must replace the local ring R with the dg @Q-algebra E,
which is quasi-isomorphic to R only when ¢ is complete intersection. The idea of
replacing R by E to witness complete intersection-like behavior is one previously
exploited in [25,26]; it is worth highlighting that the numerical results in this article
are a new utility of this perspective.
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1. BACKGROUND

Throughout, Q will denote a commutative noetherian local ring with maximal
ideal m and residue field k. Recall that a differential graded, henceforth dg, Q-
algebra is a graded Q-algebra equipped with compatible differential. That is to
say, a graded @Q-algebra A = {A;};cz with a degree —1 endomorphism 9 satisfying
0% = 0 and the Leibniz rule:

da-b) =d(a)-b+ (—1)la - a(b);

here |a| denotes the unique value i for which a belongs to A;. The reader is directed
to [1] for the necessary background on dg algebras.

1.1. We say a dg Q-algebra A is local if it is non-negatively graded, (Ag, mg) is a
local ring, and each H;(A) is finitely generated over Ho(A). In this case, we write
my for the maximal dg ideal of A; explicitly,

ma=mgPA; DA B ---.

For the remainder of the section, fix a local dg Q-algebra A whose residue field
A/my is k, the residue field of Q.

1.2. Let D(A) denote the derived category of dg A-modules; cf. [19] or [3, Section 2].
We write D, (A) for the full subcategory of D(A) consisting of all dg A-modules M
where H;(M) = 0 for ¢ < 0 and each H;(M) is finitely generated over Hy(A).

We let (—)? denote the functor that forgets the differential of a dg A-module and
regards it as a graded module. That is to say, if M is a dg A-module, then M? is
the underlying graded module over the graded algebra A".

1.3. Next, we recount some background on semifree dg modules; cf. [5, Section 1]
(see also [15, Chapter 6]). Recall a dg A-module F is semifree if admits an exhaus-
tive filtration by dg A-submodules

0=F(-1)CFO)CF1)C...CF

where each subquotient F(i)/F(i — 1) is a direct sum of shifts of A. In the present
setting, any bounded below dg A-module F with F' a free graded A%-module is
semifree. For every dg A-module M there exists a semifree dg A-module F' and
a quasi-isomorphism F' — M, that is unique up to homotopy equivalence; we call
such a map (or the semifree module) a semifree resolution of M over A.
If M isin Di (A), then there exists a semifree resolution F' of M over A satisfying:

(1) OF(F) CmyF, and

(2) F9 2 @;ezY%(A%)F where 3; = 0 for i < 0;
see, for example, [7, Appendix B.2]. We will refer to such a resolution F' as a
mainimal semifree resolution of M over A.

1.4. A dg A-module M defines exact endofunctors — ®% M and RHom 4 (M, —) on
D(A) given by — ®4 F and Homy (F, —), respectively, where F' — M is a semifree
resolution of M over A. These are well-defined by 1.3. Set

Exta(M,—) := H(RHomu (M, —)) and Tor?(M,—):=H(M o5 —).
1.5. Let M be in D', (4). The ith Betti number of M over A is
BA(M) := ranky, Tor:!(M, k) = rank,, Ext (M, k).
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These are finite for all 7 and zero for i < 0; see 1.3. The Poincaré series of M over
A is the formal Laurent series

() = S BAM)E.
€L

For a graded k-vector space V' = {V; }iez, we write Hy (¢) for its Hilbert series

Hy () = Z(rankk Vi)t
i€z

So if F — M is a minimal semifree resolution of M over A, then Hpg , 1 (t) = P4/ (2).

1.6. We write A(X) for the semifree dg A-algebra extension obtained by succes-
sively adjoining variables to kill cycles in the sense of Tate; see [33] (as well as
[1, Section 6] or [18]). Here X = X;,Xs,... where each X; consists of exterior
variables when i is odd and divided power variables when i is even. Hence, as
a graded A-algebra, A(X) is the free strictly graded-commutative divided power
algebra over A on X.

When A is a ring and f = fi1,..., fn is a sequence of elements in A, then
adjoining the degree one variables X = {ej,...,e,} to kill the cycles f produces

A<X1> = A<61, B ) ‘ 8(.%1) = fz>

the Koszul complex on f over A. Note that Ho(A(X1)) = A/(f), and hence
each dg A/(f)-module is a dg A(X;)-module via restriction of scalars along the
augmentation A(X;) — A/(f). In particular, for any A/(f)-complex M, we have

(1.6.1) eM =0 foreach i=1,...,n.

1.7. We now adapt to our dg setting the classical Cartan—FEilenberg change of ring
spectral sequence [12, Chapter XVI, Section 5. We provide the details for this
extension to the (slightly) more general setting needed in what follows. Given a
map of non-negatively graded dg algebras A — B, and M, N bounded below dg B
modules, there is a spectral sequence

°Ep,q = Torl (M, Tor}(B,N)) = Tor,,

p+q<M IV )
with differentials
"dp,g: "Epg = "Ep_rgir—1
constructed as follows.
Let V' — M be a semifree resolution of M over B and W — N a semifree
resolution of N over A. By [1, Proposition 1.3.2], the induced map V @4 W —
M ®4 W is a quasi-isomorphism, and so we make identifications

Tor* (M, N) = H(V @4 W) = H(V @5 (B ®4 W)).

Let Vi, be the semifree dg B-submodule of V with (Vg,)? the free graded B‘-
module generated by the basis element of V¥ in homological degrees at most p.
The filtration of V' by these sub dg B-modules induces a filtration

F,(Vep(BaW))=In(Vg, @ (BRaW) =V g (B4 W)).
The spectral sequence obtained from this filtration is

Epq = Hy(V @5 Hy(B®4 W)) = Tor

p+q

(M, N)



QUASI-COMPLETE INTERSECTION MAPS 35

with differentials as above; here the B-action on H,(B ®4 W) is through the aug-
mentation B — Hy(B). We further identify

Hy(BoaW) = Tor)(B,N) and H,(V@pTor, (B,N)) = Tort (M, Tor, (B, N)).

To justify convergence, we can forget the algebra structures and regard V @4 W
as a complex filtered by the subcomplexes F,,(V @ (B®4 W)). Note that for each
integer n, the filtration of

(VeaW), =(Vep(BoaW)),

by its submodules (F,(V ®p (B ®4 W))),, is finite, because V' and W are bounded
below. The filtration on V ®4 W is thus bounded. Using [29, 10.14], this implies
that the spectral sequence converges to V® 4 W, in the sense that for each n € Z, the
module H, (V ®4 W) has a bounded filtration such that for each ¢ the component
of degree g of the associated graded module is isomorphic to *E,,_4 4.

Lemma 1.8. If ¢p: A — B is a map of local dg algebras with residue field k and
M is in D‘; (B), then there is a coefficient-wise inequality of Poincaré series

(18.1) P (t) < PR (1) - PA(1).

Proof. Consider the spectral sequence in 1.7 with N = k. For all p, ¢ we have
isomorphisms of k-vector spaces

Tor? (M, Tor? (B, k)) = Tor? (M, k) @ Tor’*(B, k)

which yield
rankk 2E;D,q = ﬁpB(M)/B(f(B)

A rank count in the spectral sequence then gives

Pu(t) = Br(M)t' x> | Y rank,’E,, | t' =PF() - PA(t). O

i€Z i€Z \p+qg=i

Remark 1.9. When A and B are local rings, Levin [22] shows that equality holds
in (1.8.1) for all finitely generated B-modules M if and only if the induced homo-
morphism Tor® (k, k): Tor?(k, k) — Tor®(k, k) is surjective. There Levin called
homomorphisms satisfying this property large. We adopt Levin’s terminology and
say that a map ¢: A — B of local dg algebras augmented to k is large if equality
holds in (1.8.1) for all M in D', (B). Levin’s proof of [22, Theorem 1.1] carries
through to show that ¢ is large if and only if the induced map on Tor algebras
Tor? (k, k): Tor?(k, k) — Tor® (k, k) is surjective.

2. POINCARE SERIES OVER THE KOSZUL COMPLEX

Continuing with notation from Section 1, @) is a commutative noetherian local
ring with maximal ideal m and residue field k. When Q — R is a surjective
homomorphism of local rings, with kernel generated by a regular sequence, and
M is a finitely generated R-module, (in)equalities between P4, (¢) and P% (t) are
well-known, and are recalled in 2.1. In this section we show that these results have
dg versions that hold without assuming that the kernel is generated by a regular
sequence, see Theorem 2.2, which recover the classical results.
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2.1. Fix a local ring (Q, m, k) and set R = /I where I is an ideal generated by a
regular sequence of length n. Recall that for each finitely generated R-module M,
there are coefficient-wise inequalities:

(2.1.1) PL(t) < PY(H) - (1—t%)™
(2.1.2) PY (1) < PR(1) - (14 1)
Furthermore,

(1) if I C manng (M), then equality holds in (2.1.1);

(2) if INm? C ml, then equality holds in (2.1.2).
In [33, Theorem 5], Tate showed (1) when M is cyclic, and the general result
is due to Shamash [31, Corollary 1, Section 3], who also provides a proof of (2)
in [31, Corollary 1, Section 2]. The original proof of (2) is implicit in work of
Nagata [24, Section 27] where it is expressed in terms of ranks of syzygies. A

more modern, and comprehensive, treatment of these (in)equalities is contained in
[1, Section 3.3].

The main result of the section is the following.

Theorem 2.2. Fiz a local ring (Q, m, k), an ideal I of Q minimally generated by a
sequence of length n, and set E to be the Koszul complex on a minimal generating
set of I and R = Q/I. For each M in Dﬁr (R), there are coefficient-wise inequalities:

(2.2.1) P () < P - (1—1%)7"
(2.2.2) PY (1) < PE(t) - (14 1)
Furthermore,

(1) if I Cmanng(M), then equality holds in (2.2.1);
(2) if INnm? C ml, then equality holds in (2.2.2).

The proof of Theorem 2.2 will be given at the end of the section, after we
introduce the needed ingredients.

Notation 2.3. For the rest of the section we fix an ideal I of @) and a minimal
generating set f = f1,..., f, of I and we let

E=Qe1,...,e, | 0c; = f;)

be the Koszul complex on f over Q; cf. 1.6.

Set S = Q[x1,---,Xxn] Where x; has degree —2; this can be identified with the
ring of cohomology operators introduced by Eisenbud [14] and Gulliksen [17]; cf.
[8]. Define

F = Q<y17 o >yn>7
the free divided power algebra on degree two divided power variables y1, ..., Y.
It is well-known that I' can be naturally identified with the graded @-linear dual
of § and hence it admits the structure of a graded S-module; this is a classical
structure introduced by Macaulay in [23]. Namely, a graded Q-basis for I is given
by {y) := yghl) g | H=(hi,...,h,) € N"} and the S-action is determined
by

)
L

0 otherwise.
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2.4. A semifree resolution over E. Let M be a dg F-module and fix a semifree
resolution e¢: F =» M of M over Q, where F is a dg F-module and € is a ho-
momorphism of dg E-modules. Such a semifree resolution exists by [2, 2.1]; this
result does not use the assumption that f is a (Koszul-)regular sequence which was
present in Section 2 of [2, Section 2]. By [26, 4.2.2], which is essentially due to
[2, Proposition 2.6], the semifree dg F-module

Up(F) =E®q I ®q F with differential

0:=0"2101+10100"+) e@xuel-10x;®¢
i=1
and augmentation
eye(z) if ly| =0

Ug(F)—> M givenby eQy®z— .
0 otherwise

is a semifree resolution of M over F; the E-action is on the left E-factor of Ug(F).

2.5. We use Notation 2.3 and suppose g = g1, ..., 9gq is a sequence of elements in

Q with (£) € (g). )
Fix a @Q-semifree dg algebra resolution A = Q/(g). Writing

d
(251) fz = Zaijgj with a;; € Q
j=1
defines a morphism of dg Q-algebras F — A determined by
d
(2.5.2) e — Zaije; with ¢ € Ay, 9} = g;.
j=1

In particular, if (f) C J(g) for some ideal J in @, then one can take the a;; in
(2.5.1) to belong to J and hence, the morphism in (2.5.2) defines a dg E-module
structure on A where the image of multiplication by e; on A is contained in JA.

Lemma 2.6. If M is an R-complex with I C manng (M), then there is the follow-
ing isomorphism of graded k-spaces

Tor® (M, k) = Tor® (M, k) ®¢ I
Proof. Let A =5 k be a Q-semifree dg algebra resolution of k; see [1, Section 6.3].
From the assumption I C manng (M), and applying 2.5 with g a list of minimal

generators for m, it follows that the dg F-module structure on A can be taken to
satisfy the following for each i:

(2.6.1) e;A Canng(M)A.
Also, there is the following commutative diagram of graded -modules
M ®pUp(A) —— Moo I'®g A
(2.6.2) 1M®e1,®x1,®1{ J{e,;@x,;@lA
M®pUg(A) —— Moo I®qg A

where the horizontal maps are induced by the multiplication map M Qg F =M
and the vertical maps have degree —1. By (1.6.1), the right-hand map in (2.6.2) is
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zero and hence so is the left-hand map. Similarly, there is the following commutative
diagram of graded Q-modules

M @pUg(A) —— Mo ®g A
(2.6.3) 1A{®1E®X1®57¥l J{lM@Xi@ei

M @pUg(A) —— Mo ®g A

where the horizontal maps are again induced by F ®g F =, E. This time the
right-hand map in (2.6.3) is zero because of (2.6.1). In particular, the degree —1
maps

lyRe@x;®1a and 1y R1lpRx; @e;
are both zero on M ® p Ug(A). In view of the definition of the differential of Ug(A)
in 2.4, it follows that the isomorphism M ® g Ug(A) = M ®¢ I’ ®q A of graded Q-
modules is in fact one of complexes. Therefore, we have the following isomorphisms
in homology:

Tor® (M, k) = HM ®g Ug(A))

(M ®o I' ®q A)
(M®gA®qI')
(M K@ A) ®q I
= Tor?(M, k) @¢ I';

Il

1

H
H
H

1%

the first and second equalities use that Ug(A) and A are semifree E- and Q-
resolutions of k, respectively; the first isomorphism was what was justified above,
while the second isomorphism is obvious, and the third isomorphism is because I”
is a free graded @-module. |

Proof of Theorem 2.2. We first prove the inequality (2.2.1) and (1). Let F = M
be a semifree resolution of M over E. Observe that as graded k-spaces there are
isomorphisms

(2.6.4) k®EUE(F)%k@QP@QF%(k@QF)@k(k(@QF).

By 2.4, the homology of the left-hand side is Tor® (M, k). Thus Tor? (M, k) is a
subquotient of k ® Ug(F) as a graded k-vector space, and the coefficient-wise
inequality below has been justified:

P (t) < Hiopup(r)
= Higor(t) - Hroor(t)
1
- = . PY9(p):
(1 _ t2)” M( )7
the first equality holds using (2.6.4) and the second holds using the definition I’
and that FF — M is a semifree resolution over @), since E is free over (). Using
Lemma 2.6, we see that the coeflicient-wise inequality above is an equality when
I Cmanng(M).
We now prove (2.2.2) and (2). Using induction we can assume n = 1. For the
inequality, fix a minimal semifree resolution U of M over E. Write

(2.6.5) U= (V@ Ve)t
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as graded Ef = Q@ Qe-modules; above V denotes the Q-linear span of the semifree
basis of U as a dg E-module, thus it is a bounded below free graded Q-module.
Since U is minimal over E we have

(2.6.6) Tor® (M, k) =U @p k =V ®q k.
Since E is free over @, it follows that U is a free resolution of M over Q. In

particular, Tor® (M, k) is a subquotient of U ®¢ k regarded a graded k-vector space
and hence

(2.6.7) P$(t) < Hugor(t).
Also, observe that there are isomorphisms of graded k-vector spaces
Uegk=(VaVe)iagk
=2 (Vegk) e (Vedgk)
= Tor® (M, k) @ ¥ Tor” (M, k)

and as a consequence Hyg,,,(t) = (1 + t)P%;(¢). Combining this equality with the
inequality from (2.6.7) yields the desired inequality:

PY (1) < (14 )PF (1)

Next we verify equality holds when f € m \ m?. By [1, Proposition 2.2.2], the
minimal free resolution U of M over @ is a semifree dg F-module. As U is minimal
over @ it is also minimal over E and hence, we can write U as in (2.6.5). Therefore,
equality holds in (2.6.7) giving the desired equality. O

Remark 2.7. Note that the inequality (2.2.2) can also be justified using the spectral
sequence in 1.7. In fact, this spectral sequence degenerates when N = k if and only
if @ — E is large in the sense Remark 1.9. Moreover, one can argue as in [22],
that when I Nm? C ml the spectral sequence degenerates and use this to give an
alternate proof of the equality in (2.6.7).

3. QUASI—COMPLETE INTERSECTION HOMOMORPHISMS

In this section, (Q,m, k) is a local ring, ¢: @ — R is a surjective homomorphism
and we set I = Ker ¢.

3.1. Quasi-complete intersection homomorphisms. Let f = f1,..., f, be a
minimal generating set of I, and let E be the Koszul complex on f. Following the
procedure recalled in 1.6, construct the two-step Tate complex

F = Q(X1, Xo),

where X7, X5 are two sets of variables such that Q(X;) = F and the variables in
X, kill a basis of Hy (F). That is to say, the differential on F' maps Xs bijectively
to a set of cycles whose homology classes minimally generate Hy (F).

The map ¢ is said to be a quasi-complete intersection (q.c.i.) homomorphism if
H;(E) is a free R-module and the natural map

ArHi(E) —» H(E)

is an isomorphism of graded R-algebras. This property first appeared in work of
Rodicio [28] and Blanco, Majadas and Rodicio [10], and the current terminology
was introduced by Avramov, Henriques and Sega [6]. According to [11, Theorem 1],
@ is q.c.d. if and only if F' is the minimal free resolution of R over Q.
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Such maps can also be defined in terms of vanishing of André-Quillen functors
D;(R/Q;—) whenever ¢ > 3, and Quillen [27] conjectured these are the only maps
with this kind of behavior: if D;(R/Q;—) =0 for i > 0, then ¢ must be g.c.i. See
[6] for more details regarding these homomorphisms.

3.2. Recall that gradeg R denotes the maximal length of a Q-regular sequence in
I. Assume that ¢ is a q.c.i. map. By [6, Lemma 1.2] and [4, Theorem 4.1], we have

(3.2.1) depth Q — depth R = gradeg R = [ X1| — [ X2,

where F' = Q(X1, X2) is the two-step Tate resolution of R over ). Also, the
following formula holds
R (1 _ t)edimR L0 (1 _ t)edimQ

(32.2) Pyt G @yenr = PV T p)jawnae
when N = k by [6, Theorem 6.1] and for any finitely generated R-module N when
m? NI C ml by [6, Theorem 6.2]. The proof of (3.2.2) in the later case is based on
the fact, established in the proof of [6, Theorem 6.2], that the homomorphism ¢ is
large. Our discussion in Remark 1.9 yields that (3.2.2) holds, more generally, for
all N in DY, (R) when m?> NI C ml.

Finally, observe that

F=Q(X1,Xs) = E(Xy)

is the minimal semifree resolution of R, considered as a dg module over E, and thus

1

(3.2.3) PE(t) = A

3.3. If M is in D', (R), then the following inequality holds:
(33.1) PEOP2(t) < P (OPE(Y)

This was proved by Lescot in [21] in the case that M is an R-module. The proof
relies on a convergent spectral sequence, that can be extended for M in DQ(R).
Following Lescot, when equality holds in (3.3.1), M is said to be inert by .

If T is generated by a regular sequence of length n, then 2.1(1) asserts that any
object M in Df (R) with I C manng (M) is inert by .

Remark 3.4. If ¢ is q.c.i. and M is in Dir (R), then the following are equivalent:
(1) M is inert by ¢;
(2) there is an equality of formal power series
R (1 _ t)cdimR L0 (1 _ t)cdimQ
Pr(t) - (1 — ¢2)depth B — PR () (1 — ¢2)depth@”

Furthermore, if I C manng (M), then the following is also equivalent:
(3) PR (1) = PG (1) - (1 - 2)mdea .
Indeed, the equivalence of (1) and (2) is straightforward using the already noted
fact that (3.2.2) holds with N = k.
Next assume that I C manng(M). If anng (M) = @, then all of these equalities
hold vacuously. So we can further assume anng(M) C m, and hence I C m?;

therefore, edim Q = edim R. It now follows from a direct computation, using also
(3.2.1), that (2) and (3) are equivalent.
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Theorem 3.5. Let (Q,m, k) be a local ring, ¢: @ — R a surjective quasi-complete
intersection map, and set I = Ker p. For M in DY (R) with I C manng(M), then

PE (1) = PG (1) - (1 — 2)Era .
Equivalently, M is inert by ¢.

Proof. Let E denote the Koszul complex on a minimal generating of I, and let
F = R(X;, X5) be the two-step Tate complex, as in 3.1. Observe |X;| = n and set

m = | Xo| = ranky (Hy(FE) ®Rr k).
There is nothing to show when anng(M) = @, so we can assume anng (M) C m.
It follows that edim R = edim @, and since (3.2.2) holds with N = k we can use
(3.2.1) to obtain
(3.5.1) P2(t) = PE(t)- (1 — 2™

The following is justified by Theorem 2.2(1), Lemma 1.8 (applied to the map of
local dg algebras E — R), and (3.2.3):

Q R
(35.2) % — PL(t) < PR() - PE() = 7(1P_Mf§))m~
Now observe that
PR(1)-P2(t)  PR(1)- PR
(1=e)m =~ (1—e)m
_ PR PR
- (1 _ t2)n (1 _ t2)mfn

Q
:(5%%%2'P§@%

the first coefficient-wise inequality is from (3.3.1), the first equality is clear, and the
last equality is from (3.5.1). From this and (3.5.2), it follows that

PR (1) - PR _ PR(1)-PR(D)
(1—t2)ym (1 —¢2)n
Canceling the factors of f’,?(t)7 and another application of (3.5.1) yields the desired

equality in the statement. By Remark 3.4, this equality holds if and only if M is
inert by ¢. (]

Remark 3.6. The proof of Theorem 3.5 shows that, under the hypotheses of the
theorem, equality must hold in (3.5.2), and thus:

Pii(t)
(1—t2)m’
Remark 3.7. If a minimal generating set of I can be extended to a minimal gener-
ating set of m, that is to say 7 Nm? C ml, then ¢ is large, as noted in 3.2. As a
consequence, factoring ¢ as Q — E — R it follows that £ — R is large.

We remark that one can directly show, essentially by the same argument in
[6, Theorem 5.3], that E — R is large when I Nm? C mI and combining this
with Theorem 2.2(2) we recover that (3.2.2) holds for any N in Df, (R); this would
go through the base change formula on Poincaré series for the Koszul extension
@ — E, and hence would be analogous to the proof of Theorem 3.5.

P (t) =
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We end the paper with another coefficient-wise inequality comparing Poincaré
series along surjective q.c.i. homomorphisms, extending some previously known
results; see Remarks 3.9 and 3.11.

Proposition 3.8. Let p: Q@ — R by a surjective quasi-complete intersection map.
Let E denote the Koszul complex on a set of minimal generators of Ker ¢ and set
n = rankg(E1) and m = ranky(Hi(E) ®g k). For any M in DY (R) we have a
coefficient-wise inequality
(L+t)n—m
PY () < N N (t)-
Equality holds above when I Nm? C ml.

Proof. Putting together equations (2.2.2) and (3.2.3), and Lemma 1.8, we obtain
the coefficient-wise (in)equalities

n n 1 n

P < PR (H)- (149" < PROPE®) - 1+0" = PR g—pgm - 1+
yielding the desired inequality. When I N'm? C ml, equality holding has already
been noted in 3.2. ]

Remark 3.9. Let m, n be as in Proposition 3.8. The inequality in Proposition 3.8
is an extension of (2.1.2), which covers the case m = 0; cf. the discussion at the
end of Section 2.1. It also extends [9, Corollary 3.6], which addresses the case when
n =m =1 (that is, when Ker ¢ is generated by an exact zero divisor).

The inequality established in Proposition 3.8 can be used to relate asymptotic
invariants of M along ¢ as described below.

Recall the complezity and curvature of M over R, denoted cxg (M) and curv g (M)
respectively, measure the polynomial and the exponential rate of growth of the Betti
sequence of M over R, respectively. See [1, Section 4] for precise definitions and
more details. The following is an immediate consequence of Proposition 3.8.

Corollary 3.10. In the notation of Proposition 3.8, the following inequalities hold
cxo(M) < cxg(M)+m
curvg (M) < max{curvg(M), 1}. O

Remark 3.11. Continuing with the notation from Proposition 3.8, when m = 0,
(i.e. o is a complete intersection homomorphism) the inequalities in Corollary 3.10
are well known. In fact, in this case stronger relationships for these invariants over
@ and R follow from the inequalities in 2.1. Namely,

cxQ(M) < exp(M) < exq(M) +n
curvg(M) = curvg(M) when projdimpz(M) = oo;

see [1, Proposition 4.2.5(4)].

When m > 0, as far as the authors are aware of, the only known results that
give similar lower bounds for cxg(M) and curvg(M), in terms of the invariants
defined over R, are established in recent joint work of the second author in [30].
There Ker ¢ is generated by an exact zero divisor (that is, n = m = 1) and the
residue field has characteristic zero. We expect similar lower bounds to hold more
generally, but we do not have additional evidence at this time.
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