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Abstract. We study housing markets as introduced by Shapley and Scarf. We investigate 
the computational complexity of various questions regarding the situation of an agent a in 
a housing market H: we show that it is NP-hard to find an allocation in the core of H in 
which (i) a receives a certain house, (ii) a does not receive a certain house, or (iii) a receives 
a house other than a’s own. We prove that the core of housing markets respects improve
ment in the following sense: given an allocation in the core of H in which agent a receives a 
house h, if the value of the house owned by a increases, then the resulting housing market 
admits an allocation in its core in which a receives either h or a house that a prefers to h; 
moreover, such an allocation can be found efficiently. We further show an analogous result 
in the STABLE ROOMMATES setting by proving that stable matchings in a one-sided market also 
respect improvement.
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1. Introduction
Housing markets are a classic model in economics in which agents are initially endowed with one unit of an indi
visible good, called a house, and agents may trade their houses according to their preferences without using 
monetary transfers. In such markets, trading results in a reallocation of houses in a way that each agent ends up 
with exactly one house. Motivation for studying housing markets comes from applications, such as kidney 
exchange (Biró et al. [11, 12], Roth et al. [49]) and on-campus housing (Abdulkadiroǧlu and Sönmez [1]).

In their seminal work, Shapley and Scarf [52] examine housing markets in which agents’ preferences are weak 
orders. They prove that such markets always admit a core allocation, that is, an allocation in which no coalition 
of agents can strictly improve their situation by trading only among themselves. They also describe the top trad
ing cycles (TTC) algorithm, proposed by David Gale, and prove that the set of allocations that can be obtained 
through the TTC algorithm coincides with the set of competitive allocations; hence, the TTC always produces an 
allocation in the core. When preferences are strict, the TTC produces the unique allocation in the strict core, that 
is, an allocation in which no coalition of agents can weakly improve their situation (with at least one agent 
strictly improving) by trading among themselves (Roth and Postlewaite [48]). Although the strict core has some 
very appealing properties from a mathematical viewpoint (above all, that, for strict preferences, it contains a 
unique allocation that is easy to compute), there are arguments for why the core is a more interesting solution 
concept. First, if we allow indifference between houses to appear in the preferences, then the strict core can be 
empty. Second, decision makers in a real-world application have to deal with various constraints and optimiza
tion goals that may not be represented in the preferences. In kidney exchange programs, such constraints can 
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arise because of ethical issues (Chow et al. [20]), logistical considerations (e.g., limit on the length of the exchange 
cycles), and several optimization criteria that can improve the accessibility and long-term success of the pro
grams (e.g., prioritization of highly sensitized patients or keeping donors with blood type O for recipients with 
blood type O in order to avoid the accumulation of hard-to-match patients); see Biró et al. [12] for a survey on 
European practices. Thus, having a wider range of possible solutions from which to choose is often preferable.

Biró et al. [10] conducted computer simulations on realistic kidney exchange instances to compare solutions of 
maximum size or maximum weight,1 typically used in practice, with solutions contained in the core, in the set of 
competitive solutions, and in the strict core of the underlying housing market. Intuitively, as the latter three solu
tion concepts become increasingly demanding to be satisfied, the price of fairness (roughly speaking, the reduc
tion in the number of transplants because of taking preferences into account) also increases. Their results suggest 
that the core is a good compromise: they find that “core allocations for instances with 150 patient–donor pairs 
entail a less than 1% reduction in the number of transplants” (see Biró et al. [10, p. 30]). In contrast, regarding the 
strict core solutions, they observed that the likelihood of existence for instances with weak preferences is decreas
ing sharply as the kidney exchange pool grows, becoming almost zero for 150 patient–donor pairs.

Although the core of housing markets is the subject of considerable research, there are still many challenges 
that have not been addressed. Our paper focuses on questions that may be raised by an agent who wants to 
decide whether to enter the market and, if so, on what conditions. To be able to judge their prospects correctly, 
agents are in need of information about the possible allocations in which the market may result. Can they 
improve their situation by participating in the market? If so, how much? Which are the houses that they have a 
chance of receiving?

Assuming that our relevant solution concept is the core, an agent a may be interested in the following 
questions: 
• Q1: Can agent a receive a house better than a’s own in some core allocation?
• Q2: Given some house h, can agent a obtain h in some core allocation?
• Q3: Given some house h, can agent a avoid obtaining h in some core allocation?
We believe that these three questions are natural enough to warrant a quest for an efficient algorithm that can

solve the underlying computational problems. However, their motivation is also clear from an economic point of 
view: a positive answer to Q1 (or Q2) clearly provides a strong incentive for agent a to participate in the market. 
Hence, such an algorithm can be an important tool for an authority in charge of a centralized housing market in 
which a larger market is more desirable (as is the case, e.g., in kidney exchange programs). Further motivation 
for studying Q2 and Q3 stems from the fact that, in some cases, realizing a given allocation requires certain 
investments that are a function of the allocation chosen: for example, in the context of kidney exchange, addi
tional compatibility tests are required before carrying out the planned transplantations. Narrowing down the set 
of possible donors whose kidney a given patient may obtain in a kidney exchange may allow for such tests to be 
performed in advance, sparing time for the patients and keeping the costs incurred by such tests relatively low.2

In the first part of our work, we focus on the computational complexity of the preceding questions. Similar 
questions are extensively studied in the context of the stable marriage and the STABLE ROOMMATES problems (Cseh 
and Manlove [23], Dias et al. [24], Fleiner et al. [26], Gusfield and Irving [28], Knuth [37]) but have not yet been 
considered in relation to housing markets.

We also address questions that concern the possibility of an agent improving the agent’s situation by bringing 
a better endowment to the market. Assuming that agent a ensures the value of a’s house increases, will this result 
in an improvement for a? If the answer is positive, then this provides an incentive for the agent to invest in the 
agent’s house in order to obtain a preferable allocation. It is clear that an increase in the value of a’s house may 
not always yield a strict improvement for a (as a trivial example, some core allocation may assign a the agent’s 
top choice even before the change), but is it at least true that by improving a’s house, a will not damage a’s own 
possibilities in the market? Can we determine whether or when a strict improvement for a becomes possible?

We investigate the following question: is an increase in the value of some agent a’s house beneficial for a in 
terms of the possible core allocations? More precisely, we consider two slightly different versions of this 
question: 
• Q4: Given a core allocation for the original market in which a obtains some house h, can agent a obtain a house

at least as good as h in some core allocation after an increase in the value of a’s house?
• Q5: Given a core allocation for the original market in which a obtains some house h, can an agent a obtain a

house strictly better than h in some core allocation after an increase in the value of a’s house?
Q4 and Q5 are of crucial importance when we consider agents’ incentives to choose the endowment with 

which they enter the market. In the context of kidney exchange, if procuring a new donor with better properties 
(e.g., a younger or healthier donor) or registering an additional willing donor (which is possible in most 
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European programs) does not necessarily benefit the patient, then this could undermine the incentive for the 
patient to find a donor with good characteristics, damaging the overall welfare in a system in which inefficiency 
directly leads to loss of lives. Being able to answer these questions is, therefore, paramount and has direct conse
quences on agents’ incentives.

1.1. Our Contribution
Regarding Q1–Q3 raised earlier, we show in Theorem 1 that each of them is computationally intractable. 
Remarkably, it is already NP-complete to decide whether a core allocation can assign any house to a other than 
a’s own. Similarly, deciding whether the core of a housing market contains an allocation in which a given agent a 
obtains a certain house (or in which a does not receive a certain house) is also NP-complete. Various generaliza
tions of these questions can be answered efficiently in both the STABLE MARRIAGE and STABLE ROOMMATES settings 
(Cseh and Manlove [23], Dias et al. [24], Fleiner et al. [26], Gusfield and Irving [28], Knuth [37]), so we find these 
intractability results surprising.

We note that our complexity results do not mean that finding core allocations that fulfill some additional 
requirement are impossible in practice, it only means that a polynomial-time algorithm is highly unlikely to exist 
for such problems. However, this does not preclude the use of heuristics or robust optimization techniques, such 
as integer programming methods, for computing core allocations with additional requirements. In fact, Biró et al. 
[10] develop and test such methods by conducting simulations and demonstrate the possibility of using the solu
tion concept of core in practice.

Turning our attention to the question of how an increase in the value of a house affects its owner, we present 
Theorem 2, our main technical result, which answers Q4 affirmatively as follows: if the core of a housing market 
contains an allocation in which a receives some house h and the market changes in a way in which some agents 
perceive an increased value for the house owned by a (and nothing else changes in the market), then the resulting 
housing market admits an allocation in its core in which a receives either h or a house that a prefers to h.

Using the terminology of Biró et al. [10], the preceding result shows that the core respects improvement in the 
sense that the best allocation achievable for an agent a in a core allocation can only (weakly) improve for a as a 
result of an increase in the value of a’s house. We prove Theorem 2 by presenting a polynomial-time algorithm 
that finds an allocation as promised by the sentence highlighted; the ideas and techniques on which this algo
rithm relies is our main technical contribution. This settles an open question asked explicitly by Biró et al. [10].

This result has important implications for the practice of kidney exchanges. Biró et al. [10] conducted simula
tions for measuring how often the property of respecting improvement is violated when using solutions of maxi
mum size/weight (as done in practice) compared with using core, competitive, or strict core solutions. They 
observed a significant number of violations for solutions of maximum size/weight but none for core solutions, 
conjecturing the theorem that we prove theoretically. Therefore, Theorem 2 gives a theoretical foundation for 
their observation, and it implies that the usage of core solutions provides good individual incentives for recipi
ents to bring better or more donors. In the meantime, these simulations show that the current practice of focusing 
only on the number of transplants and other weighted optimality criteria may not provide a compelling incentive 
for participants to bring valuable donors to the pool.

The significance of our positive result in Theorem 2 is especially pronounced in view of the intractability 
results of Theorem 1: even though we cannot efficiently compute information about the possible houses an agent 
may obtain in some core allocation, we do know that entering the market with a more valuable house, an agent 
can only improve (and never damage) the agent’s situation. Hence, improving the value of the house with which 
the agent plans to enter the market is always a safe choice. We believe that this aspect of the core is a very strong 
argument for considering it as a good solution concept to be used in centralized housing markets because it pro
vides a motivation for agents to increase the value of their initial endowment.

Contrasting our positive result for Q4, the slightly different Q5 turns out to be significantly harder: although one 
can formulate several variants of this problem depending on what exactly one considers to be a strict improvement, 
by Theorem 3, each of them leads to computational intractability (NP-hardness or coNP-hardness).

Finally, we also answer a question raised by Biró et al. [10] regarding the property of respecting improvements 
in the context of the STABLE ROOMMATES problem. An instance of STABLE ROOMMATES contains a set of agents, each 
having preferences over the other agents; the usual task is to find a matching between the agents that is stable; 
that is, no two agents prefer each other to their partners in the matching. An instance of STABLE ROOMMATES can, 
therefore, be considered as a housing market with the additional requirement that (i) trading can only happen 
along cycles of length two and (ii) only blocking cycles of length two can cause instability; then, stable matchings 
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correspond exactly to core allocations. We examine the following question, which is the direct analog of Q4 for 
the STABLE ROOMMATES model: 
• Q6: In an instance of STABLE ROOMMATES, does increasing the value of an agent a (as manifested in the prefer

ences of others) lead to a (weak) improvement in the situation of a?
Again, we are able to assert a positive answer although only in a conditional form: in Theorem 4, we show 

that, if some stable matching assigns agent a to agent b in a STABLE ROOMMATES instance and the value of a 
increases (that is, if a moves upward in other agents’ preferences with everything else remaining constant) and 
the resulting instance admits a stable matching, then it necessarily admits a stable matching in which a is 
matched either to b or to an agent preferred by a to b. This result is an analog of the one stated in Theorem 2 for 
the core of housing markets; however, the algorithm we propose to prove it uses different techniques.

We remark that, throughout the paper, we use a model with partially ordered preferences (a generalization of 
weak orders). Although partially ordered preferences are studied in the context of the stable marriage and STABLE 

ROOMMATES problems (Cseh and Juhos [22], Drummond and Boutilier [25], Fleiner et al. [26], Gelain et al. [27], Pit
tel [45]), we are not aware of any paper on housing markets featuring preferences that are expressed as partial 
orders.

1.2. Related Work
Most works relating to the core of housing markets aim to find core allocations with some additional property 
that benefits global welfare, most prominently Pareto optimality (Alcalde-Unzu and Molis [4], Aziz and de Keij
zer [5], Jaramillo and Manjunath [33], Plaxton [46], Saban and Sethuraman [51]). Another line of research comes 
from kidney exchange in which the length of trading cycles is of great importance and often plays a role in 
agents’ preferences (Biró and Cechlárová [7], Cechlárová and Hajduková [15], Cechlárová and Lacko [16], 
Cechlárová and Romero-Medina [18], Cechlárová et al. [19]) or is bounded by some constant (Abraham et al. [2], 
Biró and McDermid [8], Biró et al. [9], Cechlárová and Repiský [17], Huang [30]). None of these papers deals 
with problems in which a core allocation is required to fulfill some constraint regarding a given agent or set of 
agents: that they be trading or that they obtain (or not obtain) a certain house. Although, to the best of our knowl
edge, none of the Q1–Q3 have been studied so far, some papers focus on finding a core allocation in which the 
number of agents involved in trading is as large as possible, obtaining mostly intractability results Biró and 
Cechlárová [7], Cechlárová and Repiský [17]).

In the context of the stable marriage and the STABLE ROOMMATES problems, it is known that the problem of find
ing a stable matching with edge restrictions, that is, a stable matching that contains a given set of forced edges 
but is disjoint from a given set of forbidden edges, can be found in polynomial time (Dias et al. [24], Fleiner et al. 
[26]). These results strongly contrast Theorem 1, which shows that the analogous problems in the context of 
house allocation are NP-hard even if there is only a single arc that we require to be included in (or excluded 
from) the desired allocation.

Q4 and Q5 can be considered as inquiries about housing markets in which preferences are subject to change. 
Although some researchers address certain dynamic models, most of these either focus on the possibility of 
repeated allocation (Kamijo and Kawasaki [34], Kawasaki [35], Roth and Postlewaite [48]), or consider a situation 
in which agents may enter and leave the market at different times (Bloch and Cantala [13], Kurino [41], Ünver 
[56]).

The line of research that concerns questions akin to Q4 and Q5 was initiated by Balinski and Sönmez [6] in 
their paper on the property of respecting improvement in the context of college admission. They prove that the 
student-optimal stable matching algorithm respects the improvement of students, so a better test score for a stu
dent always results in an outcome weakly preferred by the student (assuming other students’ scores remain the 
same); this means that the analog of Q4 for the college admission problem (when viewed from the students’ 
side) can always be answered affirmatively. Hatfield et al. [29] contrasts the findings of Balinski and Sönmez [6] 
by showing that no stable mechanism respects the improvement of school quality. Sönmez and Switzer [53] 
apply the model of matching with contracts to the problem of cadet assignment in the U.S. Military Academy 
and prove that the cadet-optimal stable mechanism respects improvement of cadets. Recently, Klaus and Klijn 
[36] obtain results of a similar flavor in a school-choice model with minimal access rights.

Roth et al. [50] deal with the property of respecting improvement in connection with kidney exchange: they
show that, in a setting with dichotomous preferences and pairwise exchanges, priority mechanisms are donor 
monotone, meaning that a patient can only benefit from bringing an additional donor on board.

Closest to our work is the paper by Biró et al. [10] who focus on the classic Shapley–Scarf model and investi
gate how different solution concepts behave when the value of an agent’s house increases. They proved that 
both the strict core and the set of competitive allocations satisfy the property of respecting improvements 
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although this is no longer true when the lengths of trading cycles are bounded by some constant. We remark that 
Biró et al. [10] were not able to show that the property of respecting improvement holds for the core of housing 
markets. In fact, they pose Q4 and Q6 as open problems. We answer both of these questions affirmatively.

1.3. Organization
Section 2 contains all definitions necessary for our model. Section 3 deals with the decision problems associated 
with Q1–Q3 and their computational complexity. In Section 4, we present our results on the property of respect
ing improvements in relation to the core of housing markets, that is, Q4 and Q5: Sections 4.1 and 4.2 contain our 
main technical result, Theorem 2, whereas Section 4.3 deals with the computational complexity of the decision 
problem associated with Q5. In Section 5, we study the respecting improvement property in the context of STABLE 

ROOMMATES, that is, Q6. We close in Section 6 with some questions for future research.
In an appendix, we further provide some loosely related results: Appendix A contains an adaptation of the 

TTC algorithm for partially ordered preferences. Appendix B deals with the variants of Q1–Q3 for the strict core 
in a setting in which agents’ preferences are weak orders. Finally, Appendix C contains an inapproximability 
result on the problem of maximizing the number of agents involved in trading in some core allocation.

2. Preliminaries
Here, we describe our model and provide all the necessary notation. Information about the organization of this 
paper can be found at the end of this section.

2.1. Preferences as Partial Orders
In the majority of the existing literature, preferences of agents are usually considered to be either strict or, if the 
model allows for indifference, weak linear orders. Weak orders can be described as lists containing ties, a set of 
alternatives considered equally good for the agent. Partial orders are a generalization of weak orders that allows 
for two alternatives to be incomparable for an agent. Incomparability may not be transitive as opposed to indif
ference in weak orders. Formally, an (irreflexive)3 partial ordering ⋏

 

on a set of alternatives is an irreflexive, anti
symmetric, and transitive relation.

Partially ordered preferences arise by many natural reasons; we give two examples motivated by kidney 
exchanges. For example, agents may be indifferent between goods that differ only slightly in quality. Indeed, 
recipients might be indifferent between two organs if their expected graft survival times differ by less than one 
year. However, small differences may add up to a significant contrast: an agent may be indifferent between a 
and b and also between b and c but strictly prefer a to c. Such preferences result in so-called semiorders, a special 
case of partial orders.

Partial preferences also emerge in multiple-criteria decision making. The two most important factors for esti
mating the quality of a kidney transplant are the human leukocyte antigen matching between donor and recipi
ent and the age of the donor.4 An organ is considered better than another if it is better with respect to both of 
these factors, leading to partial orders.

2.2. Housing Markets
Let H � (N, { ⋏a}a∈N) be a housing market with agent set N and with the preferences of each agent a ∈N repre
sented by a partial ordering ⋏a of the agents. For agents a, b, and c, we write a ≼c b as equivalent to b ⋏ca, and we 
write a~cb if a ⋏cb and b ⋏ca. We interpret a ⋏cb (or a≼c b) as agent c preferring (or weakly preferring, respectively) 
the house owned by agent b to the house of agent a. We say that agent a finds the house of b acceptable if a≼a b, 
and we denote by A(a) � {b ∈N : a≼a b} the set of agents whose house is acceptable for a. We define the accept
ability graph of the housing market H as the directed graph GH � (N, E) with E � {(a, b) |b ∈ A(a)}; we let 
|GH | � |N | + |E | . Note that (a, a) ∈ E for each a ∈N. The submarket of H on a set W ⊆N of agents is the housing 
market HW � (W, { ⋏

|W
a }a∈W), where ⋏

|W
a is the partial order ⋏a restricted to W; the acceptability graph of HW is the 

subgraph of GH induced by W, denoted by GH[W]. For a set W of agents, let H � W be the submarket HN\W 

obtained by deleting W from H; for W � {a}, we may write simply H � a.
For a set X ⊆ E of arcs in GH and an agent a ∈N, we let X(a) denote the set of agents b such that (a, b) ∈ X; when

ever X(a) is a singleton {b}, we abuse notation by writing X(a) � b. We also define δ�X(a) and δ+X(a) as the number 
of ingoing and outgoing arcs of a in X, respectively. For a set W ⊆N of agents, we let X[W] denote the set of arcs 
in X that run between agents of W.

We define an allocation X in H as a subset X ⊆ E of arcs in GH such that δ�X(a) � δ
+
X(a) � 1 for each a ∈N; that is, 

X forms a collection of cycles in GH containing each agent exactly once. Then, X(a) denotes the agent whose 
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house a obtains according to allocation X. If X(a) ≠ a, then a is trading in X. For allocations X and X′, we say that 
a prefers X to X′ if X′(a) ⋏aX(a).

For an allocation X in H, an arc (a, b) ∈ E is X-augmenting if X(a) ⋏ab. We define the envy graph GH
X ⋏

 of X as the 
subgraph of GH containing all X-augmenting arcs. A blocking cycle for X in H is a cycle in GH

X ⋏

, that is, a cycle C 
in which each agent a on C prefers C(a) to X(a). An allocation X is contained in the core of H if there does not exist 
a blocking cycle for it, that is, if GH

X ⋏
 is acyclic. A weakly blocking cycle for X is a cycle C in GH, where

X(a)≼a C(a) for each agent a on C and X(a) ⋏aC(a) for at least one agent a on C. The strict core of H contains alloca
tions that do not admit weakly blocking cycles.

3. Allocations in the Core with Arc Restrictions
We focus on the problem of finding an allocation in the core that fulfills certain arc constraints. The simplest such 
constraints arise when we require a given arc to be included in or, conversely, be avoided by the desired 
allocation.

The input of the ARC IN CORE problem is a housing market H � (N, { ⋏a}a∈N) and an arc (a, b) in GH, and its task 
is to decide whether there exists an allocation in the core of H that contains (a, b) or, in other words, in which 
agent a obtains the house of agent b. Analogously, the FORBIDDEN ARC IN CORE problem asks to decide if there 
exists an allocation in the core of H not containing (a, b).

By giving a reduction from ACYCLIC PARTITION (Bokal et al. [14]), we show in Theorem 1 that both of these pro
blems are computationally intractable even if each agent has a strict ordering over the houses. In fact, we cannot 
even hope to decide for a given agent a in a housing market H whether there exists an allocation in the core of H 
in which a is trading; we call this problem AGENT TRADING IN CORE. These results are in stark contrast to the 
polynomial-time solvability of the problem of finding a stable matching with forced and forbidden edges in an 
instance of STABLE ROOMMATES (Fleiner et al. [26]).

Theorem 1. Each of the following problems is NP-complete even if agents’ preferences are strict orders: 
• Arc in core.
• FORBIDDEN ARC IN CORE.
• Agent trading in core.

Proof. It is easy to see that all of these problems are in NP because, given an allocation X for H, we can check in 
linear time whether it admits a blocking cycle: taking the envy graph GH

X ⋏
 of X, we only have to check that it is 

acyclic, that is, contains no directed cycles (this can be decided using, e.g., some variant of the depth-first search 
algorithm).

To prove the NP-hardness of ARC IN CORE, we present a polynomial-time reduction from the ACYCLIC PARTITION 

problem: given a directed graph D, decide whether it is possible to partition the vertices of D into two acyclic 
sets V1 and V2. Here, a set W of vertices is acyclic if D[W] is acyclic. This problem was proved to be NP-complete 
by Bokal et al. [14].

Given our input graph D with vertex set V and arc set A, we construct a housing market H as follows (see 
Figure 1 for an illustration). We denote the vertices of D by v1, : : : , vn, and we define the set of agents in H as

N � {ai, bi, ci, di | i ∈ {1, : : : , n} ∪ {a?, b?, a0, b0}:

The preferences of the agents are as shown subsequently; for each agent a ∈N, we only list those agents whose 
house a finds acceptable. Here, for any set W of agents, we let [W] denote an arbitrary fixed ordering of W:

a? : b?;
b? : a0, a1, : : : , an, a?;
ai : bi, b? where i ∈ {0, 1, : : : , n};
bi : ci+1, di+1 where i ∈ {0, 1, : : : , n� 1};
bn : a0;

ci : di, [{cj | (vi, vj) ∈ A}], ai where i ∈ {1, : : : , n};
di : ci, [{dj | (vi, vj) ∈ A}], ai wherei ∈ {1, : : : , n}:

We finish the construction by defining our instance of ARC IN CORE as the pair (H, (a?, b?)). We claim that there 
exists an allocation in the core of H containing (a?, b?) if and only if the vertices of D can be partitioned into two 
acyclic sets.

“⇒”: Let us suppose that there exists an allocation X that does not admit any blocking cycles and contains 
(a?, b?).
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We first show that X contains every arc (ai, bi) for i ∈ {0, 1, : : : , n}. To see this, observe that the only possible 
cycle in X that contains (a?, b?) is the cycle (a?, b?) of length two because the arc (b?, a?) is the only arc going into 
a?. Hence, if, for some i ∈ {0, 1, : : : , n}, the arc (ai, bi) is not in X, then the cycle (ai, b?) is a blocking cycle. As a con
sequence, exactly one of the arcs (bi, ci+1) and (bi, di+1)must be contained in X for any i ∈ {0, 1, : : : , n� 1}, and simi
larly, exactly one of the arcs (ci, ai) and (di, ai) is contained in X for any i ∈ {1, : : : , n}.

Next, consider the agents ci and di for some i ∈ {1, : : : , n}. As they are each other’s top choice, it must be the 
case that either (ci, di) or (di, ci) is contained in X as otherwise they both prefer to trade with each other as opposed 
to their allocation according to X, and the cycle (ci, di) would block X. Using the facts of the previous paragraph, 
we obtain that, for each vi ∈ V, exactly one of the following conditions holds: 
• X contains the arcs (bi�1, ci), (ci, di), and (di, ai), in which case we put vi into V1.
• X contains the arcs (bi�1, di), (di, ci), and (ci, ai), in which case we put vi into V2.
We claim that both V1 and V2 are acyclic in D. For a contradiction, let C1 be a cycle within vertices of V1 in D. Note 

that any arc (vi, vj) of C1 corresponds to an arc (di, dj) in the acceptability graph G � GH for H. Moreover, because vi ∈

V1 by definition, we know that di prefers dj to X(di) � ai. This yields that the agents {di |vi appears on C1} form a 
blocking cycle for H. The same argument works to show that any cycle C2 within V2 corresponds to a blocking cycle 
formed by the agents {ci |vi appears on C2}, proving the acyclicity of V2.

“⇐”: Assume now that V1 and V2 are two acyclic subsets of V forming a partition. We define an allocation X 
to contain the cycle (a?, b?) and a cycle consisting of the arcs in

X◦ � {(bn, a0)} ∪ {(ai, bi) |v ∈ {0, 1, : : : , n}}

∪ {(bi�1, ci), (ci, di), (di, ai) |vi ∈ V1}

∪ {(bi�1, di), (di, ci), (ci, ai) |vi ∈ V2}:

Observe that X◦ is indeed a cycle and that X is an allocation containing the arc (a?, b?). We claim that the core of 
H contains X. Assume for the sake of contradiction that X admits a blocking cycle C. Now, because a? as well as 
each agent ai, i ∈ {0, 1, : : : , n}, is allocated its first choice by X, none of these agents appears on C. This implies that 
neither b? nor any of the agents bi, i ∈ {0, 1, : : : , n}, appears on C because these agents have no in-neighbors that 
could possibly appear on C. Furthermore, every agent in the set {ci |vi ∈ V1} ∪ {di |vi ∈ V2} is allocated its first 
choice by X. It follows that C may contain only agents from D1 � {di |vi ∈ V1} and C2 � {ci |vi ∈ V2}. Observe that 
there is no arc in G from D1 to C2 or vice versa; hence, C is either contained in G[D1] or G[C2]. Now, because any 
cycle within G[D1] or G[C2] corresponds to a cycle in D, the acyclicity of V1 and V2 ensures that X admits no 
blocking cycle, proving the correctness of our reduction for the ARC IN CORE problem.

Observe that the same reduction proves the NP-hardness of AGENT TRADING IN CORE because agent a? is trading 
in an allocation X for H if and only if the arc (a?, b?) is used in X.

Finally, we modify this construction to give a reduction from ACYCLIC PARTITION to FORBIDDEN ARC IN CORE. We 
simply add a new agent s? to H with the house of s? being acceptable only for a? as its second choice (after b?) 
and with s? preferring only a? to its own house. We claim that the resulting market H′ together with the arc 
(a?, s?) is a yes instance of FORBIDDEN ARC IN CORE if and only if H with (a?, b?) constitutes a yes instance of ARC IN 

CORE. To see this, it suffices to observe that any allocation for H′ not containing (a?, s?) is either blocked by the 

Figure 1. Illustration of the housing market H constructed in the NP-hardness proof for arc in core. Here and everywhere else, 
we depict markets through their acceptability graphs with all loops omitted. Preferences are indicated by numbers along the 
arcs; the symbol ∞ indicates the least-preferred choice of an agent. The example assumes that (v1, v2) and (vn, v2) are arcs of the 
directed input graph D as indicated by the dashed arcs. 
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cycle (a?, s?) of length two or contains the arc (a?, b?). Hence, any allocation in the core of H′ contains (a?, b?) if 
and only if it does not contain (a?, s?), proving the theorem. w

Theorem 1 shows that there is a computational gap between the strict core and the core: even though all three 
problems considered in Theorem 1 are NP-complete even if agents’ preferences are strict, the corresponding pro
blems become computationally tractable for the strict core. This is trivial if the preferences are strict because, in 
that case, the strict core contains a unique allocation (Roth and Postlewaite [48]). If preferences are weak orders 
(that is, if each agent orders the houses the agent finds acceptable in a linear order allowing ties), then the set of 
houses an agent can obtain in a strict core allocation can be computed in polynomial time based on the character
ization of the strict core by Quint and Wako [47]; see Appendix B for details. We remark that, because the charac
terization of Quint and Wako [47] crucially depends on weak orders, the same approach does not work when 
preferences are partial orders.

4. The Effect of Improvements in Housing Markets
Let H � (N, { ⋏a}a∈N) be a housing market containing agents p and q. We consider a situation in which the prefer
ences of q are modified by increasing the value of p for q without altering the preferences of q over the remaining 
agents. If the preferences of q are given by a strict or weak order, then this translates to shifting the position of p 
in the preference list of q toward the top. Formally, a housing market H′ � (N, { ⋏

′
a}a∈N) is called a (p, q)-improve

ment of H if ⋏a � ⋏

′
a for any a ∈N \ {q}, and ⋏

′
q is such that (i) a ⋏

′
q b if and only if a ⋏qb for each a, b ∈N \ {p}, and 

(ii) if a ⋏qp, then a ⋏

′
q p for each a ∈N. We also say that a housing market is a p-improvement of H if it can be

obtained by a sequence of (p, qi)-improvements for a series q1, : : : , qk of agents for some k ∈ N.
To examine how p-improvements affect the situation of p in the market, one may consider several solution con

cepts, such as the core, the strict core, and so on. We regard a solution concept as a function Φ that assigns a set 
of allocations to each housing market. Based on the preferences of p, we can compare allocations in Φ. Let Φ+p (H)
denote the set containing the best houses p can obtain in Φ(H):

Φ
+
p (H) � {X(p) |X ∈ Φ(H), ∀X′ ∈Φ(H) : X′(p)≼p X(p)}:

Similarly, let Φ�

p (H) be the set containing the worst houses p can obtain in Φ(H).
Following the notation used by Biró et al. [10], we say that Φ respects improvement for the best available house or 

simply satisfies the RI-best property if, for any housing markets H and H′ such that H′ is a p-improvement of H for 
some agent p, a≼p a′ for every a ∈Φ+p (H) and a′ ∈Φ+p (H

′). Similarly, Φ respects improvement for the worst available 
house or simply satisfies the RI-worst property if, for any housing markets H and H′ such that H′ is a p-improve
ment of H for some agent p, a≼p a′ for every a ∈Φ�

p (H) and a′ ∈Φ�

p (H
′).

Notice that this definition does not take into account the possibility that a solution concept Φ may become 
empty as a result of a p-improvement. To exclude such a possibility, we may require the condition that an 
improvement does not destroy all solutions. We say that Φ strongly satisfies the RI-best (or RI-worst) property if, 
besides satisfying the RI-best (or, respectively, RI-worst) property, it also guarantees that, whenever Φ(H)≠ ø, 
then Φ(H′)≠ ø also holds when H′ is a p-improvement of H for some agent p.

We prove that the core of housing markets strongly satisfies the RI-best property. In fact, Theorem 2 (proved 
in Section 4.2) states a slightly stronger statement.

Theorem 2. For any allocation X in the core of housing market H and a p-improvement H′ of H, there exists an allocation 
X′ in the core of H′ such that either X(p) � X′(p) or p prefers X′ to X. Moreover, given H, H′, and X, it is possible to find 
such an allocation X′ in O( |H | ) time.

Corollary 1. The core of housing markets strongly satisfies the RI-best property.

By contrast, we show that the RI-worst property does not hold for the core.

Proposition 1. The core of housing markets violates the RI-worst property even if agents’ preferences are strict orders.

Proof. Let N � {a, b, c, p, q} be the set of agents. The preferences indicated in Figure 2 define a housing market H 
and a (p, q)-improvement H′ of H.

We claim that, in every allocation in the core of H, agent p obtains the house of a. To see this, let X be an alloca
tion in which (p, a) ∉ X. If agent a is not trading in X, then a and p form a blocking cycle; therefore, we have 
(b, a) ∈ X. Now, if (c, b) ∉ X, then c and b form a blocking cycle for X; otherwise, q and b form a blocking cycle for 
X. Hence, p obtains p’s top choice in all core allocations of H.

However, it is easy to verify that the core of H′ contains an allocation in which p obtains only p’s second choice
(q’s house) as shown in Figure 2. w
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We remark that Corollary 1 and Proposition 1 illuminate both the similarities of and the contrast between the 
properties of the core and the strict core. Recall that, for strict preferences, there is a unique allocation in the strict 
core, and in this case, the results of Biró et al. [10] show that the strict core strongly satisfies both the RI-best and 
the RI-worst properties. On the one hand, Proposition 1, hence, shows a sharp difference between the core and 
the strict core with respect to the RI-worst property. On the other hand, Corollary 1 is very close to the analogous 
findings by Biró et al. [10]: both results establish that the given solution concept (the core or the strict core) satis
fies the RI-best property. See also Table 1 for a comparison of the core and the strict core in relation to the RI-best 
and RI-worst properties. We remark that, despite the proximity of Corollary 1 with the results by Biró et al. [10] 
for the strict core, they are independent in the sense that neither of them implies the other.

We describe our algorithm for proving Theorem 2 in Section 4.1 and prove its correctness in Section 4.2. In Sec
tion 4.3, we look at the problem of deciding whether a p-improvement leads to a situation strictly better for p.

4.1. Description of Algorithm HM-Improve
Before describing our algorithm for Theorem 2, we need some notation.

Suballocations and Their Envy Graphs. Given a housing market H � (N, { ⋏a}a∈N) and two subsets U and V of 
agents in N with |U | � |V | , we say that a set Y of arcs in GH � (N, E) is a suballocation from U to V in H if 
• δ+Y(v) � 0 for each v ∈ V, and δ+Y(a) � 1 for each a ∈N \V.
• δ�Y (u) � 0 for each u ∈U, and δ�Y (a) � 1 for each a ∈N \U.
Note that Y forms a collection of mutually vertex-disjoint cycles and paths P1, : : : , Pk in GH with each path Pi 

leading from a vertex of U to a vertex of V. Moreover, the number of paths in this collection is k � |U�V | , where 
� stands for the symmetric difference operation. We call U the source set of Y and V its sink set. See Figure 3 for
an illustration.

Given a suballocation Y from U to V in H, we say that an arc (a, b) ∈ E is Y-augmenting if either a ∈ V or Y(a) ⋏ab. 
We define the envy graph of Y as GH

Y ⋏

� (N, EY), where EY is the set of Y-augmenting arcs in E. A blocking cycle 
for Y is a cycle in GH

Y ⋏

. We say that the suballocation Y is stable if no blocking cycle exists for Y, that is, if its envy 
graph is acyclic.

We are now ready to propose an algorithm called HM-Improve that, given an allocation X in the core of H out
puts an allocation X′ as required by Theorem 2. Let q1, : : : , qk denote the agents for which H′ can be obtained 
from H by a series of (p, qi)-improvements, i � 1, : : : , k. Observe that we can assume without loss of generality 
that the agents q1, : : : , qk are all distinct.

Figure 2. (Color online) The housing markets H and H′ in the proof of Proposition 1. For both H and H′, the allocation repre
sented by bold (and blue) arcs yields the worst possible outcome for p in any core allocation of the given market. 

Table 1. Summary of known results on the property of respecting improvement for the core and the strict core in housing 
markets and in the stable roommates model. Symbol ✓ signifies that the given solution concept strongly satisfies the given 
property (namely, RI-best or RI-worst), whereas symbol ✓ø means that the given property is satisfied, but not strongly sat
isfied. Symbol ✗ means that the given property fails to hold.

Housing market Stable roommates

Core Strict core Core Strict core

RI-best Strict preferences ✓(Corollary 1) ✓ (Biró et al. [10]) ✓ø (Corollary 2, Proposition 4) ✓ø (Corollary 2, Proposition 4)
Weak preferences ✓( Corollary 1) ✓ø (Biró et al. [10]) ✗ (Biró et al. [10]) ✗ (Proposition 5)
Partial order preferences ✓( Corollary 1) open ✗ (Biró et al. [10]) ✗ (Proposition 5)

RI-worst Strict preferences ✗ (Proposition 1) ✓ (Biró et al. [10]) ✗ (Biró et al. [10]) ✗ (Biró et al. [10])
Weak preferences ✗ (Proposition 1) ✓ø (Biró et al. [10]) ✗ (Biró et al. [10]) ✗ (Biró et al. [10])
Partial order preferences ✗ (Proposition 1) Open ✗ (Biró et al. [10]) ✗ (Biró et al. [10])
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Algorithm HM-Improve. For a pseudocode description, see Algorithm 1, and for an example demonstrating the 
algorithm, see Example 1.

First, HM-Improve checks whether X belongs to the core of H′ and, if so, outputs X′ � X. Hence, we may 
assume that X admits a blocking cycle in H′. Let Q denote that set of those agents among q1, : : : , qk that in H′ pre
fer p’s house to the one they obtain in allocation X, that is,

Q � {qi : X(qi) ⋏

′
qi

p, 1 ≤ i ≤ k}:

Observe that, if an arc is an X-augmenting arc in H′ but not in H, then it must be an arc of the form (q, p), where 
q ∈Q. Therefore, any cycle that blocks X in H′ must contain an arc from {(q, p) : q ∈Q} as otherwise it would block 
X in H as well.

HM-Improve proceeds by modifying the housing market: for each q ∈Q, it adds a new agent q̃ to H′ with q̃ 
taking the place of p in the preferences of q; the only house that agent q̃ prefers to the agent’s own is the house of 
p (the preferences of p remain unchanged). Let H̃ be the housing market obtained. Then, the acceptability graph 
G̃ of H̃ can be obtained from the acceptability graph of H′ by subdividing the arc (q, p) for each q ∈Q with a new 
vertex corresponding to agent q̃, that is, replacing the arc (q, p) with arcs (q, q̃) and (q̃, p). For an illustration of the 
construction, see Figure 4. Let Q̃ � {q̃ : q ∈Q}, Ñ �N ∪ Q̃, and let us denote by Ẽ be the set of arcs in G̃.

Initialization. Let Y � X \ {(q, X(q)) : q ∈Q} ∪ {(q, q̃) : q ∈Q} in G̃. Observe that Y is a suballocation in H̃ with 
source set {X(q) : q ∈Q} and sink set Q̃. Additionally, we define a set R of irrelevant agents, initially empty. We 
may think of irrelevant agents as temporarily deleted from the market.

Iteration. Next, algorithm HM-Improve iteratively modifies the suballocation Y and the set R of irrelevant 
agents. It maintains the property that Y is a suballocation in H̃ �R; we denote its envy graph by G̃Y ⋏

, having ver
tex set Ñ \R. Whereas the source set of Y changes quite freely during the iteration, the sink set always remains a 
subset of Q̃.

At each iteration, HM-Improve performs the following steps (see Figure 5 for illustration): 

Figure 3. (Color online) Illustration for the concept of suballocation. The arc sets Y1 and Y2, shown with bold, teal lines, are both 
suballocations from {p} to {a} in the depicted housing market (as usual, loops are omitted). Source and sink vertices of Y are 
depicted with a white or black diamond, respectively. For each of Y1 and Y2, we show the corresponding envy arcs (i.e., the arcs 
in the corresponding envy graphs) with dashed, red lines; as can be seen, Y1 is stable, whereas Y2 is not. 

Figure 4. (Color online) The housing market H of Example 1 and the modified housing market H̃ constructed by algorithm 
HM-Improve based on the p-improvement of H in which q1 and q2 change their preferences so that q1 comes to prefer p to a and 
q2 comes to prefer p to d. We depict the core allocation X for H using blue lines, and we depict the corresponding suballocation Y, 
as constructed by algorithm HM-Improve in its initialization step, using teal lines. Suballocation Y has two sources, a and d, 
highlighted by diamonds, and two sinks, q̃1 and q̃2. Envy arcs for both the original allocation X in H and the suballocation Y in H̃ 
are shown using red, dashed lines. 
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Step 1. Let U be the source set of Y and V its sink set. If U � V, then the iteration stops.
Step 2. Otherwise, if there exists a Y-augmenting arc (s, u) in G̃Y ⋏

 entering some source vertex u ∈U (note that 
s ∈ Ñ \R), then proceed as follows. 

a. If s ∉ V, then let u′ � Y(s). The algorithm modifies Y by deleting the arc (s, u′) and adding the arc (s, u) to Y.
Note that Y, thus, becomes a suballocation from U \ {u} ∪ {u′} to V in H̃ �R.

b. If s ∈ V, then simply add the arc (s, u) to Y. In this case, Y becomes a suballocation from U \ {u} to V \ {s} in
H̃ �R.
Step 3. Otherwise, let u be any vertex in U \V (not entered by any arc in G̃Y ⋏

) and let u′ � Y(u). The algorithm 
adds u to the set R of irrelevant agents and modifies Y by deleting the arc (u, u′). Again, Y becomes a suballocation 
from U \ {u} ∪ {u′} to V in H̃ �R.

Output. Let Y be the suballocation at the end of the preceding iteration, U � V its source and sink set, and R the 
set of irrelevant agents. Note that Q̃ \R \U may contain at most one agent. Indeed, if q̃ ∈ Q̃ \R \U, then Y must 
contain the unique arc leaving q̃, namely, (q̃, p); therefore, by δ�Y (p) ≤ 1, at most one such agent q̃ can exist.

To construct the desired allocation X′, the algorithm first applies the variant of the TTC algorithm that can 
deal with partial order preferences, described in Appendix A, to the submarket H′R∩N of H′ when restricted to 
the set of irrelevant agents. This algorithm computes an allocation XR in the core of H′R∩N.

HM-Improve next deletes all agents in Q̃. Because any agent in Q̃ ∩U � Q̃ ∩ V � V has zero indegree and out
degree in Y, there is no need to modify our suballocation when deleting such agents; the same applies to agents 
in Q̃ ∩ R. By contrast, if there exists an agent q̃ ∈ Q̃ \R \U, then Y must contain the unique incoming and outgo
ing arcs of q̃, and therefore, the algorithm replaces the arcs (q, q̃) and (q̃, p) with the arc (q, p). This way, we obtain 
an allocation on the submarket of H′ on agents set N \R.

Finally, HM-Improve outputs an allocation X′ defined as

X′ �
XR ∪ Y if Q̃ \R \U � ø,
XR ∪ Y \ {(q, q̃), (q̃, p)} ∪ {(q, p)} if Q̃ \R \U � {q̃}:

�

Algorithm 1 (HM-Improve)
Input: housing market H � (N, ⋏), its p-improvement H′ � (N, ⋏

′) for some agent p, and an allocation X in the 
core of H.
Output: an allocation X′ in the core of H′ such that X(p) ⋏pX′(p) or X(p) � X′(p). 
1: if X is in the core of H′ then return X
2: Set Q � {a ∈N : ⋏a ≠ ⋏

′
a and X(a) ⋏

′
ap}.

3: Initialize housing market H̃ :�H.

Figure 5. (Color online) Illustration of the possible steps performed during the iteration by HM-Improve. The edges of the cur
rent suballocation Y are depicted using bold, teal lines, whereas edges of the envy graph G̃Y ⋏

 are shown by dashed, red lines. As 
in Figure 3, source and sink vertices of Y are depicted with a white or black diamond, respectively. Vertices of R as well as all 
edges incident to them are shown in gray. 

Schlotter, Biró, and Fleiner: The Core of Housing Markets from an Agent’s Perspective 
Mathematics of Operations Research, Articles in Advance, pp. 1–27, © 2024 INFORMS 11 



4: for all q ∈Q do
5: Add new agent q̃ to H̃, preferring only p to the agent’s own house.
6: Replace p with q̃ in the preferences of q in H̃.
7: Set Q̃ � {q̃ : q ∈Q}. . H̃ is now defined.
8: Create suballocation Y :� X \ {(q, X(q)) : q ∈Q} ∪ {(q, q̃) : q ∈Q}.
9: Set U and V as the source and sink set of Y, respectively, and set R :� ø.

10: while U ≠ V do
11: if there exists an arc (s, u) in the envy graph G̃Y ⋏

 with u ∈U then
12: if s ∉ V then
13: Set u′ :� Y(s), and update Y← Y \ {(s, u′)} ∪ {(s, u)} and U←U \ {u} ∪ {u′}.
14: else . Case s ∈ V.
15: Update Y← Y ∪ {(s, u)}, U←U \ {u} and V← V \ {s}.
16: else . No arc enters U in the envy graph G̃Y ⋏

.
17: Pick any agent u ∈U \V, and set u′ :� Y(u).
18: Update Y← Y \ (u, u′), U←U \ {u} ∪ {u′} and R← R ∪ {u}.
19: Compute a core allocation XR in the submarket H′R∩N.
20: if Q̃ \R \U � ø then set X′ :� XR ∪ Y.
21: else set X′ :� XR ∪ Y \ {(q, q̃), (q̃, p)} ∪ {(q, p)}, where Q̃ \R \U � {q̃}.
22: return the allocation X′.

Let us now illustrate how HM-Improve works on an example.

Example 1. Let us consider the housing market H shown in Figure 4, and let X denote the allocation in the core 
of H depicted, that is, X consists of the cycles (p, j), (a, b, c, q1), (d, q2), and (e, f , g, h, i). Consider now the p-improve
ment H′ of H in which both q1 and q2 place p as their second favorite choice (instead of the third one).

The algorithm starts by checking whether X is in the core of H′ and finds that—because arcs (q1, p) and (q2, p)
have become X-augmenting arcs—allocation X admits the blocking cycle (q1, p, h). Thus, the algorithm proceeds 
with modifying the housing market by subdividing the arcs (q1, p) and (q2, p)with newly added agents q̃1 and q̃2.

In the initialization phase, algorithm HM-Improve constructs the suballocation 
Y based on X in the modified housing market H̃ as seen on Figure 4; we repeat 
the figure to the right here. Its source set is U � {a, d}, and its sink set is 
V � Q̃ � {q̃1, q̃2}. The set of irrelevant agents is set to R � ø. Then, the algorithm 
starts iterating steps 1–3 with the following results: 

1. Considering the initial market H̃ as shown in Figure 4, the algorithm finds
that both sources, a and d, are entered by some Y-augmenting arc, namely, by 
(q1, d) and (i, a). It may choose either one of these arcs with which to proceed; we 
consider the course of the algorithm when it starts with the arc (q1, d): it replaces 
(q1, q̃1)with (q1, d) in Y, so the source set becomes U � {a, q̃1}, whereas the sink set 
remains V � {q̃1, q̃2}. The resulting suballocation is depicted to the right.

2. Next, the algorithm finds that only the source agent a (from among the
source set U � {a, q̃1}) is entered by some Y-augmenting arc, namely, by (i, a). 
It replaces (i, e) with (i, a) in Y, yielding the suballocation shown to the right; 
the source set becomes U � {e, q̃1}. 
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3. Next, the algorithm finds that neither of the sources e and q̃1 is entered by an
Y-augmenting arc; hence, it takes the unique source agent that is not a sink,
namely, e, and declares it irrelevant by setting R � {e} and removing e from the
market H̃. The arcs of Y incident to e are removed from Y; thus, the source set
becomes U � {f , q̃1}.

4. Next, the algorithm finds that only the source agent f (from among the source
set U � {f , q̃1}) is entered by some Y-augmenting arc, namely, by (b, f). It replaces 
(b, c) with (b, f) in Y, and the source set becomes U � {c, q̃1}. 

5. Next, the algorithm finds that only the source agent c (from among the source
set U � {f , q̃1}) is entered by some Y-augmenting arc, namely, the arcs (q2, c) and 
(g, c). Here, we consider the course of the algorithm when it chooses the arc 
(q2, c): it replaces (q2, q̃2)with (q2, c) in Y, and the source set becomes U � {q̃2, q̃1}. 

At this point, the algorithm detects that the source set U equals the sink set V � Q̃ and stops the iteration. It 
computes a core allocation for the submarket H′R∩N of irrelevant agents; because R � {e}, this allocation consists 
of the single arc (e, e). Because Q̃ \R \U � ø, it outputs the allocation Y ∪ {(e, e)} in which agents trade along the 
cycles (p, j), (q1, c, q2, d), and (a, b, f , g, h, i); see Figure 6.

Consider now an alternative course for the algorithm when, after the fourth iteration (see the figure next to 
step 4), in the fifth iteration step, the arc (g, c) gets chosen instead of the arc (q2, c); we omit the corresponding 
figures for steps 5∗ and 6∗ in this alternative course: 

5*. The algorithm replaces (g, h) with (g, c) in Y, and the source set becomes U � {h, q̃1}.
6*. The algorithm replaces (p, j) with (p, h) in Y, and the source set becomes U � {j, q̃1}.

7*. The algorithm finds that no Y-augmenting arc enters either of the sources 
and, thus, removes agent j, the only agent in U \V, together with the arc (j, p). 
Hence, the set of irrelevant agents is set to R � {e, j}, and the source set becomes 
U � {p, q̃1}. 

8*. The algorithm finds that only the source p is entered by some Y-augmenting 
arc, namely, by the arcs (q̃1, p) and (q̃2, p). It chooses one of them, say (q̃1, p). 
Because q̃1 is a sink, it adds (q̃1, p) to Y, removes p from the source set, and 
removes q̃1 from the sink set. This yields U � {q̃1} and V � {q̃2}. 
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9*. The unique source q̃1 is not entered by any Y-augmenting arc; therefore, the 
algorithm declares it irrelevant by setting R � {e, j, q̃1} and removes it from the 
market. The arc (q̃1, p) is removed from Y, and the source set becomes U � {p}. 

10*. The algorithm finds that the (unique) source p is entered by a unique 
Y-augmenting arc, namely, (q̃2, p). Because q̃2 is a sink (recall that V � {q̃2} at
this point), it adds (q̃2, p) to Y, removes p from the source set, and removes q̃2 

from the sink set. This yields U � V � ø. 

At this point, the algorithm detects that the source set U equals the sink set V (both empty) and stops the itera
tion. It computes a core allocation for the submarket H′R∩N of irrelevant agents; because R � {e, j, q̃1}, this alloca
tion consists of the arcs (e, e) and (j, j). Because Q̃ \R \U � {q̃2}, it outputs the allocation Y \ {(q2, q̃2), (q̃2, p)}
∪ {(q2, p} ∪ {(e, e), (j, j)} in which agents trade along the single cycle (p, h, i, a, b, f , g, c, q1, d, q2); see Figure 6.

4.2. Correctness of Algorithm HM-Improve
We begin proving the correctness of algorithm HM-Improve with the following.

Lemma 1. At each iteration, suballocation Y is stable in H̃ �R.

Proof. The proof is by induction on the number n of iterations performed. For n � 0, suppose for the sake of con
tradiction that C is a cycle in G̃Y ⋏

. First note that C cannot contain any agent in Q̃ because the unique arc entering 
q̃, that is, the arc (q, q̃), is contained in Y by definition. Hence, C is also a cycle in H. Moreover, recall that initially 
Y(a) � X(a) for each agent a ∈N \Q, and by the definition of Q, we also know X(q) ⋏qq̃ � Y(q) for each q ∈Q. 
Therefore, any arc of C is an X-augmenting arc as well, and thus, C is a blocking cycle for X in H. This contradicts 
our assumption that X is in the core of H. Hence, Y is stable in H̃ at the beginning; note that R � ø initially.

For n ≥ 1, assume that the algorithm has performed n � 1 iterations so far. Let Y and R be as defined at the 
beginning of the nth iteration, and let Y′ and R′ be the suballocation and the set of irrelevant agents obtained 
after the modifications in this iteration. Let also U and V (U′ and V′) denote the source and sink set of Y (of Y′, 
respectively). By induction, we may assume that Y is stable in H̃ �R, so G̃Y ⋏

 is acyclic. In case HM-Improve 
does not stop in step 1 but modifies Y and possibly R, we distinguish between three cases: 

a. The algorithm modifies Y in step 2(a) by using a Y-augmenting arc (s, u), where s ∉ V; then, R′ � R. Note that
s ∈ prefers Y′ to Y, and for any other agent a ∈N \R′, we know Y(a) � Y′(a). Hence, this modification amounts to 
deleting all arcs (s, a) from the envy graph G̃Y ⋏

, where Y(s) ⋏sa≼s Y′(s).

Figure 6. (Color online) Two allocations in the core of housing market H′ of Example 1 computed by algorithm HM-Improve. 
The figure to the left depicts the allocation obtained by steps 1–5, whereas the figure to the right depicts the allocation obtained 
when steps 1–4 are followed by steps 5∗–10∗. 
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b. The algorithm modifies Y in step 2(b) by using a Y-augmenting arc (s, u), where s ∈ V; then, R′ � R. First
observe that V ⊆ Q̃ as the only way the sink set of Y can change is when an agent ceases to be a sink of the current 
suballocation because of the application of step 2(b). Thus, s ∈ V implies s ∈ Q̃, which means that (s, u) must be the 
unique arc (s, p) leaving s. Hence, adding (s, u) to Y amounts to deleting the arc (s, u) from the envy graph G̃Y ⋏

.
c. The algorithm modifies Y in step 3 by adding an agent u ∈U \V to the set of irrelevant agents, that is,

R′ � R ∪ {u}. Then, Y′(a) � Y(a) for each agent a ∈N \R′, so the envy graph G̃Y′ ⋏
 is obtained from G̃Y ⋏
 by deleting 

u.
Because deleting some arcs or a vertex from an acyclic graph results in an acyclic graph, the stability of Y′ is 

clear. w

We proceed with the observation that an agent’s situation in Y may only improve unless it becomes irrelevant: 
this is a consequence of the fact that the algorithm only deletes arcs and agents from the envy graph G̃Y ⋏

.

Proposition 2. Let Y1 and Y2 be two suballocations computed by algorithm HM-Improve with Y1 computed at an earlier 
step than Y2, and let a be an agent that is not irrelevant at the end of the iteration when Y2 is computed. Then, either 
Y1(a) � Y2(a) or a prefers Y2 to Y1.

In the next two lemmas, we prove that HM-Improve produces a core allocation. We start by explaining why 
irrelevant agents may not become the cause of instability in the housing market.

Lemma 2. At the end of algorithm HM-Improve, there does not exist an arc (a, b) ∈ Ẽ such that a ∉ R, b ∈ R and Y(a) ⋏

′
a b.

Proof. Suppose for contradiction that (a, b) is such an arc, and let Y and R be as defined at the end of the last itera
tion. Suppose that HM-Improve adds b to R during the nth iteration, and let Yn be the suballocation at the begin
ning of the nth iteration. By Proposition 2, either Yn(a) � Y(a) or Yn(a) ⋏

′
a Y(a). The assumption Y(a) ⋏

′
a b yields 

Yn(a) ⋏

′
a b by the transitivity of ⋏

′
a. Thus, (a, b) is a Yn-augmenting arc entering b, contradicting our assumption 

that the algorithm put b into R in step 3 of the nth iteration. w

Lemma 3. The output of HM-Improve is an allocation in the core of H′.

Proof. Let Y and R be the suballocation and the set of irrelevant agents, respectively, at the end of algorithm 
HM-Improve, and let U be the source set of Y. To begin, we prove it formally that the output X′ of HM-Improve 
is an allocation for H′.

Because HM-Improve stops only when U � V, the arc set Y forms a collection of mutually vertex-disjoint cycles 
in H̃ �R that covers each agent in Ñ \R \U; agents of U have neither incoming nor outgoing arcs in Y. As no 
agent outside Q̃ can become a sink of Y, we know U � V ⊆ Q̃.

First, assume Q̃ \R \U � ø, that is, Q̃ \R �U � V. In this case, Y is the union of cycles covering each agent in 
N \R exactly once. Hence, Y is an allocation in the submarket of H′ restricted to agent set N \R, that is, H′N\R.

Second, assume Q̃ \R \U ≠ ø. In this case, Y is the union of cycles covering each agent in Ñ \R \V exactly 
once. Let q̃ be an agent in Q̃ \R \V. Because q̃ is not a sink of Y, is not irrelevant, and has a unique outgoing arc 
to p, we know (q̃, p) ∈ Y. As Y cannot contain two arcs entering p, this proves that Q̃ \R \V � Q̃ \R \U � {q̃}. 
Moreover, because the unique arc entering q̃ is from q, we get (q, q̃) ∈ Y. Therefore, the arc set Y \ {(q, q̃), (q̃, p)} ∪
{(q, p)} is an allocation in H′N\R.

Consequently, as XR is an allocation on H′R∩N, we obtain that X′ is indeed an allocation in H′ in both cases.
Now, we prove that X′ is in the core of H′ by showing that the envy graph GH′

X′ ⋏
 of X′ is acyclic. First, the sub

graph GH′

X′ ⋏

[R] is exactly the envy graph of XR in H′R∩N and, hence, is acyclic.

Claim. Let a ∈N \R and let (a, b) be an X′-augmenting arc in H′. Then, (a, b) is Y-augmenting as well, that is, Y(a) ⋏

′
a b.

Proof of Claim. Let us suppose first that (a, b) ∉ {(q, p) : q ∈Q}: then, (a, b) is an arc in GH̃ . If a ∉Q or Y(a) ∉ Q̃, then 
Y(a) � X′(a), and thus, the claim follows immediately. If a ∈Q and Y(a) � ã ∈ Q̃, then X′(a) � p ⋏

′
a b implies that a 

prefers b to Y(a) � ã in H̃ as well, that is, (a, b) is Y-augmenting.
Suppose now that (a, b) � (q, p) for some q ∈Q. We finish the proof of the claim by showing that (q, p) is not 

X′-augmenting if q ∉ R (recall that we assumed q � a ∉ R).
First, if q̃ ∉U, then necessarily {(q, q̃), (q̃, p)} ⊆ Y, and so (q, p) ∈ X′, which means that (q, p) is not X′-augmenting.
Second, if q̃ ∈U, then consider the iteration in which q̃ became a source for our suballocation, and let Yn denote 

the suballocation at the end of this iteration. Agent q̃ can become a source in either step 2(a) or step 3 because 
step 2(b) always results in one agent being deleted from the source set without a replacement. Recall that the 
only arc entering q̃ is (q, q̃). If q̃ became the source of Yn in step 2(a), then we know q̃ ⋏

′
q Yn(q). By Proposition 2, 

this implies q̃ ⋏

′
q Y(q). By the construction of H̃, we obtain that q prefers Y(q) � X′(q) to p in H′, so (q, p) is not 
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X′-augmenting. Finally, if agent q̃ became the source of Yn in step 3, then this implies q ∈ R, which contradicts 
our assumption a � q ∉ R. w

Our claim implies that GH′

X′ ⋏

[N \R] is a subgraph of G̃Y ⋏

, and therefore, it is acyclic by Lemma 1. Hence, any 
cycle in GH′

X′ ⋏
 must contain agents in both R and N \R (recall that GH′

X′ ⋏

[R] is acyclic as well). However, GH′

X′ ⋏
 con

tains no arcs from N \R to R because such arcs cannot be Y-augmenting by Lemma 2. Thus, GH′

X′ ⋏
 is acyclic and 

X′ is in the core of H′. w

The following lemma, the last one necessary to prove Theorem 2, shows that HM-Improve runs in linear time; 
the proof relies on the fact that, in each iteration but the last, either an agent or an arc is deleted from the envy 
graph, thus limiting the number of iterations by |E | + |N | .

Lemma 4. Algorithm HM-Improve runs in O( |H | ) time.

Proof. Observe that the initialization takes O( |E | + |N | ) �O( |E | ) time; note that E contains every loop (a, a), 
where a ∈N, so we have |E | ≥ |N | . We can maintain the envy graph G̃Y ⋏

 in a way that deleting an arc from it 
when it ceases to be Y-augmenting can be done in O(1) time, and detecting whether a given agent is entered by a 
Y-augmenting arc also takes O(1) time. Observe that there can be at most |E | + |N | iterations because at each
step but the last, either an agent or an arc is deleted from the envy graph. Thus, the whole iteration takes O( |E | )
time. Finally, the allocation XR for irrelevant agents by the variant of TTC described in Appendix A can be com
puted in O( |H | ) time. Hence, the overall running time of our algorithm is O( |H | ) +O( |E | ) �O( |H | ). w

We are now ready to prove Theorem 2.

Proof of Theorem 2. Lemma 4 shows that algorithm HM-Improve runs in linear time, and by Lemma 3, its out
put is an allocation X′ in the core of H′. It remains to prove that either X′(p) � X(p) or p prefers X′ to X. Observe 
that it suffices to show p ∉ R by Proposition 2.

For the sake of contradiction, assume that HM-Improve puts p into the set of irrelevant vertices at some point 
during an execution of step 3. Let Y denote the suballocation at the beginning of this step, and let V be its sink 
set. Clearly, V ≠ ø (as in that case the source and the sink set of Y would coincide). Recall also that V ⊆ Q̃. Thus, 
there exists some q̃ ∈ V ⊆ Q̃. However, then, (q̃, p) is a Y-augmenting arc by definition, entering p, which contra
dicts our assumption that the algorithm put p into the set of irrelevant agents in step 3 of this iteration. w

4.3. Strict Improvement
Looking at Theorem 2 and Corollary 1, one may wonder whether it is possible to detect efficiently when a p- 
improvement leads to a situation that is strictly better for p. For a solution concept Φ and housing markets H and 
H′ such that H′ is a p-improvement of H for some agent p, one may ask the following questions: 

1. POSSIBLE STRICT IMPROVEMENT FOR BEST HOUSE (PSIB):
Is it true that a ⋏pa′ for some a ∈Φ(H)+p and a′ ∈Φ(H′)+p ?

2. NECESSARY STRICT IMPROVEMENT FOR BEST HOUSE (NSIB):
Is it true that a ⋏pa′ for every a ∈Φ(H)+p and a′ ∈Φ(H′)+p ?

3. POSSIBLE STRICT IMPROVEMENT FOR WORST HOUSE (PSIW):
Is it true that a ⋏pa′ for some a ∈Φ(H)�p and a′ ∈Φ(H′)�p ?

4. NECESSARY STRICT IMPROVEMENT FOR WORST HOUSE (NSIW):
Is it true that a ⋏pa′ for every a ∈Φ(H)�p and a′ ∈Φ(H′)�p ?

Focusing on the core of housing markets, it turns out that all of these four problems are computationally 
intractable even in the case of strict preferences.

Theorem 3. With respect to the core of housing markets, PSIB and NSIB are NP-hard, whereas PSIW and NSIW are 
coNP-hard even if agents’ preferences are strict orders.

Proof. Because agents’ preferences are strict orders, we get that PSIB and NSIB are equivalent, and similarly, 
PSIW and NSIW are equivalent as well because there is a unique best and a unique worst house that an agent 
may obtain in a core allocation. Therefore, we are going to present two reductions, one for PSIB and NSIB and 
one for PSIW and NSIW. Because both reductions are based on those presented in the proof of Theorem 1, we 
are going to reuse the notation defined there.

The reduction for PSIB (and NSIB) is obtained by slightly modifying the reduction from ACYCLIC PARTITION to 
ARC IN CORE which, given a directed graph D constructs the housing market H. We define a housing market Ĥ by 
simply deleting the arc (b?, a?) from the acceptability graph of H. Then, H is an a?-improvement of Ĥ. Clearly, as 
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the house of a? is not acceptable to any other agent in Ĥ, the best house that a? can obtain in any allocation in the 
core of Ĥ is the agent’s own. Moreover, the best house that a? can obtain in any allocation in the core of H is 
either the house of b? or the agent’s own. This immediately implies that (Ĥ, H) is a yes instance of PSIB (and of 
NSIB) with respect to the core if and only if there exists an allocation in the core of H that contains the arc (a?, b?). 
Therefore, (Ĥ, H) is a yes instance of PSIB and of NSIB with respect to the core if and only if D is a yes instance of 
ACYCLIC PARTITION, finishing our proof for PSIB (and NSIB).

The reduction for PSIW (and NSIW) is obtained analogously by slightly modifying the reduction from ACYCLIC 

PARTITION to FORBIDDEN ARC IN CORE, which, given a directed graph D, constructs the housing market H′. We 
define a housing market Ĥ

′
by deleting the arc (a?, s?) from the acceptability graph of H′. Then, H′ is an 

s?-improvement of Ĥ
′
. Clearly, as the house of s? is not acceptable to any other agent in Ĥ

′
, the worst house that 

s? can obtain in any allocation in the core of Ĥ
′

is the agent’s own. Moreover, the worst house that s? can obtain 
in any allocation in the core of H′ is either the house of a? or the agent’s own. Therefore, (Ĥ

′
, H′) is a no-instance 

of PSIW (and of NSIW) with respect to the core if and only if there exists an allocation in the core of H′, where s? is 
not trading, that is, that does not contain the arc (a?, s?). So (Ĥ

′
, H′) is a no-instance of PSIW and of NSIW with respect 

to the core if and only if D is a yes instance of ACYCLIC PARTITION, finishing our proof for PSIW (and NSIW). w

5. The Effect of Improvements in Stable Roommates
In the STABLE ROOMMATES problem, we are given a set N of agents and a preference relation ⋏a over N for each 
agent a ∈N; the task is to find a stable matching M between the agents. A matching is stable if it admits no block
ing pair, that is, a pair of agents such that each of them is either unmatched or prefers the other over the agent’s 
partner in the matching. Notice that an input instance for STABLE ROOMMATES is, in fact, a housing market. Viewed 
from this perspective, a stable matching in a housing market can be thought of as an allocation that (i) contains 
only cycles of length at most two and (ii) does not admit a blocking cycle of length at most two.

For an instance of STABLE ROOMMATES, we assume mutual acceptability; that is, for any two agents a and b, we 
assume that a ⋏a b holds if and only if b ⋏b a holds. Consequently, it is more convenient to define the acceptability 
graph GH of an instance H of STABLE ROOMMATES as an undirected simple graph in which agents a and b are con
nected by an edge {a, b} if and only if they are acceptable to each other and a ≠ b. A matching in H is then a set of 
edges in GH such that no two of them share an endpoint.

Biró et al. [10] show the following statements, illustrated in Examples 2 and 3.

Proposition 3 (Bir�o et al. [10]). Stable matchings in the STABLE ROOMMATES model 
• violate the RI-worst property (even if agents’ preferences are strict), and
• violate the RI-best property if agents’ preferences may include ties.

Example 2. Let N � {a, b, c, d, e, p, q} be the set of agents. The preferences indicated in Figure 7 define two housing 
markets H and H′ such that H′ is a (p, q)-improvement of H. Note that agent d is indifferent between d’s two pos
sible partners. Looking at H and H′ in the context of STABLE ROOMMATES, it is easy to see that the best partner that 
p might obtain in a stable matching for H is p’s second choice b, whereas in H′, the only stable matching assigns a 
to p, which is p’s third choice.

Example 3. Let N � {a, b, p, q} be the set of agents. The preferences indicated in Figure 8 define two housing mar
kets H and H′ such that H′ is a (p, q)-improvement of H. The worst partner that p might obtain in a stable match
ing for H is p’s top choice a, whereas in H′, there exists a stable matching that assigns b to p, which is p’s second 
choice.

Complementing Proposition 3, we show that a (p, q)-improvement can lead to an instance in which no stable 
matching exists at all. This may happen even if preferences are strict orders; hence, stable matchings do not 
strongly satisfy the RI-best property.

Proposition 4. Stable matchings in the STABLE ROOMMATES model do not strongly satisfy the RI-best property even if 
agents’ preferences are strict.

Proof. Let N � {a, b, p, q} be the set of agents. The preferences indicated in Figure 9 define housing markets H and 
H′, where H′ is a (p, q)-improvement of H. The best partner that p might obtain in a stable matching for H is p’s 
second choice a, whereas H′ does not admit any stable matchings at all. w

Contrasting Propositions 3 and 4, it is somewhat surprising that, if agents’ preferences are strict, then the 
RI-best property holds for the STABLE ROOMMATES setting. Thus, the situation of p cannot deteriorate as a conse
quence of a p-improvement unless instability arises.
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Theorem 4. Let H � (N, { ⋏a}a∈N) be a housing market in which agents’ preferences are strict orders. Given a stable match
ing M in H and a (p, q)-improvement H′ of H for two agents p, q ∈N, either H′ admits no stable matchings at all or there 
exists a stable matching M′ in H′ such that M(p)≼p M′(p). Moreover, given H, H′, and M, it is possible to find such a 
matching M′ in polynomial time or conclude correctly that H′ admits no stable matchings.

Corollary 2. In the STABLE ROOMMATES model with strict preferences, stable matchings satisfy the RI-best property.

Comparing our results for the core of housing markets and for stable matchings in the STABLE ROOMMATES 

model, we find that these solution concepts exhibit similarities as well as disparities in connection to the notion 
of respecting improvement. First, neither solution concept satisfies the RI-worst property (see Propositions 1 and 3). 
Second, both satisfy the RI-best property as established by our main algorithmic results, Theorems 2 and 4; how
ever, the core of housing markets strongly satisfies the RI-best property even if preferences are partial orders as 
opposed to stable matchings in the STABLE ROOMMATES model, in which it may happen that an improvement yields a 
market without any stable matchings (see Proposition 4), and the RI-best property holds only if preferences are 
strict but fails if preferences can contain ties (see Proposition 3). Table 1 in Section 4 offers a comparison of these 
two models from the viewpoint of the property of respecting improvement.

We describe our algorithm for Theorem 4 in Section 5.1 and prove its correctness in Section 5.2.

5.1. Description of Algorithm SR-Improve
To prove Theorem 4, we are going to rely on the concept of proposal-rejection alternating sequences introduced 
by Tan and Hsueh [55], originally used as a tool for finding a stable partition in an incremental fashion by adding 
agents one by one to a STABLE ROOMMATES instance. We somewhat tailor their definition to fit our current 
purposes.

Let α0 ∈N be an agent in a housing market H, and let M0 be a stable matching in H � α0. A sequence S of 
agents α0,β1,α1, : : : ,βk,αk is a proposal-rejection alternating sequence starting from M0 if there exists a sequence of 
matchings M1, : : : , Mk such that, for each i ∈ {1, : : : , k}, 

i. βi is the agent most preferred by αi�1 among those who prefer αi�1 to their partner in Mi�1 or are unmatched
in Mi�1.

ii. αi �Mi�1(βi).
iii. Mi �Mi�1 \ {{αi,βi}} ∪ {{αi�1,βi}} is a matching in H � αi.
We say that the sequence S starts from M0 and that the matchings M1, : : : , Mk are induced by S. We say that S

stops at αk if there does not exist an agent fulfilling condition (i) in the definition for i � k+ 1, that is, if no agent 
prefers αk to the agent’s current partner in Mk and no unmatched agent in Mk finds αk acceptable. We also allow 

Figure 8. The housing markets H and H′ in Example 3. For both H and H′, the matching represented by bold arcs yields the 
worst possible partner for p in any stable matching of the given market. 

Figure 7. The housing markets H and H′ as instances of stable roommates with ties in Example 2. For both H and H′, the match
ing represented by bold arcs yields the best possible partner for p in any stable matching of the given market. 
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a proposal-rejection alternating sequence to take the form α0,β1,α1, : : : ,βk in case conditions (i)–(iii) hold for each 
i ∈ {1, : : : , k� 1} and βk is an unmatched agent in Mk�1 satisfying condition (i) for i � k. In this case, we define the 
last matching induced by the sequence as Mk �Mk�1 ∪ {{αk�1,βk}}, and we say that the sequence stops at agent 
βk.

We summarize the most important properties of proposal-rejection alternating sequences in Lemma 5 as 
observed and used by Tan and Hsueh [55]. Because the first claim of Lemma 5 is only implicit in the paper by 
Tan and Hsueh [55], we prove it for the sake of completeness.

Lemma 5 (Tan and Hsueh [55]). Let α0,β1,α1, : : : ,βk(,αk) be a proposal-rejection alternating sequence starting from a sta
ble matching M0 and inducing the matchings M1, : : : , Mk in a housing market H. Then, the following hold: 

1. Mi is a stable matching in H � αi for each i ∈ {1, : : : , k� 1(, k)}.
2. If βj � αi for some i and j, then H does not admit a stable matching; in such a case, we say that sequence S has a return.

3. If the sequence stops at αk or βk, then Mk is a stable matching in H.
4. For any i ∈ {1, : : : , k� 1}, agent αi prefers Mi�1(αi) to Mi+1(αi).
5. For any i ∈ {1, : : : , k� 1}, agent βi prefers Mi(βi) to Mi�1(βi).

Proof of the First Statement of Lemma 5. We prove the statement by induction on i; the case i � 0 is clear. 
Assume that i ≥ 1 and Mi�1 is stable in H � αi�1. Because Mi�Mi�1 � {{αi,βi}, {αi�1,βi}}, we know that any block
ing pair for Mi in H � αi must contain either βi or αi�1. By our choice of βi, it is clear that αi�1 cannot be contained 
in a blocking pair. Moreover, because βi prefers αi�1 to Mi�1(βi) � αi, any blocking pair for Mi would also be 
blocking in Mi�1, a contradiction. w

We are now ready to describe algorithm SR-Improve; see Algorithm 2 for its pseudocode.

Algorithm SR-Improve. Let H � (N, { ⋏a}a∈N) be a housing market containing a stable matching M, and let H′ �
(N, { ⋏

′
a}a∈N) be a (p, q)-improvement of H for two agents p and q in N; recall that ⋏

′
a� ⋏a unless a � q. We now pro

pose algorithm SR-Improve that computes a stable matching M′ in H′ with M(p)≼p M′(p) whenever H′ admits 
some stable matching.

First, SR-Improve checks whether M is stable in H′ and, if so, returns the matching M′ �M. Otherwise, {p, q} 
must be a blocking pair for M in H′.

Second, the algorithm checks whether H′ admits a stable matching, and if so, computes any stable matching 
M? in H′ using Irving’s [31] algorithm; if no stable matching exists for H′, algorithm SR-Improve stops. Now, if 
M(p)≼′p M?(p), then SR-Improve returns M′ �M? and otherwise proceeds as follows.

Let H̃ be the housing market obtained from H′ by deleting all agents {a ∈N : a≼′
q
p} from the preference list of 

q (and, vice versa, deleting q from the preference list of these agents). Notice that, in particular, this includes the 
deletion of p as well as of M(q) from the preference list of q (recall that M(q) ⋏

′
q p).

Let us define α0 �M(q) and M0 �M \ {q,α0}. Notice that M0 is a stable matching in H̃ � α0: clearly, any possi
ble blocking pair must contain q, but any blocking pair {q, a} that is blocking in H̃ would also block H by M(q) ⋏qa. 
Observe also that q is unmatched in M0.

Finally, algorithm SR-Improve builds a proposal-rejection alternating sequence S of agents α0,β1,α1, : : : ,βk(,αk)

in H̃ starting from M0, and inducing matchings M1, : : : , Mk until one of the following cases occurs: 
a. αk � p: in this case, SR-Improve outputs M′ �Mk ∪ {{p, q}}.
b. S stops: in this case, SR-Improve outputs M′ �Mk.

Algorithm 2 (SR-Improve)
Input: housing market H � (N, ⋏), its (p, q)-improvement H′ � (N, ⋏

′) for two agents p and q, and a stable 
matching M in H.

Figure 9. Housing markets H and H′ illustrating the proof of Proposition 4. For H, the bold arcs represent a stable matching, 
whereas the instance H′, which is a (p, q)-improvement of H, does not admit any stable matchings. 
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Output: a stable matching M′ in H′ such that M(p)≼p M′(p) or M(p) �M′(p) if H′ admits some stable 
matching. 

1: if M is stable in H′, then return M.
2: if H′ admits a stable matching, then let M? be any stable matching in H′.

. Use Irving’s [31] algorithm
3: else return “No stable matching exists for H′.”
4: if M(p)≼p M?(p), then return M′ :�M?

5: Create housing market H̃ by deleting the agents {a ∈N : a≼‘
q p} from A(q) and vice versa.

6: Set i :� 0, α0 :�M(q), and M0 :�M \ {α0, q}
7: repeat . Computing a proposal-rejection sequence S.
8: Set i← i+ 1.
9: Set Bi :� {b : αi�1 ∈ A(b), b is unmatched in Mi�1 or Mi�1(b) ⋏bαi�1}.

10: if Bi � ø, then return M′ :�Mi�1 . S stops at i � 1.
11: Set βi as the agent most preferred by αi�1 in Bi.
12: if βi is unmatched in Mi�1, then return M′ :�Mi�1 ∪ {{αi�1,βi}} . S stops at i.
13: Set αi :�Mi�1(βi) and Mi :�Mi�1 ∪ {{αi�1,βi}} \ {{αi,βi}}.
14: until αi � p return M′ :�Mi ∪ {{p, q}}.

5.2. Correctness of Algorithm SR-Improve
To show that algorithm SR-Improve is correct, we first state the following two lemmas.

Lemma 6. The sequence S cannot have a return. Furthermore, if S stops, then it stops at βk with βk � q.

Proof. Recall that M? is a stable matching in H′ with M?(p) ⋏pM(p). Because {p, q} is a blocking pair for M in H′, 
we know M(p) ⋏pq, yielding M?(p) ⋏pq. By the stability of M?, this implies that q is matched in M? and p ⋏

′
q M?(q). 

As a consequence, M? is a stable matching not only in H′, but also in H̃ because deleting agents less preferred by 
q than M?(q) from q’s preference list cannot compromise the stability of M?.

By the second claim of Lemma 5, we know that, if S has a return, then H̃ admits no stable matching, contra
dicting the existence of M?. Furthermore, because q is matched in M?, it must be matched in every stable 
matching of H̃ by the well-known fact that, in an instance of STABLE ROOMMATES in which agents’ preferences 
are strict, all stable matchings contain exactly the same set of agents (Gusfield and Irving [28, theorem 4.5.2]). 
Now, if S stops with the last induced matching Mk, then by the third statement of Lemma 5, we get that Mk is a 
stable matching in H̃, and thus, q must be matched in Mk. Clearly, as q is unmatched in M0, this can only occur if 
βk � q and S stops at q. w

Lemma 7. If SR-Improve outputs a matching M′, then M′ is stable in H′ and M(p)≼′p M′(p).

Proof. First, assume that the algorithm stops when αk � p. Then, by the first statement of Lemma 5, Mk is sta
ble in H̃ � p. Note also that q must be unmatched in Mk as q can only obtain a partner in the sequence of 
matchings induced by S if q � βk, which cannot happen when αk � p. So M′ �Mk ∪ {{p, q}} is indeed a match
ing in H′.

Let us prove that M′ is stable in H′. Because q is unmatched in Mk and Mk is stable in H̃ � p, no agent accept
able for q prefers q to the agent’s partner in Mk or is left unmatched in Mq. Hence, q cannot be contained in a 
blocking pair for M′. Thus, any blocking pair for M′ must contain p. Suppose that {p, a} blocks M′ in H′; then, 
q ⋏

′
p a. Because S cannot have a return by Lemma 6, we know that p is not among the agents α0,β1,α1, : : : ,βk�1. 

Therefore, Mk�1(p) �M0(p) �M(p). Recall that M(p) ⋏

′
p q, which implies Mk�1(p) ⋏

′
p q. Because Mk�1(a) �Mk(a)

(because a ∉ {αk�1,βk, p}), we get that {p, a} must also block Mk�1 in H̃ � αk�1, a contradiction. This shows that M′

is stable in H′. By M(p) ⋏

′
p q �M′(p), the lemma follows in this case.

Second, assume that SR-Improve outputs M′ �Mk after finding that the sequence S stops with q being matched 
in Mk. By the first statement of Lemma 5, we know that M′ is stable in H̃, and by the definition of H̃, we know 
that p ⋏qM′(q). Therefore, M′ is also stable in H′ (as adding agents less preferred by q than M′(q) to q’s preference 
list cannot compromise the stability of M′). To show that M(p)≼′p M′(p), it suffices to observe that p � αi is not 
possible for any i ∈ {1, : : : , k} (as, in this case, q would be unmatched as argued in the first paragraph of this 
proof), and hence, by the fifth claim of Lemma 5, the partner that p receives in the matchings M0, M1, : : : , Mk can 
only get better for p, and thus, M(p) �M0(p)≼

′
p Mk(p) �M′(p). w

We can now piece together the proof of Theorem 4.
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Proof of Theorem 4. From the description of SR-Improve and Lemma 7, it is immediate that any output the algo
rithm produces is correct. It remains to show that it does not fail to produce an output. By Lemma 6, we know 
that the sequence S built by the algorithm cannot have a return and can only stop at q, implying that SR-Improve 
eventually produces an output. Considering the fifth statement of Lemma 5, we also know that the length of S is 
at most 2 |E | . Thus, the algorithm finishes in O( |E | ) time. w

5.3. A Note on Strongly Stable Matchings in Stable Roommates
Given an instance of STABLE ROOMMATES in which preferences are not strict, strong stability is an alternative notion 
of stability based on the notion of weakly blocking pairs. Given a matching M in a housing market 
H � (N, { ⋏a}a∈N), an edge {a, b} in the acceptability graph GH is weakly blocking if (i) a is either unmatched or 
weakly prefers b to M(a); (ii) b is either unmatched or weakly prefers a to M(b); and (iii) if a and b are both 
matched in M, then a prefers b to M(a) or b prefers a to M(b). If there is no weakly blocking pair for M, then M is 
strongly stable.

Note that a strongly stable matching for H can be thought of as an allocation that (i) contains only cycles of 
length at most two and (ii) does not admit a weakly blocking cycle of length at most two. Recall that stable match
ings correspond to the concept of core if we restrict allocations to pairwise exchanges; analogously, strongly sta
ble matchings correspond to the concept of strict core for pairwise exchanges. Observe also that, if agents’ 
preferences are strict orders, then strong stability is equivalent with stability, or in other words, the strict core 
and the core coincide.

In view of Corollary 2, it is natural to ask whether the set of strongly stable matchings satisfies the RI-best 
property in the case when preferences may not be strict. The following statement answers this question in the 
negative. Interestingly, the result holds even in the STABLE MARRIAGE model, the special case of STABLE ROOMMATES 

in which the acceptability graph is bipartite.

Proposition 5. Strongly stable matchings in the STABLE MARRIAGE model do not satisfy the RI-best property even if agents’ 
preferences are weak orders.

Proof. Consider the housing markets H and H′ depicted in Figure 10; note that H′ is a (p, q)-improvement of H. 
Note that the preferences in H are strict, but in H′, agent q is indifferent between p and b.

First observe that the matching M shown in bold in the first part of Figure 10 is stable in H, so it is possible for 
p to be matched with its second choice, namely, a, in a (strongly) stable matching in H. We claim that the best 
possible partner p can obtain in any strongly stable matching in H′ is its third choice. To see this, first note that 
any matching containing {p, q} is weakly blocked by {q, b} in H, so p cannot be matched to its first choice, agent q, 
in any strongly stable matching in H′. Second, note that any matching M′ containing {p, a} must match q to its 
first choice (otherwise, the pair {p, q} weakly blocks M′), and hence, M′ must match b to its third choice (so as not 
to form a blocking pair with it); however, then {a, b} is a blocking pair for M′. Thus, p cannot be matched in any 
strongly stable matching of H′ to its second choice, agent a, either.

By contrast, it is easy to verify that the matching shown in bold in the second part of Figure 10, matching p to 
its third choice, is strongly stable in H′. This proves our proposition. w

6. Summary and Further Research
We investigate questions about the notion of improvement in connection to the core of housing markets. Table 2
puts into context our algorithmic results on finding allocations with various restrictions in the core of housing 
markets; the table presents analogous results for the strict core of housing markets as well as for the core and 
strict core of STABLE ROOMMATES instances (when interpreted as the set of stable and strongly stable matchings, 
respectively). Table 1 in Section 4 summarizes our results regarding the property of respecting improvement 
both for housing markets and also for the STABLE ROOMMATES model; we also include the known facts about the 
strict core, mostly by Biró et al. [10]. We remark that several questions remain open in the case when agents’ pre
ferences are partial orders; in fact, we are not aware of any result concerning the strict core of housing markets 
under such preferences.

Even though the property of respecting improvement is deeply connected to agents’ incentives in exchange 
markets, many solution concepts have not yet been studied from this aspect. A solution concept that seems inter
esting from this point of view is the set of stable half-matchings (or, equivalently, stable partitions) in instances 
of STABLE ROOMMATES without a stable matching. Although Figure 11 contains an example about stable half- 
matchings in which improvement of an agents’ house damages the agent’s situation, perhaps a more careful 
investigation may shed light on some interesting monotonicity properties.
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Table 2. Summary of known results on the problems of finding an allocation in the core or strict core of a housing market 
or a stable roommates instance that additionally (i) contains a given arc (or edge), (ii) avoids a given arc (or edge), or (iii) 
includes a trading cycle containing a given agent. The table classifies each of these problems either as polynomial-time solv
able (P) or NP-complete (NP-c for short) except for the cases whose computational complexity remains open. Recall that, in 
an instance of stable roommates, we interpret the core as the set of stable matchings and the strict core as the set of strongly 
stable matchings; these two notions coincide for strict preferences.

Housing market Stable roommates

Core Strict core Core Strict core

Forced 
edge/arc

Strict preferences NP-c (Theorem 1) P (Roth and 
Postlewaite [48])

P (Fleiner et al. [26]) P (Fleiner et al. [26])

Weak preferences NP-c (Theorem 1) P (Theorem B.1) NP-c (Manlove et al. [44]) P (Kunysz [39, 40])
Partial order 

preferences
NP-c (Theorem 1) open NP-c (Manlove et al. [44]) NP-c (Irving et al. [32])

Forbidden 
edge/arc

Strict preferences NP-c (Theorem 1) P (Roth and 
Postlewaite [48])

P (Fleiner et al. [26]) P (Fleiner et al. [26])

Weak preferences NP-c (Theorem 1) P (Theorem B.1) NP-c (Cseh and Heeger [21]) P (Kunysz [39, 40])
Partial order 

preferences
NP-c (Theorem 1) open NP-c (Cseh and Heeger [21]) NP-c (Irving et al. [32])

Agent 
trading

Strict preferences NP-c (Theorem 1) P (Roth and 
Postlewaite [48])

P (Gusfield and Irving [28]) P (Gusfield and Irving [28])

Weak preferences NP-c (Theorem 1) P (Theorem B.1) NP-c (Manlove et al. [44]) P (Kunysz [39], Manlove [42])
Partial order 

preferences
NP-c (Theorem 1) Open NP-c (Manlove et al. [44]) NP-c (Irving et al. [32])

Figure 10. The housing markets H and H′ in the proof of Proposition 5. For both H and H′, the allocation represented by bold 
arcs yields the best possible strongly stable matchings. 

Figure 11. (Color online) An example in which an agent’s improvement has a detrimental effect on the agent’s situation in a 
model in which allocations are defined as half-matchings (see also Tan [54]). Given a stable roommates instance with underlying 
graph (V, E), a half-matching is a function f : E→ 0, 1

2 , 1
� �

that satisfies 
P

e�{u, v}∈E f (e) ≤ 1 for each agent v ∈ V. The figure con
tains housing market H and its (p, q)-improvement H′, and a unique stable half-matching for each market; see Manlove [43] for 
the definition of stable half-matchings. We depict half-matchings in blue with double lines for matched edges and single bold 
lines for half-matched edges. For H, the half-matching f depicted leaves p more satisfied than the half-matching f ′ depicted for H′. 
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Appendix A. Top Trading Cycles for Partial Order Preferences
Here, we present an adaptation of the top trading cycles algorithm for the case when agents’ preferences are represented 
as partial orders; this algorithm always finds an allocation in the core of the given housing market in linear time. We 
start by recalling how TTC works for strict preferences, propose a method to deal with partial orders, and finally discuss 
how the obtained algorithm can be implemented in linear time.

A.1. Strict Preferences

If agents’ preferences are represented by strict orders, then the TTC algorithm (Shapley and Scarf [52]) produces the
unique allocation in the strict core. TTC creates a directed graph D in which each agent a points to a’s top choice, that is,
to the agent owning the house most preferred by a. In the graph D, each agent has outdegree exactly one because prefer
ences are assumed to be strict. Hence, D contains at least one cycle, and moreover, the cycles in D do not intersect. TTC
selects all cycles in D as part of the desired allocation, deletes from the market all agents trading along these cycles, and
repeats the whole process until there are no agents left.

A.2. Preferences as Partial Orders

When preferences are represented by partial orders, one can modify the TTC algorithm by letting each agent a in D point
to a’s undominated choices: b is undominated for a if there is no agent c such that b ⋏ac. Notice that an agent’s outdegree is
then at least one in D. Thus, D contains at least one cycle, but in case it contains more than one cycle, these may overlap.

A simple approach is to select a set of mutually vertex-disjoint cycles in each round, removing the agents trading along 
them from the market and proceeding with the remainder in the same manner. It is not hard to see that this approach 
yields an algorithm that produces an allocation in the core: by the definition of undominated choices, any arc of a block
ing cycle leaving an agent a necessarily points to an agent that was already removed from the market at the time when a 
cycle containing a got selected. Clearly, no cycle may consist of such backward arcs only, proving that the computed allo
cation is indeed in the core.

A.3. Implementation in Linear Time

Abraham et al. [3] describe an implementation of the TTC algorithm for strict preferences that runs in O( |GH | ) time. We
extend their ideas to the case when preferences are partial orders as follows.

For each agent a ∈N, we assume that a’s preferences are given using a Hasse diagram, which is a directed acyclic graph 
Ha that can be thought of as a compact representation of ⋏a. The vertex set of Ha is the set A(a) of agents whose house is 
acceptable for a, and it contains an arc (b, c) if and only if b ⋏ac and there is no agent c′ with b ⋏ac′ ⋏ac. Then, the descrip
tion of our housing market H has length 

P

a∈A |Ha | , which we denote by |H | . If preferences are weak or strict orders,
then |H | �O( |GH | ).

Throughout our variant of TTC, we maintain a list U(a) containing the undominated choices of a among those that still 
remain in the market as well as a subgraph D of GH spanned by all arcs (a, b) with b ∈U(a). Furthermore, for each agent 
a in the market, we keep a list of all occurrences of a as someone’s undominated choice. Using Ha, we can find the undo
minated choices of a in O( |Ha | ) time, so initialization takes O( |H | ) time in total.

Whenever an agent a is deleted from the market, we find all agents b such that a ∈U(b), and we update U(b) by delet
ing a and adding those in-neighbors of a in Hb that have no out-neighbor still present in the market. Notice that the total 
time required for such deletions (and the necessary replacements) to maintain U(b) is O( |Hb | ). Hence, we can efficiently 
find the undominated choices of each agent at any point during the algorithm and, thus, traverse the graph D consisting 
of arcs (a, b) with b ∈U(a).

To find a cycle in D, we simply keep building a path using arcs of D until we find a cycle (perhaps a loop). After 
recording this cycle and deleting its agents from the market (updating the lists U(a) as described), we simply proceed 
with the last agent on our path. Using the data structures described, the total running time of our variant of TTC is 
O( |N | +

P

a∈N |Ha | ) �O( |H | ).

Appendix B. Arc Restrictions for the Strict Core
In this section, we investigate the variants of our Q1–Q3 for the strict core of housing markets. Recall that an allocation 
X in a housing market H � (N, { ⋏a}a∈N) is in the strict core of H if there is no coalition S of agents with an allocation X′ on 
S such that (i) X(a)≼a X′(a) for each agent a ∈ S and (ii) X(a) ⋏aX′(a) for at least one agent a ∈ S.

Recall that, if agents’ preferences are strict, then the strict core contains a unique allocation, and this allocation can be 
efficiently computed by the TTC algorithm (Roth and Postlewaite [48]). Thus, it is trivial to decide whether an agent can 
obtain a given house in the unique allocation in the strict core.

When agents’ preferences are weak orders, then the strict core can be empty (Shapley and Scarf [52]). However, there 
is a polynomial-time algorithm by Quint and Wako [47] that decides whether the strict core is empty when preferences 
are weak orders. We generalize this result by giving a polynomial-time algorithm for the following problem.
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The Arc Restrictions for Strict Core Problem in Housing Markets

Given a housing market H, a set F+ of forced arcs, and a set F– of forbidden arcs in the underlying graph GH, find an 
allocation in the strict core of H that contains F+ and is disjoint from F– .

Note that the arc restrictions for strict core problem is a generalization of the problems underlying Q1–Q3 when inter
preted in relation for the strict core: for a given agent a ∈N and an arc (a, b) in GH, we can use an algorithm for the arc 
restrictions for strict core problem in order to decide whether 
• some allocation in the strict core contains (a, b) by setting a ∈N and F� � ø;
• some allocation in the strict core avoids (a, b) by setting F+ � ø and F� � {(a, b)};
• agent a is trading in some allocation in the strict core by setting F+ � ø and F� � {(a, a)}.
The following theorem is obtained through a straightforward modification of the algorithm by Quint and Wako [47]

for deciding the emptiness of the strict core.

Theorem B.1. If agents’ preferences are weak orders, then the arc restrictions for strict core problem can be solved in polynomial 
time.

Proof. Let H � (N, { ⋏a}a∈N) be the housing market with underlying graph GH � (N, E) given as our input together with arc 
sets F+ ⊆ E and F� ⊆ E.

We need the following concept from graph theory: we say that a set V of vertices in a directed graph is an absorbing 
set if (i) no arc leaves V and (ii) V is strongly connected, meaning that, for each of the vertices v1, v2 ∈ V, there are paths 
from v1 to v2 and from v2 to v1 in the graph. It is easy to see that two absorbing sets in a directed graph are either identi
cal or vertex-disjoint. Recall that an arc (a, b) ∈ E is undominated if there exists no agent b′ such that b ⋏ab′. Let U(a) 
denote the set of all undominated arcs in GH leaving some agent a, and let U � ∪a∈NU(a). Let T denote the union of all 
absorbing sets in the subgraph (N, U) of undominated arcs within GH, and let GT denote the subgraph of (N, U) induced 
by vertices of T, that is, GT � (T,∪t∈TU(t)). Informally speaking, GT contains the top agents and their most preferred 
choices.

Quint and Wako [47] prove that, if agents’ preferences are weak orders, then an allocation X in H is in the strict core 
of H if and only if 
• for each agent t ∈ T, the arc of X leaving t is undominated, and
• X[N \T] is an allocation in the strict core of HN\T.
Using this characterization, it is straightforward to see that the following algorithm solves the arc restrictions for strict

core problem: 
Step 1. Compute the set T and the subgraph GT.
Step 2. If F+ contains an arc running between T and N \T, then return “No.”
Step 3. Find a set C ⊆ ∪t∈TU(t) of arcs in GT that is an allocation in the submarket HT and (i) contains all arcs of F+[T] and (ii) 

is disjoint from F– . Return “No” if no such set C exists.
Step 4. Use a recursive call to compute an allocation X′ in the strict core of the submarket HN\T that (i) contains all edges of 

F+[N \T] and (ii) is disjoint from F– . Return “No” if no such allocation X′ exists.
Step 5. Return the allocation X � C ∪ X′.

From this characterization of the strict core by Quint and Wako [47], the correctness of the algorithm follows immedi
ately. Hence, it remains to check its running time.

Step 1 can be performed in linear time using standard algorithms on directed graphs; see, for example, Korte and 
Vygen [38]. Step 2 takes linear time as well. The task in step 3 can be performed by computing a maximum-weight 
matching in the following bipartite graph ĜT: the vertex set of ĜT is {t1, t2 : t ∈ T}, and for each arc (t, t′) in GT with 
(t, t′) ∉ F�, we add an edge (t1, t′2) to ĜT. The weight of this edge is two if (t, t′) ∈ F+[T]; otherwise, it is one. Then alloca
tions5 in GT disjoint from F– correspond bijectively to perfect matchings in ĜT, and moreover, allocations in GT disjoint 
from F– and containing all arcs of F+[T] correspond bijectively to (perfect) matchings in ĜT of weight |T | + |F+[T] | . 
Because we can compute a maximum-weight matching in ĜT in |T |3 time using the Hungarian algorithm (see, e.g., Korte 
and Vygen [38]), the recursion in step 4 yields an overall running time of |N |3. w

Note that Theorem B.1 is in sharp contrast with our results for the core: by Theorem 1, given a housing market H, it is 
NP-hard to decide whether a given arc of GH can be contained in some core allocation of H even if agents’ preferences 
are strict orders. Hence, in this aspect, we can perceive a computational gap between the core and the strict core in hous
ing markets with strictly or weakly ordered preferences.

We remark that we are not aware of any result that would settle the computational complexity of the arc restrictions 
for strict core problem in the case when agents’ preferences are partial orders. In fact, even deciding the emptiness of the 
strict core seems to be a problem whose computational complexity is open.

Appendix C. Maximizing the Number of Agents Trading in a Core Allocation
Perhaps the most natural optimization problem related to the core of housing markets is the following: given a housing 
market H, find an allocation in the core of H whose size, defined as the number of trading agents, is maximal among all 
allocations in the core of H; we call this the MAX CORE problem. MAX CORE is NP-hard by a result of Cechlárová and 
Repiský [17]. In Theorem C.1, we show that even approximating MAX CORE is NP-hard. Our result is tight in the 
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following sense: we prove that, for any ε > 0, approximating MAX CORE with a ratio of |N |1�ε is NP-hard, where |N | is 
the number of agents in the market. By contrast, a very simple approach yields an approximation with ratio |N | .

We note that Biró and Cechlárová [7] prove a similar inapproximability result, but because they considered a special 
model in which agents not only care about the house they receive but also about the length of their exchange cycle, their 
result cannot be translated to our model, and so does not imply Theorem C.1. Instead, our reduction relies on ideas we 
use to prove Theorem 1.

Theorem C.1. For any constant ε > 0, the MAX CORE problem is NP-hard to approximate within a ratio of αε(N) � |N |
1�ε, where 

N is the set of agents even if agents’ preferences are strict orders.

Proof. Let ε > 0 be a constant. Assume for the sake of contradiction that there exists an approximation algorithm Aε that, 
given an instance H of MAX CORE with agent set N computes in time polynomial in |N | an allocation in the core of H 
having size at least OPT(H)=αε(N), where OPT(H) is the maximum size of (i.e., number of agents trading in) any alloca
tion in the core of H. We can prove our statement by presenting a polynomial-time algorithm for the NP-hard ACYCLIC 

PARTITION problem using Aε.
We reuse the reduction presented in the proof of Theorem 1 from ACYCLIC PARTITION to ARC IN CORE. Recall that the 

input of this reduction is a directed graph D on n vertices, and it constructs a housing market H containing a set N of 
4n+ 4 agents and a pair (a?, b?) of agents such that the vertices of D can be partitioned into two acyclic sets if and only if 
some allocation in the core of H contains the arc (a?, b?). Moreover, such an allocation (if existent) must have size 4n+ 4 
by our arguments in the proof of Theorem 1.

Let us now define a housing market H′ � (N′, { ⋏

′
a}a∈N′ ) that can be obtained by subdividing the arc (a?, b?) with K newly 

introduced agents p1, : : : , pK, where

K � ⌈(4n+ 4)1=ε⌉, 

that is, we replace the arc (a?, b?) with the path (a?, p1, p2, : : : , pK, b?); see Figure C.1 for an illustration. Let N′ �N ∪ {p1, : : : , pK}. 
Formally, we define preferences ⋏

′
a for each agent a ∈N′ as follows: first, ⋏

′
a is identical to ⋏a for each a ∈N \ {a?}; second, a?

only prefers the house of agent p1 to the agent’s own house; third, each agent pi ∈N′ \N prefers only the house of agent 
pi+1 to the agent’s own house (in which we set pK+1 � b?). Clearly, the allocations in the core of H correspond to the alloca
tions in the core of H′ in a bijective manner. Hence, it is easy to see that, if there is an allocation in the core of H that con
tains the arc (a?, b?) and in which every agent of N is trading, then there is an allocation in the core of H′ in which each 
agent of N′ is trading. Conversely, if there is no allocation in the core of H that contains (a?, b?), then the agents p1, : : : , pK 

cannot be trading in any allocation in the core of H′. Thus, we have that, if D is a yes instance of ACYCLIC PARTITION, then 
OPT(H′) � |N′ | � 4n+ 4+K; otherwise, OPT(H′) ≤ 4n+ 4.

Now, after constructing H′, we apply algorithm Aε with H′ as its input; let X′ be its output. If the size of X′ is greater 
than 4n+ 4, then X′ must contain at least one vertex from {p1, p2, : : : , pK} by |N | � 4n+ 4, which, by the previous para
graph, implies that there exists an allocation in the core of H that contains (a?, b?), and thus, D must be a yes instance of 
ACYCLIC PARTITION. Otherwise, we conclude that D is a no instance of ACYCLIC PARTITION. To show that this is correct, it suf
fices to see that if D is a yes instance, that is, if OPT(H′) � |N′ | , then the size of X′ is greater than 4n+ 4. And, indeed, 
the definition of K implies

(4n+ 4)1=ε < 4n+ 4+K � |N′ | , 

which, raised to the power of ε, yields

4n+ 4 < |N′ |ε �
|N′ |

|N′ |1�ε
�

OPT(H′)

αε(N′)

as required.
It remains to observe that the preceding reduction can be computed in polynomial time because ε is a constant and so 

K is a polynomial of n of fixed degree. w

We contrast Theorem C.1 with the observation that an algorithm that outputs any allocation in the core yields an 
approximation for MAX CORE with ratio |N | .

Proposition C.1. MAX CORE can be approximated with a ratio of |N | in polynomial time, in which |N | is the number of agents in 
the input.

Proof. An approximation algorithm for MAX CORE has ratio |N | if, for any housing market H with agent set N, it outputs 
an allocation with at least OPT(H)= |N | agents trading, in which OPT(H) is the maximum number of trading agents in a 

Figure C.1. Illustration for the proof of Theorem C.1, for constructing the housing market H′ from H by subdividing the arc 
(a?, b?). The figure omits vertices of N \ {a?, b?}; arcs between b? and N \ {a?, b?} are shown in gray. 
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core allocation of H. Thus, it suffices to decide whether OPT(H) ≥ 1 and, if so, produce an allocation in which at least one 
agent is trading. Observe that OPT(H) � 0 is only possible if GH is acyclic as any cycle in GH blocks the allocation in 
which each agent gets the agent’s own house. Hence, computing any allocation in the core of H is an |N | -approximation 
for MAX CORE; this can be done in linear time using the variant of the TTC algorithm described in Appendix A. w

Endnotes
1 In practice, solutions in a kidney exchange program are often sought as maximum-weight matchings between patient–donor pairs in a 
graph in which weights reflect certain optimality criteria.
2 As an extreme example of additional expenditures necessary for realizing an allocation, consider Germany, where kidney exchange is only 
allowed when it involves people who have a personal relationship. However, the required personal relationship can be built for the purpose 
of the kidney exchange to take place—a process that takes precious time for the patients involved. See https://crossover-nierenspenderliste. 
de/files/DIATRA_42021_26-29_Crossover_engl.pdf.
3 Throughout the paper, we use the term “partial ordering” in the sense of an irreflexive (or strict) partial ordering.
4 In fact, these are the two factors for which patients in the UK program can set acceptability thresholds (Biró et al. [11]).
5 By an allocation in GT, we mean an edge set in GT that is an allocation in the submarket HT.
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[15] Cechlárová K, Hajduková J (2003) Computational complexity of stable partitions with B-preferences. Internat. J. Game Theory 

31(3):353–364.
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Schlotter, Biró, and Fleiner: The Core of Housing Markets from an Agent’s Perspective 
Mathematics of Operations Research, Articles in Advance, pp. 1–27, © 2024 INFORMS 27 

https://doi.org/10.1287/moor.2022.0275

	The Core of Housing Markets from an Agent's Perspective: Is It Worth Sprucing up Your Home?
	Introduction
	Preliminaries
	Allocations in the Core with Arc Restrictions
	The Effect of Improvements in Housing Markets
	The Effect of Improvements in Stable Roommates
	Summary and Further Research


