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1. Introduction

We consider projective Calabi—Yau threefolds X that have isolated nodal singular-
ities S C X such that the exceptional curves in a small resolution 7 : X — X are
torsion in homology. For simplicity, we will assume that

Hy(X,7) ~ 7% x 7, (1)

and that X\ S is smooth, but the results easily generalize. The small resolution is
then a complex manifold, but since the exceptional curves are holomorphic, it cannot
be Kiahler. However, the nodes can always be deformed away and the complex
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structure deformations of X that preserve the nodes can be identified with a sublocus
of the complex structure moduli space of a smooth Calabi-Yau manifold X, which
we assume is Kéhler.

Since X is non-Kéhler, it cannot be used directly as a stable string background.
Nevertheless, it was argued that the geometry of X determines the physics of
M-theory and Type ITA string theory on the singular Calabi—Yau X in the following

Wayl /1.,:1:

e The gauge symmetry of the five-dimensional effective theory obtained from com-
pactifying M-theory on X is

G = Hom(Hy(X,Z),U(1)). (2)

The charge lattice can thus be identified with H, ()A( ,Z). Assuming (1), this implies
that the effective theory has a gauged Z, symmetry under which the particles that
arise from M2-branes wrapping the exceptional curves carry nontrivial charge.

o Flat B-fields in Type ITA compactifications on X are in one to one correspondence
with flat B-fields on X. A choice of flat B-field on X in turn corresponds to a pair
(wp, @) with w € H2(X,R)/H?(X,Z) and

o € Br(X) ~ Tors Hy(X,Z), (3)

where o measures the global topology of the B-field.” The B-field topology is dual
to a Z,-Wilson line in the M-theory compactification on X x S!.

We use (X, «a) to refer to the Calabi-Yau X together with a choice of B-field
topology.

The torsional exceptional curves only measure the topological part of the B-field.
If the holonomy of the B-field along those curves is nontrivial, the B-field “stabilizes”
the corresponding node in X, meaning that the Type IIA worldsheet theory is
expected to be nonsingular.’

Assuming that all of the nodes are stabilized in this sense, the regularity of the
string worldsheet theory together with the dynamics of topological B-branes in the
presence of a topologically nontrivial B-field then motivates the following mathe-
matical conjecture.

~

Conjecture 1.1. For each choice o € Br(X) there is a sheaf of Azumaya algebras B
on X representing « such that Rw, BB is a crepant categorical resolution of X, in the
sense of Ref. 7, and there is a twisted derived equivalence D*(X,a) ~ D*(X, Rr,B).

*The proposal is inspired by and builds on Ref. 5, where the large resolution has been used that is Kahler
but not Calabi—Yau. While a comparison of the two approaches is beyond the scope of this review, we refer
to Refs. 1 and 2 for further details and references.

"We will make the implicit assumption that the Brauer group Br()A( ) of X is equivalent to the cohomo-
logical Brauer group Br’ (5\( ), a fact that is only proven in general when X is smooth projective.® For a
discussion of this issue and a (very) brief introduction to the Brauer group, we refer to Subsec. 4.4 of Ref. 2.
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Since the Azumaya algebras are noncommutative, one can refer to such a cate-
gorical resolution as a noncommutative resolution of X. The derived category
physically describes the topological B-branes and therefore the noncommutative
resolution can be interpreted as the open string perspective on (X, «).

The discrete gauge symmetry that M-theory develops on X can be straightfor-
wardly included in the physical definition of Gopakumar—Vafa (GV) invariants from
Refs. 8 and 9. This leads to a proposal for torsion refined GV invariants associated to
X, that are encoded in the topological string A-model partition functions on (X, «)
for o € Br(X).1?4 As we will review below, the mathematical definition of GV
invariants as a “Lefschetz refinement” of Donaldson—Thomas invariants'® together
with Conjecture 1.1 then connects these invariants to the enumerative geometry of
noncommutative resolutions of X.°

Examples of this behavior have been studied in the context of torus fibered
Calabi—Yau threefolds in Refs. 1-3 and for Calabi—Yau threefolds that are double
covers of Fano threefolds with the ramification locus being a symmetric determi-

nantal surface.2%11713

In the latter case, the connection to noncommutative resolu-
tions has been made particularly precise for symmetric determinantal surfaces
defined by 4 x 4 matrices (the length 4 case in the terminology that will be intro-
duced in Sec. 2). In this case, B can be chosen so that Rr, 5 is quasi-isomorphic to a
sheaf of (even parts) of Clifford algebras B, on the base of the double cover that has
first appeared in the context of homological projective duality.'*

It is these “Clifford type” noncommutative resolutions, or, from the closed string
perspective, the corresponding nodal Calabi-Yau varieties with a topologically
nontrivial B-field, which can be realized as spaces of vacua of hybrid phases of certain
Gauged Linear Sigma Models (GLSM) and that will be the focus of our survey.

2. Symmetric Determinantal Double Solids

The family of geometries that we are going to consider has been introduced in Ref. 4
and is indexed by vectors d € NZZ’(LJ, for some n € Ny, which we refer to as decom-
positions. Before we construct the geometries themselves, let us briefly introduce
some related definitions.

We refer to |d| = d; + - - - + dy,, as the degree of the decomposition. For reasons
that will become clear later, we require that d is either even or odd, meaning that all
of the entries are either even or odd. Note that the degree of an even or odd de-
composition is always even. We say that an even/odd decomposition d is normalized
if the entries are in decreasing order and d contains at most one zero and we define its
length lq to be the number of nonzero entries. We will use exponents to indicate
repeated entries, such that e.g. (5,1,1,1) = (5,1%).

“We continue to use the terminology “noncommutative resolution” as in Conjecture 1.1 and the subse-
quent discussion. See also Ref. 2 for additional discussion of this terminology.
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Given a decomposition d € N 2276 of degree d € 2N, we choose a symmetric matrix

Ad € MQ?I(C[xl""7$4])7 (4)
with entries A; ; that are generic homogeneous polynomials of degree (d; + d;)/2. We
then identify x4, ..., 2, with homogeneous coordinates on P? and define

Xd:{y2 =detAd(x1,...,x4)} CP4(14,d/2) (5)

This is a double cover of P3 that is ramified over the determinantal surface
Sd = {det Ad = 0} C IPS. (6)

Requiring that d is either even or odd ensures that Sq is irreducible. The double
cover Xy then has nq isolated nodes Sq; = {corankA4 = 2}, with

nq = (er(d)ex(d) — e3(d))/2, (7)

in terms of the elementary symmetric polynomials e;, i« = 1,2, 3, and is smooth ev-
erywhere else.
The following proposition has been proven using conifold transitions in Ref. 4.

Proposition 2.1. Let d € N** be an even or odd decomposition of degree d € 2N
with 0 < d < 8. The corresponding double covers Xy fall into three different classes,
depending on the length lq:

(i) lqa = 1: The branch locus Sq is smooth and X q) is a generic hypersurface of
degree d in P*(1%,d/2) with Hy(X4)) = Z.
(i) lq = 2: Xq has isolated nodal singularities but admits a Kdahler small resolu-
tion Xy with HQ()/(;) ~ 72.
(iii) Iq > 3: X4 has isolated nodal singularities and does not admit a Kahler small
resolution. In those cases the exceptional curves in a small non-Kahler reso-
lution )/(\d are 2-torsion and HQ()?;) ~7 X ZLy.

In the following, we will focus on decompositions d of degree d = 8, so that Xy is a
nodal Calabi—Yau threefold. Since our interest lies in cases where the exceptional
curves in X4 are torsion, we then consider the six inequivalent choices

d € {(5,1°),(4,2%,0),(3%,1%),(3,1°), (21, (1%)}, (8)
so that H, ()A( a4,7Z) ~ 7 x Zy," and the respective number of nodes in Xy is given by

n(5713) = 64, ’I’L(4_22_0> = 72, n(gz,lz) = 76,

3,15 = 80, N9 = 80, n(sy = 84. (9)

Adapting the language from Ref. 15, we refer to the geometries X4 as determinantal
octic double solids. Note that all of these geometries can be seen as corresponding to a

9Let us point out that the isomorphism is not canonical and we assume that a consistent choice has been
made for the remainder of this paper.

2446003-4



Topologically nontrivial B-fields on nodal Calabi-Yau 3-folds

subslice in the complex structure moduli space of the smooth generic octic X ) with
Hy(X(g),Z) = Z.

Let us briefly sketch the idea behind the proof of Proposition 2.1 from Ref. 4
because it will be closely related to the physics of M-theory on Xg. First write Aq4 as

e (3

and define

(11)

r 2 y 4 r A BT
Xd:{y =detﬁl($1,,x4)}C}P’4(l ,4), Ad: .

B 0
One can show that X still has ng isolated nodes S§, = {corankAg = 2}, which are
just deformations of the nodes Sq; in Xy, but additional isolated nodes appear at
Sq2 = {corankB = 1}. However, unlike Xy the double cover Xy always admits a
Kihler small resolution X g and H, (5( fi, Z) ~ 7 x Z. The exceptional curves in X fi
that resolve a node in Sg; are all homologous to each other and the same holds for
the exceptional curves resolving nodes in S§,. Denoting the respective classes by
C},C, one also finds that 2C; = C,5. The Mayer—Vietoris sequence then relates the
homology of X g to that of a small resolution S(d of X4 and completes the proof of
Proposition 2.1.

We can also interpret the transition from a physical perspective in terms of the
corresponding M-theory compactifications. The effective theory associated to X fi has
a G=U(1) x U(1) gauge symmetry and corresponds to a generic point on the
Coulomb branch. Moreover, M2-branes that wrap curves in the class C; lead to
particles with charge (0,4) for i = 1, 2. Going to the boundary of the Coulomb branch
where these particles become massless brings us to the compactification on X §. The
deformation to X4 then removes the nodes that are resolved by curves in the
class C, and therefore amounts to giving a vacuum expectation value to scalar fields
with charge (0, 2). This breaks the gauge symmetry from U(1) x U(1) to U(1) x Zs.
The same conifold transitions used in proving Proposition 2.1 therefore lead to the
following result about M-theory on Xg:

Claim 2.1. For decompositions d of degree |d| =8 and length lq > 3, the five-
dimensional effective theory from M-theory compactified on Xq has a gauge
symmetry G ~ U(1) X Zs.

We have therefore explicitly verified (2) in this class of examples.

3. Noncommutative Resolutions from Hybrid GLSM

For each X4 we will now construct a family of GLSMs that exhibits the so-called
hybrid phase which, as was argued in Refs. 2 and 4, flows to the worldsheet theory of
Type ITA strings that propagate on Xy in the presence of a flat but topologically
nontrivial B-field.
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Given a normalized decomposition d € NQZ% of degree d = 8 and a corresponding
symmetric matrix Aq, we let ¢ = gcd(2,d;) and construct the GLSM as follows.
The gauge group is

G:{U(l)XZQ q=2, (12)

U(1) g=1

.....

tation values of the corresponding scalar fields as p; and x;. The charges of the fields
under the gauge symmetry and under a vector R-symmetry U(1)y, are

‘ P Py ‘Xj:I,WA
U1) |=di/q ... —dan/q| 2/q
R (13)
Uyl 1 ... 1 0

and the superpotential takes the form
W:PTAd(Xl,...,X4)P. (14)

We denote the Fayetlliopoulos parameter and the theta angle associated to the
U(l) C G gauge symmetry, respectively, by r,6 and define the complexified
Fl-parameter t = 0/(27) + ir.

Note that if ¢ =1 then the Z, symmetry in (13) is embedded in the U(1). In
general, the Z, Gauge symmetry ensures the charge integrality condition, meaning
that every Gauge invariant operator has a U(1)y R-charge that agrees with its sta-
tistics modulo 2. The U(1) gauge charges of the chiral fields sum to zero so that the
GLSM satisfies the Calabi—-Yau condition and the axial R-symmetry is also unbroken.

The GLSM associated to d = (18) has first been discussed in Ref. 16, while the
relation to noncommutative resolutions was observed in Refs. 11, 12 and 17 and
further studied in Refs. 2 and 4. The case d = (2*) has previously been discussed in
Refs. 4, 13 and 18. More recently, GLSMs of this type and their relation to non-
commutative resolutions have also been discussed in Ref. 19.

Let us now describe the relationship to Xy first from the closed string and then
from the open string perspective. The relevant hybrid phase appears in the region
r > 0 of the Fl-parameter space. The D-term equation 2(|z{|> + - + |z4]?)/q —
> id;|pi)? /g = r then implies that the z; cannot vanish simultaneously. The F-term
equations 0, W = 8;E_],W = 0 further require that p; =--- = py, = 0 so that after
identifying gauge equivalent vacua the x_; 4 can be interpreted as homogeneous
coordinates on P?. Adiabatically, over a point in P3, the fields P, flow to a Z, orbifold
of a Landau-Ginzburg model with quadratic superpotential (14).

Over a generic point in P3, the mass matrix of the Landau—Ginzburg fiber has full
rank and therefore all of the fields can be integrated out so that the Z,-orbifold action
becomes ineffective. The phenomenon of decomposition, first described in Ref. 20
with a recent introduction being,?! then implies that the resulting theory is equiva-
lent to two copies of the theory without the orbifold and therefore exhibits two vacua
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instead of one. This changes over the points in {det Ay = 0} where the rank of the mass
matrix drops and the two vacua fall together. As a result, the vacuum manifold in the
hybrid phase of the GLSM takes the form of the double cover X4 of P5.

However, while the Calabi-Yau Xy is singular one can check that the GLSM is
actually regular. To see this, note that the F-term equations

0, W = [Aq(21,...,24)P]; = 0, Ber = pTBr[Ad(;vl, .o,x)p =0, (15)

force p to be a zero eigenvector of Ag(xy,...,z,) that satisfies four quadratic
equations. Since for a generic choice of A4 the space of zero eigenvectors is at most
two-dimensional over x € IP? this forces p to vanish and the space of vacua has no
noncompact directions.®

The resolution to this apparent mismatch between the singularity of the under-
lying geometry and the regularity of the GLSM is the following claim.

Claim 3.1. The infrared theory associated to the hybrid phase is the worldsheet
theory of strings propagating on X4 in the presence of a flat topologically nontrivial
B-field.

This has been argued for the case d = (1%) in Ref. 2 and was demonstrated
explicitly in Subsec. 5.2 of Ref. 4 by studying the relationship between the
GLSM (13), the GLSM associated to the nonlinear sigma model on X fi and the
corresponding limit in the stringy Kdhler moduli space of the latter. We will review
the discussion from Subsec. 5.2 of Ref. 4 in Sec. 5.

From the open string perspective, it has been argued in Refs. 11, 12 and 17 that
the string background associated to the hybrid phase for d = (1®) can be interpreted
as a noncommutative, or categorical, resolution of X(;s) in terms of a sheaf of even
parts of Clifford algebras on P2. The argument generalizes to other choices of d and is
based on the result from Ref. 22 that the O-branes of a Landau—Ginzburg model with
quadratic superpotential can be described as modules over the Clifford algebra that is
associated to the quadratic form. Taking into account the Z,-orbifold leads one to
consider only the even part of the Clifford algebra and after fibering the construction
over the base of the hybrid model one obtains a sheaf of even parts of Clifford
algebras B, on P2. This sheaf has previously been constructed by Kuznetsov in the
context of homological projective duality'*?? and is conjecturally describing the so-
called crepant categorical resolution of X,4.” We will connect this to Claim 3.1 in
Sec. 6 but first discuss the topologically nontrivial B-fields on Xyg.

4. Flat B-Fields with Nontrivial Topology

In addition to the metric, a Type II string compactification on a Calabi—Yau X also
requires a choice of B-field. Our focus in this paper is on singular Calabi-Yau

“The fact that the equations lead to sufficiently many independent constraints, while not completely
obvious, can be verified for random choices of coefficients by calculating the Groebner basis of the ideal
I= <apl W7 am‘,W7 H?(pl - 1)/H](IJ - 1)> C C[Il ..... 4, D1,..., Zn] to see that I = <1>
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threefolds X with isolated nodal singularities that are resolved by torsion curves in a
non-Kéhler small resolution X. In Refs. 1, 2 and 4, building on Ref. 5, it was argued
that the following claim.

Claim 4.1. flat B-fields on the singular Calabi-Yau X can be described by
corresponding B-fields on any small non-Kdahler resolution X.

We actually do not have a good description of B-fields on the singular Calabi—Yau
X itself, so this statement can also be seen as a provisional definition. The idea is then
that whatever the correct framework for describing flat B-fields directly on X turns
out to be, we expect that choosing a B-field on X and then shrinking the exceptional
curves is a well-defined procedure that leads to a one-to-one correspondence between
flat B-fields on X and on X.

While the B-field on a smooth Calabi-Yau Y is often described as an antisym-
metric two-form field, it should actually be thought of as a connection on a Gerbe in
the sense developed in Ref. 24, see, e.g. Refs. 25 and also Refs. 26 and 27 for an
introduction to this point of view. It is in this sense a higher analogue of the usual
one-form gauge field, which is a connection on a line bundle.

To a one-form gauge field one can associate the first Chern class ¢, (L) € H*(Y,Z)
of the associated line bundle L and locally this is just the curvature of the con-
nection. Similarly, the B-field determines a characteristic class of the Gerbe, the
so-called Dixmier-Douady class, which takes values in H3(Y,Z). At the level of the
differential form representative of the B-field B € Q%(Y), the latter is just the usual
H-flux

[H]qr = dB, (16)

where [H|sz denotes the image of H in de Rham cohomology. However, if H3(Y,Z)
contains torsion then the Gerbe can be topologically nontrivial even if the B-field is
flat, i.e. [H]qg = 0.

To see this, one first notes that from a sigma model perspective the B-field assigns
phases to curves and the cohomology class naturally takes values in

as was pointed out, e.g. in Refs. 5 and 28. The short exact sequence 0 - Z — R —
U(1) — 0 then leads to the long exact sequence
S HAY,Z) — HAY,R) — HX(Y, UQ) S H¥Y.,Z) — -, (18)

and the Dixmier-Douady class is the image of the cohomology class of the B-field
under the Bockstein map (. In particular, the cohomology classes of flat B-fields are
in one-to-one correspondence with tuples (wp, ) with wg € H?(Y,R)/H?*(Y,Z) and
a € TorsH3 (Y, Z).

The universal coefficient theorem implies that

TorsH?*(Y,Z) ~ Hom(TorsH,(Y,Z),U(1)). (19)

2446003-8
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Given a curve class C € Hy(Y,Z), we can write the corresponding holonomy of a flat
B-field B € H?(Y,U(1)) which is represented by (wp, «) as

(B,C) = a(C)exp (271'2' /C wB>. (20)

Recall now that from the perspective of M-theory on Y x S, the class wp para-
metrizes the Wilson lines of U(1) gauge fields along the circle. If the five-dimensional
effective theory exhibits a discrete Gauge symmetry, then one also has to specify a
choice of discrete Wilson line.

Taking X again to be our nodal projective Calabi-Yau three-fold, we arrive at the
following claim.

Claim 4.2. The choice of discrete Wilson line in the M-theory compactification on
X x S is dual to the topology of the flat B-field in the Type IIA compactification on
the same Calabi-Yau.

Let us now apply this discussion to the symmetric determinantal double solids X4
introduced in Sec. 2. Again we focus on the choices (8) for the decomposition
d € N2, One claim from Refs. 1, 2 and 4 is that we can describe the B-field on X4 by
working with any non-Kéhler small resolution X d4- We then have an isomorphism
TorsH 3(3\( a4, Z) ~ 7y and can describe the topology of the flat B-field as « = [k] for
k=0,1. Given also a class b € HZ()A(d,R) ~ R, the holonomy of a curve C that
represents the class (d, [p]) € HQ(X(LZ) ~ 7 x Zy with p = 0,1 is given by

(B,C) = (—1)Pke2ridd, (21)

We denote the singular Calabi—-Yau X4 together with a choice of B-field topology
[k] € Zy by (Xg4,[K]). Note that the integral of a two-form over torsion curves
vanishes and therefore the holonomies of the exceptional curves in Xg (which all
represent the class (0,[1]) € H,(Xq4,7)) are only sensitive to the topology of the
flat B-field.

An important point is that a flat B-field with nontrivial topology stabilizes the
nodes that are resolved by torsional exceptional curves in the sense of Ref. 5.

For the singular Calabi-Yau X4 = (X4q, [0]) itself, the B-field holonomy of the
exceptional curves in X 4 is trivial and can be deformed to the generic smooth octic
X(3), removing all of the nodes in the process. The number of complex structure
deformations of (Xg,[0]) is therefore h*!(X(5)) = 149. On the other hand, for (Xg,
[1]) the B-field holonomy along all of the exceptional curves is —1. As a result, the
nodes are “frozen” by the B-field and the number of complex structure deformations
of (Xgq,[1]) is 149 — nq, where nq is the number of nodes given in (9).

Recall that from the perspective of strings propagating on a Calabi-Yau, a
conifold singularity arises when not only the volume of the corresponding exceptional
curve vanishes but also the B-field holonomy along the curve is trivial. Therefore,
even though X4 contains nodal singularities, (Xg, [1]) is a smooth string background
and the worldsheet theory is expected to be regular.

2446003-9
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5. Conifold Transitions with B-Fields and Exoflop Phases

We will now motivate Claim 3.1 that the GLSMy in the phase r > 0 flows to a
worldsheet theory of strings propagating on X4 in the presence of a flat but topo-
logically nontrivial B-field. To this end we consider the GLSM associated to X fi and
connect it to GLSMq4 via an exoflop phase. We focus on the case d = (2*) but the
discussion easily generalizes to all d in (8).

From the explicit description of the small resolution X EQ&) of X ’(f24) in Ref. 4, we see
that the associated GLSM has gauge symmetry G = U(1); x U(1), and nine chiral
fields Py 5, U} 93, X134 With gauge charges and U(1)y R-charges given by

,,,,,

Uinl-2-1 1 0 |n
U(l)g -2 -2 0 1 T2 ’ (22)
Ulvl2 2 0 0

where r;, o denote the Fayet—Iliopoulous parameters. We denote the corre-
sponding scalar fields by p; 9, 1193, 1234 and the theta angles by 6;, , and then
define the complexified FI-theta parameters z; = exp (—27r, +46;,), k= 1,2. The
superpotential takes the following form:

PLA(X) B(X)T> s

B(X) 0 (23)

W= q>T<
where ® = (U,,U,,Us, P,) and the matrices A, B are the components of AE%)
from (11), of respective dimensions 3 x 3 and 1 X 3, with entries that are quadratic
polynomials in X SHe The geometric phase in which the GLSM flows to a nonlinear
sigma model on X, (21) corresponds to the region ry, 79 > 0.

Let us instead consider the phase r < 0,79 > 0. The D-term equations read

=2[pi * = Ipol? + [ [P+ -+ Jug? =1,

N T P R P 2y

and we see that the deleted set takes the following form:
{pr=p,=0tu{z, = =2,=0} (25)
The expectation values of x,..., x4 can_ agaln be interpreted as homogeneous

coordinates on IP? but, since the geometry X, (2+) is smooth and py, p, are not allowed
to vanish simultaneously, we now need to have u = 0 in order to solve the F-term
equations.

The F-term equations now also imply that ¢ aW = pyB; = 0. For points of P? where
B # 0 this implies that p, = 0 and therefore |p1| = +/—r1/2, which breaks U(1), to a
Zy under which U; 5 and P, have odd charge. Adiabatically, over points x € P3
where B has full rank, we therefore find that the low energy dynamics precisely
match those of the GLSMy for d = (2%) in the phase r >> 0 and for the special choice
of superpotential W’ = PTAE2,1)(X1, o Xg)P.
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On the other hand, at the points x € P> where B = 0 the values of p,,p, are
unconstrained and span a P(2,1) ~ P! with volume proportional to —r;. Since this P!
is not contained in the toric ambient space of X, (21) but instead parametrized by fields
that are, from the toric perspective, nongeometric, we find the so-called exoflop
phase.29-31

It is known that ordinary conifold transitions between smooth Calabi—Yau three-
folds often pass through such an exoflop phase and the geometry with smaller h! is
then obtained by ignoring the exoflopped P'’s and deforming away the resulting
singularities, see, e.g. Ref. 31. Assuming that the same procedure is valid in this case
as well, we therefore conclude that the string vacua associated to the phase r > 0 of
GLSM, are connected to those associated to the GLSM (22) by a conifold transition
that takes place in the limit r; < 0,7, > 0.

At the level of the underlying geometries, this conifold transition connects X fi and
X4. However, using either a localization calculation or mirror symmetry one finds
that the quantum volume ¢; of the curves in the class C; € H. 2(3\( :1, 7Z) is related to
the FI-theta parameters zq, 29 via

1 1—+/1—4z —2
_ log( “1 Zl) + O(zy),

t, =
V7 o 224

(26)

such that lim, _,_,?; = 1/2. Recall that the quantum volume, or complexified vol-
ume, of a curve takes the form ¢; = b+ iv, where v € R is the quantum corrected
volume and b = 2%” log B € R/Z is the phase of the B-field holonomy. The quantum
volume of the curves in the class C5 in the limit 7y — —o0 is 2¢; = 1 ~ 0 and the
nodes Sg , can be deformed away. On the other hand, the curves in the class C; have
(real) volume Im ¢; = 0 but a nontrivial B-field holonomy of Re ¢; = 1/2 and the
nodes Sg, are therefore “frozen” due to the presence of the B-field.

This leads us to conclude that the infrared theory in the phase r > 0 of GLSMy4
corresponds to the worldsheet theory of strings propagating on X 4 with the quantum
volume of the exceptional curves that resolve the nodes S4; being 1/2. In the light of
the discussion from Sec. 4, this can be naturally interpreted in terms of a flat but
topologically nontrivial B-field. Since the volume of the exceptional curves is zero we
can equivalently interpret this as strings propagating on X4 with a corresponding
B-field and therefore arrive at Claim 3.1.

6. D-Branes in Nontrivial B-Field Backgrounds

It is known that topological D-branes in the presence of a flat topologically nontrivial
B-field are described in terms of twisted sheaves Subsec. 5.3 of Ref. 32. We explain
what this means in our context.

We consider a flat Bfield B € H?(Xg,U(1)). The image o of Bin H*(X4,0%,)
can be represented by an O% -valued cocycle ;j, for an open cover {U;} of X4. A
twisted sheaf is a collection of coherent sheaves F; on U; and isomorphisms ¢;; :
(E)lvno, — (F))|vno, satistying ¢pi¢di; = ayj.. The category of branes is then the
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derived category Db()A(d, «) of twisted sheaves. The notation acknowledges that the
derived category of twisted sheaves only depends on a up to equivalence and not on
the specific cocyle representing a.

In certain cases the twisted derived category Db()A( ,a) on a small non-Kéhler
resolution is equivalent to the ordinary derived category D’(Y) of another smooth
Kiihler Calabi-Yau three-fold Y. One example is X4 with d = (18) in which case Yis
a complete intersection of four quadrics in P7. This suggests that even though X is
not Kihler, the twisted derived category D”()A( ,a) “behaves” like the category of
topological B-branes on an ordinary smooth Kéhler Calabi—Yau background. This
leads us to expect more generally that D”()A( ,a) is identical to the category of to-
pological B-branes on the singular Calabi—Yau itself in the presence of the topo-
logically nontrivial B-field.

One interpretation of this phenomenon would be that the worldsheet theory of
strings on (5\( ,a) is related via renormalization group flow to the CFT that describes
strings on (X, a). Since going from complexes of coherent sheaves to the derived
category can physically be interpreted as identifying configurations of branes that
flow to the same configuration in the infrared, see e.g. Sec. 3 of Ref. 33, it is then
natural that Db(j( , ) provides a good description of topological B-branes on (X, ).
In the following, we will therefore talk about branes on (Xg,[1]) even though we
actually compactify Type ITA string theory on (X4, [1]).

It was shown in Ref. 34 that a D6-brane in the presence of a topologically non-
trivial B-field determines a sheaf of Azumaya algebras on the Calabi-Yau, i.e. a
locally free sheaf of matrix algebras. It is natural from the viewpoint of physics to
conjecture the existence of a D6-brane on (Xg, [1]). This would imply the existence of
a global twisted vector bundle £ on S(d, i.e. each &; is a vector bundle on U;. The
sheaf of Azumaya algebras on X is then the (ordinary) sheaf B = End Xd (€). In this
situation, the sheaf B is expected to satisfy the conditions of Conjecture 1.1.

From the viewpoint of mathematics, the existence of a sheaf B of Azumaya al-
gebra associated to the class a follows from the assumption made in Sec. 1 that the
Brauer group and the cohomological Brauer group are equal. It follows readily from
the definitions that Db()A(d, a) = D”()A(d, B), so that the category of branes can be
identified with D*(Xy, B).

The sheaf B of Azumaya algebras has been proven to exist in the length 4 case
when « is the nontrivial Brauer class.?® Letting p : X4 — P? be the double cover, it is
also shown that By = p, (. (B)) is a sheaf on P? of even parts of Clifford algebras, and
that the category of branes D*(X 4, B) can be identified with D(IP%, By). See Ref. 4 for
further discussion of the role of sheaves of By-modules in the context of this paper.

In the case d = (18), the category of branes Db(jfd, @) is equivalent to the ordi-
nary derived category of a complete intersection Z of quadrics in P7.%> This con-
nection was exploited in Ref. 2, where a second MUM point of the moduli space of the
mirror of Z was used to set up the B-model calculations employed to compute the
torsion refined invariants.
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7. Torsion Refined Gopakumar—Vafa Invariants from Physics

The physical definition of GV invariants from Refs. 8 and 9 only relies on the fact
that the effective theory is a five-dimensional supergravity with eight supercharges.
This is still true when X is a projective Calabi—Yau three-fold with isolated nodes and
was used in Ref. 1 to propose a torsion refinement of the GV invariants of the smooth
deformation.

To be concrete, let us consider again M-theory on the determinantal octic double
solids X4 with |d| = 8 and 4 > 3. The massive little group of the five-dimensional
theory is

and we found that the gauge group is always G = U(1) x Z, while the charge lattice
can be identified with HQ()A(d, Z) ~ 7 % Zy for any small resolution Xd of Xg4. We let
N jdejR € N be the number of BPS-particles that carry charge (d,p) € Z x Z, and that
transform in the representation

(0:3) @20.0] © Gr.in. (25)

of the little group (27). The torsion refined GV invariants n? € Z are then defined
via the usual trace over jp,

S = 3 (Vi OV 1= (200e [3]) e

920 JrEIN

As discussed in Sec. 2, smoothing Xy to the Calabi-Yau threefold X can
physically be interpreted as a Higgs transitions where scalar fields with charge
(d,p) = (0,1) get a nontrivial vacuum expectation value, thus breaking the gauge
symmetry from U(1) x Z, to U(1). This implies that the GV invariants n of X (8) are
related to the torsion refined GV invariants of X4 via

d__ . do

ny =ny Jrn;l’l. (30)

In other words, the torsion refined invariants resolve the charge under a discrete
gauge symmetry that M-theory develops on a special subslice of the complex
structure moduli space of a smooth Calabi—Yau. Note that we have left the depen-
dence of the torsion refined invariants on X4 implicit and each X4 corresponds to a
different subslice in the complex structure moduli space of Xg) and a different torsion
refinement of the corresponding GV invariants.

Let us now consider the M-theory compactification on X4 x S'. Recall that
the Wilson lines of the five-dimensional gauge fields along the circle parametrize the
B-field holonomies along curves in the Calabi-Yau. They combine with the Kahler
modulus into the complexified Kéhler parameter ¢ that parametrizes the Coulomb
branch of the four-dimensional effective theory.

As discussed in Sec. 4, circle compactifications of the five-dimensional theory with
different choices of discrete bundles, i.e. discrete Wilson lines, are dual to Type ITA
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compactifications on X4 with different topologies [k] € TorsH3(X4,Z) ~ Z, of the
flat B-field. Generalizing again the results from Refs. 8 and 9, the Gopakumar—Vafa
expansion of the A-model topological string partition function on (Xg,[1]) then
naturally takes the following form:

(1 mA 22 kmp  2mimdt
Ziop (t ZZZZ (2 1n—> (—1)kmpg2mimat, (31)

g>0 d>1 p=0,1 m>1

Note that Z,, (t,[0]) is identical to the topological string partition function on X,
which can also be seen as a consequence of (30) and invariance of Z,, under complex
structure deformations.

We will discuss in Sec. 10 how a localization calculation in the GLSM from Sec. 3
can be used to obtain the periods of the Calabi—Yau that is mirror to (Xjg, [1]) and
sketch how one can calculate the topological string free energies, at least up to some
maximal genus, in order to extract the torsion refined invariants.

8. Torsion Refined Gopakumar—Vafa Invariants from Geometry

We begin this section by briefly reviewing the mathematical definition of GV
invariants given in Ref. 10. This definition incorporates the physics definition of GV
invariants outlined in Sec. 7 into a precise mathematical framework. An exposition of
these ideas for physicists, in the context of ordinary GV invariants without the
torsion refinement, appears in Sec. 3 of Ref. 36.

Let Y be a (smooth) Calabi-Yau threefold and let 8 € Hy(Y,Z) be a curve class.
Fixing a unit of D0-brane charge, the semistable D2-D0 branes of D2-brane charge
determined by (3 are identified at large radius with the moduli space M4(Y") of stable
sheaves F on Y with [F] = § and x(F) = 1. The one-cycles (curves with multiplic-
ities) supporting these sheaves are parametrized by the Chow variety Chow(Y’), and
there is a Hilbert—-Chow map

T3 M[j(Y) — ChOWﬁ(Y), (32)

taking a sheaf to its support cycle. Since M;(Y) is singular in general, we cannot use
ordinary cohomology to quantize the moduli space of branes. However, perverse
sheaves and perverse cohomology are well adapted to singular spaces. The moduli
space My(Y') always supports perverse sheaves of vanishing cycles ¢ which are
locally determined by a holomorphic Chern—Simons functional. Globally, ¢ depends
on the mathematical notion of an oriented d-critical locus.?”

Using perverse cohomology sheaves PH*, the GV invariants are defined in terms

of ¢ by
> ong@M 4y =N x("H (Rms.0))y (33)

920 i€Z

This identity is an expression for the SU(2); character of (29).
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It is proven that these nf are independent of the choice of orientation satisfying
an additional condition, called the Calabi-Yau condition in Ref. 10. The existence of
an orientation satisfying the Calabi-Yau condition is still conjectural.

If Mz(Y) is a moduli space of sheaves supported on curves of genus g

and Chowy(Y) is smooth, then the calculation simplifies and we get nf =

(_ 1)dim(Ch0W@(Y)) G(ChOWg (Y))'BSAB!)

We can now describe our proposal for modifying the above definition in order to
mathematically define the torsion refined invariants. While this developing theory is
not yet at the same level of rigor as the theory of ordinary GV invariants, it leads to
well-defined geometric computations which always agree with the physical invariants
whenever the geometric computation can be completed.

Let £ be the twisted sheaf describing the DG6-brane as in Sec. 6. Then to
any F* € D'(X4) we can associate the twisted object F* ® £ € D*(Xq, ), so that
D-branes in the absence of a B-field can be used to construct D-branes in our non-
trivial B-field background.

Furthermore, any two small resolutions of Xy are derived equivalent,*’ so the
derived category of any small resolution also maps to the category of branes Db()A( a)-
We therefore see that sheaves on any small resolution lead to twisted sheaves on a
fixed X 4 and can contribute to the torsion refined invariants.

Given two small resolutions X q and X :1 of X4, we have a canonical identification
HQ()A(d, 7) ~ HQ()A( :1, 7)) where the classes of the exceptional curves are identified. So
we fix any small resolution X4 and let 8 € Hg(f(d, Z). We then let M3(Xq) denote
the moduli space of stable sheaves F on any small resolution of Xy with [F] = § and
X(F) = 1. We then have a map

7 Mg(Xq) — ChOWﬁ(Xd), (34)

analogous to (32). Assuming the existence of a perverse sheaf of vanishing cycles ¢
satisfying the Calabi—Yau condition, with good properties, we can then define the
torsion refined invariants by adapting (33) to (34).

These ideas are discussed in more detail in Ref. 2. In particular, it was also
conjectured in Ref. 2 that the torsion refined GV invariants can be defined in terms of
a Bridgeland stability condition on Db()A( a4, @) at large radius. This may not seem
possible at first glance since there are sheaves supported on the exceptional curves
(of any small resolution) which would have vanishing central charge at large radius
in contradiction to the existence of a Bridgeland stability condition. However, the
topologically nontrivial B-field shifts the central charge away from zero, simulta-
neously removing the contradiction and requiring the exceptional curves of all small
resolutions to contribute to the torsion refined GV invariants.

9. Enumerative Geometry

We quickly review the description of H, ()A( a4, Z) from Refs. 2 and 4 and then compute
some torsion refined invariants using geometry.
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As noted in Proposition 2.1, we have isomorphisms
Hy(Xq,Z) ~ 7 X Zo. (35)

Since Z x Z, has a nontrivial automorphism, these isomorphisms (35) are not ca-
nonical. We fix one such isomorphism and denote curve classes 8 by (d,p) € Z X Zs.
The degree d of a curve class [ is canonical, independent of the choice of isomorphism
(35), but the torsion class p € Z, is canonical only if d is even.

The nontrivial element of the torsion subgroup Z, is represented by any of the
exceptional curves C; ~ P! over the conifold points p;.

Consider p =pom: )A(d — P obtained by composing the small resolution with
the double cover. Letting £ C P? be a line, then p~'(¢) has degree 2 and parity pq
equal to the parity of d.? These curves are double covers of £ branched over 8 points
and so have g = 3. The moduli space of these curves is the Grassmannian G(2,4) of
lines in P3. Since G(2, 4) is smooth, even-dimensional, and has Euler characteristic 6,
we get

ng’p" =6, ng’p‘rl =0, (36)

in agreement with B-model calculations.

Degree 1 curves C are only slightly more subtle. First, 5(C) must be a line ¢, so
that C' C p~1(£). By degree considerations, p~!(¢) must be a union C UC" of two
degree 1 curves. If d is an odd decomposition, then since 5~!(f) has class (2,1),
necessarily one of the curves C,C’" has class (1,0) and the other has class (1,1)
(having fixed an arbitrary isomorphism (35) to assign a torsion class to each curve).
Each of the curves C, (' is isomorphic to ¢ and so has g = 0, thus n(l)"o = n[l)’l7 and
this number is equal to the number of lines in P® for which the double cover splits
into two components. This number was computed in the 19th century to be 14752,%!
so that

ng’ =ngt = 14752, (37)
if d is odd. If d is even, the same reasoning only tells us that
ny” +nyt = 29504. (38)

These results all agree with B-model calculations.

As our last example, we continue discussing degree 2 curves C' C j\(d and the
invariants n” for g > 2. Necessarily 5(C) C P? has degree 1 or 2. If 5(C) has degree
2, then p|c is an isomorphism of C onto a degree 2 curve, so C has genus zero and
these curves do not contribute to n2? for g > 2. If 5(C) is a line £, then necessarily
C C p~1(¢), which as we have seen has class (2, pq)-

We therefore get two contributions to the torsion refined GV invariants ng’p .
First, from the g = 2 contribution to sheaves on the genus 3 curves p—!(¢) obtained
by the expansion (33), and second from these genus 2 curves obtained from lines ¢
containing a conifold by removing the exceptional curve from p~!(£). The lines
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containing any conifold p; are parametrized by a P?, with Euler characteristic 3, and
there are two such families of curves C, one for each of the two small resolutions of p;.
We therefore get a contribution to ng’p il of2.3. ng = 6nq. Combining with the
contribution of the genus 3 curves computed in Ref. 2, we find complete agreement
with the B-model. This example shows that it was essential to consider all small
resolutions when mathematically defining the torsion refined GV invariants. Addi-

tional examples are given in Refs. 2 and 4.

10. Localization and Mirror Symmetry

We will now discuss how the topological string free energies on (Xg4,[1]) can be
calculated using mirror symmetry, at least up to some genus. It was argued in Ref. 4
that the mirror of (Xg, [1]) can be obtained using the techniques developed in Ref. 42.
However, for the purpose of calculating the free energies we only need information
about the periods of the Calabi—Yau and these can be obtained directly from the
GLSM.*

The sphere partition function Zg. (v, v) of the GLSM can be evaluated using the
localization calculation from Refs. 43 and 44 and is related to the Kdhler potential

K(v,7) on the complexified Kihler moduli space via*46

Z52 (1), ’U) = 67K(1"717). (39)

Using the relation to the fundamental period of the mirror Calabi—Yau

e K2 ~ wy(2) + O(log(2), Z), one obtains®
EoT(1+2dp) 1
wy(2) = 2m E ) 40
ol?) 2;0 lu P(1+%m) | T(1+ Fm)* o

where a change of coordinates has been performed such that the mirror map takes
the form #(z) = 5= log(z) + O(2).

From the fundamental period (40) one can then determine a complete basis of
periods II(z) such that TI(2(t)) = wy(1,t, 0, Fy, 2F, — td,Fy) in terms of the genus

zero free energy

1 B3 (x, 7 ;
Fo(t)= — =kt + -+ S O(e*mit 41
where k = 2 and x = —296 are, respectively, the triple intersection number and the

Euler characteristic of the smooth deformation X of Xg4."

The correction of 7/4ng4 to the usual factor x/2 of the constant term in (41) was
derived in Ref. 2 by identifying the local geometry around each node in the presence
of the topologically nontrivial B-field with the noncommutative conifold from
Ref. 47. For the free energies F g(t,f) at genus g > 2 the resulting formula for the

‘Let us point out that this basis does not lead to integral monodromies as is explained in Subsec. 5.5 of
Ref. 2 and Sec. 7 of Ref. 4.
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Table 1. Some torsion refined Gopakumar—Vafa invariants for X 1s).

nd? d=1 2 3 4 5

g=0 14752 64444512 711860273440  11596529531321056  233938237312624658400
1 0 20480 10732175296 902645866490432  50712027457008177856
2 0 384 —8275872 6249796276400 2700746768622436448
3 0 0 —88512 —87425677776 10292236849965248
4 0 0 0 198020184 —337281112359424

5 0 0 0 150666 6031964134528

6 0 0 0 2232 —43153905216

7 0 0 0 24 18764544

8 0 0 0 0 177024

9 0 0 0 0 0

nd! d=1 2 3 4 5

g=0 14752 64390400 711860273440  11596526493472256  233938237312624658400
1 0 20832 10732175296 902646226215424  50712027457008177856
2 0 480 —8275872 6249871001344 2700746768622436448
3 0 6 —88512 —87433826048 102922368499652438
4 0 0 0 198195616 —337281112359424

5 0 0 0 150784 6031964134528

6 0 0 0 1920 —43153905216

7 0 0 0 0 18764544

8 0 0 0 0 177024

9 0 0 0 0 0

constant map contributions is

—1)91 n,
22 () = 2;(2;)— 2%932_922)!] <X +22 S+ QW)nd)’ ()

in terms of the Bernoulli numbers B,,.

The higher genus free energies can be obtained by integrating the so-called
holomorphic anomaly equations,*®*? following Ref. 50 with the modifications due to
the B-field discussed in Ref. 2. Fixing the holomorphic ambiguity that arises at each
integration step requires sufficiently strong boundary conditions in the moduli space
and/or vanishing conditions on the invariants. The direct integration for X, and
therefore also (Xjg, [0]), has recently been carried out in Ref. 51 up to genus g = 48.
On the other hand, the procedure has been carried out for (Xg, [1]) with d = (18) up
to genus g = 32 in Ref. 2 and ford = (5,1%),d = (2*) and d = (4, 2%,0), respectively,
up to genus g = 25, g = 14 and g = 9 in Ref. 4.

Some of the torsion refined invariants associated to d = (5,1%) are shown in
Table 1. Invariants that are checked by the enumerative calculations from Refs. 2
and 4, which we partly reviewed in Sec. 9, are highlighted in blue.
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