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1. Introduction

We consider projective Calabi{Yau threefolds X that have isolated nodal singular-

ities S � X such that the exceptional curves in a small resolution � : bX ! X are

torsion in homology. For simplicity, we will assume that

H2ðbX;ZÞ ’ Z
b2ðXÞ � Zr ð1Þ

and that XnS is smooth, but the results easily generalize. The small resolution is

then a complex manifold, but since the exceptional curves are holomorphic, it cannot

be Kähler. However, the nodes can always be deformed away and the complex
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structure deformations of X that preserve the nodes can be identi¯ed with a sublocus

of the complex structure moduli space of a smooth Calabi{Yau manifold ~X , which

we assume is Kähler.

Since bX is non-Kähler, it cannot be used directly as a stable string background.

Nevertheless, it was argued that the geometry of bX determines the physics of

M-theory and Type IIA string theory on the singular Calabi{Yau X in the following

way1{4;a:

. The gauge symmetry of the ¯ve-dimensional e®ective theory obtained from com-

pactifying M-theory on X is

G ¼ HomðH2ðbX;ZÞ;Uð1ÞÞ: ð2Þ

The charge lattice can thus be identi¯ed withH2ðbX;ZÞ. Assuming (1), this implies

that the e®ective theory has a gauged Zr symmetry under which the particles that

arise from M2-branes wrapping the exceptional curves carry nontrivial charge.

. Flat B-¯elds in Type IIA compacti¯cations on X are in one to one correspondence

with °at B-¯elds on bX. A choice of °at B-¯eld on bX in turn corresponds to a pair

ð!B; �Þ with !B 2 H2ðbX;RÞ=H2ðbX;ZÞ and

� 2 BrðbXÞ ’ Tors H2ðbX;ZÞ; ð3Þ

where � measures the global topology of the B-¯eld.b The B-¯eld topology is dual

to a Zr-Wilson line in the M-theory compacti¯cation on X � S1.

We use ðX; �Þ to refer to the Calabi{Yau X together with a choice of B-¯eld

topology.

The torsional exceptional curves only measure the topological part of the B-¯eld.

If the holonomy of the B-¯eld along those curves is nontrivial, the B-¯eld \stabilizes"

the corresponding node in X, meaning that the Type IIA worldsheet theory is

expected to be nonsingular.5

Assuming that all of the nodes are stabilized in this sense, the regularity of the

string worldsheet theory together with the dynamics of topological B-branes in the

presence of a topologically nontrivial B-¯eld then motivates the following mathe-

matical conjecture.

Conjecture 1.1. For each choice � 2 BrðbXÞ there is a sheaf of Azumaya algebras B
on bX representing � such that R��B is a crepant categorical resolution of X, in the

sense of Ref. 7, and there is a twisted derived equivalence DbðbX; �Þ ’ DbðX;R��BÞ.

aThe proposal is inspired by and builds on Ref. 5, where the large resolution has been used that is Kähler

but not Calabi{Yau. While a comparison of the two approaches is beyond the scope of this review, we refer

to Refs. 1 and 2 for further details and references.
bWe will make the implicit assumption that the Brauer group BrðbXÞ of bX is equivalent to the cohomo-

logical Brauer group Br0ðbXÞ, a fact that is only proven in general when X is smooth projective.6 For a

discussion of this issue and a (very) brief introduction to the Brauer group, we refer to Subsec. 4.4 of Ref. 2.
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Since the Azumaya algebras are noncommutative, one can refer to such a cate-

gorical resolution as a noncommutative resolution of X. The derived category

physically describes the topological B-branes and therefore the noncommutative

resolution can be interpreted as the open string perspective on ðX; �Þ.
The discrete gauge symmetry that M-theory develops on X can be straightfor-

wardly included in the physical de¯nition of Gopakumar{Vafa (GV) invariants from

Refs. 8 and 9. This leads to a proposal for torsion re¯ned GV invariants associated to

X, that are encoded in the topological string A-model partition functions on ðX; �Þ
for � 2 BrðbXÞ.1,2,4 As we will review below, the mathematical de¯nition of GV

invariants as a \Lefschetz re¯nement" of Donaldson{Thomas invariants10 together

with Conjecture 1.1 then connects these invariants to the enumerative geometry of

noncommutative resolutions of X.c

Examples of this behavior have been studied in the context of torus ¯bered

Calabi{Yau threefolds in Refs. 1{3 and for Calabi{Yau threefolds that are double

covers of Fano threefolds with the rami¯cation locus being a symmetric determi-

nantal surface.2,4,11{13 In the latter case, the connection to noncommutative resolu-

tions has been made particularly precise for symmetric determinantal surfaces

de¯ned by 4� 4 matrices (the length 4 case in the terminology that will be intro-

duced in Sec. 2). In this case, B can be chosen so that R��B is quasi-isomorphic to a

sheaf of (even parts) of Cli®ord algebras B0 on the base of the double cover that has

¯rst appeared in the context of homological projective duality.14

It is these \Cli®ord type" noncommutative resolutions, or, from the closed string

perspective, the corresponding nodal Calabi{Yau varieties with a topologically

nontrivial B-¯eld, which can be realized as spaces of vacua of hybrid phases of certain

Gauged Linear Sigma Models (GLSM) and that will be the focus of our survey.

2. Symmetric Determinantal Double Solids

The family of geometries that we are going to consider has been introduced in Ref. 4

and is indexed by vectors d 2 N
2n
�0, for some n 2 N>0, which we refer to as decom-

positions. Before we construct the geometries themselves, let us brie°y introduce

some related de¯nitions.

We refer to jdj ¼ d1 þ � � � þ d2n as the degree of the decomposition. For reasons

that will become clear later, we require that d is either even or odd, meaning that all

of the entries are either even or odd. Note that the degree of an even or odd de-

composition is always even. We say that an even/odd decomposition d is normalized

if the entries are in decreasing order and d contains at most one zero and we de¯ne its

length ld to be the number of nonzero entries. We will use exponents to indicate

repeated entries, such that e.g. ð5; 1; 1; 1Þ ¼ ð5; 13Þ.

cWe continue to use the terminology \noncommutative resolution" as in Conjecture 1.1 and the subse-

quent discussion. See also Ref. 2 for additional discussion of this terminology.
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Given a decomposition d 2 N
2n
�0 of degree d 2 2N, we choose a symmetric matrix

Ad 2 M2nðC½x1; . . . ;x4�Þ; ð4Þ

with entries Ai;j that are generic homogeneous polynomials of degree ðdi þ djÞ=2. We

then identify x1; . . . ;x4 with homogeneous coordinates on P3 and de¯ne

Xd ¼ fy2 ¼ detAdðx1; . . . ;x4Þg � P
4ð14; d=2Þ: ð5Þ

This is a double cover of P3 that is rami¯ed over the determinantal surface

Sd ¼ fdetAd ¼ 0g � P
3: ð6Þ

Requiring that d is either even or odd ensures that Sd is irreducible. The double

cover Xd then has nd isolated nodes Sd;1 ¼ fcorankAd ¼ 2g, with
nd ¼ ðe1ðdÞe2ðdÞ � e3ðdÞÞ=2; ð7Þ

in terms of the elementary symmetric polynomials ei, i ¼ 1; 2; 3, and is smooth ev-

erywhere else.

The following proposition has been proven using conifold transitions in Ref. 4.

Proposition 2.1. Let d 2 N2n be an even or odd decomposition of degree d 2 2N

with 0 < d 	 8. The corresponding double covers Xd fall into three di®erent classes,

depending on the length ld:

(i) ld ¼ 1: The branch locus Sd is smooth and XðdÞ is a generic hypersurface of

degree d in P4ð14; d=2Þ with H2ðXðdÞÞ ¼ Z.

(ii) ld ¼ 2: Xd has isolated nodal singularities but admits a K€ahler small resolu-

tion cXd with H2ðcXdÞ ’ Z2.

(iii) ld � 3: Xd has isolated nodal singularities and does not admit a K€ahler small

resolution. In those cases the exceptional curves in a small non-K€ahler reso-

lution cXd are 2-torsion and H2ðcXdÞ ’ Z� Z2.

In the following, we will focus on decompositions d of degree d ¼ 8, so thatXd is a

nodal Calabi{Yau threefold. Since our interest lies in cases where the exceptional

curves in bXd are torsion, we then consider the six inequivalent choices

d 2 fð5; 13Þ; ð4; 22; 0Þ; ð32; 12Þ; ð3; 15Þ; ð24Þ; ð18Þg; ð8Þ

so that H2ðbXd;ZÞ ’ Z� Z2
d and the respective number of nodes in Xd is given by

nð5;13Þ ¼ 64; nð4;22;0Þ ¼ 72; nð32;12Þ ¼ 76;

nð3;15Þ ¼ 80; nð24Þ ¼ 80; nð18Þ ¼ 84:
ð9Þ

Adapting the language from Ref. 15, we refer to the geometries Xd as determinantal

octic double solids. Note that all of these geometries can be seen as corresponding to a

dLet us point out that the isomorphism is not canonical and we assume that a consistent choice has been

made for the remainder of this paper.
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subslice in the complex structure moduli space of the smooth generic octic Xð8Þ with
H2ðXð8Þ;ZÞ ¼ Z.

Let us brie°y sketch the idea behind the proof of Proposition 2.1 from Ref. 4

because it will be closely related to the physics of M-theory on Xd. First write Ad as

Ad ¼ A BT

B C

� � gnþ 1;

gn� 1
ð10Þ

and de¯ne

X r
d ¼ fy2 ¼ detA

r

d
ðx1; . . . ;x4Þg � P

4ð14; 4Þ; A r
d ¼ A BT

B 0

� �
: ð11Þ

One can show that X r
d still has nd isolated nodes S r

d;1 ¼ fcorankA r
d ¼ 2g, which are

just deformations of the nodes Sd;1 in Xd, but additional isolated nodes appear at

S r
d;2 ¼ fcorankB ¼ 1g. However, unlike Xd the double cover X r

d always admits a

Kähler small resolution bX r

d and H2ðbX
r

d;ZÞ ’ Z� Z. The exceptional curves in bX r

d

that resolve a node in S r
d;1 are all homologous to each other and the same holds for

the exceptional curves resolving nodes in S r
d;2. Denoting the respective classes by

C1;C2 one also ¯nds that 2C1 ¼ C2. The Mayer{Vietoris sequence then relates the

homology of bX r

d to that of a small resolution bXd of Xd and completes the proof of

Proposition 2.1.

We can also interpret the transition from a physical perspective in terms of the

correspondingM-theory compacti¯cations. The e®ective theory associated to bX r

d has

a G ¼ Uð1Þ � Uð1Þ gauge symmetry and corresponds to a generic point on the

Coulomb branch. Moreover, M2-branes that wrap curves in the class Ci lead to

particles with charge ð0; iÞ for i ¼ 1; 2. Going to the boundary of the Coulomb branch

where these particles become massless brings us to the compacti¯cation on X r
d. The

deformation to Xd then removes the nodes that are resolved by curves in the

class C2 and therefore amounts to giving a vacuum expectation value to scalar ¯elds

with charge ð0; 2Þ. This breaks the gauge symmetry from Uð1Þ � Uð1Þ to Uð1Þ � Z2.

The same conifold transitions used in proving Proposition 2.1 therefore lead to the

following result about M-theory on Xd:

Claim 2.1. For decompositions d of degree jdj ¼ 8 and length ld � 3, the ¯ve-

dimensional e®ective theory from M-theory compacti¯ed on Xd has a gauge

symmetry G ’ Uð1Þ � Z2.

We have therefore explicitly veri¯ed (2) in this class of examples.

3. Noncommutative Resolutions from Hybrid GLSM

For each Xd we will now construct a family of GLSMs that exhibits the so-called

hybrid phase which, as was argued in Refs. 2 and 4, °ows to the worldsheet theory of

Type IIA strings that propagate on Xd in the presence of a °at but topologically

nontrivial B-¯eld.

Topologically nontrivial B-¯elds on nodal Calabi{Yau 3-folds
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Given a normalized decomposition d 2 N
2n
�0 of degree d ¼ 8 and a corresponding

symmetric matrix Ad, we let q ¼ gcdð2; diÞ and construct the GLSM as follows.

The gauge group is

G ¼ Uð1Þ � Z2 q ¼ 2;

Uð1Þ q ¼ 1

�
ð12Þ

and we include chiral ¯elds Pi¼1;...;2n, Xj¼1;...;4. We will refer to the vacuum expec-

tation values of the corresponding scalar ¯elds as pi and xj. The charges of the ¯elds

under the gauge symmetry and under a vector R-symmetry Uð1ÞV are

ð13Þ

and the superpotential takes the form

W ¼ PTAdðX1; . . . ;X4ÞP: ð14Þ

We denote the FayetIliopoulos parameter and the theta angle associated to the

Uð1Þ � G gauge symmetry, respectively, by r; � and de¯ne the complexi¯ed

FI-parameter t ¼ �=ð2�Þ þ ir.

Note that if q ¼ 1 then the Z2 symmetry in (13) is embedded in the Uð1Þ. In
general, the Z2 Gauge symmetry ensures the charge integrality condition, meaning

that every Gauge invariant operator has a Uð1ÞV R-charge that agrees with its sta-

tistics modulo 2. The Uð1Þ gauge charges of the chiral ¯elds sum to zero so that the

GLSM satis¯es the Calabi{Yau condition and the axial R-symmetry is also unbroken.

The GLSM associated to d ¼ ð18Þ has ¯rst been discussed in Ref. 16, while the

relation to noncommutative resolutions was observed in Refs. 11, 12 and 17 and

further studied in Refs. 2 and 4. The case d ¼ ð24Þ has previously been discussed in

Refs. 4, 13 and 18. More recently, GLSMs of this type and their relation to non-

commutative resolutions have also been discussed in Ref. 19.

Let us now describe the relationship to Xd ¯rst from the closed string and then

from the open string perspective. The relevant hybrid phase appears in the region

r 
 0 of the FI-parameter space. The D-term equation 2ðjx1j2 þ � � � þ jx4j2Þ=q�P
idijpij2=q ¼ r then implies that the xi cannot vanish simultaneously. The F-term

equations @pi
W ¼ @xj

W ¼ 0 further require that p1 ¼ � � � ¼ p2n ¼ 0 so that after

identifying gauge equivalent vacua the x¼1;...;4 can be interpreted as homogeneous

coordinates on P3. Adiabatically, over a point in P3, the ¯elds Pi °ow to a Z2 orbifold

of a Landau{Ginzburg model with quadratic superpotential (14).

Over a generic point in P3, the mass matrix of the Landau{Ginzburg ¯ber has full

rank and therefore all of the ¯elds can be integrated out so that the Z2-orbifold action

becomes ine®ective. The phenomenon of decomposition, ¯rst described in Ref. 20

with a recent introduction being,21 then implies that the resulting theory is equiva-

lent to two copies of the theory without the orbifold and therefore exhibits two vacua

S. Katz & T. Schimannek
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instead of one. This changes over the points in fdetAd ¼ 0g where the rank of the mass

matrix drops and the two vacua fall together. As a result, the vacuum manifold in the

hybrid phase of the GLSM takes the form of the double cover Xd of P3.

However, while the Calabi{Yau Xd is singular one can check that the GLSM is

actually regular. To see this, note that the F-term equations

@pi
W ¼ Adðx1; . . . ;x4Þp½ �i ¼ 0; @xj

W ¼ pT@xi
Adðx1; . . . ;x4Þp ¼ 0; ð15Þ

force p to be a zero eigenvector of Adðx1; . . . ;x4Þ that satis¯es four quadratic

equations. Since for a generic choice of Ad the space of zero eigenvectors is at most

two-dimensional over x 2 P3 this forces p to vanish and the space of vacua has no

noncompact directions.e

The resolution to this apparent mismatch between the singularity of the under-

lying geometry and the regularity of the GLSM is the following claim.

Claim 3.1. The infrared theory associated to the hybrid phase is the worldsheet

theory of strings propagating on Xd in the presence of a °at topologically nontrivial

B-¯eld.

This has been argued for the case d ¼ ð18Þ in Ref. 2 and was demonstrated

explicitly in Subsec. 5.2 of Ref. 4 by studying the relationship between the

GLSM (13), the GLSM associated to the nonlinear sigma model on bX r

d and the

corresponding limit in the stringy Kähler moduli space of the latter. We will review

the discussion from Subsec. 5.2 of Ref. 4 in Sec. 5.

From the open string perspective, it has been argued in Refs. 11, 12 and 17 that

the string background associated to the hybrid phase for d ¼ ð18Þ can be interpreted

as a noncommutative, or categorical, resolution of Xð18Þ in terms of a sheaf of even

parts of Cli®ord algebras on P3. The argument generalizes to other choices of d and is

based on the result from Ref. 22 that the 0-branes of a Landau{Ginzburg model with

quadratic superpotential can be described as modules over the Cli®ord algebra that is

associated to the quadratic form. Taking into account the Z2-orbifold leads one to

consider only the even part of the Cli®ord algebra and after ¯bering the construction

over the base of the hybrid model one obtains a sheaf of even parts of Cli®ord

algebras B0 on P3. This sheaf has previously been constructed by Kuznetsov in the

context of homological projective duality14,23 and is conjecturally describing the so-

called crepant categorical resolution of Xd.
7 We will connect this to Claim 3.1 in

Sec. 6 but ¯rst discuss the topologically nontrivial B-¯elds on Xd.

4. Flat B-Fields with Nontrivial Topology

In addition to the metric, a Type II string compacti¯cation on a Calabi{Yau X also

requires a choice of B-¯eld. Our focus in this paper is on singular Calabi{Yau

eThe fact that the equations lead to su±ciently many independent constraints, while not completely

obvious, can be veri¯ed for random choices of coe±cients by calculating the Groebner basis of the ideal

I ¼ h@pi
W ; @xj

W ;
Q

iðpi � 1Þ;Qjðxj � 1Þi � C½x1;...;4; p1;...;2n� to see that I ¼ h1i.

Topologically nontrivial B-¯elds on nodal Calabi{Yau 3-folds
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threefolds X with isolated nodal singularities that are resolved by torsion curves in a

non-Kähler small resolution bX. In Refs. 1, 2 and 4, building on Ref. 5, it was argued

that the following claim.

Claim 4.1. °at B-¯elds on the singular Calabi{Yau X can be described by

corresponding B-¯elds on any small non-K€ahler resolution bX.

We actually do not have a good description of B-¯elds on the singular Calabi{Yau

X itself, so this statement can also be seen as a provisional de¯nition. The idea is then

that whatever the correct framework for describing °at B-¯elds directly on X turns

out to be, we expect that choosing a B-¯eld on bX and then shrinking the exceptional

curves is a well-de¯ned procedure that leads to a one-to-one correspondence between

°at B-¯elds on bX and on X.

While the B-¯eld on a smooth Calabi{Yau Y is often described as an antisym-

metric two-form ¯eld, it should actually be thought of as a connection on a Gerbe in

the sense developed in Ref. 24, see, e.g. Refs. 25 and also Refs. 26 and 27 for an

introduction to this point of view. It is in this sense a higher analogue of the usual

one-form gauge ¯eld, which is a connection on a line bundle.

To a one-form gauge ¯eld one can associate the ¯rst Chern class c1ðLÞ 2 H2ðY ;ZÞ
of the associated line bundle L and locally this is just the curvature of the con-

nection. Similarly, the B-¯eld determines a characteristic class of the Gerbe, the

so-called Dixmier{Douady class, which takes values in H3ðY ;ZÞ. At the level of the

di®erential form representative of the B-¯eld B 2 �2ðY Þ, the latter is just the usual
H-°ux

½H�dR ¼ dB; ð16Þ

where ½H�dR denotes the image of H in de Rham cohomology. However, if H3ðY ;ZÞ
contains torsion then the Gerbe can be topologically nontrivial even if the B-¯eld is

°at, i.e. ½H�dR ¼ 0.

To see this, one ¯rst notes that from a sigma model perspective the B-¯eld assigns

phases to curves and the cohomology class naturally takes values in

H2ðY ;Uð1ÞÞ ’ HomðH2ðY ;ZÞ;Uð1ÞÞ; ð17Þ

as was pointed out, e.g. in Refs. 5 and 28. The short exact sequence 0 ! Z ! R !
Uð1Þ ! 0 then leads to the long exact sequence

. . . ! H2ðY ;ZÞ ! H2ðY ;RÞ ! H2ðY ;Uð1ÞÞ!� H3ðY ;ZÞ ! � � � ; ð18Þ

and the Dixmier{Douady class is the image of the cohomology class of the B-¯eld

under the Bockstein map �. In particular, the cohomology classes of °at B-¯elds are

in one-to-one correspondence with tuples ð!B; �Þ with !B 2 H2ðY ;RÞ=H2ðY ;ZÞ and
� 2 TorsH3ðY ;ZÞ.

The universal coe±cient theorem implies that

TorsH3ðY ;ZÞ ’ HomðTorsH2ðY ;ZÞ;Uð1ÞÞ: ð19Þ

S. Katz & T. Schimannek
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Given a curve class C 2 H2ðY ;ZÞ, we can write the corresponding holonomy of a °at

B-¯eld B 2 H2ðY ;Uð1ÞÞ which is represented by ð!B; �Þ as

hB;Ci ¼ �ðCÞexp 2�i

Z

C

!B

� �
: ð20Þ

Recall now that from the perspective of M-theory on Y � S1, the class !B para-

metrizes the Wilson lines of Uð1Þ gauge ¯elds along the circle. If the ¯ve-dimensional

e®ective theory exhibits a discrete Gauge symmetry, then one also has to specify a

choice of discrete Wilson line.

Taking X again to be our nodal projective Calabi{Yau three-fold, we arrive at the

following claim.

Claim 4.2. The choice of discrete Wilson line in the M-theory compacti¯cation on

X � S1 is dual to the topology of the °at B-¯eld in the Type IIA compacti¯cation on

the same Calabi{Yau.

Let us now apply this discussion to the symmetric determinantal double solidsXd

introduced in Sec. 2. Again we focus on the choices (8) for the decomposition

d 2 N2n. One claim from Refs. 1, 2 and 4 is that we can describe the B-¯eld on Xd by

working with any non-Kähler small resolution bXd. We then have an isomorphism

TorsH3ðbXd;ZÞ ’ Z2 and can describe the topology of the °at B-¯eld as � ¼ ½k� for
k ¼ 0; 1. Given also a class b 2 H2ðbXd;RÞ ’ R, the holonomy of a curve C that

represents the class ðd; ½p�Þ 2 H2ðbXd;ZÞ ’ Z� Z2 with p ¼ 0; 1 is given by

hB;Ci ¼ ð�1Þpke2�idb: ð21Þ

We denote the singular Calabi{Yau Xd together with a choice of B-¯eld topology

½k� 2 Z2 by ðXd; ½k�Þ. Note that the integral of a two-form over torsion curves

vanishes and therefore the holonomies of the exceptional curves in bXd (which all

represent the class ð0; ½1�Þ 2 H2ðbXd;ZÞ) are only sensitive to the topology of the

°at B-¯eld.

An important point is that a °at B-¯eld with nontrivial topology stabilizes the

nodes that are resolved by torsional exceptional curves in the sense of Ref. 5.

For the singular Calabi{Yau Xd ¼ ðXd; ½0�Þ itself, the B-¯eld holonomy of the

exceptional curves in bXd is trivial and can be deformed to the generic smooth octic

Xð8Þ, removing all of the nodes in the process. The number of complex structure

deformations of ðXd; ½0�Þ is therefore h2;1ðXð8ÞÞ ¼ 149. On the other hand, for ðXd;

½1�Þ the B-¯eld holonomy along all of the exceptional curves is �1. As a result, the

nodes are \frozen" by the B-¯eld and the number of complex structure deformations

of ðXd; ½1�Þ is 149� nd, where nd is the number of nodes given in (9).

Recall that from the perspective of strings propagating on a Calabi{Yau, a

conifold singularity arises when not only the volume of the corresponding exceptional

curve vanishes but also the B-¯eld holonomy along the curve is trivial. Therefore,

even though Xd contains nodal singularities, ðXd; ½1�Þ is a smooth string background

and the worldsheet theory is expected to be regular.

Topologically nontrivial B-¯elds on nodal Calabi{Yau 3-folds
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5. Conifold Transitions with B-Fields and Exo°op Phases

We will now motivate Claim 3.1 that the GLSMd in the phase r 
 0 °ows to a

worldsheet theory of strings propagating on Xd in the presence of a °at but topo-

logically nontrivial B-¯eld. To this end we consider the GLSM associated to bX r

d and

connect it to GLSMd via an exo°op phase. We focus on the case d ¼ ð24Þ but the
discussion easily generalizes to all d in (8).

From the explicit description of the small resolution bX r

ð24Þ ofX
r
ð24Þ in Ref. 4, we see

that the associated GLSM has gauge symmetry G ¼ Uð1Þ1 � Uð1Þ2 and nine chiral

¯elds P1;2, U1;2;3, X1;2;3;4 with gauge charges and Uð1ÞV R-charges given by

ð22Þ

where r1, r2 denote the Fayet{Iliopoulous parameters. We denote the corre-

sponding scalar ¯elds by p1;2, u1;2;3, x1;2;3;4 and the theta angles by �1, �2 and then

de¯ne the complexi¯ed FI-theta parameters zk ¼ exp ð�2�rk þ i�kÞ, k ¼ 1; 2. The

superpotential takes the following form:

W ¼ �T P1AðXÞ BðXÞT
BðXÞ 0

� �
©; ð23Þ

where © ¼ ðU1;U2;U3;P2Þ and the matrices A;B are the components of A r
ð24Þ

from (11), of respective dimensions 3� 3 and 1� 3, with entries that are quadratic

polynomials in X1;...;4. The geometric phase in which the GLSM °ows to a nonlinear

sigma model on bX r

ð24Þ corresponds to the region r1; r2 
 0.

Let us instead consider the phase r1 � 0; r2 
 0. The D-term equations read

�2jp1j2 � jp2j2 þ ju1j2 þ � � � þ ju3j2 ¼ r1;

�2jp1j2 � 2jp2j2 þ jx1j2 þ � � � þ jx4j2 ¼ r2
ð24Þ

and we see that the deleted set takes the following form:

fp1 ¼ p2 ¼ 0g [ fx1 ¼ � � � ¼ x4 ¼ 0g: ð25Þ

The expectation values of x1; . . . ;x4 can again be interpreted as homogeneous

coordinates on P3 but, since the geometry bX r

ð24Þ is smooth and p1; p2 are not allowed

to vanish simultaneously, we now need to have u ¼ 0 in order to solve the F-term

equations.

The F-term equations now also imply that @W
@ui

¼ p2Bi ¼ 0. For points of P3 where

B 6¼ 0 this implies that p2 ¼ 0 and therefore jp1j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�r1=2

p
, which breaks Uð1Þ1 to a

Z2 under which U1;...;3 and P2 have odd charge. Adiabatically, over points x 2 P3

where B has full rank, we therefore ¯nd that the low energy dynamics precisely

match those of the GLSMd for d ¼ ð24Þ in the phase r 
 0 and for the special choice

of superpotential W 0 ¼ PTA r
ð24ÞðX1; . . . ;X4ÞP.
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On the other hand, at the points x 2 P3 where B ¼ 0 the values of p1; p2 are

unconstrained and span a Pð2; 1Þ ’ P1 with volume proportional to�r1. Since this P
1

is not contained in the toric ambient space of bX r

ð24Þ but instead parametrized by ¯elds

that are, from the toric perspective, nongeometric, we ¯nd the so-called exo°op

phase.29{31

It is known that ordinary conifold transitions between smooth Calabi{Yau three-

folds often pass through such an exo°op phase and the geometry with smaller h1;1 is

then obtained by ignoring the exo°opped P1's and deforming away the resulting

singularities, see, e.g. Ref. 31. Assuming that the same procedure is valid in this case

as well, we therefore conclude that the string vacua associated to the phase r 
 0 of

GLSMd are connected to those associated to the GLSM (22) by a conifold transition

that takes place in the limit r1 � 0; r2 
 0.

At the level of the underlying geometries, this conifold transition connects bX r

d and

Xd. However, using either a localization calculation or mirror symmetry one ¯nds

that the quantum volume t1 of the curves in the class C1 2 H2ðbX
r

d;ZÞ is related to

the FI-theta parameters z1; z2 via

t1 ¼
1

2�i
log

1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4z1

p � 2z1

2z1

� �
þOðz2Þ; ð26Þ

such that limr1!�1t1 ¼ 1=2. Recall that the quantum volume, or complexi¯ed vol-

ume, of a curve takes the form t1 ¼ bþ iv, where v 2 R is the quantum corrected

volume and b ¼ 1

2�i logB 2 R=Z is the phase of the B-¯eld holonomy. The quantum

volume of the curves in the class C2 in the limit r1 ! �1 is 2t1 ¼ 1 � 0 and the

nodes S r
d;2 can be deformed away. On the other hand, the curves in the class C1 have

(real) volume Im t1 ¼ 0 but a nontrivial B-¯eld holonomy of Re t1 ¼ 1=2 and the

nodes S r
d;1 are therefore \frozen" due to the presence of the B-¯eld.

This leads us to conclude that the infrared theory in the phase r 
 0 of GLSMd

corresponds to the worldsheet theory of strings propagating on bXd with the quantum

volume of the exceptional curves that resolve the nodes Sd;1 being 1=2. In the light of

the discussion from Sec. 4, this can be naturally interpreted in terms of a °at but

topologically nontrivial B-¯eld. Since the volume of the exceptional curves is zero we

can equivalently interpret this as strings propagating on Xd with a corresponding

B-¯eld and therefore arrive at Claim 3.1.

6. D-Branes in Nontrivial B-Field Backgrounds

It is known that topological D-branes in the presence of a °at topologically nontrivial

B-¯eld are described in terms of twisted sheaves Subsec. 5.3 of Ref. 32. We explain

what this means in our context.

We consider a °at B-¯eld B 2 H2ðbXd;Uð1ÞÞ. The image � of B in H2ðbXd;O
�
X̂ d

Þ
can be represented by an O

�
X̂ d

-valued cocycle �ijk for an open cover fUig of bXd. A

twisted sheaf is a collection of coherent sheaves Fi on Ui and isomorphisms �ij :

ðFiÞjUi\Uj
! ðFjÞjUi\Uj

satisfying �ki�jk�ij ¼ �ijk. The category of branes is then the
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derived category DbðbXd; �Þ of twisted sheaves. The notation acknowledges that the

derived category of twisted sheaves only depends on � up to equivalence and not on

the speci¯c cocyle representing �.

In certain cases the twisted derived category DbðbX; �Þ on a small non-Kähler

resolution is equivalent to the ordinary derived category DbðY Þ of another smooth

Kähler Calabi{Yau three-fold Y. One example is bXd with d ¼ ð18Þ in which case Y is

a complete intersection of four quadrics in P7. This suggests that even though bX is

not Kähler, the twisted derived category DbðbX; �Þ \behaves" like the category of

topological B-branes on an ordinary smooth Kähler Calabi{Yau background. This

leads us to expect more generally that DbðbX; �Þ is identical to the category of to-

pological B-branes on the singular Calabi{Yau itself in the presence of the topo-

logically nontrivial B-¯eld.

One interpretation of this phenomenon would be that the worldsheet theory of

strings on ðbX; �Þ is related via renormalization group °ow to the CFT that describes

strings on ðX; �Þ. Since going from complexes of coherent sheaves to the derived

category can physically be interpreted as identifying con¯gurations of branes that

°ow to the same con¯guration in the infrared, see e.g. Sec. 3 of Ref. 33, it is then

natural that DbðbX; �Þ provides a good description of topological B-branes on ðX; �Þ.
In the following, we will therefore talk about branes on ðbXd; ½1�Þ even though we

actually compactify Type IIA string theory on ðXd; ½1�Þ.
It was shown in Ref. 34 that a D6-brane in the presence of a topologically non-

trivial B-¯eld determines a sheaf of Azumaya algebras on the Calabi{Yau, i.e. a

locally free sheaf of matrix algebras. It is natural from the viewpoint of physics to

conjecture the existence of a D6-brane on ðXd; ½1�Þ. This would imply the existence of

a global twisted vector bundle E on bXd, i.e. each Ei is a vector bundle on Ui. The

sheaf of Azumaya algebras on bXd is then the (ordinary) sheaf B ¼ EndOX̂ d
ðEÞ. In this

situation, the sheaf B is expected to satisfy the conditions of Conjecture 1.1.

From the viewpoint of mathematics, the existence of a sheaf B of Azumaya al-

gebra associated to the class � follows from the assumption made in Sec. 1 that the

Brauer group and the cohomological Brauer group are equal. It follows readily from

the de¯nitions that DbðbXd; �Þ ¼ DbðbXd;BÞ, so that the category of branes can be

identi¯ed with DbðbXd;BÞ.
The sheaf B of Azumaya algebras has been proven to exist in the length 4 case

when � is the nontrivial Brauer class.23 Letting � : Xd ! P3 be the double cover, it is

also shown that B0 ¼ ��ð��ðBÞÞ is a sheaf on P3 of even parts of Cli®ord algebras, and

that the category of branesDbðbXd;BÞ can be identi¯ed withDbðP3;B0Þ. See Ref. 4 for
further discussion of the role of sheaves of B0-modules in the context of this paper.

In the case d ¼ ð18Þ, the category of branes DbðbXd; �Þ is equivalent to the ordi-

nary derived category of a complete intersection Z of quadrics in P7.35 This con-

nection was exploited in Ref. 2, where a second MUM point of the moduli space of the

mirror of Z was used to set up the B-model calculations employed to compute the

torsion re¯ned invariants.
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7. Torsion Re¯ned Gopakumar{Vafa Invariants from Physics

The physical de¯nition of GV invariants from Refs. 8 and 9 only relies on the fact

that the e®ective theory is a ¯ve-dimensional supergravity with eight supercharges.

This is still true when X is a projective Calabi{Yau three-fold with isolated nodes and

was used in Ref. 1 to propose a torsion re¯nement of the GV invariants of the smooth

deformation.

To be concrete, let us consider again M-theory on the determinantal octic double

solids Xd with jdj ¼ 8 and ld � 3. The massive little group of the ¯ve-dimensional

theory is

Spinð4Þ ’ SUð2ÞL � SUð2ÞR ð27Þ
and we found that the gauge group is always G ¼ Uð1Þ � Z2 while the charge lattice

can be identi¯ed with H2ðbXd;ZÞ ’ Z� Z2 for any small resolution bXd of Xd. We let

N
d;p
jL;jR

2 N be the number of BPS-particles that carry charge ðd; pÞ 2 Z� Z2 and that

transform in the representation

0;
1

2

� �

 2ð0; 0Þ

� �
� ðjL; jRÞ; ð28Þ

of the little group (27). The torsion re¯ned GV invariants nd;p
g 2 Z are then de¯ned

via the usual trace over jR,

X

g�0

Ign
d;p
g ¼

X

jR21

2
N

ð�1Þ2jRð2jR þ 1ÞN d;p
jL;jR

½jL�; Ig ¼ 2½0� 
 1

2

� �� �
g

: ð29Þ

As discussed in Sec. 2, smoothing Xd to the Calabi{Yau threefold Xð8Þ can

physically be interpreted as a Higgs transitions where scalar ¯elds with charge

ðd; pÞ ¼ ð0; 1Þ get a nontrivial vacuum expectation value, thus breaking the gauge

symmetry from Uð1Þ � Z2 to Uð1Þ. This implies that the GV invariants nd
g ofXð8Þ are

related to the torsion re¯ned GV invariants of Xd via

nd
g ¼ nd;0

g þ nd;1
g : ð30Þ

In other words, the torsion re¯ned invariants resolve the charge under a discrete

gauge symmetry that M-theory develops on a special subslice of the complex

structure moduli space of a smooth Calabi{Yau. Note that we have left the depen-

dence of the torsion re¯ned invariants on Xd implicit and each Xd corresponds to a

di®erent subslice in the complex structure moduli space ofXð8Þ and a di®erent torsion

re¯nement of the corresponding GV invariants.

Let us now consider the M-theory compacti¯cation on Xd � S1. Recall that

the Wilson lines of the ¯ve-dimensional gauge ¯elds along the circle parametrize the

B-¯eld holonomies along curves in the Calabi{Yau. They combine with the Kähler

modulus into the complexi¯ed Kähler parameter t that parametrizes the Coulomb

branch of the four-dimensional e®ective theory.

As discussed in Sec. 4, circle compacti¯cations of the ¯ve-dimensional theory with

di®erent choices of discrete bundles, i.e. discrete Wilson lines, are dual to Type IIA

Topologically nontrivial B-¯elds on nodal Calabi{Yau 3-folds

2446003-13



compacti¯cations on Xd with di®erent topologies ½k� 2 TorsH3ðbXd;ZÞ ’ Z2 of the

°at B-¯eld. Generalizing again the results from Refs. 8 and 9, the Gopakumar{Vafa

expansion of the A-model topological string partition function on ðXd; ½1�Þ then

naturally takes the following form:

Ztop:ðt; ½k�Þ ¼
X

g�0

X

d�1

X

p¼0;1

X

m�1

nd;p
g

m
2 sin

m�

2

� �
2g�2

ð�1Þkmpe2�imdt: ð31Þ

Note that Ztop:ðt; ½0�Þ is identical to the topological string partition function on Xð8Þ
which can also be seen as a consequence of (30) and invariance of Ztop: under complex

structure deformations.

We will discuss in Sec. 10 how a localization calculation in the GLSM from Sec. 3

can be used to obtain the periods of the Calabi{Yau that is mirror to ðXd; ½1�Þ and
sketch how one can calculate the topological string free energies, at least up to some

maximal genus, in order to extract the torsion re¯ned invariants.

8. Torsion Re¯ned Gopakumar{Vafa Invariants from Geometry

We begin this section by brie°y reviewing the mathematical de¯nition of GV

invariants given in Ref. 10. This de¯nition incorporates the physics de¯nition of GV

invariants outlined in Sec. 7 into a precise mathematical framework. An exposition of

these ideas for physicists, in the context of ordinary GV invariants without the

torsion re¯nement, appears in Sec. 3 of Ref. 36.

Let Y be a (smooth) Calabi{Yau threefold and let � 2 H2ðY ;ZÞ be a curve class.

Fixing a unit of D0-brane charge, the semistable D2-D0 branes of D2-brane charge

determined by � are identi¯ed at large radius with the moduli spaceM�ðY Þ of stable
sheaves F on Y with ½F � ¼ � and 	ðFÞ ¼ 1. The one-cycles (curves with multiplic-

ities) supporting these sheaves are parametrized by the Chow variety Chow�ðY Þ, and
there is a Hilbert{Chow map

�� : M�ðY Þ ! Chow�ðY Þ; ð32Þ

taking a sheaf to its support cycle. Since M�ðY Þ is singular in general, we cannot use

ordinary cohomology to quantize the moduli space of branes. However, perverse

sheaves and perverse cohomology are well adapted to singular spaces. The moduli

space M�ðY Þ always supports perverse sheaves of vanishing cycles � which are

locally determined by a holomorphic Chern{Simons functional. Globally, � depends

on the mathematical notion of an oriented d-critical locus.37

Using perverse cohomology sheaves pH�, the GV invariants are de¯ned in terms

of � by
X

g�0

n�
g ðy1=2 þ y�1=2Þ2g ¼

X

i2Z
	ðpHiðR����ÞÞyi: ð33Þ

This identity is an expression for the SUð2ÞL character of (29).
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It is proven that these n�
g are independent of the choice of orientation satisfying

an additional condition, called the Calabi{Yau condition in Ref. 10. The existence of

an orientation satisfying the Calabi{Yau condition is still conjectural.

If M�ðY Þ is a moduli space of sheaves supported on curves of genus g

and Chow�ðY Þ is smooth, then the calculation simpli¯es and we get n
g
� ¼

ð�1ÞdimðChow�ðY ÞÞeðChow�ðY ÞÞ.38,39
We can now describe our proposal for modifying the above de¯nition in order to

mathematically de¯ne the torsion re¯ned invariants. While this developing theory is

not yet at the same level of rigor as the theory of ordinary GV invariants, it leads to

well-de¯ned geometric computations which always agree with the physical invariants

whenever the geometric computation can be completed.

Let E be the twisted sheaf describing the D6-brane as in Sec. 6. Then to

any F � 2 DbðbXdÞ we can associate the twisted object F � � E 2 DbðbXd; �Þ, so that

D-branes in the absence of a B-¯eld can be used to construct D-branes in our non-

trivial B-¯eld background.

Furthermore, any two small resolutions of Xd are derived equivalent,40 so the

derived category of any small resolution also maps to the category of branes DbðbXdÞ.
We therefore see that sheaves on any small resolution lead to twisted sheaves on a

¯xed bXd and can contribute to the torsion re¯ned invariants.

Given two small resolutions bXd and bX 0
d of Xd, we have a canonical identi¯cation

H2ðbXd;ZÞ ’ H2ðbX
0
d;ZÞ where the classes of the exceptional curves are identi¯ed. So

we ¯x any small resolution bXd and let � 2 H2ðbXd;ZÞ. We then let M�ðXdÞ denote
the moduli space of stable sheaves F on any small resolution of Xd with ½F � ¼ � and

	ðFÞ ¼ 1. We then have a map

� : M�ðXdÞ ! Chow�ðXdÞ; ð34Þ

analogous to (32). Assuming the existence of a perverse sheaf of vanishing cycles �

satisfying the Calabi{Yau condition, with good properties, we can then de¯ne the

torsion re¯ned invariants by adapting (33) to (34).

These ideas are discussed in more detail in Ref. 2. In particular, it was also

conjectured in Ref. 2 that the torsion re¯ned GV invariants can be de¯ned in terms of

a Bridgeland stability condition on DbðbXd; �Þ at large radius. This may not seem

possible at ¯rst glance since there are sheaves supported on the exceptional curves

(of any small resolution) which would have vanishing central charge at large radius

in contradiction to the existence of a Bridgeland stability condition. However, the

topologically nontrivial B-¯eld shifts the central charge away from zero, simulta-

neously removing the contradiction and requiring the exceptional curves of all small

resolutions to contribute to the torsion re¯ned GV invariants.

9. Enumerative Geometry

We quickly review the description ofH2ðbXd;ZÞ from Refs. 2 and 4 and then compute

some torsion re¯ned invariants using geometry.
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As noted in Proposition 2.1, we have isomorphisms

H2ðbXd;ZÞ ’ Z� Z2: ð35Þ

Since Z� Z2 has a nontrivial automorphism, these isomorphisms (35) are not ca-

nonical. We ¯x one such isomorphism and denote curve classes � by ðd; pÞ 2 Z� Z2.

The degree d of a curve class � is canonical, independent of the choice of isomorphism

(35), but the torsion class p 2 Z2 is canonical only if d is even.

The nontrivial element of the torsion subgroup Z2 is represented by any of the

exceptional curves Ci ’ P1 over the conifold points pi.

Consider ~� ¼ � � � : bXd ! P3 obtained by composing the small resolution with

the double cover. Letting ‘ � P3 be a line, then ~��1ð‘Þ has degree 2 and parity pd
equal to the parity of d.4 These curves are double covers of ‘ branched over 8 points

and so have g ¼ 3. The moduli space of these curves is the Grassmannian Gð2; 4Þ of
lines in P3. Since Gð2; 4Þ is smooth, even-dimensional, and has Euler characteristic 6,

we get

n
2;pd
3

¼ 6; n
2;pd�1

3
¼ 0; ð36Þ

in agreement with B-model calculations.

Degree 1 curves C are only slightly more subtle. First, ~�ðCÞ must be a line ‘, so

that C � ~��1ð‘Þ. By degree considerations, ��1ð‘Þ must be a union C [ C0 of two
degree 1 curves. If d is an odd decomposition, then since ~��1ð‘Þ has class ð2; 1Þ,
necessarily one of the curves C;C0 has class ð1; 0Þ and the other has class ð1; 1Þ
(having ¯xed an arbitrary isomorphism (35) to assign a torsion class to each curve).

Each of the curves C;C0 is isomorphic to ‘ and so has g ¼ 0, thus n1;0
0

¼ n
1;1
0
, and

this number is equal to the number of lines in P3 for which the double cover splits

into two components. This number was computed in the 19th century to be 14752,41

so that

n
1;0
0

¼ n
1;1
0

¼ 14752; ð37Þ

if d is odd. If d is even, the same reasoning only tells us that

n
1;0
0

þ n
1;1
0

¼ 29504: ð38Þ

These results all agree with B-model calculations.

As our last example, we continue discussing degree 2 curves C � bXd and the

invariants n2;p
g for g � 2. Necessarily ~�ðCÞ � P3 has degree 1 or 2. If ~�ðCÞ has degree

2, then ~�jC is an isomorphism of C onto a degree 2 curve, so C has genus zero and

these curves do not contribute to n2;p
g for g � 2. If ~�ðCÞ is a line ‘, then necessarily

C � ~��1ð‘Þ, which as we have seen has class ð2; pdÞ.
We therefore get two contributions to the torsion re¯ned GV invariants n

2;p
2
.

First, from the g ¼ 2 contribution to sheaves on the genus 3 curves ~��1ð‘Þ obtained
by the expansion (33), and second from these genus 2 curves obtained from lines ‘

containing a conifold by removing the exceptional curve from ~��1ð‘Þ. The lines
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containing any conifold pi are parametrized by a P2, with Euler characteristic 3, and

there are two such families of curves C, one for each of the two small resolutions of pi.

We therefore get a contribution to n
2;pd�1

2
of 2 � 3 � nd ¼ 6nd. Combining with the

contribution of the genus 3 curves computed in Ref. 2, we ¯nd complete agreement

with the B-model. This example shows that it was essential to consider all small

resolutions when mathematically de¯ning the torsion re¯ned GV invariants. Addi-

tional examples are given in Refs. 2 and 4.

10. Localization and Mirror Symmetry

We will now discuss how the topological string free energies on ðXd; ½1�Þ can be

calculated using mirror symmetry, at least up to some genus. It was argued in Ref. 4

that the mirror of ðXd; ½1�Þ can be obtained using the techniques developed in Ref. 42.

However, for the purpose of calculating the free energies we only need information

about the periods of the Calabi{Yau and these can be obtained directly from the

GLSM.4

The sphere partition function ZS2ðv; �vÞ of the GLSM can be evaluated using the

localization calculation from Refs. 43 and 44 and is related to the Kähler potential

Kðv; �vÞ on the complexi¯ed Kähler moduli space via45,46

ZS2ðv; �vÞ ¼ e�Kðv;�vÞ: ð39Þ

Using the relation to the fundamental period of the mirror Calabi{Yau

e�Kðz;�zÞ � $0ðzÞ þOðlogðzÞ; �zÞ, one obtains4

$0ðzÞ ¼
X

m�0

zqm
Yk

i¼1

�ð1þ 2di
q
mÞ

�ð1þ di
q
mÞ

" #
1

�ð1þ 2

q
mÞ4 ; ð40Þ

where a change of coordinates has been performed such that the mirror map takes

the form tðzÞ ¼ 1

2�i logðzÞ þOðzÞ.
From the fundamental period (40) one can then determine a complete basis of

periods ¦ðzÞ such that ¦ðzðtÞÞ ¼ $0ð1; t; @tF0; 2F0 � t@tF0Þ in terms of the genus

zero free energy

F0ðtÞ ¼ � 1

6

t3 þ � � � þ �ð3Þ

ð2�iÞ3
	

2
þ 7

4
nd

� �
þOðe2�itÞ; ð41Þ

where 
 ¼ 2 and 	 ¼ �296 are, respectively, the triple intersection number and the

Euler characteristic of the smooth deformation Xð8Þ of Xd.
f

The correction of 7=4nd to the usual factor 	=2 of the constant term in (41) was

derived in Ref. 2 by identifying the local geometry around each node in the presence

of the topologically nontrivial B-¯eld with the noncommutative conifold from

Ref. 47. For the free energies F gðt;�tÞ at genus g � 2 the resulting formula for the

fLet us point out that this basis does not lead to integral monodromies as is explained in Subsec. 5.5 of

Ref. 2 and Sec. 7 of Ref. 4.
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constant map contributions is

F const:
g�2 ðt;�tÞ ¼ ð�1Þg�1B2gB2g�2

2gð2g� 2Þ½ð2g� 2Þ!�
	þ 2nd

2
þ ð1� 2

2g�2Þnd

� �
; ð42Þ

in terms of the Bernoulli numbers Bn.

The higher genus free energies can be obtained by integrating the so-called

holomorphic anomaly equations,48,49 following Ref. 50 with the modi¯cations due to

the B-¯eld discussed in Ref. 2. Fixing the holomorphic ambiguity that arises at each

integration step requires su±ciently strong boundary conditions in the moduli space

and/or vanishing conditions on the invariants. The direct integration for Xð8Þ, and
therefore also ðXd; ½0�Þ, has recently been carried out in Ref. 51 up to genus g ¼ 48.

On the other hand, the procedure has been carried out for ðXd; ½1�Þ with d ¼ ð18Þ up
to genus g ¼ 32 in Ref. 2 and for d ¼ ð5; 13Þ, d ¼ ð24Þ and d ¼ ð4; 22; 0Þ, respectively,
up to genus g ¼ 25, g ¼ 14 and g ¼ 9 in Ref. 4.

Some of the torsion re¯ned invariants associated to d ¼ ð5; 13Þ are shown in

Table 1. Invariants that are checked by the enumerative calculations from Refs. 2

and 4, which we partly reviewed in Sec. 9, are highlighted in blue.
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Table 1. Some torsion re¯ned Gopakumar{Vafa invariants for Xð5;13Þ.

nd;0
g d ¼ 1 2 3 4 5

g ¼ 0 14752 64444512 711860273440 11596529531321056 233938237312624658400

1 0 20480 10732175296 902645866490432 50712027457008177856

2 0 384 �8275872 6249796276400 2700746768622436448
3 0 0 �88512 �87425677776 10292236849965248

4 0 0 0 198020184 �337281112359424

5 0 0 0 150666 6031964134528

6 0 0 0 2232 �43153905216
7 0 0 0 24 18764544

8 0 0 0 0 177024

9 0 0 0 0 0

nd;1
g d ¼ 1 2 3 4 5

g ¼ 0 14752 64390400 711860273440 11596526493472256 233938237312624658400

1 0 20832 10732175296 902646226215424 50712027457008177856

2 0 480 �8275872 6249871001344 2700746768622436448
3 0 6 �88512 �87433826048 10292236849965248

4 0 0 0 198195616 �337281112359424

5 0 0 0 150784 6031964134528

6 0 0 0 1920 �43153905216
7 0 0 0 0 18764544

8 0 0 0 0 177024

9 0 0 0 0 0
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