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I" over the fraction field F' of R in terms of various twisted
group rings of GG over finite extensions of F'. Furthermore, con-
crete information on the kernel and cokernel of the associated
projections is obtained. Along the way we also launch the in-
vestigations of the unit group of twisted group rings and of

U(RT") via twisted group rings.
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1. Introduction

This paper contributes to the study of a finite group I' via its representation theory
over a number field' F and its ring of integers R. The overarching question is which group
theoretical invariants of I' are determined by the R-algebra RI', or in other words by the
regular RI-module. From the vast literature, see for example [26,27,36,51,54,55], one can
somehow distil an approach in two steps to that. Firstly one considers the decomposition
of the semisimple group algebra FT' given by Wedderburn-Artin’s theorem:

1 Most of the results will in fact hold in the generality where F is any field with char(F) {|T|.
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FI' =M, (D1) ®---@®M,, (D),

where D; are finite dimensional division F-algebras. If one now chooses an order O; in
each D;, then we obtain two orders in FT, namely RI' and @}, M,,,(O;). Because F
is a number field, in particular R is a ‘nice’ Dedekind domain,? it is well known that
the two orders share many properties. In particular their unit groups have a common
subgroup of finite index (see for example [26,54]). The aim of the first step is to obtain as
much information as possible on the F-character degrees n; and the form of the division
algebras D;. Consequently, it is to be expected that the number theoretical properties
of the number field F' will play a special role here.

Recall that there is a bijection between the matrix components above, the absolutely
irreducible F-characters of I" and the primitive central idempotents of FT' (a set denoted
PCI(FT)). For a survey on the construction of primitive central idempotents and a
description of its associated matrix components we refer to [26] and for some of the
most recent progress on this topic to [7,6,5]. A setback of making the switch from RT
to @7_, M,,,(0;) is that one is somehow replacing the group I' by the larger group
HeePCI(FF) I'e. Due to this, one loses information on ‘ties’. The role of the second step
consists then to focus on the given group I'. This might be via representation theoretical
methods or group theoretical ones. To clarify the latter, we now set F' = Q and so R = Z.
Then it is known [24] that the group isomorphism type of the unit group U(ZT') and
the ring isomorphism type of ZI" contain the same information.? The gain of this is that
U(ZT) is an arithmetic subgroup in some linear reductive algebraic group (in particular
it is a finitely presented group), allowing the use of classical but strong methods in
algebraic groups or geometric group theory.

From this unit group point of view and using [34], the first step describes a full
list of invariants determining the commensurability class of U(ZT'), whereas the second
step aims to filter till its isomorphism class. A usual approach to the latter consists
of constructing an ‘interesting’ torsion-free subgroup N of finite index in U(ZI"). On
one hand such N would (ideally) be normal and the associated finite quotient would
reflect properties of the finite subgroups of Z(ZT"). On the other hand, importantly, the
construction of N needs to be generic in the sense that it does not require knowing the
isomorphism type of the group basis I'.

In this article we will contribute to both steps in a novel way and it can be summarized
as follows:

(1) In the first step we make a shift in the traditional philosophy by regrouping
simple components into certain twisted group algebras which arise by viewing I' as

a non-trivial extension. Section 3 till Section 5 is devoted to constructing in general

2 The property that the unit group of two orders in a common semisimple algebra are commensurable
requires that R/I is finite for every non-zero ideal I of R (e.g. see [26, Lemma 4.6.9.(3)]). The use of ‘nice’
refers to this extra property.

3 Thus ZT' = ZH if and only if U(ZT) = U(ZH). Tt is folklore that it holds more generally for any
I'-adapted coefficient ring R, i.e. where all prime divisors of |I'| are not divisible in U(R). In short, this
follows in that case from the linear independence of finite subgroups of U(RG).
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such decomposition and giving down-to-earth descriptions of the projections and their
(co)kernels. Below we will give an overview of those results.

(2) Classically, the main generic constructions of units in ¢(ZI") are Bass and bicyclic
units. Using the solutions to the subgroup congruence problem for SL,, (D), with n > 2,
it is known since the mid ‘90s [28] that if QI' has no simple 2 x 2-components® and
the only simple 1 x 1 components are commutative, then the group generated by the
Bass and (generalized) bicyclic units is of finite index. In particular the subgroup B
generated by them could serve as N in the explanation above. Therefore, a major open
problem in group rings of the last decennia has been to find generic constructions if
2 x 2 components are present. In Section 10 we give the first such generic construction,
which we call H-units. Moreover these elements can also contribute to other components,
hence even without such problematic components, when combined with B it may yield
a ‘stronger N’. As an illustration thereof we answer in the positive for various infinite
families of groups conjectures on the rank and the torsion of the abelianisation ¢/(ZI")?".
This is possible due to the nice properties of H-units, e.g. they yield free groups of
large ranks. The proof of all this builds on the work for step (1) and Section 6 till
Section 8.

We will now explain the main results of this article in more detail, starting with the
contributions to (classical) questions in (untwisted) group rings.

A new generic construction of units and their contribution to the structure of U(ZGQ).

For any groups W < H and K and any group homomorphism f : H — K it is
easily observed that [K : f(W)] is finite exactly when [H : (ker(f),W)] is finite. For
the unit group of ZG, a useful incarnation thereof is for f the norm map nr of ZG
which maps an element on a tuple recording the reduced norm of each projection onto a
simple component of QG. By definition SL; (ZG) = ker(nr), see (24) and (25) for precise
definitions. Doing so, see [26, Proposition 5.5.1], one has that

(SL1(ZG),U(Z(ZQ))) is of finite index in U(ZG).

Another important incarnation of the above is for f the mapping of U(ZG), via GL1(ZG),
into its Whitehead group K;(ZG) := GL(ZG)®. This enables one to replace U(Z(ZG))
by any subgroup of U(ZG) that maps to a finite index subgroup of K;(ZG). Thanks to
a theorem of Bass and Milnor, an example of such a group working for any finite group
is given by the group generated by the so-called Bass units. For background we refer to
[26, Section 1].

In conclusion, the problem to generically construct a finite index subgroup of U(ZG)
is reduced to SL; (Z@G), i.e. the elements of norm 1. For any tuple (g, h) with g ¢ Ng((h))
one can construct the elements 1+ (1 — h)g ZJO(:hl) h? and 1+ (Z;’(:hl) h7)g(1 — h) which

4 More precisely, if QI' has no simple component Mz (D) with D containing an order with finite unit
group. Equivalently, if no SL, (D) has S-rank one for some finite set of place S of Z(D) containing the
archimedean.
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are unipotent units and hence in SL;(ZG). These elements are called bicyclic units
and the group they generate is denoted Bic(G). A theorem of Jespers and Leal [28]
says that Bic(G) is of finite index in SL;(ZG) under some restrictions on the simple
components M, (D) of QG. For n > 2 the restriction is that there is no My(D) with
D € {Q,Q(v—d), (%)}, for a,b,d € Z~¢ and (7‘64’) denotes a quaternion alge-
bra. Therefore these Ma(D) are called exceptional of type (II) (see paragraphs behind

Corollary 6.7 for complete definition).

In Section 10 we produce a new generic construction of elements in SL; (ZG). For any
triple (g, h, Q) with g,h € G,Q < G satisfying the two conditions in Definition 10.5
we construct a group H(g,h,Q). The elements therein are called” H-units and in-
terestingly the generators are usually not unipotent. For every quadruple of numbers
(21, m2,91,92) € N* satisfying the equations (46) there is an associated H-unit denoted
V(w1 wa,51,52)- Lhe free group of rank n we denote by F,.

Theorem A (Theorem 10.6). Let (g, h, Q) be a triple as in Definition 10.5. Then,

(1) H(g,h,Q) is a finitely generated subgroup of SLi(ZG) and v, *

(z1,72,91,Y2)
U(—wh—l‘z,yz,yl)’

(2) H(g,h,Q) # 1 if and only if [g,h] & (9)Q.
Moreover, for H(g,h,Q) # 1,

(3) if o(9Q)|Q| = 2, then H(g,h, Q) = F3 x C, and
3
(4) if o(9Q)|Q| > 2, then H(g,h,Q) = F,, withn =1+ % [I,(1— I%), where
the product runs over the prime divisors p of 0(gQ)|@].

More precisely, see Theorem 10.8, we give a concrete description of H(g, h, Q) and not
only of its isomorphism type. Nevertheless, the structure of the group (H(g;, hi, Q) | i €
I) generated by the H-units corresponding to several triples (g;, hi, Q;) is still mysterious
to us. There are several natural questions, in particular Question 10.9: when it is a direct
product of the groups H(g;, hi, Q:)?

From Section 10.3 on we consider the case that 3 { |G| and QG has exceptional
components of the type M2(Q). As a first application of Theorem A we show that
the Jespers-Leal theorem can be extended to include the difficult case My (@Q). This is
recorded in Remark 10.12 and follows from the proof of Theorem B, resolving in this case
the problem of constructing generically a finite index subgroup. By B(G) we denote the
subgroup generated by the Bass and bicyclic unit and by H(G) the subgroup generated
by H(g, h, Q) for any admissible triple (g, h, Q).

5 As explained in Remark 10.10, their name refers to the crucial role of the second cohomology group, and
in particular twisted group rings, to both discover the elements and the proof of the subsequent theorem.
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Theorem B (Theorem 10.11). Let G be a 2-group such that the only exceptional compo-
nents of QG are of the form My(Q), then (Bic(G), H(Q)) is of finite index in SL1(ZG).
Consequently, (B(G), H(G)) is of finite index in U(ZG).

We have chosen to focus on Ms(Q) as it is by far the most frequent exceptional
component, cf. [2, Appendix A], and such a component naturally yields triples (g, h, Q)
as in Definition 10.5. However, the statement of Theorem B sometimes also holds in the
presence of other exceptional components, but we have not tried to pursue this line of
investigations.

Our second application is about the abelianisation U (ZG) = Z" x T, with T a finite
abelian group. The number n is called the rank of the abelianisation of U(ZG). Recall
that U(ZG) = £V (ZG) with V(ZG) the group of invertible elements with augmentation
one. Recently the following questions got some attention:

(R1) Is the rank, as abelian group, of Z(U(ZG)) and U(ZG)* equal? In particular if
Z(U(ZG)) is finite, is U(ZG) also finite? (See [2, Question 7.8 and Proposition
7.9].)

(P) Let p be a prime. If V(ZG)* contains an element of order p, does G also contain
an element of order p? (See [4, page 2].)

Question (P) is one of three questions formulated by Béchle, Maheshwary and Margolis
[4] and the labelling refers to theirs. A stronger version of (P) was also formulated in [4],
namely that exp(V (ZG)®) = exp(G?®). Currently, the only infinite family for which (P)
has been proven are the dihedral groups Dg, with p prime [4, Theorem C].

We consider the ‘most degenerate’ classes of 2-groups, namely those where all the
matrix components are exceptional and of the form Ms(Q). Such groups have been
classified by Jespers, Leal and del Rio [30,25], namely G = K x C¥ with K a finite group
that is a member of seven (infinite) families of groups Gy, . .., G7, recalled in Section 10.3.
However our proofs do not require the precise classification. In the next result we denote
by clr(H) the normal closure of some subgroup H in the larger group I'. This result
shows that in presence of exceptional components there are some natural obstructions
towards conjectures (R1) and (P).

Theorem C (Theorem 10.16 and Corollary 10.1]). Let G = K x C¥, with K a group in
G1U...UGy, and 7 the natural epimorphism of U(ZG) onto U(ZG)™. Then

rank U(ZG)* =rank Z(U(ZG)) + rank 7((H(G)un))
where H(G)yn = {z € H(G) | z is unipotent }. Furthermore,

V(ZG) )‘“’
(V(ZG)) cluze) ((Bic(G), £G)) '

exp(V(ZG)*) = 1lem (exp(G“b),exp (Z
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Moreover,

(1) The H-units H(G) are of finite index in SL1(ZG) despite that Bic(G) might be of
infinite index.

(2) If G satisfies (54), then Z(U(ZG)) clyzc)((Bic(G), £G)) is of finite index in U(ZG)
and both (R1) and (P) have a positive answer.

Recall that spang{ge | g € G} = M,(D) for e a primitive central idempotent of
QG and (QG)e = M, (D). Condition (51) appearing in part (2) of Theorem C is about
whether the generators of the finite group Ge have pre-images in G of the same order. If
this is the case, then part (2) tells that the obstructions (i.e. the second factor in each
formula) vanish.

Alternatively (54) can be interpreted as a condition on the proportions o(g)/o(ge) for
g € G. Inspired by Theorem C, in upcoming work by the first author, it will be proven
that if these proportions are ‘large’ then both obstructions are non-trivial and hence (54)
is a non-artificial condition.

As a final application, we recover in Corollary 10.14 a result of del Rio and Ruiz [12,
Theorem 1.1] saying that M := [] cpcrqa) St (ZG)N(1—e+QGe) is the largest direct
product of free groups in U(ZG). However, using H-units, our proof is uniform, i.e. we
do not use the classification for G, and yield more explicit generators. Namely, M =
(H(gi, hi, Qi)) = F2 for some triples (g;, hi, Q;), 1 < i < g and n explicit. Furthermore,
in some cases the bicyclic units and H-units together yield a normal complement of G
in V(ZG). As formulated in Question 10.15, it would be interesting to investigate this
phenomenon further.

Decomposition in twisted group rings as valuable substitute for the Wedderburn-Artin
decomposition. The statements and proofs of Theorem B and Theorem C are in the
framework of untwisted group rings. However, interestingly, they heavily depend on The-
orem A whose proof crucially requires twisted group rings. Recall that F' is a number
field and R is its ring of integers. The starting observation is that an exceptional com-
ponent of F[I'] corresponds to an irreducible F-representation of I', say ¢. Furthermore
a representation allows in a natural way to view I' as an extension

15 No>TAGE o1 (1)

where N = ker(p) and G = Im(p). Corresponding to this is an algebra decomposition
FTI' 2 FG e FG(1 — N ) where N is some central idempotent. The second observation
is that the summand FG somehow originates from the trivial representation of N. In
Section 3 we show how the irreducible representations of N can be used to concretely
decompose FT in terms of certain twisted group rings and crossed products of the smaller
group G.

Before going into details, we first recall the definition of a twisted group ring. For a
2-cocycle a € Z2(G, R*), where G acts trivially on R*, the twisted group ring R%[G]
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of G over R with respect to « is the free R-module with basis {uy}sc where the
multiplication is defined via

ugup = a(g, h)ug, forall g,he G

and any uy commutes with the elements of R. Note that the ring structure of R*[G]
depends only on the cohomology class [a] € H?(G, R*) of a and not on the particular
2-cocycle. Of importance is that there is a 1-1 correspondence between «-projective
representations of G and R*[G]-modules. As such projective representations, although
not explicitly used, are recurrent objects behind the scenes (see [15, §2.1] for detailed
explanation).

In order to keep the introduction notationally lighter, we will restrict ourselves to
abelian extensions (i.e. N is abelian in (1)). However from Section 2 till Section 5 we
will work with general extensions. When N is abelian, the extension (1) corresponds’
to a cohomology class [a] € H2(G,N) where o is the action of G on N. Via o the
group G acts on the set Lin(N, F') of linear F-characters of N and we denote the orbit
space by Lin(N, F)/G. Now, for a G-invariant linear character x of N over F, the
transgression of x with respect to « is a 2-cocycle T, (x) € Z2(G, F*) which is defined
by To(x)(g, h) := x(a(g, h)). Via so-called inflation one can extend a cocycle of G to one
of I, see Section 2 for details.

Theorem D (Theorem 3.2 and Proposition 3.1). With notations as above, N abelian and
(8] € H?(T, F*) inflated from G. We have that

Il

FAI] D FEI*C (2)

[x]€Lin(N,F)/G

for some concrete idempotents E, and explicit skewing and twisting of the crossed product
(F(x)Ey) * G. In particular, if x € Lin(N, F)% is a G-invariant character, then'

(FOOEY) * G = F(x)* ™ N[a].

In particular we recover the case where N is central, obtained in [47, Theorem 5.3]
by Margolis and Schnabel. However even in that case our methods give a new, more
explicit, proof. It is interesting to pause a second on the classical case when [ is trivial,
i.e. FA[I'] = FT is a group ring. The above theorem then tells that even if one is solely
interested in non-twisted group rings, one should still study twisted group rings over finite
extensions of the chosen number field F'. In particular, at this point one has another point
of view on the first step alluded to at the start of the introduction.

6 The necessary background is briefly introduced in Section 2.
7 With 8.T.(x) is meant the 2-cocycle of G with values in F(x)* defined pointwise, i.e. (8.Ta(x))(g, h) =
B(g, h).Ta(x)(g, h) = B(g, h).x(a(g, h)).
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Important for the applications later on is that the decomposition (2) is not simply
an abstract one. Among others, the projections p, onto the direct summands have a
down-to-earth description. For this we need to fix a section ¢ : G — I' of A in (1). For
example, for y € Lin(N, F)F/N, Proposition 3.3 says that the projection p, viewed over
R agrees with the ring epimorphism

Uy 5t RPC] — RIP D [G) 1y, gy = X (0)0g

where the sets {u;, | h € T'} and {vy | g € G} are the bases of the mentioned twisted
group rings.
This ring morphism induces a group morphism

U5 URPT]) — URX]*T=M[G)).

Another reason that (2) is a reasonable alternative for Wedderburn-Artin’s decomposi-
tion is that the kernel and cokernel can be worked with.

Theorem E (Theorem 5.5 and Theorem 5.5). Let T be some extension as in (1), [8] €
H?(T', F*) inflated from G and x € Lin(N, F). Also let R be an order in the number
field F. Then®:

(1) coker(\flxﬁ) is finite.
(2) If N is central, then {torsion units in ker(¥, )} = {x(a)"'a|a € N}.

Moreover, we obtain conditions for ker(‘i/x,/g) to be finite and some computational reduc-
tion for determining | coker(¥, ).

Along the way we obtain a version for twisted group algebras of certain classical
theorems of Higman and Berman-Higman (see for example [26, Proposition 1.5.1 and
Theorem 1.5.6]). More precisely, in Theorem 4.1 we describe when the unit group of a
twisted group ring is finite and in Theorem 5.6 we show that torsion units must have
trace zero. Also, in Proposition 4.5 we answer a question of Margolis and Schnabel [47,
Remark 3.2.], in case of a torsion 2-cocycle, on when F*[G] = F*’[G).

Units in twisted group rings and a full description in the elementary abelian case

By Theorem D, describing the unit group of twisted group rings is interlaced with
the classical problem of describing U (RT"). In Section 6 we launch the investigations
of generic constructions of units in twisted group rings and investigate generators of
coker(U,, 5).

More precisely, we consider U(R7[G]) where R is the ring of integers in a cyclotomic
field F = Q((,), with (, some primitive root of unity, and [y] € H?(G, R*). Firstly,

8 Again, in order to avoid more notations in the introduction, some parts of the statements are left vague.
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we construct in Definition 6.9 a class of units 7, (G) which truly makes use of the
twisting v € Z%(G, R*). These elements can be thought of as some deformations of the
classical bicyclic units in non-twisted group rings. An intriguing and crucial feature of
these elements is that the generators live in coker (\I/X :U(RT) — U(RT=H) [G])), see
Proposition 6.12 and Question 6.13.

In other words, the generators of H~(G) are intrinsic to twisted group rings. In fact, the
newly constructed H-units arose as the pullback along the transgression map ¥, of words
in the generators of H,(G) for G an elementary abelian 2-group. The difficulty hereby
is two-fold: (i) the inverse under ¥, of a unit is usually not a unit due to 1 # ker(\T/X);
(ii) the generators of 7~ (G) are not attained. In fact the length of the words depends on
|coker(\ffx)| which on its turn depends on N =ker(A: T' — G).

An important step for investigating units in twisted group rings is Theorem 6.3 and
Corollary 6.7 saying that (Bic(G), H,(G)) contains enough elementary matrices of each
simple component. This generalizes the much used theorem of Jespers and Leal [29].

Finally, in Sections 8 and 9 we apply all the above machinery to study the case that
I' = G x C§" for some m and some [y] € H*(T', Z*) inflated from [§] € H*(G,Z*). Note
that the number of simple components of the group algebra increases exponentially with
m, which for the investigations of unit groups makes these extensions more subtle as it
first looks likes. In Section 7 we give a description of U (Z7[G x C3*]) in terms of U(Z°[G]),
see Theorem 7.3. As an application, we are able to deduce the following result. Recall
that G is said to have a normal complement in U(Z[G)) if U(Z|G]) = N x (£G) for some
normal subgroup N. If a torsion free complement NV exists then the integral isomorphism
problem has a positive answer for G (see for example [54, Proposition (30.4)]). Also recall
that G satisfies the Higman subgroup property if every finite subgroup H < V(ZG) is
isomorphic to a subgroup of G (this property was asked for the first time in Graham
Higman’s thesis).

Theorem F (Corollary 7./). Let G be a finite group and [y] € H*(G x C§*,Z*) in-
flated from a cohomology class [0] € H*(G,Z*). If G has a (torsion-free) complement

in U(Z°[G]) or satisfies the Higman subgroup property, then the same holds for G x C3*
and U(ZY |G x C3]).

Subsequentely, in Section 8, all the protagonists are computed explicitly in the case
that T = Dg x C3* (where Dg denotes the dihedral group of order 8) and G' = Cy**2.
More precisely, we consider Dg as some extension [a] € H?(Cy x Cy,C3) and look at
the projections \I/X : U(Z[Dg x CF]) — U(ZT>I[CI2]). Together with the general
description of ker(\TJX) and Theorem F we are able to pullback a precise description of
U(ZT>O)[C32]) obtained in Proposition 8.3. All together, the main achievement here is
an unexpected uniform description of U(Z[Dg x C§*]) for all m. The case that m =0, 1,2
has been dealt with in earlier papers [22,23,40,42].
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Along the article we formulated several questions we believe to be of interest. Some
we would like to attract the attention to are Question 4.3, Question 6.5, Question 7.6
and Conjecture 5.7.

In conclusion, (a subclass of the) H-units arose by applying all the machinery above
to an extension of Cs X Cs. These units might extend the bicyclic units with infinite index
and are particularly useful in presence of an exceptional component of the form Mz (Q).
However we have not yet enough generic constructions that, without any condition on
the 2 x 2 simple components, give a finite index subgroup for any finite group. Neverthe-
less, extending other groups in [2, Appendix A], the methods developed in this article
should yield other generic constructions. Besides, this work can also simply be seen as
an invitation to the study of units in twisted group rings as a problem of independent
interest.

Notational conventions.

(1) All rings, denoted R, will be assumed unital and associative.

(2) U(R) denotes the unit group of R. If U(R) appears as the coefficients of a cohomology
group, i.e. HY(G,U(R)), we will instead write R* (thus H7(G, R*)).

(3) If f: R — S is a ring homomorphism, then we denote the induced map on the unit

groups by f : U(R) — U(S).

Except stated otherwise, with ‘an order R’ we will mean a Z-order.

)
5) We will use the convention g” = h='gh and conj(h)(g) = ¢g" for conjugation.
) A commutator is [g,h] = g th~!gh.

)

clr(H) is the normal closure of some subgroup H in the larger group T'.
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2. Cohomological preliminaries

We now recall the required minimum on group cohomology for which details can be
found in the book [10]. Given a finite group G with an action ¢ : G — Aut(A4) on an
abelian group A, extensions’

15 A-T3G6 =1 (3)

of A by G, whose induced action is ¢, are parametrised by the second group cohomology
group Hf,(G, A). If the action of G on A is trivial, in which case we write H?(G, A),
it is well known that the cohomology group parametrizes the central extensions (i.e.
Z(A) CT). Given a commutative ring R and a 2-cocycle o € Z%(G, R*) one can define
the twisted group ring R“[G] whose basis we will denote by {u, | ¢ € G}. Up to R-
algebra isomorphism, R*[G] does not depend on « but only on the cohomology class
[a] € H?(G, R*). A 2-cocycle a is said to be normalized if u; is the identity element of
RY[G], i.e. if a(l,9) =1 = a(g,1) for all g € G. Notice also that then the ring R = Ruy
is central in the twisted group ring R¥[G].

Example 2.1. A cohomology class [a] € H?(G,Z*) over Z corresponds to a central ex-
tension

[ 1-5C =T —-G—1. (4)

As a result, for an abelian group G generated by {g1,92,...,9-}, [a] € H*(G,Z*) is
determined by the values in {£1} of

u;fgi), 1 <i <, and the commutators [ug,,ug,], 1 <i<j<r, (5)
in the corresponding twisted group ring Z%[G].

Let @ be a normal subgroup of G, let M be an abelian group which we equip with
a trivial G-action (i.e. M is a trivial G-module) and let 7 : G — G/Q be the quotient
map. Then, for any § € Z4(G/Q, M) C Map(G/Q, M) we can define v € Z*(G, M) by

Y(@1, ..oy x) = 8(w(x1), ..., w(w;)).
The map from Z*(G/Q, M) to Z*(G, M) sending & to v induces a map
Inf: H(G/Q, M) — H'(G, M)

which is called the inflation map. Sometimes we will want to emphasize Q and use the
notation Infgy. Notice also, that for any subgroup H of G, there is a natural restriction

9 Thus A is normal and G = I'/A. In other words (3) is a short exact sequence.
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map from H(G,M) to'" H'(H,M). In case of M a trivial G-module, the Lyndon-
Hochschild-Serre spectral sequence yields a very concrete exact sequence between the
lower cohomology groups.

Lemma 2.2 (Inflation-restriction exact sequence). Let Q be a normal subgroup of G and
M a trivial G-module. Then one has an exact sequence

0— HY(G/Q,M)™ HY(G, M) S HY(Q, M)%/? % H2(G/Q, M) ™ H2(G, M)

where the first connecting map d is the transgression map and H'(-,-) = Hom(-,-).

In case of the abelian extension (3), i.e. taking I' and A (as respectively G and Q) the
first transgression map is a morphism from Hom(A, M)% to H?(G, M) whose definition
we now recall. For y € Hom(A4, M)% one can define a 2-cocycle Tra(x) € Z2(G, M) via

Tra(x)(g1,92) = x(a(g1,92))

for any ¢1,92 € G. The cohomology class [Tra(x)] does not depend on the choice of
a € [a).

Definition 2.3. With the above notations, the map
Tra, : Hom(A, M)¢ — H?(G, M) : x — To(x) := [Tra(x)]
is called the (first) transgression map associated to a.

Using notations as in (3), let @ be a normal subgroup of I" such that ANQ = 1. Then
Q = \(Q) and from now on we will implicitly identify the both and speak about G/Q.

Remark 2.4. Notice that G/A(Q) = G/Q and AQ/Q = A/JANQ = A. Hence, if a =
Infg(y) then I'/Q is the central extension

15 A-T/QDG/Q —1, (6)
corresponding to [7].

In Section 5.2 we will consider various such normal subgroups @ and the (co)kernel
of the transgression map associated to I'/Q. Therefore we also write Trag for the trans-
gression map associated to the abelian extension (6). When the extension or ) are clear
from the context we simply write Tra.

10 If H = Q is normal, then Im(Res) is easily seen to be contained in the subgroup H®(Q, M)G/Q of
G/Q-invariant cocycles.
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We record a corollary of a(g,1) = «(1,1) = «(l,g) for all g € T, entailed by the
2-cocycle condition, which will repeatedly be used without further notice.

Corollary 2.5. Let G be a group, Q a normal subgroup and suppose that [a] € H?*(G, R¥)
is inflated from a cohomology class [y] € H*(G/Q, R*). Then, for g € G and x € Q, u,
and u; commute in R*[G] whenever g and x commute in G. In particular, u, is central
in R*[G] for any a € Z(Q).

Finally, we mention a lemma that might be known (however, to our knowledge, does
not appear in the literature) and which will be useful in Proposition 4.5.

Lemma 2.6. Let G be a finite group, let F be a field and let o € Z2(G, F*) be of finite
order. Assume that m is a number relatively prime to the order of [a] € H*(G, F*). Then
there exists a cocycle B € [a] such that m is relatively prime with the order of B.

Proof. Consider the greatest common divisor of m and the order of «, which we denote
by d and it exists as o(«) is assumed to be finite. Denote o(«) = d-£ with (d, £) = 1. Since
the order of « is finite, notice that H = (Im(«)) is a finite subgroup of F* and hence it
is cyclic. Therefore H can be decomposed as H = Hy X Hy where |Hy| = ¢ and |Hq| = d.
Hence « admits a natural decomposition as o = ay, x ag, € Z*(Hy, F*) x Z%(Ha, F*).
Since m is relatively prime to the order of [a] and exp(H?(Hy, F*)) | |H1| = d, [am,]
is cohomological trivial. Therefore there exists A : G — H; such that am,(g,h) =
Ag)A(h)A(gh)~! for any g,h € G. Consequently, a(g,h) = A(g)A(h)A(gh) tam,(g,h)
that is « is cohomologous to ayp, and clearly m is relatively prime to the order of
ap,. 0O

Standing assumptions: In the sequel of the paper all cohomology groups will be with

respect to a trivial action, except stated otherwise. Also, given a cohomology class [a],
we always assume a chosen representative a which we assume to be normalized.

3. Decomposition of twisted group algebras for general extensions and transgression

In this section, given a central extension as in (3), we will recover the decomposition
[47, Theorem 5.3.] of the twisted group algebra F?[I] for any [3] € H*(T, F’*) inflated
from G and F a field with char(F') 1 |T'|. Note that [47, Theorem 5.3.] was a generalisation
of [35, Theorem 3.2.9.]. Our aim is to use other methods than [35,47] which allow to
work with general extensions (i.e. with A not necessarily central or even abelian) and to
interpret in Section 3.2 the projection maps as a kind of transgression morphisms. The
most general structural result will be Proposition 3.1, but Theorem 3.2 which focuses
on abelian extensions will be more precise. These results prove Theorem D from the
introduction.
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3.1. Concrete decomposition

Consider an arbitrary short exact sequence
15N-T A6 -1 (7)

Fix also a section p of A. In particular a(g, k) := p(g)u(h)u(gh)=' € N for all g,h € G
and conjugation with p(g) gives an outer automorphism of N:

o :G — Out(N) := Aut(N)/Inn(N) : g — conj(u(g) ™). (8)

It is well known that the associativity of I' means that a(g, h)a(gh, k) = o4(a(h, k))a(g,
hk).

Let F be any field with char(F) { [N| and [8] € im(Inf : H*(G, F*) — H*(T, F™)).
Note that

FPI]= (FN)«G =Y (FN)y, (9)
geG

is a crossed product of G over F.N with the following operations'!:

VgUp = ﬂ(gv h)a(g7 h)vgh (thStlIlg)
and, for x € FN,
Vgx = 0g(x)vg. (skewing)

Before giving a more precise description, recall that there is a bijective correspondence
between PCI(F'N), the set of the primitive central idempotents of F'N, and the simple
FN-modules up to isomorphism. Moreover, via Galois descent, PCI(F'N) can be com-
puted from the set of the complex irreducible representations Irr(N, C). Also recall that
G, interpreted as I'/N, acts on PCI(FN). The orbit space will be denoted PCI(F'N)/G.

Let K be a splitting field of N containing F' and let Irr(N, F') be a set of K-characters
of N containing the character of exactly one composition factor of V @ K for each
simple F'N-module V. Recall that the choice of the composition factor does not affect
the character by [26, Theorem 3.3.1].

By definition, one has a bijection between Irr(N, F') and the simple F'N-modules up
to isomorphism, and thus with PCI(FN). Denote by e, the unique primitive central
idempotent of F'N corresponding to x € Irr(N, F') (see Section 3.3 in [26]). Note that G
also acts on the irreducible K-characters of N via x9(n) := x(o4(n)). The bijection can
be chosen such that ef := e,s and hence G acts on Irr(N, F).

11 In FP[I] an arbitrary F-basis element has the form Ug Uy (g) for some a € N, g € G. We are identifying
it with avy, where a is considered as a coefficient in F[N]. Implicitly we are extending the action o of G on
N to F'N.
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Next, define
Lin(N, F) :={x € (N, F) | x(1) = 1}.
It is easily verified that
x € Lin(N, F) if and only if FNe, is commutative.
Moreover, for x € Lin(N, F) one has that
ne, = x(n)e, and FNe, = F(x), (10)
where F(x) is the smallest field containing F' and im(x).

Proposition 3.1. With notation as above, we have the following:

1

gy @D (FNEY*G),

[x]€rr(N,F)/G

where E, = ZXQE[X] e§ and the skewing of (FNE\) x G is given by o and the twisting
by'? E\.(B- ). Moreover, if '* x € Lin(N, F)'/N,

(FNEy) * G = F(x)*T=W[q]. (11)

Proof. Since [3] € im(Infy) we have that FRSO[N] = FN = D crr(v,r) FNex
In general the orthogonal idempotents e, are not central in FP[T], however the el-
ement F, (being the sum of the orbit under conjugation by G) is. These elements
are again two-by-two orthogonal idempotents, hence (9) can be rewritten as FP[['] =
Djerr(v, 7y c(FNEy) * G. Since Ey is central we see that indeed only the twisting
changes and in the way asserted. This proves the first part of the result.

Next note that x € Irr(N, F)'/N being an invariant character exactly means that the
orbit of e, is a singleton and hence E, = e,. Hence if moreover x € Lin(N, F), then
by (10) FNE, = F(x). Also, from the earlier reformulation of the associativity of T, it
readily follows that o, := Traq(x) satisfies the 2-cocycle condition

ax(g, ) (gh, k) = ax(h, k)ay (g, hk).

In particular, (FNE, ) * G is a twisted group algebra where, by the above, the twisting
is indeed Ey.B-a = - Tras(x). O

12 The notation needs clarification: we implicitly consider both 8 and « as having image in FN and hence
(B-a)(g,h) := B(g, h).a(g, h). Subsequently, E, .(3-«) also multiplies the result with the central idempotent
E,.

13 We denote by Lin(N, F)'/N the set of I'/N-invariant linear characters.
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In order to obtain a more insightful decomposition we now assume that N is abelian.
In this case the extension (7) corresponds to the cohomology class'* [a] € H2(G, N) and
Irr(N, F) C Hom(N, F*) where F' denotes the algebraic closure of F. Moreover, since by
assumption char(F) { |N|, the theorem of Perlis and Walker [26, Theorem 3.3.6.] tells us
that

FN = P F(¢a)®*™, (12)

dl|N|

[[%Ed% % , with k4 the number of cyclic subgroups of IV of order d and (y a

primitive d-th root of unity. Proposition 3.1 now readily translates into the following:

where ag = kg

Theorem 3.2. With notations as above we have that:
(1) If N is abelian, then

FP[T) P (P Fxey =G) = P FEY=G

[XIELIn(N,F) /G xrelx] [XIELin(N,F)/G

with the skewing of (F(x)Ey) * G given by o and the twisting by E,.(8 - «).
(2) If N is central,'® then

= @ F)P"Wia.
x€ELin(N,F)

Proof. The first part is a direct application of Proposition 3.1 and remarking that now
Lin(N, F) = Irr(N, F) and F(x) = F(x/) for two conjugated characters y and x/. When
N is central then Irr(N, F) = Lin(N, F)'/N and e = ey. Therefore the second part
follows from the first and the last assertion in Proposition 3.1. 0O

3.2. Transgression and natural morphisms as projections

Consider again the general extension (7). The projection in Proposition 3.1 of FA[T
on FNE, xG, denoted p,, is given by multiplying with the central idempotent F, . If x €
Lin(N, F)'/N then this idempotent E, and, in particular, the isomorphism (11) can be
made explicit and, moreover, we recover some classical constructions (see Example 3.4).
More generally, let R be a domain and F its field of fractions. For x € Lin(N, F)T/N we
need its R-linear extension

Xr: RN — R[x]: Z Tl Z rox(a)

aeN a€eN

14 GSince N is not necessarily central we might thus have a non-trivial action on the coefficients given by o.
15 As mentioned earlier, this case was already obtained in [47, Theorem 5.3].
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which is an R-algebra map whose kernel we denote
I, :=ker(xr)- (13)

Proposition 3.3. Let I', N,G, F and u be as in Section 3.1, [8] € im(Inf : H?*(G, R*) —
H*(T',R*)) and x € Lin(N, F)'/N. Then, the projection p, restricted to RP[T| agrees
with the map defined by (for n € N and g € G)

U8 RP ] — R[X]’B'T(X) (G] = 7 Uy pu(g) = TX ()0, (14)

which is a ring epimorphism with ker(¥, 5) = RP[T|I, = RP[L](1 — e,) N RP[T]. In
particular,

RP[I)/RPTI, = RPTW(q).

Moreover, if im(x) C R*, then I, is a free R-module with R-basis {u, — x(a)u; | 1 #
a€ A}.

When f is trivial we will simply write W, . If R is a field and N central then most of the
previous result is known'® (e.g. if 3 is trivial in [35, Theorem 3.2.8.] and for 3 € im(Inf )
in [47, Proposition 5.2.]).

Example 3.4.

o If x is the trivial character, i.e. x(n) = 1 for all n € N, then xp is the augmentation
map of RN. In that case, writing [8] = Inf([y]),

U, 3 Rﬁ[l“] — RY[G] 2 7 Up pu(g) F> T Vg

is the so-called natural homomorphism with respect to N (i.e. induced from the
canonical map from I' to G, denoted wy. If § is trivial it also is called the relative
augmentation with respect to V). We will denote this specific case by wg, .

« If I' is a central extension, i.e. N C Z(T'), then Lin(N, F)I/N = Irr(N, F) which is
a subgroup of Hom(N, F*) and U, g is the ring morphism associated to the trans-
gression map Tra as in [47, Section 5]. Therefore we call the morphism (14) the
generalized transgression morphism.

The reader may wish now to look at Example 5.8 where we will give an example of
a group of order 16, along with its decomposition in twisted group algebras and the
associated generalized transgression maps.

16 11 X is the trivial character and N arbitrary, then the statement has to be compared with [35, Lemma
3.2.12].
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Proof of Proposition 3.3. A direct calculation verifies that ¥, g is multiplicative when
X is an invariant character. Concretely, (Un, Uy (g,))-(UnsUp(gs)) = B(91, 92)Uny Uo,, (ny) X
Uy (g1g,) Which is mapped by Wy 5 to B(g1, g2)x(n104, (n2))vg, g, = B(g1, 92)Xx(n1)x(n2) X
Vg, go- The latter is Wy g(tn, Up(g,)) Wy, 5(UnyUp(g,)), as needed. Now it is clear that it is
an epimorphism.

Next, because x € Lin(N, F)F/N, multiplying with the idempotent F,, i.e. the value
of the projection, was already explicitly mentioned in (10). By comparing we see that
U, g indeed agrees with p,.

Concerning the kernel, it follows from Proposition 3.1 that ker(¥, ) = R?[['](1—e, )N
RP[T]. For the other description, since W, g,y = Xr, we already have that R°[I'|I, C
ker(¥,, ). Also, an element y of R°[T] can be uniquely written as y = > gec Yalu(g)s
with each y, € RN. Since the elements v, are R[x]-linearly independent, the concrete
form of ¥, 3 implies that y € ker(¥,, g) if and only if each y, € ker(¥, g), or equivalently
each y, € I,. Consequently, ker(Vy 5) =3° o Lyuug) C RA[[I,, as asserted.

Finally, suppose im(y) is contained in R* and denote the free R-module generated
by the set {u, — x(a)ui | @ € N} by M. Clearly M is contained in the kernel I, of
Xr : RN — R. Conversely, if x = )y 7Tauq € ker(xr), then >y rax(a)u; = 0 and
hence x =2 — > .y rax(a)ur € M. It follows that I, = M. O

In Section 5.1 we will be in the setting of Remark 2.4 where x is a (linear) character
of the abelian subgroup A, but where once we will be working with I' and once with
some I'/Q for ANQ = 1. In order to distinguish, we will sometimes write

Uy RIL/Q) — RFTVIG/Q) (15)
and hence assume [3] is understood from the context.
3.3. Refined decomposition in case of an a-representation group of G

Often in this article we will be concentrating on a fixed 2-cocycle o € Z?(G, F*) of
G. In that case it is useful to consider the following group which will be recurrent:

Go :={ala,b)uc | a,b,c € G} = (uy | g € G) <U(F*[G]). (16)

If o is of finite order,'” then every element in G, is of the form (‘u, with ¢ a o(«)-
primitive root of unity. Hence it is a central extension of (¢) by G with A : G, —
G : ('uy — g. Considering the canonical section u(g) = u, one has that a(g,h) =
w(g)p(h)u(gh)=t. Thus Hom((¢), F*) = (x) with x(¢) = ¢ and o = Tra(x). Therefore
we may now apply Theorem 3.2 to recover [35, Proposition 3.3.8.].

7 Since G is finite we know that the cohomology class [a] has finite order dividing |G|, however there has
not to be a representative of finite order. For example the cohomology class of Cy = (z) over Q defined by
ui = 2 has order 2 but any 2-cocycle representative has infinite order. Such a representative however exists
when the values are in a |G|-divisible group.
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Corollary 3.5. Let G be a finite group, F a number field and o € Z*(G, F*) a cocycle of
finite order. Then

Note that the isomorphism class of GG, depends on the chosen cocycle. It turns out
that even for cohomologous cocycles of the same finite order the associated groups might
be non isomorphic. The following example was communicated to us by Y. Ginosar.

Example 3.6. Denote
G =Cy x Cy = (x) x (y)

and let F' = Q(i). Next, we wish to define two cocycles a, o' € Z%(G, F*). We will take
cocycles which are normalized, that is for any g € G

a(g,eq) =1 =a(eg,9), a'(g.eq) =1=d'(eqg).
Further, define
a(z,z) = a(z,y) = a(z,zy) =1

Oz(y,y) =1, a(y,a:) = Oz(y,xy) = -1
a(zy,z) =1, a(zy,y) = a(zy,zy) = -1

and also
a'(x,z) =-1, o'(z,y) = a'(x,zy) = —1
al(yvy) = -1, ( x) 1, a‘(yvl‘y) =1
o(zy,z) =1, o(zy,y) =-1, o(zy,zy)=-1

Now choose a basis {u,}geq for F*G and a basis {v,}eq for F* G. Notice that both
cocycles a,a' € Z?(G,F*) are of order 2 and also notice that the cohomology classes
which corresponds to these cocycles are

[a] ui =1, uf} =1, [uguy]=-1
and
[@]: v2=-1, vi =-1, [vg,vy] =—L1

It follows that
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Ga=(uy|geG)=Dg and Go =(vy|gecG)=Qs
and therefore G}, 2 G . The crucial point is that these cocycles are cohomologous over'®
F = Q(z) but not over Q.

4. When is the unit group of a twisted group ring finite?

Let F be a number field, R a Z-order in F and o € Z*(G, R*) a fired (normalized)
2-cocycle. We refer to [26, Section 4.6] for the necessary background on orders. In this
section we determine when the unit group U(R[G]) is finite.

Generally speaking, [26, Corollary 5.5.8.], if O a is Z-order in a finite dimensional
semisimple Q-algebra A, then U(Q) is finite if and only if every simple component of A
is either QQ, a quadratic imaginary field extension of Q or a totally definite quaternion
algebra over Q. Recall that a totally definite quaternion algebra over Q is a 4-dimensional
Q-algebra with basis 1,14, j, k so that ij = k = —ji, 32,52 € Q and i® < 0, 52 < 0. We
will denote this algebra by % where 32 = u and j2 = v.

As a by-product, if U(R*[G]) is finite and x € U(R*[G]) is of finite order, say n,
then n must'? divide 4 or 6. Consequently, the exponent of G, is a divisor of 4 or 6
if U(R[G]) is finite. Moreover, also U(R) would need to be finite and hence by the
above F' = Q or Q(v/—d) with d > 0. In the former case R = Z is the only order in F.
We obtain the following characterisation, generalizing a classical result of Higman [26,
Theorem 1.5.6] for untwisted group rings.

Theorem 4.1. Let G be a finite group, F be a number field, R a Z-order in F and
a € Z%(G, R*) non-trivial normalized cocycle. Then the following are equivalent:

(1) U(RY[G]) is finite,
(2) U(R[G,]) is finite,
(3) U(R™'[Q)) is finite for alli.

One of the above holds if and only if one of the following conditions is satisfied:

G, is an abelian group of exponent 4 and F = Q or Q(v/—1),
G, is an abelian group of exponent 3 and F = Q(v/=3),
G, is an abelian group of exponent 6 and F = Q or Q(v/=3),
Go is a non-abelian Hamiltonian®® 2-group and F = Q.

8 The coboundary here is a map f : G — Q(i) determined by f(z) =i = f(y), f(zy) = —1 and f(1) = 1.
Indeed a'(g1,92) = f(91)f(92)f(9192) "' a(g1, g2) for all g1, g2 € G.

19 The F-subalgebra Flz] of F*G is a commutative semisimple subalgebra and hence a direct sum of
cyclotomic extensions of Q(&,,), with &, a root of unity of order m, a divisor of n. Moreover, by the above,
[Q(&m) : Q] < 2 and one of the m must be equal to n. Now the Dirichlet unit theorem yields the claim as
a Z-order in Q(&,,) is finite exactly when n divides 4 and 6.

20 A group is called Hamiltonian if every subgroup is normal.
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Recall that Higman’s result says that U(ZG@G) is finite if and only if G is abelian of
exponent dividing 4 or 6 or G = Qg x CF for some n € N. To put into perspective,
it is good to recall Baer-Dedekind’s classification theorem [52, Theorem 1.8.5.] which
says that G is Hamiltonian (i.e. all subgroups are normal) if and only if G is abelian
or G = Qg x CF x A with A an odd order abelian group. Therefore, Higman’s result
says that U(ZG) is finite exactly for the Hamiltonian groups with exponent dividing
4 or 6. Note that the list of possibilities stated above for a non-trivial cocycle is more
restrictive than for a trivial cocycle, which is the reason that we excluded the trivial case
in Theorem 4.1

Also note that the group G, is abelian exactly when the cocycle a is symmetric (i.e.
alg,h) = a(h,g) for all h,g € G) and G is abelian. In Corollary 4.4 below we will give
a concrete interpretation in terms of G and « for case (iv).

Proof. Clearly in any of the cases (1)-(3) (im(«)) is a finitely generated torsion subgroup
of R* C F* and hence it is a finite cyclic group. In particular o(a) < oo which allows to
apply Corollary 3.5:

Hence the equivalence between (2) and (3) is a consequence thereof and commensurability
of the unit group of Z-orders in F[G4] (see [26, Lemma 4.6.9]). Also any order in F*'[G]
is a direct summand of an order in F[G,] and hence (2) implies (1). The main bulk of
the proof goes into proving that (1) implies (2). More precisely, we will show that G,
and F are of the form (i)-(iv). In those cases one can directly see that U(R[G,]) is finite
(e.g. this can be deduced from [26, Theorem 1.5.6.], handling the case R = Z, together
with Dirichlet unit theorem [26, Theorem 5.2.4.]).

Suppose U (R*[G]) is finite and hence, as noticed at the start of this section, exp(G,,) |
4 or 6 and F*[G] is a direct sum of (certain) division F-algebras. In particular, it contains
no non-zero nilpotent elements.

Claim 1. If up, € G, with k € G such that o(ux) = o(k) then (uy) is normal in G,.
Moreover, this condition holds when o(uy) is square-free and if o(ug) = 2 then uy €
Z(Gy).

The proof of this claim will be carried out inside F*[G] (and not F[G,]). Let ug :=
Zfi%’“)_l ul and note that uguy = uy. Hence for any ¢ € G the element (1 — uy)usuy €
R%|[G] is a nilpotent element. By an earlier remark the nilpotent element is zero and thus
ut_lukut% = uy. Consider now F°[G] with its canonical G-grading. Then deg(uy) = k
and deg(u; 'ugus) =t~ kt. Since o(uz,) = o(k), all summands of uy, have different degrees
(in particular ug # 0) and thus a degree argument shows that u; Yupuy = ufc for some j.
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Consequently, (ug) <Gy, as desired. Now suppose o(uy) is square-free. It is well known?!

that if o(«) is finite then uz(k) is a root of unity in R* of order dividing o(k). Hence if
o(uy) is square-free, it is easily seen that uz(k) = 1. The last part follows from the rest.
Claim 2. FEither (1) G, is abelian of exponent dividing 4 or 6, (II) G4 = Qs X E with E

an elementary abelian 2-group.

Note that by Baer-Dedekind’s classification theorem [52, Theorem 1.8.5.] these cases
are exactly those Hamiltonian groups with exponent dividing 4 or 6. Due to claim 1 it
remains to prove that the generators of order 4 are also normal. For this recall that [58,

Theorem 11.5.12] the unit group of a maximal order in a quaternion algebra (7‘?@4’ ,

with a,b € N, is cyclic except for the maximal order in (%) and (71(’{3). In those
cases the unit group is SL(2,3) = Qs x C3, resp. Dicg := C3 x C4. Now consider
Ga < [leepci(ro(a) Gae- Since also exp(Gae) | 4,6 we see that Gae is either cyclic or
a subgroup of Qg or Dg. Thus one can check that any element of order 4 in the direct
product generates a normal therein and in particular the same holds for G,. This finishes
the proof of the second claim.

We will now study both cases in more detail. To start, as already used, we know that
U(R) is finite and hence that F = Q or Q(v/—d) with d > 0. It remains to restrict the
possible values of d and exclude exponent 2.

Case (I): Suppose G,, is abelian. To start remark exp(G,) = 2 is not possible. Indeed,

2
g9

assumption that « is non-trivial. By computations of the same type, exp(G,) = 3 and

otherwise 1 = (uyup)? = a(g, h)u2ui = a(g, h) for all g, h € G, in contradiction with the
F = Q is also impossible for non-trivial «. The restriction on F' for the other cases will
follow from the fact that all simple components have degree at most 2 over Q. Indeed,
suppose exp(Gq) = 4 and write F = Q(v/—d), with d a square free non-negative integer.
Then F[G] has a simple component Q(v/—d,/—1) = Q(v/d,+/—1) which is of degree
at most 2 if and only if d = 0, or 1. If the exponent is 3 or 6, then there is a simple
component Q(v/—d, (3) which would have degree larger than 2 if d # 0, 3.

Case (II): Finally consider the case that G, = Qg x F is an Hamiltonian 2-group.
Since F*[G] has a simple component (—%~*) which needs to be totally definite (in

ig
particular F is totally real), we indeed get that F = Q. O

Remark 4.2. The condition on the coefficient ring R can be generalized further. Namely,
let ' be a global field and S be a finite set of places of F' containing the archimedian
ones. Denote by Og the ring of S-integers of F', which is well known to be a Dedekind
domain with finite quotients. Therefore, any Og-order R is commensurable [26, Lemma

21 More generally, if g and g2 commute, then [uy, ,u,,] = ug, ugzluglug2 = a(ghgz). Sincg uz(g) is
central in R¥[G], it follows that 1 = [u‘g’fg‘),ugh] = a(g1, 92)°9"). In particular a(k?, k) is a o(k*)-root of
unity in R* and so also a o(k)-root of unity. Since uz(k) = Hji’j)’l a(k?, k)u; and R is commutative we

obtain the claim.
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4.6.9] with Og. Since [U(Og)| is finite only for F = Q or Q(v/—d), with d > 0, and
S = {oo} (e.g. see [11, Theorem 3.24.]) we see that the conclusion of Theorem 4.1 also
holds for such R.

Theorem 4.1 and its proof could be considered as a first contribution about the inter-
play of torsion units and nilpotent elements between R*[G] and R[G,]. A satisfactory
answer to the following general question would very useful:

Question 4.3. Is there a concrete connection between the torsion and nilpotent elements
of R*[G] and R[G,]? In particular, when (in terms of G, R and «) does R*[G] not have
nonzero nilpotent elements?

Using Theorem 4.1 one can give an especially precise characterisation when U (R*[G])
is a finite non-abelian group in terms of G and «a. For this recall that any non-abelian
Hamiltonian 2-group G is isomorphic to Qg x C¥ for some n. In other words, it can be
written as a stem?? extension

1=Cy—G—Ci2 1.

On the other hand, any non-trivial cohomology class [a] € H?(G,Z*) corresponds to a
central extension of G by Cs. Therefore, from Theorem 4.1 (iv) we deduce

Corollary 4.4. Let G be a finite group, F be a number field, R an order in F and [a] €
H?(G, R*) a non-trivial cohomology class. Then U(R*|G]) is a finite non-abelian group
if and only if the following conditions are satisfied

(1) R=12Z,
(2) G is an elementary abelian 2-group of rank at least 2,

(3) [a] is inflated from a cohomology class [y] € H*(Cy x Ca,Co) which is determined

2
Y

generator of Cs.

by u2 = u? = [ug,uy] = —1 where z,y are generators of Ca x Co and —1 is the

Notice that the cohomology class [y] € H?(Cy x Cs, C3) above corresponds to Qs.

To finish this section, we would like to come back on the proof of Theorem 4.1 which
unfortunately is quite indirect. Indeed the implication from (1) to (2) goes by classifying
all the possibilities for G, and F and then noticing that in all these cases U(R[G,]) is
finite. A more natural approach would have been to construct for all j an isogeny between
U(RY[G]) and U(R* [G]). Such a map can however only come from ring (epi)morphism

22 An extension is called stem if the base normal group is contained in G’ NZ(G). In particular it is central.
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when ged(j,n) = 1. The statement answers a question of Margolis and Schnabel?® [47,
remark 3.2.] in case [«] has a cocycle representative of finite order.

Proposition 4.5. Let G be a finite group, F a field of characteristic zero and a €
Z2(G,F*). If F*[G] = F[G], isomorphic as rings, then gcd(j,o([a])) = 1. If a has
finite order and F is a number field, then converse also holds.

Proof. First suppose that F*[G] = F*’'[G]. Note that since G is finite, (im(a)) is a
finitely generated abelian subgroup of F*. In particular it lies in some countable subfield,
say L C F. Moreover, with abuse of notation, F¥[G] &2 F ®1, L*[G] and one can restrict
the given isomorphism restricts to a ring isomorphism L%[G] = L [G]. Now, since
L is countable it can be embedded in C and we can view « as having values in C*.
Consequently, by tensoring with C ® , — we see that C*[G] = (ol [G] as rings. Therefore
we can apply [47, Theorem 3.1.] saying that ged(j, o([a])) = 1.

Conversely, let n = o([a]) and let j € Z>( such that ged(j,n) = 1. Since cohomologous
cocycles a, 8 € Z%(G, F*) admit isomorphic twisted group rings F*G = FAG we may
assume, by Lemma 2.6, that ged(j,0(a)) = 1. Hence we have an isomorphism o; :

Q(lo(a)) — Q(Cg(a)) mapping (o(a) to its j-th power. With this at hand, define 1 :
Q(Co(a))a[G] — Q(Co(oz))a] [G] by ¢(Z agug) = Zaj(ag)vg. NOte that fOI au g, h S G:

lugu) = D(alg, h)iugn) = alg, kY vgn = vgon = lug)ib(un).
Consequently, v is a ring epimorphism and hence isomorphism. Now note that F' contains
a (o(a)-root of unity. Therefore an extension of scalars with field F' now finishes the
proof. O
5. Correlations between R[I'] and R*[G] - a unit group point of view
Throughout this section we fiz an extension

13 N->TAG 1 (17)

As in (7), fix also a section p of A and define
alg,h) = u(g)p(h)u(gh) .

In particular when N is abelian we will always choose this « as the normalized represen-

tative of the cohomology class [a] corresponding (17). We will always assume that the
underlying field F' is such that char(F) 1 |I'| and R is some order in F.

23 As is apparent from the proof, the main tool is however their result over the complex numbers [47,
Theorem 3.1.].
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We wish to compare U(R[I']) and U (R*[G]) with the aim to pullback results from the
smaller group G, but in the twisted context, to the larger group I'. For this we study
the kernel and cokernel of the generalized transgression ¥, from Proposition 3.3. Also
in this section we will work more generally with R?[I'] for some [3] € im(Inf ).

Notation. Recall that if f : R — S is a ring homomorphism, then we denote the induced
map on the unit groups by f : U(R) — U(S).

5.1. On the cokernel of the generalized transgression map

In the sequel, finiteness of cokernels of group morphisms will always follow from the
following somehow folklore lemma.

Lemma 5.1. Let** R be a Dedekind domain with field of fractions F such that R/I is
finite for all 0 £ I <R and let A and B be semisimple F-algebras. Furthermore consider
R-orders O in A and Op in B. If there exists a R-algebra epimorphism w: O — Op,
then coker(7) is finite.

Proof. By definition Q4 contains an F-basis of A and similarly for Op. Therefore we
can extend F-linearly 7 to an F-algebra epimorphism 7 : A — B. Formally 7 = idp Qg7
and we identify A = FO4 with F ® g O4. Due to the semisimplicity of A, there exists
a central idempotent e in A such that 7|,, : Ae — B is an isomorphism. In other
words, when decomposing A = Ae® A(1 —e) we can consider 7 as projection on the first
component. To obtain the desired statement, consider the R-orders Oy C O 4e®O4(1—e)
in A. Due to the conditions on R there exists a non-zero element r € R such that
r(Oae® O4(l —e)) C O4 and see [26, Lemma 4.6.9.],

U(Oae) x U(OA(1 =€) : U(O4)] < [O4 : 7(Oae® Oa(1—e))] < 0.

Consequently also its epimorphic image Im(7) = U(O4)e is of finite index in U(O4e) =
U(Op) (with upper bound the above number), as desired. O

Note that the proof in fact gives a method to obtain an upper bound on | coker(7)]
which however depends on the element € R obtained which is not explicit.

Question 5.2. What is an explicit, and generic, upper bound on | coker(7)|?

Using Proposition 3.3 a first useful incarnation of Lemma 5.1 is with \TIX for some
x € Lin(T, R)'/N . However, in contrast to the kernel and despite it to be finite, in general

24 The prototypical example of such a ring is the ring of integers in a number field. The condition is the
minimal needed to use classical methods with R-orders, e.g. that two R-orders have commensurable unit
groups.
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a concrete description (or even generators) of the cokernel is out of reach. Instead, we
will focus on comparing the cokernel of \T’x,Q’ defined in (15), for certain types of ‘nice’
normal subgroups @ of I'. The restrictions on @ will be as in Remark 2.4 and be such
that we have the following? commutative diagram:

Yy

U(R[T]) U(RPT[G]) (18)
So.p l wQ.8.T(x) l
U(RA[T/Q)) - U(RPTX(x)[G/Q))

Note that (co)restricting \T/X yields a morphism
Uer 1 U (14 ROT)IQ) — U (14 RATOGLIQ) : 14+ @5 1+ Wy (x)
between ker(wy) and ker(@y o) (cf. Proposition 3.3 and (13) for definition Ig).

Theorem 5.3. Let T' be the extension (17), [B] € im(Infy), x € Lin(N, F)™/Y and R a

Dedekind domain such that R/I is finite for all 0 # I < R and char(R) {T'. Then,

(1) coker(\flxﬂ) is finite,

(2) for any normal subgroup @ of T' such that QNN =1, a(z,y) = 1 for all z,y € Q,
(8] € im(Infg) and &g and &g g.1(y) are surjective, then

| coker(Wge, )| . | coker(¥, )| = | coker(¥y, 5)].

If @ has a complement in I' (which will be our setting in the later sections), then
the maps wq and wWq g.7(y) are surjective and the inflation condition on a will also be
satisfied. The surjectivity of the augmentation is also the case when R is an Artinian
ring [8, Lemma 3.4.].

Proof of Theorem 5.3. The first statement follows by combining Proposition 3.3 and
Lemma 5.1. The second statement will follow from a diagram chasing argument starting
from diagram (18). For notation simplicity we will write w for W 5 and wy for Wg g.7(y)-

We complete the rows to an exact sequence by adding their kernels and cokernels
with the canonical embedding and projection denoted by i1, 7 (resp. ig,mg). Due to
the commutativity of (18), mg o @Wg, induces a map Feor between the cokernels. All
together we obtain the following diagram where all squares commute:

25 In the right column one should be careful with the notation T(x). More precisely in the right upper
corner T'(x) = [xoa] € H?(G, R*). In the right lower corner T'(x) = [xo~] € H*(G/Q, R*) with a = Inf(y)
as in Equation (6). In particular Tra, (x) = Infy (Tra n(x)) and so the going down arrows exist.
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X USY

ker(¥, ) = U(RP[T)) U(RFTOI[G]) coker(,)
\

i ] Wy | Foor
]

URP[L/Q)) B.T(x) ker (T
ker(¥y, @) ‘T/X,Q U(R [G/Q]) 7 Co er( X7Q)
where 7 is the canonical epimorphism from U(R?[T'/Q)) to W. The Snake lemma
er X, N

applied to the diagram above now yields an exact sequence:

‘y er ~ ~ ~
ker( 0 &) ——> ker(wy) = ker(Fook) < coker(m o w) — coker(w, ) > coker(Fcok)

with all the morphisms being the straightforward ones and d the connecting morphism.

Now assume that w and &, are surjective. Then coker(mow) is trivial and hence, going
through the exact sequence above via isomorphism theorems, ker(Fe ) = Coker({flker).
Also, coker(Feor) is trivial thus all together we obtain the desired statement. O

5.2. On the kernel of the generalized transgression map

Unlike coker(\flx), the kernel of \TJX will usually be infinite as already seen with aug-
mentation maps.

Example 5.4. When N = T" and x the trivial character, then {IVIX is simply the usual
augmentation map from U (Z[I']) toU(Z) = {£1}. We now see that [/(Z[I)]) : ker(\ffx)] =
2 and therefore the kernel is infinite when U(Z[T']) is infinite which, by a theorem of
Higman [26, Th. 1.5.6.], exactly happens when T' is not an Hamiltonian 2-group or an
abelian group of exponent dividing 4 or 6.

The advantage of the kernel is that thanks to Proposition 3.3 and Theorem 3.2 one
has a significant amount of information about its elements. Combined with Theorem 4.1
one can describe finiteness of ker(\flx), in case of a central extension. Namely, ker(\T/X) is
finite if and only if U (R(x/)? T [G]) is finite for all x/ € Lin(N, F) different of the given
X- Recall that R(x/) denotes the smallest ring containing R and the values of Im(x/).
Below we translate this to easily verifiable necessary conditions on G, N and x

Theorem 5.5. Suppose that the extension (17) is central (i.e. N C Z(T)), [8] €
im(Infy), x € Hom(N, R*) and R the ring of integers in a number field*® F. Then,

(1) {torsion units in ker(\flxﬁ)} ={x(a)"ta|a € N},

26 This restriction on the coefficient ring is only due to the restriction in Theorem 5.6. With more work, as
in [53, Theorem III.1], one could probably take any domain of characteristic 0 such that no prime divisor
of |G| is divisible in R*.
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(2) if ker(‘ilx) is finite then U(RP[T)) is finite or one of the following holds:
o N=C, forp>5prime, ' 2 N x G, x # wn and U(RERSP[Q)) is finite,
o N=Cy, F=Q,x the faithful character and Gg abelian with exp(Gg) | 6
o NZ=Cg, F=Q,x faithful and Gg abelian with exp(Gg) | 4,
o exp(N) | 4,6 and if N is non-cyclic then lem(exp(G),exp(N)) | 4,6

To prove the second part we will need the next theorem which is a generalisation of
the classical result of Berman and Higman on torsion units (see [36, Theorem 2.3.] or [53,
Theorem II1.1]). The proof is similar to the one given by Karpilovsky in the untwisted
case. For completeness sake and convenience of the reader we include a proof.

Theorem 5.6. Let G be a finite group, R the ring of integers in a number field F and
8] € H*(G,R*). If x = >_gec Aglig 18 a torsion unit in RP[G] such that ay # 0, then
x € U(R).

Proof. The proof is along the same lines as [36, Theorem 2.3.]. Let u = > o 74uq
be a torsion unit in R?[G], say of order m. Assume 7; # 0. Let n = |G| and consider
the left regular representation p : FP[G] — M, (F). Then p(u) is of finite order m

(note that p is injective) and thus it is diagonalisable over the algebraic closure of F in

C (recall that F' is a number field). Its eigenvalues (1, - ,(, are roots of unity, each
of order a divisor of m. We get that (1 + -+ + ¢, = > cqrgtr(p(ug)) = nri. Thus
[nri| = |1+ -+ + Cu| < n. Moreover, |nri| =n if and only if (; = {2 = ... = (,. If this

holds then the diagonalisation of p(u) is a multiple of the identity matrix, hence p(u) is
a central, i.e. p(u) € F. Because p is injective this yields that u € F N R?[G] = R, as
desired.

So, it remains to show that |nrq| = n. Assume, the contrary, i.e. suppose |nri| < n.
Let € be a primitive m-th root of unity. Note that r; € Q(e) C C. Since also r; € R and
thus r; is an algebraic integer, it follows that r; is in the ring of integers of Q(e).

We claim that, for every o € Gal(Q(€)/Q), we have |o(nr1)| < n. Indeed, note that
complex conjugation and elements of Gal(Q(e)/Q) commute and thus if n = |o(nry)| =
o(nry)o(nry) = o(nry)o(Ary) then also n = o~ (o (nr1)o(nr1)) = |nrq| < 1. This proves
the claim.

Next, the assumption says that |r1| < 1 and from the claim we get that |o(r1)| <
1 for all 0 € Gal(Q(e)/Q). It follows that the norm 0 # |Ngai(e)/Q)(r1)| =
| Hsecae)0) or)l = I,eccai@e @) lo(ri)| < 1. However, this yields a contradic-
tion as Ngai(@(e)/@) (1) is an algebraic integer (see for example Proposition 4.1.8 in [26])
and thus belongs to Z; so it can not be strictly between 0 and 1. O

It would be interesting to have a proof of Theorem 5.6 which makes a reduction to the
well-known Berman-Higman theorem for group rings. So, this is for example an instance
where understanding Question 4.3 would help. We now proceed to the proof of the main
theorem
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Proof of Theorem 5.5. The first part follows from a classical trick in untwisted group
rings. Namely, first note that {x(a)"'a | a € N} is indeed contained in ker(\FIVJX’B).
Conversely, take a torsion unit u € ker(\hlle’g). Because of Proposition 3.3, ker(\ﬁflx’g) =
U(1 + RP[T)L,) and thus u = 1+ > gec Yglu(g), With yg € I, = spanp{ua — x(a)us |
a € N}. In particular, if there would be no 1 # a € N so that u, is in supp(u), then the
coefficient of u; in the expression of u € RP[I'] is equal to 1 and hence, by Theorem 5.6,
u € U(R). As u € ker(W, 4) this implies u = 1.

Now assume there exists a non-trivial ¢ € N N supp(u) and consider the element
z = u.uq-1X(a). Note that, due to the centrality of N, the element z again is a torsion
unit in ker(\flxﬁ). However now 1 € supp(z) and therefore, by applying Theorem 5.6,
z = 1. In other words, u = x(a)~'a as needed.

For the second part, we will assume that we are not in the trivial case that U(R?[T]) is
finite. Then, by Theorem 3.2, we see that ker(¥,,) is finite if and only if U(R(x/)? T [G])
is finite for all x # x/ € Lin(N, F) but U(R(x)?T™[G]) is infinite. The rest of the proof
will reinterpret all those conditions simultaneously using Theorem 4.1. To start, U(R(x/))
must also be finite for all y # x/. In particular & (R) needs to be finite and hence F = Q

or Q(v/—d) with d > 0. The exact restrictions are recorded by the following claim.

Claim. IfU(RN) is finite then: (i) exp(N) =2 or (ii) exp(N) =4, F = Q,Q(3) or (i)
exp(N) = 3,6; F = Q,Q(v/-3).
IfU(RN) is infinite then: (iv) N = C), for a prime p > 5 or (v) N = Cs,Cy; F = Q.

Decompose FN C Z(FP[T)) as in (12), i.e. using the theorem of Perlis and Walker:
FN = GadllN\ F(¢4)®% then there has to be at most one (4 for which the unit group
of the ring of integers in F({4), denoted Ry, is infinite. Moreover, for this value we need
aq = 1. Note that this property is inhered by subgroups of N. Hence, if N = N; X Ns, a
direct product of two non-trivial subgroups, then, as FN = FN; ® g F' N5, we get that all
simple epimorphic images of both group algebras F'N; and F'N, must be such that the
unit group of their respective ring of integers is finite; because otherwise we would have
at least two distinct d and d’ so that F({y) and F({y) are simple epimorphic images of
F' N and the unit groups U(R4) and U(Ry ) are infinite. Hence, if N is decomposable as
a direct product then U(RN) is finite and thus, by Theorem 4.1, the exponent of N is a
divisor of 4 or 6. The restrictions on F' follow in the same way as at the end of the proof
of Theorem 4.1, i.e. by determining when Q(y/—d, Cexp(N)) 18 at most of degree 2 over
Q.

On the other hand, if N is indecomposable and its exponent is not a divisor of 4 or
6, then N is cyclic and N = p" for some prime p. If n > 1 then FN has F((,) as a
summand and R, is finite only if p = 2,3 and F = Q, Q(v/—d) with d > 0. Thus either
n =1 or p = 2,3. In the latter case, as R,» is finite only if p"” = 2,3,4 we obtain the
claim about the form of N. The according restrictions on F' can be proven with a similar
argument as when exp(V) | 4, 6.
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Claim. If N is cyclic, then x is the unique faithful character. Moreover if N = C,,, then
T is a split extension.

If N is cyclic, then there is a bijection between the irreducible characters and the
divisors d of |N|, say x4 corresponds. Since we always assume that ¢/(R[T]) is infinite
we know that there is a unique component of By x R[x4]?Txa)[G]®% with infinite
unit group. Theorem 4.1 implies that if U (R[x 4?7 X#)[G]9¢) is infinite, then also for a
multiple of d. Hence indeed the only infinite component is d = n, i.e. the unique faithful
character. If |N| is odd, then by the previous claim N = Cy or C, with p > 5 prime.
In both cases U(RRP)[G] is finite and hence exp(Gjg) | 4, 6. Therefore a(g,h) needs
to divide both lem(o(g),0(h)) and p > 5 which is only possible if a(g,h) = 1 for all
g, h € G. Hence the extension is split if N = C),.

We are now able to finish to obtain the desired restrictions in the case that U(ZN)
is infinite, i.e. N = C,, Cy, Cg by the first claim. For C, the desired statement follows
by the above claims and the fact that there are only two components in this case (hence
the faithful one is the one different from the trivial representation, i.e. wy). For Csg
and Cy it remains to prove the desired value on exp(Gpg). For this note that x = wy
yields exp(Gpg) | 4,6 by Theorem 4.1. If exp(G) = 4, then Q((3)7[G] is infinite for any
2-cocycle by Theorem 4.1. Similarly for Q(¢)”[G] when 3 | exp(Gg). This finishes the
U(ZN) infinite case.

Finally suppose that U(ZN) is finite. In this case exp(NN) | 4,6 and F is of the form
as in the first claim. Also exp(G) | exp(Gr(y)) | 4,6 for various characters x of N. If N
is cyclic, then the only restriction is that ¢(R?[G]) is finite. So suppose that N is not
cyclic. If exp(N) = 4 and 3 | |G|, then there are several components having an element
of order 12 which is not possible. Hence in that case exp(|G|)|4. Similarly if 3 | exp(N)
and 4 | |G|. Thus we indeed obtain that lem(exp(G), exp(N)) | 4,6 if N is non-cyclic. O

For applications it would be useful to also understand the torsion units in ker({lle,g)
in case that the (17) is abelian (i.e. N is abelian but not necessarily central). The first
part of Theorem 5.5 could be read as saying that a torsion unit in ker(¥, ) must be in
Z[N]. Indeed because N is abelian one can then use Theorem 5.6 to conclude that the
torsion units are trivial and hence of the form x(a)~'a. So we expect the following to be
true.

Conjecture 5.7. If the extension (17) is abelian, then {torsion units in ker(¥, g)} C

U(Z[N)). In particular all torsion units in the kernel are trivial.

To finish this section, we illustrate the concepts of Section 3 and Section 5 on an
example.

Example 5.8. Consider I' = Cy x Cy = (a,b | a* = b* = 1, a® = a~1) which can be
viewed in the following way as a central extension
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1—><y1Zy%:1>X<y2Zy§:1>—)].—‘i><$1Z"E%:1>X<$211’%:1>—)1 (19)

where in fact y; = a? and yo = b?. The epimorphism A : I' — Cy x Cy is determined by
Aa) = x1 and A\(b) = x5. Furthermore, we choose as a section p : (x1,x2) — T' defined
by

u(1) =1, p(ar) = a, p(x2) = b, p(wrw2) = ab
and consider the induced normalized cocycle v € Z%({x1,z2), (y1,y2)) (ie. v(g,h) =

1(g)u(h)u(gh)~). Explicitly:

Y(x1, 21) = Y1, (21, 22) = 1, y(21, 3122) = 31
’7(332,131) = 1/17’7(332,332) = 1/27’7(332,331552) =Y1Y2
Y(x172,71) = 1,y(2172, ¥2) = Y2, V(T172, T172) = V2.
The corresponding class [y] € H2(T',Cy x Cy) is determined by

[-731,332] = y17$% = and Jf% = Y2.

Now consider the irreducible characters of Co x Cy = (y1,y2), say Irr({y1,y2)) =

{1 x1,x2, X3} with x1(yi) = =1, x2(y1) = =1 = —x2(y2) and x3(y1) = 1 = —x3(y2)-
Then using Theorem 3.2 we obtain that

3
QI = Q[Cy x Cy] & @ QX [Cy x Cy).

i=1
It is easily seen that

—1,-1
Q
Mj(Q) and Q™ O*)[Cy x Cs) = 2Q(i).

QT’Y(XI)[C2 « 02] ~ ( ) 7 QTW(X2)[C2 X 02]

1

Therefore
U, :U(ZT) = UL [Cy x Cy))

is the only projection with infinite codomain. Moreover, by Theorem 5.5 the kernel is
finite and is given by

ker(‘im) = (—a%,b?) =2 Oy x Cs.

Also coker(\ifxz) is finite by Theorem 5.3 and a precise description will follow from the
methods in the upcoming sections.
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6. Deforming bicyclic units via twisting and their contribution

In this section we will introduce a generic construction of units in twisted group rings
(of finite groups) which generalizes the bicyclic units. They differ by a factor determined
by the twisting. We will show in Section 6.2 that these units play a role analogous to the
one of elementary matrices inside the special linear group, building on a generalisation of
the Jespers-Leal theorem obtained in Theorem 6.3. Thereafter we return to the context
of the previous section and investigate their contribution to coker(¥, ).

6.1. Generalized bicyclic units versus elementary matrices

Before specifying to twisted group rings, we wish to write down a general ‘S-order ver-
sion’ of an important ‘Z-order result’ of Jespers and Leal [29] on bicyclic units which was
only informally known to some experts. For this let B be a finite dimensional semisimple
Q-algebra, S a finite set of places of Q such that {oo} C S and Zg the ring of S-integers
in Q. Further let A be a finite dimensional semisimple B-algebra and R an Zg-order in
B.

Example 6.1. Let S = {00, (p1),...,(p1)} with p; a prime number. Then Z[p%’ cel, p%]
are the S-integers in Q. If we now consider some root of unity ¢, then R = Zg[(] =
Z[pil, ce, p%’ (] is a possible Zg-order in B = Q((). For this choice a first main example

is A = Q(¢)¥[G] for some [a] € H3(G,Q(¢)*) and a finite group G. Another frequent
example is A = M, (D) with D a finite dimensional division Q-algebra.

Let A= {g1,...,9n} be a B-basis of A and {z1,...,2,} a Zg-basis of R. For every
idempotent f € A, there exists a minimal integer ny € Z such that nyf € spang(A).
Associated to these, one can now consider the elements

b(mizig, f) =1+ n?(l = f)mizigf and b(f,m;z;9) =1+ n?‘fmixig(l =)

with m; € Zg and g € A. As usual, these are units because (1 — f)m;xz;gf has square
zero.

Definition 6.2. Let F be a set of idempotents in A. Then the elements in
{b<mlmlgvf)ab(f7mzng> | f € ]:a 1 S 1 S q,9 € 'Avmi S ZS}

are called the generalized bicyclic units corresponding to F. The group generated by
these is denoted by GBic” (4, R).

Classically only the generators with m; = 1 are called generalized bicyclic units. The
values m; are added in order to still obtain all elements of RA in the middle between
(1—f) and f (when taking the group generated by). Note that RA is an Zg-order in A.
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We can now formulate the general version of [29] saying that generalized bicyclic units
should be considered as the analogue of elementary matrices. The proof of [29] shows that
Jespers and Leal handled the case S = {c0}, i.e. of Z-orders, and with A an (untwisted)
group ring.

Theorem 6.3. Let e € PCI(A) such that Ae = M, (D) with n > 2. Let O be a Zg-order
in D. If f is an idempotent in A such that fe ¢ Z(Ae), then there exists a non-zero
y € Z such that

1—e+ BE,(yO) C GBic} (A, R)

Recall that, a set of matrix units in a simple algebra Ae is a set of elements {E; ; :
1 < j < n} in SL;(Ae), where n is the reduced degree of Ae, such that Y | E;; =1
and E; ;E, o = 6;,F; 4. Concretely, fixing the isomorphism Ae = M, (D) the element
E, ; can be identified with the matrix having 1 in the (4, j) entry and zero elsewhere. For
an ideal J in O we denote by FE,,(J) the subgroup of SL, (O) generated by the elements

e+rE;jfori#jandreJ.
Proof of Theorem 6.3. Multiplying generalized bicyclic units one sees that
{1+ n?fa(l - f),1+ n?(l — flaf | @ € RA} C GBic!"} (A, R).

Following [26, Lemma 11.2.4]) one can decompose fe = Ey 1+---+E;; forsome 0 <[ < n
and {E;; | 1 <i,j < n} a set of matrix units. In case 1 <i<landl+1<j <n one
readily sees that by using E; jEp 4 = 6, 4 the products can be rewritten as follows:

fOEZ](l — f)e = OEL]' and (1 — f)OEj71‘f6 = OEj,i

foralll1 <i<landl+4+1 < j < n. Since O is an S-order it has a finite Zg-basis,
which we denote Bo = {by,...,b;}. Now, for any i, j, [26, Lemma 4.6.9] yields a smallest
number n;; such that (14 bE; ;)" =1+ n;;bE; ; € RAe for all b € Bp. Consequently,
if we also consider the smallest value n. € Z such that n.e € RA, then

1+ n?nenij(’)Ei,j C GBiC{f} (A, R)

forall 1 < i <landl+1 < j < n. Similarly, for these ¢ and 7 one has that 1 +
n?nenjl-OEj,i is a subset of GBiC{f}(A,R). The other indices can now be reached by
taking the appropriate commutators. For example if 1 <4,j <l,i# j,x € Z and a € O
then

1+ I'QCVEL]‘ = (]. + "ITCVEZ'71+1 y 1+ mEl+1’j)

and using the E;; one also reaches the [ +1 < 4,5 < n. Appropriate choices of x now
yield the desired result. O
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Recall that the literature on the subgroup congruence problem yields that the dif-
ference between FE, (yO) and the congruence subgroup of level y of SL,(O) increases
with y. Moreover if n = 2 and D is a division algebra containing an order with finitely
many units,?’ then [SL,(0), E, (yO)] = oo starting already from rather small values of
y. Therefore, for applications an answer to the following would be incredibly valuable.

Question 6.4. Suppose n = 2 and D is a division algebra containing an order with finitely
many units. What is

(1) a tight upper bound for the scalar y of Theorem 6.3 in terms of the starting data?
(2) a tight upper bound for the scalar y in terms of the proportions o(g)/o(ge) for g € G?

Note that the proof above shows that one obtains the following value for y € Z:

y = (nendgem{ng,nj:1<i<ll+1<j<n})’. (20)
Moreover if n = 2, then 2 = /y suffices as a multiple. A limitation of the value in (20) is
that the decomposition fe = Ey 1 + -+ Ej; and the numbers n;; are not explicit from
the starting data in Theorem 6.3. A value for n;; can be deduced by following the steps
in the proofs of [26, Lemma 4.6.6 & 4.6.9], however the value would require to know too
much of the isomorphism type of G and hence to weak for practical use. Nevertheless,
according to [26, Lemma 4.6.9] there exists a 0 # r € Zg such that M, (rO) C RAe and
that its additive index yields a ‘uniform looking’ upper-bound:

2
y = (nenf [RAe: My (rO)])". (21)

Unfortunately in practice the additive index above is hard to compute.

6.2. Deforming bicyclic units - case of twisted group rings

From now on we consider the setting where S = {oo}, i.e. Z-orders, and A =
Q(¢n)“[G] where ¢, is some primitive n-th root and [o] € H?(G, Z[(,]*) € H*(G,Q(¢n)*)
arbitrary. The importance of this case for the study of Q[I'] for I' some central extension
is highlighted by Theorem 3.2 and Proposition 3.3.

Idempotents from trivial units
Let o € Z2(G, Z[(n]*) be a 2-cocycle of finite order with o(a) | n. Then, for 0 < j <n
we can partition G into the following sets,

Gi ={geClug®@ =g} (22)

27 A division algebra contains an order with finite unit group if and only if D = Q(+/—d) or (%) with
d >0 and u,b < 0, see [2, Theorem 2.10.].
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The observation is now that if g € G§ = {g € G | o(ug) = o(g)}, then u, =
with

Uy = u1 + g+ ...+ ugto) ! (23)

is again a non-trivial idempotent in Q((,)“[G] if g # 1. Consequently, ug(o(g) —ug) = 0.
If g € G for a non-zero j, then®® u, = 0. In that case, one could instead take the hat
6 of ug/ 9¢4(:m) which would be an idempotent but in practice this construction will not

be useful. Hence:

Question 6.5. Is there a generic way to produce a non-trivial idempotent from g € G¢
for a non-zero 57

Remark 6.6. It is well known (see e.g. [35, Theorem 2.3.1]) that for a cyclic group C,, =
(g) the second cohomology group over a commutative ring R is isomorphic to R*/(R*)™.
Due to this, the value of ug(g ) is not uniquely determined by the cohomology class [«].
For example, the class [a] € H?(C,,, C*) determined by the value \ = ug(g) is trivial for
any 0 # A € C. Therefore the sets G5 are unfortunately dependant of the chosen cocycle.
However, one could define in an independent way the sets Gy and G»o where the latter
would be all g € G such that ug(g) is not in the class of 1 in R*/(R*)™. In particular for
R = Z the situation simplifies and the value uz(g ) e {#£1} is uniquely determined by the

class [a].

Despite the absence of an answer to Question 6.5, one can prove that under natural
conditions the set G§ yields enough idempotents to apply Theorem 6.3. More precisely
that for F = {u, = %g)uNg | g € G¢} the group GBic” (Q(¢,)*[G], Z[¢n]) contains
sufficiently many elementary matrices.

Corollary 6.7. Let G be a finite group and o € Z*(G,Z[(,]*) of finite order such that
G, has no fized-point free non-abelian images.”® Then for any e € PCI(Q((,)[G]) such
that Q((,)*[Gle = M, (D) with m > 2 we have that

1 —e+ En(y0) C GBic” (Q(¢)[G), Z[Gn))

with O an order in D and some y € Z. In particular, if Q((,)*[G] has no exceptional
components then GBic”™ (Q((n)*[G), Z[Cn)) is of finite index in SLy(Z[Cn])*[G]).

28 Going in the sum till the usual upper bound o(g) — 1 will not yield an idempotent.

29 A finite group is called fixed point free if it has an irreducible complex representation p such that 1
is not an eigenvalue of p(g) for all 1 # g € G. Such groups are exactly the Frobenius complements [26,
Proposition 11.4.6.] and hence those that are subgroups of D* for some finite dimensional division algebra
D.
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Recall that for a subring R of a semisimple algebra A = []?_, M,,,(D;), h; the projec-
tion on the i-th component and E; a splitting field of K; := Z(D;) one defines

nr(r) = (RnrMn1 (D1)/K: (h1(r)),. .. ,Rnran(Dq)/Kq (hq(r))) (24)

with Rury, (p,y/k, (hi(r)) := det(1g, ®k, hi(r)) the reduced norm over K; and
SL1(R) = ker(nr) = {r € U(R) | Vi : Rory, (p,)/k, (hi(r)) =1} (25)

the (multiplicative) group of reduced norm 1 elements. Also recall that a simple quotient
of Q((n)¥[G] is called an exceptional component if it is either (I) a non-commutative
division algebra different from a totally definite quaternion algebra or (II) of the form
My (Q(v/—d)) or Mg((f‘bfb)) with a,b > 0 and d € N. The division algebras appearing
in these matrix algebras are exactly those having an order with finite unit group [2,
Theorem 2.10.].

With the conditions assumed in Corollary 6.7, the proof of [26, Theorem 11.3.2] also
works in this setting and therefore we will omit the details. In short, that G, has no

fixed point free images guarantees that for every e € PCI(Q((,)*[G]) there exists g € G§
so that ugye is a non-central idempotent. If ec € PCI(C[Gle) is such that (C*[Gle)ec is
non-commutative, then the element g is chosen among those for which p(g) has eigenvalue
one, where p : C ®q(c,) Q(¢h)[Gal = (C ®q(c,) Q(¢r)*[Gle)ec is the complex repre-
sentation factorising through the projection of Q((,)[Ga] on Q(¢,)¥[G] in Corollary 3.5.
The last part follows from the known results on the subgroup congruence problem, e.g.
see [26, Theorem 11.2.3.].

Convention. For an integral twisted group ring Z“G, for any element of g € G of odd
order, the restriction of [a] to (g) is trivial. Therefore we may and will always from now
on choose a normalized representative o such that u;(g) =1 1in Z“G for all g of odd
order.

Deforming a bicyclic unit: construction
We will use the G-module structure of the twisted group ring R*[G] described in [15,
§3.2]

1

9(uz) = uguzu, ' = a(g, x)algrg™", g) Mgy

For every x € G, the restriction of the conjugation representation from G to the

centralizer Cg(z) admits a 1-dimensional invariant subspace spanned by u,. By the
above this ordinary 1-dimensional representation x, : Cg(z) — R* is given by

Xa(9) = [ug, uz] = a(g, x)a(z,g)~".
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For R =7, for any x € G we can partition Cg(x) into two disjoint sets

Cl ={9€Ca(2) | xs(9) =1}, C; ={g€Ca(2)|xalg) = -1}

We remark that if C; = () then x (and its conjugacy class) is called a-regular and the
set of all a-regular conjugacy classes forms a basis for the centre of Z“G (see [49]). An
extreme case for that is when « is trivial. In this case C; = () for any = € G.

Example 6.8. For g,h € G and o € Z?(G, R*), a straightforward calculation yields that
in R*G if [ug, up] = ¢ € R* is a root of unity of order k, then k is a divisor of the greatest
common divisor of the orders of g and h in G. Hence, for a € Z2(G, Z*), all elements of
G of odd order are a-regular.

Using this we now introduce a new type of units.
Definition 6.9. With the above notation, the elements of the set
{ur +yug; w1 +ugy | g € Gg,y € Z°[G], supp(y) C C, '}
are called H-units. The subgroup of U(Z*[G]) generated by these is denoted H(G).
At first it might seem surprising that the above elements are invertible in Z°[G].
This is because the square of yu, and u,y are zero. Hence they are unipotent units
with inverse u; — yug, resp. u; — uyy. One way to see that those terms are indeed

square zero, is by noticing that yu, = (o(g) — u’?)%u’vq This follows from the fact that

wluptig = (—1) upty for h € C; and hence when o(g) is even” and g € G¢'

(o) — ty)unity = un (og) = 09~ (1))

= (olg) = 397 (~1)7) @y (26)
= o(g)unug.
Analogously ugup(o(g) — ug) = o(g9)ugun. Thus the H-units are indeed elements of

U(Z*(G]). Furthermore, for F = {u, = ﬁufvg | g € G§'}, every H-unit has an appropri-

ate power that is in GBicF(QO‘[G], Z). However, as will be pointed out in Remark 8.4,

due to the factor % in general

Ha(G) ¢ GBic” (Q°[G], Z). (27)

30 1f o(g) is odd, the last sum in (26) equals o(g) — 1 and hence in general the H-unit will not be an integral
combination. However, as remarked in Section 6.2, elements of odd order are a-regular (i.e. ¢, = 0) and
thus one can only take y = 0. In particular we don’t need to specify the order of the elements from which
we built the H-units in order to be a subset of Z*[G].
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A concrete example will be given in Proposition 8.2. That (GBic” (Q®[G], Z), Ha(G)) is
not necessarily obtained by bicyclic units, even not up to commensurability, is truly its
raison d’étre and hence will be crucial for the applications.

Example. If « is a trivial cocycle, then G = 0 = C, for any j # 0, g € G and
G¢ = G. Therefore, in that case Q%[G] = Q[G] and Hq(G) = {u1}. In particular
(GBic™ (Q[G], Z), Ha(G)) = Bic(Q), i.e. we recover exactly the classical bicyclic units.

Remark 6.10.

(1) The elements u1 4 (o(g) — Eg)%ﬁ/g and uj + ﬂ\;%(o(g) — ug) are in fact instances
of a common more general construction of units. Indeed, consider a € Z2(G, Z[(,]*)
with o(a) | n and let € be a o(g)-root of unity inside Z[(,]. Then uy + uhguvg is an
invertible element of Z[(,]*G with inverse u; — uy, gﬁ;. Note that the choice & = —1

yields w1 + up (—ug) = w1 + ugup = u1 + E;%(o(g) — Uy), as desired. As we will

see in Section 10.1, an essential ingredient is that [u/g,\u/h] =0.

(2) The H in the name H-unit refers to the cohomology group H?(G,Z*). Following
(26), the elements in Definition 6.9 look like roots of bicyclic units. However these
elements and those in the previous point fit in a general new generic construction of
units which will be developed in Section 10. There the role of the H2, i.e. splitting
into extensions, will become more apparent. In Section 10 the units will in fact be
called primitive H-units (as they are the smallest of their kind).

(3) Using the twisting as above one could instead have considered a deformed version
of the classical bicyclic units, i.e. for any z € Z*[G] all the elements of the form
1+ (o(g) — ug)(x + ﬁ)ﬂ; are units. Such elements include both H-units and
GBic” (Q*[G], Z). However, as hopefully Section 10 will convince, it seems to be
better to not think in terms of bicyclic units.

Thanks to (27), one can apply Corollary 6.7 to show that (GBic” (Q¥[G], Z), Ha(G))
contains sufficiently many elementary matrices. It follows from the proof of Corollary 6.7
that the value y € Z is the one yielded by Theorem 6.3. However by adding the H-units,
depending on the order of the twisted elements and the number of a-irregular elements,
one can aim to decrease the value of y.

Question 6.11. What is a formula for the smallest y € N such that 1 — e + E,,(yO) <
(GBic” (Q*[G], Z), Ha(G))?

6.3. On H-units in cokernel of the transgression map
We now return to the setting of Section 3.2. More precisely we consider the central

extension (3) corresponding to [a] € H?(G, A). We also fix a normalized representant
a € Z%(G, A) of the form a(g, h) = p(g)u(h)u(gh)~! for a section p of A : T' — G.
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The H-units from the previous section will now allow to construct elements in
coker( y)- For this take elements g € QTM‘* ) and h € C, . Note that the existence of
such an element h indirectly assumes that g is Tra, (x)- 1rregular In particular Tra,(x)
must be a non-trivial cocycle and hence x # wa. Furthermore we will also consider a
central subgroup @ of I' such that AN @ = 1. Now with every such triple (g, h, Q) we
consider the set

’H’"}L"Q = {1+ zupty € Z™*O[G] |z € {1 —uy : ¢ € Q or u, = 0}}. (28)

Proposition 6.12. Let x € Hom(A,Z*),g € QTra“ X),h € Cy and Q a central subgroup
of T such that ANQ = 1. Suppose U(ZG) is finite, then the following hold

(1) if ge Q\ (u(g)) oruqg =0, then 1+ (1 — ug)upuy ¢ im ((I;;‘u(Z[F])>
2) if QN (ulg) = 1 = An (ulg), then (HI,) = CI°' as subgroup of

coker (@(’M(Z[F]))

Keeping in mind that {1—¢ | 1 # ¢ € Q} is a Z-basis of ker(wg), a direct computation
yields that

(Hyitq) = {1 +yuniy € Z™ WG] | y € ker(wg) U {1}}.
min

In particular, when QN (ug) = 1 then (") can be viewed as subgroup of coker(Uer).
Note also that gh € C for all ¢ € Q and hence (H"}", ) < Ha(G).

Proof of Proposition 6.12. Due to the centrality of z = 1 — u, it follows that 1 + zupuy
is trivial if and only if u; € (uy) (in particular for z = 1 it is never trivial). On turn
this is equivalent to ¢ € @ \ (u(g)) (or ¢ trivial) thanks to the assumption o(g) = o(ug).
From now we assume that this is the case and let y be a sum of different such elements
(1 —uq with g € @\ (1(g)) or 1). Then the unit 1+ (o(g) — ug)y— Yoiss Uy is also non-trivial.
We claim that more generally all such elements are not in the image.

An element in W (1+yupy) is of the form 7 := 1+ypu(h)(1+u(g)+- - A+ p(g)°@ -4
x for some = € ker(V¥,) and due to the non-triviality 7 # 1. We need to prove that
T ¢ U(ZT) for any x. Assume otherwise and start by decomposing z according to Propo-
sition 3.3:

x = Z Zola—1)+ Z Za(a+1)

a€ker(x) a€A\ker(x)

with 24 = ta + 221 4peq tw,apt(w) € Z[T].
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Therefore, since u(g)°\9) € A,

wa(T) =1+yhg+2 Z T
ac€A\ker(x)

Note that yhg # 0 and in fact all its coefficients are +1 due to all the assumptions.
Furthermore, w4 (7) is a torsion unit since U(ZG) is finite. Since the coefficient of the
identity element of G'is 1+2% A\ker(x) fas which is non-zero, Theorem 5.6 yields that
wa(7) = 1. However wu(7) = 14+yhg mod 2 # 1. This yields the desired contradiction
and finishes the proof of the claim and in particular of (1).

For the second part, assume that QN (u(g)) =1 = AN{u(g)). Note that g € ng"(X)
implies that u(g)°¥) € ker(x). The stronger condition A N (u(g)) = 1, equivalently
1(g)°@ = 1, is assumed to have that W, (u(g)) = uy. Denote b, := 1+ zupi,. Note that
bz bz, = 14 (21 + 22)unuy. Moreover, all the b, commute and in fact (bi_q |1 #q € Q)
is isomorphic to the additive group ker(wg). By the general claim every b, ...b,,, for
different z; € {1,1 — uy}, is not in the image. Thus it remains to prove that the square
of every b, is attained. For this rewrite

bi_y = 1+ 2(up — ugn)uy )
= (]. + 2Uh7jb\;) (1 + Quqh&‘;)f
= Uy (u1) \IJX(ugl)

where uy = 1+ (1—[u(g), p(h)]))u(h)p(g) and ug = 1+ (1—[u(g), n(gh)])p(gh)u(g). Note
that [1(g), u(h)], [11(g), 1(gh)] € A\ ker(x) because h,qh € C; . That u; and uy are units

can be seen by rewriting them as bicyclic units, e.g. u3 =1+ (1 — u(g))u(h)ur(\g/). O

We expect that H-units contribute to coker(¥, ) in full generality, in the way they do
in Proposition 6.12.

Question 6.13. Is the conclusion of Proposition 6.12 also valid without the condition that
U(ZG) is finite?

Most likely, in general other type of elements can be contained in coker(\if\;). However
in Section 8 we will see that for I an extension of Cy with an elementary abelian 2-group
G = C?% that these elements will generate the full cokernel. Consequently, in that case
coker(‘f’ker) = ker(Feor) & C;’_Q. It would be interesting to when this happens.

Remark 6.14. With exactly the same proof, the statement of Proposition 6.12 also holds
for the H-units 14+u,up 2. Hence Question 6.13 can also be formulated for these elements.
In fact it is also an interesting question to understand the image of (by := 14+upug, by :=
1 + ugup). In case o(up) = o(ug) = o(g) = 2, then a direct computation shows that

blbgl € im @’M(Z[F])) Hence (b1, be) = C5 as subgroup of coker <@‘M(Z[F])). It is

however very likely that this is an order 2 phenomena.
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7. Method to describe U(Z*[G x CZ}])
Let G be a finite group and
Cy = (z1) x - X ()

an elementary abelian 2-group. In this section we will consider a, potentially trivial,
2-cohomology class [a] in the image of the inflation map

Inf: H*(G,Z*) — H*(G x Cy,Z*). (29)
In particular, by Corollary 2.5, the subgroup C¥ = (uy,) is central in U(Z*[G x CF]).
For such cocycles we will now present a method to describe U(Z*[G x C¥]) whenever

U(Z*[G)) is known.

Convention. C? denotes the concrete subgroup (1, .. .,z;). In particular when we write
Z[G x C4] we truly mean the subring of Z*[G x C%] generated by G x C%.

To start, consider for every 1 < ¢ < n the natural projection
Vi 1 TG x Ci] — Z°[G x C&™1]
induced by mapping x; to 1, which is a ring morphism.?' Note that, due to the centrality
of 7;, Z*[G x C3] = (Z*[G x C3']) [(x;)] and therefore ; is globally defined by v; (u +
vx;) = u + v for u,v € Z%[G x Ci']. By definition 1; induces an epimorphism
Ui U(ZO[G x CL]) — U(Z*[G x C&7Y)).
Accordingly, we obtain the following splitting.

Lemma 7.1. Let K; = ker(¢;). Then, U(Z*|G x Ci]) = K; x U(Z[G x Ci1]). Conse-
quently,

U(Z°[G x C3]) = K, % (Kn,l x (+er Ky % (K L{(Z“G)))).
Proof. Since 1@» is surjective we obtain an extension
1 — K; = U(ZY[G x Cl]) L5 U(Z°[G x Ci7Y)) — 1.

Clearly, this extension is split by the identity map. The second part now follows by
iteration. O

31 This is a ring-morphism due to the centrality of x;. In particular for arbitrary 2-cocycles this method
does not work.
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In view of Lemma 7.1 we will now concentrate on describing all the kernels K;. To
this end we define the groups

Uy ={1+2|ue€Z“GyNU(ZG).

Our goal is to show that K; can be built from isomorphic copies of the groups Uy, ..., U;
and the unit group U(Z*G). Note that, by Theorem 5.6, U; is torsion-free when i > 2
and the only torsion elements in U; are +1.

As a tool we need to consider more generally the groups

Up; = {1+ 2%u | u e Z[G x CJ]} NU(Z*[G x CY)).

Note that Uyo = U and Uy, j, < Uk, j, for ko < ki and j; < jo. Next to these, the
projections

@i Zo[G x C4] — Z°[G x Ci '] with x; — —1

will also be instrumental. The induced epimorphism on the unit groups is denoted by

Pi-
Lemma 7.2. For all 1 < k, j, with notations as above, we have that

o K;=0(K;) =Uij,
¢ Uk = Uksrj-1 X Upj-1-

Proof. By definition,
K;={1+u(l —z;) | uecZ G x Cy "} nUZ[G x CY)).

Using the centrality of ;, one gets that Z*[G' x O] = (ZO‘[G X C’g_l]) (x;) and thus
one immediately obtains that ¢; is injective on K. Consequently, K; = $;(K;) and
more explicitly

aj(Kj) = {1 + 2u | u e ZQ[G X C%il}} ﬁU(Z”‘[G X Cgil]) = Ulyjfl.

Note that @;(K;) contains all the units above because Z*[G' x C§ '] is truly meant as
the subring of Z*[G x C}].

For the second statement, remark that Jj is the identity map on Uy ; for all0 <7 < j
and all k. Also, zzj(Uk,j) = {Ej(Uk,j,l) where Uy j_1 is the subgroup Uy ; NU(ZY[G x
(x1,...,2j-1)]). Combined we obtain the internal splitting

Ur; = ker(ih;| )% Up 1. (30)

Uk,‘j
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) = {1+ 2%u(1 — z;) | u € Z°[G x C ']} N Uy ; the map &; is

k.

Next, since ker(v,zj

injective on it and so @; (ker({/;j )) & Uky1,j—1, finishing the proof. O
Uk?,]

An iterative process of the previous lemma decreases the second index of Uy ;, with
the cost of producing extra complements. Hence it now readily follows that we can reduce
to the groups U;. For the applications to classical group rings in Section 10 we however
need an explicit internal splitting of K;. As indicated in the proof of Lemma 7.2 such a
splitting is available for Uy, ;. Inspired by this we define for every tuple i=01,. 1 jic1) €
{0,1}*=1 the following:

K; = {1 + u(l — J}l)jl <e- (1 — 1‘2;1)]—1;1(1 - l‘l) | u e ZQ[G}} ﬂZ/[(ZQ[G X Cé]) (31)

Using that gz;(1 —2;) = —g(1 — 1), it is easily verified that K is a normal subgroup of
U(Z*G x (z;: j; # 0)]). In general however it won’t be normal in K;.

Theorem 7.3. Let G be a finite group, o] € Im(Inf) as in (29). Then, for all i > 2,

H
K= X K; (32)
jefo1yi-

where the internal semi-direct product is with respect to a specific ordering on {0,1}71,
and K3 2 Uy yi-1, for j = (1, -+, di—1) € {0,1}7L. Furthermore,

UZO[G x CP]) = Ky % (K,L_1 x (e Ky % (K u(ZaG))))
- (((Nn X Ny 1) xee-) Nl) x (U(Z[G)) % (21, ..., 7))

for some torsion-free normal subgroup N; of K; such that K; = N; x (x;).

Remark. The ordering in (32) is deducible from the proof. In particular, in terms of the
U; the decomposition of K; can be defined recursively as follows: K; = Uy. For i > 2,
K; 2U; x K;_1 with Uy := Uz and U; := U;—1[1] xU;_1 where U;_1[1] looks like U;_; but
with all indices increased by one. For example, Ko = Us x K1, K5 = (Us xUs) X Ko, Ky =

((U4 el U3) X (U3 X Ug)) X K3 and
Ky = (((U5 2 Uy) % (Uy % Ug)) X ((U4 2 Us)  (Us % UQ))) 1 Ky

Remark. For certain class of nilpotent groups G, Jespers, Leal and del Rio give in [30,
Proposition 5] a description of U(ZG) in terms of some subnormal series. The 2-groups
in their class are of the form H x C3 for some n and H < G. In that case their subnormal
series coincides with the one in Theorem 7.3.
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Proof of Theorem 7.3. The description of K; follows from an iterative use of Lemma 7.2
or rather the explicit form in (30). In fact we will prove more generally that

_>
Ukﬂ' = X ka
je{oayi

where Uy » = {1 +2ku(1 —21) - (T —2) | u € Z¥[G]} NU(Z[G x C§)). To start one

uses
K, = ¢i(K;) =Ui ;-1 =2 U1 XUy im0 = U1 X K.

Explicitly the copy of Uz ;_1 in K; is given by {1+u(l —z;—1)(1 —z;) € K; | v € Z|G %
(x1,...,2i—2)]} and the copy of K;_q1 is {1+v(l—x;) € K; | v € Z[G x (x1,...,%i—2)]}.
In terms of U;,;—; the 1 — z; is identified with a factor 2 via ¢. Now, if i = 2 the
procedure finishes here and yields the decomposition (32). Next, for an arbitrary ¢ one
case use now induction on the copy of K;_; inside K. This yields all the terms K; such
that j(i —1) = 0 (i.e. no z;_1 in the support). The other terms will appear by applying
induction to Us ;—; (in the recursive process this corresponds to applying the second part
of Lemma 7.2 to Us;_1).

The first equality of the second part was proven in Lemma 7.1. Furthermore, it is easy
to see that the brackets can be rearranged to U(Z[G x C¥]) = (((Kn MKy 1) X)X

K 1) x U(Z*@G). Hence due to the centrality of the subgroup C%, it remains to prove the
existence of such N; that is normal in K;_;. For this notice that (32) yields only one
subgroup isomorphic to Uy, namely Kz = {1+ (1 —z;)u | u € Z*[G]} NU(ZY[G x (z;)]).
All the other K; will be isomorphic to U; with 2 <[ < i and hence are torsion-free. Now,
under the isomorphism Kz = Uy, the subgroup (x;) corresponds to {£1} which is the
only torsion in U;. Therefore Ky = F; x (x;) for some torsion-free subgroup F;. Taking
F; together with all the K 7 with ; # 0 we obtain the desired torsion-free subgroup N;
of K; such that K; 2 N; x (z;). O

The decomposition obtained allows to transfer properties of U(Z*G) to U(Z*[G x C%)).
Earlier interesting results in that line can be found in [3,17,41,18].

Corollary 7.4. Let G be a finite group, [o] € Im(Inf) as in (29). If U(Z*G) satisfies one
of the following properties:

1

(1) £G has a normal (torsion-free) complement in U(Z*[G])

(2) it is commensurable with a direct product of free-by-free groups
(3)

(4)

3) has a non-trivial amalgam decomposition
4) G satisfies (HSP)*

32 (HSP) stands for the Higman subgroup property, i.e. any finite subgroup in V(Z*QG) is isomorphic to a
subgroup in G. See also [45].
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then the same holds for G x C§ and U(Z*|G x C%]).

In the case of untwisted®® group rings it was proven in [18] that the first Zassenhaus
conjecture (ZC1) is preserved. It would be interesting to prove so for twisted group
rings. Especially since the counterexample to (ZC1) of Eisele and Margolis [14], positive
instances of the Zassenhaus conjectures are of special interest. For a recent survey see
[46].

Proof of Corollary 7.4. The first part directly follows from the last decomposition in
Theorem 7.3, since ((Nn X Np—1) X ) X N7 is torsion-free.

Next, for the second statement, let A be a finite dimensional semisimple Q-algebra
and O an order in A. The desired statement is a direct consequence of the fact that ‘U(O)
commensurable with a direct product of free-by-free groups’ is fully determined by the
type of the simple components of the algebra A, as follows from [33, Theorem 2.1]. For
instance, [33, Lemma 3.1. & Proposition 3.3.] (or [27]) yields that** the property holds
if and only if the simple quotients of A are either a field, a totally definite quaternion
algebra or a matrix algebra My(D) with D in a list of certain quadratic imaginary
extensions of Q or certain quaternion algebras over totally real number fields. However
if [a] is in the image of (29), then

QY[G x C¥] = Q%[G] ®o Q[CH] = Q*[G] & - -- ® Q*[q] .

2" —times

Thus the isomorphism types of simple quotients of Q*[G x C¥] are the same as for Q*[G].

Concerning the third statement, note that, due to Theorem 7.3, U(Z*[G]) is an epi-
morphic image of U(Z*|G x CF]) and hence its amalgam decomposition can be lifted
along the epimorphism.

For the fourth statement, first notice that by induction we may assume that n = 1.
Hence, with the above notation, U(Z*[G x Cs]) = K1 x U(Z*[G]) with K1 = Ny x (1)
where N; is a torsion-free normal subgroup. For (SIP), assume now that H is a finite
subgroup of U(Z*|G x Cs]). As N; is torsion-free, H = H/(H N Ni) and so we may
consider H as a subgroup of U(Z“[G x Cs))/N1 =2 U(Z*|G]) x Cs2. Consequently, there
exist finite index sets I and J and t;, k; € U(Z*[G]) such that H/(H N N1) = {t;, z1k; |
i€, je J}. Now consider the larger group T' = (t;,kj,z1 | i € I, j € J). Using that z;
is a central element of order 2, it is directly checked that T is a (finitely generated) torsion
group. Since it is also linear, T is in fact finite. By assumption (t;,k; i € I, j € J) is

33 The classical Zassenhaus conjectures are stated for group rings, however also literally makes sense for
twisted group rings. For example (ZC3) would be that all finite H < U(Z“[G]) are conjugated over Q[G]
to a subgroup of G.

34 To conclude this it is used that free groups are exactly the groups with cohomological dimension one
[56,57]. Due to this free-by-free groups have virtual cohomological dimension at most two which is the
content of [33, Section 3].
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isomorphic to a subgroup of G and hence T to one of G x Cs. Consequently, also the
smaller group H = H/(H N N;) also as needed. O

Remark 7.5. The proof of (2) in Corollary 7.4 in fact shows that any group theoretical
property P that can be read off the Wedderburn-Artin components (i.e. the simple
quotients) is inherited. Other examples of such properties are: Kazhdan’s property (T),
property FAb and HFA (see [1,2]). In general, good candidates for such properties are
the ones that are constant on commensurability classes.

Following Corollary 7.4 the property to have a (torsion-free) normal complement is
preserved, however a concrete description thereof seems difficult. For example, in [40]
it was proven that no normal complement of the trivial units in U(Z[Dg x Co x C3]) is
generated by bicyclic units, although a normal complement in U(Z[Dg x Cs]) is Bic(Dg x
C) [23]. For Dg x Cy x Cy it is unknown whether bicyclic units nevertheless form a
subgroup of finite index. Recently Béchle, Maheshwary and Margolis have proven [4,
Theorem A] that rank B> =rank Z(U(ZG)) where B is the group generated by bicyclic
and Bass units in I', B® denotes the abelianisation of B and the rank is as finitely
generated abelian group. As a consequence, they deduced that if the bicyclic units are of
finite index®® in SL;(ZT) then rank(ZI")2> =rank Z(U(ZT)). One can read this result
as a new method to detect whether the bicyclic units are of infinite index in SL;(ZT),
which happens if rank ¢/(ZT')2P > rank Z(U(ZT')). This motivates the following question.

Question 7.6. With notations as above, what is the connection between rank A (Z*G )P
and rank U (Z[G x C3])*P?

8. Full description for elementary abelian 2-groups
Let G be an elementary abelian 2-group of rank n + 2,
G=CyxCyx...xCy={(g) x (h) X (x1) X ... X (Tn), (33)

and consider the cohomology class [a] € H?(G,C3) determined by the values

[ug7uh] =-1, u; = u}QL = uil = [ug’ua:i] = [uh’uwi] = [uwwuwj] =1, (34)
for any 1 < i # j < n. We can think of this [a] as the cohomology class determining the
group I' 2 Dg x CF and the twisted group ring Z*G. Recall our standing convention of
choosing a normalized 2-cocycle representant of [«].

To start, we handle the case that n = 0, i.e. we describe U(Z“[(g, h)]).

35 This is equivalent to say that the bicyclic units together with the Bass units are of finite index in U(ZT)
due to a Theorem of Bass and Milnor, see [26, Theorem 11.1.2. & Prop. 9.5.11.].
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8.1. The starting case Cy x Co

Denote by D the subalgebra of M»(Z) consisting of the elements

a b . .
{(C d>€M2(Z)|a2d,b20}.

It easily can be verified that

5:{(3’;*” ’”T>eM2(Z)m,n,k,rez}. (35)
—-Tr

m—-n

Consider now the Z-linear map ¢ : Z*[Cy x Cy] — D defined by

u»—>10 u»—>10 ur—>01 un—>01 (36)
! 0 1) ¢ 0o —-1)> " 1 0) 9 -1 0

which can easily be seen to be a ring morphism.
Proposition 8.1. With notations as above, Z*[Cy x Cy] = D as rings.
Proof. The map ¢ is surjective because

A = ¢ (muy + nug + kup, + rugn) ,

m+n k+r

for an arbitrary element A =
k—r m-—n

> of D (see (35)). Injectivity follows from

a linear independence argument. O

Next we will obtain a presentation of the unit group U(Z[Cy x Cs]). Already in this
small example the role of H-units is decisive, as they will yield a normal complement for
the trivial units. As expanded at the end of this section, see Remark 8.4, the generalized
bicyclic units together with the trivial units are not sufficient to generate the full unit
group. Furthermore, without them we would not be able to handle later on, even not up
to commensurability, the elementary abelian 2-group case.

Proposition 8.2. Let « be the 2-cocycle determined by the values (1,1,—1) on (ug,ui,

[ug,up]). Then
Z/[(ZQ[CQ X CQ]) =I5 x Dg
where Dg = (ug,up) and Fy = (v,w) is a free group of rank 2 generated by the H-units

v = up + up — Ugn and w = U1 + up + ugn. The action of Dg on Fy is defined by
u,:lvuh = w,u;lwuh = and ug_lxug =27 for x = v,w. Furthermore,
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SLl(Za[CQ X 02]) = Ha(02 X 02) = <v,w7ugh>.

In particular, it is a subgroup of index 2 in U(Z[Cy x C3]). Also, ¢(U(Z*[Ca x C3]))
has index 3 in GLa(Z).

Recall that SL;(Z*[Cs x C3]) denotes the group of reduced norm 1 elements, see (25).

Proof. The elements v and w are examples of H-units, see Definition 6.9 and (26). More-
over, their respective image under ¢ is equal to

om0 ()5 - (2
¢>(W)—¢(1+uh+ugh)_<(l) ?)*(2 (1)>+<_01 (1)>_<(1) ?>

Thus the images {¢(v), d(w)} generate a well-known free group of rank 2, sometimes

and

called the Sanov subgroup, which is of index 24 in GLy(Z) (see e.g. [39, Example 2]).
Therefore, {v,w} generates a free group of rank 2 in U (Z%[Cy x C3]), say of index r.

Denote this subgroup by H and denote by T (f)) = +{u1, ug, un, ugn } the trivial units

of D. Tt is easy to verify that T (5) = Dg, the dihedral group of order 8, and moreover for

any x # y € ¢~ H(T (D)), the cosets zH # yH. Consequently, [U (Z*[Cs x Cs]) : H] > 8.
As can be seen with the matrices ¢(uy,) and 1+ E12, the subgroup ¢ (U(Z[Cz x Cs])) =
U (D) is not normal in GL2(Z) and therefore its index is at least 3. Since

24 = [GLy(Z) : H| = [GLx(Z) : U(D)).[p(U (Z¥[Co x Co])) : H] > 3-8,
we conclude that [U (Z¥[Cy x Cs]) : H] = 8. A simple calculation shows that
1 -1 -1

— _ _ —1 _ —
Uy VUR =W, Uy VUG =V, Uy, Vlgh = W

1 1 1

and Uy WUy =w

Therefore H is normal in U (Z*[Cy x C3]), and consequently
U(ZY[Cy x Cs]) = H x ¢~ (T (D)) & F» x Ds.

The second part of the statement can be checked explicitly. To start, note that G =
{un, ug,ur}, Cy = {un,ugn} and C;~ = {ug,ugn}. So in total one obtains 8 non-trivial
H-units that generate H,(Cy x Cs). However they all can be expressed in terms of

1

v, W, Ugp. Indeed 1 + ugpty = 1 — upuguy = w= ' and 1+ ugup, = 1+ ug + ugup, = Ugnv.

The others are similar and, in particular, this shows that H,(C2 x C2) = (v, w, ug).
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Finally, recall that u2, = —1 and thus [Dg : (ugn)] = 2. In particular, from the
description of U(Z*[Cy x C5]) obtained earlier, we now see that H,(Cs x Cs) is a subgroup
of index 2 in U(Z*[Cy x C3]). Besides, because H-units are unipotent, H, (C2 x Cs) is
a subgroup of SL; (Z*[Cs x Cs]). Since the latter does not contain wuy, as seen from the
matrix representation, it is a proper subgroup of U (Z*[C2x C5]) and hence indeed is equal
to Ha(Cox Cy). That ¢(U(Z*[Ca x Cs])) has index 3 in GLa(Z) follows from the fact that
(¢p(v), p(w)) has index 24 in GLy(Z) and ¢(U(Z[C2 x C3])) = (¢(v), p(w)) X Dg. O

The above proof shows the importance of having understanding on subgroup of small
index in SLo(Z).

8.2. The general case

Now we consider the general case of G = (g, h) x C¥. More precisely, we will follow
the method outlined in Section 7 and therefore describe the isomorphism type of the
groups Uy, ...,U,. Combined with Theorem 7.3 this would reduce a full description of
U(Z*[(g, h) x CF]) to describing the actions in the semi-direct products. We use freely
the objects and notations introduced in Section 7.

Proposition 8.3. The groups U; satisfy the following:

U(Z%[(g, h)]) - Ur] = 8,

[U; : Uiy1] =8 for alli > 1,

. U1 = F3 X CQ,

o Ifi>2, then U; is a free group of rank n; = 1 + 81,

Proof. Recall that, by definition, U; = {1 + 2u | u € Z%[{g, h)]} NU(Z*[(g,h)]). In
particular, elements of Uy are of the form 1 + 2u for u € Z*[(g, h)] and hence the only
trivial units of Z%*[(g,h)] contained in U; are +1. In fact, using the notations of the
proof of Proposition 8.2, one has that A = (v, w?,wv~!, —1) C U;. Indeed, recall that
v =14 up — ugn, and w = 1 4 uy, + ugn, hence a simple calculation yields that

v2 =1+ 2uy — 2ugn, =1+ 2(up — ugn), w? =1+ 2uy, + 2ugn, =1+ 2(up + ugh).
Additionally, v=! =1 — uy, + ugp, and hence
wut = =1 = 2uy + 2ug, = 1+ 2(=1 — uy + ugp).

We conclude that indeed A C U;. However v cannot be written in the form 1 + 2u
(which already can be seen mod 2), thus A < U; < (v,w) x (—1). Note that [(v,w) :
(v2, w? vw™1)] = 2 as the product of any two generators of (v, w) is in (v?, w2, vw™1).
Thus A = U;. Now recall the Nielsen-Schreier formula that says that a subgroup of
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index ¢ in a free group of rank e is a free group of rank 1 4 ¢(e — 1). Consequently, since
(v,w) = Fy by Proposition 8.2, we obtain all together that

U = (02, w?, wo™t) x (=1) = F3 x Cs. (37)

Now comparing it to the generators of U(Z*[(g, h)]) we see that [U(Z*[(g,h)]) : U1] = 8.

Next, for the statements concerning the U;, we use Proposition 8.1 and that
d(Z*[{g,h)]) is an order contained in the maximal order My(Z) and thus, by a well-
known fact, that an element is invertible in the former if and only if it is in the latter.
Hence, we obtain that

1+ 2ia11 2i(l12
2ia21 1+ 2i(l22

U, =2oU;) = {( > | a11 =2 a92, a12 =2 a21} N GLa(Z).  (38)
Further remark that Uy < SLq(Z“[Cy x Cs]) and hence ¢(U;) < ¢(Uy) < SLo(Z).
Consider now the principal congruence subgroup I'(2%) of level 2¢ in SLo(Z):

['(2) = ker(my:) : SLo(Z) — SLo(Z/2'Z).

More concretely, I'(2%) = (1 +2'My(Z)) N SL2(Z). Note that I'(27+1) < ¢(U;) < T'(2%).
The second part of the statement will be a consequence of the following;:

Claim: [[(2%) : ¢(U;)] = 2 and [¢(U;) : T(2"T1)] =4 for all 4 > 1

To start, recall the following well-known formula (e.g. see®® [50, p 146]):

[SL2(Z) : ker (SLy(Z) — SLa(Z/nZ))] = n® ] (1 - Z%), (39)

pln

where the product runs over all the prime divisors p of n. Consequently, [['(2?) :
i

; SLy (Z):0 (21! : L2 ;
it = W = 8 for all 4 > 1. Further note that 0o 1 )€ 2"\ o(U;)

for all i. Therefore, if we prove that A.B € ¢(U;) for any pair of matrices A =
1 + 2%11 2ia12 1 + Zibll Qiblg : :
. ; ,B = . . e I'(2" U;), th 2" :
( 21a21 1+21a22> ( 221)21 1+21b22 ( ) \ ¢( ) en [ ( )
#(U;)] = 2, which is the first part of the claim.?” Subsequently, the second part follows
from this and our value of the index [['(2%) : T'(2F1)]. A direct computation shows that
AB € (b(Uz) if and only if a17 + as2 =2 b11 + boo and a1 + ag1 =2 b1 + bo1. However

36 In this reference the formula for [SL2(Z) : ker (SLa(Z) — PSL2(Z/nZ))] is given. If n > 2 this differs
by a factor 27! with difference coming from the central matrix —1.

37 A concrete matrix in ¢(U;) but not in ['(2°+1) is ( L +2% 1 2 9i )
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it also is easy to prove that A having determinant 1 already implies that ai11 =2 ago
(analogously for B). Hence if A € T'(2%) \ ¢(U;) then aj2 + ag; is odd and the same for
b2+ bay. All together the conditions for AB € ¢(U;) are always satisfied, as needed. The
second part of the statement now follows from the claim as follows:

[U; : Uisa] = [6(U3) = ¢(Uig1)] = [6(Us) : TF]L D27 = ¢(Uiyr)] = 8.

Finally we prove the last part of the result. By the above, Us is a torsion-free subgroup
of index 8 in Uy = (v?,w? wv™!) x (—1). Note that an element —1.(1 + 2u) with u €
Z*[(g, h)] can not be of the form 1+ 4v with v € Z*[(g, h)], as seen by working modulo
4. Thus Us is a subgroup of index 4 in F3 = (v w?, wv~!). Thus the Nielsen-Schreier
formula yields that Us = Fjy4.9. Since U; < U;_1 also U; is a free group whose rank is

computed with a recursive use of Nielsen-Schreier’s formula. O

Remark 8.4. Consider F = {u, = o(g

proof show that v2, w2, wv~! are in the group GBic” (Q*[{g, h)],Z) generated by the
(generalized) bicyclic units (see Definition 6.2). Actually these two groups are equal

ug | ¢ € G&}. The computations in the previous

(as can for example be checked by expressing the generating bicyclic units in terms of

v w? wu™t). Hence U(ZY[Cy x Cy]) is an example where

GBic” (Q*[G], Z) £ Ha(G).

That the difference is still of finite index heavily relies on the fact that the generators of
Ho(G) are all formed from elements of order 2 (which allowed wv~! to be a generalized
bicyclic unit). In larger examples however the H-units can be an infinite index overgroup,
as will be shown in Section 10.3.

9. Description of U(Z[Dg x C3])
Let G be the group C52 = (g,h,z1,...,2,) as in (33) and

2 DgxCyx...xCo={a,by x {y1) X ... X (yn),

where Dg = {(a,b | a* = 1 = b%,a®* = a~!). We consider the epimorphism \ : Dg x
C% — G determined by A(a) = gh, A(b) = g, AM(y;) = x;. With the associated canonical
choice of section p : G — Dg x (7, one directly checks that the associated 2-cocycle
a(s,t) = p(s)u(t)p(st)~! is exactly the one determined by (34). In other words, the
central extension I' associated with the [a] € H%(G,Cy) from Section 8 is isomorphic to
Dg x C3.

Taking now x € Hom((a?),Z*) with x(a?) = —1 we see that ¥, : Z[['] = Z™*X[G]
is nothing else than the ring epimorphism.

¥ Z[Dg x CJ] = Z°[G) (40)
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defined by
a = Ugn, br>ug, X+ Uy,.

In this section we will pullback the description of U(Z*[G]), obtained in Section 8,
by using the methods from Section 5.2 in order to obtain a description of U(Z[Dg x
C?%]). First we invoke Theorem 5.5 and Theorem 5.3 to give a precise description of the
(co)kernel of the (co)restricted morphism ey : U(Z[Ds]) — U(ZR=S@[(g, h)]) : a —
Ugh, b = ug.

Lemma 9.1. With notations as above we have that

(i) ker(y)) = (—a?) = Cs,
(ii) | coker(¢res)| = 2.

Proof. The description of the kernel follows from Theorem 5.5 which says that the kernel
is finite and ker(¢)) = {1, —a2} as desired.
In order to describe coker(@bres) recall that by Proposition 8.2

U(ZRes(“)[Cg X CQ]) = <'U,'U.)> X Dg

with v = w1 + upuy and w = uqg + Uguy. As was claimed (without providing details) in
Remark 6.14, in this case the product of any two generators of U(ZR(®)[(g, h)]) belongs
to Im({/;mg) Furthermore Proposition 6.12 asserts that v is a non-trivial element in
coker(z];vreg) hence wwg is not surjective and thus |c0ker(1/1r€g)| = 2.

To prove the above stated claim on the product of generators, note first that the trivial
units are attained. So we need to consider now the torsion-free part. For this consider
the bicyclic units by = 1+ (1 — b)ab(1 + b) and by = 1+ (1 4 b)ab(1 — b). Recalling (26)
we see that ¢(b1) = v? and (b)) = w?. A direct computation also gives that

wu™t = —uy — 2uy — 2upuy, = —1(ug + (14 up)ug (1 — up))

Therefore if we consider the bicyclic unit b3 = 1 — (1 — ab)b(1 + ab), we also notice that
1(—b3) = wv~!. Thus the claim follows and it finishes the proof. O

Lemma 9.1 combined with Proposition 8.3 and Theorem 7.3 yield the description we
were looking for.

Proposition 9.2. The following hold:

(1) U(Z[Dsg)) = F3 x (£Dsg) with F5 generated by bicyclic units,
U1 = Fg X 02,
(3) U; 2 F,, withn; =1+ 8" fori>2,
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(4) £Dg x C¥ has a torsion-free normal complement in U(Z[Ds x C3]).

This result for example yields that U(Z[Dg x Cs]) = (Fy x F3) x (£Dg x Cs). Such a
decomposition was already obtained in [32, Theorem 5].

Proof. To start note that ¢¥(£Dsg) = (g,h) = Dg. Also it is not hard to see that the
elements by, ba, b3 (used in the proof of Lemma 9.1) are in fact generators for (Bic(Ds)),
the group generated by the bicyclic units of Dg (e.g. see [26, part (3) of proof Example
1.5.4]). Hence we already know that

(Bic(Dg),a?) = (Bic(Dg)) x (a?) =2 £1.(v?, w? wv™t) = U1 (Z*[Cq x Csy))

with U;(ZY[Cq x Cs)]) := {1 +2%u | u € Z%[{g, h)]} NU(Z*[{g, h)]) and where the second
isomorphism is given by {/zvres. The latter is isomorphic to F3 x Cs by Proposition 8.3.
Now, via Proposition 8.3 and Lemma 9.1 one infers that ker(¢) C (Bic(Ds),£Ds)
and that ((Bic(Ds), £Ds)) is of index two in U(Z*[Cy x Cy]), thus equals im(¢)). Con-
sequently, the first part follows and we have given a new proof of the well known fact
that U(Z[Dg]) = (Bic(Dsg)) x (£Dg). In particular all elements in (Bic(Dsg)) are of the

form 1 + (1 — a?)u with u € Z[Ds]. This in particular implies that for all i
Ui(ZDg) = {1+2'(1 — a®)u | u € Z[Ds]} NU(Z[Dx)) (41)

Next, due to the above, we see that for each ¢ the torsion-free elements of U;(ZDs)
are in (Bic(Dsg)). In particular, for each ¢ > 2 this means that U;(ZDs) < (Bic(Ds)) and
1) is injective on them by Lemma 9.1. Using the description (41) we moreover have that

Y(U;(ZDg)) = U;11(Z%[Cy x C3]). In summary, 1 induces an isomorphism
Ui(ZDg) = Ui+1(Za[CQ X CQ]) (42)

for all ¢ > 2. If 4 = 1 then by Theorem 7.3 the group Uy(ZDs) = {£1} x Ny with N,
torsion-free. By the above N7 < (Bic(Dg)) and concretely Ny = {1 +2(1 — a®)u | u €
Z[Ds]}. So via 1) we have the isomorphism Ny 2 Uy (Z*[Cy x C3]). Therefore the second
and third statement now follows from Proposition 8.3. The last statement follows from
the first and Corollary 7.4. O

As mentioned after Remark 7.5, it is known that the group generated by the bicyclic
units form a normal complement in U(Z[Ds x C¥]) if n < 1, but for n = 2 they do not
form a normal complement as shown in [40]. In fact, it is expected that if n > 2 the
bicyclic units are even of infinite index. It would be especially instructive to describe
a minimal set of generators (in a generic way) of the torsion-free normal complement
mentioned Proposition 9.2.

To finish this section, we would like to record the exact size and generators of coker(w)).
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Lemma 9.3. With notations as above we have that

(1) |coker(y)| = U(Z*[G]) : Tm(¢h)] = 2"+3 — dn — 6,
(2) coker(v)) is generated by H -units.

Proof. By Theorem 7.3, each of the unit groups U(Z[I']) and U(Z*[G]) is determined
by respective groups K;. To distinguish, we respectively write KJ@(F) and K ]S,Z)(G) for

7 €{0,1}"1. The methods in Section 7 imply that

| coker ()] = | coker(dres)| + > Y [K]gzo(g);z,Z(Kjgi)(p))].

=1jefopi-

Following Lemma 9.1, | coker(¢,es)| = 2. Next, to compute [KJE_”(G) : {/;(K;)(I‘))] we
use (see Theorem 7.3) the isomorphism K@(G) = U, i1 ;) Which we will denote by
6 (where we abuse notations as it in fact depends on i and j) For notational simplicity
denote 77 = Zt 1j() Note that 6(¢(K H )( 1)) 2 Yres(O(K )(1"))) Therefore, if

j #0, using (42) and Proposition 8.3 yields
K@) D)) =10 (K(G)) 0 (AED (D)) = U457+ Uppyil =8,

If j = 0, then both K(l)(G) and K;i)(f‘) contain a copy of Cy (namely (u,,), resp. (z;))
and 1/) induces an isomorphism on these. Thus in this the same passage through the
above isomorphisms yields that [K. (’)(G) ¢(KJ§1)(F))] = [(v,w,vw™t) : Us] = 4. So all
together

n
| coker(h)| =2+ 4n+8) (271 —1) =2+ 4n — 8n +8(2" — 1) = 2" "% — dn — 6.
i=1

For the second part of the btatement ublng the elements in H,(Cy x Cs) we will give ex-
plicit generators of the quotient K ( )/ w(K G )( T')). First recall that by Proposition 8.3

1JFEJ./UHZ]. is of order 8 if 7é 0 and 4 else. Now consider the set

{v21+zj, (Uwfl)QEj,'UQijde}. (43)

Note that the second and third generators are equal if j = (. Computing their image
under the isomorphism ¢ from the proof of Proposition 8.3, and also of all their double
products, one deduces that they generate an elementary abelian 2-group of order 8 if ; #*
0 and of order 4 else. In particular, for all j their images generate o(U, s 7)o, +25‘)
and so the set itself generates U, | s~ 5./ U, 45 7- It now remains to construct three H-units
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in KJ@(G) which map under 6 to the elements in (43). For notation ease we denote

(1—ug) = (1 —ug, YD .. (1 = uy, )7V, We claim that the desired units are:

ngq =1+ (1 - um)(l - ’u’w)j uhu~g’

)

ZJSZ; =1—(1—uy,)(1— u””)jﬁ’;ug’

)

zjg; = (1 +(1- uz);uhﬁ;) (1 - (1- uI);uh(umug)) .
Writing out the third element results in

ZEZ; =1+ (1- um)fuhug(l — Ug,;) — 225(1 — uw)i(l —ug)(1 — ug,).

Js

@ 6 @) (4)
Thus we see that {Zj',l’ 2 Zj-,g} C K;_ (G) and clearly

214+=7 9=7 22.7’w,22j

9(%2) =0, 0(2Y)) = (vw )

(i)Y _
H , 9(23_,3) =0

This finishes the proof of the second statement. 0O
10. A new generic construction of units in integral group rings

In this section we introduce a new generic construction of units in ZG which in fact
are elements of SL1(ZG) (see (25)). These elements originated as the pullback of the
products of the H-units in twisted group rings from Definition 6.9 along the transgression
morphisms of Section 3.2. However, they can also be defined directly as will be shown in
Section 10.2. Furthermore, as explained in Section 10.1, those units of Definition 6.9 can
be constructed in general finite dimensional semisimple F-algebras, with F' a number
field. Finally, in Section 10.3, we will give an infinite family of groups where the newly
constructed units contain the bicyclic units as subgroup of infinite index. In particular,
these elements are indeed a new step towards the problem of describing generators of
U(ZG), up to commensurability, generically in ZG. Interestingly, these units will also
yield the first generic construction of free groups of rank larger than 2, see Theorem 10.6.

Notation. Recall that H = > h for any finite subgroup H in an algebra A and
heH

H= ﬁﬁ . If A is semisimple we will denote by PCI(A) the set of primitive central
idempotents of A.

10.1. Restricted construction of units for orders in general semisimple algebras

Let A be a finite dimensional semisimple F-algebra, with F' a number field, and let O
be a Z-order in A. Inspired by Definition 6.9 and Remark 6.10 we define the following.
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Definition 10.1. Let x,t € U(O) be torsion units such that [t,z] € Nyo)((t)) is of finite

order and [t,z] = 0. Then the elements
Uyzr 7= 1+ 1t and Up a1 i=1 + tz*!
will be called primitive H -units.

As the name suggests, the elements in Definition 10.1 are indeed invertible elements
in U(O), as proven below. The reason for adding, compared to Definition 6.9, primitive
in the name will be clarified later on in Remark 10.10.

Theorem 10.2. Let x,t € U(O) be as in Definition 10.1. Then Uyer 7 and Uz .1 are
unipotent units in U(Q). In particular they are of infinite order.

2 ~
We will prove that (mi%) = 0, hence the inverse of Uyer 7 is 1 — 2+, Similarly for

U pt1-

Example 10.3. The archetypical example is a tuple (z,?) of torsion units such that [t, z] €
F* is a root of unity. In that case [t,z] is both central and [t,z] = 0. If A = R*[G] is
some twisted group ring and z,t € G, then the linear independence of the basis elements
yields that u, ., ; and u; .+ are non-trivial (i.e. #1) if £ # 0 in A. However, in general,
there is no transparent characterisation of being non-trivial.

In order to prove Theorem 10.2 we need the following lemma which was shared to us
by Angel del Rio and whose proof depends on useful identities from [9].

Lemma 10.4. Let G = (g,a) be a finite meta-cyclic group with (g) a normal subgroup
such that o(g) = o(ga). Then o(a) | o(g).

(€]

m

I
Q
—~
B
=
I
=
Q
=

Proof. Denote m = o(g), n =[G : {(g)] = and s : {g) N {a)]. Then s

_ Gl _ mn
===

divides m and o(a) .

nm
S

For a prime p denote by v, (k) the p-adic valuation of k € Z>(. Suppose that o(a) =
does not divide m = o(g), or equivalently n does not divide s, i.e. vy(n) > vp(s) for some
prime p.

Let i be the smallest non-negative integer such that a7 'ga = ¢* and 1 < t < m
such that a” = g¢*. Note that ¢ = a "ga" = ¢ and so " = 1 mod m. Next, by
using formula [9, eq. (2.2)] (notice that in [9] the role of @ and g are interchanged) we
have (ag)® = a”g°(1") = ¢t+50In) with S(ijn) := Z;:_OI i7. Then, by the assumption,
m = o(g) = o(g~(ga)g) = o(ag) = N seqtmitsayy and hence n = ged(m,t 4+ S(in)).
In particular n divides both ¢ + S(i|n) and m. Also, 2 = o(a) = n.o(g") = D
Therefore s = ged(m, t). All together we deduce that

vp(s) = min{vy(t), vp(m)} < vp(n) = min{vy(m), vp(t + S(iln))}-
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This entails that v,(t) = vp(s) < vp(n). Consequently also p | m and v,(t) < v,(t +
S(i|n)). In particular v, (t) = v,(t + S(iln) — t) = v,(S(i|n)), hence v, (S(i|n)) < vy(n).

Now let g be the multiplicative order of ¢ modulo p, i.e. the smallest integer ¢ with
p | i? — 1. Since i" = 1 mod m and p divides m, it follows that ¢ divides n. Moreover,
q divides p — 1. Hence vy(n) = v,(%) = 1. From [9, Lemma 8.2] it follows that in
case p is odd or p = 2 and i? = 1 mod 4, we have v,(S(i?]7)) = vp(7). Otherwise
p=2,vp(i + 1) > 2 and v2(S(i7]%)) = v2(7) +v2(i7 + 1) = 1 > v2(7). So all together,
0p(S(9[2)) 2 vy(2).

Moreover, by [9, Lemma 8.1], S(i[n) = S(ilq)S(i?]7). Thus, vy(7) = vp(n) >
vp(S(iln)) = vp(S(ilg)) + vp(S(i7%)) = vp(%), which is clearly a contradiction. The
contradiction came from the assumption that v,(n) > v,(s) for some prime p. Hence we
conclude that v,(n) < v,(s) for all primes p, that is, n divides s and hence o(a) | 0o(g). O

We can now proceed to the proof of the theorem.

Proof of Theorem 10.2. Assume z,t € U(O) are torsion units such that [t,z] €
Nyoy((t)) is of finite order and [t,z] = 0. For simplicity of notation, denote [t,z] = a.
Since #~ 'tz = ta we have that o(t) = o(ta). Thus G = (a,t) satisfies the conditions of
Lemma 10.4 and hence o(a) | o(t).

Next, recall the notation S(s | n) := Z;:ol s for any numbers s,n € N. Since
a € Ny(oy({t)) there is some i # 0 such that ta = at'. In other words, tx = rat® and
2~ = at’z~!. Via induction one directly obtains that

1 = oFS0R =1 and R e = 2ak e SCIR), (44)
These formulas to swap ¢t and z enable us to compute tz+t. We claim that:

- i~ t) .~ ~~ t) ~_
te~ 't = Qatx_l and txt = ﬂavta.

(a) o(a)

S|

In order to prove this claim, denote Z((Z)) =m € N and rewrite

m—1 o(a)—1
= (S
= 7=0

Then, using the rule in (44) and that af = ta, because a normalizes (t), we obtain that

o m—1 o(a)—1 "
Tl = x( S alo@isGlto@) (3 ajtz'sum))t
=0 3=0
m—1 ola)-1
= Z t’LS(lllO(a))( Z a.]t)
=0 7=0

_ x?(jg a).
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In the second and last equality we have used that £/ = t for every j. The expression

for tz~1t is computed analogously. Now, since by assumption @ = 0, we obtain that
2 ~ ~

(z*1%)” = 0 = (tz*')2. Consequently, u",, ;=14 nzt for all n € Z. In particular it is

invertible with inverse 1 — 2% and has infinite order. Similarly for uj ,+1. O
10.2. General construction and properties of H-units

In this section we start with constructing a class of units in SL;(ZG) from any triple
(g, h, Q) satisfying the properties mentioned in the definition below. A first new fea-
ture of these, that we will obtain in Theorem 10.6, is that they produce free groups of
large rank. Furthermore, as shown later in Section 10.3, the group consisting of these
units can contain the bicyclic units as subgroup of infinite index and hence also up to
commensurability they are new.

Definition 10.5. Let G be a finite group and (g, h, @) a triple satisfying

e @ is a normal subgroup in (g, h, Q),
* [9.MQ € Z2({g,h, Q)/Q) and o(hQ) = 2.

— o(gQ)—1 )
Denote (+g), := +¢)? and for any tuple (21, x2,y1,y2) € Z2 , define the element
Q >0
i=0 -

—~— —

1 ~ - ~
V(ar,az,y1,y2) = 1+ m@(l - g, h])(h (21 (=9)@ +2290] +v1 (—9)g + ¥2 g@)~ (45)
A quadruple (z1,22,y1,92) € Zéo will be called admissible for (g, h, Q) if

y1 +y2 +0(9Q) y1y2 = 0(9Q) x122 and zo £ 21 =0 =y £ y1  mod 2|Q)|. (46)
The elements v(z, 25,4, ,y,) for admissible (21,22, y1,y2) will be called an H-unit.

The first condition to be admissible will exactly correspond to being invertible (more
precisely, to belong to SL;(Z@G)) and the second condition yields that the element is in
ZG.

For a fixed triple (g, h, @) as in Definition 10.5, the set of elements of the form (45)
for admissible quadruples (46) will be denoted H(g, h, Q) and

H(G) = (H(g,h,Q) | (g,h,Q) as in Definition 10.5 ) (47)
is the group generated by all H-units.

Among others, the next result says that H(g, h,Q) is not only a set, but even a
subgroup of the group of reduced norm 1 elements.
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Theorem 10.6. Let (g, h, Q) be a triple as in Definition 10.5. Then,

(1) H(g,h,Q) is a finitely generated subgroup of SL1(ZG) and

Y@y ma,yn,yz) — V(=21,—2,92,91)

(2) H(g, h,Q) # 1 if and only if [g,h] ¢ (9)Q-
Moreover, for H(g,h,Q) # 1

(3) i*® 0(9Q)|Q| = 2, then H(g,h, Q) = F3 x Co, and
(4) if o(gQ)|Q| > 2, then H(g,h,Q) = F, withn =1+ M [1,(1- F)’ where
the product runs over the prime divisors p of 0(gQ)|Q]|.

As H(g, h, Q) is finitely generated, one only needs to construct v(z, 4,4, ,y.) for a finite
number of admissible (z1,z2,y1,y2). We have not tried to give a precise upperbound,
but in principle this could be done. In fact the generators should somehow correspond
to the ‘minimal solutions’ of the equations in (46).

For any a,c € G, with ¢ ¢ Ng({a)), consider the corresponding bicyclic unit b(a, c) =
1+ (1 — a)ca. It was proven by Marciniak and Sehgal [43] that (b(a,c),b(a,c)*) = Fh,
where b(a, ¢)* is the image of b(a, ¢) under the canonical involution of QG. For nilpotent
groups G a similar statement holds for their torsion variant [19,44]: the set consisting of
the unipotent units belonging to Bic(G) and that form a free product with b(a,c)a is
profinitely dense in Bic(G) [21]. However, Theorem 10.6 yields the first generic construc-
tion of large free groups (different from taking artificially a copy of F, inside F3). See
[16] for a survey on constructing free subgroups of U(ZG).

Proof of Theorem 10.6. To start, note that (—z1, —x2, y2, y1) is admissible if (21, 22, y1,
y2) is. Moreover, it directly follows from the zo+x1 =0 = yo+y; mod 2|Q| congruences
that both elements in the statement are in ZG. To prove the statements of the result,
we will “locate” precisely the H-units inside Q[(g, h, @)].

First we consider when H(g, h, Q) is trivial i.e. when all elements v(;, 4,4, ,4.) €qual 1.
Or equivalently, all ﬁ@(l —lg,h]) (h [1 ( 9)Q+229Q) +y1(—9)g +y2 ﬁQ) = 0. Since
Z{g,h,Q) |8| =~ Z({g,h,Q)/Q), it easily follows that we may assume that ) = 1; and thus

o(h) =2and [g,h] € Z((g, h)). Hence, we need to verify when all (1—[g, h]) (h (1 (—9)o+

x2 gol+1n @Q+y2 §Q) = 0. Of course, if [g, h] = 1 then the latter always holds. Hence,

for the remaining of the proof of part (2) we may also assume that 1 # [g, h]. Now, as
o(h) =2 and 1 # [g,h] € Z({g, h)) one has that o([g, h]) = 2. Furthermore, o(g) is even
and g¢? is central in (g, h).

38 Since we assume H(g, h, Q) to be non-trivial, by part (2), o(¢Q)|Q| = 2 if and only if @ = 1 and
o(g) = 2.
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Now suppose that [g,h] € (g). Write [g,h] = ¢* and thus h='gh = g¢Fftl. As
o(h=tgh) = o(g) it follows that k+1 is odd and thus [g, h] € (g?) is central. Therefore the
required triviality follows from (1—{g, h])(gg) =0= (1—|g, h])(—/—;)/Q So we have shown
that if [g, h] € (g) then H(g, h, Q) = 1. Conversely, assume H(g, h,Q) =1, in particular
v(1,—1,1,—1) = 1 and, because o(g) is even, we thus get (1—[g h])(h+1)(( 9)Q+9q) =
(1-1g, h])(h—i—l)(/g—% = 0. In other words, (h—i—l)ég =[g, h](h+1)gQ. Clearly, a support
argument in the group ring Z{g, h) yields that [g,h] € (g2) or [g,h] € h{g?). However,
the latter is impossible as elements in h(g?) are not central in (g, h). Hence, we have
shown that if H(g, h,Q) = 1 then [g, h] € {g?), and thus part (2) of the result follows.

From now on we may assume that H(g, h, Q) # 1. In particular, according to the above
[9,h] ¢ (g)Q. Furthermore, as mentioned above, we ¢l thus also have that o([g, h|Q) = 2.

Consider the central idempotent e := (Q, [g,h]) in Q[{g,h,Q)] and the asso-
ciated decomposition Q[{g,h, Q)] = Q[{g,h,Q)](1 — e) & Q[(g, h,Q)]e. Notice that
V(zy,ma,1,y2) (1 —€) = 1 — e, ie. the projection on the first part is trivial. Thus we

need to prove the desired statements (1), (3) and (4) within the second component.
For this, put § = gQ and h = hQ. As mentioned above, o(g) is even and note that
Q{g. h, Qe = Q*[(g) x ()] with [a] € H?((g)x (h), Z*) determined by uf® =1 = u?™
and [ug, up] = —1. Under that isomorphism v, , v, 4,) corresponds to the element

1+ uy (21 (—ug) + 22 ug] + y1 (—ug) + Y2 ug-

—_— —_~—

A direct verification yields that (—ug).uz = 0 and :l:ug = o(g)+uy. Also, [x1 (—ug) +

T2 Ug] Uy = Uy [T2 (—ug) + 1 ug]. Using all this, one could straightforwardly compute the

image of the product v(,, ) V(—a1,—a2,y2,y;) a0d deduce that it is equal to 1 if and

Z2,Y1,Y2
only if y1 + y2 + 0o(9) y1y2 = 0(g) x122. However, by decomposing Q*[(g) x (h)] further
one can also give the following conceptual explanation, which moreover also will yield
the remainder of the result.

Remark that g2 is central and hence, by Theorem 3.2,

Qg x W= @ Q™MW xCi)= P Q)[Cs x Ca).

x€Lin((g?),Q) d|o(g?)

Explicitly, denoting Cy x Cy = (a,b), [ag) € H?*({a,b), (£{y)) is determined by u2 =
Qd,ug = 1 and ug,up = —upu,. The projections onto the direct summands are given by
the transgression maps from Proposition 3.3, hence ug = uq, u = up and ugz — (g uq.

Next, notice that (:i:/\u;) = (1 £ ug) . (u2). Due to this, (fuz) maps to 0 in every direct
summand except for the one indexed by the trivial representation of (g2). In other
words, there is only a single component of Q[(g,h, Q)] where v(y, 4,4, 4,) has a non-
trivial projection and this component is isomorphic to Q®![(a,b)] with u2 = 1 = u? and
[, up] = —1. In that component the projection of vz, 2, 4, ys) 18

1+ 0(7®) (up[r1 (1 — ua) + 22 (1 + ta)] + y1(1 — ua) + y2(1 + ua)).



62 G. Janssens et al. / Advances in Mathematics 458 (2024) 109983

Restricting to Z[(g, h, Q)], we can now compose with the isomorphism ¢ from Sec-
tion 8.1, defined in (36). This composition is defined by

Ug > 1 0 Up — 01 Uagb H> 0 1
a 0 _1 I b 1 0 ) ab _1 0 .

By doing so we have obtained a ring morphism ® : Z[{g, h, Q)] — D which on H(g, h, Q)
is defined as

- . (1 +20(7%) e 207 ) _ (1 +o@y:  o7)m ) .
T v2) 20722 1+20F)0 og)w2  1+o0(@)u

(43)
Moreover, the elements of H(g, h, Q) being trivial on all the other components, ® is injec-
tive on H(g, h, Q). In particular, see (24), n7(V(z, 25,51,52)) = 1 if det(P(V(z, 20,y1,02))) =
1. The latter holds as det(®(v(4, 5.41.,42))) = 1+0(7) (Y1 +y2)+0(9)*y1y2—0(g)*z122 = 1,
by the definition of an admissible quadruple. In fact, since ® is injective on H(g, h, Q),
the first condition of being admissible is equivalent to det(®(v(y, 2.4,,42))) = 1. Now, we
also see that the inverse is

- L+o(@yr  —o(g)z
o - ,
(U(x17w27y17y2)) ( _0(5) o 1 0(@) Yo

Hence indeed v(l
T1,2,Y1,Y2
SL1(ZG).
All the above in fact yields more. Namely that

) = Va1, —22,y2.51)" In conclusion, H(g, h, Q) is a subgroup of

®:H(g, h,Q) — T(0(9)),

where I'(n) is the principal congruence subgroup of level n of SLy(Z). However, ® is not
onto due to the congruences xo £ 21 =0 =y £ y; mod 2|Q)|.

Claim. zo £ x1 =0 =yo £y1 mod 2|Q| if and only if x; = |Q|li, y: = |Qlt; for l;,t; € N
such that l{ =1ls mod 2 and t; =t mod 2.

Indeed, if 29 + 21 = 0 mod 2|Q|, then 2271 = 0 and 2z = 0 mod 2|Q|. Hence
29 = 1 = 0 mod |Q| and consequently z; = |Q|l;, for some I; € N. Now, as 2|Q)|
divides xo £ 21, one must have that 2 | Iy & ls, as desired. Conversely, z; of that form
clearly satisfy o £ 21 mod 2|@|. The proof for the y; is exactly the same, hence the
claim follows.

Now denote

1+ml2 mt1
= Lo (Z = = 25 . 4
V, {( mts 1+ml1> €S 2( ) |ll lo and to  mod } ( 9)
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Notice that the groups U; = ¢(U;) from the proof of Proposition 8.3 are equal to V5:. By
the claim above

O(H(g, h,Q)) = Vo) Q|- (50)

Since, I'(2m) < V,,, < T'(m) for every m > 1, we have obtained that ®(H(g,h,Q)) is a
finite index subgroup in SLy(Z). In particular it is finitely generated, finishing the proof
of (1).

Finally, to obtain (3) and (4) we recall the well-known fact that SLy(Z) = Cyx(_1y Cs

1 1 -1
free if and only if it is torsion-free. Moreover, all periodic subgroups are conjugated to
a subgroup of Cy or Cs. As I'(m) is normal in SLy(Z), to verify when I'(m) is free it

with Cy = <<0 01>> and Cg = ((0 1)) Hence, by Kurosh’s theorem, T'(m) is

is enough to verify explicitly which powers of the two matrices are in I'(m). By doing
so we see that T'(m) is torsion-free if m # 2 and —1 is the only torsion element in
I'(2). As a consequence, the same conclusion is valid for V,,, instead of I'(m). Also recall,
e.g. see the proof of Proposition 8.3, that Vo = U; = F5 x (—1). All this applied to
O(H(g, h,Q)) = V,g)|q| yields that H(g, h, Q) is a finitely generated free group, except
if |Q| =1 and o(g) = 2. In this case H(g, h,Q) = F3 x Cs.

When m := 0(g)|Q| > 2 the rank of the free group V can be computed. In order to
do so, recall that o(g) is even. In particular H(g, h, Q) = V,, with m even. Next, with the
same method as in the proof of Proposition 8.3, it can be shown that [I'(m) : V;,,] = 2
when m is even. Also, because V,,, < Fy < I'(2) = F, x Cq, we need to compute
[F2: V] = [I'(2) : Vin]/2. This can readily be done using (39):

Vol = [T 1 [SLa(Z) : Tm)] __m? 1
[0(2) Vi) = [P(2) : Tom)] [Cm) : V] = 27572 200 = 27}1(1 ~ ).

Finally, by Nielsen-Schreier’s formula, we obtain that V,,, & F,, with n =1+ ’%3 11—
plm

). O

In order to make further use of it in the text, we explicitly state the following fact
that has been noticed in the previous proof.

Remark 10.7. Let (g, h, Q) be a triple as in Definition 1() 5. Note that [g, h] ¢ Q yields
that o([g, h]@) = 2. Consequently, 2Q(l —lg,h]) = Q (— [g,h]) =(Q, [g,h]>.

Interestingly, a further inspection of the proof of Theorem 10.6 yields the following
matrix description of H(g, h, Q).
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Theorem 10.8. Let (g, h, Q) be a triple such that H(g,h,Q) # 1 and let H = {(g,h, Q).

Then there exists a unique primitive central idempotent e of QH such that™

H(g,h,Q) =SL(ZH)N(1—e+ QHe).

Moreover, H(g,h,Q) = 1 — e+ V,, for m = 0(gQ)|Q| and V,, defined in (49). Also,
considering any maximal order O in QHe and denoting by T'(m) the principal congruence
subgroup of level m = o(gQ)|Q| in SL1(O), one has that

I'(2m) <V, <T'(m) and [['(m):V,,] = 2.
In particular, H(g, h, Q) is a finite index normal subgroup of 1 — e+ U(ZHe).

Proof. Note that the proof of Theorem 10.6 in fact works locally, in the sense that it
is carried out in Q[{g, h, Q)] rather than Q[G]. Furthermore, the morphism ® defined
in (48) in fact coincides with the projection onto its simple component Q*[{a, b)] (no-
tations as in the proof). More precisely, this projection factors through Q®[(g) x (h)].
Projecting thereon is given by first multiplying with the central idempotent e and then
the subsequent projection onto Q%! [{a,b)] is given by multiplying with er (we use the
subscript T because the component arises from the trivial character). The element ey e is
a primitive central idempotent of Q[(g, h, Q)] and @ is a concrete realization of the com-
position of multiplying with ey e followed by applying ¢ (defined in (36)). In particular
® is injective on QH N (1 —ere+ QHere).

Next, as gere = a and here = b, one has that o(gere) = 2 = o(here). Using
this a direct verification yields that any element in QH N (1 — ere + QHere) can be
rewritten in the form (45) for some 1, z2, y1, y2 € Q. However, as explained in the proof
of Theorem 10.6, via the injectivity of ®, such an element is in SL;(ZG) if and only
if (x1,x2,y1,y2) is admissible for (g, h, Q). Hence H(g,h,Q) = SL1(ZH)N (1 —ere +
QHer e) and thus e e is the desired primitive central idempotent of QH. The moreover
part of the statement of the result was explicitly obtained in the proof of Theorem 10.6,
see (50). The final finite index assertion holds because Q Here = My (Q) hence the centre
of the unit group of an order therein is finite and therefore SL;(ZGe) is of finite index
in U(ZHe).

It remains to prove that H(g, h,Q) is normal in 1 — e + U(ZHe) or in other words
that V,,, is normal in U(ZHe) = U(Z**[{a,])]). A presentation of the latter group was
obtained in Proposition 8.2. The image under ¢ of the generators are the following

o 2) G )6 o))

39 Confusing at first, 1 — e+ QHe however consists simply of the elements of Q H projecting to the identity
in all simple components of QH except the simple component (QH)e where any element of QHe is taken.

matrices:
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A direct verification yields that these matrices normalize V, for every m, finishing the
proof. O

Note also that, unlike primitive H-units, the elements v(,, 4, 4, y,) are not necessarily
unipotent. For instance, using the map ® in (48) we see that

. V1= —Y2
14w is nilpotent < 51
+ (z1,%2,91,Y2) p { Y1Y2 = T1T2 ( )

Finally, it would be interesting to investigate how different H-units interact.

Question 10.9. Let (g;, hi, Q;), with i = 1,2, be two different triples as in Definition 10.5.
What is the structure of the group (H(g1,h1,@1), H(g2, he, Q2))?

A first interesting contribution to Question 10.9 would be to determine when it is the
direct product of H(g1, h1, Q1) and H(gz, ha, Q2).

Remark 10.10. The proof of Theorem 10.6 has shown that locally, i.e. in Q[{g, h, Q)],
V(ay,wa,1,y2) iDjects via @ to an element of SL;(Z*[Cy x Cs]). By Proposition 8.2,
P (V(2y ,20,y1,y2)) 15 @ product of elements as in Definition 10.1. In particular the elements
in the latter are somehow the smallest, hence the name primitive. Besides, the map ®
is directly related with decomposing (g, h, Q) as a non-split extension of (Q,[g, h], g%)
by Cy x Cs. Thus the non-triviality of that second cohomology group was explicitly
necessary for the existence of H-units. This clarifies our choice of the name for those
units.

10.8. H-units extend bicyclic units with infinite index

Recall that a simple quotient of Q[G] is called an exceptional component of type IT
if it is of the form*’ My(Q(+v/—d)) or M2(<_‘f@_b)) with a and b strict positive integers

and d € N (ie. (_‘f@_b) is a totally definite quaternion algebra) and it is called an
exceptional component of type I if it is a division algebra which is not a totally definite
quaternion algebra. The terminology ‘exceptional’ refers to the fact that in their absence
the bicyclic units are of finite index in SLy(ZG), e.g. see Corollary 6.7. Therefore, as
SL;1(O) for O an order in a division algebra has no unipotent units, the focus of current
research is on the type II exceptional components

As demonstrated by [2, Appendix A] the most recurrent*’ component of that type is
M3 (Q) and this is a simple quotient of QG if and only if G surjects onto Dg or Ss. It

40 The division algebras appearing in these matrix algebras are exactly those having an order with finite
unit group [2, Theorem 2.10.].

41 QG has an exceptional 2 x 2 component exactly when it maps onto one of the 52 groups in [13]. Now the
table in [2, Appendix A] says that only 16 of them have no simple component of the type Ms(Q). Among
nilpotent groups there are only 5 such groups.
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follows that, when 3 t |G| and M2(Q) is a simple component of QG, one has a triple
(g, h, Q) satisfying the following:

g,h € Ng(Q) and (g,h,Q)/Q = Ds. (52)

In fact the stronger properties Q@ < G and G/Q = (g9Q,hQ) = (ghQ,hQ) = Dg are
satisfied. We will call a triple satisfying (52) a Ds-triple.

Convention. For a Dg-triple (g, h, Q) we will always assume that o(gQ) = o(hQ) = 2
and Dg = Cy 1 O = (ghQ) x (hQ).

Using H-units built on Dg-triples we can describe generically a subgroup of finite
index for the following class of groups.

Theorem 10.11. Let G be a 2-group such that the only exceptional components of QG
are of the form My (Q), then (Bic(G), H(Q)) is of finite index in SL1(ZG). Consequently,
(B(G),H(G)) is of finite index in U(ZG).

In the above B(G) denotes the subgroup of U(ZG) generated by the bicyclic and Bass
units (see [26, Section 1.2.] for definitions).

Proof. Denote by . the set of primitive central idempotents e such that QGe = Ma(Q).
For e € &gy consider the associated projection 7. : G — Ge (which is the restriction
of the natural projection from U(QG) to U(QG)e). Since G is a 2-group one has that
7e(G) = Ge = Dg. Consider @ = ker(n.) and take g,h € G such that Ge = (7 (g))
(me(h)), with o(gQ) = 4,0(hQ) = 2 and [gQ,hQ] = (9Q)?. In this way we obtain a
Ds-triple (gh, h, Q) such that 1 # H(gh, h,Q) (by Theorem 10.6) and G = {(gh, h, Q).
This allows to apply Theorem 10.8 to conclude that H. := H(gh, h,Q) < SL1(ZG) is of
finite index in 1 — e + U(ZGe).

Now consider € := PCI(QG) \ &z and take e’ € &, i.e. QGe’ 2 M3(Q). By assump-
tion, if QGe’ is a division algebra it needs to be a totally definite quaternion algebra,
and hence SL;(ZGe') is finite [37]. It now remains to consider the case that QGe’ is not
a division algebra, say M,, (D), and let O be an order in the division algebra D. In this
case classical arguments can be used. Namely, for such a component Corollary 6.7 gives a
y € Z and subgroup 1—e¢' + F,, (yO) < Bic(G). Because QGe’ is non-exceptional, the so-
lution to the subgroup congruence problem in higher rank (e.g. see [26, Theorem 11.2.3])
yields that E. := E,(yO) is of finite index in GL,,(O). All together we obtained a sub-
group H =[], HeX][,, Eer of SLi(ZG) which is of finite index in [ [ cparqq)) SL1(ZGe),
hence also in SL;(Z@G). The second part now classically follows by a Bass-Milnor The-
orem [26, Theorem 11.1.2] which says that the Bass units map to a subgroup of finite
index in the Whitehead group K;(ZG) := GL(ZG)® of ZG and hence [26, Prop. 9.5.11]
jointly with H it is of finite index in U (ZG). In particular also (B(G), H(G)) is of finite
index in U(ZG). O
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Remark 10.12. The first part of the proof of Theorem 10.11 shows that when G does
not map onto S3 one can extend the Jespers-Leal theorem [29] by including also the
exceptional component M (Q). Concretely, let e € PCI(QG) such that QGe = M3 (Q)
and 3 1 |Ge|. Then SL;(ZG) contains a subgroup W, consisting of H-units, that is
of finite index in 1 — e + U(ZGe) C 1 — e + QGe. Moreover W, contains a principal
congruence subgroup of level 20(¢gQ)|Q| =2-2- % = ‘—2‘ of SL1(ZGe). More precisely,
We = Vig|/a-

The condition 3 { |Ge| stems from the fact that the proof of Theorem 10.6 requires
Proposition 8.2. On turn the latter originates from a splitting of Dg and needs a precise
understanding on subgroups of small index in SLy(Z). Using [48], the necessary tools
seem to exist to extend the results to S3. In particular we expect that the above and
Theorem 10.11 extends to non 2-groups.

By a result of Jespers and del Rio [25] natural examples for finite groups G as in
Theorem 10.11 can be found when U(ZG) is virtually a direct product of free products
of abelian groups. Such groups have been classified and the 2-groups of this type are
isomorphic to K x C% with K one of the following types:

Gi: (z,y | 2* = y* =1 and y?, 2% = [z, y] central ),

Go: (%, Y1, Yn | 2* =y = [yi,y;] = 1 and 22, [z, y;] central ),

Gs: (z, Y1, U | 2% =y = y2[z,vi] = [yi,y;] = 1 and 22, y? central ),

Ga: (xy1,yn [ 2% = 97 = [yi,ys] = [[ws vl yg] = [0 = 1),

Gs: (2,1, Y | 22 =y = 972, 0] = [yi ] = [[w,mi], 2] = 1),

Go: (T, Y1, yn | 2t =y = 2291 = v [v,u] = [yisyy] = V7, 2] = 1),

Gr: (51, oy | @ = 22y =y [z, 0] = [, ys) = 1)

Remark 10.13. In [25] the relation y2[z,y;] = 1 is written for the groups in class G;

(which are the groups of ‘type (g)’ in [25]). Inspection of the proof however shows that
it must be y; *[x,y;] = 1.

The group in G; is simply Cy4 x Cy with C4 acting by inversion. It is known [26,
Corollary 12.7.2] that Bic(Cy x Cy) is of infinite index in SL; (ZG).

For groups G as above, [25, Theorem 1.3] tells that the non-division algebra com-
ponents of QG are isomorphic to Ma(Q). Moreover, QG does not have exceptional
components of type I. Thus we can use Theorem 10.11 to obtain that H(G) is a so-called
congruence subgroup of SL;(ZG). More importantly, as a byproduct we obtain a more
precise version of [12, Theorem 1.1] and a classification-free proof.

Corollary 10.14. Let G = K x C§, with K a group in G1 U ... UGz, and let ¢ denote
the number of simple components of the type M2(Q) in QG. Then, there exist Dg-triples
(9ishin Qi), 1 < i < q, such that (H(gi, ki, Q:)) = T17; H(gis hi, Qi) is a finite index
normal subgroup of SL1(ZG). In particular, the H-units H(G) are of finite index despite
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that Bic(G) can be of infinite index. Moreover, if G 2 Dg, (H(gi, hi, Q;)) = F9 with

GS
0=+ i

In fact (H(g:, hi, Q;)) is the largest finite index subgroup in SL;(ZG) which is the
direct product of free groups. This follows from Theorem 10.8, saying that H(g;, hi, Qi) =
SL1(ZG) N1 — e + QGe for an associated e € PCI(QG), and the indecomposability of
SLy(0) for O any order in some M, (D) (n # 1) [38]. That [].cpcrg) S (ZG) N1 —
e + QGe is the largest direct product of free groups was already obtained by del Rio
and Ruiz in [12, Theorem 1.1]. However our proof is uniform, i.e. we do not use the
classification for G, and yield more explicit generators.

Proof of Corollary 10.14. Let e € PCI(QG). By [25, Theorem 1.3], either QGe is a
totally definite quaternion algebra or it is isomorphic to My(Q). In the former case
SL1(ZGe) is finite, so we only need to consider the case QGe = My(Q). As pointed
out in Remark 10.12, the proof of Theorem 10.11 gives a Dg-triple (ge, he, Q) such
that H(ge, he, Q.) is of finite index in 1 — e + U(ZGe). In particular, picking one such
triple for every e now yields a subgroup of SL;(ZG) which is even of finite index in
the overgroup [],SLi(ZGe) such that (H(g:,hi, Qi) = 1, H(gi, hi, Q;). Following
Theorem 10.8, H(ge, he, Q) is isomorphic to a certain group V;, which is normal in
U(ZGe). This implies that [[{_, H(gi, h;, Q;) is normal in [],U(ZGe) and in particular
in the subgroup U(ZG). Now, as mentioned earlier for example in the group G; the
bicyclic units are of infinite index. This finishes the first part.

That H(g;, hi, Q;) = F,, with n as in the statement is a combination of Theorem 10.6
and Remark 10.12. More precisely, the latter says that H(g;, h;, Qi) = Vi, with m =
0(9@)|Q| = ‘%. Now would ¢ # 0 and 0(gQ)|Q| = 2, then @ = 1 and o(g) = 2. This
however entails that G = Dg, which was excluded. Therefore, Theorem 10.6 yields that
H(gi, hi, Q) is a free group and as m is a 2-power the product in Theorem 10.6 only
runs over the prime divisor 2, yielding the desired formula. O

To finish this section, we exhibit a first surprising application of H-units which indicate
a first of many new possible paths of research.

Ezample of a normal complement via H -units
Consider

F=CyxCy:={ab|la*=0*=1,a" =0a"1),

a group in the class G;. Recall that Q[I'] & Q[Cy x Cs] @ 2Q(7) @ (%) P M2 (Q).
In particular we can apply all the results above. Concretely, notice that (ab, b, (b?)) is a
Dg-triple fulfilling the non-triviality condition of Theorem 10.6 with o(ab)|(b?)| = 4. As
there is only one matrix component and Z(U(ZT')) is finite, Theorem 10.6 now yields
that
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H(ab, b, (b*)) = F|, 4.5 = Iy finite index normal subgroup in U(ZI).
6.4

Furthermore, by Theorem 10.8, H(ab, b, (b?))) = SL1(ZT) N (1 — e + Ql'e) with Ql'e &
M5 (Q) and H(ab, b, (b*))) = 1 — e + V4 is a normal subgroup. Furthermore,

SLy(ZT') = (H(ab, b, (b*))),G N SLy (ZT)).

The latter can be seen from the facts: (i) SL1(ZT) < 1 x SL; (=5=1) = Qs x SLa(Z)
and (ii) T' N SLy(ZT) = (a?) (all other g € T have a non-trivial projection in one of the
commutative components) and with a? mapping to —1 in SL; (_1[1). With a bit more
of work®? one can prove that U(ZT) = (H(ab, b, (b)), £T). All together we recover [28,
Theorem 5.1.] (also see [4, Example 5.5]):

U(Z[T]) = Fy » 4T

where Fy = H(ab,b, (b*)). This description of the free group Fy yields a new set of
generators.

A full presentation can also be obtained. A presentation was given in [4, Example
5.5], using [28, Theorem 5.1.], but our methods will yield a considerably more symmetric
presentation. Indeed, as Fy = H(ab,b, (b?)) = 1 — e + Vj, it is enough to compute the
action of m.(T") = (m.(ab), (b)) = Dg on Vj, all seen as subgroups of GLy(Z). To
do so, recall that Proposition 8.2 and its proof yields a matrix representation of all

elements and also record the required actions. More precisely, Vo = (w?,v?, w™tv, —1)

1 2 1 0 -1 1 0
Via a direct application of the Reidemeister-Schreier method one obtains that

with w = (1) 2 and v = Lo . Also, me(ab) = L0 and 7. (b) = 0 1).

4 w2z 02

Vi= (vt w w2 |z es) (53)

with S = {(w™1v)2, (wv™1)2, (w™v)(wv~!)~1}. Using the action in Proposition 8.2 (or
the matrices above) one readily verifies that

s =y for g € ot ut, (o) (o))
and
27 ®) = 27 for 2z € {w*v™2, (w™tv)?, (w12}

Furthermore, (w?v=2)"(@) = =4 (w?v=2)v* and

42 For example, via the methods as in the proof of Claim 4 in the proof of Theorem 10.16 one can prove
that U(ZT') = (£I',SL1(ZG)). The latter fact can alternatively be deduced from [28, Theorem 5.1].



70 G. Janssens et al. / Advances in Mathematics 458 (2024) 109983

The remaining actions are computed similarly, yielding all together the following presen-
tation:

V(ZF) = <5ataU,$1,$2,$3ay17y2»y3> A <a,b> = F9 x T

where the action is the following:

Sab — 571 .Tltllb = 19 yzlzb — SilyQS
tab — t71 x%b = yélb — Silyls
u =t"lys 28 = J;gl Y3l = s7yss
b=t oy =y vy = uyy u
t=s 28 =, y3 = uyy u!
w =yt xg = xl_lmgxg y§ = uyflygygu_l

The previous example naturally raises the following question:

Question 10.15. When is (Bic(G), H(G)) a normal complement for the trivial units? Also,
when is SL; (ZG) a complement?

10.4. Applications to the abelianisation conjectures

Recall that U(ZG) is a finitely generated group and hence U(ZG)® is the direct
product of a finitely generated free abelian group Z"™ and a finite abelian group. One
calls n the rank of the abelian group U(ZG). Also recall that the centre Z(U(ZG)) of
U(ZG) is finitely generated, hence its rank is finite. Finally, recall that U(ZG) = £V (ZG)
with V(ZG@G) the group of invertible elements with augmentation one.

We finish the article with another application of H-units. We do this by giving an
answer, for the class of groups considered above, to the following recent questions on the
abelianisation of the unit group of ZG:

(R1) Is the rank of the abelian groups Z(U(ZG)) and U(ZG)® equal? In particular if
ZU(ZQ)) is finite, is U(ZG)™ also finite? (see [2, Question 7.8 and Proposition
7.9], the labelling of the questions is taken from [4].)
(P) If V(ZG)® contains an element of prime order p, then so does G%? (see [4, page
2)
(E1) Is exp V(ZG)® = exp G®? (see [4, page 2])

The labelling of the questions is taken from [4]. In question (E1) by expT' of a group
I" we mean the least common multiple of the elements of finite order in I'. Note that
question (E2) implies question (P).
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In general, as proven in [2, Proposition 6.1],
rank U(ZG)*® > rank Z(U(ZG)).

In case QG does not have exceptional components the above is an equality by [31,
Theorem 6.3], and hence question (R1) has a positive answer in that case. However in [4,
Theorem D] one group, where QG has an exceptional component of the form Mz (Q(37)),
was found where the rank of the abelianisation is non-zero but the centre of the unit
group is finite (thus the rank of U/ (ZG) is larger than expected). Surprisingly, crucially
using H(G), for each group in G; x C¥, for 1 < i < 7, we obtain an expression for the
exponent and rank of the abelianisation.

Recall that for G € G; and e € PCI(QG), one has that QGe either is a division algebra
that is not exceptional of type I or it is a simple component of type M>(Q) (and thus
of exceptional type II). The set of primitive central idempotents e of the latter type we
will denote (as in the proof of Theorem 10.11) as &gz Also recall that for e € &, the
group G can be written as an extension as follows:

1-N-—G 5 Ge=Dg=(a:a*=1)x{b:v>=1) = 1.
Consider the following property:
(¥)Ve € Eepe,Fg,h € G : o(me(g)) = o(ab) and o(me(h)) = o(b). (54)

Note that this property is satisfied if G is a split extension of Dg. Under the additional
property (x) we will give a positive answer to (R1) and (P), despite that such groups
may have arbitrarily many exceptional components.

Theorem 10.16. Let G = K x C3 with K a group in G1 U...UG7 and 7 the natural map
of U(ZG) onto U(ZG)*®. Then

rank U (ZG)* =rank Z(U(ZG)) + rank 7((H(C)un)),

where H(G)un = {x € H(G) | x is unipotent }. Furthermore,
exp(V(ZG)™) = lem (exp(G™), exp (V(ZG)/Z(V(ZG)) cyza) ((Bie(G), £G))™ ).

Moreover, if G satisfies (x), then clyza)((Bic(G), £G)), i.e. the normal closure of the
bicyclic and trivial units, together with the centre Z(U(ZQ)) is of finite index in U(ZG)
and (R1) and (P) have a positive answer.

Recall that for the group G; the group (Bic(G),+G) is of infinite index, which we
expect to be a rather general phenomena for the classes of groups considered. Thus it is
somehow surprising that under property (x) their normal closure is of finite index.
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Remark 10.17. (1) The combination of [20, Lemma 4.4] with Theorem 10.8 yields that
(H(G)un) is of infinite index in SL;(ZG) whenever |G| > 32 and G = K x C§ with
K € Gy U...UGy. Thus for this class of groups the rank-formula reduces the problem of
determining the abelianisation to a significantly smaller group.

(2) The proof of Theorem 10.16 will furthermore yield that

rank U (ZG)*® =rank Z(U(ZG)) + rank (U(ZG)/ZU(ZG)) clyza)((Bic(G), £G))) .

Clearly Dg € G4 and G = Dg x C¥ is a cut group (i.e. Z(U(ZG)) is finite) and G satisfies
(%), thus Theorem 10.16 yields that

rank (U(Z[Dg x C3])**) =0
for all n, answering Question 7.6 in case G = Ds.
Proof of the torsion-free part of Theorem 10.16. Recall that taking abelianisation is
right exact. More precisely, for any group I' and normal subgroup NV ons has the short
exact sequence

1= ap(N) =T — (T/N)®™ -1 (55)

where 7ip : T' — I'® is the canonical projection and thus 7r(N) = N/N N [T, T.
In particular

rank (I'*?) =rank (7 (N)) + rank ((T'/N)2P). (56)

Furthermore, it follows from the proof of [26, Proposition 5.5.1] that Z(U(ZG)) N

SL1(ZG) is finite. Since U(ZG),U(ZG)] < SL1(ZG) and thus also Z(U(ZG)) N
[U(ZG),U(ZG))] is finite, this implies that

rank m((Z(U(ZG)),N)) =rank Z(U(ZG)) + rank 7(N) (57)

for every normal subgroup N in U(ZG) such that 7(N) N 7(Z(U(ZG@G))) is finite. The

latter condition is for example satisfied for a subgroup of (SL;(ZG), £G). Moreover, if

N < SL.(ZQ), then
rank (SL;(ZG)/N)®® =rank (SL,(ZG) ZU(ZG)/N ZU(ZG)) ™ (58)

and thus, because (Z(U(ZG)), SL1(Z@G)) is of finite index in U(ZG) (see [26, Proposition
5.5.1]),

rank (SL;(ZG)/N)?" > rank (U(ZG)/N Z(U(ZG)) . (59)
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Consider &, := {e € PCI(QG) | QGe = M3(Q)} and let ey, ..., e, be its distinct
elements. For the rest of the proof consider the subgroup (£G, Bic(G), [T/, H(g:, hi, Q:))
delivered by Corollary 10.14, where by Theorem 10.8,

H(gi, hi, Qi) = SL1(ZG) N (1 — €; + QGe;).

As explained in the proof of Theorem 10.8, for each i we have a morphism as in (48),
which we now denote by ®;, is the composition of projecting to QGe; with the iso-
morphism ¢ defined in (36) (Section 8.1). Moreover, by Remark 10.7, one has that
e = <Qi,f[;hi]> =Q; (1_[924”@]) By Theorem 10.8, H(gi, hi, Qi) = 1 —e€i + Vo (4,0:) Qs |-
Note that 0(g;Q:) |Q:| = 2|Q:| = |G|/4 does not depend on i, and thus |Q;| = 2™~ for
some positive integer m.

First we choose N = Z(U(ZG)) clyze) ((Bic(G), £G)). It follows from™ [4, Propo-
sition 3.1] that any bicyclic unit of ZG is a product of commutators of elements of
(Bic(G), £G). Hence, 7(cly(za)((Bic(G), £G))) is finite. Consequently, because of (56),
and (57) we obtain that:

rank U (ZG)™ = rank (1(Z(U(ZG)) clyza)((Bic(G)))
+rank (U(ZG)/ZU(ZG)) clyza)((Bic(G), £G))) 2P
= rank Z(U(ZG)) +rank (U(ZG)/ZU(ZG)) clyza) ((Bic(G), £G))) .
(60)
Thus, if Z(U(ZG)) clyza)((Bic(G), £G)) is of finite index, then (R1) has a positive

answer.
Now consider the bicyclic unit b~ =14 higi(1 — h;1). Using that o(h;Q) = 2 one

i i

sees that

ey, = e (1 + o?glhc;) (14 hi)gi(1 — h¢)> = e; (14 o(hi)(1 + hi)gi)

= €U —o(hy) olhy) —o(hy) o(hy)y-
( 2 ’ 2 ) 2 ) 2 )

Therefore, using (48), composing with ¢ gives that

[ 1+o0(h) —o(h)
ilbrg) = <o(h) 1 - o(h) ) '

Next consider the bicyclic units by, 5; := 1+ (1 — g;)hig; and bg; 5, := 14 gihi(1 — g;).
Analogously as with the preceding unit one verifies that

43 In [4] the result is only proven for bicyclic units of the form 1+ (1 — h)gﬁ7 but the same proof works for
those of the form 1 + hg(1 — h).
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Cibhig = €i (1+ 5095 (1= g:)hi(1+ g) ) = €iV(0.0(9.0.0)

eibgin, = €i (14 5095 (1+ g:)hi(1 = 6:)) = V(04,000

Thus after composing with ¢ we obtain the matrices

®i(bn,.g,) = <(1) 20(19i)> and ®; (b, n,) = (éo(gi) (1)> )

Now suppose that G has property (x). In particular, o(h;) = 2 = o(g;) and so the ma-
trices obtained above are simply those already encountered in Proposition 8.2. Namely:

((I)i(thi’gi)v Pi(bh,.g:), (I)i(bgi,hi)) = (Uw_17 w27 U2)‘

Therefore, by (37) we obtain that

(I)i(:t<bhi,§z‘ +Ogi i thi,gi>) =V,

1421 2t
:{( ;t22 1+21l1>ESLQ(Z)|llEl2andt15tQ mod 2}.

In particular, because of the description given in (50), we get that H(gi, hi, Qi) =
<I>1(H(gl,hZ,Qz)) < @i(i<bhi’g~i7bgi,hi7b];;7gi>>‘ Denote

H = clyze) (<bhi,g~mbji,hi»bh":’givgi; hi]1<i< q>> :
Next, note that

[H, H(gi, hi, Qi)] = [1 — e; + Hey, H(gi, hi, Qi)] = [®i(H), ®i(H (g4, hi, Qi))],

1 1
with ®;(g;) = 0 ?) and ®;(h;) = <(1) 0 ) . We will prove that H is of finite index

in [T{_, U(ZGe;). Since the latter contains U(ZG) and H < clyzq)((Bic(G), £G)), this
would finish the proof of the last statement of the Theorem.
Recall that H(g;, hi, Qi) = 1 — e; + V|g|/4- Hence, by the above descriptions,

q

[H HH gl7h17Q’L Hl_ez V2a ( )aq)(hz»a‘/\G\/d (61)

We claim that Vig|/4/[(Va2, ®(9:), ®(hi)), Vig| 4] is finite. To prove this we need follow-
ing general group theoretical inequality:

Claim 1. Let Ny < N; be normal finite index subgroups of some group I'. Denote
[N1/[[, N3] : No/[I',N2]] = n which divides [N1 : Na]. If Ni/[T', N1] is finite, then
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Ny /[T, Na| is finite. Furthermore, |[T',T]/[T, No]| divides ([T : ]\/'1]11)[5/2]Jrl where s is the
product of all p» with e, the mazimum exponent of p dividing n[I" : Ny].

Indeed, to prove the claim and for notation simplicity we denote M := [, N].
Note that No/M is central in I'/M and thus the latter is central-by-finite. Hence, by
a well-known theorem of Schur, [I'/M,T/M] is finite. Moreover, by [59, Theorem 1],
\[C/M,T/M]| | ([T/M : Z(G)/M))/2+! with t the product of all p'» with I, the
maximum exponent of p dividing [I'/M : Z(I')/M]. As [['/M : Z(T')/M] | [I'/M
Ni/M).[N1/M : Ny/M] it also divides the multiple mentioned in the statement of the
claim. Now, as [[', Ni|/M < [I',T]/M is finite, and by assumption also Ny /[I", N1], we
obtain that Ny /M is finite. In particular No/M is finite as desired.

Using this we can now prove that:

Claim 2. Vig)/a/[(V2, ®(gi), ®(hi)), Vi) 4] is finite.

Applying Claim 1 to I' = (Va, ®(g;), ®(h;)), N2 = Vig|j4 and Ny = Va we see that it
is enough to prove that

Va/[(Va, ®(gi), ®(h;)), V2] is finite.

The latter can be seen via an explicit set of generators. Concretely, following (37),
1 2 1 0
Vo = (w?, v}, w v, —1) with w = (O 1) and v = <2 1). It is readily computed

that
p2ilhi) — w7v‘1>71(gi) — o ! and w®i(9) — L. (62)

From this one verifies that the square of each generator is a single commutator. Therefore,
Va/[{®i(g:), ®i(hi)), V2] is an elementary abelian 2-group, finishing the proof of Claim 2.

Thus all together we have proven that when G satisfies property (x), then [, [H,
H(gi, hi, Q;)] is of finite index in [[{_, U(ZGe;). But by the normality of H in U(ZG)
we have that [H, H(g;, hi, Q;)] < H for each ¢ and hence Z(U(ZG)) H indeed is of finite
index in U(Z@G). As mentioned earlier, by (60) this implies that (R1) holds for G if it
satisfies (x).

Now consider again a general G € G; x C3. We will now apply (56) to I' = U(ZG)
and N = (Z(U(ZG), H(G)un)- Using (57), we see that the first part of the statement
follows if (U(ZG)/ZU(ZG)).(H(G)un))™ is finite.

For this recall that each H(g;, hi, @;) contains the element 1 — e; + ((1) 21 ) (for

simplicity, we abuse notation by writing matrices in e;-part). As V;,4,0,)./q,| is normal in

m
U(ZGe;), the H-units H(g;, hs, Q;) contain the group A; := 1—e;+clyzge,) <(1) 21 M-

Notice that A; < (H(G)un). Now as abelianisation is right exact and by (58) it is enough



76 G. Janssens et al. / Advances in Mathematics 458 (2024) 109983

to prove that (SL1(ZG)/[]; Ai)ab is finite. To prove the latter it is sufficient to show
that T, (SL1(ZGe;)/A;)™ is finite. This is directly verified using the presentation in

Proposition 8.2 as also (2171 (1)> =1—e¢;+h e ((1) 21 ) he; € A;. This finishes the

proof of the torsion-free part of the Theorem. O
Next,

Proof of the torsion part of Theorem 10.16. For the torsion statement we consider the
short exact sequence (55) for I' = V(ZG) and N = Z(U(ZG)) cly zc)((Bic(G), G)).
Hereby the following is crucial:

Claim 3. For I' = V(ZG) and N = Z(U(ZG)) cly zc)((Bic(G), G)) holds:
exp(T'®) = lem(exp(m(N)), exp(T'/N)??). (63)

When 7(N) is finite Claim 3 is clear, as the claim even holds more generally for any
short exact sequence of finitely generated abelian groups with finite kernel. In particular,
recalling that m(cly(zq)({(Bic(G),G))) is finite, we have that Claim 3 holds when G ¢
G7 x C¥ as for such groups G we have that Z(U(ZG)) is finite and hence also so is 7(N).

To handle the family G; x C¥ we need to do some more work. First recall that by
[30, Theorem 6] and [25, beginning of Section 5] the only simple components of Q[G]

are of the form Q,Q(i), (71@71) , (&\/%1)), or M2 (Q). Therefore by [30, Lemmas 2 and
3] and [25, Lemma 5.3] G is a subgroup of C3' x Cy? x Qg* x Dg* x Q7§ for some
ny,...,ns € N with nyg = 0 if K ¢ G;. Recall that both Qs and Q16 have a unique
subgroup of order 2 which moreover is central. Thus the second part of Claim 4, see
below, holds for every subgroup of C5* x C§? x Qg* x Dg* x Q7. Also note that G
has a normal subgroup, say A, so that both groups A and G/A are abelian and also
exp(G/A) divides 4. A result of Cliff, Sehgal and Weiss (see [54, Theorem 31.1]) yields
that Vif(ZG) := V(ZG) N (1 + ker(wa) ker(we)) is a torsion-free normal subgroup of
V(ZG) and V(ZG) = Vis(ZG) G = Vi (ZG) 1 G.

Claim 4. if x € Vif(ZG) is such that 2™ € Z(V(ZG)) for some m € Zxq, then x €
Z(V(ZGQ)). Furthermore, g°9)/? € Z(G) for every g € G with o(g) > 2.

Take e € PCI(QG). Note that the Cliff-Sehgal-Weiss result also holds for the quotient
groups Ge of G. Thus also V(Z[Ge]) = V;f(Z[Ge]) x Ge has such a decomposition. Fur-
thermore, in view of the explicit description of V;f(ZG), the decompositions are compat-
ible in the following sense: the natural epimorphism 7. : G — Ge extends to an epimor-
phism ¢, : ZG — Z[Ge] and its restriction yields a morphism ¢, : V(ZG) — V(Z[Ge]).
It follows from the description of the basis of the kernel of a relative augmentation map
that ¢.(Vif(ZGQ))CVi(Z[Ge]) and ¢.(Z(V(Z[G])) € Z(V(Z[Ge])). This compatibility
combined with the assumption yields that
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Pe()™ € Vip(Z[Ge]) N Z(V(Z]Ge))). (64)

Now if Ge is abelian or isomorphic to Qg or Dg then Z(V(Z[Ge))) is finite. Thus
¢e(x)™ = e by (64) and, since ¢.(z) belongs to the torsion-free group V;¢(Z[Ge], we thus
even get ¢.(x) = e (in particular it is central). Next consider the case that Ge = Q14 the
quaternion group of order 16. From the description of the unit group of ZQ1¢ obtained
in [32, Theorem 4] it follows that Vi;(Z[Ge]) = Vif(ZQ16) is the direct product of an
infinite cyclic group, which moreover is V;;(ZQ16) N Z (V(Z[Ge))), and a non-abelian
free group. Thus (64) can only happen if ¢.(z) € Z (V(Z[Ge])).

So, we have shown that ¢.(z) is central for each e € PCI(QG). Therefore xe, the
projection of z in the simple component QGe, is central for each e. Hence, x itself is
central and the claim follows.

Proof of Claim 3. By Claim 4, and because G C N, we can choose a transversal 7 of
N in T such that 7 C V;¢(ZG) and the only elements in 7 with some power central are
the central elements. Now, for x € T% write 2 = ty 2, with t € 7(T),z € 7(Z(V(ZQ)))
and y € 7((Bic(G),G)). If z is periodic, then so are t,y,z. To see this, recall that
7(cly(za)((Bic(G), G))) is finite. Thus for some positive integer n we have t" is a cen-
tral unit. However, by the choice of the transversal, this implies that also ¢ is periodic.
Consequently, the remaining component z also needs to be periodic. With this Claim 3
now follows directly.

The central and bicyclic units contribute as predicted by conjecture (E1):
Claim 5. exp(7 (Z(V(ZG)) clyza)((Bic(G), G)))) = exp(G®).

First we note that exp(G®) | exp(m(N)) with N = Z(V(ZG)) clyzc) ((Bic(G), G))).
To see this, consider the relative augmentation we : Z[|G] — Z[G/G']. As U(Z|G/G"))
is abelian, we have an induced morphism wg: : V(ZG)* — V(Z[G/G']). Since G’ C
[V(ZG),V(ZG)] and wer (¢9[V(ZG), V(ZG)]) = gG’ for g € G, we have that any periodic
element of G/G’ is a wg|,.()-image of a periodic element of (V). Hence it follows that
exp(G/G) | exp(m(N)).

Thus in order to prove Claim 5, it is enough to show that o(rm(«)) divides exp(G?)
for every element a of Z(U(ZG)),Bic(G) and G. For the latter this trivially is true.
Now consider a central unit o € Z(U(ZG)). By [26, Proposition 5.5.1] one has that
ZWV(ZG)N[V(ZG),V(ZG)] < Z(V(ZG))NSL1(ZG) is finite. Thus if o(w(«)) is finite,
then « itself is a periodic unit. Consequently, by a result of Berman and Higman [52,
Corollary 7.1.3] (or see Theorem 5.5), o € G and in particular o(m(a)) | exp(G?).

Next consider a = 1+ (1 — 2)yZ € Bic(G) whose inverse is ™! =1 — (1 — z)yz. We
will prove that

o(m(a)) | 2. (65)
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If o(x) = 2, then (65) was obtained in [4, Proposition 3.1]. So suppose that o(z) > 2 and
thus o(z) = 4 or 8. However, o(z) = 8 only occurs for the class G7 and in that case z
generates a normal subgroup [25, Lemma 5.7]. In particular if o(z) = 8, then o = 1. In
conclusion, we may suppose that o(z) = 4.

It was noticed in the proof of [4, Proposition 3.1] that [a !, 2%] = 1+(1—2)(1—-2~%)yz

for any non-negative integer k. Consequently, for Z a subset of {1,...,0(x)} one has that
[Tle o] =1+ 3 (1-a)(1 -2 )yz
keT keT
= 1+[Z|(1 —2)y7 — (1 - 2)( X a ")y

kel

Now take Z = {o(z) — 1,0(x)} and using that 7 = (1 + z)(1 + 2%) we see that

1-z)O 27" (1—2)A+z)y1+z)(1+22) =1 —22)1 +2?)y(1 +2) =0,
kel

where we used that x? is central (by Claim 4). Altogether we have proven that a? =

1+2(1 —2)yz € [V(ZG),V(ZG)], yielding (65).
The statement (65) also holds for the units 1+Zy(1 —z) and follows from an analogue
proof. This finishes the proof of Claim 5

Claim 2 together with (63) yields the upper bound for exp(V (ZG)*") we were looking
for.

Now suppose that G satisfies (), then we already have proven that the group generated
by Z(V(ZG)) and cly (zq)((Bic(G), G)) is of finite index in V(ZG). More precisely, recall
that H(gi, hi, Qi) = 1 —e;+V|g|/4 and also the identification from (61). With this we can
reformulate Claim 2 saying that [[; H(gi, ki, Qi)/[clv(z ) ((Bic(G), g, hi)), H(gi, hi, Qi)
is finite. To control the exponent of the latter we will pass over to an overgroup:

H(gl? hZ7 Q’L)

| (V2, ®(g:), ®(hi))
[clyv(z.c) ((Bic(G), g, ha)), H(gs, hi, Qi)

[(Va, ®(g:), ®(R:)), Vi) /4]

| divides |

Next note that the proof of Claim 2 entails that ((Va, ®(g;), ®(h;)))?’ is a finite el-
ementary abelian 2-group. Therefore using the explicit bound from** Claim 1 in the
setting of Claim 2 yields that

exp ((Va, @(g:), ®(ha))/[(Va, B(g:), D(hs)), Vi) a)
divides 2 ([(Va, ®(g;), ®(h;)) : ‘/‘G‘/4])[t/2]+1

where ¢ is the product of all p'» with ¢, the maximum exponent of p dividing
[(V2,®(g:), (hs)) : Vigjal- Now, recalling that V5: = U; by (38), Proposition 8.3

44 More precisely we replace [ : Nq]n by the multiple [I" : N1].[N7 : N2] = [[" : Na].
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says that [Vo : Vig|/4] is a power of two. Furthermore, Proposition 8.2 yields that
[(Va, ®(g;), P(h;)) : Vo] is a 2-power. Summarized we have proven that

exp H H(gs, hi, Qi)

- is a power of 2.
[ClV(ZG) (<B1C(G)a 9i, h'7,>)7 H(gu h‘iv Qz)]

Combining this with the fact that [U(ZGe;) : Vig/4] is 2-power and

o ( V(ZG)
P\Z(V(Z0)) duze) (Bic(G), =)

> divides

Z/[(ZGQ)
v | 1] vz (Bic(G), gi, ha)), Hgi, hir Qo))

%

we obtain that 2 is the only prime divisor of the left hand side quotient group. Therefore,
as exp(G®) | exp(G) = 4 and thanks to the value obtained for exp V(ZG)% conjecture
(P) holds, finishing the proof. 0O

The statement that clyzq)((Bic(G), £G)) is of finite index when G satisfies (x) does
not mention H-units. However we would like to emphasize that the proof needed them
and hence the result is truly a combined use of bicyclic and H-units. In upcoming work
by the first author a systematic study of the abelianisation of H-units and their role on
the rank of U(ZG)*® will be done.
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