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This paper is centred around the classical problem of extract-
ing properties of a finite group G from the ring isomorphism 
class of its integral group ring ZG. This problem is consid-
ered via describing the unit group U(ZG) generically for a 
finite group. Since the ‘90s’ several well known generic con-
structions of units are known to generate a subgroup of finite 
index in U(ZG) if QG does not have so-called exceptional 
simple epimorphic images, e.g. M2(Q). However it remained 
a major open problem to find a generic construction under
the presence of the latter type of simple images. In this ar-
ticle we obtain such generic construction of units. Moreover,
this new construction also exhibits new properties, such as 
providing generically free subgroups of large rank. As an ap-
plication we answer positively for several classes of groups 
recent conjectures on the rank and the periodic elements of 
the abelianisation U(ZG)ab. To obtain all this, we investigate 
the group ring RΓ of an extension Γ of some normal subgroup 
N by a group G, over a domain R. More precisely, we obtain 
a direct sum decomposition of the (twisted) group algebra of 
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Γ over the fraction field F of R in terms of various twisted 
group rings of G over finite extensions of F . Furthermore, con-
crete information on the kernel and cokernel of the associated 
projections is obtained. Along the way we also launch the in-
vestigations of the unit group of twisted group rings and of 
U(RΓ) via twisted group rings.

© 2024 Elsevier Inc. All rights are reserved, including those 
for text and data mining, AI training, and similar

technologies.
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1. Introduction

This paper contributes to the study of a finite group Γ via its representation theory
over a number field1 F and its ring of integers R. The overarching question is which group 

theoretical invariants of Γ are determined by the R-algebra RΓ, or in other words by the 

regular RΓ-module. From the vast literature, see for example [26,27,36,51,54,55], one can 

somehow distil an approach in two steps to that. Firstly one considers the decomposition 

of the semisimple group algebra FΓ given by Wedderburn-Artin’s theorem:

1 Most of the results will in fact hold in the generality where F is any field with char(F ) ∤ |Γ|.
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FΓ ∼= Mn1
(D1) ⊕ · · · ⊕ Mnq

(Dq),

where Di are finite dimensional division F -algebras. If one now chooses an order Oi in 

each Di, then we obtain two orders in FΓ, namely RΓ and 
⊕q

i=1 Mni
(Oi). Because F

is a number field, in particular R is a ‘nice’ Dedekind domain,2 it is well known that
the two orders share many properties. In particular their unit groups have a common 

subgroup of finite index (see for example [26,54]). The aim of the first step is to obtain as 
much information as possible on the F -character degrees ni and the form of the division 

algebras Di. Consequently, it is to be expected that the number theoretical properties 
of the number field F will play a special role here.

Recall that there is a bijection between the matrix components above, the absolutely
irreducible F -characters of Γ and the primitive central idempotents of FΓ (a set denoted 

PCI(FΓ)). For a survey on the construction of primitive central idempotents and a 

description of its associated matrix components we refer to [26] and for some of the 

most recent progress on this topic to [7,6,5]. A setback of making the switch from RΓ
to 

⊕q
i=1 Mni

(Oi) is that one is somehow replacing the group Γ by the larger group ∏
e∈PCI(F Γ) Γe. Due to this, one loses information on ‘ties’. The role of the second step 

consists then to focus on the given group Γ. This might be via representation theoretical 
methods or group theoretical ones. To clarify the latter, we now set F = Q and so R = Z.
Then it is known [24] that the group isomorphism type of the unit group U(ZΓ) and 

the ring isomorphism type of ZΓ contain the same information.3 The gain of this is that
U(ZΓ) is an arithmetic subgroup in some linear reductive algebraic group (in particular
it is a finitely presented group), allowing the use of classical but strong methods in 

algebraic groups or geometric group theory.
From this unit group point of view and using [34], the first step describes a full 

list of invariants determining the commensurability class of U(ZΓ), whereas the second 

step aims to filter till its isomorphism class. A usual approach to the latter consists 
of constructing an ‘interesting’ torsion-free subgroup N of finite index in U(ZΓ). On 

one hand such N would (ideally) be normal and the associated finite quotient would 

reflect properties of the finite subgroups of U(ZΓ). On the other hand, importantly, the 

construction of N needs to be generic in the sense that it does not require knowing the 

isomorphism type of the group basis Γ.
In this article we will contribute to both steps in a novel way and it can be summarized 

as follows:
(1) In the first step we make a shift in the traditional philosophy by regrouping 

simple components into certain twisted group algebras which arise by viewing Γ as 
a non-trivial extension. Section 3 till Section 5 is devoted to constructing in general 

2 The property that the unit group of two orders in a common semisimple algebra are commensurable 
requires that R/I is finite for every non-zero ideal I of R (e.g. see [26, Lemma 4.6.9.(3)]). The use of ‘nice’
refers to this extra property.

3 Thus ZΓ ∼= ZH if and only if U(ZΓ) ∼= U(ZH). It is folklore that it holds more generally for any
Γ-adapted coefficient ring R, i.e. where all prime divisors of |Γ| are not divisible in U(R). In short, this 
follows in that case from the linear independence of finite subgroups of U(RG).
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such decomposition and giving down-to-earth descriptions of the projections and their
(co)kernels. Below we will give an overview of those results.

(2) Classically, the main generic constructions of units in U(ZΓ) are Bass and bicyclic 

units. Using the solutions to the subgroup congruence problem for SLn(D), with n ≥ 2,
it is known since the mid ‘90s [28] that if QΓ has no simple 2 × 2-components4 and 

the only simple 1 × 1 components are commutative, then the group generated by the 

Bass and (generalized) bicyclic units is of finite index. In particular the subgroup B
generated by them could serve as N in the explanation above. Therefore, a major open 

problem in group rings of the last decennia has been to find generic constructions if 
2 × 2 components are present. In Section 10 we give the first such generic construction,
which we call H-units. Moreover these elements can also contribute to other components,
hence even without such problematic components, when combined with B it may yield 

a ‘stronger N ’. As an illustration thereof we answer in the positive for various infinite 

families of groups conjectures on the rank and the torsion of the abelianisation U(ZΓ)ab.
This is possible due to the nice properties of H-units, e.g. they yield free groups of 
large ranks. The proof of all this builds on the work for step (1) and Section 6 till 
Section 8.

We will now explain the main results of this article in more detail, starting with the 

contributions to (classical) questions in (untwisted) group rings.

A new generic construction of units and their contribution to the structure of U(ZG).
For any groups W ≤ H and K and any group homomorphism f : H → K it is 

easily observed that [K : f(W )] is finite exactly when [H : 〈ker(f), W 〉] is finite. For
the unit group of ZG, a useful incarnation thereof is for f the norm map nr of ZG

which maps an element on a tuple recording the reduced norm of each projection onto a 

simple component of QG. By definition SL1(ZG) = ker(nr), see (24) and (25) for precise 

definitions. Doing so, see [26, Proposition 5.5.1], one has that

〈SL1(ZG), U(Z(ZG))〉 is of finite index in U(ZG).

Another important incarnation of the above is for f the mapping of U(ZG), via GL1(ZG),
into its Whitehead group K1(ZG) := GL(ZG)ab. This enables one to replace U(Z(ZG))
by any subgroup of U(ZG) that maps to a finite index subgroup of K1(ZG). Thanks to 

a theorem of Bass and Milnor, an example of such a group working for any finite group 

is given by the group generated by the so-called Bass units. For background we refer to 

[26, Section 1].
In conclusion, the problem to generically construct a finite index subgroup of U(ZG)

is reduced to SL1(ZG), i.e. the elements of norm 1. For any tuple (g, h) with g /∈ NG(〈h〉)
one can construct the elements 1 + (1 − h)g

∑o(h)
j=1 hj and 1 + (

∑o(h)
j=1 hj)g(1 − h) which 

4 More precisely, if QΓ has no simple component M2(D) with D containing an order with finite unit
group. Equivalently, if no SLn(D) has S-rank one for some finite set of place S of Z(D) containing the 
archimedean.
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are unipotent units and hence in SL1(ZG). These elements are called bicyclic units

and the group they generate is denoted Bic(G). A theorem of Jespers and Leal [28]
says that Bic(G) is of finite index in SL1(ZG) under some restrictions on the simple 

components Mn(D) of QG. For n ≥ 2 the restriction is that there is no M2(D) with 

D ∈ {Q, Q(
√

−d), 
(

−a,−b
Q

)
}, for a, b, d ∈ Z>0 and 

(
−a,−b

Q

)
denotes a quaternion alge-

bra. Therefore these M2(D) are called exceptional of type (II) (see paragraphs behind 

Corollary 6.7 for complete definition).
In Section 10 we produce a new generic construction of elements in SL1(ZG). For any

triple (g, h, Q) with g, h ∈ G, Q ≤ G satisfying the two conditions in Definition 10.5
we construct a group H(g, h, Q). The elements therein are called5 H-units and in-
terestingly the generators are usually not unipotent. For every quadruple of numbers 
(x1, x2, y1, y2) ∈ N4 satisfying the equations (46) there is an associated H-unit denoted 

v(x1,x2,y1,y2). The free group of rank n we denote by Fn.

Theorem A (Theorem 10.6). Let (g, h, Q) be a triple as in Definition 10.5. Then,

(1) H(g, h, Q) is a finitely generated subgroup of SL1(ZG) and v−1
(x1,x2,y1,y2) =

v(−x1,−x2,y2,y1),

(2) H(g, h, Q) �= 1 if and only if [g, h] /∈ 〈g〉Q.

Moreover, for H(g, h, Q) �= 1,

(3) if o(gQ)|Q| = 2, then H(g, h, Q) ∼= F3 × C2, and

(4) if o(gQ)|Q| > 2, then H(g, h, Q) ∼= Fn with n = 1 + (o(gQ)|Q|)3

6

∏
p(1 − 1

p2 ), where 

the product runs over the prime divisors p of o(gQ)|Q|.

More precisely, see Theorem 10.8, we give a concrete description of H(g, h, Q) and not
only of its isomorphism type. Nevertheless, the structure of the group 〈H(gi, hi, Qi) | i ∈
I〉 generated by the H-units corresponding to several triples (gi, hi, Qi) is still mysterious 
to us. There are several natural questions, in particular Question 10.9: when it is a direct
product of the groups H(gi, hi, Qi)?

From Section 10.3 on we consider the case that 3 ∤ |G| and QG has exceptional 
components of the type M2(Q). As a first application of Theorem A we show that
the Jespers-Leal theorem can be extended to include the difficult case M2(Q). This is 
recorded in Remark 10.12 and follows from the proof of Theorem B, resolving in this case 

the problem of constructing generically a finite index subgroup. By B(G) we denote the 

subgroup generated by the Bass and bicyclic unit and by H(G) the subgroup generated 

by H(g, h, Q) for any admissible triple (g, h, Q).

5 As explained in Remark 10.10, their name refers to the crucial role of the second cohomology group, and 
in particular twisted group rings, to both discover the elements and the proof of the subsequent theorem.
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Theorem B (Theorem 10.11). Let G be a 2-group such that the only exceptional compo-

nents of QG are of the form M2(Q), then 〈Bic(G), H(G)〉 is of finite index in SL1(ZG).
Consequently, 〈B(G), H(G)〉 is of finite index in U(ZG).

We have chosen to focus on M2(Q) as it is by far the most frequent exceptional 
component, cf. [2, Appendix A], and such a component naturally yields triples (g, h, Q)
as in Definition 10.5. However, the statement of Theorem B sometimes also holds in the 

presence of other exceptional components, but we have not tried to pursue this line of 
investigations.

Our second application is about the abelianisation U(ZG)ab ∼= Zn ×T , with T a finite 

abelian group. The number n is called the rank of the abelianisation of U(ZG). Recall 
that U(ZG) = ±V (ZG) with V (ZG) the group of invertible elements with augmentation 

one. Recently the following questions got some attention:

(R1) Is the rank, as abelian group, of Z(U(ZG)) and U(ZG)ab equal? In particular if 
Z(U(ZG)) is finite, is U(ZG)ab also finite? (See [2, Question 7.8 and Proposition 

7.9].)
(P) Let p be a prime. If V (ZG)ab contains an element of order p, does Gab also contain 

an element of order p? (See [4, page 2].)

Question (P) is one of three questions formulated by Bächle, Maheshwary and Margolis 
[4] and the labelling refers to theirs. A stronger version of (P) was also formulated in [4],
namely that exp(V (ZG)ab) = exp(Gab). Currently, the only infinite family for which (P)
has been proven are the dihedral groups D2p with p prime [4, Theorem C].

We consider the ‘most degenerate’ classes of 2-groups, namely those where all the 

matrix components are exceptional and of the form M2(Q). Such groups have been 

classified by Jespers, Leal and del Río [30,25], namely G ∼= K ×Cn
2 with K a finite group 

that is a member of seven (infinite) families of groups G1, . . . , G7, recalled in Section 10.3.
However our proofs do not require the precise classification. In the next result we denote 

by clΓ(H) the normal closure of some subgroup H in the larger group Γ. This result
shows that in presence of exceptional components there are some natural obstructions 
towards conjectures (R1) and (P).

Theorem C (Theorem 10.16 and Corollary 10.14). Let G = K × Cn
2 , with K a group in 

G1 ∪ . . . ∪ G7, and π the natural epimorphism of U(ZG) onto U(ZG)ab. Then

rank U(ZG)ab =rank Z(U(ZG)) + rank π(〈H(G)un〉)

where H(G)un = {x ∈ H(G) | x is unipotent }. Furthermore,

exp(V (ZG)ab) = lcm

(
exp(Gab), exp

(
V (ZG)

Z(V (ZG)) clU(ZG)(〈Bic(G), ±G〉)

)ab
)

.
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Moreover,

(1) The H-units H(G) are of finite index in SL1(ZG) despite that Bic(G) might be of

infinite index.

(2) If G satisfies (54), then Z(U(ZG)) clU(ZG)(〈Bic(G), ±G〉) is of finite index in U(ZG)
and both (R1) and (P) have a positive answer.

Recall that spanQ{ge | g ∈ G} = Mn(D) for e a primitive central idempotent of 
QG and (QG)e ∼= Mn(D). Condition (54) appearing in part (2) of Theorem C is about
whether the generators of the finite group Ge have pre-images in G of the same order. If 
this is the case, then part (2) tells that the obstructions (i.e. the second factor in each 

formula) vanish.
Alternatively (54) can be interpreted as a condition on the proportions o(g)/o(ge) for

g ∈ G. Inspired by Theorem C, in upcoming work by the first author, it will be proven 

that if these proportions are ‘large’ then both obstructions are non-trivial and hence (54)
is a non-artificial condition.

As a final application, we recover in Corollary 10.14 a result of del Río and Ruiz [12,
Theorem 1.1] saying that M :=

∏
e∈PCI(QG) SL1(ZG) ∩(1 −e +QGe) is the largest direct

product of free groups in U(ZG). However, using H-units, our proof is uniform, i.e. we 

do not use the classification for G, and yield more explicit generators. Namely, M =
〈H(gi, hi, Qi)〉 ∼= F q

n for some triples (gi, hi, Qi), 1 ≤ i ≤ q and n explicit. Furthermore,
in some cases the bicyclic units and H-units together yield a normal complement of G
in V (ZG). As formulated in Question 10.15, it would be interesting to investigate this 
phenomenon further.

Decomposition in twisted group rings as valuable substitute for the Wedderburn-Artin 

decomposition. The statements and proofs of Theorem B and Theorem C are in the 

framework of untwisted group rings. However, interestingly, they heavily depend on The-
orem A whose proof crucially requires twisted group rings. Recall that F is a number
field and R is its ring of integers. The starting observation is that an exceptional com-
ponent of F [Γ] corresponds to an irreducible F -representation of Γ, say ϕ. Furthermore 

a representation allows in a natural way to view Γ as an extension

1 → N → Γ λ→ G → 1 (1)

where N = ker(ϕ) and G = Im(ϕ). Corresponding to this is an algebra decomposition 

FΓ ∼= FG ⊕ FG(1 − N̂) where N̂ is some central idempotent. The second observation 

is that the summand FG somehow originates from the trivial representation of N . In 

Section 3 we show how the irreducible representations of N can be used to concretely
decompose FΓ in terms of certain twisted group rings and crossed products of the smaller
group G.

Before going into details, we first recall the definition of a twisted group ring. For a 

2-cocycle α ∈ Z2(G, R∗), where G acts trivially on R∗, the twisted group ring Rα[G]
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of G over R with respect to α is the free R-module with basis {ug}g∈G where the 

multiplication is defined via

uguh = α(g, h)ugh for all g, h ∈ G

and any ug commutes with the elements of R. Note that the ring structure of Rα[G]
depends only on the cohomology class [α] ∈ H2(G, R∗) of α and not on the particular
2-cocycle. Of importance is that there is a 1-1 correspondence between α-projective 

representations of G and Rα[G]-modules. As such projective representations, although 

not explicitly used, are recurrent objects behind the scenes (see [15, §2.1] for detailed 

explanation).
In order to keep the introduction notationally lighter, we will restrict ourselves to 

abelian extensions (i.e. N is abelian in (1)). However from Section 2 till Section 5 we 

will work with general extensions. When N is abelian, the extension (1) corresponds6

to a cohomology class [α] ∈ H2
σ(G, N) where σ is the action of G on N . Via σ the 

group G acts on the set Lin(N, F ) of linear F -characters of N and we denote the orbit
space by Lin(N, F )/G. Now, for a G-invariant linear character χ of N over F , the 

transgression of χ with respect to α is a 2-cocycle Tα(χ) ∈ Z2(G, F ∗) which is defined 

by Tα(χ)(g, h) := χ(α(g, h)). Via so-called inflation one can extend a cocycle of G to one 

of Γ, see Section 2 for details.

Theorem D (Theorem 3.2 and Proposition 3.1). With notations as above, N abelian and

[β] ∈ H2(Γ, F ∗) inflated from G. We have that

F β [Γ] ∼=
⊕

[χ]∈Lin(N,F )/G

(F (χ)Eχ) ∗ G (2)

for some concrete idempotents Eχ and explicit skewing and twisting of the crossed product

(F (χ)Eχ) ∗ G. In particular, if χ ∈ Lin(N, F )G is a G-invariant character, then7

(F (χ)Eχ) ∗ G ∼= F (χ)β.Tα(χ)[G].

In particular we recover the case where N is central, obtained in [47, Theorem 5.3]
by Margolis and Schnabel. However even in that case our methods give a new, more 

explicit, proof. It is interesting to pause a second on the classical case when β is trivial,
i.e. F β [Γ] = FΓ is a group ring. The above theorem then tells that even if one is solely
interested in non-twisted group rings, one should still study twisted group rings over finite 

extensions of the chosen number field F . In particular, at this point one has another point
of view on the first step alluded to at the start of the introduction.

6 The necessary background is briefly introduced in Section 2.
7 With β.Tα(χ) is meant the 2-cocycle of G with values in F (χ)∗ defined pointwise, i.e. (β.Tα(χ))(g, h) =

β(g, h).Tα(χ)(g, h) = β(g, h).χ(α(g, h)).
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Important for the applications later on is that the decomposition (2) is not simply
an abstract one. Among others, the projections pχ onto the direct summands have a 

down-to-earth description. For this we need to fix a section μ : G → Γ of λ in (1). For
example, for χ ∈ Lin(N, F )Γ/N , Proposition 3.3 says that the projection pχ viewed over
R agrees with the ring epimorphism

Ψχ,β : Rβ [Γ] → R[χ]β.Tα(χ)[G] : r un.μ(g) �→ rχ(n)vg

where the sets {uh | h ∈ Γ} and {vg | g ∈ G} are the bases of the mentioned twisted 

group rings.
This ring morphism induces a group morphism

Ψ̃χ,β : U(Rβ [Γ]) → U(R[χ]β.Tα(χ)[G]).

Another reason that (2) is a reasonable alternative for Wedderburn-Artin’s decomposi-
tion is that the kernel and cokernel can be worked with.

Theorem E (Theorem 5.3 and Theorem 5.5). Let Γ be some extension as in (1), [β] ∈
H2(Γ, F ∗) inflated from G and χ ∈ Lin(N, F )G. Also let R be an order in the number

field F . Then8:

(1) coker(Ψ̃χ,β) is finite.

(2) If N is central, then {torsion units in ker(Ψ̃χ,β)} = {χ(a)−1a | a ∈ N}.

Moreover, we obtain conditions for ker(Ψ̃χ,β) to be finite and some computational reduc-

tion for determining | coker(Ψ̃χ,β)|.

Along the way we obtain a version for twisted group algebras of certain classical 
theorems of Higman and Berman-Higman (see for example [26, Proposition 1.5.1 and 

Theorem 1.5.6]). More precisely, in Theorem 4.1 we describe when the unit group of a 

twisted group ring is finite and in Theorem 5.6 we show that torsion units must have 

trace zero. Also, in Proposition 4.5 we answer a question of Margolis and Schnabel [47,
Remark 3.2.], in case of a torsion 2-cocycle, on when F α[G] ∼= F αj

[G].

Units in twisted group rings and a full description in the elementary abelian case

By Theorem D, describing the unit group of twisted group rings is interlaced with 

the classical problem of describing U(RΓ). In Section 6 we launch the investigations 
of generic constructions of units in twisted group rings and investigate generators of 
coker(Ψ̃χ,β).

More precisely, we consider U(Rγ [G]) where R is the ring of integers in a cyclotomic 

field F = Q(ζn), with ζn some primitive root of unity, and [γ] ∈ H2(G, R∗). Firstly,

8 Again, in order to avoid more notations in the introduction, some parts of the statements are left vague.
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we construct in Definition 6.9 a class of units Hγ(G) which truly makes use of the 

twisting γ ∈ Z2(G, R∗). These elements can be thought of as some deformations of the 

classical bicyclic units in non-twisted group rings. An intriguing and crucial feature of 
these elements is that the generators live in coker

(
Ψ̃χ : U(RΓ) → U(RTα(χ)[G])

)
, see 

Proposition 6.12 and Question 6.13.
In other words, the generators of Hγ(G) are intrinsic to twisted group rings. In fact, the 

newly constructed H-units arose as the pullback along the transgression map Ψχ of words 
in the generators of Hγ(G) for G an elementary abelian 2-group. The difficulty hereby
is two-fold: (i) the inverse under Ψχ of a unit is usually not a unit due to 1 �= ker(Ψ̃χ);
(ii) the generators of Hγ(G) are not attained. In fact the length of the words depends on
| coker(Ψ̃χ)| which on its turn depends on N = ker(λ : Γ � G).

An important step for investigating units in twisted group rings is Theorem 6.3 and 

Corollary 6.7 saying that 〈Bic(G), Hγ(G)〉 contains enough elementary matrices of each 

simple component. This generalizes the much used theorem of Jespers and Leal [29].
Finally, in Sections 8 and 9 we apply all the above machinery to study the case that

Γ = G × Cm
2 for some m and some [γ] ∈ H2(Γ, Z∗) inflated from [δ] ∈ H2(G, Z∗). Note 

that the number of simple components of the group algebra increases exponentially with 

m, which for the investigations of unit groups makes these extensions more subtle as it
first looks likes. In Section 7 we give a description of U(Zγ [G ×Cm

2 ]) in terms of U(Zδ[G]),
see Theorem 7.3. As an application, we are able to deduce the following result. Recall 
that G is said to have a normal complement in U(Z[G]) if U(Z[G]) = N ⋊ (±G) for some 

normal subgroup N . If a torsion free complement N exists then the integral isomorphism 

problem has a positive answer for G (see for example [54, Proposition (30.4)]). Also recall 
that G satisfies the Higman subgroup property if every finite subgroup H ≤ V (ZG) is 
isomorphic to a subgroup of G (this property was asked for the first time in Graham 

Higman’s thesis).

Theorem F (Corollary 7.4). Let G be a finite group and [γ] ∈ H2(G × Cm
2 , Z∗) in-

flated from a cohomology class [δ] ∈ H2(G, Z∗). If G has a (torsion-free) complement

in U(Zδ[G]) or satisfies the Higman subgroup property, then the same holds for G × Cm
2

and U(Zγ [G × Cm
2 ]).

Subsequentely, in Section 8, all the protagonists are computed explicitly in the case 

that Γ = D8 × Cm
2 (where D8 denotes the dihedral group of order 8) and G = Cm+2

2 .
More precisely, we consider D8 as some extension [α] ∈ H2(C2 × C2, C2) and look at
the projections Ψ̃χ : U(Z[D8 × Cm

2 ]) → U(ZTα(χ)[Cm+2
2 ]). Together with the general 

description of ker(Ψ̃χ) and Theorem F we are able to pullback a precise description of 
U(ZTα(χ)[Cm+2

2 ]) obtained in Proposition 8.3. All together, the main achievement here is 
an unexpected uniform description of U(Z[D8 ×Cm

2 ]) for all m. The case that m = 0, 1, 2
has been dealt with in earlier papers [22,23,40,42].
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Along the article we formulated several questions we believe to be of interest. Some 

we would like to attract the attention to are Question 4.3, Question 6.5, Question 7.6
and Conjecture 5.7.

In conclusion, (a subclass of the) H-units arose by applying all the machinery above 

to an extension of C2×C2. These units might extend the bicyclic units with infinite index
and are particularly useful in presence of an exceptional component of the form M2(Q).
However we have not yet enough generic constructions that, without any condition on 

the 2 × 2 simple components, give a finite index subgroup for any finite group. Neverthe-
less, extending other groups in [2, Appendix A], the methods developed in this article 

should yield other generic constructions. Besides, this work can also simply be seen as 
an invitation to the study of units in twisted group rings as a problem of independent
interest.

Notational conventions.

(1) All rings, denoted R, will be assumed unital and associative.
(2) U(R) denotes the unit group of R. If U(R) appears as the coefficients of a cohomology

group, i.e. Hj(G, U(R)), we will instead write R∗ (thus Hj(G, R∗)).
(3) If f : R → S is a ring homomorphism, then we denote the induced map on the unit

groups by f̃ : U(R) → U(S).
(4) Except stated otherwise, with ‘an order R’ we will mean a Z-order.
(5) We will use the convention gh = h−1gh and conj(h)(g) = gh for conjugation.
(6) A commutator is [g, h] = g−1h−1gh.
(7) clΓ(H) is the normal closure of some subgroup H in the larger group Γ.
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2. Cohomological preliminaries

We now recall the required minimum on group cohomology for which details can be 

found in the book [10]. Given a finite group G with an action ϕ : G → Aut(A) on an 

abelian group A, extensions9

1 → A → Γ λ→ G → 1 (3)

of A by G, whose induced action is ϕ, are parametrised by the second group cohomology
group H2

ϕ(G, A). If the action of G on A is trivial, in which case we write H2(G, A),
it is well known that the cohomology group parametrizes the central extensions (i.e.
Z(A) ⊆ Γ). Given a commutative ring R and a 2-cocycle α ∈ Z2(G, R∗) one can define 

the twisted group ring Rα[G] whose basis we will denote by {ug | g ∈ G}. Up to R-
algebra isomorphism, Rα[G] does not depend on α but only on the cohomology class 
[α] ∈ H2(G, R∗). A 2-cocycle α is said to be normalized if u1 is the identity element of 
Rα[G], i.e. if α(1, g) = 1 = α(g, 1) for all g ∈ G. Notice also that then the ring R = Ru1

is central in the twisted group ring Rα[G].

Example 2.1. A cohomology class [α] ∈ H2(G, Z∗) over Z corresponds to a central ex-
tension

[α] : 1 → C2 → Γ → G → 1. (4)

As a result, for an abelian group G generated by {g1, g2, . . . , gr}, [α] ∈ H2(G, Z∗) is 
determined by the values in {±1} of

u◦(gi)
gi

, 1 ≤ i ≤ r, and the commutators [ugi
, ugj

], 1 ≤ i < j ≤ r, (5)

in the corresponding twisted group ring Zα[G].

Let Q be a normal subgroup of G, let M be an abelian group which we equip with 

a trivial G-action (i.e. M is a trivial G-module) and let π : G → G/Q be the quotient
map. Then, for any δ ∈ Zi(G/Q, M) ⊂ Map(G/Q, M) we can define γ ∈ Zi(G, M) by

γ(x1, . . . , xi) = δ(π(x1), . . . , π(xi)).

The map from Zi(G/Q, M) to Zi(G, M) sending δ to γ induces a map

Inf : Hi(G/Q, M) → Hi(G, M)

which is called the inflation map. Sometimes we will want to emphasize Q and use the 

notation InfQ. Notice also, that for any subgroup H of G, there is a natural restriction 

9 Thus A is normal and G ∼= Γ/A. In other words (3) is a short exact sequence.



G. Janssens et al. / Advances in Mathematics 458 (2024) 109983 13

map from Hi(G, M) to10 Hi(H, M). In case of M a trivial G-module, the Lyndon-
Hochschild-Serre spectral sequence yields a very concrete exact sequence between the 

lower cohomology groups.

Lemma 2.2 (Inflation-restriction exact sequence). Let Q be a normal subgroup of G and

M a trivial G-module. Then one has an exact sequence

0 → H1(G/Q, M) Inf→ H1(G, M) Res→ H1(Q, M)G/Q d→ H2(G/Q, M) Inf→ H2(G, M)

where the first connecting map d is the transgression map and H1(·, ·) = Hom(·, ·).

In case of the abelian extension (3), i.e. taking Γ and A (as respectively G and Q) the 

first transgression map is a morphism from Hom(A, M)G to H2(G, M) whose definition 

we now recall. For χ ∈ Hom(A, M)G one can define a 2-cocycle Tra(χ) ∈ Z2(G, M) via

Tra(χ)(g1, g2) = χ(α(g1, g2))

for any g1, g2 ∈ G. The cohomology class [Tra(χ)] does not depend on the choice of 
α ∈ [α].

Definition 2.3. With the above notations, the map

Traα : Hom(A, M)G → H2(G, M) : χ �→ Tα(χ) := [Tra(χ)]

is called the (first) transgression map associated to α.

Using notations as in (3), let Q be a normal subgroup of Γ such that A ∩Q = 1. Then 

Q ∼= λ(Q) and from now on we will implicitly identify the both and speak about G/Q.

Remark 2.4. Notice that G/λ(Q) ∼= G/Q and AQ/Q ∼= A/A ∩ Q = A. Hence, if α =
InfQ(γ) then Γ/Q is the central extension

1 → A → Γ/Q
λ→ G/Q → 1, (6)

corresponding to [γ].

In Section 5.2 we will consider various such normal subgroups Q and the (co)kernel 
of the transgression map associated to Γ/Q. Therefore we also write TraQ for the trans-
gression map associated to the abelian extension (6). When the extension or Q are clear
from the context we simply write Tra.

10 If H = Q is normal, then Im(Res) is easily seen to be contained in the subgroup Hi(Q, M)G/Q of 
G/Q-invariant cocycles.
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We record a corollary of α(g, 1) = α(1, 1) = α(1, g) for all g ∈ Γ, entailed by the 

2-cocycle condition, which will repeatedly be used without further notice.

Corollary 2.5. Let G be a group, Q a normal subgroup and suppose that [α] ∈ H2(G, R∗)
is inflated from a cohomology class [γ] ∈ H2(G/Q, R∗). Then, for g ∈ G and x ∈ Q, ug

and ux commute in Rα[G] whenever g and x commute in G. In particular, ua is central

in Rα[G] for any a ∈ Z(Q).

Finally, we mention a lemma that might be known (however, to our knowledge, does 
not appear in the literature) and which will be useful in Proposition 4.5.

Lemma 2.6. Let G be a finite group, let F be a field and let α ∈ Z2(G, F ∗) be of finite 

order. Assume that m is a number relatively prime to the order of [α] ∈ H2(G, F ∗). Then 

there exists a cocycle β ∈ [α] such that m is relatively prime with the order of β.

Proof. Consider the greatest common divisor of m and the order of α, which we denote 

by d and it exists as o(α) is assumed to be finite. Denote o(α) = d ·� with (d, �) = 1. Since 

the order of α is finite, notice that H = 〈Im(α)〉 is a finite subgroup of F ∗ and hence it
is cyclic. Therefore H can be decomposed as H = H1 × H2 where |H2| = � and |H1| = d.
Hence α admits a natural decomposition as α = αH1

× αH2
∈ Z2(H1, F ∗) × Z2(H2, F ∗).

Since m is relatively prime to the order of [α] and exp(H2(H1, F ∗)) | |H1| = d, [αH1
]

is cohomological trivial. Therefore there exists λ : G → H1 such that αH1
(g, h) =

λ(g)λ(h)λ(gh)−1 for any g, h ∈ G. Consequently, α(g, h) = λ(g)λ(h)λ(gh)−1αH2
(g, h)

that is α is cohomologous to αH2
and clearly m is relatively prime to the order of 

αH2
. �

Standing assumptions: In the sequel of the paper all cohomology groups will be with 

respect to a trivial action, except stated otherwise. Also, given a cohomology class [α],
we always assume a chosen representative α which we assume to be normalized.

3. Decomposition of twisted group algebras for general extensions and transgression

In this section, given a central extension as in (3), we will recover the decomposition 

[47, Theorem 5.3.] of the twisted group algebra F β[Γ] for any [β] ∈ H2(Γ, F ∗) inflated 

from G and F a field with char(F ) ∤ |Γ|. Note that [47, Theorem 5.3.] was a generalisation 

of [35, Theorem 3.2.9.]. Our aim is to use other methods than [35,47] which allow to 

work with general extensions (i.e. with A not necessarily central or even abelian) and to 

interpret in Section 3.2 the projection maps as a kind of transgression morphisms. The 

most general structural result will be Proposition 3.1, but Theorem 3.2 which focuses 
on abelian extensions will be more precise. These results prove Theorem D from the 

introduction.
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3.1. Concrete decomposition

Consider an arbitrary short exact sequence

1 → N → Γ λ→ G → 1. (7)

Fix also a section μ of λ. In particular α(g, h) := μ(g)μ(h)μ(gh)−1 ∈ N for all g, h ∈ G

and conjugation with μ(g) gives an outer automorphism of N :

σ : G → Out(N) := Aut(N)/ Inn(N) : g �→ conj(μ(g)−1). (8)

It is well known that the associativity of Γ means that α(g, h)α(gh, k) = σg(α(h, k))α(g,

hk).
Let F be any field with char(F ) ∤ |N | and [β] ∈ im(Inf : H2(G, F ∗) → H2(Γ, F ∗)).

Note that

F β [Γ] ∼= (FN) ∗ G =
∑

g∈G

(FN)vg (9)

is a crossed product of G over FN with the following operations11:

vgvh = β(g, h)α(g, h)vgh (twisting)

and, for x ∈ FN ,

vgx = σg(x)vg. (skewing)

Before giving a more precise description, recall that there is a bijective correspondence 

between PCI(FN), the set of the primitive central idempotents of FN , and the simple 

FN -modules up to isomorphism. Moreover, via Galois descent, PCI(FN) can be com-
puted from the set of the complex irreducible representations Irr(N, C). Also recall that
G, interpreted as Γ/N , acts on PCI(FN). The orbit space will be denoted PCI(FN)/G.

Let K be a splitting field of N containing F and let Irr(N, F ) be a set of K-characters 
of N containing the character of exactly one composition factor of V ⊗F K for each 

simple FN -module V . Recall that the choice of the composition factor does not affect
the character by [26, Theorem 3.3.1].

By definition, one has a bijection between Irr(N, F ) and the simple FN -modules up 

to isomorphism, and thus with PCI(FN). Denote by eχ the unique primitive central 
idempotent of FN corresponding to χ ∈ Irr(N, F ) (see Section 3.3 in [26]). Note that G
also acts on the irreducible K-characters of N via χg(n) := χ(σg(n)). The bijection can 

be chosen such that eg
χ := eχg and hence G acts on Irr(N, F ).

11 In F β [Γ] an arbitrary F -basis element has the form uauμ(g) for some a ∈ N, g ∈ G. We are identifying 
it with avg where a is considered as a coefficient in F [N ]. Implicitly we are extending the action σ of G on 
N to F N .
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Next, define

Lin(N, F ) := {χ ∈ Irr(N, F ) | χ(1) = 1}.

It is easily verified that

χ ∈ Lin(N, F ) if and only if FNeχ is commutative.

Moreover, for χ ∈ Lin(N, F ) one has that

neχ = χ(n)eχ and FNeχ
∼= F (χ), (10)

where F (χ) is the smallest field containing F and im(χ).

Proposition 3.1. With notation as above, we have the following:

F β [Γ] ∼=
⊕

[χ]∈Irr(N,F )/G

(
(FNEχ) ∗ G

)
,

where Eχ :=
∑

χg∈[χ] eg
χ and the skewing of (FNEχ) ∗ G is given by σ and the twisting

by12 Eχ.(β · α). Moreover, if 13 χ ∈ Lin(N, F )Γ/N ,

(FNEχ) ∗ G ∼= F (χ)β.Tα(χ)[G]. (11)

Proof. Since [β] ∈ im(InfN ) we have that F Res(β)[N ] = FN =
⊕

χ∈Irr(N,F ) FNeχ.
In general the orthogonal idempotents eχ are not central in F β [Γ], however the el-
ement Eχ (being the sum of the orbit under conjugation by G) is. These elements 
are again two-by-two orthogonal idempotents, hence (9) can be rewritten as F β[Γ] =⊕

[χ]∈Irr(N,F )/G(FNEχ) ∗ G. Since Eχ is central we see that indeed only the twisting 

changes and in the way asserted. This proves the first part of the result.
Next note that χ ∈ Irr(N, F )Γ/N being an invariant character exactly means that the 

orbit of eχ is a singleton and hence Eχ = eχ. Hence if moreover χ ∈ Lin(N, F ), then 

by (10) FNEχ
∼= F (χ). Also, from the earlier reformulation of the associativity of Γ, it

readily follows that αχ := Traα(χ) satisfies the 2-cocycle condition

αχ(g, h)αχ(gh, k) = αχ(h, k)αχ(g, hk).

In particular, (FNEχ) ∗ G is a twisted group algebra where, by the above, the twisting 

is indeed Eχ.β · α = β · Traα(χ). �

12 The notation needs clarification: we implicitly consider both β and α as having image in F N and hence 
(β ·α)(g, h) := β(g, h).α(g, h). Subsequently, Eχ.(β ·α) also multiplies the result with the central idempotent
Eχ.
13 We denote by Lin(N, F )Γ/N the set of Γ/N-invariant linear characters.
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In order to obtain a more insightful decomposition we now assume that N is abelian.

In this case the extension (7) corresponds to the cohomology class14 [α] ∈ H2
σ(G, N) and 

Irr(N, F ) ⊆ Hom(N, F
∗
) where F denotes the algebraic closure of F . Moreover, since by

assumption char(F ) ∤ |N |, the theorem of Perlis and Walker [26, Theorem 3.3.6.] tells us 
that

FN =
⊕

d||N |
F (ζd)⊕ad , (12)

where ad = kd
[Q[ζd]:Q]
[F [ζd]:F ] , with kd the number of cyclic subgroups of N of order d and ζd a 

primitive d-th root of unity. Proposition 3.1 now readily translates into the following:

Theorem 3.2. With notations as above we have that:

(1) If N is abelian, then

F β [Γ] ∼=
⊕

[χ]∈Lin(N,F )/G

( ⊕

χ′∈[χ]

F (χ′)eχ′ ∗ G
)

=
⊕

[χ]∈Lin(N,F )/G

(F (χ)Eχ) ∗ G

with the skewing of (F (χ)Eχ) ∗ G given by σ and the twisting by Eχ.(β · α).
(2) If N is central,15 then

F β [Γ] ∼=
⊕

χ∈Lin(N,F )

F (χ)β.Tα(χ)[G].

Proof. The first part is a direct application of Proposition 3.1 and remarking that now
Lin(N, F ) = Irr(N, F ) and F (χ) = F (χ′) for two conjugated characters χ and χ′. When 

N is central then Irr(N, F ) = Lin(N, F )Γ/N and eg
χ = eχ. Therefore the second part

follows from the first and the last assertion in Proposition 3.1. �

3.2. Transgression and natural morphisms as projections

Consider again the general extension (7). The projection in Proposition 3.1 of F β [Γ]
on FNEχ ∗G, denoted pχ, is given by multiplying with the central idempotent Eχ. If χ ∈
Lin(N, F )Γ/N then this idempotent Eχ and, in particular, the isomorphism (11) can be 

made explicit and, moreover, we recover some classical constructions (see Example 3.4).
More generally, let R be a domain and F its field of fractions. For χ ∈ Lin(N, F )Γ/N we 

need its R-linear extension

χR : RN → R[χ] :
∑

a∈N

raa �→
∑

a∈N

raχ(a)

14 Since N is not necessarily central we might thus have a non-trivial action on the coefficients given by σ.
15 As mentioned earlier, this case was already obtained in [47, Theorem 5.3].
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which is an R-algebra map whose kernel we denote

Iχ := ker(χR). (13)

Proposition 3.3. Let Γ, N, G, F and μ be as in Section 3.1, [β] ∈ im(Inf : H2(G, R∗) →
H2(Γ, R∗)) and χ ∈ Lin(N, F )Γ/N . Then, the projection pχ restricted to Rβ[Γ] agrees 

with the map defined by (for n ∈ N and g ∈ G)

Ψχ,β : Rβ [Γ] → R[χ]β.T (χ)[G] : r un.μ(g) �→ rχ(n)vg, (14)

which is a ring epimorphism with ker(Ψχ,β) = Rβ [Γ]Iχ = Rβ [Γ](1 − eχ) ∩ Rβ [Γ]. In 

particular,

Rβ [Γ]/Rβ [Γ]Iχ
∼= Rβ·T (χ)[G].

Moreover, if im(χ) ⊆ R∗, then Iχ is a free R-module with R-basis {ua − χ(a)u1 | 1 �=
a ∈ A}.

When β is trivial we will simply write Ψχ. If R is a field and N central then most of the 

previous result is known16 (e.g. if β is trivial in [35, Theorem 3.2.8.] and for β ∈ im(InfN )
in [47, Proposition 5.2.]).

Example 3.4.

• If χ is the trivial character, i.e. χ(n) = 1 for all n ∈ N , then χR is the augmentation 

map of RN . In that case, writing [β] = Inf([γ]),

Ψχ,β : Rβ [Γ] → Rγ [G] : r un.μ(g) �→ r vg

is the so-called natural homomorphism with respect to N (i.e. induced from the 

canonical map from Γ to G, denoted ωN . If β is trivial it also is called the relative 

augmentation with respect to N). We will denote this specific case by ωβ,N .
• If Γ is a central extension, i.e. N ⊆ Z(Γ), then Lin(N, F )Γ/N = Irr(N, F ) which is 

a subgroup of Hom(N, F
∗
) and Ψχ,β is the ring morphism associated to the trans-

gression map Tra as in [47, Section 5]. Therefore we call the morphism (14) the 

generalized transgression morphism.

The reader may wish now to look at Example 5.8 where we will give an example of 
a group of order 16, along with its decomposition in twisted group algebras and the 

associated generalized transgression maps.

16 If χ is the trivial character and N arbitrary, then the statement has to be compared with [35, Lemma 
3.2.12].
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Proof of Proposition 3.3. A direct calculation verifies that Ψχ,β is multiplicative when 

χ is an invariant character. Concretely, (un1
uμ(g1)).(un2

uμ(g2)) = β(g1, g2)un1
uσg1 (n2) ×

uμ(g1g2) which is mapped by Ψχ,β to β(g1, g2)χ(n1σg1
(n2))vg1g2

= β(g1, g2)χ(n1)χ(n2) ×
vg1g2

. The latter is Ψχ,β(un1
uμ(g1)).Ψχ,β(un2

uμ(g2)), as needed. Now it is clear that it is 
an epimorphism.

Next, because χ ∈ Lin(N, F )Γ/N , multiplying with the idempotent Eχ, i.e. the value 

of the projection, was already explicitly mentioned in (10). By comparing we see that
Ψχ,β indeed agrees with pχ.

Concerning the kernel, it follows from Proposition 3.1 that ker(Ψχ,β) = Rβ [Γ](1 −eχ) ∩
Rβ [Γ]. For the other description, since Ψχ,β |RN = χR, we already have that Rβ[Γ]Iχ ⊆
ker(Ψχ,β). Also, an element y of Rβ [Γ] can be uniquely written as y =

∑
g∈G yguμ(g),

with each yg ∈ RN . Since the elements vg are R[χ]-linearly independent, the concrete 

form of Ψχ,β implies that y ∈ ker(Ψχ,β) if and only if each yg ∈ ker(Ψχ,β), or equivalently
each yg ∈ Iχ. Consequently, ker(Ψχ,β) =

∑
g∈G Iχuμ(g) ⊆ Rβ [Γ]Iχ, as asserted.

Finally, suppose im(χ) is contained in R∗ and denote the free R-module generated 

by the set {ua − χ(a)u1 | a ∈ N} by M . Clearly M is contained in the kernel Iχ of 
χR : RN → R. Conversely, if x =

∑
a∈N raua ∈ ker(χR), then 

∑
a∈N raχ(a)u1 = 0 and 

hence x = x − ∑
a∈N raχ(a)u1 ∈ M . It follows that Iχ = M . �

In Section 5.1 we will be in the setting of Remark 2.4 where χ is a (linear) character
of the abelian subgroup A, but where once we will be working with Γ and once with 

some Γ/Q for A ∩ Q = 1. In order to distinguish, we will sometimes write

Ψχ,Q : Rβ [Γ/Q] → Rβ.T (χ)[G/Q] (15)

and hence assume [β] is understood from the context.

3.3. Refined decomposition in case of an α-representation group of G

Often in this article we will be concentrating on a fixed 2-cocycle α ∈ Z2(G, F ∗) of 
G. In that case it is useful to consider the following group which will be recurrent:

Gα := {α(a, b)uc | a, b, c ∈ G} = 〈ug | g ∈ G〉 ≤ U(F α[G]). (16)

If α is of finite order,17 then every element in Gα is of the form ζiug with ζ a o(α)-
primitive root of unity. Hence it is a central extension of 〈ζ〉 by G with λ : Gα →
G : ζiug �→ g. Considering the canonical section μ(g) = ug one has that α(g, h) =
μ(g)μ(h)μ(gh)−1. Thus Hom(〈ζ〉, F ∗) = 〈χ〉 with χ(ζ) = ζ and α = Tra(χ). Therefore 

we may now apply Theorem 3.2 to recover [35, Proposition 3.3.8.].

17 Since G is finite we know that the cohomology class [α] has finite order dividing |G|, however there has 
not to be a representative of finite order. For example the cohomology class of C2 = 〈x〉 over Q defined by
u2

x = 2 has order 2 but any 2-cocycle representative has infinite order. Such a representative however exists 
when the values are in a |G|-divisible group.
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Corollary 3.5. Let G be a finite group, F a number field and α ∈ Z2(G, F ∗) a cocycle of

finite order. Then

F [Gα] ∼=
o(α)−1⊕

i=0

F αi

[G].

Note that the isomorphism class of Gα depends on the chosen cocycle. It turns out
that even for cohomologous cocycles of the same finite order the associated groups might
be non isomorphic. The following example was communicated to us by Y. Ginosar.

Example 3.6. Denote

G = C2 × C2 = 〈x〉 × 〈y〉

and let F = Q(i). Next, we wish to define two cocycles α, α| ∈ Z2(G, F ∗). We will take 

cocycles which are normalized, that is for any g ∈ G

α(g, eG) = 1 = α(eG, g), α|(g, eG) = 1 = α|(eG, g).

Further, define

α(x, x) = α(x, y) = α(x, xy) = 1

α(y, y) = 1, α(y, x) = α(y, xy) = −1

α(xy, x) = 1, α(xy, y) = α(xy, xy) = −1

and also

α|(x, x) = −1, α|(x, y) = 1, α|(x, xy) = −1

α|(y, y) = −1, α|(y, x) = −1, α|(y, xy) = 1

α|(xy, x) = 1, α|(xy, y) = −1, α|(xy, xy) = −1.

Now choose a basis {ug}g∈G for F αG and a basis {vg}g∈G for F α|

G. Notice that both 

cocycles α, α| ∈ Z2(G, F ∗) are of order 2 and also notice that the cohomology classes 
which corresponds to these cocycles are

[α] : u2
x = 1, u2

y = 1, [ux, uy] = −1

and

[α|] : v2
x = −1, v2

y = −1, [vx, vy] = −1.

It follows that
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Gα = 〈ug | g ∈ G〉 ∼= D8 and Gα| = 〈vg | g ∈ G〉 ∼= Q8

and therefore G∗
α �∼= G∗

α|
. The crucial point is that these cocycles are cohomologous over18

F = Q(i) but not over Q.

4. When is the unit group of a twisted group ring finite?

Let F be a number field, R a Z-order in F and α ∈ Z2(G, R∗) a fixed (normalized)
2-cocycle. We refer to [26, Section 4.6] for the necessary background on orders. In this 
section we determine when the unit group U(Rα[G]) is finite.

Generally speaking, [26, Corollary 5.5.8.], if O a is Z-order in a finite dimensional 
semisimple Q-algebra A, then U(O) is finite if and only if every simple component of A
is either Q, a quadratic imaginary field extension of Q or a totally definite quaternion 

algebra over Q. Recall that a totally definite quaternion algebra over Q is a 4-dimensional 
Q-algebra with basis 1, i, j, k so that ij = k = −ji, i2, j2 ∈ Q and i2 < 0, j2 < 0. We 

will denote this algebra by 
(

u,v
Q

)
where i2 = u and j2 = v.

As a by-product, if U(Rα[G]) is finite and x ∈ U(Rα[G]) is of finite order, say n,
then n must19 divide 4 or 6. Consequently, the exponent of Gα is a divisor of 4 or 6
if U(Rα[G]) is finite. Moreover, also U(R) would need to be finite and hence by the 

above F = Q or Q(
√

−d) with d > 0. In the former case R = Z is the only order in F .
We obtain the following characterisation, generalizing a classical result of Higman [26,
Theorem 1.5.6] for untwisted group rings.

Theorem 4.1. Let G be a finite group, F be a number field, R a Z-order in F and

α ∈ Z2(G, R∗) non-trivial normalized cocycle. Then the following are equivalent:

(1) U(Rα[G]) is finite,

(2) U(R[Gα]) is finite,

(3) U(Rαi

[G]) is finite for all i.

One of the above holds if and only if one of the following conditions is satisfied:

(i) Gα is an abelian group of exponent 4 and F = Q or Q(
√

−1),
(ii) Gα is an abelian group of exponent 3 and F = Q(

√
−3),

(iii) Gα is an abelian group of exponent 6 and F = Q or Q(
√

−3),
(iv) Gα is a non-abelian Hamiltonian20 2-group and F = Q.

18 The coboundary here is a map f : G → Q(i) determined by f(x) = i = f(y), f(xy) = −1 and f(1) = 1.
Indeed α|(g1, g2) = f(g1)f(g2)f(g1g2)−1α(g1, g2) for all g1, g2 ∈ G.
19 The F -subalgebra F [x] of F αG is a commutative semisimple subalgebra and hence a direct sum of 
cyclotomic extensions of Q(ξm), with ξm a root of unity of order m, a divisor of n. Moreover, by the above,
[Q(ξm) : Q] ≤ 2 and one of the m must be equal to n. Now the Dirichlet unit theorem yields the claim as 
a Z-order in Q(ξn) is finite exactly when n divides 4 and 6.
20 A group is called Hamiltonian if every subgroup is normal.
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Recall that Higman’s result says that U(ZG) is finite if and only if G is abelian of 
exponent dividing 4 or 6 or G ∼= Q8 × Cn

2 for some n ∈ N. To put into perspective,
it is good to recall Baer-Dedekind’s classification theorem [52, Theorem 1.8.5.] which 

says that G is Hamiltonian (i.e. all subgroups are normal) if and only if G is abelian 

or G ∼= Q8 × Cn
2 × A with A an odd order abelian group. Therefore, Higman’s result

says that U(ZG) is finite exactly for the Hamiltonian groups with exponent dividing 

4 or 6. Note that the list of possibilities stated above for a non-trivial cocycle is more 

restrictive than for a trivial cocycle, which is the reason that we excluded the trivial case 

in Theorem 4.1
Also note that the group Gα is abelian exactly when the cocycle α is symmetric (i.e.

α(g, h) = α(h, g) for all h, g ∈ G) and G is abelian. In Corollary 4.4 below we will give 

a concrete interpretation in terms of G and α for case (iv).

Proof. Clearly in any of the cases (1)-(3) 〈im(α)〉 is a finitely generated torsion subgroup 

of R∗ ⊂ F ∗ and hence it is a finite cyclic group. In particular o(α) < ∞ which allows to 

apply Corollary 3.5:

F [Gα] ∼=
o(α)−1⊕

i=0

F αi

[G].

Hence the equivalence between (2) and (3) is a consequence thereof and commensurability
of the unit group of Z-orders in F [Gα] (see [26, Lemma 4.6.9]). Also any order in F αi

[G]
is a direct summand of an order in F [Gα] and hence (2) implies (1). The main bulk of 
the proof goes into proving that (1) implies (2). More precisely, we will show that Gα

and F are of the form (i)-(iv). In those cases one can directly see that U(R[Gα]) is finite 

(e.g. this can be deduced from [26, Theorem 1.5.6.], handling the case R = Z, together
with Dirichlet unit theorem [26, Theorem 5.2.4.]).

Suppose U(Rα[G]) is finite and hence, as noticed at the start of this section, exp(Gα) |
4 or 6 and F α[G] is a direct sum of (certain) division F -algebras. In particular, it contains 
no non-zero nilpotent elements.

Claim 1. If uk ∈ Gα, with k ∈ G such that o(uk) = o(k) then 〈uk〉 is normal in Gα.

Moreover, this condition holds when o(uk) is square-free and if o(uk) = 2 then uk ∈
Z(Gα).

The proof of this claim will be carried out inside F α[G] (and not F [Gα]). Let ũk :=∑o(uk)−1
i=0 ui

k and note that ukũk = ũk. Hence for any t ∈ G the element (1 − uk)utũk ∈
Rα[G] is a nilpotent element. By an earlier remark the nilpotent element is zero and thus 
u−1

t ukutũk = ũk. Consider now F α[G] with its canonical G-grading. Then deg(uk) = k

and deg(u−1
t ukut) = t−1kt. Since o(uk) = o(k), all summands of ũk have different degrees 

(in particular ũk �= 0) and thus a degree argument shows that u−1
t ukut = uj

k for some j.



G. Janssens et al. / Advances in Mathematics 458 (2024) 109983 23

Consequently, 〈uk〉 � Gα, as desired. Now suppose o(uk) is square-free. It is well known21

that if o(α) is finite then u
o(k)
k is a root of unity in R∗ of order dividing o(k). Hence if 

o(uk) is square-free, it is easily seen that uo(k)
k = 1. The last part follows from the rest.

Claim 2. Either (I) Gα is abelian of exponent dividing 4 or 6, (II) Gα
∼= Q8 × E with E

an elementary abelian 2-group.

Note that by Baer-Dedekind’s classification theorem [52, Theorem 1.8.5.] these cases 
are exactly those Hamiltonian groups with exponent dividing 4 or 6. Due to claim 1 it
remains to prove that the generators of order 4 are also normal. For this recall that [58,

Theorem 11.5.12] the unit group of a maximal order in a quaternion algebra 
(

−a,−b
Q

)
,

with a, b ∈ N, is cyclic except for the maximal order in 
(

−1,−1
Q

)
and 

(
−1,−3

Q

)
. In those 

cases the unit group is SL(2, 3) = Q8 ⋊ C3, resp. Dic3 := C3 ⋊ C4. Now consider
Gα ≤ ∏

e∈PCI(F α[G]) Gαe. Since also exp(Gαe) | 4, 6 we see that Gαe is either cyclic or
a subgroup of Q8 or D6. Thus one can check that any element of order 4 in the direct
product generates a normal therein and in particular the same holds for Gα. This finishes 
the proof of the second claim.

We will now study both cases in more detail. To start, as already used, we know that
U(R) is finite and hence that F = Q or Q(

√
−d) with d > 0. It remains to restrict the 

possible values of d and exclude exponent 2.
Case (I): Suppose Gα is abelian. To start remark exp(Gα) = 2 is not possible. Indeed,

otherwise 1 = (uguh)2 = α(g, h)u2
gu2

h = α(g, h) for all g, h ∈ G, in contradiction with the 

assumption that α is non-trivial. By computations of the same type, exp(Gα) = 3 and 

F = Q is also impossible for non-trivial α. The restriction on F for the other cases will 
follow from the fact that all simple components have degree at most 2 over Q. Indeed,
suppose exp(Gα) = 4 and write F = Q(

√
−d), with d a square free non-negative integer.

Then F α[G] has a simple component Q(
√

−d, 
√

−1) = Q(
√

d, 
√

−1) which is of degree 

at most 2 if and only if d = 0, or 1. If the exponent is 3 or 6, then there is a simple 

component Q(
√

−d, ζ3) which would have degree larger than 2 if d �= 0, 3.
Case (II): Finally consider the case that Gα

∼= Q8 × E is an Hamiltonian 2-group.
Since F α[G] has a simple component 

( −1,−1
F

)
which needs to be totally definite (in 

particular F is totally real), we indeed get that F = Q. �

Remark 4.2. The condition on the coefficient ring R can be generalized further. Namely,
let F be a global field and S be a finite set of places of F containing the archimedian 

ones. Denote by OS the ring of S-integers of F , which is well known to be a Dedekind 

domain with finite quotients. Therefore, any OS-order R is commensurable [26, Lemma 

21 More generally, if g1 and g2 commute, then [ug1
, ug2

] := u−1
g1

u−1
g2

ug1
ug2

= α(g1, g2). Since uo(g)
g is 

central in Rα[G], it follows that 1 = [uo(g1)
g1

, ug2
] = α(g1, g2)o(g1). In particular α(ki, k) is a o(ki)-root of 

unity in R∗ and so also a o(k)-root of unity. Since uo(k)
k =

∏o(k)−1
i=1 α(ki, k)u1 and R is commutative we 

obtain the claim.
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4.6.9] with OS . Since |U(OS)| is finite only for F = Q or Q(
√

−d), with d > 0, and 

S = {∞} (e.g. see [11, Theorem 3.24.]) we see that the conclusion of Theorem 4.1 also 

holds for such R.

Theorem 4.1 and its proof could be considered as a first contribution about the inter-
play of torsion units and nilpotent elements between Rα[G] and R[Gα]. A satisfactory
answer to the following general question would very useful:

Question 4.3. Is there a concrete connection between the torsion and nilpotent elements 
of Rα[G] and R[Gα]? In particular, when (in terms of G, R and α) does Rα[G] not have 

nonzero nilpotent elements?

Using Theorem 4.1 one can give an especially precise characterisation when U(Rα[G])
is a finite non-abelian group in terms of G and α. For this recall that any non-abelian 

Hamiltonian 2-group G is isomorphic to Q8 × Cn
2 for some n. In other words, it can be 

written as a stem22 extension

1 → C2 → G → Cn+2
2 → 1.

On the other hand, any non-trivial cohomology class [α] ∈ H2(G, Z∗) corresponds to a 

central extension of G by C2. Therefore, from Theorem 4.1 (iv) we deduce

Corollary 4.4. Let G be a finite group, F be a number field, R an order in F and [α] ∈
H2(G, R∗) a non-trivial cohomology class. Then U(Rα[G]) is a finite non-abelian group 

if and only if the following conditions are satisfied

(1) R = Z,

(2) G is an elementary abelian 2-group of rank at least 2,

(3) [α] is inflated from a cohomology class [γ] ∈ H2(C2 × C2, C2) which is determined

by u2
x = u2

y = [ux, uy] = −1 where x, y are generators of C2 × C2 and −1 is the 

generator of C2.

Notice that the cohomology class [γ] ∈ H2(C2 × C2, C2) above corresponds to Q8.
To finish this section, we would like to come back on the proof of Theorem 4.1 which 

unfortunately is quite indirect. Indeed the implication from (1) to (2) goes by classifying 

all the possibilities for Gα and F and then noticing that in all these cases U(R[Gα]) is 
finite. A more natural approach would have been to construct for all j an isogeny between 

U(Rα[G]) and U(Rαj

[G]). Such a map can however only come from ring (epi)morphism 

22 An extension is called stem if the base normal group is contained in G′ ∩Z(G). In particular it is central.
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when gcd(j, n) = 1. The statement answers a question of Margolis and Schnabel23 [47,
remark 3.2.] in case [α] has a cocycle representative of finite order.

Proposition 4.5. Let G be a finite group, F a field of characteristic zero and α ∈
Z2(G, F ∗). If F α[G] ∼= F αj

[G], isomorphic as rings, then gcd(j, o([α])) = 1. If α has 

finite order and F is a number field, then converse also holds.

Proof. First suppose that F α[G] ∼= F αj

[G]. Note that since G is finite, 〈im(α)〉 is a 

finitely generated abelian subgroup of F ∗. In particular it lies in some countable subfield,
say L ⊆ F . Moreover, with abuse of notation, F α[G] ∼= F ⊗L Lα[G] and one can restrict
the given isomorphism restricts to a ring isomorphism Lα[G] ∼= Lαj

[G]. Now, since 

L is countable it can be embedded in C and we can view α as having values in C∗.
Consequently, by tensoring with C ⊗L − we see that Cα[G] ∼= Cαj

[G] as rings. Therefore 

we can apply [47, Theorem 3.1.] saying that gcd(j, o([α])) = 1.
Conversely, let n = o([α]) and let j ∈ Z≥0 such that gcd(j, n) = 1. Since cohomologous 

cocycles α, β ∈ Z2(G, F ∗) admit isomorphic twisted group rings F αG ∼= F βG we may
assume, by Lemma 2.6, that gcd(j, o(α)) = 1. Hence we have an isomorphism σj :
Q(ζo(α)) → Q(ζj

o(α)) mapping ζo(α) to its j-th power. With this at hand, define ψ :

Q(ζo(α))α[G] → Q(ζo(α))αj

[G] by ψ(
∑

agug) =
∑

σj(ag)vg. Note that for all g, h ∈ G:

ψ(uguh) = ψ(α(g, h)ugh) = α(g, h)jvgh = vgvh = ψ(ug)ψ(uh).

Consequently, ψ is a ring epimorphism and hence isomorphism. Now note that F contains 
a ζo(α)-root of unity. Therefore an extension of scalars with field F now finishes the 

proof. �

5. Correlations between R[Γ] and Rα[G] - a unit group point of view

Throughout this section we fix an extension

1 → N → Γ λ→ G → 1. (17)

As in (7), fix also a section μ of λ and define

α(g, h) = μ(g)μ(h)μ(gh)−1.

In particular when N is abelian we will always choose this α as the normalized represen-
tative of the cohomology class [α] corresponding (17). We will always assume that the 

underlying field F is such that char(F ) ∤ |Γ| and R is some order in F .

23 As is apparent from the proof, the main tool is however their result over the complex numbers [47,
Theorem 3.1.].
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We wish to compare U(R[Γ]) and U(Rα[G]) with the aim to pullback results from the 

smaller group G, but in the twisted context, to the larger group Γ. For this we study
the kernel and cokernel of the generalized transgression Ψχ from Proposition 3.3. Also 

in this section we will work more generally with Rβ [Γ] for some [β] ∈ im(InfN ).

Notation. Recall that if f : R → S is a ring homomorphism, then we denote the induced 

map on the unit groups by f̃ : U(R) → U(S).

5.1. On the cokernel of the generalized transgression map

In the sequel, finiteness of cokernels of group morphisms will always follow from the 

following somehow folklore lemma.

Lemma 5.1. Let24 R be a Dedekind domain with field of fractions F such that R/I is 

finite for all 0 �= I � R and let A and B be semisimple F -algebras. Furthermore consider

R-orders OA in A and OB in B. If there exists a R-algebra epimorphism π : OA → OB,

then coker(π̃) is finite.

Proof. By definition OA contains an F -basis of A and similarly for OB. Therefore we 

can extend F -linearly π to an F -algebra epimorphism π̂ : A → B. Formally π̂ = idF ⊗R π

and we identify A = FOA with F ⊗R OA. Due to the semisimplicity of A, there exists 
a central idempotent e in A such that π̂|Ae : Ae → B is an isomorphism. In other
words, when decomposing A = Ae ⊕A(1 −e) we can consider π̂ as projection on the first
component. To obtain the desired statement, consider the R-orders OA ⊆ OAe ⊕OA(1 −e)
in A. Due to the conditions on R there exists a non-zero element r ∈ R such that
r(OAe ⊕ OA(1 − e)) ⊆ OA and see [26, Lemma 4.6.9.],

[U(OAe) × U(OA(1 − e)) : U(OA)] ≤ [OA : r(OAe ⊕ OA(1 − e))] < ∞.

Consequently also its epimorphic image Im(π̃) ∼= U(OA)e is of finite index in U(OAe) ∼=
U(OB) (with upper bound the above number), as desired. �

Note that the proof in fact gives a method to obtain an upper bound on | coker(π̃)|
which however depends on the element r ∈ R obtained which is not explicit.

Question 5.2. What is an explicit, and generic, upper bound on | coker(π̃)|?

Using Proposition 3.3 a first useful incarnation of Lemma 5.1 is with Ψ̃χ for some 

χ ∈ Lin(Γ, R)Γ/N . However, in contrast to the kernel and despite it to be finite, in general 

24 The prototypical example of such a ring is the ring of integers in a number field. The condition is the 
minimal needed to use classical methods with R-orders, e.g. that two R-orders have commensurable unit
groups.
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a concrete description (or even generators) of the cokernel is out of reach. Instead, we 

will focus on comparing the cokernel of Ψ̃χ,Q, defined in (15), for certain types of ‘nice’
normal subgroups Q of Γ. The restrictions on Q will be as in Remark 2.4 and be such 

that we have the following25 commutative diagram:

U(Rβ [Γ])
Ψ̃χ

ω̃Q,β

U(Rβ.T (χ)[G])

ω̃Q,β.T (χ)

U(Rβ [Γ/Q])
Ψ̃χ,Q

U(Rβ.T (χ)(χ)[G/Q])

(18)

Note that (co)restricting Ψ̃χ yields a morphism

Ψ̃ker : U
(
1 + Rβ [Γ].IQ

)
−→ U

(
1 + Rβ.T (χ)[G].IQ

)
: 1 + x �→ 1 + Ψχ(x)

between ker(ω̃N ) and ker(ω̃N,α) (cf. Proposition 3.3 and (13) for definition IQ).

Theorem 5.3. Let Γ be the extension (17), [β] ∈ im(InfN ), χ ∈ Lin(N, F )Γ/N and R a

Dedekind domain such that R/I is finite for all 0 �= I � R and char(R) ∤ Γ. Then,

(1) coker(Ψ̃χ,β) is finite,

(2) for any normal subgroup Q of Γ such that Q ∩ N = 1, α(x, y) = 1 for all x, y ∈ Q,

[β] ∈ im(InfQ) and ω̃Q and ω̃Q,β.T (χ) are surjective, then

| coker(Ψ̃ker)| . | coker(Ψ̃χ,Q)| = | coker(Ψ̃χ,β)|.

If Q has a complement in Γ (which will be our setting in the later sections), then 

the maps ω̃Q and ω̃Q,β.T (χ) are surjective and the inflation condition on α will also be 

satisfied. The surjectivity of the augmentation is also the case when R is an Artinian 

ring [8, Lemma 3.4.].

Proof of Theorem 5.3. The first statement follows by combining Proposition 3.3 and 

Lemma 5.1. The second statement will follow from a diagram chasing argument starting 

from diagram (18). For notation simplicity we will write ω̃ for ω̃Q,β and ω̃χ for ω̃Q,β.T (χ).
We complete the rows to an exact sequence by adding their kernels and cokernels 

with the canonical embedding and projection denoted by i1, π1 (resp. iQ, πQ). Due to 

the commutativity of (18), πQ ◦ ω̃Qχ induces a map FCok between the cokernels. All 
together we obtain the following diagram where all squares commute:

25 In the right column one should be careful with the notation T (χ). More precisely in the right upper
corner T (χ) = [χ ◦α] ∈ H2(G, R∗). In the right lower corner T (χ) = [χ ◦γ] ∈ H2(G/Q, R∗) with α = Inf(γ)
as in Equation (6). In particular Traα(χ) = InfN (Traγ,N (χ)) and so the going down arrows exist.
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ker(Ψ̃χ)
i1 U(Rβ [Γ])

Ψ̃χ

π◦ω̃

U(Rβ.T (χ)[G])

ω̃χ

π1

coker(Ψ̃χ)

FCok

U(Rβ [Γ/Q])

ker(Ψ̃χ,Q) Ψ̃χ,Q

U(Rβ.T (χ)[G/Q])
πQ

coker(Ψ̃χ,Q)

where π is the canonical epimorphism from U(Rβ[Γ/Q]) to U(Rβ [Γ/Q])

ker(Ψ̃χ,N )
. The Snake lemma 

applied to the diagram above now yields an exact sequence:

ker(π ◦ ω̃)
Ψ̃ker

ker(ω̃χ) ker(FCok)
d

coker(π ◦ ω̃) coker(ω̃χ) coker(FCok)

with all the morphisms being the straightforward ones and d the connecting morphism.
Now assume that ω̃ and ω̃χ are surjective. Then coker(π◦ω̃) is trivial and hence, going 

through the exact sequence above via isomorphism theorems, ker(FCok) ∼= coker(Ψ̃ker).
Also, coker(FCok) is trivial thus all together we obtain the desired statement. �

5.2. On the kernel of the generalized transgression map

Unlike coker(Ψ̃χ), the kernel of Ψ̃χ will usually be infinite as already seen with aug-
mentation maps.

Example 5.4. When N = Γ and χ the trivial character, then Ψ̃χ is simply the usual 
augmentation map from U(Z[Γ]) to U(Z) = {±1}. We now see that [U(Z[Γ]) : ker(Ψ̃χ)] =
2 and therefore the kernel is infinite when U(Z[Γ]) is infinite which, by a theorem of 
Higman [26, Th. 1.5.6.], exactly happens when Γ is not an Hamiltonian 2-group or an 

abelian group of exponent dividing 4 or 6.

The advantage of the kernel is that thanks to Proposition 3.3 and Theorem 3.2 one 

has a significant amount of information about its elements. Combined with Theorem 4.1
one can describe finiteness of ker(Ψ̃χ), in case of a central extension. Namely, ker(Ψ̃χ) is 
finite if and only if U(R(χ′)β.T (χ′)[G]) is finite for all χ′ ∈ Lin(N, F ) different of the given 

χ. Recall that R(χ′) denotes the smallest ring containing R and the values of Im(χ′).
Below we translate this to easily verifiable necessary conditions on G, N and χ

Theorem 5.5. Suppose that the extension (17) is central (i.e. N ⊆ Z(Γ)), [β] ∈
im(InfN ), χ ∈ Hom(N, R∗) and R the ring of integers in a number field26 F . Then,

(1) {torsion units in ker(Ψ̃χ,β)} = {χ(a)−1a | a ∈ N},

26 This restriction on the coefficient ring is only due to the restriction in Theorem 5.6. With more work, as 
in [53, Theorem III.1], one could probably take any domain of characteristic 0 such that no prime divisor
of |G| is divisible in R∗.
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(2) if ker(Ψ̃χ) is finite then U(Rβ [Γ]) is finite or one of the following holds:

• N ∼= Cp for p ≥ 5 prime, Γ ∼= N × G, χ �= ωN and U(RRes(β)[G]) is finite,

• N ∼= C9, F = Q, χ the faithful character and Gβ abelian with exp(Gβ) | 6
• N ∼= C8, F = Q, χ faithful and Gβ abelian with exp(Gβ) | 4,

• exp(N) | 4, 6 and if N is non-cyclic then lcm(exp(G), exp(N)) | 4, 6

To prove the second part we will need the next theorem which is a generalisation of 
the classical result of Berman and Higman on torsion units (see [36, Theorem 2.3.] or [53,
Theorem III.1]). The proof is similar to the one given by Karpilovsky in the untwisted 

case. For completeness sake and convenience of the reader we include a proof.

Theorem 5.6. Let G be a finite group, R the ring of integers in a number field F and

[β] ∈ H2(G, R∗). If x =
∑

g∈G agug is a torsion unit in Rβ [G] such that a1 �= 0, then 

x ∈ U(R).

Proof. The proof is along the same lines as [36, Theorem 2.3.]. Let u =
∑

g∈G rgug

be a torsion unit in Rβ[G], say of order m. Assume r1 �= 0. Let n = |G| and consider
the left regular representation ρ : F β [G] → Mn(F ). Then ρ(u) is of finite order m

(note that ρ is injective) and thus it is diagonalisable over the algebraic closure of F in 

C (recall that F is a number field). Its eigenvalues ζ1, · · · , ζn are roots of unity, each 

of order a divisor of m. We get that ζ1 + · · · + ζn =
∑

g∈G rgtr(ρ(ug)) = nr1. Thus 
|nr1| = |ζ1 + · · · + ζn| ≤ n. Moreover, |nr1| = n if and only if ζ1 = ζ2 = . . . = ζn. If this 
holds then the diagonalisation of ρ(u) is a multiple of the identity matrix, hence ρ(u) is 
a central, i.e. ρ(u) ∈ F . Because ρ is injective this yields that u ∈ F ∩ Rβ [G] = R, as 
desired.

So, it remains to show that |nr1| = n. Assume, the contrary, i.e. suppose |nr1| < n.
Let ε be a primitive m-th root of unity. Note that r1 ∈ Q(ε) ⊆ C. Since also r1 ∈ R and 

thus r1 is an algebraic integer, it follows that r1 is in the ring of integers of Q(ε).
We claim that, for every σ ∈ Gal(Q(ε)/Q), we have |σ(nr1)| < n. Indeed, note that

complex conjugation and elements of Gal(Q(ε)/Q) commute and thus if n = |σ(nr1)| =
σ(nr1)σ(nr1) = σ(nr1)σ(nr1) then also n = σ−1(σ(nr1)σ(nr1)) = |nr1| < 1. This proves 
the claim.

Next, the assumption says that |r1| < 1 and from the claim we get that |σ(r1)| <

1 for all σ ∈ Gal(Q(ε)/Q). It follows that the norm 0 �= |NGal(Q((ε)/Q)(r1)| =
| ∏σ∈Gal(Q(ε)/Q) σ(r1)| =

∏
σ∈Gal(Q(ε)/Q) |σ(r1)| < 1. However, this yields a contradic-

tion as NGal(Q(ε)/Q)(r1) is an algebraic integer (see for example Proposition 4.1.8 in [26])
and thus belongs to Z; so it can not be strictly between 0 and 1. �

It would be interesting to have a proof of Theorem 5.6 which makes a reduction to the 

well-known Berman-Higman theorem for group rings. So, this is for example an instance 

where understanding Question 4.3 would help. We now proceed to the proof of the main 

theorem
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Proof of Theorem 5.5. The first part follows from a classical trick in untwisted group 

rings. Namely, first note that {χ(a)−1a | a ∈ N} is indeed contained in ker(Ψ̃χ,β).
Conversely, take a torsion unit u ∈ ker(Ψ̃χ,β). Because of Proposition 3.3, ker(Ψ̃χ,β) =
U(1 + Rβ [Γ]Iχ) and thus u = 1 +

∑
g∈G yguμ(g), with yg ∈ Iχ = spanR{ua − χ(a)u1 |

a ∈ N}. In particular, if there would be no 1 �= a ∈ N so that ua is in supp(u), then the 

coefficient of u1 in the expression of u ∈ Rβ [Γ] is equal to 1 and hence, by Theorem 5.6,
u ∈ U(R). As u ∈ ker(Ψ̃χ,β) this implies u = 1.

Now assume there exists a non-trivial a ∈ N ∩ supp(u) and consider the element
z := u.ua−1χ(a). Note that, due to the centrality of N , the element z again is a torsion 

unit in ker(Ψ̃χ,β). However now 1 ∈ supp(z) and therefore, by applying Theorem 5.6,
z = 1. In other words, u = χ(a)−1a as needed.

For the second part, we will assume that we are not in the trivial case that U(Rβ[Γ]) is 
finite. Then, by Theorem 3.2, we see that ker(Ψ̃χ) is finite if and only if U(R(χ′)β.T (χ′)[G])
is finite for all χ �= χ′ ∈ Lin(N, F ) but U(R(χ)β.T (χ)[G]) is infinite. The rest of the proof 
will reinterpret all those conditions simultaneously using Theorem 4.1. To start, U(R(χ′))
must also be finite for all χ �= χ′. In particular U(R) needs to be finite and hence F = Q

or Q(
√

−d) with d > 0. The exact restrictions are recorded by the following claim.

Claim. If U(RN) is finite then: (i) exp(N) = 2 or (ii) exp(N) = 4; F = Q, Q(i) or (iii)

exp(N) = 3, 6; F = Q, Q(
√

−3).
If U(RN) is infinite then: (iv) N ∼= Cp for a prime p ≥ 5 or (v) N ∼= C8, C9; F = Q.

Decompose FN ⊆ Z(F β [Γ]) as in (12), i.e. using the theorem of Perlis and Walker:
FN =

⊕
d||N | F (ζd)⊕ad , then there has to be at most one ζd for which the unit group 

of the ring of integers in F (ζd), denoted Rd, is infinite. Moreover, for this value we need 

ad = 1. Note that this property is inhered by subgroups of N . Hence, if N = N1 × N2, a 

direct product of two non-trivial subgroups, then, as FN = FN1 ⊗F FN2, we get that all 
simple epimorphic images of both group algebras FN1 and FN2 must be such that the 

unit group of their respective ring of integers is finite; because otherwise we would have 

at least two distinct d and d′ so that F (ζd) and F (ζd′) are simple epimorphic images of 
FN and the unit groups U(Rd) and U(Rd′) are infinite. Hence, if N is decomposable as 
a direct product then U(RN) is finite and thus, by Theorem 4.1, the exponent of N is a 

divisor of 4 or 6. The restrictions on F follow in the same way as at the end of the proof 
of Theorem 4.1, i.e. by determining when Q(

√
−d, ζexp(N)) is at most of degree 2 over

Q.
On the other hand, if N is indecomposable and its exponent is not a divisor of 4 or

6, then N is cyclic and N = pn for some prime p. If n > 1 then FN has F (ζp) as a 

summand and Rp is finite only if p = 2, 3 and F = Q, Q(
√

−d) with d > 0. Thus either
n = 1 or p = 2, 3. In the latter case, as Rpn is finite only if pn = 2, 3, 4 we obtain the 

claim about the form of N . The according restrictions on F can be proven with a similar
argument as when exp(N) | 4, 6.
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Claim. If N is cyclic, then χ is the unique faithful character. Moreover if N = Cp, then 

Γ is a split extension.

If N is cyclic, then there is a bijection between the irreducible characters and the 

divisors d of |N |, say χd corresponds. Since we always assume that U(Rβ[Γ]) is infinite 

we know that there is a unique component of 
⊕

d||N | R[χd]β.T (χd)[G]⊕ad with infinite 

unit group. Theorem 4.1 implies that if U(R[χd]β.T (χd)[G]⊕ad) is infinite, then also for a 

multiple of d. Hence indeed the only infinite component is d = n, i.e. the unique faithful 
character. If |N | is odd, then by the previous claim N = C9 or Cp with p ≥ 5 prime.
In both cases U(RRes(β)[G] is finite and hence exp(Gβ) | 4, 6. Therefore α(g, h) needs 
to divide both lcm(o(g), o(h)) and p ≥ 5 which is only possible if α(g, h) = 1 for all 
g, h ∈ G. Hence the extension is split if N = Cp.

We are now able to finish to obtain the desired restrictions in the case that U(ZN)
is infinite, i.e. N = Cp, C9, C8 by the first claim. For Cp the desired statement follows 
by the above claims and the fact that there are only two components in this case (hence 

the faithful one is the one different from the trivial representation, i.e. ωN ). For C8

and C9 it remains to prove the desired value on exp(Gβ). For this note that χ = ωN

yields exp(Gβ) | 4, 6 by Theorem 4.1. If exp(G) = 4, then Q(ζ3)γ [G] is infinite for any
2-cocycle by Theorem 4.1. Similarly for Q(i)γ [G] when 3 | exp(Gβ). This finishes the 

U(ZN) infinite case.
Finally suppose that U(ZN) is finite. In this case exp(N) | 4, 6 and F is of the form 

as in the first claim. Also exp(G) | exp(GβT (χ)) | 4, 6 for various characters χ of N . If N
is cyclic, then the only restriction is that U(Rβ [G]) is finite. So suppose that N is not
cyclic. If exp(N) = 4 and 3 | |G|, then there are several components having an element
of order 12 which is not possible. Hence in that case exp(|G|)|4. Similarly if 3 | exp(N)
and 4 | |G|. Thus we indeed obtain that lcm(exp(G), exp(N)) | 4, 6 if N is non-cyclic. �

For applications it would be useful to also understand the torsion units in ker(Ψ̃χ,β)
in case that the (17) is abelian (i.e. N is abelian but not necessarily central). The first
part of Theorem 5.5 could be read as saying that a torsion unit in ker(Ψ̃χ,β) must be in 

Z[N ]. Indeed because N is abelian one can then use Theorem 5.6 to conclude that the 

torsion units are trivial and hence of the form χ(a)−1a. So we expect the following to be 

true.

Conjecture 5.7. If the extension (17) is abelian, then {torsion units in ker(Ψ̃χ,β)} ⊆
U(Z[N ]). In particular all torsion units in the kernel are trivial.

To finish this section, we illustrate the concepts of Section 3 and Section 5 on an 

example.

Example 5.8. Consider Γ = C4 ⋊ C4 := 〈a, b | a4 = b4 = 1, ab = a−1〉 which can be 

viewed in the following way as a central extension
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1 → 〈y1 : y2
1 = 1〉 × 〈y2 : y2

2 = 1〉 −→ Γ λ−→ 〈x1 : x2
1 = 1〉 × 〈x2 : x2

2 = 1〉 → 1 (19)

where in fact y1 = a2 and y2 = b2. The epimorphism λ : Γ → C2 × C2 is determined by
λ(a) = x1 and λ(b) = x2. Furthermore, we choose as a section μ : 〈x1, x2〉 → Γ defined 

by

μ(1) = 1, μ(x1) = a, μ(x2) = b, μ(x1x2) = ab

and consider the induced normalized cocycle γ ∈ Z2(〈x1, x2〉, 〈y1, y2〉) (i.e. γ(g, h) =
μ(g)μ(h)μ(gh)−1). Explicitly:

γ(x1, x1) = y1, γ(x1, x2) = 1, γ(x1, x1x2) = y1

γ(x2, x1) = y1, γ(x2, x2) = y2, γ(x2, x1x2) = y1y2

γ(x1x2, x1) = 1, γ(x1x2, x2) = y2, γ(x1x2, x1x2) = y2.

The corresponding class [γ] ∈ H2(Γ, C2 × C2) is determined by

[x1, x2] = y1, x2
1 = y1 and x2

2 = y2.

Now consider the irreducible characters of C2 × C2 = 〈y1, y2〉, say Irr(〈y1, y2〉) =
{1, χ1, χ2, χ3} with χ1(yi) = −1, χ2(y1) = −1 = −χ2(y2) and χ3(y1) = 1 = −χ3(y2).
Then using Theorem 3.2 we obtain that

QΓ ∼= Q[C2 × C2] ⊕
3⊕

i=1

QTγ (χi)[C2 × C2].

It is easily seen that

QTγ(χ1)[C2 × C2] ∼=
(−1, −1

Q

)
, QTγ (χ2)[C2 × C2]

∼= M2(Q) and QTγ (χ3)[C2 × C2] ∼= 2Q(i).

Therefore

Ψ̃χ2
: U(ZΓ) → U(ZTγ(χ2)[C2 × C2])

is the only projection with infinite codomain. Moreover, by Theorem 5.5 the kernel is 
finite and is given by

ker(Ψ̃χ2
) = 〈−a2, b2〉 ∼= C2 × C2.

Also coker(Ψ̃χ2
) is finite by Theorem 5.3 and a precise description will follow from the 

methods in the upcoming sections.
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6. Deforming bicyclic units via twisting and their contribution

In this section we will introduce a generic construction of units in twisted group rings 
(of finite groups) which generalizes the bicyclic units. They differ by a factor determined 

by the twisting. We will show in Section 6.2 that these units play a role analogous to the 

one of elementary matrices inside the special linear group, building on a generalisation of 
the Jespers-Leal theorem obtained in Theorem 6.3. Thereafter we return to the context
of the previous section and investigate their contribution to coker(Ψχ).

6.1. Generalized bicyclic units versus elementary matrices

Before specifying to twisted group rings, we wish to write down a general ‘S-order ver-
sion’ of an important ‘Z-order result’ of Jespers and Leal [29] on bicyclic units which was 
only informally known to some experts. For this let B be a finite dimensional semisimple 

Q-algebra, S a finite set of places of Q such that {∞} ⊆ S and ZS the ring of S-integers 
in Q. Further let A be a finite dimensional semisimple B-algebra and R an ZS-order in 

B.

Example 6.1. Let S = {∞, (p1), . . . , (pl)} with pi a prime number. Then Z[ 1
p1

, . . . , 1
pl

]
are the S-integers in Q. If we now consider some root of unity ζ, then R = ZS [ζ] =
Z[ 1

p1
, . . . , 1

pl
, ζ] is a possible ZS-order in B = Q(ζ). For this choice a first main example 

is A = Q(ζ)α[G] for some [α] ∈ H2(G, Q(ζ)∗) and a finite group G. Another frequent
example is A = Mn(D) with D a finite dimensional division Q-algebra.

Let A = {g1, . . . , gn} be a B-basis of A and {x1, . . . , xq} a ZS-basis of R. For every
idempotent f ∈ A, there exists a minimal integer nf ∈ Z such that nf f ∈ spanR(A).
Associated to these, one can now consider the elements

b(mixig, f) = 1 + n2
f (1 − f)mixigf and b(f, mixig) = 1 + n2

f fmixig(1 − f)

with mi ∈ ZS and g ∈ A. As usual, these are units because (1 − f)mixigf has square 

zero.

Definition 6.2. Let F be a set of idempotents in A. Then the elements in

{b(mixig, f), b(f, mixig) | f ∈ F , 1 ≤ i ≤ q, g ∈ A, mi ∈ ZS}

are called the generalized bicyclic units corresponding to F . The group generated by
these is denoted by GBicF (A, R).

Classically only the generators with mi = 1 are called generalized bicyclic units. The 

values mi are added in order to still obtain all elements of RA in the middle between 

(1 − f) and f (when taking the group generated by). Note that RA is an ZS-order in A.
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We can now formulate the general version of [29] saying that generalized bicyclic units 
should be considered as the analogue of elementary matrices. The proof of [29] shows that
Jespers and Leal handled the case S = {∞}, i.e. of Z-orders, and with A an (untwisted)
group ring.

Theorem 6.3. Let e ∈ PCI(A) such that Ae ∼= Mn(D) with n ≥ 2. Let O be a ZS-order

in D. If f is an idempotent in A such that fe /∈ Z(Ae), then there exists a non-zero 

y ∈ Z such that

1 − e + En(yO) ⊆ GBic{f}(A, R)

Recall that, a set of matrix units in a simple algebra Ae is a set of elements {Ei,j :
1 ≤ j ≤ n} in SL1(Ae), where n is the reduced degree of Ae, such that 

∑n
i=1 Ei,i = 1

and Ei,jEp,q = δj,pEi,q. Concretely, fixing the isomorphism Ae ∼= Mn(D) the element
Ei,j can be identified with the matrix having 1 in the (i, j) entry and zero elsewhere. For
an ideal J in O we denote by En(J) the subgroup of SLn(O) generated by the elements 
e + rEi,j for i �= j and r ∈ J .

Proof of Theorem 6.3. Multiplying generalized bicyclic units one sees that

{1 + n2
f fα(1 − f), 1 + n2

f (1 − f)αf | α ∈ RA} ⊆ GBic{f}(A, R).

Following [26, Lemma 11.2.4]) one can decompose fe = E1,1+· · ·+El,l for some 0 < l < n

and {Ei,j | 1 ≤ i, j ≤ n} a set of matrix units. In case 1 ≤ i ≤ l and l + 1 ≤ j ≤ n one 

readily sees that by using Ei,jEp,q = δj,pEi,q the products can be rewritten as follows:

fOEi,j(1 − f)e = OEi,j and (1 − f)OEj,ife = OEj,i

for all 1 ≤ i ≤ l and l + 1 ≤ j ≤ n. Since O is an S-order it has a finite ZS-basis,
which we denote BO = {b1, . . . , bk}. Now, for any i, j, [26, Lemma 4.6.9] yields a smallest
number nij such that (1 + bEi,j)nij = 1 + nijbEi,j ∈ RAe for all b ∈ BO. Consequently,
if we also consider the smallest value ne ∈ Z such that nee ∈ RA, then

1 + n2
f nenijOEi,j ⊂ GBic{f}(A, R)

for all 1 ≤ i ≤ l and l + 1 ≤ j ≤ n. Similarly, for these i and j one has that 1 +
n2

f nenjiOEj,i is a subset of GBic{f}(A, R). The other indices can now be reached by
taking the appropriate commutators. For example if 1 ≤ i, j ≤ l, i �= j, x ∈ Z and α ∈ O
then

1 + x2αEi,j = (1 + xαEi,l+1 , 1 + xEl+1,j)

and using the Ej,i one also reaches the l + 1 ≤ i, j ≤ n. Appropriate choices of x now
yield the desired result. �
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Recall that the literature on the subgroup congruence problem yields that the dif-
ference between En(yO) and the congruence subgroup of level y of SLn(O) increases 
with y. Moreover if n = 2 and D is a division algebra containing an order with finitely
many units,27 then [SLn(O), En(yO)] = ∞ starting already from rather small values of 
y. Therefore, for applications an answer to the following would be incredibly valuable.

Question 6.4. Suppose n = 2 and D is a division algebra containing an order with finitely
many units. What is

(1) a tight upper bound for the scalar y of Theorem 6.3 in terms of the starting data?
(2) a tight upper bound for the scalar y in terms of the proportions o(g)/o(ge) for g ∈ G?

Note that the proof above shows that one obtains the following value for y ∈ Z:

y =
(
ne n2

f gcm{nij , nji : 1 ≤ i ≤ l, l + 1 ≤ j ≤ n}
)2

. (20)

Moreover if n = 2, then x =
√

y suffices as a multiple. A limitation of the value in (20) is 
that the decomposition fe = E1,1 + · · · + El,l and the numbers nij are not explicit from 

the starting data in Theorem 6.3. A value for nij can be deduced by following the steps 
in the proofs of [26, Lemma 4.6.6 & 4.6.9], however the value would require to know too 

much of the isomorphism type of G and hence to weak for practical use. Nevertheless,
according to [26, Lemma 4.6.9] there exists a 0 �= r ∈ ZS such that Mn(rO) ⊆ RAe and 

that its additive index yields a ‘uniform looking’ upper-bound:

y =
(
ne n2

f [RAe : Mn(rO)]
)2

. (21)

Unfortunately in practice the additive index above is hard to compute.

6.2. Deforming bicyclic units - case of twisted group rings

From now on we consider the setting where S = {∞}, i.e. Z-orders, and A =
Q(ζn)α[G] where ζn is some primitive n-th root and [α] ∈ H2(G, Z[ζn]∗) ⊆ H2(G, Q(ζn)∗)
arbitrary. The importance of this case for the study of Q[Γ] for Γ some central extension 

is highlighted by Theorem 3.2 and Proposition 3.3.

Idempotents from trivial units

Let α ∈ Z2(G, Z[ζn]∗) be a 2-cocycle of finite order with o(α) | n. Then, for 0 ≤ j < n

we can partition G into the following sets,

Gα
j = {g ∈ G | uo(g)

g = ζj
n}. (22)

27 A division algebra contains an order with finite unit group if and only if D = Q(
√

−d) or 
(

u,v
Q

)
with 

d ≥ 0 and u, b < 0, see [2, Theorem 2.10.].
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The observation is now that if g ∈ Gα
0 = {g ∈ G | o(ug) = o(g)}, then ûg = 1

o(g) ũg

with

ũg := u1 + ug + . . . + uo(ug)−1
g (23)

is again a non-trivial idempotent in Q(ζn)α[G] if g �= 1. Consequently, ũg(o(g) − ũg) = 0.
If g ∈ Gα

j for a non-zero j, then28 ũg = 0. In that case, one could instead take the hat

(̂·) of un/gcd(j,n)
g which would be an idempotent but in practice this construction will not

be useful. Hence:

Question 6.5. Is there a generic way to produce a non-trivial idempotent from g ∈ Gα
j

for a non-zero j?

Remark 6.6. It is well known (see e.g. [35, Theorem 2.3.1]) that for a cyclic group Cn =
〈g〉 the second cohomology group over a commutative ring R is isomorphic to R∗/(R∗)n.
Due to this, the value of uo(g)

g is not uniquely determined by the cohomology class [α].
For example, the class [α] ∈ H2(Cn, C∗) determined by the value λ = u

o(g)
g is trivial for

any 0 �= λ ∈ C. Therefore the sets Gα
j are unfortunately dependant of the chosen cocycle.

However, one could define in an independent way the sets G0 and G�=0 where the latter
would be all g ∈ G such that uo(g)

g is not in the class of 1 in R∗/(R∗)n. In particular for
R = Z the situation simplifies and the value u

o(g)
g ∈ {±1} is uniquely determined by the 

class [α].

Despite the absence of an answer to Question 6.5, one can prove that under natural 
conditions the set Gα

0 yields enough idempotents to apply Theorem 6.3. More precisely
that for F = {ûg = 1

o(g) ũg | g ∈ Gα
0 } the group GBicF (Q(ζn)α[G], Z[ζn]) contains 

sufficiently many elementary matrices.

Corollary 6.7. Let G be a finite group and α ∈ Z2(G, Z[ζn]∗) of finite order such that

Gα has no fixed-point free non-abelian images.29 Then for any e ∈ PCI(Q(ζn)α[G]) such 

that Q(ζn)α[G]e ∼= Mm(D) with m ≥ 2 we have that

1 − e + Em(yO) ⊆ GBicF (Q(ζn)α[G], Z[ζn])

with O an order in D and some y ∈ Z. In particular, if Q(ζn)α[G] has no exceptional

components then GBicF (Q(ζn)α[G], Z[ζn]) is of finite index in SL1(Z[ζn]α[G]).

28 Going in the sum till the usual upper bound o(g) − 1 will not yield an idempotent.
29 A finite group is called fixed point free if it has an irreducible complex representation ρ such that 1
is not an eigenvalue of ρ(g) for all 1 �= g ∈ G. Such groups are exactly the Frobenius complements [26,
Proposition 11.4.6.] and hence those that are subgroups of D∗ for some finite dimensional division algebra 
D.
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Recall that for a subring R of a semisimple algebra A =
∏q

i=1 Mni
(Di), hi the projec-

tion on the i-th component and Ei a splitting field of Ki := Z(Di) one defines

nr(r) = (RnrMn1 (D1)/K1
(h1(r)), . . . , RnrMnq (Dq)/Kq

(hq(r))) (24)

with RnrMni
(Di)/Ki

(hi(r)) := det(1Ei
⊗Ki

hi(r)) the reduced norm over Ki and

SL1(R) = ker(nr) = {r ∈ U(R) | ∀i : RnrMni
(Di)/Ki

(hi(r)) = 1} (25)

the (multiplicative) group of reduced norm 1 elements. Also recall that a simple quotient
of Q(ζn)α[G] is called an exceptional component if it is either (I) a non-commutative 

division algebra different from a totally definite quaternion algebra or (II) of the form 

M2(Q(
√

−d)) or M2(
(

−a,−b
Q

)
) with a, b > 0 and d ∈ N. The division algebras appearing 

in these matrix algebras are exactly those having an order with finite unit group [2,
Theorem 2.10.].

With the conditions assumed in Corollary 6.7, the proof of [26, Theorem 11.3.2] also 

works in this setting and therefore we will omit the details. In short, that Gα has no 

fixed point free images guarantees that for every e ∈ PCI(Q(ζn)α[G]) there exists g ∈ Gα
0

so that ûge is a non-central idempotent. If eC ∈ PCI(Cα[G]e) is such that (Cα[G]e)eC is 
non-commutative, then the element g is chosen among those for which ρ(g) has eigenvalue 

one, where ρ : C ⊗Q(ζn) Q(ζn)[Gα] � (C ⊗Q(ζn) Q(ζn)α[G]e)eC is the complex repre-
sentation factorising through the projection of Q(ζn)[Gα] on Q(ζn)α[G] in Corollary 3.5.
The last part follows from the known results on the subgroup congruence problem, e.g.
see [26, Theorem 11.2.3.].

Convention. For an integral twisted group ring ZαG, for any element of g ∈ G of odd 

order, the restriction of [α] to 〈g〉 is trivial. Therefore we may and will always from now

on choose a normalized representative α such that u
o(g)
g = 1 in ZαG for all g of odd

order.

Deforming a bicyclic unit: construction

We will use the G-module structure of the twisted group ring Rα[G] described in [15,
§3.2]

g(ux) = uguxu−1
g = α(g, x)α(gxg−1, g)−1ugxg−1 .

For every x ∈ G, the restriction of the conjugation representation from G to the 

centralizer CG(x) admits a 1-dimensional invariant subspace spanned by ux. By the 

above this ordinary 1-dimensional representation χx : CG(x) → R∗ is given by

χx(g) = [ug, ux] = α(g, x)α(x, g)−1.
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For R = Z, for any x ∈ G we can partition CG(x) into two disjoint sets

C+
x = {g ∈ CG(x) | χx(g) = 1}, C−

x = {g ∈ CG(x) | χx(g) = −1}.

We remark that if C−
x = ∅ then x (and its conjugacy class) is called α-regular and the 

set of all α-regular conjugacy classes forms a basis for the centre of ZαG (see [49]). An
extreme case for that is when α is trivial. In this case C−

x = ∅ for any x ∈ G.

Example 6.8. For g, h ∈ G and α ∈ Z2(G, R∗), a straightforward calculation yields that
in RαG if [ug, uh] = ζ ∈ R∗ is a root of unity of order k, then k is a divisor of the greatest
common divisor of the orders of g and h in G. Hence, for α ∈ Z2(G, Z∗), all elements of 
G of odd order are α-regular.

Using this we now introduce a new type of units.

Definition 6.9. With the above notation, the elements of the set

{u1 + yũg; u1 + ũgy | g ∈ Gα
0 , y ∈ Zα[G], supp(y) ⊆ C−

g }

are called H-units. The subgroup of U(Zα[G]) generated by these is denoted Hα(G).

At first it might seem surprising that the above elements are invertible in Zα[G].
This is because the square of yũg and ũgy are zero. Hence they are unipotent units 
with inverse u1 − yũg, resp. u1 − ũgy. One way to see that those terms are indeed 

square zero, is by noticing that yũg = (o(g) − ũg) y
o(g) ũg. This follows from the fact that

uj
guhũg = (−1)juhũg for h ∈ C−

g and hence when o(g) is even30 and g ∈ Gα
0

(o(g) − ũg)uhũg = uh

(
o(g) − ∑o(g)−1

j=0 (−1)juj
g

)
ũg

= uh

(
o(g) − ∑o(g)−1

j=0 (−1)j
)

ũg

= o(g)uhũg.

(26)

Analogously ũguh(o(g) − ũg) = o(g)ũguh. Thus the H-units are indeed elements of 
U(Zα[G]). Furthermore, for F = {ûg = 1

o(g) ũg | g ∈ Gα
0 }, every H-unit has an appropri-

ate power that is in GBicF (Qα[G], Z). However, as will be pointed out in Remark 8.4,
due to the factor y

o(g) in general

Hα(G) ⊈ GBicF (Qα[G], Z). (27)

30 If o(g) is odd, the last sum in (26) equals o(g) −1 and hence in general the H-unit will not be an integral 
combination. However, as remarked in Section 6.2, elements of odd order are α-regular (i.e. C−

g = ∅) and 
thus one can only take y = 0. In particular we don’t need to specify the order of the elements from which 
we built the H-units in order to be a subset of Zα[G].
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A concrete example will be given in Proposition 8.2. That 〈GBicF (Qα[G], Z), Hα(G)〉 is 
not necessarily obtained by bicyclic units, even not up to commensurability, is truly its 
raison d’être and hence will be crucial for the applications.

Example. If α is a trivial cocycle, then Gα
j = ∅ = C−

g for any j �= 0, g ∈ G and 

Gα
0 = G. Therefore, in that case Qα[G] = Q[G] and Hα(G) = {u1}. In particular

〈GBicF (Qα[G], Z), Hα(G)〉 = Bic(G), i.e. we recover exactly the classical bicyclic units.

Remark 6.10.

(1) The elements u1 + (o(g) − ũg) uh

o(g) ũg and u1 + ũg
uh

o(g) (o(g) − ũg) are in fact instances 
of a common more general construction of units. Indeed, consider α ∈ Z2(G, Z[ζn]∗)
with o(α) | n and let ξ be a o(g)-root of unity inside Z[ζn]. Then u1 + uh ξ̃ug is an 

invertible element of Z[ζn]αG with inverse u1 − uh ξ̃ug. Note that the choice ξ = −1

yields u1 + uh (̃−ug) = u1 + ũguh = u1 + ũg
uh

o(g) (o(g) − ũg), as desired. As we will 

see in Section 10.1, an essential ingredient is that ̃[ug, uh] = 0.
(2) The H in the name H-unit refers to the cohomology group H2(G, Z∗). Following 

(26), the elements in Definition 6.9 look like roots of bicyclic units. However these 

elements and those in the previous point fit in a general new generic construction of 
units which will be developed in Section 10. There the role of the H2, i.e. splitting 

into extensions, will become more apparent. In Section 10 the units will in fact be 

called primitive H-units (as they are the smallest of their kind).
(3) Using the twisting as above one could instead have considered a deformed version 

of the classical bicyclic units, i.e. for any x ∈ Zα[G] all the elements of the form 

1 + (o(g) − ũg)(x + y
o(g) )ũg are units. Such elements include both H-units and 

GBicF (Qα[G], Z). However, as hopefully Section 10 will convince, it seems to be 

better to not think in terms of bicyclic units.

Thanks to (27), one can apply Corollary 6.7 to show that 〈GBicF (Qα[G], Z), Hα(G)〉
contains sufficiently many elementary matrices. It follows from the proof of Corollary 6.7
that the value y ∈ Z is the one yielded by Theorem 6.3. However by adding the H-units,
depending on the order of the twisted elements and the number of α-irregular elements,
one can aim to decrease the value of y.

Question 6.11. What is a formula for the smallest y ∈ N such that 1 − e + Em(yO) ≤
〈GBicF (Qα[G], Z), Hα(G)〉?

6.3. On H-units in cokernel of the transgression map

We now return to the setting of Section 3.2. More precisely we consider the central 
extension (3) corresponding to [α] ∈ H2(G, A). We also fix a normalized representant
α ∈ Z2(G, A) of the form α(g, h) = μ(g)μ(h)μ(gh)−1 for a section μ of λ : Γ � G.
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The H-units from the previous section will now allow to construct elements in 

coker(Ψ̃χ). For this take elements g ∈ GTraα(χ)
0 and h ∈ C−

g . Note that the existence of 
such an element h indirectly assumes that g is Traα(χ)-irregular. In particular Traα(χ)
must be a non-trivial cocycle and hence χ �= ωA. Furthermore we will also consider a 

central subgroup Q of Γ such that A ∩ Q = 1. Now with every such triple (g, h, Q) we 

consider the set

Hmin
g,h,Q := {1 + zuhũg ∈ ZTraα(χ)[G] | z ∈ {1 − uq : q ∈ Q or uq = 0}}. (28)

Proposition 6.12. Let χ ∈ Hom(A, Z∗), g ∈ GTraα(χ)
0 , h ∈ C−

g and Q a central subgroup 

of Γ such that A ∩ Q = 1. Suppose U(ZG) is finite, then the following hold

(1) if q ∈ Q \ 〈μ(g)〉 or uq = 0, then 1 + (1 − uq)uhũg /∈ im
(

Ψ̃χ

∣∣∣
U(Z[Γ])

)

(2) if Q ∩ 〈μ(g)〉 = 1 = A ∩ 〈μ(g)〉, then 〈 Hmin
g,h,Q 〉 ∼= C

|Q|
2 as subgroup of

coker
(

Ψ̃χ

∣∣∣
U(Z[Γ])

)
.

Keeping in mind that {1 −q | 1 �= q ∈ Q} is a Z-basis of ker(ωQ), a direct computation 

yields that

〈 Hmin
g,h,Q 〉 = {1 + yuhũg ∈ ZTraα(χ)[G] | y ∈ ker(ωQ) ∪ {1}}.

In particular, when Q ∩〈ug〉 = 1 then 〈 Hmin
g,h,Q〉 can be viewed as subgroup of coker(Ψ̃ker).

Note also that qh ∈ C−
g for all q ∈ Q and hence 〈 Hmin

g,h,Q 〉 ≤ Hα(G).

Proof of Proposition 6.12. Due to the centrality of z = 1 − uq it follows that 1 + zuhũg

is trivial if and only if uq ∈ 〈ug〉 (in particular for z = 1 it is never trivial). On turn 

this is equivalent to q ∈ Q \ 〈μ(g)〉 (or q trivial) thanks to the assumption o(g) = o(ug).
From now we assume that this is the case and let y be a sum of different such elements 
(1 − uq with q ∈ Q \ 〈μ(g)〉 or 1). Then the unit 1 + (o(g) − ũg)y uh

o(g) ũg is also non-trivial.
We claim that more generally all such elements are not in the image.

An element in Ψ−1
χ (1 +yuhũg) is of the form τ := 1 +yμ(h)(1 +μ(g) +· · ·+μ(g)o(g)−1) +

x for some x ∈ ker(Ψχ) and due to the non-triviality τ �= 1. We need to prove that
τ /∈ U(ZΓ) for any x. Assume otherwise and start by decomposing x according to Propo-
sition 3.3:

x =
∑

a∈ker(χ)

xa(a − 1) +
∑

a∈A\ker(χ)

xa(a + 1)

with xa = ta +
∑

1�=w∈G tw,aμ(w) ∈ Z[Γ].
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Therefore, since μ(g)o(g) ∈ A,

ωA(τ) = 1 + yhg̃ + 2
∑

a∈A\ker(χ)

xa.

Note that yhg̃ �= 0 and in fact all its coefficients are ±1 due to all the assumptions.
Furthermore, ωA(τ) is a torsion unit since U(ZG) is finite. Since the coefficient of the 

identity element of G is 1 + 2 
∑

a∈A\ker(χ) ta, which is non-zero, Theorem 5.6 yields that
ωA(τ) = ±1. However ωA(τ) = 1 +yhg̃ mod 2 �= 1. This yields the desired contradiction 

and finishes the proof of the claim and in particular of (1).
For the second part, assume that Q ∩ 〈μ(g)〉 = 1 = A ∩ 〈μ(g)〉. Note that g ∈ GTraα(χ)

0

implies that μ(g)o(g) ∈ ker(χ). The stronger condition A ∩ 〈μ(g)〉 = 1, equivalently
μ(g)o(g) = 1, is assumed to have that Ψχ(μ̃(g)) = ũg. Denote bz := 1 + zuhũg. Note that
bz1

bz2
= 1 + (z1 + z2)uhũg. Moreover, all the bz commute and in fact 〈 b1−q | 1 �= q ∈ Q〉

is isomorphic to the additive group ker(ωQ). By the general claim every bz1
. . . bzl

, for
different zi ∈ {1, 1 − uq}, is not in the image. Thus it remains to prove that the square 

of every bz is attained. For this rewrite

b2
1−q = 1 + 2(uh − uqh)ũg

= (1 + 2uhũg) (1 + 2uqhũg)−1

= Ψ̃χ(u1) Ψ̃χ(u−1
2 )

where u1 = 1 +(1 − [μ(g), μ(h)])μ(h)μ̃(g) and u2 = 1 +(1 − [μ(g), μ(qh)])μ(qh)μ̃(g). Note 

that [μ(g), μ(h)], [μ(g), μ(qh)] ∈ A \ker(χ) because h, qh ∈ C−
g . That u1 and u2 are units 

can be seen by rewriting them as bicyclic units, e.g. u1 = 1 + (1 − μ(g))μ(h)μ̃(g). �

We expect that H-units contribute to coker(Ψχ) in full generality, in the way they do 

in Proposition 6.12.

Question 6.13. Is the conclusion of Proposition 6.12 also valid without the condition that
U(ZG) is finite?

Most likely, in general other type of elements can be contained in coker(Ψ̃χ). However
in Section 8 we will see that for Γ an extension of C2 with an elementary abelian 2-group 

G = Cn
2 that these elements will generate the full cokernel. Consequently, in that case 

coker(Ψ̃ker) = ker(FCok) ∼= Cn−2
2 . It would be interesting to when this happens.

Remark 6.14. With exactly the same proof, the statement of Proposition 6.12 also holds 
for the H-units 1 +ũguhz. Hence Question 6.13 can also be formulated for these elements.
In fact it is also an interesting question to understand the image of 〈b1 := 1 +uhũg, b2 :=
1 + ũguh〉. In case o(uh) = o(ug) = o(g) = 2, then a direct computation shows that

b1b−1
2 ∈ im

(
Ψ̃χ

∣∣∣
U(Z[Γ])

)
. Hence 〈b1, b2〉 ∼= C2 as subgroup of coker

(
Ψ̃χ

∣∣∣
U(Z[Γ])

)
. It is 

however very likely that this is an order 2 phenomena.
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7. Method to describe U(Z
α[G × C

n

2
])

Let G be a finite group and

Cn
2 = 〈x1〉 × · · · × 〈xn〉

an elementary abelian 2-group. In this section we will consider a, potentially trivial,
2-cohomology class [α] in the image of the inflation map

Inf : H2(G, Z∗) → H2(G × Cn
2 , Z∗). (29)

In particular, by Corollary 2.5, the subgroup Cn
2 = 〈uxi

〉 is central in U(Zα[G × Cn
2 ]).

For such cocycles we will now present a method to describe U(Zα[G × Cn
2 ]) whenever

U(Zα[G]) is known.

Convention. Ci
2 denotes the concrete subgroup 〈x1, . . . , xi〉. In particular when we write 

Zα[G × Ci
2] we truly mean the subring of Zα[G × Cn

2 ] generated by G × Ci
2.

To start, consider for every 1 ≤ i ≤ n the natural projection

ψi : Zα[G × Ci
2] → Zα[G × Ci−1

2 ]

induced by mapping xi to 1, which is a ring morphism.31 Note that, due to the centrality
of xi, Zα[G × Ci

2] =
(
Zα[G × Ci−1

2 ]
)

[〈xi〉] and therefore ψi is globally defined by ψi(u +
vxi) = u + v for u, v ∈ Zα[G × Ci−1

2 ]. By definition ψi induces an epimorphism

ψ̃i : U(Zα[G × Ci
2]) → U(Zα[G × Ci−1

2 ]).

Accordingly, we obtain the following splitting.

Lemma 7.1. Let Ki = ker(ψ̃i). Then, U(Zα[G × Ci
2]) = Ki ⋊ U(Zα[G × Ci−1

2 ]). Conse-

quently,

U(Zα[G × Cn
2 ]) ∼= Kn ⋊

(
Kn−1 ⋊

(
· · · K2 ⋊ (K1 ⋊ U(ZαG))

))
.

Proof. Since ψ̃i is surjective we obtain an extension

1 → Ki ↪→ U(Zα[G × Ci
2])

ψ̃i−→ U(Zα[G × Ci−1
2 ]) → 1.

Clearly, this extension is split by the identity map. The second part now follows by
iteration. �

31 This is a ring-morphism due to the centrality of xi. In particular for arbitrary 2-cocycles this method 
does not work.



G. Janssens et al. / Advances in Mathematics 458 (2024) 109983 43

In view of Lemma 7.1 we will now concentrate on describing all the kernels Ki. To 

this end we define the groups

Ui = {1 + 2iu | u ∈ ZαG} ∩ U(ZαG).

Our goal is to show that Ki can be built from isomorphic copies of the groups U1, . . . , Ui

and the unit group U(ZαG). Note that, by Theorem 5.6, Ui is torsion-free when i ≥ 2
and the only torsion elements in U1 are ±1.

As a tool we need to consider more generally the groups

Uk,j = {1 + 2ku | u ∈ Zα[G × Cj
2 ]} ∩ U(Zα[G × Cj

2 ]).

Note that Uk,0 = Uk and Uk1,j1
≤ Uk2,j2

for k2 ≤ k1 and j1 ≤ j2. Next to these, the 

projections

ϕi : Zα[G × Ci
2] → Zα[G × Ci−1

2 ] with xi �→ −1

will also be instrumental. The induced epimorphism on the unit groups is denoted by
ϕ̃i.

Lemma 7.2. For all 1 ≤ k, j, with notations as above, we have that

• Kj
∼= ϕ̃j(Kj) = U1,j−1,

• Uk,j
∼= Uk+1,j−1 ⋊ Uk,j−1.

Proof. By definition,

Kj = {1 + u(1 − xj) | u ∈ Zα[G × Cj−1
2 ]} ∩ U(Zα[G × Cj

2 ]).

Using the centrality of xj , one gets that Zα[G × Cj
2 ] =

(
Zα[G × Cj−1

2 ]
)

〈xj〉 and thus 

one immediately obtains that ϕ̃j is injective on Kj . Consequently, Kj
∼= ϕ̃j(Kj) and 

more explicitly

ϕ̃j(Kj) = {1 + 2u | u ∈ Zα[G × Cj−1
2 ]} ∩ U(Zα[G × Cj−1

2 ]) = U1,j−1.

Note that ϕ̃j(Kj) contains all the units above because Zα[G × Cj−1
2 ] is truly meant as 

the subring of Zα[G × Cj
2 ].

For the second statement, remark that ψ̃j is the identity map on Uk,i for all 0 ≤ i < j

and all k. Also, ψ̃j(Uk,j) = ψ̃j(Uk,j−1) where Uk,j−1 is the subgroup Uk,j ∩ U(Zα[G ×
〈x1, . . . , xj−1〉]). Combined we obtain the internal splitting

Uk,j = ker( ψ̃j

∣∣∣
Uk,j

) ⋊ Uk,j−1. (30)
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Next, since ker( ψ̃j

∣∣∣
Uk,j

) = {1 + 2ku(1 − xj) | u ∈ Zα[G × Cj−1
2 ]} ∩ Uk,j the map ϕ̃j is 

injective on it and so ϕ̃j

(
ker( ψ̃j

∣∣∣
Uk,j

)
)

∼= Uk+1,j−1, finishing the proof. �

An iterative process of the previous lemma decreases the second index of Uk,j, with 

the cost of producing extra complements. Hence it now readily follows that we can reduce 

to the groups Ui. For the applications to classical group rings in Section 10 we however
need an explicit internal splitting of Ki. As indicated in the proof of Lemma 7.2 such a 

splitting is available for Uk,j . Inspired by this we define for every tuple �j = (j1, . . . , ji−1) ∈
{0, 1}i−1 the following:

K�j := {1 + u(1 − x1)j1 · · · (1 − xi−1)ji−1(1 − xi) | u ∈ Zα[G]} ∩ U(Zα[G × Ci
2]). (31)

Using that gxl(1 − xl) = −g(1 − xl), it is easily verified that K�j is a normal subgroup of 
U(Zα[G × 〈xl : jl �= 0〉]). In general however it won’t be normal in Ki.

Theorem 7.3. Let G be a finite group, [α] ∈ Im(Inf) as in (29). Then, for all i ≥ 2,

Ki :=
−→⋊

�j∈{0,1}i−1

K�j (32)

where the internal semi-direct product is with respect to a specific ordering on {0, 1}i−1,

and K�j
∼= U1+

∑i−1
t=1 jt

for �j = (j1, . . . , ji−1) ∈ {0, 1}i−1. Furthermore,

U(Zα[G × Cn
2 ]) = Kn ⋊

(
Kn−1 ⋊

(
· · · K2 ⋊ (K1 ⋊ U(ZαG))

))

=
((

(Nn ⋊ Nn−1) ⋊ · · ·
)
⋊ N1

)
⋊

(
U(Zα[G]) × 〈x1, . . . , xn〉

)

for some torsion-free normal subgroup Ni of Ki such that Ki
∼= Ni × 〈xi〉.

Remark. The ordering in (32) is deducible from the proof. In particular, in terms of the 

Ui the decomposition of Ki can be defined recursively as follows: K1
∼= U1. For i ≥ 2,

Ki
∼= Ui⋊Ki−1 with U2 := U2 and Ui := Ui−1[1] ⋊Ui−1 where Ui−1[1] looks like Ui−1 but

with all indices increased by one. For example, K2
∼= U2⋊K1, K3

∼= (U3⋊U2) ⋊K2, K4
∼=

((U4 ⋊ U3) ⋊ (U3 ⋊ U2)) ⋊ K3 and

K5
∼= (

(
(U5 ⋊ U4) ⋊ (U4 ⋊ U3)

)
⋊

(
(U4 ⋊ U3) ⋊ (U3 ⋊ U2)

)
) ⋊ K4.

Remark. For certain class of nilpotent groups G, Jespers, Leal and del Río give in [30,
Proposition 5] a description of U(ZG) in terms of some subnormal series. The 2-groups 
in their class are of the form H ×Cn

2 for some n and H ≤ G. In that case their subnormal 
series coincides with the one in Theorem 7.3.
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Proof of Theorem 7.3. The description of Ki follows from an iterative use of Lemma 7.2
or rather the explicit form in (30). In fact we will prove more generally that

Uk,i =
−→⋊

�j∈{0,1}i

Uk,�j

where Uk,�j = {1 + 2ku(1 − x1)j1 · · · (1 − xi)ji | u ∈ Zα[G]} ∩ U(Zα[G × Ci
2]). To start one 

uses

Ki
∼= ϕ̃i(Ki) ∼= U1,i−1

∼= U2,i−1 ⋊ U1,i−2
∼= U2,i−1 ⋊ Ki−1.

Explicitly the copy of U2,i−1 in Ki is given by {1 + u(1 − xi−1)(1 − xi) ∈ Ki | u ∈ Z[G ×
〈x1, . . . , xi−2〉]} and the copy of Ki−1 is {1 + v(1 − xi) ∈ Ki | v ∈ Z[G × 〈x1, . . . , xi−2〉]}.
In terms of U1,i−1 the 1 − xi is identified with a factor 2 via ϕ̃. Now, if i = 2 the 

procedure finishes here and yields the decomposition (32). Next, for an arbitrary i one 

case use now induction on the copy of Ki−1 inside Ki. This yields all the terms K�j such 

that j(i − 1) = 0 (i.e. no xi−1 in the support). The other terms will appear by applying 

induction to U2,i−1 (in the recursive process this corresponds to applying the second part
of Lemma 7.2 to U2,i−1).

The first equality of the second part was proven in Lemma 7.1. Furthermore, it is easy
to see that the brackets can be rearranged to U(Zα[G × Cn

2 ]) =
((

(Kn ⋊Kn−1) ⋊ · · ·
)
⋊

K1

)
⋊U(ZαG). Hence due to the centrality of the subgroup Cn

2 , it remains to prove the 

existence of such Ni that is normal in Ki−1. For this notice that (32) yields only one 

subgroup isomorphic to U1, namely K�0 = {1 + (1 − xi)u | u ∈ Zα[G]} ∩ U(Zα[G × 〈xi〉]).
All the other K�j will be isomorphic to Ul with 2 ≤ l ≤ i and hence are torsion-free. Now,
under the isomorphism K�0

∼= U1, the subgroup 〈xi〉 corresponds to {±1} which is the 

only torsion in U1. Therefore K�0
∼= Fi × 〈xi〉 for some torsion-free subgroup Fi. Taking 

Fi together with all the K�j with �j �= �0 we obtain the desired torsion-free subgroup Ni

of Ki such that Ki
∼= Ni × 〈xi〉. �

The decomposition obtained allows to transfer properties of U(ZαG) to U(Zα[G ×Cn
2 ]).

Earlier interesting results in that line can be found in [3,17,41,18].

Corollary 7.4. Let G be a finite group, [α] ∈ Im(Inf) as in (29). If U(ZαG) satisfies one 

of the following properties:

(1) ±G has a normal (torsion-free) complement in U(Zα[G])
(2) it is commensurable with a direct product of free-by-free groups

(3) has a non-trivial amalgam decomposition

(4) G satisfies (HSP)32

32 (HSP) stands for the Higman subgroup property, i.e. any finite subgroup in V (ZαG) is isomorphic to a 
subgroup in G. See also [45].
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then the same holds for G × Cn
2 and U(Zα[G × Cn

2 ]).

In the case of untwisted33 group rings it was proven in [18] that the first Zassenhaus 
conjecture (ZC1) is preserved. It would be interesting to prove so for twisted group 

rings. Especially since the counterexample to (ZC1) of Eisele and Margolis [14], positive 

instances of the Zassenhaus conjectures are of special interest. For a recent survey see 

[46].

Proof of Corollary 7.4. The first part directly follows from the last decomposition in 

Theorem 7.3, since 
(
(Nn ⋊ Nn−1) ⋊ · · ·

)
⋊ N1 is torsion-free.

Next, for the second statement, let A be a finite dimensional semisimple Q-algebra 

and O an order in A. The desired statement is a direct consequence of the fact that ‘U(O)
commensurable with a direct product of free-by-free groups’ is fully determined by the 

type of the simple components of the algebra A, as follows from [33, Theorem 2.1]. For
instance, [33, Lemma 3.1. & Proposition 3.3.] (or [27]) yields that34 the property holds 
if and only if the simple quotients of A are either a field, a totally definite quaternion 

algebra or a matrix algebra M2(D) with D in a list of certain quadratic imaginary
extensions of Q or certain quaternion algebras over totally real number fields. However
if [α] is in the image of (29), then

Qα[G × Cn
2 ] ∼= Qα[G] ⊗Q Q[Cn

2 ] ∼= Qα[G] ⊕ · · · ⊕ Qα[G]︸ ︷︷ ︸
2n−times

.

Thus the isomorphism types of simple quotients of Qα[G ×Cn
2 ] are the same as for Qα[G].

Concerning the third statement, note that, due to Theorem 7.3, U(Zα[G]) is an epi-
morphic image of U(Zα[G × Cn

2 ]) and hence its amalgam decomposition can be lifted 

along the epimorphism.
For the fourth statement, first notice that by induction we may assume that n = 1.

Hence, with the above notation, U(Zα[G × C2]) = K1 ⋊ U(Zα[G]) with K1
∼= N1 × 〈x1〉

where N1 is a torsion-free normal subgroup. For (SIP), assume now that H is a finite 

subgroup of U(Zα[G × C2]). As N1 is torsion-free, H ∼= H/(H ∩ N1) and so we may
consider H as a subgroup of U(Zα[G × C2])/N1

∼= U(Zα[G]) × C2. Consequently, there 

exist finite index sets I and J and ti, kj ∈ U(Zα[G]) such that H/(H ∩ N1) = {ti, x1kj |
i ∈ I, j ∈ J}. Now consider the larger group T = 〈ti, kj , x1 | i ∈ I, j ∈ J〉. Using that x1

is a central element of order 2, it is directly checked that T is a (finitely generated) torsion 

group. Since it is also linear, T is in fact finite. By assumption 〈ti, kj | i ∈ I, j ∈ J〉 is 

33 The classical Zassenhaus conjectures are stated for group rings, however also literally makes sense for
twisted group rings. For example (ZC3) would be that all finite H ≤ U(Zα[G]) are conjugated over Qα[G]
to a subgroup of G.
34 To conclude this it is used that free groups are exactly the groups with cohomological dimension one 
[56,57]. Due to this free-by-free groups have virtual cohomological dimension at most two which is the 
content of [33, Section 3].
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isomorphic to a subgroup of G and hence T to one of G × C2. Consequently, also the 

smaller group H ∼= H/(H ∩ N1) also as needed. �

Remark 7.5. The proof of (2) in Corollary 7.4 in fact shows that any group theoretical 
property P that can be read off the Wedderburn-Artin components (i.e. the simple 

quotients) is inherited. Other examples of such properties are: Kazhdan’s property (T ),
property FAb and HFA (see [1,2]). In general, good candidates for such properties are 

the ones that are constant on commensurability classes.

Following Corollary 7.4 the property to have a (torsion-free) normal complement is 
preserved, however a concrete description thereof seems difficult. For example, in [40]
it was proven that no normal complement of the trivial units in U(Z[D8 × C2 × C2]) is 
generated by bicyclic units, although a normal complement in U(Z[D8 ×C2]) is Bic(D8 ×
C2) [23]. For D8 × C2 × C2 it is unknown whether bicyclic units nevertheless form a 

subgroup of finite index. Recently Bächle, Maheshwary and Margolis have proven [4,
Theorem A] that rank Bab =rank Z(U(ZG)) where B is the group generated by bicyclic 

and Bass units in Γ, Bab denotes the abelianisation of B and the rank is as finitely
generated abelian group. As a consequence, they deduced that if the bicyclic units are of 
finite index35 in SL1(ZΓ) then rank U(ZΓ)ab =rank Z(U(ZΓ)). One can read this result
as a new method to detect whether the bicyclic units are of infinite index in SL1(ZΓ),
which happens if rank U(ZΓ)ab ≩ rank Z(U(ZΓ)). This motivates the following question.

Question 7.6. With notations as above, what is the connection between rank U(ZαG)ab

and rank U(Zα[G × Cn
2 ])ab?

8. Full description for elementary abelian 2-groups

Let G be an elementary abelian 2-group of rank n + 2,

G = C2 × C2 × . . . × C2 = 〈g〉 × 〈h〉 × 〈x1〉 × . . . × 〈xn〉, (33)

and consider the cohomology class [α] ∈ H2(G, C2) determined by the values

[ug, uh] = −1, u2
g = u2

h = u2
xi

= [ug, uxi
] = [uh, uxi

] = [uxi
, uxj

] = 1, (34)

for any 1 ≤ i �= j ≤ n. We can think of this [α] as the cohomology class determining the 

group Γ ∼= D8 × Cn
2 and the twisted group ring ZαG. Recall our standing convention of 

choosing a normalized 2-cocycle representant of [α].
To start, we handle the case that n = 0, i.e. we describe U(Zα[〈g, h〉]).

35 This is equivalent to say that the bicyclic units together with the Bass units are of finite index in U(ZΓ)
due to a Theorem of Bass and Milnor, see [26, Theorem 11.1.2. & Prop. 9.5.11.].
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8.1. The starting case C2 × C2

Denote by D̃ the subalgebra of M2(Z) consisting of the elements

{(
a b

c d

)
∈ M2(Z) | a ≡2 d, b ≡2 c

}
.

It easily can be verified that

D̃ =

{(
m + n k + r

k − r m − n

)
∈ M2(Z) | m, n, k, r ∈ Z

}
. (35)

Consider now the Z-linear map φ : Zα[C2 × C2] → D̃ defined by

u1 �→
(

1 0
0 1

)
, ug �→

(
1 0
0 −1

)
, uh �→

(
0 1
1 0

)
, ugh �→

(
0 1

−1 0

)
(36)

which can easily be seen to be a ring morphism.

Proposition 8.1. With notations as above, Zα[C2 × C2] ∼= D̃ as rings.

Proof. The map φ is surjective because

A = φ (mu1 + nug + kuh + rugh) ,

for an arbitrary element A =

(
m + n k + r

k − r m − n

)
of D̃ (see (35)). Injectivity follows from 

a linear independence argument. �

Next we will obtain a presentation of the unit group U(Zα[C2 × C2]). Already in this 
small example the role of H-units is decisive, as they will yield a normal complement for
the trivial units. As expanded at the end of this section, see Remark 8.4, the generalized 

bicyclic units together with the trivial units are not sufficient to generate the full unit
group. Furthermore, without them we would not be able to handle later on, even not up 

to commensurability, the elementary abelian 2-group case.

Proposition 8.2. Let α be the 2-cocycle determined by the values (1, 1, −1) on (u2
g, u2

h,

[ug, uh]). Then

U(Zα[C2 × C2]) = F2 ⋊ D8

where D8 = 〈ug, uh〉 and F2 = 〈v, w〉 is a free group of rank 2 generated by the H-units 

v = u1 + uh − ugh and w = u1 + uh + ugh. The action of D8 on F2 is defined by

u−1
h vuh = w, u−1

h wuh = v and u−1
g xug = x−1 for x = v, w. Furthermore,
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SL1(Zα[C2 × C2]) = Hα(C2 × C2) = 〈v, w, ugh〉.

In particular, it is a subgroup of index 2 in U(Zα[C2 × C2]). Also, φ(U(Zα[C2 × C2]))
has index 3 in GL2(Z).

Recall that SL1(Zα[C2 × C2]) denotes the group of reduced norm 1 elements, see (25).

Proof. The elements v and w are examples of H-units, see Definition 6.9 and (26). More-
over, their respective image under φ is equal to

φ(v) = φ(1 + uh − ugh) =

(
1 0
0 1

)
+

(
0 1
1 0

)
−

(
0 1

−1 0

)
=

(
1 0
2 1

)

and

φ(w) = φ(1 + uh + ugh) =

(
1 0
0 1

)
+

(
0 1
1 0

)
+

(
0 1

−1 0

)
=

(
1 2
0 1

)
.

Thus the images {φ(v), φ(w)} generate a well-known free group of rank 2, sometimes 
called the Sanov subgroup, which is of index 24 in GL2(Z) (see e.g. [39, Example 2]).
Therefore, {v, w} generates a free group of rank 2 in U (Zα[C2 × C2]), say of index r.

Denote this subgroup by H and denote by T
(

D̃
)

= ±{u1, ug, uh, ugh} the trivial units 

of D̃. It is easy to verify that T
(

D̃
)

∼= D8, the dihedral group of order 8, and moreover for

any x �= y ∈ φ−1(T
(
D̃

)
), the cosets xH �= yH. Consequently, [U (Zα[C2 × C2]) : H] ≥ 8.

As can be seen with the matrices φ(uh) and 1 +E12, the subgroup φ (U(Zα[C2 × C2])) =
U(D̃) is not normal in GL2(Z) and therefore its index is at least 3. Since

24 = [GL2(Z) : H] = [GL2(Z) : U(D̃)].[φ
(
U (Zα[C2 × C2])

)
: H] ≥ 3 · 8,

we conclude that [U (Zα[C2 × C2]) : H] = 8. A simple calculation shows that

u−1
h vuh = w, u−1

g vug = v−1, u−1
gh vugh = w−1 and u−1

g wug = w−1.

Therefore H is normal in U (Zα[C2 × C2]), and consequently

U (Zα[C2 × C2]) = H ⋊ φ−1(T
(
D̃

)
) ∼= F2 ⋊ D8.

The second part of the statement can be checked explicitly. To start, note that Gα
0 =

{uh, ug, u1}, C−
g = {uh, ugh} and C−

h = {ug, ugh}. So in total one obtains 8 non-trivial 
H-units that generate Hα(C2 × C2). However they all can be expressed in terms of 
v, w, ugh. Indeed 1 + ughũg = 1 − uhugũg = w−1 and 1 + ugũh = 1 + ug + uguh = ughv.
The others are similar and, in particular, this shows that Hα(C2 × C2) = 〈v, w, ugh〉.
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Finally, recall that u2
gh = −1 and thus [D8 : 〈ugh〉] = 2. In particular, from the 

description of U(Zα[C2×C2]) obtained earlier, we now see that Hα(C2×C2) is a subgroup 

of index 2 in U(Zα[C2 × C2]). Besides, because H-units are unipotent, Hα(C2 × C2) is 
a subgroup of SL1(Zα[C2 × C2]). Since the latter does not contain uh, as seen from the 

matrix representation, it is a proper subgroup of U(Zα[C2×C2]) and hence indeed is equal 
to Hα(C2×C2). That φ(U(Zα[C2×C2])) has index 3 in GL2(Z) follows from the fact that
〈φ(v), φ(w)〉 has index 24 in GL2(Z) and φ(U(Zα[C2 × C2])) = 〈φ(v), φ(w)〉 ⋊ D8. �

The above proof shows the importance of having understanding on subgroup of small 
index in SL2(Z).

8.2. The general case

Now we consider the general case of G = 〈g, h〉 × Cn
2 . More precisely, we will follow

the method outlined in Section 7 and therefore describe the isomorphism type of the 

groups U1, . . . , Un. Combined with Theorem 7.3 this would reduce a full description of 
U(Zα[〈g, h〉 × Cn

2 ]) to describing the actions in the semi-direct products. We use freely

the objects and notations introduced in Section 7.

Proposition 8.3. The groups Ui satisfy the following:

• [U(Zα[〈g, h〉]) : U1] = 8,

• [Ui : Ui+1] = 8 for all i ≥ 1,

• U1
∼= F3 × C2,

• If i ≥ 2, then Ui is a free group of rank ni = 1 + 8i−1.

Proof. Recall that, by definition, Ui = {1 + 2iu | u ∈ Zα[〈g, h〉]} ∩ U(Zα[〈g, h〉]). In 

particular, elements of U1 are of the form 1 + 2u for u ∈ Zα[〈g, h〉] and hence the only
trivial units of Zα[〈g, h〉] contained in U1 are ±1. In fact, using the notations of the 

proof of Proposition 8.2, one has that A = 〈v2, w2, wv−1, −1〉 ⊆ U1. Indeed, recall that
v = 1 + uh − ugh and w = 1 + uh + ugh, hence a simple calculation yields that

v2 = 1 + 2uh − 2ugh = 1 + 2(uh − ugh), w2 = 1 + 2uh + 2ugh = 1 + 2(uh + ugh).

Additionally, v−1 = 1 − uh + ugh and hence

wv−1 = −1 − 2ug + 2ugh = 1 + 2(−1 − ug + ugh).

We conclude that indeed A ⊆ U1. However v cannot be written in the form 1 + 2u

(which already can be seen mod 2), thus A ≤ U1 ≨ 〈v, w〉 × 〈−1〉. Note that [〈v, w〉 :
〈v2, w2, vw−1〉] = 2 as the product of any two generators of 〈v, w〉 is in 〈v2, w2, vw−1〉.
Thus A = U1. Now recall the Nielsen-Schreier formula that says that a subgroup of 
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index t in a free group of rank e is a free group of rank 1 + t(e − 1). Consequently, since 

〈v, w〉 ∼= F2 by Proposition 8.2, we obtain all together that

U1 = 〈v2, w2, wv−1〉 × 〈−1〉 ∼= F3 × C2. (37)

Now comparing it to the generators of U(Zα[〈g, h〉]) we see that [U(Zα[〈g, h〉]) : U1] = 8.
Next, for the statements concerning the Ui, we use Proposition 8.1 and that

φ(Zα[〈g, h〉]) is an order contained in the maximal order M2(Z) and thus, by a well-
known fact, that an element is invertible in the former if and only if it is in the latter.
Hence, we obtain that

Ui
∼= φ(Ui) = {

(
1 + 2ia11 2ia12

2ia21 1 + 2ia22

)
| a11 ≡2 a22, a12 ≡2 a21} ∩ GL2(Z). (38)

Further remark that U1 ≤ SL1(Zα[C2 × C2]) and hence φ(Ui) ≤ φ(U1) ≤ SL2(Z).
Consider now the principal congruence subgroup Γ(2i) of level 2i in SL2(Z):

Γ(2i) = ker(π2i) : SL2(Z) → SL2(Z/2iZ).

More concretely, Γ(2i) =
(
1 + 2i M2(Z)

)
∩ SL2(Z). Note that Γ(2i+1) ≤ φ(Ui) ≤ Γ(2i).

The second part of the statement will be a consequence of the following:

Claim: [Γ(2i) : φ(Ui)] = 2 and [φ(Ui) : Γ(2i+1)] = 4 for all i ≥ 1

To start, recall the following well-known formula (e.g. see36 [50, p 146]):

[SL2(Z) : ker (SL2(Z) → SL2(Z/nZ))] = n3
∏

p | n

(1 − 1
p2

), (39)

where the product runs over all the prime divisors p of n. Consequently, [Γ(2i) :

Γ(2i+1)] = [SL2(Z):Γ(2i+1)]
[SL2(Z):Γ(2i)] = 8 for all i ≥ 1. Further note that 

(
1 2i

0 1

)
∈ Γ(2i) \ φ(Ui)

for all i. Therefore, if we prove that A.B ∈ φ(Ui) for any pair of matrices A =(
1 + 2ia11 2ia12

2ia21 1 + 2ia22

)
, B =

(
1 + 2ib11 2ib12

2ib21 1 + 2ib22

)
∈ Γ(2i) \ φ(Ui), then [Γ(2i) :

φ(Ui)] = 2, which is the first part of the claim.37 Subsequently, the second part follows 
from this and our value of the index [Γ(2i) : Γ(2i+1)]. A direct computation shows that
AB ∈ φ(Ui) if and only if a11 + a22 ≡2 b11 + b22 and a12 + a21 ≡2 b12 + b21. However

36 In this reference the formula for [SL2(Z) : ker (SL2(Z) → PSL2(Z/nZ))] is given. If n > 2 this differs 
by a factor 2−1 with difference coming from the central matrix −1.

37 A concrete matrix in φ(Ui) but not in Γ(2i+1) is 
(

1 + 2i 2i

−2i 1 − 2i

)
.
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it also is easy to prove that A having determinant 1 already implies that a11 ≡2 a22

(analogously for B). Hence if A ∈ Γ(2i) \ φ(Ui) then a12 + a21 is odd and the same for
b12 +b21. All together the conditions for AB ∈ φ(Ui) are always satisfied, as needed. The 

second part of the statement now follows from the claim as follows:

[Ui : Ui+1] = [φ(Ui) : φ(Ui+1)] = [φ(Ui) : Γ(2i+1)] . [Γ(2i+1) : φ(Ui+1)] = 8.

Finally we prove the last part of the result. By the above, U2 is a torsion-free subgroup 

of index 8 in U1 = 〈v2, w2, wv−1〉 × 〈−1〉. Note that an element −1.(1 + 2u) with u ∈
Zα[〈g, h〉] can not be of the form 1 + 4v with v ∈ Zα[〈g, h〉], as seen by working modulo 

4. Thus U2 is a subgroup of index 4 in F3 = 〈v2, w2, wv−1〉. Thus the Nielsen-Schreier
formula yields that U2

∼= F1+4·2. Since Ui ≤ Ui−1 also Ui is a free group whose rank is 
computed with a recursive use of Nielsen-Schreier’s formula. �

Remark 8.4. Consider F = {ûg = 1
o(g) ũg | g ∈ Gα

0 }. The computations in the previous 

proof show that v2, w2, wv−1 are in the group GBicF (Qα[〈g, h〉], Z) generated by the 

(generalized) bicyclic units (see Definition 6.2). Actually these two groups are equal 
(as can for example be checked by expressing the generating bicyclic units in terms of 
v2, w2, wv−1). Hence U(Zα[C2 × C2]) is an example where

GBicF (Qα[G], Z) ≨ Hα(G).

That the difference is still of finite index heavily relies on the fact that the generators of 
Hα(G) are all formed from elements of order 2 (which allowed wv−1 to be a generalized 

bicyclic unit). In larger examples however the H-units can be an infinite index overgroup,
as will be shown in Section 10.3.

9. Description of U(Z[D8 × C
n

2
])

Let G be the group Cn+2
2 = 〈g, h, x1, . . . , xn〉 as in (33) and

Γ ∼= D8 × C2 × . . . × C2 = 〈a, b〉 × 〈y1〉 × . . . × 〈yn〉,

where D8 = 〈a, b | a4 = 1 = b2, ab = a−1〉. We consider the epimorphism λ : D8 ×
Cn

2 → G determined by λ(a) = gh, λ(b) = g, λ(yi) = xi. With the associated canonical 
choice of section μ : G → D8 × Cn

2 , one directly checks that the associated 2-cocycle 

α(s, t) = μ(s)μ(t)μ(st)−1 is exactly the one determined by (34). In other words, the 

central extension Γ associated with the [α] ∈ H2(G, C2) from Section 8 is isomorphic to 

D8 × Cn
2 .

Taking now χ ∈ Hom(〈a2〉, Z∗) with χ(a2) = −1 we see that Ψχ : Z[Γ] → ZTra(χ)[G]
is nothing else than the ring epimorphism.

ψ : Z[D8 × Cn
2 ] → Zα[G] (40)
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defined by

a �→ ugh, b �→ ug, xi �→ uyi
.

In this section we will pullback the description of U(Zα[G]), obtained in Section 8,
by using the methods from Section 5.2 in order to obtain a description of U(Z[D8 ×
Cn

2 ]). First we invoke Theorem 5.5 and Theorem 5.3 to give a precise description of the 

(co)kernel of the (co)restricted morphism ψ̃res : U(Z[D8]) → U(ZRes(α)[〈g, h〉]) : a �→
ugh, b �→ ug.

Lemma 9.1. With notations as above we have that

(i) ker(ψ̃) = 〈−a2〉 ∼= C2,

(ii) | coker(ψ̃res)| = 2.

Proof. The description of the kernel follows from Theorem 5.5 which says that the kernel 
is finite and ker(ψ̃) = {1, −a2}, as desired.

In order to describe coker(ψ̃res), recall that by Proposition 8.2

U(ZRes(α)[C2 × C2]) = 〈v, w〉 ⋊ D8

with v = u1 + uhũg and w = u1 + ũguh. As was claimed (without providing details) in 

Remark 6.14, in this case the product of any two generators of U(ZRes(α)[〈g, h〉]) belongs 
to Im(ψ̃res). Furthermore Proposition 6.12 asserts that v is a non-trivial element in 

coker(ψ̃res), hence ψ̃res is not surjective and thus | coker(ψ̃res)| = 2.
To prove the above stated claim on the product of generators, note first that the trivial 

units are attained. So we need to consider now the torsion-free part. For this consider
the bicyclic units b1 = 1 + (1 − b)ab(1 + b) and b2 = 1 + (1 + b)ab(1 − b). Recalling (26)
we see that ψ(b1) = v2 and ψ(b2) = w2. A direct computation also gives that

wv−1 = −u1 − 2ug − 2uhug = −1(u1 + (1 + uh)ug(1 − uh))

Therefore if we consider the bicyclic unit b3 = 1 − (1 − ab)b(1 + ab), we also notice that
ψ(−b3) = wv−1. Thus the claim follows and it finishes the proof. �

Lemma 9.1 combined with Proposition 8.3 and Theorem 7.3 yield the description we 

were looking for.

Proposition 9.2. The following hold:

(1) U(Z[D8]) ∼= F3 ⋊ (±D8) with F3 generated by bicyclic units,

(2) U1
∼= F9 × C2,

(3) Ui
∼= Fni

with ni = 1 + 8i for i ≥ 2,
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(4) ±D8 × Cn
2 has a torsion-free normal complement in U(Z[D8 × Cn

2 ]).

This result for example yields that U(Z[D8 × C2]) ∼= (F9 ⋊ F3)⋊ (±D8 × C2). Such a 

decomposition was already obtained in [32, Theorem 5].

Proof. To start note that ψ(±D8) = 〈g, h〉 ∼= D8. Also it is not hard to see that the 

elements b1, b2, b3 (used in the proof of Lemma 9.1) are in fact generators for 〈Bic(D8)〉,
the group generated by the bicyclic units of D8 (e.g. see [26, part (3) of proof Example 

1.5.4]). Hence we already know that

〈Bic(D8), a2〉 ∼= 〈Bic(D8)〉 × 〈a2〉 ∼= ±1.〈v2, w2, wv−1〉 = U1(Zα[C2 × C2])

with Ui(Zα[C2 × C2]) := {1 + 2iu | u ∈ Zα[〈g, h〉]} ∩ U(Zα[〈g, h〉]) and where the second 

isomorphism is given by ψ̃res. The latter is isomorphic to F3 × C2 by Proposition 8.3.
Now, via Proposition 8.3 and Lemma 9.1 one infers that ker(ψ̃) ⊂ 〈Bic(D8), ±D8〉

and that ψ̃(〈Bic(D8), ±D8〉) is of index two in U(Zα[C2 × C2]), thus equals im(ψ̃). Con-
sequently, the first part follows and we have given a new proof of the well known fact
that U(Z[D8]) = 〈Bic(D8)〉 ⋊ (±D8). In particular all elements in 〈Bic(D8)〉 are of the 

form 1 + (1 − a2)u with u ∈ Z[D8]. This in particular implies that for all i

Ui(ZD8) = {1 + 2i(1 − a2)u | u ∈ Z[D8]} ∩ U(Z[D8]) (41)

Next, due to the above, we see that for each i the torsion-free elements of Ui(ZD8)
are in 〈Bic(D8)〉. In particular, for each i ≥ 2 this means that Ui(ZD8) ≤ 〈Bic(D8)〉 and 

ψ̃ is injective on them by Lemma 9.1. Using the description (41) we moreover have that
ψ̃(Ui(ZD8)) = Ui+1(Zα[C2 × C2]). In summary, ψ̃ induces an isomorphism

Ui(ZD8) ∼= Ui+1(Zα[C2 × C2]) (42)

for all i ≥ 2. If i = 1 then by Theorem 7.3 the group U1(ZD8) ∼= {±1} × N1 with N1

torsion-free. By the above N1 ≤ 〈Bic(D8)〉 and concretely N1 = {1 + 2(1 − a2)u | u ∈
Z[D8]}. So via ψ̃ we have the isomorphism N1

∼= U2(Zα[C2 × C2]). Therefore the second 

and third statement now follows from Proposition 8.3. The last statement follows from 

the first and Corollary 7.4. �

As mentioned after Remark 7.5, it is known that the group generated by the bicyclic 

units form a normal complement in U(Z[D8 × Cn
2 ]) if n ≤ 1, but for n = 2 they do not

form a normal complement as shown in [40]. In fact, it is expected that if n ≥ 2 the 

bicyclic units are even of infinite index. It would be especially instructive to describe 

a minimal set of generators (in a generic way) of the torsion-free normal complement
mentioned Proposition 9.2.

To finish this section, we would like to record the exact size and generators of coker(ψ̃).
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Lemma 9.3. With notations as above we have that

(1) | coker(ψ̃)| = [U(Zα[G]) : Im(ψ̃)] = 2n+3 − 4n − 6,

(2) coker(ψ̃) is generated by H-units.

Proof. By Theorem 7.3, each of the unit groups U(Z[Γ]) and U(Zα[G]) is determined 

by respective groups K�j . To distinguish, we respectively write K
(i)
�j

(Γ) and K
(i)
�j

(G) for
�j ∈ {0, 1}i−1. The methods in Section 7 imply that

| coker(ψ̃)| = | coker(ψ̃res)| +
n∑

i=1

∑

�j∈{0,1}i−1

[K(i)
�j

(G) : ψ̃(K(i)
�j

(Γ))].

Following Lemma 9.1, | coker(ψ̃res)| = 2. Next, to compute [K(i)
�j

(G) : ψ̃(K(i)
�j

(Γ))] we 

use (see Theorem 7.3) the isomorphism K
(i)
�j

(G) ∼= U1+
∑i−1

t=1 j(t) which we will denote by

θ (where we abuse notations as it in fact depends on i and �j). For notational simplicity
denote 

∑
�j :=

∑i−1
t=1 j(t). Note that θ(ψ̃(K(i)

�j
(Γ))) ∼= ψ̃res(θ(K(i)

�j
(Γ))). Therefore, if 

�j �= �0, using (42) and Proposition 8.3 yields

[K(i)
�j

(G) : ψ̃(K(i)
�j

(Γ))] = [θ
(

K
(i)
�j

(G)
)

: θ
(

ψ̃(K(i)
�j

(Γ))
)

] = [U1+
∑

�j : U2+
∑

�j ] = 8.

If �j = �0, then both K
(i)
�j

(G) and K
(i)
�j

(Γ) contain a copy of C2 (namely 〈uyi
〉, resp. 〈xi〉)

and ψ̃ induces an isomorphism on these. Thus in this the same passage through the 

above isomorphisms yields that [K(i)
�j

(G) : ψ̃(K(i)
�j

(Γ))] = [〈v, w, vw−1〉 : U2] = 4. So all 
together

| coker(ψ̃)| = 2 + 4n + 8
n∑

i=1

(2i−1 − 1) = 2 + 4n − 8n + 8(2n − 1) = 2n+3 − 4n − 6.

For the second part of the statement, using the elements in Hα(C2 × C2) we will give ex-
plicit generators of the quotient K(i)

�j
(G)/ψ̃(K(i)

�j
(Γ)). First recall that by Proposition 8.3

U1+
∑

�j/U2+
∑

�j is of order 8 if �j �= �0 and 4 else. Now consider the set

{v21+Σ�j

, (vw−1)2Σ�j

, v2Σ�j

w−2Σ�j }. (43)

Note that the second and third generators are equal if �j = �0. Computing their image 

under the isomorphism φ from the proof of Proposition 8.3, and also of all their double 

products, one deduces that they generate an elementary abelian 2-group of order 8 if �j �=
�0 and of order 4 else. In particular, for all �j their images generate φ(U1+

∑
�j)/φ(U2+

∑
�j)

and so the set itself generates U1+
∑

�j/U2+
∑

�j . It now remains to construct three H-units 
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in K
(i)
�j

(G) which map under θ to the elements in (43). For notation ease we denote 

(1 − ux)�j = (1 − ux1
)j(1) . . . (1 − uxi−1

)j(i−1). We claim that the desired units are:

z
(i)
�j,1

= 1 + (1 − uxi
)(1 − ux)�j uhũg,

z
(i)
�j,2

= 1 − (1 − uxi
)(1 − ux)�j ũhug,

z
(i)
�j,3

=
(

1 + (1 − ux)�j uhũg

) (
1 − (1 − ux)�j uh

̃(uxi
ug)

)
.

Writing out the third element results in

z
(i)
�j,3

= 1 + (1 − ux)�juhug(1 − uxi
) − 2Σ�j(1 − ux)�j(1 − ug)(1 − uxi

).

Thus we see that {z
(i)
�j,1

, z
(i)
�j,2

, z
(i)
�j,3

} ⊂ K
(i)
�j

(G) and clearly

θ(z(i)
�j,1

) = v21+Σ�j

, θ(z(i)
�j,2

) = (vw−1)2Σ�j

, θ(z(i)
�j,3

) = v2Σ�j

w−2Σ�j

.

This finishes the proof of the second statement. �

10. A new generic construction of units in integral group rings

In this section we introduce a new generic construction of units in ZG which in fact
are elements of SL1(ZG) (see (25)). These elements originated as the pullback of the 

products of the H-units in twisted group rings from Definition 6.9 along the transgression 

morphisms of Section 3.2. However, they can also be defined directly as will be shown in 

Section 10.2. Furthermore, as explained in Section 10.1, those units of Definition 6.9 can 

be constructed in general finite dimensional semisimple F -algebras, with F a number
field. Finally, in Section 10.3, we will give an infinite family of groups where the newly
constructed units contain the bicyclic units as subgroup of infinite index. In particular,
these elements are indeed a new step towards the problem of describing generators of 
U(ZG), up to commensurability, generically in ZG. Interestingly, these units will also 

yield the first generic construction of free groups of rank larger than 2, see Theorem 10.6.

Notation. Recall that H̃ =
∑

h∈H

h for any finite subgroup H in an algebra A and 

Ĥ = 1
|H| H̃. If A is semisimple we will denote by PCI(A) the set of primitive central 

idempotents of A.

10.1. Restricted construction of units for orders in general semisimple algebras

Let A be a finite dimensional semisimple F -algebra, with F a number field, and let O
be a Z-order in A. Inspired by Definition 6.9 and Remark 6.10 we define the following.
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Definition 10.1. Let x, t ∈ U(O) be torsion units such that [t, x] ∈ NU(O)(〈t〉) is of finite 

order and ˜[t, x] = 0. Then the elements

ux±1,t̃ := 1 + x±1t̃ and ut̃,x±1 := 1 + t̃x±1

will be called primitive H-units.

As the name suggests, the elements in Definition 10.1 are indeed invertible elements 
in U(O), as proven below. The reason for adding, compared to Definition 6.9, primitive 

in the name will be clarified later on in Remark 10.10.

Theorem 10.2. Let x, t ∈ U(O) be as in Definition 10.1. Then ux±1,t̃ and ut̃,x±1 are 

unipotent units in U(O). In particular they are of infinite order.

We will prove that 
(
x±t̃

)2
= 0, hence the inverse of ux±1,t̃ is 1 − x±1t̃. Similarly for

ut̃,x±1 .

Example 10.3. The archetypical example is a tuple (x, t) of torsion units such that [t, x] ∈
F ∗ is a root of unity. In that case [t, x] is both central and ˜[t, x] = 0. If A = Rα[G] is 
some twisted group ring and x, t ∈ G, then the linear independence of the basis elements 
yields that ux±1,t̃ and ut̃,x±1 are non-trivial (i.e. �= 1) if x̃ �= 0 in A. However, in general,
there is no transparent characterisation of being non-trivial.

In order to prove Theorem 10.2 we need the following lemma which was shared to us 
by Ángel del Río and whose proof depends on useful identities from [9].

Lemma 10.4. Let G = 〈g, a〉 be a finite meta-cyclic group with 〈g〉 a normal subgroup 

such that o(g) = o(ga). Then o(a) | o(g).

Proof. Denote m = o(g), n = [G : 〈g〉] = |G|
m and s = [G : 〈a〉] = [〈g〉 : 〈g〉 ∩ 〈a〉]. Then s

divides m and o(a) = |G|
s = mn

s .
For a prime p denote by vp(k) the p-adic valuation of k ∈ Z≥0. Suppose that o(a) = nm

s

does not divide m = o(g), or equivalently n does not divide s, i.e. vp(n) > vp(s) for some 

prime p.
Let i be the smallest non-negative integer such that a−1ga = gi and 1 ≤ t ≤ m

such that an = gt. Note that g = a−ngan = gin

and so in ≡ 1 mod m. Next, by
using formula [9, eq. (2.2)] (notice that in [9] the role of a and g are interchanged) we 

have (ag)n = angS(i|n) = gt+S(i|n) with S(i|n) :=
∑n−1

j=0 ij . Then, by the assumption,
m = o(g) = o(g−1(ga)g) = o(ag) = n m

gcd(m,t+S(i|n)) and hence n = gcd(m, t + S(i|n)).
In particular n divides both t + S(i|n) and m. Also, nm

s = o(a) = n.o(gt) = nm
gcd(m,t) .

Therefore s = gcd(m, t). All together we deduce that

vp(s) = min{vp(t), vp(m)} < vp(n) = min{vp(m), vp(t + S(i|n))}.
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This entails that vp(t) = vp(s) < vp(n). Consequently also p | m and vp(t) < vp(t +
S(i|n)). In particular vp(t) = vp(t + S(i|n) − t) = vp(S(i|n)), hence vp(S(i|n)) < vp(n).

Now let q be the multiplicative order of i modulo p, i.e. the smallest integer q with 

p | iq − 1. Since in ≡ 1 mod m and p divides m, it follows that q divides n. Moreover,
q divides p − 1. Hence vp(n) = vp(n

q ) ≥ 1. From [9, Lemma 8.2] it follows that in 

case p is odd or p = 2 and iq ≡ 1 mod 4, we have vp(S(iq|n
q )) = vp(n

q ). Otherwise 

p = 2, vp(iq + 1) ≥ 2 and v2(S(iq|n
q )) = v2(n

q ) + v2(iq + 1) − 1 > v2(n
q ). So all together,

vp(S(iq|n
q )) ≥ vp(n

q ).
Moreover, by [9, Lemma 8.1], S(i|n) = S(i|q)S(iq|n

q ). Thus, vp(n
q ) = vp(n) >

vp(S(i|n)) = vp(S(i|q)) + vp(S(iq|n
q )) ≥ vp(n

q ), which is clearly a contradiction. The 

contradiction came from the assumption that vp(n) > vp(s) for some prime p. Hence we 

conclude that vp(n) ≤ vp(s) for all primes p, that is, n divides s and hence o(a) | o(g). �

We can now proceed to the proof of the theorem.

Proof of Theorem 10.2. Assume x, t ∈ U(O) are torsion units such that [t, x] ∈
NU(O)(〈t〉) is of finite order and ˜[t, x] = 0. For simplicity of notation, denote [t, x] = a.
Since x−1tx = ta we have that o(t) = o(ta). Thus G = 〈a, t〉 satisfies the conditions of 
Lemma 10.4 and hence o(a) | o(t).

Next, recall the notation S(s | n) :=
∑n−1

j=0 sj for any numbers s, n ∈ N. Since 

a ∈ NU(O)(〈t〉) there is some i �= 0 such that ta = ati. In other words, tx = xati and 

x−1t = atix−1. Via induction one directly obtains that

x−1tk = aktiS(i|k)x−1 and tkx = xaktiS(i|k). (44)

These formulas to swap t and x enable us to compute t̃x±1t̃. We claim that:

t̃x−1t̃ =
o(t)
o(a)

ã t̃ x−1 and t̃xt̃ =
o(t)
o(a)

x t̃ ã.

In order to prove this claim, denote o(t)
o(a) = m ∈ N and rewrite

t̃ =
m−1∑

�=0

t�·o(a)

⎛
⎝

o(a)−1∑

j=0

tj

⎞
⎠ .

Then, using the rule in (44) and that at̃ = t̃a, because a normalizes 〈t〉, we obtain that

t̃xt̃ = x
( m−1∑

�=0

al o(a)tiS(i|l o(a))
( o(a)−1∑

j=0

ajtiS(i|j)
))

t̃

= x

(
m−1∑
�=0

tiS(i|l o(a))
( o(a)−1∑

j=0

aj t̃
)
)

= x t̃ (
m−1∑
�=0

ã).
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In the second and last equality we have used that t̃tj = t̃ for every j. The expression 

for t̃x−1t̃ is computed analogously. Now, since by assumption ã = 0, we obtain that(
x±1t̃

)2
= 0 = (t̃x±1)2. Consequently, un

x±1,t̃
= 1 + nxt̃ for all n ∈ Z. In particular it is 

invertible with inverse 1 − x±1t̃ and has infinite order. Similarly for ut̃,x±1 . �

10.2. General construction and properties of H-units

In this section we start with constructing a class of units in SL1(ZG) from any triple 

(g, h, Q) satisfying the properties mentioned in the definition below. A first new fea-
ture of these, that we will obtain in Theorem 10.6, is that they produce free groups of 
large rank. Furthermore, as shown later in Section 10.3, the group consisting of these 

units can contain the bicyclic units as subgroup of infinite index and hence also up to 

commensurability they are new.

Definition 10.5. Let G be a finite group and (g, h, Q) a triple satisfying

• Q is a normal subgroup in 〈g, h, Q〉,
• [g, h]Q ∈ Z(〈g, h, Q〉/Q) and o(hQ) = 2.

Denote (̃±g)Q :=
o(gQ)−1∑

i=0

(±g)i and for any tuple (x1, x2, y1, y2) ∈ Z4
≥0 define the element

v(x1,x2,y1,y2) := 1 +
1

2|Q| Q̃(1 − [g, h])
(

h [x1 (̃−g)Q + x2 g̃Q] + y1 (̃−g)Q + y2 g̃Q

)
. (45)

A quadruple (x1, x2, y1, y2) ∈ Z4
≥0 will be called admissible for (g, h, Q) if

y1 + y2 + o(gQ) y1y2 = o(gQ) x1x2 and x2 ± x1 ≡ 0 ≡ y2 ± y1 mod 2|Q|. (46)

The elements v(x1,x2,y1,y2) for admissible (x1, x2, y1, y2) will be called an H-unit.

The first condition to be admissible will exactly correspond to being invertible (more 

precisely, to belong to SL1(ZG)) and the second condition yields that the element is in 

ZG.
For a fixed triple (g, h, Q) as in Definition 10.5, the set of elements of the form (45)

for admissible quadruples (46) will be denoted H(g, h, Q) and

H(G) = 〈H(g, h, Q) | (g, h, Q) as in Definition 10.5 〉 (47)

is the group generated by all H-units.
Among others, the next result says that H(g, h, Q) is not only a set, but even a 

subgroup of the group of reduced norm 1 elements.
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Theorem 10.6. Let (g, h, Q) be a triple as in Definition 10.5. Then,

(1) H(g, h, Q) is a finitely generated subgroup of SL1(ZG) and

v−1
(x1,x2,y1,y2) = v(−x1,−x2,y2,y1),

(2) H(g, h, Q) �= 1 if and only if [g, h] /∈ 〈g〉Q.

Moreover, for H(g, h, Q) �= 1,

(3) if38 o(gQ)|Q| = 2, then H(g, h, Q) ∼= F3 × C2, and

(4) if o(gQ)|Q| > 2, then H(g, h, Q) ∼= Fn with n = 1 + (o(gQ)|Q|)3

6

∏
p(1 − 1

p2 ), where 

the product runs over the prime divisors p of o(gQ)|Q|.

As H(g, h, Q) is finitely generated, one only needs to construct v(x1,x2,y1,y2) for a finite 

number of admissible (x1, x2, y1, y2). We have not tried to give a precise upperbound,
but in principle this could be done. In fact the generators should somehow correspond 

to the ‘minimal solutions’ of the equations in (46).

For any a, c ∈ G, with c /∈ NG(〈a〉), consider the corresponding bicyclic unit b(a, c) =
1 + (1 − a)cã. It was proven by Marciniak and Sehgal [43] that 〈b(a, c), b(a, c)∗〉 ∼= F2,
where b(a, c)∗ is the image of b(a, c) under the canonical involution of QG. For nilpotent
groups G a similar statement holds for their torsion variant [19,44]: the set consisting of 
the unipotent units belonging to Bic(G) and that form a free product with b(a, c) a is 
profinitely dense in Bic(G) [21]. However, Theorem 10.6 yields the first generic construc-
tion of large free groups (different from taking artificially a copy of Fn inside F2). See 

[16] for a survey on constructing free subgroups of U(ZG).

Proof of Theorem 10.6. To start, note that (−x1, −x2, y2, y1) is admissible if (x1, x2, y1,

y2) is. Moreover, it directly follows from the x2 ±x1 ≡ 0 ≡ y2 ±y1 mod 2|Q| congruences 
that both elements in the statement are in ZG. To prove the statements of the result,
we will “locate” precisely the H-units inside Q[〈g, h, Q〉].

First we consider when H(g, h, Q) is trivial, i.e. when all elements v(x1,x2,y1,y2) equal 1.

Or equivalently, all 1
2|Q| Q̃(1 − [g, h])

(
h [x1 (̃−g)Q + x2 g̃Q] + y1 (̃−g)Q + y2 g̃Q

)
= 0. Since 

Z〈g, h, Q〉 Q̃
|Q|

∼= Z(〈g, h, Q〉/Q), it easily follows that we may assume that Q = 1; and thus 

o(h) = 2 and [g, h] ∈ Z(〈g, h〉). Hence, we need to verify when all (1 −[g, h])
(

h [x1 (̃−g)Q+

x2 g̃Q] +y1 (̃−g)Q+y2 g̃Q

)
= 0. Of course, if [g, h] = 1 then the latter always holds. Hence,

for the remaining of the proof of part (2) we may also assume that 1 �= [g, h]. Now, as 
o(h) = 2 and 1 �= [g, h] ∈ Z(〈g, h〉) one has that o([g, h]) = 2. Furthermore, o(g) is even 

and g2 is central in 〈g, h〉.

38 Since we assume H(g, h, Q) to be non-trivial, by part (2), o(gQ)|Q| = 2 if and only if Q = 1 and 
o(g) = 2.
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Now suppose that [g, h] ∈ 〈g〉. Write [g, h] = gk and thus h−1gh = gk+1. As 
o(h−1gh) = o(g) it follows that k+1 is odd and thus [g, h] ∈ 〈g2〉 is central. Therefore the 

required triviality follows from (1 − [g, h])(g̃Q) = 0 = (1 − [g, h])(̃−g)Q. So we have shown 

that if [g, h] ∈ 〈g〉 then H(g, h, Q) = 1. Conversely, assume H(g, h, Q) = 1, in particular

v(1, −1, 1, −1) = 1 and, because o(g) is even, we thus get (1 −[g, h])(h +1)((̃−g)Q+g̃Q) =

(1 − [g, h])(h +1)(̃g2)Q = 0. In other words, (h +1)g̃2
Q = [g, h](h +1)g̃2

Q. Clearly, a support
argument in the group ring Z〈g, h〉 yields that [g, h] ∈ 〈g2〉 or [g, h] ∈ h〈g2〉. However,
the latter is impossible as elements in h〈g2〉 are not central in 〈g, h〉. Hence, we have 

shown that if H(g, h, Q) = 1 then [g, h] ∈ 〈g2〉, and thus part (2) of the result follows.
From now on we may assume that H(g, h, Q) �= 1. In particular, according to the above 

[g, h] /∈ 〈g〉Q. Furthermore, as mentioned above, we thus also have that o([g, h]Q) = 2.

Consider the central idempotent e := ̂〈Q, −[g, h]〉 in Q[〈g, h, Q〉] and the asso-
ciated decomposition Q[〈g, h, Q〉] = Q[〈g, h, Q〉](1 − e) ⊕ Q[〈g, h, Q〉]e. Notice that
v(x1,x2,y1,y2)(1 − e) = 1 − e, i.e. the projection on the first part is trivial. Thus we 

need to prove the desired statements (1), (3) and (4) within the second component.
For this, put g = gQ and h = hQ. As mentioned above, o(g) is even and note that

Q[〈g, h, Q〉]e ∼= Qα[〈g〉 ×〈h〉] with [α] ∈ H2(〈g〉 ×〈h〉, Z∗) determined by u
o(g)
g = 1 = u

o(h)

h

and [ug, uh] = −1. Under that isomorphism v(x1,x2,y1,y2) corresponds to the element

1 + uh [x1 (̃−ug) + x2 ũg] + y1 (̃−ug) + y2 ũg.

A direct verification yields that (̃−ug).ũg = 0 and ±̃ug
2

= o(g)±̃ug. Also, [x1 (̃−ug) +

x2 ũg] uh = uh [x2 (̃−ug)+x1 ũg]. Using all this, one could straightforwardly compute the 

image of the product v(x1,x2,y1,y2) v(−x1,−x2,y2,y1) and deduce that it is equal to 1 if and 

only if y1 + y2 + o(g) y1y2 = o(g) x1x2. However, by decomposing Qα[〈g〉 × 〈h〉] further
one can also give the following conceptual explanation, which moreover also will yield 

the remainder of the result.
Remark that g2 is central and hence, by Theorem 3.2,

Qα[〈g〉 × 〈h〉] ∼=
⊕

χ∈Lin(〈g2〉,Q)

Q(χ)Traα(χ)[C2 × C2] ∼=
⊕

d | o(g2)

Q(ζd)αd [C2 × C2].

Explicitly, denoting C2 × C2 = 〈a, b〉, [αd] ∈ H2(〈a, b〉, 〈±ζd〉) is determined by u2
a =

ζd, u2
b = 1 and uaub = −ubua. The projections onto the direct summands are given by

the transgression maps from Proposition 3.3, hence ug �→ ua, uh �→ ub and ug2 �→ ζd u1.

Next, notice that (̃±ug) = (1 ± ug) . (̃u2
g). Due to this, (̃±ug) maps to 0 in every direct

summand except for the one indexed by the trivial representation of 〈g2〉. In other
words, there is only a single component of Q[〈g, h, Q〉] where v(x1,x2,y1,y2) has a non-
trivial projection and this component is isomorphic to Qα1 [〈a, b〉] with u2

a = 1 = u2
b and 

[ua, ub] = −1. In that component the projection of v(x1,x2,y1,y2) is

1 + o(g2)
(
ub[x1(1 − ua) + x2(1 + ua)] + y1(1 − ua) + y2(1 + ua)

)
.
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Restricting to Z[〈g, h, Q〉], we can now compose with the isomorphism φ from Sec-
tion 8.1, defined in (36). This composition is defined by

ua �→
(

1 0
0 −1

)
, ub �→

(
0 1
1 0

)
, uab �→

(
0 1

−1 0

)
.

By doing so we have obtained a ring morphism Φ : Z[〈g, h, Q〉] → D̃ which on H(g, h, Q)
is defined as

Φ : v(x1,x2,y1,y2) �→
(

1 + 2 o(g2) y2 2o(g2) x1

2o(g2) x2 1 + 2 o(g2) y1

)
=

(
1 + o(g) y2 o(g) x1

o(g) x2 1 + o(g) y1

)
.

(48)
Moreover, the elements of H(g, h, Q) being trivial on all the other components, Φ is injec-
tive on H(g, h, Q). In particular, see (24), nr(v(x1,x2,y1,y2)) = 1 if det(Φ(v(x1,x2,y1,y2))) =
1. The latter holds as det(Φ(v(x1,x2,y1,y2))) = 1 +o(g)(y1+y2) +o(g)2y1y2−o(g)2x1x2 = 1,
by the definition of an admissible quadruple. In fact, since Φ is injective on H(g, h, Q),
the first condition of being admissible is equivalent to det(Φ(v(x1,x2,y1,y2))) = 1. Now, we 

also see that the inverse is

Φ(v(x1,x2,y1,y2))
−1 =

(
1 + o(g) y1 −o(g) x1

−o(g) x2 1 + o(g) y2

)
.

Hence indeed v−1
(x1,x2,y1,y2) = v(−x1,−x2,y2,y1). In conclusion, H(g, h, Q) is a subgroup of 

SL1(ZG).
All the above in fact yields more. Namely that

Φ : H(g, h, Q) ↪→ Γ(o(g)),

where Γ(n) is the principal congruence subgroup of level n of SL2(Z). However, Φ is not
onto due to the congruences x2 ± x1 ≡ 0 ≡ y2 ± y1 mod 2|Q|.

Claim. x2 ± x1 ≡ 0 ≡ y2 ± y1 mod 2|Q| if and only if xi = |Q|li, yi = |Q|ti for li, ti ∈ N

such that l1 ≡ l2 mod 2 and t1 ≡ t2 mod 2.

Indeed, if x2 ± x1 ≡ 0 mod 2|Q|, then 2x1 ≡ 0 and 2x2 ≡ 0 mod 2|Q|. Hence 

x2 ≡ x1 ≡ 0 mod |Q| and consequently xi = |Q|li, for some li ∈ N. Now, as 2|Q|
divides x2 ± x1, one must have that 2 | l1 ± l2, as desired. Conversely, xi of that form 

clearly satisfy x2 ± x1 mod 2|Q|. The proof for the yi is exactly the same, hence the 

claim follows.
Now denote

Vm =

{(
1 + m l2 m t1

m t2 1 + m l1

)
∈ SL2(Z) | l1 ≡ l2 and t1 ≡ t2 mod 2

}
. (49)



G. Janssens et al. / Advances in Mathematics 458 (2024) 109983 63

Notice that the groups Ui
∼= φ(Ui) from the proof of Proposition 8.3 are equal to V2i . By

the claim above

Φ(H(g, h, Q)) = Vo(g)|Q|. (50)

Since, Γ(2m) ≤ Vm ≤ Γ(m) for every m ≥ 1, we have obtained that Φ(H(g, h, Q)) is a 

finite index subgroup in SL2(Z). In particular it is finitely generated, finishing the proof 
of (1).

Finally, to obtain (3) and (4) we recall the well-known fact that SL2(Z) ∼= C4 �〈−1〉 C6

with C4 = 〈
(

0 −1
1 0

)
〉 and C6 = 〈

(
0 −1
1 −1

)
〉. Hence, by Kurosh’s theorem, Γ(m) is 

free if and only if it is torsion-free. Moreover, all periodic subgroups are conjugated to 

a subgroup of C4 or C6. As Γ(m) is normal in SL2(Z), to verify when Γ(m) is free it
is enough to verify explicitly which powers of the two matrices are in Γ(m). By doing 

so we see that Γ(m) is torsion-free if m �= 2 and −1 is the only torsion element in 

Γ(2). As a consequence, the same conclusion is valid for Vm instead of Γ(m). Also recall,
e.g. see the proof of Proposition 8.3, that V2 = U1

∼= F3 × 〈−1〉. All this applied to 

Φ(H(g, h, Q)) = Vo(g)|Q| yields that H(g, h, Q) is a finitely generated free group, except
if |Q| = 1 and o(g) = 2. In this case H(g, h, Q) ∼= F3 × C2.

When m := o(g)|Q| > 2 the rank of the free group Vm can be computed. In order to 

do so, recall that o(g) is even. In particular H(g, h, Q) ∼= Vm with m even. Next, with the 

same method as in the proof of Proposition 8.3, it can be shown that [Γ(m) : Vm] = 2
when m is even. Also, because Vm ≤ F2 ≤ Γ(2) = F2 × C2, we need to compute 

[F2 : Vm] = [Γ(2) : Vm]/2. This can readily be done using (39):

[Γ(2) : Vm] = [Γ(2) : Γ(m)] [Γ(m) : Vm] = 2
[SL2(Z) : Γ(m)]
[SL2(Z) : Γ(2)]

= 2
m3

6

∏

p|m
(1 − 1

p2
).

Finally, by Nielsen-Schreier’s formula, we obtain that Vm
∼= Fn with n = 1 + m3

6

∏
p|m

(1 −
1

p2 ). �

In order to make further use of it in the text, we explicitly state the following fact
that has been noticed in the previous proof.

Remark 10.7. Let (g, h, Q) be a triple as in Definition 10.5. Note that [g, h] /∈ Q yields 

that o([g, h]Q) = 2. Consequently, 1
2Q̂(1 − [g, h]) = Q̂ ̂(−[g, h]) = ̂〈Q, −[g, h]〉.

Interestingly, a further inspection of the proof of Theorem 10.6 yields the following 

matrix description of H(g, h, Q).
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Theorem 10.8. Let (g, h, Q) be a triple such that H(g, h, Q) �= 1 and let H = 〈g, h, Q〉.
Then there exists a unique primitive central idempotent e of QH such that39

H(g, h, Q) = SL1(ZH) ∩ (1 − e + QHe) .

Moreover, H(g, h, Q) = 1 − e + Vm for m = o(gQ)|Q| and Vm defined in (49). Also,

considering any maximal order O in QHe and denoting by Γ(m) the principal congruence 

subgroup of level m = o(gQ)|Q| in SL1(O), one has that

Γ(2m) ≤ Vm ≤ Γ(m) and [Γ(m) : Vm] = 2.

In particular, H(g, h, Q) is a finite index normal subgroup of 1 − e + U(ZHe).

Proof. Note that the proof of Theorem 10.6 in fact works locally, in the sense that it
is carried out in Q[〈g, h, Q〉] rather than Q[G]. Furthermore, the morphism Φ defined 

in (48) in fact coincides with the projection onto its simple component Qα1[〈a, b〉] (no-
tations as in the proof). More precisely, this projection factors through Qα[〈g〉 × 〈h〉].
Projecting thereon is given by first multiplying with the central idempotent e and then 

the subsequent projection onto Qα1 [〈a, b〉] is given by multiplying with eT (we use the 

subscript T because the component arises from the trivial character). The element eT e is 
a primitive central idempotent of Q[〈g, h, Q〉] and Φ is a concrete realization of the com-
position of multiplying with eT e followed by applying φ (defined in (36)). In particular
Φ is injective on QH ∩ (1 − eT e + QHeT e).

Next, as geT e = a and heT e = b, one has that o(geT e) = 2 = o(heT e). Using 

this a direct verification yields that any element in QH ∩ (1 − eT e + QHeT e) can be 

rewritten in the form (45) for some x1, x2, y1, y2 ∈ Q. However, as explained in the proof 
of Theorem 10.6, via the injectivity of Φ, such an element is in SL1(ZG) if and only
if (x1, x2, y1, y2) is admissible for (g, h, Q). Hence H(g, h, Q) = SL1(ZH) ∩ (1 − eT e +
QHeT e) and thus eT e is the desired primitive central idempotent of QH. The moreover
part of the statement of the result was explicitly obtained in the proof of Theorem 10.6,
see (50). The final finite index assertion holds because QHeT e ∼= M2(Q) hence the centre
of the unit group of an order therein is finite and therefore SL1(ZGe) is of finite index
in U(ZHe).

It remains to prove that H(g, h, Q) is normal in 1 − e + U(ZHe) or in other words 
that Vm is normal in U(ZHe) ∼= U(Zα1 [〈a, b〉]). A presentation of the latter group was 
obtained in Proposition 8.2. The image under φ of the generators are the following 

matrices:
{(

1 2
0 1

)
,

(
1 0
2 1

)
,

(
1 0
0 −1

)
,

(
0 1
1 0

)}
.

39 Confusing at first, 1 − e + QHe however consists simply of the elements of QH projecting to the identity
in all simple components of QH except the simple component (QH)e where any element of QHe is taken.
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A direct verification yields that these matrices normalize Vm for every m, finishing the 

proof. �

Note also that, unlike primitive H-units, the elements v(x1,x2,y1,y2) are not necessarily
unipotent. For instance, using the map Φ in (48) we see that

−1 + v(x1,x2,y1,y2) is nilpotent ⇔
{

y1 = −y2

y1y2 = x1x2
(51)

Finally, it would be interesting to investigate how different H-units interact.

Question 10.9. Let (gi, hi, Qi), with i = 1, 2, be two different triples as in Definition 10.5.
What is the structure of the group 〈H(g1, h1, Q1), H(g2, h2, Q2)〉?

A first interesting contribution to Question 10.9 would be to determine when it is the 

direct product of H(g1, h1, Q1) and H(g2, h2, Q2).

Remark 10.10. The proof of Theorem 10.6 has shown that locally, i.e. in Q[〈g, h, Q〉],
v(x1,x2,y1,y2) injects via Φ to an element of SL1(Zα[C2 × C2]). By Proposition 8.2,
Φ(v(x1,x2,y1,y2)) is a product of elements as in Definition 10.1. In particular the elements 
in the latter are somehow the smallest, hence the name primitive. Besides, the map Φ
is directly related with decomposing 〈g, h, Q〉 as a non-split extension of 〈Q, [g, h], g2〉
by C2 × C2. Thus the non-triviality of that second cohomology group was explicitly
necessary for the existence of H-units. This clarifies our choice of the name for those 

units.

10.3. H-units extend bicyclic units with infinite index

Recall that a simple quotient of Q[G] is called an exceptional component of type II

if it is of the form40 M2(Q(
√

−d)) or M2(
(

−a,−b
Q

)
) with a and b strict positive integers 

and d ∈ N (i.e. 
(

−a,−b
Q

)
is a totally definite quaternion algebra) and it is called an 

exceptional component of type I if it is a division algebra which is not a totally definite 

quaternion algebra. The terminology ‘exceptional’ refers to the fact that in their absence 

the bicyclic units are of finite index in SL1(ZG), e.g. see Corollary 6.7. Therefore, as 
SL1(O) for O an order in a division algebra has no unipotent units, the focus of current
research is on the type II exceptional components

As demonstrated by [2, Appendix A] the most recurrent41 component of that type is 
M2(Q) and this is a simple quotient of QG if and only if G surjects onto D8 or S3. It

40 The division algebras appearing in these matrix algebras are exactly those having an order with finite 
unit group [2, Theorem 2.10.].
41 QG has an exceptional 2 ×2 component exactly when it maps onto one of the 52 groups in [13]. Now the 
table in [2, Appendix A] says that only 16 of them have no simple component of the type M2(Q). Among 
nilpotent groups there are only 5 such groups.
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follows that, when 3 ∤ |G| and M2(Q) is a simple component of QG, one has a triple 

(g, h, Q) satisfying the following:

g, h ∈ NG(Q) and 〈g, h, Q〉/Q ∼= D8. (52)

In fact the stronger properties Q � G and G/Q = 〈gQ, hQ〉 = 〈ghQ, hQ〉 ∼= D8 are 

satisfied. We will call a triple satisfying (52) a D8-triple.

Convention. For a D8-triple (g, h, Q) we will always assume that o(gQ) = o(hQ) = 2
and D8

∼= C4 ⋊ C2 = 〈ghQ〉 ⋊ 〈hQ〉.

Using H-units built on D8-triples we can describe generically a subgroup of finite 

index for the following class of groups.

Theorem 10.11. Let G be a 2-group such that the only exceptional components of QG

are of the form M2(Q), then 〈Bic(G), H(G)〉 is of finite index in SL1(ZG). Consequently,

〈B(G), H(G)〉 is of finite index in U(ZG).

In the above B(G) denotes the subgroup of U(ZG) generated by the bicyclic and Bass 
units (see [26, Section 1.2.] for definitions).

Proof. Denote by Eexc the set of primitive central idempotents e such that QGe ∼= M2(Q).
For e ∈ Eexc consider the associated projection πe : G → Ge (which is the restriction 

of the natural projection from U(QG) to U(QG)e). Since G is a 2-group one has that
πe(G) = Ge ∼= D8. Consider Q = ker(πe) and take g, h ∈ G such that Ge ∼= 〈πe(g)〉 ⋊
〈πe(h)〉, with o(gQ) = 4, o(hQ) = 2 and [gQ, hQ] = (gQ)2. In this way we obtain a 

D8-triple (gh, h, Q) such that 1 �= H(gh, h, Q) (by Theorem 10.6) and G = 〈gh, h, Q〉.
This allows to apply Theorem 10.8 to conclude that He := H(gh, h, Q) ≤ SL1(ZG) is of 
finite index in 1 − e + U(ZGe).

Now consider E := PCI(QG) \ Eexc and take e′ ∈ E , i.e. QGe′ ≇ M2(Q). By assump-
tion, if QGe′ is a division algebra it needs to be a totally definite quaternion algebra,
and hence SL1(ZGe′) is finite [37]. It now remains to consider the case that QGe′ is not
a division algebra, say Mn(D), and let O be an order in the division algebra D. In this 
case classical arguments can be used. Namely, for such a component Corollary 6.7 gives a 

y ∈ Z and subgroup 1 − e′ + En(yO) ≤ Bic(G). Because QGe′ is non-exceptional, the so-
lution to the subgroup congruence problem in higher rank (e.g. see [26, Theorem 11.2.3])
yields that Ee′ := En(yO) is of finite index in GLn(O). All together we obtained a sub-
group H =

∏
e He×∏

e′ Ee′ of SL1(ZG) which is of finite index in 
∏

e∈PCI(QG)) SL1(ZGe),
hence also in SL1(ZG). The second part now classically follows by a Bass-Milnor The-
orem [26, Theorem 11.1.2] which says that the Bass units map to a subgroup of finite 

index in the Whitehead group K1(ZG) := GL(ZG)ab of ZG and hence [26, Prop. 9.5.11]
jointly with H it is of finite index in U(ZG). In particular also 〈B(G), H(G)〉 is of finite 

index in U(ZG). �
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Remark 10.12. The first part of the proof of Theorem 10.11 shows that when G does 
not map onto S3 one can extend the Jespers-Leal theorem [29] by including also the 

exceptional component M2(Q). Concretely, let e ∈ PCI(QG) such that QGe ∼= M2(Q)
and 3 ∤ |Ge|. Then SL1(ZG) contains a subgroup We, consisting of H-units, that is 
of finite index in 1 − e + U(ZGe) ⊂ 1 − e + QGe. Moreover We contains a principal 
congruence subgroup of level 2o(gQ)|Q| = 2 · 2 · |G|

8 = |G|
2 of SL1(ZGe). More precisely,

We
∼= V|G|/4.

The condition 3 ∤ |Ge| stems from the fact that the proof of Theorem 10.6 requires 
Proposition 8.2. On turn the latter originates from a splitting of D8 and needs a precise 

understanding on subgroups of small index in SL2(Z). Using [48], the necessary tools 
seem to exist to extend the results to S3. In particular we expect that the above and 

Theorem 10.11 extends to non 2-groups.

By a result of Jespers and del Río [25] natural examples for finite groups G as in 

Theorem 10.11 can be found when U(ZG) is virtually a direct product of free products 
of abelian groups. Such groups have been classified and the 2-groups of this type are 

isomorphic to K × Cn
2 with K one of the following types:

G1: 〈x, y | x4 = y4 = 1 and y2, x2 = [x, y] central 〉,
G2: 〈x, y1, . . . , yn | x4 = y2

i = [yi, yj ] = 1 and x2, [x, yi] central 〉,
G3: 〈x, y1, . . . , yn | x4 = y4

i = y2
i [x, yi] = [yi, yj ] = 1 and x2, y2

i central 〉,
G4: 〈x, y1, . . . , yn | x2 = y2

i = [yi, yj ] = [[x, yi], yj ] = [x, yi]2 = 1〉,
G5: 〈x, y1, . . . , yn | x2 = y4

i = y2
i [x, yi] = [yi, yj ] = [[x, yi], x] = 1〉,

G6: 〈x, y1, . . . , yn | x4 = y4
i = x2y2

1 = y2
i [x, yi] = [yi, yj ] = [y2

i , x] = 1〉,
G7: 〈x, y1, . . . , yn | x4 = x2y4

i = y−2
i [x, yi] = [yi, yj ] = 1〉.

Remark 10.13. In [25] the relation y2
i [x, yi] = 1 is written for the groups in class G7

(which are the groups of ‘type (g)’ in [25]). Inspection of the proof however shows that
it must be y−2

i [x, yi] = 1.

The group in G1 is simply C4 ⋊ C4 with C4 acting by inversion. It is known [26,
Corollary 12.7.2] that Bic(C4 ⋊ C4) is of infinite index in SL1(ZG).

For groups G as above, [25, Theorem 1.3] tells that the non-division algebra com-
ponents of QG are isomorphic to M2(Q). Moreover, QG does not have exceptional 
components of type I. Thus we can use Theorem 10.11 to obtain that H(G) is a so-called 

congruence subgroup of SL1(ZG). More importantly, as a byproduct we obtain a more 

precise version of [12, Theorem 1.1] and a classification-free proof.

Corollary 10.14. Let G = K × Cn
2 , with K a group in G1 ∪ . . . ∪ G7, and let q denote 

the number of simple components of the type M2(Q) in QG. Then, there exist D8-triples 

(gi, hi, Qi), 1 ≤ i ≤ q, such that 〈H(gi, hi, Qi)〉 ∼=
∏q

i=1 H(gi, hi, Qi) is a finite index

normal subgroup of SL1(ZG). In particular, the H-units H(G) are of finite index despite 
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that Bic(G) can be of infinite index. Moreover, if G ≇ D8, 〈H(gi, hi, Qi)〉 ∼= F q
n with 

n = 1 + |G|3

2.44 .

In fact 〈H(gi, hi, Qi)〉 is the largest finite index subgroup in SL1(ZG) which is the 

direct product of free groups. This follows from Theorem 10.8, saying that H(gi, hi, Qi) =
SL1(ZG) ∩ 1 − e + QGe for an associated e ∈ PCI(QG), and the indecomposability of 
SL1(O) for O any order in some Mn(D) (n �= 1) [38]. That 

∏
e∈PCI(QG) SL1(ZG) ∩ 1 −

e + QGe is the largest direct product of free groups was already obtained by del Río 

and Ruiz in [12, Theorem 1.1]. However our proof is uniform, i.e. we do not use the 

classification for G, and yield more explicit generators.

Proof of Corollary 10.14. Let e ∈ PCI(QG). By [25, Theorem 1.3], either QGe is a 

totally definite quaternion algebra or it is isomorphic to M2(Q). In the former case 

SL1(ZGe) is finite, so we only need to consider the case QGe ∼= M2(Q). As pointed 

out in Remark 10.12, the proof of Theorem 10.11 gives a D8-triple (ge, he, Qe) such 

that H(ge, he, Qe) is of finite index in 1 − e + U(ZGe). In particular, picking one such 

triple for every e now yields a subgroup of SL1(ZG) which is even of finite index in 

the overgroup 
∏

e SL1(ZGe) such that 〈H(gi, hi, Qi)〉 ∼=
∏q

i=1 H(gi, hi, Qi). Following 

Theorem 10.8, H(ge, he, Qe) is isomorphic to a certain group Vm which is normal in 

U(ZGe). This implies that 
∏q

i=1 H(gi, hi, Qi) is normal in 
∏

e U(ZGe) and in particular
in the subgroup U(ZG). Now, as mentioned earlier for example in the group G1 the 

bicyclic units are of infinite index. This finishes the first part.
That H(gi, hi, Qi) ∼= Fn with n as in the statement is a combination of Theorem 10.6

and Remark 10.12. More precisely, the latter says that H(gi, hi, Qi) ∼= Vm with m =
o(gQ)|Q| = |G|

4 . Now would q �= 0 and o(gQ)|Q| = 2, then Q = 1 and o(g) = 2. This 
however entails that G ∼= D8, which was excluded. Therefore, Theorem 10.6 yields that
H(gi, hi, Qi) is a free group and as m is a 2-power the product in Theorem 10.6 only
runs over the prime divisor 2, yielding the desired formula. �

To finish this section, we exhibit a first surprising application of H-units which indicate 

a first of many new possible paths of research.

Example of a normal complement via H-units

Consider

Γ = C4 ⋊ C4 := 〈a, b | a4 = b4 = 1, ab = a−1〉,

a group in the class G1. Recall that Q[Γ] ∼= Q[C2 × C2] ⊕ 2Q(i) ⊕
(

−1,−1
Q

)
⊕ M2(Q).

In particular we can apply all the results above. Concretely, notice that (ab, b, 〈b2〉) is a 

D8-triple fulfilling the non-triviality condition of Theorem 10.6 with o(ab)|〈b2〉| = 4. As 
there is only one matrix component and Z(U(ZΓ)) is finite, Theorem 10.6 now yields 
that



G. Janssens et al. / Advances in Mathematics 458 (2024) 109983 69

H(ab, b, 〈b2〉) ∼= F
1+ 43.3

6.4

= F9 finite index normal subgroup in U(ZΓ).

Furthermore, by Theorem 10.8, H(ab, b, 〈b2〉)) = SL1(ZΓ) ∩ (1 − e + QΓe) with QΓe ∼=
M2(Q) and H(ab, b, 〈b2〉)) = 1 − e + V4 is a normal subgroup. Furthermore,

SL1(ZΓ) = 〈H(ab, b, 〈b2〉)), G ∩ SL1(ZΓ)〉.

The latter can be seen from the facts: (i) SL1(ZΓ) ≤ 1 × SL1

( −1,−1
Z

)
= Q8 × SL2(Z)

and (ii) Γ ∩ SL1(ZΓ) = 〈a2〉 (all other g ∈ Γ have a non-trivial projection in one of the 

commutative components) and with a2 mapping to −1 in SL1

( −1,−1
Z

)
. With a bit more 

of work42 one can prove that U(ZΓ) = 〈H(ab, b, 〈b2〉), ±Γ〉. All together we recover [28,
Theorem 5.1.] (also see [4, Example 5.5]):

U(Z[Γ]) ∼= F9 ⋊ ±Γ

where F9 = H(ab, b, 〈b2〉). This description of the free group F9 yields a new set of

generators.

A full presentation can also be obtained. A presentation was given in [4, Example 

5.5], using [28, Theorem 5.1.], but our methods will yield a considerably more symmetric 

presentation. Indeed, as F9 = H(ab, b, 〈b2〉) = 1 − e + V4, it is enough to compute the 

action of πe(Γ) = 〈πe(ab), πe(b)〉 ∼= D8 on V4, all seen as subgroups of GL2(Z). To 

do so, recall that Proposition 8.2 and its proof yields a matrix representation of all 
elements and also record the required actions. More precisely, V2 = 〈w2, v2, w−1v, −1〉

with w =

(
1 2
0 1

)
and v =

(
1 0
2 1

)
. Also, πe(ab) =

(
1 0
0 −1

)
and πe(b) =

(
0 1
1 0

)
.

Via a direct application of the Reidemeister-Schreier method one obtains that

V4 = 〈v4, w4, w2v−2, x, v2xv−2 | x ∈ S〉 (53)

with S = {(w−1v)2, (wv−1)2, (w−1v)(wv−1)−1}. Using the action in Proposition 8.2 (or
the matrices above) one readily verifies that

yπe(ab) = y−1 for y ∈ {v4, w4, (w−1v)(wv−1)−1}

and

zπe(b) = z−1 for z ∈ {w2v−2, (w−1v)2, (wv−1)2}.

Furthermore, (w2v−2)πe(ab) = w−4(w2v−2)v4 and

42 For example, via the methods as in the proof of Claim 4 in the proof of Theorem 10.16 one can prove 
that U(ZΓ) = 〈±Γ, SL1(ZG)〉. The latter fact can alternatively be deduced from [28, Theorem 5.1].
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(
(w−1v)(wv−1)−1

)πe(b)
= (w−1v)2(w−1v)(wv−1)−1(wv−1)2.

The remaining actions are computed similarly, yielding all together the following presen-
tation:

V (ZΓ) = 〈s, t, u, x1, x2, x3, y1, y2, y3〉 ⋊ 〈a, b〉 ∼= F9 ⋊ Γ

where the action is the following:

sab = s−1 xab
1 = x2 yab

1 = s−1y2s

tab = t−1 xab
2 = x1 yab

2 = s−1y1s

uab = t−1us xab
3 = x−1

3 yab
3 = s−1y3s

sb = t xb
1 = x−1

1 yb
1 = uy−1

1 u−1

tb = s xb
2 = x−1

2 yb
2 = uy−1

2 u−1

ub = u−1 xb
3 = x−1

1 x3x2 yb
3 = uy−1

1 y3y2u−1

The previous example naturally raises the following question:

Question 10.15. When is 〈Bic(G), H(G)〉 a normal complement for the trivial units? Also,
when is SL1(ZG) a complement?

10.4. Applications to the abelianisation conjectures

Recall that U(ZG) is a finitely generated group and hence U(ZG)ab is the direct
product of a finitely generated free abelian group Zn and a finite abelian group. One 

calls n the rank of the abelian group U(ZG)ab. Also recall that the centre Z(U(ZG)) of 
U(ZG) is finitely generated, hence its rank is finite. Finally, recall that U(ZG) = ±V (ZG)
with V (ZG) the group of invertible elements with augmentation one.

We finish the article with another application of H-units. We do this by giving an 

answer, for the class of groups considered above, to the following recent questions on the 

abelianisation of the unit group of ZG:

(R1) Is the rank of the abelian groups Z(U(ZG)) and U(ZG)ab equal? In particular if 
Z(U(ZG)) is finite, is U(ZG)ab also finite? (see [2, Question 7.8 and Proposition 

7.9], the labelling of the questions is taken from [4].)
(P) If V (ZG)ab contains an element of prime order p, then so does Gab? (see [4, page 

2])
(E1) Is exp V (ZG)ab = exp Gab? (see [4, page 2])

The labelling of the questions is taken from [4]. In question (E1) by exp Γ of a group 

Γ we mean the least common multiple of the elements of finite order in Γ. Note that
question (E2) implies question (P).
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In general, as proven in [2, Proposition 6.1],

rank U(ZG)ab ≥ rank Z(U(ZG)).

In case QG does not have exceptional components the above is an equality by [31,
Theorem 6.3], and hence question (R1) has a positive answer in that case. However in [4,
Theorem D] one group, where QG has an exceptional component of the form M2(Q(i)),
was found where the rank of the abelianisation is non-zero but the centre of the unit
group is finite (thus the rank of U(ZG)ab is larger than expected). Surprisingly, crucially
using H(G), for each group in Gi × Cn

2 , for 1 ≤ i ≤ 7, we obtain an expression for the 

exponent and rank of the abelianisation.
Recall that for G ∈ Gi and e ∈ PCI(QG), one has that QGe either is a division algebra 

that is not exceptional of type I or it is a simple component of type M2(Q) (and thus 
of exceptional type II). The set of primitive central idempotents e of the latter type we 

will denote (as in the proof of Theorem 10.11) as Eexc. Also recall that for e ∈ Eexc the 

group G can be written as an extension as follows:

1 → N −→ G
πe−→ Ge ∼= D8 = 〈a : a4 = 1〉 ⋊ 〈b : b2 = 1〉 → 1.

Consider the following property:

(�) ∀e ∈ Eexc, ∃ g, h ∈ G : o(πe(g)) = o(ab) and o(πe(h)) = o(b). (54)

Note that this property is satisfied if G is a split extension of D8. Under the additional 
property (�) we will give a positive answer to (R1) and (P), despite that such groups 
may have arbitrarily many exceptional components.

Theorem 10.16. Let G = K × Cn
2 with K a group in G1 ∪ . . . ∪ G7 and π the natural map 

of U(ZG) onto U(ZG)ab. Then

rank U(ZG)ab =rank Z(U(ZG)) + rank π(〈H(G)un〉),

where H(G)un = {x ∈ H(G) | x is unipotent }. Furthermore,

exp(V (ZG)ab) = lcm
(

exp(Gab), exp
(
V (ZG)/Z(V (ZG)) clU(ZG)(〈Bic(G), ±G〉

)ab
)

.

Moreover, if G satisfies (�), then clU(ZG)(〈Bic(G), ±G〉), i.e. the normal closure of the 

bicyclic and trivial units, together with the centre Z(U(ZG)) is of finite index in U(ZG)
and (R1) and (P) have a positive answer.

Recall that for the group G1 the group 〈Bic(G), ±G〉 is of infinite index, which we 

expect to be a rather general phenomena for the classes of groups considered. Thus it is 
somehow surprising that under property (�) their normal closure is of finite index.
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Remark 10.17. (1) The combination of [20, Lemma 4.4] with Theorem 10.8 yields that
〈H(G)un〉 is of infinite index in SL1(ZG) whenever |G| ≥ 32 and G = K × Cn

2 with 

K ∈ G1 ∪ . . . ∪ G7. Thus for this class of groups the rank-formula reduces the problem of 
determining the abelianisation to a significantly smaller group.

(2) The proof of Theorem 10.16 will furthermore yield that

rank U(ZG)ab =rank Z(U(ZG)) + rank
(
U(ZG)/Z(U(ZG)) clU(ZG)(〈Bic(G), ±G〉)

)
ab.

Clearly D8 ∈ G4 and G = D8 ×Cn
2 is a cut group (i.e. Z(U(ZG)) is finite) and G satisfies 

(�), thus Theorem 10.16 yields that

rank (U(Z[D8 × Cn
2 ])ab) = 0

for all n, answering Question 7.6 in case G = D8.

Proof of the torsion-free part of Theorem 10.16. Recall that taking abelianisation is 
right exact. More precisely, for any group Γ and normal subgroup N ons has the short
exact sequence

1 → πΓ(N) → Γab → (Γ/N)ab → 1 (55)

where πΓ : Γ → Γab is the canonical projection and thus πΓ(N) ∼= N/N ∩ [Γ, Γ].
In particular

rank (Γab) =rank (πΓ(N)) + rank ((Γ/N)ab). (56)

Furthermore, it follows from the proof of [26, Proposition 5.5.1] that Z(U(ZG)) ∩
SL1(ZG) is finite. Since [U(ZG), U(ZG)] ≤ SL1(ZG) and thus also Z(U(ZG)) ∩
[U(ZG), U(ZG)] is finite, this implies that

rank π(〈Z(U(ZG)), N〉) =rank Z(U(ZG)) + rank π(N) (57)

for every normal subgroup N in U(ZG) such that π(N) ∩ π(Z(U(ZG))) is finite. The 

latter condition is for example satisfied for a subgroup of 〈SL1(ZG), ±G〉. Moreover, if 
N ≤ SL1(ZG), then

rank (SL1(ZG)/N) ab =rank (SL1(ZG) Z(U(ZG)/N Z(U(ZG)) ab (58)

and thus, because 〈Z(U(ZG)), SL1(ZG)〉 is of finite index in U(ZG) (see [26, Proposition 

5.5.1]),

rank (SL1(ZG)/N) ab ≥ rank (U(ZG)/N Z(U(ZG)) ab. (59)
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Consider Eexc := {e ∈ PCI(QG) | QGe ∼= M2(Q)} and let e1, . . . , eq be its distinct
elements. For the rest of the proof consider the subgroup 〈±G, Bic(G), 

∏q
i=1 H(gi, hi, Qi)〉

delivered by Corollary 10.14, where by Theorem 10.8,

H(gi, hi, Qi) = SL1(ZG) ∩ (1 − ei + QGei).

As explained in the proof of Theorem 10.8, for each i we have a morphism as in (48),
which we now denote by Φi, is the composition of projecting to QGei with the iso-
morphism φ defined in (36) (Section 8.1). Moreover, by Remark 10.7, one has that

ei = ̂〈Qi, −[gi, hi]〉 = Q̂i
(1−[gi,hi])

2 . By Theorem 10.8, H(gi, hi, Qi) = 1 −ei +Vo(giQi) |Qi|.
Note that o(giQi) |Qi| = 2|Qi| = |G|/4 does not depend on i, and thus |Qi| = 2m−1 for
some positive integer m.

First we choose N = Z(U(ZG)) clU(ZG)(〈Bic(G), ±G〉). It follows from43 [4, Propo-
sition 3.1] that any bicyclic unit of ZG is a product of commutators of elements of 
〈Bic(G), ±G〉. Hence, π(clU(ZG)(〈Bic(G), ±G〉)) is finite. Consequently, because of (56),
and (57) we obtain that:

rank U(ZG)ab = rank
(
π(Z(U(ZG)) clU(ZG)(〈Bic(G))

)

+rank
(
U(ZG)/Z(U(ZG)) clU(ZG)(〈Bic(G), ±G〉)

)
ab

= rank Z(U(ZG)) + rank
(
U(ZG)/Z(U(ZG)) clU(ZG)(〈Bic(G), ±G〉)

)
ab.

(60)

Thus, if Z(U(ZG)) clU(ZG)(〈Bic(G), ±G〉) is of finite index, then (R1) has a positive 

answer.
Now consider the bicyclic unit b

h̃i,gi
:= 1 + h̃igi(1 − h−1

i ). Using that o(hiQ) = 2 one 

sees that

eibh̃i,gi
= ei

(
1 +

o(hi)
o(hiQ)

(1 + hi)gi(1 − hi)
)

= ei (1 + o(hi)(1 + hi)gi)

= eiv(
−o(hi)

2 ,
o(hi)

2 ,
−o(hi)

2 ,
o(hi)

2 )
.

Therefore, using (48), composing with φ gives that

Φi(bh̃i,gi
) =

(
1 + o(h) −o(h)
o(h) 1 − o(h)

)
.

Next consider the bicyclic units bhi,g̃i
:= 1 + (1 − gi)hig̃i and bg̃i,hi

:= 1 + g̃ihi(1 − gi).
Analogously as with the preceding unit one verifies that

43 In [4] the result is only proven for bicyclic units of the form 1 + (1 − h)gh̃, but the same proof works for

those of the form 1 + h̃g(1 − h).
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eibhi,g̃i
= ei

(
1 + o(gi)

o(giQi) (1 − gi)hi(1 + gi)
)

= eiv(0,o(gi),0,0)

eibg̃i,hi
= ei

(
1 + o(gi)

o(giQi) (1 + gi)hi(1 − gi)
)

= eiv(o(gi),0,0,0).

Thus after composing with φ we obtain the matrices

Φi(bhi,g̃i
) =

(
1 2o(gi)
0 1

)
and Φi(bg̃i,hi

) =

(
1 0
2o(gi) 1

)
.

Now suppose that G has property (�). In particular, o(hi) = 2 = o(gi) and so the ma-
trices obtained above are simply those already encountered in Proposition 8.2. Namely:

(Φi(bh̃i,gi
), Φi(bhi,g̃i

), Φi(bg̃i,hi
)) = (vw−1, w2, v2).

Therefore, by (37) we obtain that

Φi(±〈bhi,g̃i
, bg̃i,hi

, b
h̃i,gi

〉) ∼= V2

= {
(

1 + 2 l2 2 t1

2 t2 1 + 2 l1

)
∈ SL2(Z) | l1 ≡ l2 and t1 ≡ t2 mod 2}.

In particular, because of the description given in (50), we get that H(gi, hi, Qi) ∼=
Φi(H(gi, hi, Qi)) � Φi(±〈bhi,g̃i

, bg̃i,hi
, b

h̃i,gi
〉). Denote

H := clU(ZG)

(
〈bhi,g̃i

, bg̃i,hi
, b

h̃i,gi
, gi, hi | 1 ≤ i ≤ q〉

)
.

Next, note that

[H, H(gi, hi, Qi)] = [1 − ei + Hei, H(gi, hi, Qi)] ∼= [Φi(H), Φi(H(gi, hi, Qi))],

with Φi(gi) =

(
1 0
0 −1

)
and Φi(hi) =

(
0 1
1 0

)
. We will prove that H is of finite index

in 
∏q

i=1 U(ZGei). Since the latter contains U(ZG) and H ≤ clU(ZG)(〈Bic(G), ±G〉), this 
would finish the proof of the last statement of the Theorem.

Recall that H(gi, hi, Qi) = 1 − ei + V|G|/4. Hence, by the above descriptions,

[H,

q∏

i=1

H(gi, hi, Qi)] =
q∏

i=1

1 − ei + [〈V2, Φ(gi), Φ(hi)〉, V|G|/4]. (61)

We claim that V|G|/4/[〈V2, Φ(gi), Φ(hi)〉, V|G|/4] is finite. To prove this we need follow-
ing general group theoretical inequality:

Claim 1. Let N2 ≤ N1 be normal finite index subgroups of some group Γ. Denote 

[N1/[Γ, N2] : N2/[Γ, N2]] = n which divides [N1 : N2]. If N1/[Γ, N1] is finite, then 
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N2/[Γ, N2] is finite. Furthermore, |[Γ, Γ]/[Γ, N2]| divides ([Γ : N1]n)[s/2]+1
where s is the 

product of all pep with ep the maximum exponent of p dividing n[Γ : N1].

Indeed, to prove the claim and for notation simplicity we denote M := [Γ, N2].
Note that N2/M is central in Γ/M and thus the latter is central-by-finite. Hence, by
a well-known theorem of Schur, [Γ/M, Γ/M ] is finite. Moreover, by [59, Theorem 1],
|[Γ/M, Γ/M ]| | ([Γ/M : Z(G)/M ])[t/2]+1 with t the product of all plp with lp the 

maximum exponent of p dividing [Γ/M : Z(Γ)/M ]. As [Γ/M : Z(Γ)/M ] | [Γ/M :
N1/M ].[N1/M : N2/M ] it also divides the multiple mentioned in the statement of the 

claim. Now, as [Γ, N1]/M ≤ [Γ, Γ]/M is finite, and by assumption also N1/[Γ, N1], we 

obtain that N1/M is finite. In particular N2/M is finite as desired.
Using this we can now prove that:

Claim 2. V|G|/4/[〈V2, Φ(gi), Φ(hi)〉, V|G|/4] is finite.

Applying Claim 1 to Γ = 〈V2, Φ(gi), Φ(hi)〉, N2 = V|G|/4 and N1 = V2 we see that it
is enough to prove that

V2/[〈V2, Φ(gi), Φ(hi)〉, V2] is finite.

The latter can be seen via an explicit set of generators. Concretely, following (37),

V2 = 〈w2, v2, w−1v, −1〉 with w =

(
1 2
0 1

)
and v =

(
1 0
2 1

)
. It is readily computed 

that

vΦi(hi) = w, vΦi(gi) = v−1 and wΦi(gi) = w−1. (62)

From this one verifies that the square of each generator is a single commutator. Therefore,
V2/[〈Φi(gi), Φi(hi)〉, V2] is an elementary abelian 2-group, finishing the proof of Claim 2.

Thus all together we have proven that when G satisfies property (�), then 
∏q

i=1[H,

H(gi, hi, Qi)] is of finite index in 
∏q

i=1 U(ZGei). But by the normality of H in U(ZG)
we have that [H, H(gi, hi, Qi)] ≤ H for each i and hence Z(U(ZG)) H indeed is of finite 

index in U(ZG). As mentioned earlier, by (60) this implies that (R1) holds for G if it
satisfies (�).

Now consider again a general G ∈ Gj × Cn
2 . We will now apply (56) to Γ = U(ZG)

and N = 〈Z(U(ZG), H(G)un〉. Using (57), we see that the first part of the statement
follows if (U(ZG)/Z(U(ZG)).〈H(G)un〉)ab is finite.

For this recall that each H(gi, hi, Qi) contains the element 1 − ei +
(

1 2m

0 1

)
(for

simplicity, we abuse notation by writing matrices in ei-part). As Vo(giQi).|Qi| is normal in 

U(ZGei), the H-units H(gi, hi, Qi) contain the group Ai := 1 −ei+clU(ZGei)(〈
(

1 2m

0 1

)
〉).

Notice that Ai ≤ 〈H(G)un〉. Now as abelianisation is right exact and by (58) it is enough 
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to prove that (SL1(ZG)/
∏

i Ai)
ab is finite. To prove the latter it is sufficient to show

that 
∏q

i=1 (SL1(ZGei)/Ai)
ab is finite. This is directly verified using the presentation in 

Proposition 8.2 as also 

(
1 0

2m 1

)
= 1 − ei + h−1ei

(
1 2m

0 1

)
hei ∈ Ai. This finishes the 

proof of the torsion-free part of the Theorem. �

Next,

Proof of the torsion part of Theorem 10.16. For the torsion statement we consider the 

short exact sequence (55) for Γ = V (ZG) and N = Z(U(ZG)) clV (ZG)(〈Bic(G), G〉).
Hereby the following is crucial:

Claim 3. For Γ = V (ZG) and N = Z(U(ZG)) clV (ZG)(〈Bic(G), G〉) holds:

exp(Γab) = lcm(exp(π(N)), exp(Γ/N)ab). (63)

When π(N) is finite Claim 3 is clear, as the claim even holds more generally for any
short exact sequence of finitely generated abelian groups with finite kernel. In particular,
recalling that π(clV (ZG)(〈Bic(G), G〉)) is finite, we have that Claim 3 holds when G /∈
G7 × Cn

2 as for such groups G we have that Z(U(ZG)) is finite and hence also so is π(N).
To handle the family G7 × Cn

2 we need to do some more work. First recall that by
[30, Theorem 6] and [25, beginning of Section 5] the only simple components of Q[G]

are of the form Q, Q(i), 
(

−1,−1
Q

)
, 
(

−1,−1

Q(
√

2)

)
, or M2(Q). Therefore by [30, Lemmas 2 and 

3] and [25, Lemma 5.3] G is a subgroup of Cn1
2 × Cn2

4 × Qn3
8 × Dn4

8 × Qn5
16 for some 

n1, . . . , n5 ∈ N with n5 = 0 if K /∈ G7. Recall that both Q8 and Q16 have a unique 

subgroup of order 2 which moreover is central. Thus the second part of Claim 4, see 

below, holds for every subgroup of Cn1
2 × Cn2

4 × Qn3
8 × Dn4

8 × Qn5
16 . Also note that G

has a normal subgroup, say A, so that both groups A and G/A are abelian and also 

exp(G/A) divides 4. A result of Cliff, Sehgal and Weiss (see [54, Theorem 31.1]) yields 
that Vtf (ZG) := V (ZG) ∩ (1 + ker(ωA) ker(ωG)) is a torsion-free normal subgroup of 
V (ZG) and V (ZG) = Vtf (ZG) G ∼= Vtf (ZG) ⋊ G.

Claim 4. if x ∈ Vtf (ZG) is such that xm ∈ Z(V (ZG)) for some m ∈ Z>0, then x ∈
Z(V (ZG)). Furthermore, go(g)/2 ∈ Z(G) for every g ∈ G with o(g) > 2.

Take e ∈ PCI(QG). Note that the Cliff-Sehgal-Weiss result also holds for the quotient
groups Ge of G. Thus also V (Z[Ge]) = Vtf (Z[Ge]) ⋊ Ge has such a decomposition. Fur-
thermore, in view of the explicit description of Vtf (ZG), the decompositions are compat-
ible in the following sense: the natural epimorphism πe : G → Ge extends to an epimor-
phism φe : ZG → Z[Ge] and its restriction yields a morphism φe : V (ZG) → V (Z[Ge]).
It follows from the description of the basis of the kernel of a relative augmentation map 

that φe(Vtf (ZG))⊆Vtf (Z[Ge]) and φe(Z(V (Z[G])) ⊆ Z(V (Z[Ge])). This compatibility
combined with the assumption yields that
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φe(x)m ∈ Vtf (Z[Ge]) ∩ Z(V (Z[Ge])). (64)

Now if Ge is abelian or isomorphic to Q8 or D8 then Z(V (Z[Ge])) is finite. Thus 
φe(x)m = e by (64) and, since φe(x) belongs to the torsion-free group Vtf (Z[Ge], we thus 
even get φe(x) = e (in particular it is central). Next consider the case that Ge ∼= Q16 the 

quaternion group of order 16. From the description of the unit group of ZQ16 obtained 

in [32, Theorem 4] it follows that Vtf (Z[Ge]) = Vtf (ZQ16) is the direct product of an 

infinite cyclic group, which moreover is Vtf (ZQ16) ∩ Z (V (Z[Ge])), and a non-abelian 

free group. Thus (64) can only happen if φe(x) ∈ Z (V (Z[Ge])).
So, we have shown that φe(x) is central for each e ∈ PCI(QG). Therefore xe, the 

projection of x in the simple component QGe, is central for each e. Hence, x itself is 
central and the claim follows.

Proof of Claim 3. By Claim 4, and because G ⊆ N , we can choose a transversal T of 
N in Γ such that T ⊆ Vtf (ZG) and the only elements in T with some power central are 

the central elements. Now, for x ∈ Γab write x = t y z, with t ∈ π(T ), z ∈ π(Z(V (ZG)))
and y ∈ π(〈Bic(G), G〉). If x is periodic, then so are t, y, z. To see this, recall that
π(clV (ZG)(〈Bic(G), G〉)) is finite. Thus for some positive integer n we have tn is a cen-
tral unit. However, by the choice of the transversal, this implies that also t is periodic.
Consequently, the remaining component z also needs to be periodic. With this Claim 3
now follows directly.

The central and bicyclic units contribute as predicted by conjecture (E1):

Claim 5. exp(π
(
Z(V (ZG)) clV (ZG)(〈Bic(G), G〉)

)
) = exp(Gab).

First we note that exp(Gab) | exp(π(N)) with N = Z(V (ZG)) clV (ZG)(〈Bic(G), G〉)).
To see this, consider the relative augmentation ωG′ : Z[G] → Z[G/G′]. As U(Z[G/G′])
is abelian, we have an induced morphism ω̃G′ : V (ZG)ab → V (Z[G/G′]). Since G′ ⊆
[V (ZG), V (ZG)] and ω̃G′(g[V (ZG), V (ZG)]) = gG′ for g ∈ G, we have that any periodic 

element of G/G′ is a ω̃G′ |π(N)-image of a periodic element of π(N). Hence it follows that
exp(G/G′) | exp(π(N)).

Thus in order to prove Claim 5, it is enough to show that o(π(α)) divides exp(Gab)
for every element α of Z(U(ZG)), Bic(G) and G. For the latter this trivially is true.
Now consider a central unit α ∈ Z(U(ZG)). By [26, Proposition 5.5.1] one has that
Z(V (ZG)) ∩ [V (ZG), V (ZG)] ≤ Z(V (ZG)) ∩ SL1(ZG) is finite. Thus if o(π(α)) is finite,
then α itself is a periodic unit. Consequently, by a result of Berman and Higman [52,
Corollary 7.1.3] (or see Theorem 5.5), α ∈ G and in particular o(π(α)) | exp(Gab).

Next consider α = 1 + (1 − x)yx̃ ∈ Bic(G) whose inverse is α−1 = 1 − (1 − x)yx̃. We 

will prove that

o(π(α)) | 2. (65)
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If o(x) = 2, then (65) was obtained in [4, Proposition 3.1]. So suppose that o(x) > 2 and 

thus o(x) = 4 or 8. However, o(x) = 8 only occurs for the class G7 and in that case x

generates a normal subgroup [25, Lemma 5.7]. In particular if o(x) = 8, then α = 1. In 

conclusion, we may suppose that o(x) = 4.
It was noticed in the proof of [4, Proposition 3.1] that [α−1, xk] = 1 +(1 −x)(1 −x−k)yx̃

for any non-negative integer k. Consequently, for I a subset of {1, . . . , o(x)} one has that

∏
k∈I

[α−1, xk] = 1 +
∑

k∈I
(1 − x)(1 − x−k)yx̃

= 1 + |I|(1 − x)yx̃ − (1 − x)(
∑

k∈I
x−k)yx̃.

Now take I = {o(x) − 1, o(x)} and using that x̃ = (1 + x)(1 + x2) we see that

(1 − x)(
∑

k∈I
x−k)yx̃ = (1 − x)(1 + x)y(1 + x)(1 + x2) = (1 − x2)(1 + x2)y(1 + x) = 0,

where we used that x2 is central (by Claim 4). Altogether we have proven that α2 =
1 + 2(1 − x)yx̃ ∈ [V (ZG), V (ZG)], yielding (65).

The statement (65) also holds for the units 1 + x̃y(1 −x) and follows from an analogue 

proof. This finishes the proof of Claim 5.

Claim 2 together with (63) yields the upper bound for exp(V (ZG)ab) we were looking 

for.

Now suppose that G satisfies (�), then we already have proven that the group generated 

by Z(V (ZG)) and clV (ZG)(〈Bic(G), G)〉 is of finite index in V (ZG). More precisely, recall 
that H(gi, hi, Qi) = 1 −ei +V|G|/4 and also the identification from (61). With this we can 

reformulate Claim 2 saying that 
∏

i H(gi, hi, Qi)/[clV (ZG)(〈Bic(G), gi, hi〉), H(gi, hi, Qi)]
is finite. To control the exponent of the latter we will pass over to an overgroup:

| H(gi, hi, Qi)
[clV (ZG)(〈Bic(G), gi, hi〉), H(gi, hi, Qi)]

| divides | 〈V2, Φ(gi), Φ(hi)〉
[〈V2, Φ(gi), Φ(hi)〉, V|G|/4]

|.

Next note that the proof of Claim 2 entails that (〈V2, Φ(gi), Φ(hi)〉)ab is a finite el-
ementary abelian 2-group. Therefore using the explicit bound from44 Claim 1 in the 

setting of Claim 2 yields that

exp
(
〈V2, Φ(gi), Φ(hi)〉/[〈V2, Φ(gi), Φ(hi)〉, V|G|/4]

)

divides 2 ([〈V2, Φ(gi), Φ(hi)〉 : V|G|/4])[t/2]+1

where t is the product of all ptp with tp the maximum exponent of p dividing 

[〈V2, Φ(gi), Φ(hi)〉 : V|G|/4]. Now, recalling that V2i
∼= Ui by (38), Proposition 8.3

44 More precisely we replace [Γ : N1]n by the multiple [Γ : N1].[N1 : N2] = [Γ : N2].
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says that [V2 : V|G|/4] is a power of two. Furthermore, Proposition 8.2 yields that
[〈V2, Φ(gi), Φ(hi)〉 : V2] is a 2-power. Summarized we have proven that

exp

(∏

i

H(gi, hi, Qi)
[clV (ZG)(〈Bic(G), gi, hi〉), H(gi, hi, Qi)]

)
is a power of 2.

Combining this with the fact that [U(ZGei) : V|G|/4] is 2-power and

exp
(

V (ZG)
Z(V (ZG)) clU(ZG)(〈Bic(G), ±G〉)

)
divides

exp

(∏

i

U(ZGei)
[clV (ZG)(〈Bic(G), gi, hi〉), H(gi, hi, Qi)]

)

we obtain that 2 is the only prime divisor of the left hand side quotient group. Therefore,
as exp(Gab) | exp(G) = 4 and thanks to the value obtained for exp V (ZG)ab conjecture 

(P) holds, finishing the proof. �

The statement that clU(ZG)(〈Bic(G), ±G〉) is of finite index when G satisfies (�) does 
not mention H-units. However we would like to emphasize that the proof needed them 

and hence the result is truly a combined use of bicyclic and H-units. In upcoming work
by the first author a systematic study of the abelianisation of H-units and their role on 

the rank of U(ZG)ab will be done.
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