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Abstract

We show that the Euclidean 3-space R3 is stable for the Positive Mass Theorem in
the following sense. Let (Mi, gi) be a sequence of complete asymptotically flat 3-
manifolds with nonnegative scalar curvature and suppose that the ADM mass m(gi)

of one end of Mi converges to 0. Then for all i, there is a subset Zi in Mi such that
Mi \ Zi contains the given end, the area of the boundary ∂Zi converges to zero, and
(Mi \ Zi, gi) converges to R3 in the pointed measured Gromov-Hausdorff topology
for any choice of basepoints. This confirms a conjecture of G. Huisken and T. Ilma-
nen. Additionally, we find an almost quadratic upper bound for the area of ∂Zi in
terms of m(gi). As an application of the main result, we also prove R. Bartnik’s strict
positivity conjecture.

1 Introduction

According to the Riemannian Positive Mass Theorem in dimension 3, the ADM
mass of an end of a complete asymptotically flat Riemannian 3-manifold (M,g)

with nonnegative scalar curvature is nonnegative. Furthermore, the mass is zero if
and only if (M,g) is isometric to Euclidean 3-space (R3, gEucl). Originally proved
by Schoen-Yau [48], this theorem has since been proven by numerous new meth-
ods [1, 17, 34, 43, 46, 57], and many fundamental extensions were discovered, in-
cluding the Penrose inequality [2, 12, 15, 34], the spacetime Positive Mass Theorem
[9, 23, 24, 49, 57] and other generalizations [42, 50] etc.

Recently there has been growing interest in establishing a stability result for the
Positive Mass Theorem. This problem falls within the larger effort to understand the
(non-)stability of classical rigidity theorems for metrics with lower scalar curvature
bounds [30, 54]. When it comes to the Positive Mass Theorem, one difficulty comes

� C. Dong
conghan.dong@stonybrook.edu

A. Song
aysong@caltech.edu

1 Mathematics Department, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794,
USA

2 California Institute of Technology, 177 Linde Hall, #1200 E. California Blvd., Pasadena, CA
91125, USA

http://crossmark.crossref.org/dialog/?doi=10.1007/s00222-024-01302-z&domain=pdf
mailto:conghan.dong@stonybrook.edu
mailto:aysong@caltech.edu


288 C. Dong, A. Song

from the fact that asymptotically flat manifolds with nonnegative scalar curvature
and small masses can be far from Euclidean 3-space with respect to standard topolo-
gies like the Gromov-Hausdorff topology, see for instance [34, 40]. To overcome
this, researchers have turned to exploring newer topologies, notably the intrinsic flat
topology, see [53, 54] for a survey on those questions.

The earliest conjecture about the stability of the Positive Mass Theorem was for-
mulated by Huisken-Ilmanen [34, Sect. 9]:

Conjecture 1.1 Suppose (Mi, gi) is a sequence of asymptotically flat 3-manifolds

with nonnegative scalar curvature and suppose that the ADM mass m(gi) of an end

converges to 0. Then, there is a subset Zi ⊂ Mi such that Mi \ Zi contains the given

end, the area of ∂Zi converges to 0, and (Mi \Zi, gi) converges to Euclidean 3-space

in the Gromov-Hausdorff topology for any choice of basepoints.

Because of the Penrose inequality, the following has also been conjectured by
Ilmanen [13]:

Conjecture 1.2 The subsets Zi can be chosen so that

Area(∂Zi) ≤ 16πm(gi)
2.

The purpose of this paper is to prove the stability conjecture of Huisken-Ilmanen.
Our results go slightly beyond the conjecture, as we show that convergence occurs
also in the sense of measures. Although we are unable to settle the second conjecture,
we make progress by providing a bound of the surface area which is almost quadratic
in the mass. The main statement is the following:

Theorem 1.3 Let (Mi, gi) be a sequence of complete asymptotically flat 3-manifolds

with nonnegative scalar curvature. Suppose that the ADM mass m(gi) of one end Ei

of Mi converges to 0. Then for all i, there is an open domain Zi in Mi with smooth

compact boundary ∂Zi , such that

(1) Mi \ Zi contains the given end Ei ,
(2) the area of ∂Zi converges to 0,
(3) for any choice of basepoint pi ∈ Mi \ Zi ,

(Mi \ Zi, d̂gi
,pi) → (R3, dEucl,0)

in the pointed measured Gromov-Hausdorff topology, where d̂gi
is the length

metric on Mi \ Zi induced by gi .

Moreover, if m(gi) > 0 for all i, the region Zi can be chosen so that the area

of ∂Zi is almost bounded quadratically by the mass in the following sense: for any

positive continuous function ξ : (0,∞) → (0,∞) with

lim
x→0+

ξ(x) = 0,
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for all large i, we can choose Zi depending on ξ such that

Area(∂Zi) ≤ m(gi)
2

ξ(m(gi))
.

To clarify, the length metric d̂gi
in this statement measures the distance between

two points x, y ∈ Mi \ Zi as the infimum of the Riemannian gi -lengths of paths
contained inside Mi \ Zi and joining x to y. Our proof will actually show that (Mi \
Zi, gi,pi) becomes close to (R3, dEucl,0) in a C0 sense (although this does not imply
Gromov-Hausdorff convergence).

As pointed out to us by G. Huisken, the proof of Theorem 1.3 can be applied to
settle an open question about the rigidity of the Bartnik capacity cB(�) (or Bartnik’s
quasi-local mass) of an admissible open Riemannian 3-manifold �. In [34, Positivity
Property 9.1], G. Huisken and T. Ilmanen found that either cB(�) > 0, or cB(�) = 0
and in that case � is a locally flat Riemannian manifold. R. Bartnik [10] conjectured
that if cB(�) = 0, then � is actually isometrically embedded inside Euclidean 3-
space R3. This is indeed true, as explained in Sect. 5:

Theorem 1.4 If � is admissible, then cB(�) > 0, unless there is a Riemannian iso-

metric embedding of � into the Euclidean 3-space R3.

On the other hand, a construction due to M. Anderson and J. Jauregui [7, The-
orem 1.2] suggests that the metric closure of � might not always be isometrically
embedded inside Euclidean 3-space R3 (see Remark 5.7 for more comments).

The stability problem for the Positive Mass Theorem has been the subject of sev-
eral studies. Many of those earlier works focused on proving stability results using
the intrinsic flat topology of Sormani-Wenger [55], following the conjecture formu-
lated by Lee-Sormani in [40]. The case of spherically symmetric asymptotically flat
manifolds was addressed by Lee-Sormani [40], and was extended in [18]. The graph-
ical setting was settled by papers of Huang, Lee, Sormani, Allen, Perales [5, 31–33].
Additionally, Sobolev bounds were obtained in [3], and there were prior results on
establishing L2 curvature bounds and proving stability outside of a compact set
[14, 20, 26, 27, 39]. More recently, Kazaras-Khuri-Lee [38] were able to prove the
stability conjecture under Ricci curvature lower bounds and a uniform asymptotic
flatness assumption. See also [6] for stability under integral Ricci curvature bounds,
isoperimetric bounds and a uniform asymptotic flatness assumption. The first named
author [21] made progress on the original version of the stability conjecture, with-
out additional curvature assumptions but still under a uniform asymptotic flatness
assumption. Other recent works on stability for scalar curvature include results for
tori with almost nonnegative scalar curvature [4, 19, 41].

Our main result, Theorem 1.3, is a stability theorem up to negligible subsets. In
particular, for the Positive Mass theorem, R3 is “codimension 2 stable” in the mea-
sured Gromov-Hausdorff topology, see [52, Remark 3.9]. This might be optimal in
view of recent work of Kazaras-Xu [37]. In [52], it was shown that hyperbolic mani-
folds of dimension n ≥ 3 are stable for the entropy inequality, after removing negligi-
ble subsets similarly to Theorem 1.3. Besides, based on the techniques of this paper,
the first named author recently obtained a stability result for the Riemannian Penrose
inequality [22] analogous to Theorem 1.3.
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Outline of proof Similarly to [21, 38], our proof builds on the recent beautiful new
proof of the Positive Mass Theorem by Bray-Kazaras-Khuri-Stern [17]. There, the
authors employ level sets of harmonic maps [56]: contrarily to methods in other
proofs of the theorem, level sets of harmonic maps sweepout the whole manifold
and are sensitive to the global geometry. That heuristically explains why [17] seems
to be a good starting point when attempting to prove stability. Perhaps surprisingly,
aside from [17], all the arguments we use are completely elementary. We empha-
size that unlike [21, 38], we do not assume additional curvature bounds or uniform
asymptotic flatness.

The proof begins with the result of Bray-Kazaras-Khuri-Stern [17], which bounds
the mass m(g) of an end of a complete asymptotically flat manifold (M,g) with
nonnegative scalar curvature as follows: let Mext be an exterior region of (M,g)

containing that end, then

m(g) ≥ 1

16

∫

Mext

|∇2u|2
|∇u| dvolg (1)

where u : Mext → R is any harmonic function “asymptotic to one of the asymptoti-
cally flat coordinate functions on Mext ”, see [17].

Let u := (u1, u2, u3) : Mext →R3, where uj (j = 1,2,3) is the harmonic function
asymptotic to the asymptotically flat coordinate function xj on Mext (we fix a coor-
dinate chart at infinity). Assuming that the mass m(g) is positive and close to 0, we
consider as in [21] the subset � of Mext where the differential of u is ε0-close to the
identity map, for some small positive ε0. More concretely, define F : (Mext , g) → R
by

F(x) :=
3

∑

j,k=1

(

g(∇uj ,∇uk) − δjk

)2
.

Then set � := F−1[0, ε0]. On such a set, u is close to being a Riemannian isometry
onto its image in R3. It is a local diffeomorphism, but a priori, the multiplicities of
this map are not easily controlled. The proof is divided into two steps.

In the first step, we show that one regular level set S of F has small area, bounded
by m(g)2 times a constant depending on ε0. Inequality (1) bounds the L2 norm of the
gradient of F . The crucial point is then to observe that the classical capacity-volume
inequality of Poincaré-Faber-Szegö generalizes to our setting, and enables us to find a
region between two level sets of F with small volume. Then one can apply the coarea
formula to find the small area level set S.

Consider the connected component E of Mext \ S containing the end. An issue is
that even though the area of ∂E is small, the component E is in general not close to
Euclidean 3-space for the induced length structure on E. The second step of the proof
consists of modifying the subset E to another subset E′′ containing the end, so that
∂E′′ still has small area but moreover E′′ is close to Euclidean 3-space in the pointed
Gromov-Hausdorff topology with respect to its own length metric. This result is quite
general, and is shown by dividing the full space into small cube-like regions and by
a repeated use of the coarea formula.
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2 Preliminaries

2.1 Notations

We will use C to denote a universal positive constant (which may be different from
line to line); �(t),�(t |a, b, . . .) denote small constants depending on a, b, . . . and
satisfying

lim
t→0

�(t) = 0, lim
t→0

�(t |a, b, . . .) = 0,

for each fixed a, b, . . .

We denote the Euclidean metric, the induced length function and the induced dis-
tance by gEucl,LEucl, dEucl respectively; and the geodesic line segment and distance
between x, y ∈ R3 with respect to gEucl by [xy], |xy|. So |xy| = LEucl([xy]).

For a general Riemannian manifold (M,g) and any p ∈ M , the geodesic ball with
center p and radius r is denoted by Bg(p, r) or B(p, r) if the underlying metric is
clear. Given a Riemannian metric, for a surface 	 and a domain �, Area(	) is the
area of 	, Vol(�) is the volume of � with respect to the metric.

2.2 Asymptotically flat 3-manifolds

A smooth orientable connected complete Riemannian 3-manifold (M,g) is called
asymptotically flat if there exists a compact subset K ⊂ M such that M \ K =
⊔N

k=1 Mk
end consists of finite pairwise disjoint ends, and for each 1 ≤ k ≤ N , there

exist B > 0, σ > 1
2 , and a C∞-diffeomorphism �k : Mk

end → R3 \ BEucl(0,1) such
that under this identification,

|∂ l(gij − δij )(x)| ≤ B|x|−σ−|l|,

for all multi-indices |l| = 0,1,2 and any x ∈R3 \BEucl(0,1), where BEucl(0,1) is the
standard Euclidean ball with center 0 and radius 1. Furthermore, we always assume
the scalar curvature Rg is integrable over (M,g). For each given end, its ADM mass
from general relativity is then well-defined (see [8, 9]) and given by

m(g) := lim
r→∞

1

16π

∫

Sr

∑

i,j

(gij,i − gii,j )v
jdA

where v is the unit outer normal to the coordinate sphere Sr of radius |x| = r in the
given end, and dA is its area element.

Let (M,g) be a complete asymptotically flat 3-manifold. To each end of M , there
is an associated “exterior region” Mext , which contains that end, is diffeomorphic to
R3 minus finitely many disjoint balls, and has minimal boundary. Given (Mext , g)

associated to one end, let {xj }3
j=1 denote the asymptotically flat coordinate system

of the end. Then there exist functions uj ∈ C∞(Mext ), j ∈ {1,2,3}, satisfying the
following harmonic equations with Neumann boundary if ∂Mext 
= ∅, and asymptot-
ically linear conditions:

�gu
j = 0 in Mext ,

∂uj

∂ �n = 0 on ∂Mext , |uj − xj | = o(|x|1−σ ) as |x| → ∞,
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where �n is the normal vector of ∂Mext , and σ > 1
2 is the order of the asymptotic

flatness. We say that {uj }3
j=1 are the harmonic functions asymptotic to the asymptot-

ically flat coordinate functions {xj }3
j=1 respectively. See [17, 38] for more details.

Denote by u the resulting harmonic map

u := (u1, u2, u3) : Mext → R3.

The following mass inequality was proved in [17].

Proposition 2.1 (Theorem 1.2 in [17]) Let (Mext , g) be an exterior region of an

asymptotically flat Riemannian 3-manifold (M,g) with mass m(g). Let u be a har-

monic function on (Mext , g) asymptotic to one of the asymptotically flat coordinate

functions of the associated end. Then

m(g) ≥ 1

16π

∫

Mext

( |∇2u|2
|∇u| + Rg|∇u|

)

dvolg, (2)

where the integral is taken over the regular set of u.

2.3 Pointedmeasured Gromov-Hausdorff convergence

In this subsection, we recall some definitions for the pointed measured Gromov-
Hausdorff topology [28, Definition 3.24], also called pointed Gromov-Hausdorff-
Prokhorov topology.

Assume (X,dX, x), (Y, dY , y) are two pointed metric spaces. The pointed
Gromov-Hausdorff (or pGH-) distance is defined in the following way. A pointed
map f : (X,dX, x) → (Y, dY , y) is called an ε-pointed Gromov-Hausdorff approxi-
mation (or ε-pGH approximation) if it satisfies the following conditions:

(1) f (x) = y;
(2) B(y, 1

ε
) ⊂ Bε(f (B(x, 1

ε
)));

(3) |dX(x1, x2) − dY (f (x1), f (x2))| < ε for all x1, x2 ∈ B(x, 1
ε
).

The pGH-distance is defined by

dpGH ((X,dX, x), (Y, dY , y))

:= inf{ε > 0 : ∃ ε-pGH approximation f : (X,dX, x) → (Y, dY , y)}.

We say that a sequence of pointed metric spaces (Xi, di,pi) converges to a pointed
metric space (X,d,p) in the pointed Gromov-Hausdorff topology, if

dpGH ((Xi, di,pi), (X,d,p)) → 0.

If (Xi, di) are length metric spaces, i.e. for any two points x, y ∈ Xi ,

di(x, y) = inf{Ldi
(γ ) : γ is a rectifiable curve connecting x, y},

where Ldi
(γ ) is the length of γ induced by the metric di , then equivalently,

dpGH ((Xi, di,pi), (X,d,p)) → 0
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if and only if for all D > 0,

dpGH ((B(pi,D), di), (B(p,D), d)) → 0,

where B(pi,D) are the geodesic balls of metric di .
A pointed metric measure space is a structure (X,dX,μ, x) where (X,dX) is a

complete separable metric space, μ is a Radon measure on X and x ∈ supp(μ).
We say that a sequence of pointed metric measure length spaces (Xi, di,μi,pi)

converges to a pointed metric measure length space (X,d,μ,p) in the pointed mea-
sured Gromov-Hausdorff (or pointed Gromov-Hausdorff-Prokhorov) topology, if for
any ε > 0,D > 0, there exists N(ε,D) ∈ Z+ such that for all i ≥ N(ε,D), there
exists a Borel ε-pGH approximation

f
D,ε
i : (B(pi,D), di,pi) → (B(p,D + ε), d,p)

such that

(f
D,ε
i )�(μi |B(pi ,D)) weakly converges to μ|B(p,D) as i → ∞, for a.e.D > 0.

In the standard case when Xi is an n-dimensional manifold, without extra ex-
planations, we will always consider (Xi, di,pi) as a pointed metric measure space
equipped with the n-dimensional Hausdorff measure Hn

di
induced by di .

3 Regular region with small area boundary

In this section, we consider a complete asymptotically flat 3-manifold (M,g) with
nonnegative scalar curvature, and with a given end having small mass m(g). Let Mext

be the exterior region associated to that end. We will find an unbounded domain in
Mext containing the end such that its compact boundary has small area depending on
m(g). We always assume 0 < m(g) � 1.

Consider the harmonic map u = (u1, u2, u3) : Mext → R3 associated to the given
end as in previous section, where for each j ∈ {1,2,3}, uj is a harmonic function with
Neumann boundary condition and asymptotic to an asymptotically flat coordinate
function xj of the end.

Define the C∞-function F : (Mext , g) →R by

F(x) :=
3

∑

j,k=1

(

g(∇uj ,∇uk) − δjk

)2
.

Fix a small number 0 < ε � 1. We use the following notations:

∀t ∈ [0,6ε], St := F−1(t),

∀0 ≤ a < b ≤ 6ε, �a,b := F−1([a, b]).

Notice that for any t ∈ (0,6ε], St is compact, St ∩∂Mext = ∅ since ε is small, and the
complement of �0,t is compact in Mext . By Sard’s theorem, we will always consider
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regular values t ∈ (0,6ε] outside of the measure zero set of critical values of F . For
regular values 0 < a < b < 6ε, we have ∂�a,b = Sa ∪ Sb.

We will always consider the restricted map u : �0,6ε → R3. We choose ε � 1
such that for any x ∈ �0,6ε , the Jacobian matrix Jac u of u satisfies (with an abuse of
notations):

| Jac u(x) − Id | ≤ ε′, (3)

for

ε′ := 100
√

ε � 1,

so that in particular u is a local diffeomorphism. What we mean by (3) is that there
exist orthonormal bases of TxM and R3 such that with respect to these bases, the
Jacobian matrix Jac u(x) is ε′-close to the identity map.

We use the notation C as explained in 2.1.

Lemma 3.1
∫

�0,6ε

|∇F |2 ≤ Cm(g).

Proof By definitions, we have

√

1 −
√

6ε ≤|∇uj |(x) ≤
√

1 +
√

6ε, ∀x ∈ �0,6ε, ∀j ∈ {1,2,3}. (4)

We readily obtain that for all x ∈ �0,6ε ,

|∇F |(x) ≤
3

∑

j,k=1

2|g(∇uj ,∇uk) − δjk| · (|∇uj ||∇2uk| + |∇2uj ||∇uk|)

≤ C

3
∑

j=1

|∇2uj |.

(5)

So by inequalities (4) and (2), we have

∫

�0,6ε

|∇F |2 ≤ C

3
∑

j=1

∫

�0,6ε

|∇2uj |2

≤ C

3
∑

j=1

∫

�0,6ε

|∇2uj |2
|∇uj |

≤ Cm(g).

(6)

�

In the context of General Relativity, the notion of capacity of a set has been studied
in [12, 16, 36, 46] (see also references therein). We will use capacity in a different
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way. Recall that the classical Poincaré-Faber-Szegö inequality relates the capacity of
a set in Euclidean space to its volume, see [35, 47]. In the following lemma, which is
a key step in this section, we prove a Poincaré-Faber-Szegö type inequality. This will
be used to find a smooth level set of F with small area.

Lemma 3.2 If infs∈(0,5ε) Area(Ss) > 0, where the infimum is taken over all regular

values, then there exists s0 ∈ (0,5ε) such that

Vol(�s0,s0+ε ∩ {|∇F | 
= 0}) ≤ C

(

m(g)

ε2

)3

.

Proof Since infs∈(0,5ε) Area(Ss) > 0, we can find a regular s0 ∈ (0,5ε) such that Ss0

is a smooth surface satisfying

Area(Ss0) ≤ 2 inf
s∈(0,5ε)

Area(Ss).

For the reader’s convenience, we follow the presentation of the note [35] when we
can.

Case 1): s0 ∈ [3ε,5ε).
For any regular value s ∈ (ε, s0), define the function χ :R3 → R by

χ(x) := H0(u−1(x) ∩ �s,s0).

By the isoperimetric inequality [25, Theorem 5.10 (i)],

‖χ‖
L

3
2 (R3)

≤ Cisop‖Dχ‖(R3).

Since u is a local diffeomorphism and | Jac u − Id | ≤ ε′ by (3), this means that

Vol(�s,s0)
2
3 ≤ 2Cisop(Area(Ss) + Area(Ss0)). (7)

By the definition of s0, we have

Vol(�s,s0)
2
3 ≤ 6Cisop Area(Ss). (8)

By the coarea formula,
∫

�ε,s0

|∇F |2 dvolg =
∫ s0−ε

0

∫

Ss0−t

|∇F |dAgdt.

For t ∈ (0, s0 − ε), define

V (t) := Vol(�s0−t,s0), S(t) := Area(Ss0−t ).

Since infs∈(0,5ε) Area(Ss) > 0, we have Ss0−t 
= ∅. By Sard’s theorem, we know that
except possibly for a measure zero set in (0, s0 − ε), |∇F | 
= 0 over Ss0−t . Then

W(t) :=
∫ t

0

∫

Ss0−s

1

|∇F |dAgds
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is a strictly increasing continuous function, where the integral is taken over regular
values of F , and

W ′(t) =
∫

Ss0−t

1

|∇F |dAg > 0

is well-defined for a.e. t ∈ (0, s0 − ε). Notice that for t ∈ (0, s0 − ε),

0 < W(t) = Vol(�s0−t,s0 ∩ {|∇F | 
= 0}) ≤ V (t).

Since for a.e. t ∈ (0, s0 − ε),

S(t)2 ≤
∫

Ss0−t

|∇F |dAg ·
∫

Ss0−t

1

|∇F |dAg,

we have

∫ s0−ε

0

S(t)2

W ′(t)
dt ≤

∫

�ε,s0

|∇F |2 dvolg .

By the isoperimetric inequality (8) obtained above,

W(t)
2
3 ≤ V (t)

2
3 ≤ 6CisopS(t),

so we have

∫ s0−ε

0

W(t)
4
3

W ′(t)
dt ≤ 36C2

isop

∫

�ε,s0

|∇F |2 dvolg . (9)

For any t ∈ (0, s0 − ε), define R(t) by

ω3R(t)3 = W(t),

where ω3 is the Euclidean volume of the unit ball in R3. Note that R(0) = 0, R(s0 −
ε) < ∞, and the derivative R′(t) is well-defined and positive almost everywhere.

Define the function F̃ : BEucl(0,R(s0 − ε)) → R by

F̃ := t on ∂BEucl(0,R(t)).

Then for a.e. t ∈ (0, s0 − ε),

|∇F̃ | = 1

R′(t)
on ∂BEucl(0,R(t)).
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By (9), for some uniform constant C > 0,

C

∫

�ε,s0

|∇F |2 dvolg ≥
∫ s0−ε

0
3ω3

R(t)2

R′(t)
dt

=
∫ s0−ε

0

∫

∂BEucl(0,R(t))

|∇F̃ |dAdt

=
∫

BEucl(0,R(s0−ε))

|∇F̃ |2dV.

(10)

The above inequality gives an upper bound of the capacity of the Euclidean ball
BEucl(0,R(s0 − ε)).

Let us recall the definition and some properties of the capacity (see [25, Defini-
tion 4.10, Theorem 4.15]). Set

K := {f : Rn →R : f ≥ 0, f ∈ L2∗
(Rn), |∇f | ∈ L2(Rn;Rn)}.

For any open subset A ⊂ Rn, the capacity of A is defined as

Cap(A) := inf{
∫

Rn

|∇f |2dV : f ∈ K,A ⊂ {f ≥ 1}0}

where {f ≥ 1}0 denotes the interior of the set {f ≥ 1}. Then, for any x ∈Rn,

Cap(BEucl(x, r)) = rn−2Cap(BEucl(1)) > 0. (11)

In our case, modifying F̃ , we define a test function ϕ̂ :R3 → R by

ϕ̂ := s0 − ε − F̃

s0 − 5
2ε

on BEucl(0,R(s0 − ε)),

ϕ̂ := 0 on R3 \ BEucl(0,R(s0 − ε)).

With this definition, we have ϕ̂ ∈ K and

BEucl(0,R(ε)) ⊂ {ϕ̂ > 1} = {ϕ̂ ≥ 1}0,

where {ϕ̂ ≥ 1}0 denotes the interior of the set {ϕ̂ ≥ 1}. This implies that

Cap(BEucl(0,R(ε))) ≤
∫

R3
|∇ϕ̂|2dV = 1

(s0 − 5
2ε)2

∫

BEucl(0,R(s0−ε))

|∇F̃ |2dV.

Together with (10), we deduce

Cap(BEucl(0,R(ε))) ≤ C

(s0 − 5
2ε)2

∫

�ε,s0

|∇F |2 dvolg .
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From (11), s0 ≥ 3ε and Lemma 3.1,

R(ε) ≤ Cm(g)

ε2
.

Since Vol(�s0−ε,s0 ∩ {|∇F | 
= 0}) = W(ε) = ω3R(ε)3, we conclude:

Vol(�s0−ε,s0 ∩ {|∇F | 
= 0}) ≤ C

(

m(g)

ε2

)3

.

This is the desired conclusion, up to renaming s0 − ε and s0.
Case 2): s0 ∈ (0,3ε).
That case is completely similar to the first case. For any regular value s ∈ (s0,5ε),

we have

Vol(�s0,s)
2
3 ≤ 6Cisop Area(Ss).

For t ∈ (0,5ε − s0), define

W(t) := Vol(�s0,s0+t ∩ {|∇F | 
= 0}), S(t) := Area(Ss0+t ),

and

ω3R(t)3 = W(t),

with R(0) = 0 and R(5ε − s0) < ∞.
Define F̃ : BEucl(0,R(5ε − s0)) → R by

F̃ := t on ∂BEucl(0,R(t)).

Then as in Case 1), we get
∫

BEucl(0,R(5ε−s0))

|∇F̃ |2dV ≤ C

∫

�s0,5ε

|∇F |2 dvolg .

Modifying F̃ , we define a test function ϕ̂ : R3 →R by

ϕ̂ := 5ε − s0 − F̃

7
2ε − s0

on BEucl(0,R(5ε − s0)),

ϕ̂ := 0 on R3 \ BEucl(0,R(5ε − s0)).

So ϕ̂ ∈ K and BEucl(0,R(ε)) ⊂ {ϕ̂ > 1} = {ϕ̂ ≥ 1}0. This implies that

Cap(BEucl(0,R(ε))) ≤ 1

( 7
2ε − s0)2

∫

BEucl(0,R(5ε−s0))

|∇F̃ |2dV.

Thus we have

R(ε) ≤ Cm(g)

ε2
,
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and since Vol(�s0,s0+ε ∩ {|∇F | 
= 0}) = W(ε) = ω3R(ε)3, we conclude:

Vol(�s0,s0+ε ∩ {|∇F | 
= 0}) ≤ C ·
(

m(g)

ε2

)3

. �

Lemma 3.3 There exists a regular value τ0 ∈ (0,6ε) such that Sτ0 is a smooth surface

satisfying

Area(Sτ0) ≤ C

(

m(g)

ε2

)2

.

Proof If infs∈(0,5ε) Area(Ss) = 0, then we can take a regular value τ0 ∈ (0,5ε) such
that Sτ0 is a smooth surface and satisfies

Area(Sτ0) ≤ m(g)2

ε4
.

If infs∈(0,5ε) Area(Ss) > 0, then we can choose s0 ∈ (0,5ε) as in Lemma 3.2. By
the coarea formula,

∫ s0+ε

s0

Area(St )dt =
∫

�s0,s0+ε

|∇F |

≤
(

∫

�s0,s0+ε

|∇F |2
)

1
2

· (Vol(�s0,s0+ε ∩ {|∇F | 
= 0})) 1
2

≤ C
√

m(g)

(

m(g)

ε2

)
3
2

,

(12)

where in the last inequality we used Lemma 3.1 and Lemma 3.2. So there exists a
regular value τ0 ∈ (s0, s0 + ε) ⊂ (0,6ε) such that Sτ0 is smooth and

Area(Sτ0) ≤ Cm(g)2

ε4
. �

For τ0 as in the above lemma, the domain �0,τ0 has smooth boundary Sτ0 , whose
area is very small depending on m(g), and contains the end of Mext . In general,
u : �0,τ0 → R3 is only a local but not global diffeomorphism. For this reason, we
need to restrict u to a smaller region.

By definition of asymptotic flatness and the construction of u, we clearly have the
following lemma (see for instance [21, Lemma 3.3, 3.4]).

Lemma 3.4 u is one-to-one around the end at infinity. That is, for some big num-

ber L > 0 (not uniform in general), there exists an unbounded domain U ⊂ Mext

containing the end such that u : U → R3 \ BEucl(0,L) is injective and onto.

Recall that ε was chosen at the beginning of this section, and that | Jac u(x)−Id | ≤
100

√
ε on �0,6ε .
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Proposition 3.5 Assume (M,g) is a complete asymptotically flat 3-manifold with

nonnegative scalar curvature. For a given end of (M,g), let Mext be the exterior

region associated to this end and let m(g) be its mass. Then there exists a connected

region E ⊂ Mext with smooth boundary, such that

(1) the restricted harmonic map

u : E → Y ⊂ R3

is a diffeomorphism onto its image Y := u(E),
(2) E contains the end of Mext and Y contains the end of R3,
(3) on E, the Jacobian matrix of u satisfies | Jac u(x) − Id | ≤ 100

√
ε,

(4) Area(∂E) ≤ Cm(g)2

ε4 .

Proof Take τ0 ∈ (0,6ε) as in Lemma 3.3. Then u : �0,τ0 → R3 is a local diffeomor-
phism, | Jac u(x) − Id | ≤ 100

√
ε and ∂�0,τ0 = Sτ0 has small area. Let Y1 ⊂ u(�0,τ0)

be the connected component containing the end of R3, and

Y2 := {y ∈ Y1 : H0(u−1{y} ∩ �0,τ0) = 1}.

By Lemma 3.4, Y2 
= ∅ and contains the end of R3. Notice that Y2 is open in Y1 and
∂Y2 ⊂ u(Sτ0).

Since u(Sτ0) is a smooth immersed surface in R3, we can choose a slightly
smaller region Y3 such that Y3 ∪ ∂Y3 ⊂ Y2, ∂Y3 is a smooth embedded surface and
Area(∂Y3) ≤ 2 Area(∂Y2).

Define Y to be the connected component of Y3 containing the end of R3, and
E := u−1(Y ). By construction, u : E → Y is a diffeomorphism. Moreover by (3),

Area(∂E) =
∫

∂Y

| Jac(u
∣

∣

∂E
)−1| ≤ C(1 + ε′)Area(∂Y ) ≤ C Area(Sτ0). �

4 Pointedmeasured Gromov-Hausdorff convergence

In general a regular region E such as the one given by Proposition 3.5 is not suffi-
cient to get Gromov-Hausdorff convergence. In this section, we will construct a more
refined subregion over which we have pointed measured Gromov-Hausdorff conver-
gence for the induced length metric. Qualitatively, here is the general result which we
will end up proving:

Theorem 4.1 Let ε̂i be a sequence of positive numbers converging to 0. Consider a

sequence of complete Riemannian 3-manifolds (Ei, gi) with compact boundaries and

assume that for each i, there is an embedding

ui : Ei →R3

such that
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(1) ui(Ei) contains the end of R3,
(2) on Ei , the Jacobian matrix satisfies | Jac ui(x) − Id | ≤ ε̂i ,
(3) Area(∂Ei) ≤ ε̂i .

Then there is a closed subset E′′
i ⊂ Ei with compact boundary, such that for any

choice of basepoint xi ∈ E′′
i , the pointed sequence (E′′

i , d̂gi ,E
′′
i
, xi) converges in the

pointed measured Gromov-Hausdorff topology to the flat Euclidean 3-space. Here,
E′′

i is endowed with the length metric d̂gi ,E
′′
i

induced by gi , where the distance be-

tween two points is measured using paths inside E′′
i .

Remark 4.2 The higher-dimensional version of this result also holds thanks to an
induction argument and a slight modification of the proof provided below. For more
details, see [22, Appendix].

For concreteness, we will show the result above in our special setting. We use the
notations C, �(.), �(.|D) as explained in Sect. 2.1.

Fix a continuous function ξ : (0,∞) → (0,∞) with ξ(0) = 0 and

lim
x→0+

ξ(x) = 0.

All our constructions in this section will depend on this function ξ . For our purposes
we can assume without loss of generality that

lim
x→0+

x

ξ(x)
= 0.

Choose two other continuous functions ξ0, ξ1 : (0,∞) → (0,∞) with

lim
x→0+

ξ0(x) = lim
x→0+

ξ1(x) = 0,

and

lim
x→0+

ξ(x)

ξ100
0 (x)

= lim
x→0+

ξ0(x)

ξ100
1 (x)

= 0.

The reader can think of these functions ξ, ξ0, ξ1, as converging to 0 very slowly as
x → 0+. Set

δ0 := ξ0(m(g)), δ1 := ξ1(m(g)).

Then

δ100
1 � δ0 � ξ(m(g))

1
100 � m(g)

1
100 (13)

when 0 < m(g) � 1. In the following, we will always assume 0 < m(g) � 1.
Let E be the regular region given by Proposition 3.5 and its image Y := u(E) ⊂

R3. Then u : E → Y is a diffeomorphism and

Area(∂Y ) ≤ Cm(g)2

ε4
. (14)
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For any subset U ⊂ E, let (U, d̂g,U ) be the induced length metric on U of the
metric g, that is, for any x1, x2 ∈ U ,

d̂g,U (x1, x2) := inf{Lg(γ ) : γ is a rectifiable curve connecting x1, x2 and γ ⊂ U},

where Lg(γ ) =
∫ 1

0 |γ ′|g is the length of γ with respect to metric g. By convention,

two points in two different path connected components of U are at infinite d̂g,U -
distance.

Similarly, for any V ⊂ Y ⊂ R3, let (V , d̂Eucl,V ) be the induced length metric on V

of the standard Euclidean metric gEucl, that is, for any y1, y2 ∈ V ,

d̂Eucl,V (y1, y2)

:= inf{LEucl(γ ) : γ is a rectifiable curve connecting y1, y2 and γ ⊂ V },

where LEucl(γ ) is the length of γ with respect to the Euclidean metric gEucl. As
before, d̂Eucl,V can be infinite for pairs of points in different path connected compo-
nents.

Write

	 := ∂Y ⊂ R3

and let W be the compact domain bounded by 	 in R3, so ∂W = 	.
The main part of this section is devoted to the proofs of Proposition 4.8 and the

lemmas leading to it. In Proposition 4.8, we construct a subregion inside Y ⊂ R3

with small area boundary, over which the induced length metric of gEucl is close to
the restriction of the Euclidean metric.

By the isoperimetric inequality and (14),

Vol(W) ≤ C Area(	)
3
2 ≤ Cm(g)3

ε6
. (15)

Take

ε = δ0

(in particular in this section ε depends on m(g)). Recall that

ε′ := 100
√

ε � 1.

Then

Area(	) ≤ Cm(g)2

δ4
0

� 1, Vol(W) ≤ Cm(g)3

δ6
0

� 1. (16)

For any triple k = (k1, k2, k3) ∈ Z3, consider the closed cube Ck(δ1) defined by

Ck(δ1) := [k1δ1, (k1 + 1)δ1] × [k2δ1, (k2 + 1)δ1] × [k3δ1, (k3 + 1)δ1] ⊂ R3.



Stability of Euclidean 3-space for the positive mass theorem 303

For t ∈ R, define the plane

Ak,δ1(t) := {(x1, x2, x3) ∈R3 : x3 = (k3 + t)δ1}.

By definition Ck(δ1) ⊂ ⋃

t∈[0,1] Ak,δ1(t).
By (16) and the coarea formula, there exists

tk ∈ (
1

2
,

1

2
+ δ0)

such that Ak,δ1(tk) ∩ 	 consists of smooth curves and

Length(Ak,δ1(tk) ∩ 	 ∩ Ck(δ1)) ≤ Area(	 ∩ Ck(δ1))

δ0δ1

≤ Cm(g)2

δ5
0δ1

≤ m(g).

(17)

The square Ak,δ1(tk) ∩ Ck(δ1) has side length δ1, and the intersection Ak,δ1(tk) ∩
	 ∩ Ck(δ1) is a union of curves in this square, with total length much smaller than δ1
because of (17) and (13), see Figure 1. Set

D′
k

to be the path connected component of the complement (Ak,δ1(tk) ∩ Ck(δ1)) \ 	

which has largest area compared to the other components (see Figure 1), and set

D′′
k := (Ak,δ1(tk) ∩ Ck(δ1)) \ (	 ∪ D′

k).

Note that each connected curve in Ak,δ1(tk) ∩ 	 ∩ Ck(δ1) is contained in the
boundary of at most two connected components of D′′

k
. For each component C of

D′′
k

, the boundary ∂C is decomposed into a part inside the interior of the square
Ak,δ1(tk) ∩ Ck(δ1), which has length much smaller than δ1 by the previous para-
graph, and a part inside the boundary of the square. So since C is by definition not a
component of (Ak,δ1(tk)∩Ck(δ1))\	 with largest area, C touches at most two sides
of the square and the part of ∂C in the boundary of the square is small too. In fact

Length(∂C ∩ ∂Ck(δ1)) ≤ 2 · Length(Ak,δ1(tk) ∩ 	 ∩ Ck(δ1)).

By the usual isoperimetric inequality applied to each component C of D′′
k

and sum-
ming up those inequalities, we obtain from (17):

Area(D′′
k) ≤ C Length(Ak,δ1(tk) ∩ 	 ∩ Ck(δ1))

2

≤ Cm(g)
Area(	 ∩ Ck(δ1))

δ0δ1

≤ Area(	 ∩ Ck(δ1)).

(18)



304 C. Dong, A. Song

Fig. 1 Construction of Ck(δ1)′ . Note that in general, D′′
k

is not contained in πk(	 ∩Ck(δ1)) or vice versa

Let πk :R3 → Ak,δ1(tk) be the orthogonal projection. Define

Ck(δ1)
′ := D′

k ∪
(

Ck(δ1) ∩ π−1
k

(D′
k \ πk(	 ∩ Ck(δ1)))

)

.

For instance, if 	 ∩ Ck(δ1) = ∅, then Ck(δ1)
′ = Ck(δ1), see Figure 1.

Lemma 4.3 Vol(Ck(δ1) \ Ck(δ1)
′) ≤ 2δ1 Area(	 ∩ Ck(δ1)) ≤ m(g)δ3

1 .

Proof Since

Area(πk(	 ∩ Ck(δ1))) ≤ Area(	 ∩ Ck(δ1)),

and since by (18),

Area(D′′
k) ≤ Area(	 ∩ Ck(δ1)),

we have

Vol(Ck(δ1)) \ Vol(Ck(δ1)
′) ≤ 2δ1 Area(	 ∩ Ck(δ1)). (19)

We can use (14) to conclude the proof. �

Lemma 4.4 Ck(δ1)
′ is path connected, and

Ck(δ1)
′ ⊂ Y.

Proof By definition, for any point x ∈ Ck(δ1) ∩ π−1
k

(D′
k

\ πk(	 ∩ Ck(δ1))), the line
segment Lx ⊂ Ck(δ1) through x and orthogonal to Ak,δ1(tk) satisfies Lx ∩ D′

k

= ∅.

Since D′
k

is path connected, Ck(δ1)
′ is also path connected. Next, assume towards a

contradiction that Ck(δ1)
′ ⊈ Y . Since Ck(δ1)

′ is path connected, and by its definition,
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	 has no intersection with Ck(δ1)
′, we should have Ck(δ1)

′ ⊂ W . From the volume
estimate Lemma 4.3,

Vol(Ck(δ1)
′) ≥ (1 − m(g))δ3

1 .

But recall from (15) that

Vol(W) ≤ Cm(g)3

δ6
0

,

which gives

(1 − m(g))δ3
1 ≤ Cm(g)3

δ6
0

,

a contradiction since 0 < m(g) � 1. �

Define

Y ′ := ∪k∈Z3Ck(δ1)
′ ⊂ Y.

Notice that when |k| is big enough, one can certainly ensure that Ck(δ1)
′ = Ck(δ1),

so that Y \ Y ′ is a bounded set. It could be shown that Y ′ is path connected, but we
will not need it.

For any subset V ⊂ Y , let Vt be the t-neighborhood of V inside (Y, d̂Eucl,Y ) in
terms of the length metric d̂Eucl,Y , i.e.

Vt := {y ∈ Y : ∃z ∈ V such that d̂Eucl,Y (y, z) ≤ t}.

So (Y ′)t is the t-neighborhood of Y ′ inside (Y, d̂Eucl,Y ).
In the following lemma, by modifying some (Y ′)t , we construct a domain with

smooth boundary such that its boundary area is small and it is very close to Y ′ in the
Gromov-Hausdorff topology with respect to a length metric.

Lemma 4.5 There exists a closed subset Y ′′ with smooth boundary such that Y ′ ⊂
Y ′′ ⊂ (Y ′)6δ0 ,

Area(∂Y ′′) ≤ m(g)2

δ5
0

,

and Y ′′ is contained in the 6δ0-neighborhood of Y ′ inside Y ′′, with respect to its

length metric d̂Eucl,Y ′′ .

Proof Smoothing the Lipschitz function d̂Eucl,Y (Y ′, ·), we can get a smooth function
φ : Y → R such that |φ − d̂Eucl,Y (Y ′, ·)| ≤ δ0 and |∇φ| ≤ 2 (see for instance [29,
Proposition 2.1]). Applying coarea formula to φ, we have

∫ 4δ0

3δ0

Area(φ−1(t) ∩ Y)dt =
∫

{3δ0<φ<4δ0}∩Y

|∇φ|dvol ≤ 2 Vol(Y \ Y ′).
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By Lemma 4.3, for each k ∈ Z3,

0 ≤ Vol(Ck(δ1)) − Vol(C′
k(δ1)) ≤ 2δ1 Area(	 ∩ Ck(δ1)).

Since the number of overlaps of {Ck(δ1)}k∈Z3 is uniformly bounded,

0 ≤ Vol(Y ) − Vol(Y ′) ≤ 2δ1

∑

k∈Z3

Area(	 ∩ Ck(δ1))

≤ Cδ1 Area(	)

≤ Cδ1m(g)2

δ4
0

.

(20)

So we can find a regular value t ∈ (3δ0,4δ0) of φ such that φ−1(t) is smooth and

Area(φ−1(t) ∩ Y) ≤ Cδ1m(g)2

δ5
0

≤ m(g)2

8δ5
0

.

Smoothing (φ−1(t) ∩ Y) ∪ (∂Y ∩ {φ < t}) inside Y , we can get a smooth closed
surface S1 such that

S1 ⊂ (Y ′)5δ0 ,

Area(S1) ≤ 2(Area(φ−1(t) ∩ Y) + Area(∂Y )) ≤ m(g)2

4δ5
0

+ Cm(g)2

δ4
0

≤ m(g)2

2δ5
0

and there is a closed region Y1 satisfying

Y ′ ⊂ Y1 ⊂ (Y ′)5δ0 ⊂ Y and ∂Y1 ⊂ S1. (21)

At this point, Y1 is close to Y ′ in the Hausdorff topology with respect to d̂Eucl,Y ,
but possibly not with respect to its own length metric d̂Eucl,Y1 . To remedy this, choose
a finite subset {xj } consisting of δ0-dense discrete points of (Y1 \ Y ′, d̂Eucl,Y1) and
denote by γj ⊂ Y a smooth curve connecting xj to Y ′ with minimal length with
respect to the length metric d̂Eucl,Y . Then by (21), γj has length at most 5δ0, and
so γj ⊂ (Y ′)5δ0 . By thickening each γj , we can get thin solid tubes Tj inside δ0-
neighborhood of γj with arbitrarily small boundary area. Let Y2 := Y1 ∪ (∪jTj ). By
smoothing the corners of Y2 and taking the closure, we have a closed domain Y ′′ with
smooth boundary such that

Y ′ ⊂ Y ′′ ⊂ Y2 ⊂ Y ′
6δ0

and

Area(∂Y ′′) ≤ 2 Area(S1) ≤ m(g)2

δ5
0

.
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For any y ∈ Y ′′ \ Y ′, by our construction, there exists some j such that either
d̂Eucl,Y1(y, xj ) ≤ δ0 or y ∈ Tj . In each case, there exists a smooth curve σy,j ⊂ Y ′′

connecting y to a point in γj and Length(σy,j ) ≤ δ0. Since Length(γj ) ≤ 5δ0, σy,j ∪
γj is a piecewise smooth curve inside Y ′′ connecting y to Y ′ with length smaller than
6δ0. So inside the length space (Y ′′, d̂Eucl,Y ′′), Y ′′ is in the 6δ0-neighborhood of Y ′ as
desired. �

Let Y ′′ be as in Lemma 4.5. We have not yet shown that Y ′′ is path connected;
this will be a consequence of Proposition 4.8. Recall that d̂Eucl,Y ′′ is defined as the
length metric on Y ′′ induced by gEucl. Since Y ′ ⊂ Y ′′ ⊂ Y , we have dEucl ≤ d̂Eucl,Y ≤
d̂Eucl,Y ′′ .

Lemma 4.6 diam
d̂Eucl,Y ′′ (Ck(δ1)

′) ≤ 5δ1.

Proof For any two points x1, x2 ∈ Ck(δ1)
′, let Lx1 ,Lx2 be the line segments in-

side Ck(δ1) through x1, x2 and orthogonal to Ak,δ1(tk) respectively. Let x′
1 = Lx1 ∩

D′
k
, x′

2 = Lx2 ∩D′
k
. Consider the line segment between x′

1, x
′
2 and perturb it with fixed

endpoints, to get a path P joining x′
1 to x′

2 with length at most dEucl(x
′
1, x

′
2) + m(g)

and intersecting Ak,δ1(tk) ∩ 	 ∩ Ck(δ1) transversally. If this path is not inside D′
k
,

we can replace each component of P ∩ Ak,δ1(tk) ∩ W ∩ Ck(δ1) by an embedded
curve with same endpoints but contained in Ak,δ1(tk) ∩ 	 ∩ Ck(δ1), and we get in
this way a new path P̃ . By (17), the length of P̃ can be chosen to be smaller than
dEucl(x

′
1, x

′
2) + 2m(g). We perturb P̃ one more time into a path γ , so that γ sits

inside D′
k
: now γ is a curve between x′

1, x
′
2 inside D′

k
such that

LengthEucl(γ ) ≤ dEucl(x
′
1, x

′
2) + 3m(g).

Consider the curve γ̃ consisting of three parts: the line segment [x1x
′
1] between

x1, x
′
1, the curve γ , and the line segment [x′

2x2] between x′
2, x2. We have γ̃ ⊂

Ck(δ1)
′ ⊂ Y ′, so

d̂Eucl,Y ′′(x1, x2) ≤ LEucl(γ̃ ) ≤ 4δ1 + 3m(g) ≤ 5δ1. �

Lemma 4.7 For any basepoint q ∈ Y ′ and any D > 0,

dpGH ((Y ′ ∩ BEucl(q,D), d̂Eucl,Y ′′ , q), (Y ′ ∩ BEucl(q,D), dEucl, q)) ≤ �(m(g)).

Proof Let x0, y0 ∈ Y ′ ∩ BEucl(q,D) be two points and x0 ∈ Ck(δ1)
′, y0 ∈ Cl(δ1)

′ for
some k, l ∈ Z3. Since dEucl ≤ d̂Eucl,Y ′′ , it’s enough to show

d̂Eucl,Y ′′(x0, y0) ≤ dEucl(x0, y0) + �(m(g)). (22)

Let Tk,l be the translation which maps Ck(δ1) to Cl(δ1). Then by Lemma 4.3,

Vol(Tk,l(Ck(δ1)
′) ∩ Cl(δ1)

′) ≥Vol(Ck(δ1)) − (Vol(Ck(δ1) \ Ck(δ1)
′))

− (Vol(Cl(δ1) \ Cl(δ1)
′))

≥(1 − 2m(g))δ3
1 .

(23)
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If k = l, then by Lemma 4.6, we know that

d̂Eucl,Y ′′(x0, y0) ≤ 5δ1 ≤ dEucl(x0, y0) + 5δ1.

Suppose that k 
= l. Recall that

Ck(δ1)
′ ⊂ Y ′ ⊂ Y ′′.

We claim that there is at least one point x′
0 ∈ Ck(δ1)

′ such that Tk,l(x
′
0) ∈ Cl(δ1)

′ and
the straight line segment [x′

0Tk,l(x
′
0)] between these two points has no intersection

with ∂Y ′′. Assume otherwise, then it means that if x ∈ Ck(δ1)
′ and Tk,l(x) ∈ Cl(δ1)

′,
the line containing x and Tk,l(x) intersects ∂Y ′′. For any x ∈ R3, the straight line
Lx,Tk,l(x) containing x and Tk,l(x) meets the set Tk,l(Ck(δ1)

′)∩ Cl(δ1)
′ in a subset of

total length at most say 3δ1:

Length(Lx,Tk,l(x) ∩ Tk,l(Ck(δ1)
′) ∩ Cl(δ1)

′) ≤ 3δ1 (24)

(this is simply due to the fact that in the Euclidean space R3, the cube Cl(δ1) which
contains Cl(δ1)

′ has Euclidean diameter at most 3δ1). By the coarea formula, we
would get

Vol(Tk,l(Ck(δ1)
′) ∩ Cl(δ1)

′) ≤ 3δ1 Area(∂Y ′′). (25)

To see this, consider the orthogonal projection �k,l : R3 → R2 onto any 2-plane
inside R3 which is orthogonal to the translation vector of Tk,l. Set

U := Tk,l(Ck(δ1)
′) ∩ Cl(δ1)

′.

Then applying the coarea formula (c.f. [25, Theorem 3.10]) to �k,l, we have

Vol(U) =
∫

{y∈R2:U∩�−1
k,l

{y}
=∅}
Length

(

U ∩ �−1
k,l

{y}
)

dy.

By (24), Length(U ∩ �−1
k,l

{y}) ≤ 3δ1. Notice that for all y ∈ R2, if U ∩ �−1
k,l

{y} 
= ∅,

then �−1
k,l

{y} = Lx,Tk,l(x) for some x ∈ Ck(δ1)
′. Then by our assumptions, �−1

k,l
{y} ∩

∂Y ′′ 
= ∅. So {y ∈ R2 : U ∩ �−1
k,l

{y} 
= ∅} ⊂ �k,l(∂Y ′′), thus we have

Vol(U) ≤ 3δ1 · Area(�k,l(∂Y ′′)) ≤ 3δ1 · Area(∂Y ′′).

This proves (25). Next, because of Lemma 4.5,

3δ1 Area(∂Y ′′) ≤ 10δ1m(g),

so together with the above estimate (23), we would obtain

(1 − 2m(g))δ3
1 ≤ 10δ1m(g),

which is a contradiction since 0 < m(g) � 1.
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Since from the paragraph above, there is a point x′
0 ∈ Ck(δ1)

′ such that Tk,l(x
′
0) ∈

Cl(δ1)
′ and [x′

0Tk,l(x
′
0)] ⊂ Y ′′, we find

d̂Eucl,Y ′′(x0, y0)

≤ d̂Eucl,Y ′′(x0, x
′
0) + LengthEucl([x′

0Tk,l(x
′
0)]) + d̂Eucl,Y ′′(Tk,l(x

′
0), y0)

≤ 5δ1 + dEucl(x
′
0, Tk,l(x

′
0)) + 5δ1

≤ dEucl(x0, y0) + 20δ1. �

The previous lemma implies that any two points of Y ′ can be joined by a curve
inside Y ′′. The fact that Y ′′ itself is path connected is contained in the following
proposition:

Proposition 4.8 For any basepoint q ∈ Y ′′ and any D > 0,

dpGH ((Y ′′ ∩ BEucl(q,D), d̂Eucl,Y ′′ , q), (Y ′′ ∩ BEucl(q,D), dEucl, q)) ≤ �(m(g)).

In particular, Y ′′ is path connected.

Proof By Lemma 4.5, Y ′′ lies in the 6δ0-neighborhood of Y ′ inside (Y ′′, d̂Eucl,Y ′′).
This clearly implies for any q ∈ Y ′:

dpGH ((Y ′ ∩ BEucl(q,D), d̂Eucl,Y ′′ , q), (Y ′′ ∩ BEucl(q,D), d̂Eucl,Y ′′ , q)) ≤ �(m(g)).

Similarly, since dEucl ≤ d̂Eucl,Y ′′ , Y ′′ lies in the 6δ0-neighborhood of Y ′ in terms
of dEucl and for any q ∈ Y ′:

dpGH ((Y ′ ∩ BEucl(q,D), dEucl, q), (Y ′′ ∩ BEucl(q,D), dEucl, q)) ≤ �(m(g)).

Together with Lemma 4.7 and the triangle inequality, we have the conclusion for
in fact any basepoint q ∈ Y ′′ (using again that Y ′′ lies in the 6δ0-neighborhood of Y ′

inside (Y ′′, d̂Eucl,Y ′′)). �

Next we can construct a subregion in E ⊂ Mext by pulling back the subregion
constructed above through the diffeomorphism u. Set

E′′ := u−1(Y ′′).

For any p ∈ E′′ and D > 0, denote by B̂g,E′′(p,D) the geodesic ball in (E′′, d̂g,E′′),
that is,

B̂g,E′′(p,D) := {x ∈ E′′ : d̂g,E′′(p, x) ≤ D}.

Similarly, denote by B̂Eucl,Y ′′(q,D) the geodesic ball in (Y ′′, d̂Eucl,Y ′′).

Lemma 4.9 For any basepoint q ∈ Y ′′ and any D > 0,

dpGH ((Y ′′ ∩ BEucl(q,D), d̂Eucl,Y ′′ , q), (B̂Eucl,Y ′′(q,D), d̂Eucl,Y ′′ , q)) ≤ �(m(g)).
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Proof From Lemma 4.5 and (22) in the proof of Lemma 4.7, for any q, x ∈ Y ′′,

dEucl(q, x) ≤ d̂Eucl,Y ′′(q, x) ≤ dEucl(q, x) + �(m(g)), (26)

so

B̂Eucl,Y ′′(q,D) ⊂ Y ′′ ∩ BEucl(q,D) ⊂ B̂Eucl,Y ′′(q,D + �(m(g))). �

Lemma 4.10 For any basepoint p ∈ E′′ and any D > 0,

dpGH ((B̂g,E′′(p,D), d̂g,E′′,p), (B̂Eucl,Y ′′(u(p),D), d̂Eucl,Y ′′ ,u(p))) ≤ �(m(g)|D).

Proof It is enough to show that u gives the desired GH approximation. Under the
diffeomorphism u, if we still denote the metric (u−1)∗g by g, then

(E′′, d̂g,E′′,p) = (Y ′′, d̂g,Y ′′ ,u(p)).

Since | Jac u − Id | ≤ ε′, we have

d̂g,Y ′′(x1, x2) ≤ (1 + ε′)d̂Eucl,Y ′′(x1, x2) ≤ (1 + ε′)2d̂g,Y ′′(x1, x2).

Note that we have taken ε = δ0. So for any fixed D > 0, if x1, x2 ∈ B̂Eucl,Y ′′(u(p),D),

|d̂g,Y ′′(x1, x2) − d̂Eucl,Y ′′(x1, x2)| ≤ �(m(g)|D). �

From Proposition 4.8, Lemma 4.9 and Lemma 4.10, we immediately have the
following.

Lemma 4.11 For any p ∈ E′′ and D > 0,

dpGH ((B̂g,E′′(p,D), d̂g,E′′,p), (Y ′′ ∩ BEucl(u(p),D), dEucl,u(p)) ≤ �(m(g)|D).

To compare those metric spaces to the Euclidean 3-space (R3, gEucl), we need the
following lemma, which is a corollary of the fact that Area(∂Y ′′) ≤ �(m(g)).

Lemma 4.12 For any q ∈ Y ′′ and D > 0,

dpGH ((Y ′′ ∩ BEucl(q,D), dEucl, q), (BEucl(0,D), dEucl,0)) ≤ �(m(g)).

Proof Under a translation diffeomorphism, we can assume q = 0. By (26), it suffices
to show that BEucl(q,D) lies in a �(m(g))-neighborhood of Y ′′. If that were not the
case, there would be a μ > 0, independent of m(g), such that for all small enough
0 < m(g) � 1, there exists a x ∈ BEucl(q,D) with BEucl(x,μ) ∩ Y ′′ = ∅. But from
the isoperimetric inequality, we should have

Vol(R3 \ Y ′′) ≤ C Area(∂Y ′′)
3
2 ≤ �(m(g)),

which would imply that

ω3μ
3 = Vol(BEucl(x,μ)) ≤ �(m(g)),

a contradiction. �
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Summarizing above arguments, we have proved the following. Recall that ξ is a
fixed function defined at the begining of this section.

Proposition 4.13 Assume (M,g) is a complete, asymptotically flat 3-manifold, with

nonnegative scalar curvature. Suppose that an end of (M,g) has mass 0 < m(g) � 1.
Then, there exists a connected closed region E ⊂ M containing this end, with smooth

boundary, such that

Area(∂E) ≤ m(g)2

ξ(m(g))
,

and there is a harmonic diffeomorphism u : E → Y with Y := u(E) ⊂ R3 such that,
on E , the Jacobian matrix satisfies

| Jac u − Id | ≤ �(m(g)).

Moreover, for any basepoint p ∈ E , any D > 0,

dpGH ((B̂g,E (p,D), d̂g,E ,p), (BEucl(0,D), dEucl,0)) ≤ �(m(g)|D),

and �u(p) ◦u gives a �(m(g)|D)-pGH approximation, where �u(p) is the translation

diffeomorphism of R3 mapping u(p) to 0.

Proof With the same notations as above, we take E := E′′ and Y := Y ′′. Notice that
by Lemma 4.5, by the fact that | Jac u − Id | ≤ ε′ (see (3)), and by our choice of δ0

and ξ0, when 0 < m(g) � 1,

Area(∂E) ≤ 2
m(g)2

δ5
0

= 2
m(g)2

ξ5
0 (m(g))

≤ m(g)2

ξ(m(g))
.

The rest of the statement follows from Lemma 4.11 and Lemma 4.12. �

Proof of Theorem 1.3 Assume (Mi, gi) is a sequence of complete, asymptotically flat
3-manifolds, with nonnegative scalar curvature. Suppose that the mass of an end of
Mi converges to zero: m(gi) → 0. Assume that ξ is any fixed continuous function as
in the statement of Theorem 1.3. For all large i, Proposition 4.13 gives the existence
of a region Ei with compact boundary, containing the given end of Mi , which satisfies

Areagi
(∂Ei) ≤ m(gi)

2

ξ(m(gi))
,

and a harmonic diffeomorphism ui : Ei → Yi ⊂ R3 with Yi = ui(Ei).
By Proposition 4.13, for any basepoint pi ∈ Ei , any D > 0, up to a translation

diffeomorphism of R3, we can assume ui(pi) = 0, and then ui is an �(m(gi)|D)-
pGH approximation, and as i → ∞,

dpGH ((B̂gi ,Ei
(pi,D), d̂gi ,Ei

,pi), (BEucl(0,D), dEucl,0)) ≤ �(m(gi)|D) → 0.
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In other words,

(Ei, d̂gi ,Ei
,pi) → (R3, dEucl,0)

in the pointed Gromov-Hausdorff topology.
We claim that (Ei, d̂gi ,Ei

,pi) → (R3, dEucl,0) also in the pointed measured

Gromov-Hausdorff topology. Since the Hausdorff measure induced by d̂gi ,Ei
is the

same as dvolgi
, it suffices to show that for a.e. D > 0,

(ui)�(dvolgi
|
B̂gi ,Ei

(pi ,D)
) weakly converges to dvolEucl |B(0,D) as i → ∞. (27)

By construction and the isoperimetric inequality,

Vol(R3 \Yi) ≤ �(m(gi)),

and so (Yi ∩ BEucl(0,D),dvolEucl) converges weakly to (BEucl(0,D),dvolEucl).
Since we have (by abuse of notations):

| Jac ui − Id | ≤ �(m(gi)),

it is now simple to check (27) using Lemma 4.9 and Lemma 4.10.
We finish the proof by defining Zi := Mi \ Ei . �

5 An application to the Bartnik capacity

We review some definitions concerning the notion of Bartnik capacity, see [34,
Sect. 9]. Given an open Riemannian 3-manifold � whose metric closure is com-
pact, it is called admissible if there is an extension (M,g) of �, such that (M,g) is a
complete, connected, asymptotically flat 3-manifold with one end, having nonnega-
tive scalar curvature, and possessing a minimal compact boundary (which is possibly
empty), but no other closed minimal surface in its interior. Such an (M,g) is called
an admissible extension. The Bartnik capacity of an admissible � is defined as

cB(�) := inf{m(g) : (M,g) is an admissible extension of �}.

Our convention that � is an open domain follows [11, 34]. The next theorem answers
Bartnik’s strict positivity conjecture [10, last paragraph of page 2346], and improves
an earlier result of Huisken-Ilmanen [34, Positivity Property 9.1]:

Theorem 5.1 If � is admissible, then cB(�) > 0, unless there is a Riemannian iso-

metric embedding of � into the Euclidean 3-space R3.

Proof Let g0 denote the Riemannian metric on �. We can assume that the open do-
main � is connected without loss of generality. Let us assume that cB(�) = 0. Let
(Mi, gi) be a sequence of admissible extensions of �, whose masses m(gi) converge
to 0. We use the notations of the previous section and the notation �i := �(i−1) as
explained in Sect. 2.1.
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To simplify our task, note that by Huisken-Ilmanen’s work [34, Positivity Prop-
erty 9.1], we already have:

Proposition 5.2 (�,g0) is locally flat, namely its sectional curvature is zero.

By Proposition 4.13, there exists a connected closed subset Ei ⊂ Mi so that Ei

contains the end of Mi ,

Area(∂Ei) → 0 (28)

and for any basepoint pi ∈ Ei ,

(Ei, d̂gi ,Ei
,pi) → (R3, dEucl,0) (29)

in the pointed measured Gromov-Hausdorff topology. Moreover, the measured
Gromov-Hausdorff approximations are given by a sequence of harmonic maps

ui : Ei → R3, (30)

depending on pi and satisfying the following:

(1) ui is diffeomorphism onto its image and sends pi to 0;
(2) the Jacobian matrix of ui satisfies limi→∞ |Jacui − Id| = 0;
(3) for any D > 0, for any x, y ∈ B̂gi ,Ei

(pi,D),

|d̂gi ,Ei
(x, y) − dEucl(ui(x),ui(y))| ≤ �i,

and

(ui)�(dvolgi
|
B̂gi ,Ei

(pi ,D)
) → dvolEucl|BEucl(0,D) weakly as measures.

Here �i depends on D.

We will need the following lemma:

Lemma 5.3 limi→∞ Volg0(� \ Ei) = 0.

Proof of Lemma 5.3 We can assume that ∂Ei 
= ∅, otherwise the above equality is
clearly satisfied. If the lemma is not true, then by the isoperimetric inequality,
limi→∞ Vol(� ∩ Ei) = 0. Volumes and areas in � are with respect to g0. Fix a large
i. We define the following minimization problem in (Mi, gi): consider

α := inf
{	t }t∈[0,1]

Area(	1)

where the infimum is taken over all smooth isotopies {	t }t∈[0,1] starting at the closed
surface 	0 := ∂Ei and such that for all t ∈ [0,1], Area(	t ) ≤ 2 Area(∂Ei). Two
cases could occur.
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• Either α > 0 and, by the work of Meeks-Simon-Yau [44, Theorem 1], we obtain a
closed minimal surface S of area at most 2 Area(∂Ei) in (Mi, gi). Since (Mi, gi)

contains no closed minimal surface in its interior, S is contained in the boundary
∂Mi . In fact, the statement of [44, Theorem 1] ensures the following: for any ε >

0, a family of isotopic surfaces {	t }t∈[0,1] (with the previous properties) can be
chosen so that 	1 is the union of two subsurfaces 	1,1,	1,2 so that 	1,1 is inside
the ε-neighborhood of S ⊂ ∂Mi and 	1,2 has area at most ε.

• Or α = 0, which means that for any ε > 0, {	t }t∈[0,1] (with the previous properties)
can be chosen so that 	1 has area at most ε.

In both cases, for each t ∈ [0,1], we can look at the connected region Ei,t ⊂ Mi

bounded by 	t which lies on the same side as Ei , in the sense that Ei,t contains the
end of Mi . Then at t = 0, Vol(� ∩ Ei,0) = Vol(� ∩ Ei) is small by our assumption,
but at t = 1, Vol(� ∩ Ei,1) is close to Vol(�) thanks to the two cases described just
above and the general fact that any small area embedded closed surface in a given
complete noncompact 3-manifold with bounded geometry (like Mi ) bounds a small
volume region with compact closure, see for instance [44, Lemma 1].

Therefore, there is a time t0 ∈ [0,1] such that

Vol(� ∩ Ei,t0) = 1

2
Vol(�)

so by the isoperimetric inequality, Area(�∩∂Ei,t0) is uniformly lower bounded away
from 0. This is a contradiction with the fact that by construction, for all t ∈ [0,1]
we have Area(� ∩ ∂Ei,t ) ≤ Area(	t ) ≤ 2 Area(∂Ei), but by (28) this last quantity
converges to 0. This proves the lemma. �

For any sufficiently small ε > 0, consider

�ε := {x ∈ �; dg0(x, ∂�) ≥ ε}.

Then by Proposition 5.2, there exists a positive number

rε <
1

2
ε

(independent of i) so that any g0-geodesic open 2rε -ball (Bg0(x,2rε), g0) with center
x ∈ �ε is isometric to a Euclidean 2rε -ball (BEucl(0,2rε), gEucl).

Lemma 5.4 For any x ∈ �3ε , the inclusion map

ιi : (Ei ∩ Bg0(x, rε), d̂gi ,Ei
) → (Bg0(x, rε), dg0) (31)

is a �i -GH approximation, and (ιi)�(dvolg0 |Ei∩Bg0 (x,rε)) weakly converges to

dvolg0 |Bg0 (x,rε). Here, �i depends on rε .

Proof By Lemma 5.3, we can choose xi ∈ Ei ∩ Bg0(x, rε) so that dg0(xi, x) → 0.
Then, by applying (29) with respect to the basepoints xi , we have:

(B̂gi ,Ei
(xi,2rε), d̂gi ,Ei

) → (BEucl(0,2rε), dEucl)
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in the measured GH-topology. Here, as in the previous section, d̂gi ,Ei
is the induced

length metric on Ei , and B̂gi ,Ei
(., .) denotes a corresponding geodesic ball in Ei . In

particular, for any geodesic ball B̂gi ,Ei
(yi, r) ⊂ B̂gi ,Ei

(xi,2rε), we have the volume
convergence

Vol(B̂gi ,Ei
(yi, r)) → Vol(BEucl(0, r)) = ω3r

3. (32)

The following properties suffice to show the lemma:

• Bg0(x, rε) is contained in the �i -neighborhood of Ei ∩ Bg0(x, rε) inside (�,g0).
Otherwise, for some positive constant σ > 0 independent of i, and some yi ∈
Bg0(x, rε), we have Bg0(yi, σ ) ⊂ Bg0(x, rε) \ Ei . But then

ω3σ
3 = Vol(Bg0(yi, σ )) ≤ Vol(Bg0(x, rε) \ Ei) < Vol(� \ Ei),

which contradicts Lemma 5.3.
• For any y, z ∈ Ei ∩ Bg0(x, rε),

|d̂gi ,Ei
(y, z) − dg0(y, z)| ≤ �i .

Indeed, let γ be a minimal d̂gi ,Ei
-geodesic between y and z inside Ei ∩Bg0(x, rε).

If γ ⊂ Bg0(x,2rε), then

dg0(y, z) ≤ Lengthg0
(γ ) = d̂gi ,Ei

(y, z).

Otherwise γ is not contained in Bg0(x,2rε), and

dg0(y, z) ≤ 2rε ≤ Lengthgi
(γ ) = d̂gi ,Ei

(y, z).

In both cases, the inequality dg0(y, z) ≤ d̂gi ,Ei
(y, z) follows.

Setting r := dg0(y, z), we have from the above

B̂gi ,Ei
(y, r) ⊂ Bg0(y, r).

Let us assume that B̂gi ,Ei
(w,σ ) ⊂ Bg0(y, r) \ B̂gi ,Ei

(y, r) for some point w and
some σ > 0, then

(1 − �i)ω3σ
3 ≤ Vol(B̂gi ,Ei

(w,σ ))

≤ Vol(Bg0(y, r)) − Vol(B̂gi ,Ei
(y, r))

≤ �iω3r
3,

where the last inequality comes from the volume convergence (32). Hence, we
have σ ≤ �ir . So in fact, there exists z′ ∈ B̂gi ,Ei

(y, r) so that d̂gi ,Ei
(z, z′) ≤ �ir ,

which implies that

d̂gi ,Ei
(y, z) ≤ d̂gi ,Ei

(y, z′) + d̂gi ,Ei
(z′, z)

≤ r + �ir

≤ (1 + �i)dg0(y, z).
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• dvolg0 |Ei∩Bg0 (x,rε) → dvolg0 |Bg0 (x,rε) weakly. This is a corollary of Lemma 5.3.
�

Next, we construct a limit of some maps ui from �3ε to R3, which we will show
is an isometric embedding. Recall that � is supposed to be connected. Fix a base-
point o ∈ �. By Lemma 5.3, there is a sequence of points oi ∈ Ei converging to o in
(�,g0). Consider the map given by (30):

ui : (Ei, d̂gi ,Ei
) →R3

which depends on oi and sends oi to 0. By Lemma 5.4 and using a finite covering
of �ε by balls of the form Bg0(x, rε), Ei ∩ �3ε ⊂ B̂gi ,Ei

(oi,D) for some D > 0
independent of i. Now that D is fixed, the quantities �i in Property (3) of ui after
(29) are fixed too.

Importantly, by Property (3) of ui after (29) and Lemma 5.4, for any a, b ∈ Ei ∩
�3ε at g0-distance less than rε ,

dg0(a, b) − �i ≤ dEucl(ui(a),ui(b)) ≤ dg0(a, b) + �i . (33)

By a standard Arzelà-Ascoli type argument and Lemma 5.3, after taking a subse-
quence, we can extract a uniform limit of ui which is a Lipschitz map:

u∞ : �3ε → R3.

Moreover, we have the following weak convergence of measures:

(ui)�(dvolg0 |Ei∩�3ε
) → (u∞)�dvolg0 .

Lemma 5.5 u∞ : �3ε → R3 is a Riemannian isometric embedding.

Proof This lemma follows from the following:

• u∞ is a local isometry: this follows from (33) and the construction of u∞.
• u∞ is injective. If that was not true, say u∞(x) = u∞(y) for some x 
= y ∈ �3ε ,

then by the local isometry property, there exist small balls Bg0(x, σ ),Bg0(y, σ ) so
that Bg0(x, σ ) ∩ Bg0(y, σ ) = ∅, and u∞(Bg0(x, σ )) = u∞(Bg0(y, σ )) =: B0. Let
xi, yi ∈ Ei and xi → x, yi → y, then both ui(Bg0(xi, σ )∩Ei) and ui(Bg0(yi, σ )∩
Ei) converge to B0 in the measured GH-topology. This implies that ui(Bσ (xi) ∩
Ei) ∩ ui(Bσ (yi) ∩ Ei) 
= ∅, which contradicts with the fact that ui : Ei →R3 is an
injective map (see Property (1) of ui listed after (29)). �

By Lemma 5.5, �3ε isometrically embeds inside R3. Taking ε → 0, we conclude
that � is also isometrically embedded inside R3. This concludes the proof of Theo-
rem 5.1. �

Remark 5.6 In the proof of Theorem 5.1, we use Sect. 4 crucially to construct a limit
map u∞ using an Arzelà-Ascoli type argument.1

1We thank a reviewer for catching a mistake in an earlier, different version of this proof.
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Section 1.2 in [52] applies to maps which are almost Riemannian isometries out-
side of a region with small volume and small boundary area. It may provide an al-
ternative way of constructing a limit map with measure theoretic methods, and thus
concluding the proof of Theorem 5.1 without using Sect. 4.

Proposition 5.2 is not used in an essential way in the proof of Theorem 5.1 and
could be replaced by a slightly more tedious argument.

Remark 5.7 One could try to strengthen Bartnik’s strict positivity conjecture in var-
ious ways. First, there are other more general ways to define admissible extensions
of �, by using continuous, but possibly non-smooth, extensions satisfying a mean
curvature boundary condition, as studied for instance by Miao [45], Shi-Tam [51],
Anderson-Jauregui [7]. Secondly, one can ask for an isometric embedding of the
closure of � into R3 when cB(�) = 0. In [7, Theorem 1.2], Anderson-Jauregui con-
structed counterexamples to such a stronger version of the conjecture (with respect
to one of the more general definitions of admissible extensions).
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