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Abstract

We show that the Euclidean 3-space R? is stable for the Positive Mass Theorem in
the following sense. Let (M;, g;) be a sequence of complete asymptotically flat 3-
manifolds with nonnegative scalar curvature and suppose that the ADM mass m(g;)
of one end of M; converges to 0. Then for all i, there is a subset Z; in M; such that
M; \ Z; contains the given end, the area of the boundary 9Z; converges to zero, and
(M; \ Zi, gi) converges to R3 in the pointed measured Gromov-Hausdorff topology
for any choice of basepoints. This confirms a conjecture of G. Huisken and T. Ilma-
nen. Additionally, we find an almost quadratic upper bound for the area of 0Z; in
terms of m(g;). As an application of the main result, we also prove R. Bartnik’s strict
positivity conjecture.

1 Introduction

According to the Riemannian Positive Mass Theorem in dimension 3, the ADM
mass of an end of a complete asymptotically flat Riemannian 3-manifold (M, g)
with nonnegative scalar curvature is nonnegative. Furthermore, the mass is zero if
and only if (M, g) is isometric to Euclidean 3-space (R3, ggyc). Originally proved
by Schoen-Yau [48], this theorem has since been proven by numerous new meth-
ods [1, 17, 34, 43, 46, 57], and many fundamental extensions were discovered, in-
cluding the Penrose inequality [2, 12, 15, 34], the spacetime Positive Mass Theorem
[9, 23, 24, 49, 57] and other generalizations [42, 50] etc.

Recently there has been growing interest in establishing a stability result for the
Positive Mass Theorem. This problem falls within the larger effort to understand the
(non-)stability of classical rigidity theorems for metrics with lower scalar curvature
bounds [30, 54]. When it comes to the Positive Mass Theorem, one difficulty comes
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from the fact that asymptotically flat manifolds with nonnegative scalar curvature
and small masses can be far from Euclidean 3-space with respect to standard topolo-
gies like the Gromov-Hausdorff topology, see for instance [34, 40]. To overcome
this, researchers have turned to exploring newer topologies, notably the intrinsic flat
topology, see [53, 54] for a survey on those questions.

The earliest conjecture about the stability of the Positive Mass Theorem was for-
mulated by Huisken-Ilmanen [34, Sect. 9]:

Conjecture 1.1 Suppose (M;, g;) is a sequence of asymptotically flat 3-manifolds
with nonnegative scalar curvature and suppose that the ADM mass m(g;) of an end
converges to 0. Then, there is a subset Z; C M; such that M; \ Z; contains the given
end, the area of 0Z; converges to 0, and (M; \ Z;, g;) converges to Euclidean 3-space
in the Gromov-Hausdorff topology for any choice of basepoints.

Because of the Penrose inequality, the following has also been conjectured by
Ilmanen [13]:

Conjecture 1.2 The subsets Z; can be chosen so that

Area(dZ;) < 16xm(gi)>.

The purpose of this paper is to prove the stability conjecture of Huisken-Ilmanen.
Our results go slightly beyond the conjecture, as we show that convergence occurs
also in the sense of measures. Although we are unable to settle the second conjecture,
we make progress by providing a bound of the surface area which is almost quadratic
in the mass. The main statement is the following:

Theorem 1.3 Let (M;, g;) be a sequence of complete asymptotically flat 3-manifolds
with nonnegative scalar curvature. Suppose that the ADM mass m(g;) of one end &;
of M; converges to 0. Then for all i, there is an open domain Z; in M; with smooth
compact boundary 0Z;, such that

(1) M; \ Z; contains the given end &;,
(2) the area of 0Z; converges to 0,
(3) for any choice of basepoint p; € M; \ Z;,

(M;\ Z;, C?gi, pi) = (R?, dye, 0)

in the pointed measured Gromov-Hausdorff topology, where cigi is the length
metric on M; \ Z; induced by g;.

Moreover, if m(g;) > 0 for all i, the region Z; can be chosen so that the area
of 0Z; is almost bounded quadratically by the mass in the following sense: for any
positive continuous function & : (0, 00) — (0, 0o0) with

lim &(x) =0,
x—0F
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for all large i, we can choose Z; depending on & such that

N2
Area(3Z;) < D"
E(m(gi))

To clarify, the length metric dAgl. in this statement measures the distance between
two points x,y € M; \ Z; as the infimum of the Riemannian g;-lengths of paths
contained inside M; \ Z; and joining x to y. Our proof will actually show that (M; \
Zi, gi, pi) becomes close to (R3, dpycl, 0)ina C 0 sense (although this does not imply
Gromov-Hausdorff convergence).

As pointed out to us by G. Huisken, the proof of Theorem 1.3 can be applied to
settle an open question about the rigidity of the Bartnik capacity cp(£2) (or Bartnik’s
quasi-local mass) of an admissible open Riemannian 3-manifold €2. In [34, Positivity
Property 9.1], G. Huisken and T. Ilmanen found that either c3(€2) > 0, or cp(2) =0
and in that case €2 is a locally flat Riemannian manifold. R. Bartnik [10] conjectured
that if cp(2) = 0, then Q is actually isometrically embedded inside Euclidean 3-
space R3. This is indeed true, as explained in Sect. 5:

Theorem 1.4 If Q2 is admissible, then cg(2) > 0, unless there is a Riemannian iso-
metric embedding of Q into the Euclidean 3-space R3.

On the other hand, a construction due to M. Anderson and J. Jauregui [7, The-
orem 1.2] suggests that the metric closure of € might not always be isometrically
embedded inside Euclidean 3-space R? (see Remark 5.7 for more comments).

The stability problem for the Positive Mass Theorem has been the subject of sev-
eral studies. Many of those earlier works focused on proving stability results using
the intrinsic flat topology of Sormani-Wenger [55], following the conjecture formu-
lated by Lee-Sormani in [40]. The case of spherically symmetric asymptotically flat
manifolds was addressed by Lee-Sormani [40], and was extended in [18]. The graph-
ical setting was settled by papers of Huang, Lee, Sormani, Allen, Perales [5, 31-33].
Additionally, Sobolev bounds were obtained in [3], and there were prior results on
establishing L? curvature bounds and proving stability outside of a compact set
[14, 20, 26, 27, 39]. More recently, Kazaras-Khuri-Lee [38] were able to prove the
stability conjecture under Ricci curvature lower bounds and a uniform asymptotic
flatness assumption. See also [6] for stability under integral Ricci curvature bounds,
isoperimetric bounds and a uniform asymptotic flatness assumption. The first named
author [21] made progress on the original version of the stability conjecture, with-
out additional curvature assumptions but still under a uniform asymptotic flatness
assumption. Other recent works on stability for scalar curvature include results for
tori with almost nonnegative scalar curvature [4, 19, 41].

Our main result, Theorem 1.3, is a stability theorem up to negligible subsets. In
particular, for the Positive Mass theorem, R3 is “codimension 2 stable” in the mea-
sured Gromov-Hausdorff topology, see [52, Remark 3.9]. This might be optimal in
view of recent work of Kazaras-Xu [37]. In [52], it was shown that hyperbolic mani-
folds of dimension n > 3 are stable for the entropy inequality, after removing negligi-
ble subsets similarly to Theorem 1.3. Besides, based on the techniques of this paper,
the first named author recently obtained a stability result for the Riemannian Penrose
inequality [22] analogous to Theorem 1.3.
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Outline of proof Similarly to [21, 38], our proof builds on the recent beautiful new
proof of the Positive Mass Theorem by Bray-Kazaras-Khuri-Stern [17]. There, the
authors employ level sets of harmonic maps [56]: contrarily to methods in other
proofs of the theorem, level sets of harmonic maps sweepout the whole manifold
and are sensitive to the global geometry. That heuristically explains why [17] seems
to be a good starting point when attempting to prove stability. Perhaps surprisingly,
aside from [17], all the arguments we use are completely elementary. We empha-
size that unlike [21, 38], we do not assume additional curvature bounds or uniform
asymptotic flatness.

The proof begins with the result of Bray-Kazaras-Khuri-Stern [17], which bounds
the mass m(g) of an end of a complete asymptotically flat manifold (M, g) with
nonnegative scalar curvature as follows: let M,y ; be an exterior region of (M, g)
containing that end, then

@) = lf V2 vl 0
—_— VO
"8 =16 S IVl g

where u : M,,; — R is any harmonic function “asymptotic to one of the asymptoti-
cally flat coordinate functions on M,,,”, see [17].

Letu:= (u1 uZ, u3) My — R3, where u/ (j = 1,2, 3)is the harmonic function
asymptotic to the asymptotically flat coordinate function x/ on M,,; (we fix a coor-
dinate chart at infinity). Assuming that the mass m(g) is positive and close to 0, we
consider as in [21] the subset Q2 of M,,, where the differential of u is €p-close to the
identity map, for some small positive €g. More concretely, define F : (M, g) > R
by

3
Fay=3" (g(Vuj, viky — ajk)z.

jk=1

Then set 2 := F~1[0, y]. On such a set, u is close to being a Riemannian isometry
onto its image in R3. It is a local diffeomorphism, but a priori, the multiplicities of
this map are not easily controlled. The proof is divided into two steps.

In the first step, we show that one regular level set S of F has small area, bounded
by m(g)2 times a constant depending on €¢. Inequality (1) bounds the L? norm of the
gradient of F'. The crucial point is then to observe that the classical capacity-volume
inequality of Poincaré-Faber-Szeg6 generalizes to our setting, and enables us to find a
region between two level sets of F' with small volume. Then one can apply the coarea
formula to find the small area level set S.

Consider the connected component E of M,,; \ S containing the end. An issue is
that even though the area of d E is small, the component E is in general not close to
Euclidean 3-space for the induced length structure on E. The second step of the proof
consists of modifying the subset E to another subset E” containing the end, so that
9 E” still has small area but moreover E” is close to Euclidean 3-space in the pointed
Gromov-Hausdorff topology with respect to its own length metric. This result is quite
general, and is shown by dividing the full space into small cube-like regions and by
a repeated use of the coarea formula.
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2 Preliminaries
2.1 Notations

We will use C to denote a universal positive constant (which may be different from
line to line); W(¢), W (¢|a, b, ...) denote small constants depending on a, b, ... and
satisfying

limW¥(t) =0, lim W (¢|a,b,...)=0,

t—0 t—0
for each fixed a, b, ...

We denote the Euclidean metric, the induced length function and the induced dis-
tance by ggucl, LEucl, dBucl respectively; and the geodesic line segment and distance
between x, y € R3 with respect to ggycl by [xy], |xy]. So |xy| = Lgua([xy]).

For a general Riemannian manifold (M, g) and any p € M, the geodesic ball with
center p and radius r is denoted by Bg(p,r) or B(p,r) if the underlying metric is
clear. Given a Riemannian metric, for a surface ¥ and a domain 2, Area(X) is the
area of X, Vol(£2) is the volume of 2 with respect to the metric.

2.2 Asymptotically flat 3-manifolds

A smooth orientable connected complete Riemannian 3-manifold (M, g) is called
asymptotically flat if there exists a compact subset K C M such that M \ K =
|_|,}<v=1 Mé‘nd consists of finite pairwise disjoint ends, and for each 1 < k < N, there
exist B > 0,0 > %, and a C*°-diffeomorphism @y : and - R3 \ Bguc(0, 1) such
that under this identification,

197 (gij — 8i)(x)| < Blx| 701,

for all multi-indices |/| =0, 1,2 and any x € R3 \ Bguc1(0, 1), where Bgyc (0, 1) is the
standard Euclidean ball with center O and radius 1. Furthermore, we always assume
the scalar curvature R, is integrable over (M, g). For each given end, its ADM mass
from general relativity is then well-defined (see [8, 9]) and given by

. 1 j
m(g) := lim —/S Z(gij,i —gii,j)vjdA
r l,]

where v is the unit outer normal to the coordinate sphere S, of radius |x| =r in the
given end, and d A is its area element.

Let (M, g) be a complete asymptotically flat 3-manifold. To each end of M, there
is an associated “exterior region” M,,;, which contains that end, is diffeomorphic to
R3 minus finitely many disjoint balls, and has minimal boundary. Given (M,,;, g)
associated to one end, let {x/ }§:1 denote the asymptotically flat coordinate system

of the end. Then there exist functions u/ € C®(Meyy), j € {1,2,3}, satisfying the
following harmonic equations with Neumann boundary if d M,,; # ¥, and asymptot-
ically linear conditions:

i —0i ou’ J_ i 1o
Agul =01in My, W:OonBMem, lu/ —x’| =o(x|'~?) as |x| = oo,
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where 7 is the normal vector of dM,,;, and o > % is the order of the asymptotic

flatness. We say that {1/ }?z | are the harmonic functions asymptotic to the asymptot-

ically flat coordinate functions {x/ }§=1 respectively. See [17, 38] for more details.
Denote by u the resulting harmonic map
ui= ' u? u®) My — R

The following mass inequality was proved in [17].

Proposition 2.1 (Theorem 1.2 in [17]) Let (Mcy, g) be an exterior region of an
asymptotically flat Riemannian 3-manifold (M, g) with mass m(g). Let u be a har-
monic function on (Mey:, g) asymptotic to one of the asymptotically flat coordinate
functions of the associated end. Then

@)= — V2P | Ry 9ul ) dvol @)
— vol,,
"= 06x Jy,, \va T 8

where the integral is taken over the regular set of u.
2.3 Pointed measured Gromov-Hausdorff convergence

In this subsection, we recall some definitions for the pointed measured Gromov-
Hausdorff topology [28, Definition 3.24], also called pointed Gromov-Hausdorft-
Prokhorov topology.

Assume (X,dyx,x),(Y,dy,y) are two pointed metric spaces. The pointed
Gromov-Hausdorff (or pGH-) distance is defined in the following way. A pointed
map f: (X,dx,x) — (Y,dy,y) is called an ¢-pointed Gromov-Hausdorff approxi-
mation (or e-pGH approximation) if it satisfies the following conditions:

() fx)=y;
2) B(y, 1) C B.(f(B(x, ))));
(3) Idx (x1,x2) —dy (f(x1), f(x2))| <& forall x1,x; € B(x, 1).

The pGH-distance is defined by

dpGH((X7 dX’ x)5 (Yy dY7 )’))
:=inf{e > 0: 3 e-pGH approximation f : (X, dx,x) — (¥, dy, y)}.

We say that a sequence of pointed metric spaces (X;, d;, p;) converges to a pointed
metric space (X, d, p) in the pointed Gromov-Hausdorff topology, if

dpcou((Xi, di, pi), (X,d, p)) — 0.
If (X;, d;) are length metric spaces, i.e. for any two points x, y € X;,
di(x,y) =inf{L4 (y) : y is a rectifiable curve connecting x, y},
where Ly, (y) is the length of y induced by the metric d;, then equivalently,

dpGH((Xl"dl" pi)’ (Xy d’ p)) g O
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if and only if for all D > 0,
dpo((B(pi, D), d;), (B(p, D),d)) — 0,

where B(p;, D) are the geodesic balls of metric d;.

A pointed metric measure space is a structure (X, dx, i, x) where (X,dx) is a
complete separable metric space, u is a Radon measure on X and x € supp(u).

We say that a sequence of pointed metric measure length spaces (X;, d;, i, pi)
converges to a pointed metric measure length space (X, d, i, p) in the pointed mea-
sured Gromov-Hausdorff (or pointed Gromov-Hausdorff-Prokhorov) topology, if for
any ¢ > 0, D > 0, there exists N(g, D) € Z, such that for all i > N (e, D), there
exists a Borel e-pGH approximation

fP¢(B(pi, D), di, pi) > (B(p, D +6).d, p)
such that
(fiD’g)ﬁ(u,-|B(pi,D)) weakly converges to u|p(p,p) as i — oo, fora.e.D > 0.

In the standard case when X; is an n-dimensional manifold, without extra ex-
planations, we will always consider (X;, d;, p;) as a pointed metric measure space
equipped with the n-dimensional Hausdorff measure ’Hgi induced by d;.

3 Regular region with small area boundary

In this section, we consider a complete asymptotically flat 3-manifold (M, g) with
nonnegative scalar curvature, and with a given end having small mass m(g). Let M,y
be the exterior region associated to that end. We will find an unbounded domain in
M, ; containing the end such that its compact boundary has small area depending on
m(g). We always assume 0 < m(g) < 1.

Consider the harmonic map u = (!, u?, u?) : M,,, — R3 associated to the given
end as in previous section, where for each j € {1, 2, 3}, u/ is a harmonic function with
Neumann boundary condition and asymptotic to an asymptotically flat coordinate
function x/ of the end.

Define the C*°-function F : (M,y;, g) — R by

3
F(x):= Z (g(Vuj, Vuk) — 8jk)2.

Jok=1
Fix a small number 0 < € < 1. We use the following notations:
Vi € [0, 6€l, S;:=F (1),
Y0 <a<b<6e, Qyp:=F(a,b]).

Notice that for any ¢ € (0, 6¢], S; is compact, S; NI M,,; = (J since € is small, and the
complement of €2 ; is compact in M,,;. By Sard’s theorem, we will always consider
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294 C.Dong, A. Song

regular values ¢ € (0, 6¢] outside of the measure zero set of critical values of F. For
regular values 0 < a < b < 6¢€, we have 92, , = S, U Sp.

We will always consider the restricted map u : Q¢.6c — R3. We choose € < 1
such that for any x € Q¢ ¢¢, the Jacobian matrix Jacu of u satisfies (with an abuse of
notations):

[Jacu(x) —Id| <€, 3)
for
€ :=100/€ « 1,

so that in particular u is a local diffeomorphism. What we mean by (3) is that there
exist orthonormal bases of T, M and R3 such that with respect to these bases, the
Jacobian matrix Jacu(x) is €’-close to the identity map.

We use the notation C as explained in 2.1.

Lemma 3.1

/ |VF|? < Cm(g).
20, 6¢

Proof By definitions, we have

V1 —V6e <|Vul|(x) <14 V6e, Vx € Qoee, Vje{l,2,3}. )

We readily obtain that for all x € Q0 ¢,

3
IVFI(x) < Y 21g(Vul, Vub) = 8| - (1Vud [|[V2uF| + |V 2ud || Vi)
jk=1

3
<CY |V
j=1

So by inequalities (4) and (2), we have

3
| wrpscy [ e
€0,6¢ =1 50.6¢

3

<C Z/ |V2ul |2 (©)
=T

&)

<Cm(g). O

In the context of General Relativity, the notion of capacity of a set has been studied
in [12, 16, 36, 46] (see also references therein). We will use capacity in a different
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way. Recall that the classical Poincaré-Faber-Szego inequality relates the capacity of
a set in Euclidean space to its volume, see [35, 47]. In the following lemma, which is
a key step in this section, we prove a Poincaré-Faber-Szego type inequality. This will
be used to find a smooth level set of F' with small area.

Lemma 3.2 If infs¢(0,5¢) Area(Ss) > 0, where the infimum is taken over all regular
values, then there exists sg € (0, 5¢) such that

Vol(€25),s9+e N{IVF[#0}) <C (m(g)> _

Proof Since infsc(0,5¢) Area(Ss) > 0, we can find a regular so € (0, 5¢) such that Sy,
is a smooth surface satisfying

Area(Ss)) <2 inf Area(Sy).
s€(0,5€¢)

For the reader’s convenience, we follow the presentation of the note [35] when we
can.

Case 1): sg € [3¢, 5¢).

For any regular value s € (e, so), define the function x : R? — R by

x @) = H @™ (@) N Q)
By the isoperimetric inequality [25, Theorem 5.10 (i)],

3
”X”LZ R3) = 1sop||DX||(R ).

Since u is a local diffeomorphism and |Jacu — Id | < €’ by (3), this means that
Vol(QHO)% < 2Cjsop(Area(Sy) + Area(Ss,)). @)
By the definition of sp, we have
Vol(€24.49) % < 6Cisop Area(Sy). ®)

By the coarea formula,

/ |VF] dvolg_/ f |VF|dAgdt.
Q S.

€,50 50—t

Fort € (0, so — €), define
V() := Vol(25y—1,50), S(t) := Area(Ssy—r).

Since infy¢(o,5¢) Area(Ss) > 0, we have Sg,—; # (. By Sard’s theorem, we know that
except possibly for a measure zero set in (0, so — €), [V F| # 0 over Ss,—;. Then

W) _ffS me ods

S0 —S
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is a strictly increasing continuous function, where the integral is taken over regular
values of F, and

1
W'(1) =/ ——dA;>0
5 IVF]

is well-defined for a.e. t € (0, so — €). Notice that for r € (0, s9 — €),
0 < W(r) = Vol(Q25—1,5o N{IVF| #0}) < V(1).

Since for a.e. € (0, s9 — €),

1
S(t)zgf IVF|dA f —dA,,
s ¢ s, IVF]F

so—1 so—1

we have

50—€ S(t 2
/ @) dts/ |VF|*dvol, .
0 W' (1) Q

€,50

By the isoperimetric inequality (8) obtained above,
2 2
W3 =V(@)s < 6CisopS(t)»

so we have

4
S)—€ W(t)§ ) ’
/0 Wiy 4 = 36Cka /Q ) IV F|?dvol, . ©)

50
For any ¢ € (0, so — €), define R(¢) by
@3R(1)* =W (),
where wj3 is the Euclidean volume of the unit ball in R3. Note that R(0) =0, R(s¢ —

€) < 00, and the derivative R’(¢) is well-defined and positive almost everywhere.
Define the function F : Bgyc(0, R(so — €)) = R by

F :=1t on 0 Bguc1(0, R(?)).

Then for a.e. t € (0, 50 — €),

IVF| = on 9 Beya (0, R(7)).

R'(1)
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By (9), for some uniform constant C > 0,

s0—€ R(t 2
c/ |V F[*dvol, 3/ 3w3(—)dt
Q 0 R'(1)

S0—€ ~
= / / |VF|dAdt (10)
0 JoBeuw(0.R®)

= / IVF|?dV.
Beuct (0, R(sp—€))

The above inequality gives an upper bound of the capacity of the Euclidean ball

Bguc1 (0, R(so — €)).
Let us recall the definition and some properties of the capacity (see [25, Defini-
tion 4.10, Theorem 4.15]). Set

€.50)

K:={f:R'>R:f>0,feLl>®R",|VfleL*R"R"}.

For any open subset A C R”, the capacity of A is defined as
Cap(A) ::inf{/ IVFPdV: feK,AcC{f>1"
Rn

where { f > 1}° denotes the interior of the set { f > 1}. Then, for any x € R",
Cap(Bgual (x, 1)) = r">Cap(Bgua (1)) > 0. (11)

In our case, modifying F, we define a test function ¢ : R? — R by

e F
5= 2" "7 on Braa(0, R(so — €)).
S0 — 56

¢ :=00nR>\ Brul (0, R(sp — €)).
With this definition, we have ¢ € K and
Bruel (0, R(€)) C {¢ > 1} = (¢ > 1)°,

where {¢ > 1}° denotes the interior of the set {¢ > 1}. This implies that

. 1 5
Cap(Beuai 0, R(e)) < / IR p— / VFav.
R3 (50 — 5€)* JBrua (0. R(sp—€))

Together with (10), we deduce

C
Cap(Brai 0. R@)) = —— [ [VFPdvol,.
(s0 — 36% Ja

€,50
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From (11), s9 > 3¢ and Lemma 3.1,

Cm(g)
€

R(e) =

Since Vol(R25y—e,50 N{IVF| #0}) = W(e) = w3 R(€)3, we conclude:

3
Vol(25y—e,5 N{IVF| #0}) < C <m_2g)) :
€

This is the desired conclusion, up to renaming so — € and sp.

Case 2): sg € (0, 3¢).

That case is completely similar to the first case. For any regular value s € (sg, 5¢),
we have

Vol($25,.4)3 < 6Cisop Area(Sy).
For t € (0, 5¢ — 59), define
W (1) := Vol(L2, 59+ N{IVF| #0}), S(t) := Area(Sy;++),
and
w3R(1)* = W),

with R(0) = 0 and R(5¢ — s9) < o0.
Define F : Bgyc (0, R(5¢ — sp)) — R by

F :=1 on 0 Bgyuc(0, R(1)).

Then as in Case 1), we get

IVF|?dV < C/ |VF*dvol, .

/;?Eucl (0,R(5¢—s0)) Qy,5¢

Modifying F, we define a test function ¢ : R? — R by
. 5¢ — 50 — F
¢ := —5———— on Bgycl(0, R(5¢ — 50)),
56 — 80

¢ :=0on R\ Brual (0, R(5¢ — 50)).

So ¢ € K and Bgy(0, R(€)) C {¢ > 1} = {¢ > 1}°. This implies that

Cap(Bguc (0, R(€))) < IVF|?dV.

(%6 - S0)2 ‘/I;Euc](O,R(SGS()))

Thus we have

Re) = 1),
€
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and since Vol(Q2 5o+« N{IVF|#0}) = W(e) = 3R (€)%, we conclude:
m()\’
Vol(L25,59+e N{IVF| #0}) < C - — ) 0

Lemma 3.3 There exists a regular value ty € (0, 6€) such that Sy, is a smooth surface
satisfying

2
Area(S;,) <C <@) .

Proof 1f infs¢(0,5¢) Area(Ss) = 0, then we can take a regular value 7p € (0, 5¢) such
that S, is a smooth surface and satisfies

m(g)? _

Area(Sy)) < o

If infj¢(0,5¢) Area(Ss) > 0, then we can choose sp € (0, 5¢) as in Lemma 3.2. By
the coarea formula,

so+e€
/ Area(S;)dt :/ [VF|
Y

S0 QSO .50+e
1

2
< (/ IVFIZ) - (Vol(€sy,59+¢ N{IV F] 0z (12)
QSO,S()+€

<Cym( (%‘”) ,

where in the last inequality we used Lemma 3.1 and Lemma 3.2. So there exists a
regular value 7o € (so, 5o + €) C (0, 6¢) such that Sz, is smooth and

Cm(g)?

. O
gl

Area(Sy) <

For 1g as in the above lemma, the domain g , has smooth boundary S;,, whose
area is very small depending on m(g), and contains the end of M,y;. In general,
u: Qo — RR3 is only a local but not global diffeomorphism. For this reason, we
need to restrict u to a smaller region.

By definition of asymptotic flatness and the construction of u, we clearly have the
following lemma (see for instance [21, Lemma 3.3, 3.4]).

Lemma 3.4 u is one-to-one around the end at infinity. That is, for some big num-
ber L > 0 (not uniform in general), there exists an unbounded domain U C My

containing the end such thatu: U — R3 \ Bguc1(0, L) is injective and onto.

Recall that € was chosen at the beginning of this section, and that | Jacu(x) —Id | <
100\/E on 90,65 .

@ Springer



300 C.Dong, A. Song

Proposition 3.5 Assume (M, g) is a complete asymptotically flat 3-manifold with
nonnegative scalar curvature. For a given end of (M, g), let Moy be the exterior
region associated to this end and let m(g) be its mass. Then there exists a connected
region E C M,y with smooth boundary, such that

(1) the restricted harmonic map
u:E—>YCR?

is a diffeomorphism onto its image Y :=u(E),
(2) E contains the end of M,y; and Y contains the end of R3,
(3) on E, the Jacobian matrix of u satisfies | Jacu(x) — Id | < 1004/€,

4) Area@E) < e’

Proof Take 79 € (0, 6¢) as in Lemma 3.3. Then u: Qg -, — R3 is a local diffeomor-
phism, |Jacu(x) — Id| < 100,/€ and 0€20,7, = Sy, has small area. Let Y1 C u(£20,,)
be the connected component containing the end of R, and

Yoi={yeY: H'@ {y} N Qo) =1}

By Lemma 3.4, Y» # ¢ and contains the end of R>. Notice that Y, is open in ¥ and
0Y> Cu(Sy).

Since u(S;,) is a smooth immersed surface in R3, we can choose a slightly
smaller region Y3 such that Y3 U dY3 C Y», dY3 is a smooth embedded surface and
Area(dY3) <2 Area(aYs).

Define Y to be the connected component of Y3 containing the end of R3, and
E :=u~!(Y). By construction, u: E — Y is a diffeomorphism. Moreover by (3),

Area(0F) =/ |Jac(u|aE)_1| <C(1+¢€')Area(dY) < C Area(Syy). [l
Y

4 Pointed measured Gromov-Hausdorff convergence

In general a regular region E such as the one given by Proposition 3.5 is not suffi-
cient to get Gromov-Hausdorff convergence. In this section, we will construct a more
refined subregion over which we have pointed measured Gromov-Hausdorff conver-
gence for the induced length metric. Qualitatively, here is the general result which we
will end up proving:

Theorem 4.1 Let &; be a sequence of positive numbers converging to 0. Consider a
sequence of complete Riemannian 3-manifolds (E;, g;) with compact boundaries and
assume that for each i, there is an embedding

w:E —> R
such that
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(1) w; (E;) contains the end 0f]R3,

(2) on Ej;, the Jacobian matrix satisfies | Jacu; (x) —Id| < &;,

(3) Area(0E;) <é&;.

Then there is a closed subset E] C E; with compact boundary, such that for any
choice of basepoint x; € E, the pointed sequence (E ag,-, E/. Xi) converges in the
pointed measured Gromov-Hausdorff topology to the flat Euclidean 3-space. Here,
Elf/ is endowed with the length metric ﬁgi’ E/ induced by g;, where the distance be-

tween two points is measured using paths inside E!'.

Remark 4.2 The higher-dimensional version of this result also holds thanks to an
induction argument and a slight modification of the proof provided below. For more
details, see [22, Appendix].

For concreteness, we will show the result above in our special setting. We use the
notations C, W(.), W (.| D) as explained in Sect. 2.1.
Fix a continuous function £ : (0, co) — (0, co) with £(0) =0 and

li =0.
xirg"'g(X)

All our constructions in this section will depend on this function &. For our purposes
we can assume without loss of generality that

lim —— =0.
x—0t S(x)

Choose two other continuous functions &y, & : (0, co) — (0, o) with
lim §y(x) = lim & (x) =0,
x—0t x—0t

and

&(x) . &o(x)

im ——— = lim =
100 100 :
x>0t §70(x)  x—0F £77(x)

The reader can think of these functions &, &g, &1, as converging to O very slowly as
x — 07T, Set

S01=E0(m(g)), 1 =& (m(2)).
Then
51905 80 > E(m(g)) T > m(g) ™ (13)

when 0 < m(g) < 1. In the following, we will always assume 0 < m(g) < 1.
Let E be the regular region given by Proposition 3.5 and its image Y :=u(E) C
R3. Then u: E — Y is a diffeomorphism and

Cm(g)?

Area(0Y) < R
€

(14)
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For any subset U C E, let (U, ﬁg,u) be the induced length metric on U of the
metric g, that is, for any x1,x; € U,

cig,U(xl, x2) :=1inf{L¢(y) : y is arectifiable curve connecting x1, x2 and y C U},

where L, (y) = fol ly'|, is the length of y with respect to metric g. By convention,
two points in two different path connected components of U are at infinite c?g,U-
distance.

Similarly, forany V C ¥ C R3, let (V, dAEucl,V) be the induced length metric on V
of the standard Euclidean metric ggycl, that is, for any y;, y2 € V,

druet,v (01, y2)

:=inf{LEgyuc1(y) : y is a rectifiable curve connecting y, y and y C V},

where Lgy(y) is the length of y with respect to the Euclidean metric ggycl. As
before, dAEucl,V can be infinite for pairs of points in different path connected compo-
nents.

Write

¥ :=9Y CR?

and let W be the compact domain bounded by ¥ in R3, so 9\ = X.

The main part of this section is devoted to the proofs of Proposition 4.8 and the
lemmas leading to it. In Proposition 4.8, we construct a subregion inside ¥ c R?
with small area boundary, over which the induced length metric of ggy is close to
the restriction of the Euclidean metric.

By the isoperimetric inequality and (14),

Vol(W) < C Area(%)? < Cme(f)3 . (15)
Take
€ =194
(in particular in this section € depends on m(g)). Recall that
€ :=1004/€ « 1.
Then
Area(3) < C";ég)z <1, Vol(W) < C";(gg)3 < 1. (16)

For any triple k = (ky1, k2, k3) € 73, consider the closed cube Ck(81) defined by

Ck(81) :=[k181, (k1 4+ 1)811 X [ka81, (ko + 1)81] x [k381, (k3 + 1)811 C R>.
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For ¢ € R, define the plane
Ak sy (1) :={(x1, %2, x3) € R : x3 = (k3 + 1)1}
By definition Ck(81) C U, 0,17 Ak, (1)-
By (16) and the coarea formula, there exists
tk € ( L1 + 80)
e(=z, =

k€ (5,519

such that Ay s, () N X consists of smooth curves and

Area(X N Ck(81))

Length(Ag s, (1) N X N Ck(81)) < %
031

_ Cm(g)? (17)
8381

<m(g).

The square Ay s, (f) N Ck (1) has side length §1, and the intersection Ay s, (1) N
% N Ck(81) is a union of curves in this square, with total length much smaller than §;
because of (17) and (13), see Figure 1. Set

Dy,

to be the path connected component of the complement (A s, (f) N Ck (1)) \ =
which has largest area compared to the other components (see Figure 1), and set

Dy = (Ak.5, (1) N Ck(81)) \ (X U Dy).

Note that each connected curve in Ay, (fx) N X N Cg(d1) is contained in the
boundary of at most two connected components of Dy/. For each component ¢ of
Dy, the boundary 3% is decomposed into a part inside the interior of the square
Ag.s, () N Cg(81), which has length much smaller than §; by the previous para-
graph, and a part inside the boundary of the square. So since % is by definition not a
component of (A s, (fx) N Ck(81)) \ X with largest area, € touches at most two sides
of the square and the part of %" in the boundary of the square is small too. In fact

Length(d% N 9Cx (1)) <2 - Length(Ax s, (tx) N X N Ck(81)).

By the usual isoperimetric inequality applied to each component ¢ of D,/ and sum-
ming up those inequalities, we obtain from (17):
Area(D{é) < CLength(Aks, (k) N X N Ck(81))2

< Cm<g)Area(i;1C"(8”) (18)

< Area(X N Ck(61)).
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Cube: Cy(5,)

j\ St

The gray shaded \Ak 5()
area is D' > B

m (S N Cy(3))) consists of the green circle
and the area enclosed by the red dashed line

Fig.1 Construction of Ci(81)’. Note that in general, Dl’(/ is not contained in 7 (X N Cy (81)) or vice versa

Let i : R3 — Ak s, (1) be the orthogonal projection. Define

Ci(81)' = D} U (Culon) Ny (D \ mie(E N C81)) )

For instance, if ¥ N Ck(81) = @, then Cx(81)’ = Ck(81), see Figure 1.

Lemma 4.3 Vol(Cy(81) \ Ck(81)') < 28 Area(E N Cx(81)) < m(g)53.

Proof Since
Area(mk (£ N Ck(81))) < Area(X N Ck(81)),
and since by (18),
Area(Dy) < Area(T N Ck(81)),
we have
Vol(Ck(81)) \ Vol(Ck(81)") < 28; Area(E N Ck(81)).
We can use (14) to conclude the proof.
Lemma 4.4 Cx(8,) is path connected, and

Ck(31)/ cY.

19)

Proof By definition, for any point x € Cx(81) Ny ! (D} \ Tk (E N Ck(81))), the line
segment L, C Cg(d1) through x and orthogonal to A s, (f) satisfies L, N Dl’( + 0.
Since Df( is path connected, C(81)’ is also path connected. Next, assume towards a
contradiction that Cy (81)’ SZ Y. Since Ck(8;)’ is path connected, and by its definition,
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¥ has no intersection with Cg(8;1)’, we should have Ck(8;)" C W. From the volume
estimate Lemma 4.3,

Vol(Ck(81)) = (1 —m(g))s3.

But recall from (15) that

C 3
volow) = 28X
8o
which gives
Cm(g)?
(1 —m()8) < —=5-,
3o
a contradiction since 0 < m(g) < 1. O

Define
Y/ = Uk€Z3Ck(51)/ cY.

Notice that when |K| is big enough, one can certainly ensure that Cy(8;)" = Ck(8),
so that Y \ Y’ is a bounded set. It could be shown that Y’ is path connected, but we
will not need it.

For any subset V C Y, let V; be the t-neighborhood of V inside (Y, dAEucl’y) in

terms of the length metric c?EucLy, ie.
Vi :={y €Y :3z € V such that ﬁEucl,y(y, z) <t}.

So (Y'); is the r-neighborhood of Y’ inside (Y, c?EucLy).

In the following lemma, by modifying some (Y’);, we construct a domain with
smooth boundary such that its boundary area is small and it is very close to Y’ in the
Gromov-Hausdorff topology with respect to a length metric.

Lemma 4.5 There exists a closed subset Y with smooth boundary such that Y' C
Y" C(Y)6sos

m(g)?
8

Area(3Y”) <

and Y" is contained in the 68y-neighborhood of Y’ inside Y", with respect to its
length metric dgycl,y” .

Proof Smoothing the Lipschitz function dAEucl’y(Y ’,+), we can get a smooth function
¢ : Y — R such that |¢p — dgue vy (Y, )| < 8o and |V¢| < 2 (see for instance [29,
Proposition 2.1]). Applying coarea formula to ¢, we have

450
/ Area(¢p—1 (1) N Y)dt = / V6| dvol <2 Vol(Y \ Y').
380 {380 <p<48p}NY
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By Lemma 4.3, for each k € 73,
0 < Vol(Ck(81)) — Vol(Cy.(81)) < 281 Area(E N Ck(81)).

Since the number of overlaps of {Ck(61)}iez3 is uniformly bounded,
0 < Vol(Y) — Vol(Y') <26 Z Area(X N Ck(81))
keZ3
< Cé1 Area(X) (20)
2
< Cs 1n1 (8) '
8
So we can find a regular value ¢ € (380, 480) of ¢ such that ¢>’1 (t) is smooth and

Coim()?* _m(g)?*

Area(d ' (1)NY) <
@ @®NY)=< 5 TS

Smoothing (¢_1(t) NY)U (@Y N{¢ <t}) inside Y, we can get a smooth closed
surface S; such that

S1 C (Y555

m(g)?  Cm(g)? - m(g)*

Area(S)) < 2(Area(dp~ ' (1) NY + Area(0Y)) <
(51) <2( @~ @®NY) @Y)) < 453 Y

and there is a closed region Y7 satisfying
Y Y C (Y’)sao CcY and 0dY; CS. 21

At this point, ¥ is close to Y’ in the Hausdorff topology with respect to ﬁEuCl,y,
but possibly not with respect to its own length metric dAEucl, v, - To remedy this, choose
a finite subset {x;} consisting of dp-dense discrete points of (Y7 \ Y/, ﬁEucLyl) and
denote by y; C ¥ a smooth curve connecting x; to ¥’ with minimal length with
respect to the length metric c?EucL y- Then by (21), y; has length at most 58y, and
soy; C (Y ")ss,- By thickening each vj, we can get thin solid tubes 7 inside do-
neighborhood of y; with arbitrarily small boundary area. Let Y2 := Y, U (U;T;). By
smoothing the corners of Y, and taking the closure, we have a closed domain Y with
smooth boundary such that

Y'cY" CY)C Y,
and

m(g)*
8

Area(dY”) <2 Area(S;) <
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For any y € Y” \ Y’, by our construction, there exists some j such that either
c?EucLyl (y,xj) <8p or y € T;. In each case, there exists a smooth curve o, ; C Y”
connecting y to a point in y; and Length(oy, ;) < do. Since Length(y;) < 589, oy, ; U
y; is a piecewise smooth curve inside Y” connecting y to ¥’ with length smaller than

63¢. So inside the length space (Y”, c?EucLyu), Y” is in the 68y-neighborhood of Y’ as
desired. O

Let Y” be as in Lemma 4.5. We have not yet shown that Y" is path connected;
this will be a consequence of Proposition 4.8. Recall that dg, y~ is defined as the

length metric on Y induced by gguel. Since Y’ C Y C Y, we have dgyc < C?Eucl’y <
dEucl,Y”-

Lemma 4.6 diamg (Ck(81)) <56;.

Eucl,Y”

Proof For any two points xj, xa € Cx(81)’, let Ly, Ly, be the line segments in-
side Ci(d1) through x1, xo and orthogonal to Ay s, (fi) respectively. Let xi =Ly N
Dy, x5 = Ly, N D;.. Consider the line segment between x|, x/, and perturb it with fixed
endpoints, to get a path P joining x| to x/, with length at most dgyc1(x], x3) + m(g)
and intersecting Ak s, (fx) N £ N Ck(81) transversally. If this path is not inside Dy,
we can replace each component of P N A, (fir) N W N Ck(81) by an embedded
curve with same endpoints but contained in A, (fx) N X N Ck(81), and we get in
this way a new path P. By (17), the length of P can be chosen to be smaller than

dEuCl(xi, xé) + 2m(g). We perturb P one more time into a path y, so that y sits
inside Dy : now y is a curve between x|, x} inside Dj_such that

Lengthg, (7) < dguel(x], x3) + 3m(g).

Consider the curve y consisting of three parts: the line segment [x;x]] between
x1,x], the curve y, and the line segment [x}x;] between x,x. We have y C
Ck(51)/ cY, so

dpuct,y (X1, X2) < Lgual (7) < 481 +3m(g) < 561. 0
Lemma 4.7 For any basepoint g € Y' and any D > 0,
dpGH((Y/ N BEUC] (517 D)v dAEuC],Y//v Q), (Y/ N BEUC] (f], D)’ dEuc], ‘1)) E "Ij(m(g))

Proof Let xg, yp €Y' N BEuc(g, D) be two points and xo € Cx(81), yo € Ci(81) for
some k, 1€ Z3. Since dgye < dgucl,y”, it’s enough to show

dguet, v (x0. Y0) < dpuct (X0, yo) + W (m(g)). (22)
Let Tk be the translation which maps Ck(81) to Cy(61). Then by Lemma 4.3,
Vol(Ti1(Ck (81)) N Ci(81)") = Vol(Cx(81)) — (VoI (Ck (81) \ Ck(81))
— (Vol(Cy(81) \ Ci(81)")) (23)

>(1 —2m(g))8;.
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If k =1, then by Lemma 4.6, we know that
diuel, v (x0, Y0) < 581 < dEuc (X0, Y0) + 581.
Suppose that k # 1. Recall that
Ck() cY' cY”.

We claim that there is at least one point x, € Cx(81) such that Ty 1(x,) € C1(81)" and
the straight line segment [x(’)Tk,l(x(/))] between these two points has no intersection
with 9Y”. Assume otherwise, then it means that if x € Cx(8;)" and Ty 1(x) € C1(81)’,
the line containing x and T (x) intersects 3Y”. For any x € R3, the straight line
Ly i\ (x) containing x and Ty 1(x) meets the set Ty 1(Cx (61)") N Cy(81)" in a subset of
total length at most say 341:

Length(Ly 7 ,x) N T 1(Ck(81)") N Ci(81)") < 38, (24)

(this is simply due to the fact that in the Euclidean space R3, the cube C;(8;) which
contains C)(81)" has Euclidean diameter at most 38;). By the coarea formula, we
would get

Vol(Ti1(Ck (61)") N C1(81)") < 381 Area(dY”). (25)

To see this, consider the orthogonal projection Iy : R} — R? onto any 2-plane
inside R? which is orthogonal to the translation vector of T 1. Set

U =Ty 1(Cx(81)) N Ci(81)".

Then applying the coarea formula (c.f. [25, Theorem 3.10]) to ITk j, we have

Vol(U) = / Length (U n n;}{y}) dy.
{YER2:UNI ) (y)#0) ’

By (24), Length(U N H;% {y}) < 38;. Notice that for all y e R?,if U N H;% {y}# 9,
then Hl:} {v}= £X,Tk’,(x) for some x € Cx(81)’. Then by our assumptions, H]:} {y}In
aY" #9.So {y e R2: U NI {v} # B} C My 1(9Y"), thus we have

Vol(U) < 38 - Area(TTk 1 (3Y")) < 38; - Area(dY").
This proves (25). Next, because of Lemma 4.5,
381 Area(dY") < 1081m(g),
so together with the above estimate (23), we would obtain
(1 —2m(g))8] < 1081m(g),

which is a contradiction since 0 < m(g) < 1.
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Since from the paragraph above, there is a point x(’) € Ck(81)' such that Tk,l(x(/)) €
Ci(81) and [xTi 1(x()] C Y”, we find

dEucl, y” (X0, Y0)

< dgyey7 (x0, x4) + Lengthg, o (160 Ti 1 (x)1) + diuct v (T (x(), y0)
<581 + diucl(x(, Tk 1(x()) + 581
< dguci (X0, Yo) + 206;. U

The previous lemma implies that any two points of Y’ can be joined by a curve
inside Y”. The fact that Y” itself is path connected is contained in the following
proposition:

Proposition 4.8 For any basepoint q € Y" and any D > 0,
dpGH((YH N BEUC] (q7 D)7 dAEuC],Y//v Q), (YN n BEUC] (47 D)a dEllC17 Q)) E \Ij(m(g))
In particular, Y" is path connected.

Proof By Lemma 4.5, Y” lies in the 68p-neighborhood of ¥’ inside (Y”, dgycl,y).-
This clearly implies for any g € Y’:

dpGu((Y' N Beael (¢, D), dguer.y, 4), (Y N Beuel(q, D), deuet.y» 4)) < W (m(g)).

Similarly, since dgyel < c?EucLyu, Y” lies in the 68p-neighborhood of Y’ in terms
of dgycl and for any g € Y':

dpGH((Y/ N BEucl(Q» D)s dEucl» CI), (Y// N BEUC](Q! D)v dEuCls Q)) S "Il(m(g))

Together with Lemma 4.7 and the triangle inequality, we have the conclusion for
in fact any basepoint g € Y (using again that ¥” lies in the 659-neighborhood of Y
inside (YN, dEucl,Y”))~ O

Next we can construct a subregion in £ C M,,; by pulling back the subregion
constructed above through the diffeomorphism u. Set

E':=u (Y.

For any p € E” and D > 0, denote by Bg’Eu(p, D) the geodesic ball in (E”, dAg’E//),
that is,

By gr(p, D) :={x € E" :d pr(p,x) < D).
Similarly, denote by By, y»(¢, D) the geodesic ball in (Y”, dgyel,y).
Lemma 4.9 For any basepoint g € Y" and any D > 0,

dpGu((Y" 0 Bewa(q, D), deuel v @)s (Beuely (@, D), dgueryr, ) < W(m(g)).
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Proof From Lemma 4.5 and (22) in the proof of Lemma 4.7, for any ¢, x € Y”,
dEuct (@, %) < dpuel,y7 (g, X) < dpuci(q, x) + ¥ (m(g)), (26)
)
Beuel,y7(q, D) C Y" N Bya(q, D) C Bty (q, D+ ¥ (m(g))). O
Lemma 4.10 For any basepoint p € E” and any D > 0,
dpc i ((By, £ (p, D). dy 57 p). (Biuct,y» (@(p), D), duet,yr, u(p))) < W(m(g)| D).

Proof 1t is enough to show that u gives the desired GH approximation. Under the
diffeomorphism u, if we still denote the metric (u™')*g by g, then

(E",dg g1, p) = (Y, dg yr, u(p)).
Since |Jacu —Id | < €/, we have
dg yr(x1,x2) < (1+ € )dpyer, yr (1, %2) < (1+€)2dg yr (x1, x2).
Note that we have taken € = §p. So for any fixed D > 0, if x1, x> € éEucl’yN (u(p), D),
g,y (x1, 2) = dpuel yr (x1, x2)| < W(m (@) D). O

From Proposition 4.8, Lemma 4.9 and Lemma 4.10, we immediately have the
following.

Lemma4.11 Forany p € E" and D > 0,
dpGr((Bg gr(p, D), dg g, p), (Y" N Beacat((p), D), diuct, u(p)) < ¥ (m(g)|D).

To compare those metric spaces to the Euclidean 3-space (R3, ZEucl), we need the
following lemma, which is a corollary of the fact that Area(3Y”) < W(m(g)).

Lemma4.12 Foranyq € Y and D > 0,
dpGH((Y” n BEUCl(q» D)s dEuClv q)s (BELICI(Ov D)9 dEuClv O)) S \Ij(m(g))

Proof Under a translation diffeomorphism, we can assume g = 0. By (26), it suffices
to show that Bgyci(g, D) lies in a W (m(g))-neighborhood of Y”. If that were not the
case, there would be a u > 0, independent of m(g), such that for all small enough
0 < m(g) K 1, there exists a x € Bgyci(g, D) with Bgyc(x, ) N Y” = @. But from
the isoperimetric inequality, we should have

VoI(R?\ ") < C Area(3Y")? < W(m(g)),
which would imply that

w3i® = Vol(Bgyel (x, 1)) < W(m(g)),

a contradiction. O
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Summarizing above arguments, we have proved the following. Recall that £ is a
fixed function defined at the begining of this section.

Proposition 4.13 Assume (M, g) is a complete, asymptotically flat 3-manifold, with
nonnegative scalar curvature. Suppose that an end of (M, g) has mass 0 <m(g) < 1.
Then, there exists a connected closed region £ C M containing this end, with smooth
boundary, such that

m(g)*

A o€ s
a8 = one)

and there is a harmonic diffeomorphism u: E — Y with Y :=u(€) C R3 such that,
on &, the Jacobian matrix satisfies

[Jacu —1d| < W(m(g)).
Moreover, for any basepoint p € £, any D > 0,

dpGr((Bgg(p, D),dy g, p), (Beuc(0, D), diuel, 0)) < W (m(g)| D),

and ®y(pyou gives a W (m(g)|D)-pGH approximation, where ®y(p) is the translation
diffeomorphism of R? mapping u(p) to 0.

Proof With the same notations as above, we take £ := E” and )V := Y”. Notice that
by Lemma 4.5, by the fact that |Jacu — Id| < €’ (see (3)), and by our choice of 8
and &y, when 0 <m(g) < 1,

m@g? _ m()? _ m(g)?

A o€ 2 = .
08 S 2 =2 o)~ Em(@)

The rest of the statement follows from Lemma 4.11 and Lemma 4.12. O

Proof of Theorem 1.3 Assume (M;, g;) is a sequence of complete, asymptotically flat
3-manifolds, with nonnegative scalar curvature. Suppose that the mass of an end of
M; converges to zero: m(g;) — 0. Assume that £ is any fixed continuous function as
in the statement of Theorem 1.3. For all large i, Proposition 4.13 gives the existence
of aregion &; with compact boundary, containing the given end of M;, which satisfies

2
Areag, (0&;) < M
§(m(gi))
and a harmonic diffeomorphism w; : & — )i C R3 with Y =, (&)).
By Proposition 4.13, for any basepoint p; € &, any D > 0, up to a translation
diffeomorphism of R3, we can assume w; (p;) = 0, and then u; is an W (m(g;)|D)-
pGH approximation, and as i — oo,

dpGr((Bg, & (pi, D), dy; & Pi)s (Bruc (0, D), dguet, 0)) < W (m(g;)|D) — 0.
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In other words,
(. dy, & pi) =~ (R, dpyel, 0)

in the pointed Gromov-Hausdorff topology.

We claim that (&;, ‘?gi, &> Di) — (R3, dgucl, 0) also in the pointed measured
Gromov-Hausdorff topology. Since the Hausdorff measure induced by c?gl.,gi is the
same as dvoly,, it suffices to show that for a.e. D > 0,

(u;)g(dvolg, |1§g- . (pi D)) weakly converges to dvolgycl |, py asi — oco.  (27)

By construction and the isoperimetric inequality,
Vol(R?\ Vi) < W (m(g:),

and so (Vi N Bguc(0, D), dvolgy) converges weakly to (Bgyc (0, D), dvolgyc).
Since we have (by abuse of notations):

|Jacu; —Id| < W(m(g)),

it is now simple to check (27) using Lemma 4.9 and Lemma 4.10.
We finish the proof by defining Z; := M; \ &;. g

5 An application to the Bartnik capacity

We review some definitions concerning the notion of Bartnik capacity, see [34,
Sect. 9]. Given an open Riemannian 3-manifold 2 whose metric closure is com-
pact, it is called admissible if there is an extension (M, g) of €2, such that (M, g) isa
complete, connected, asymptotically flat 3-manifold with one end, having nonnega-
tive scalar curvature, and possessing a minimal compact boundary (which is possibly
empty), but no other closed minimal surface in its interior. Such an (M, g) is called
an admissible extension. The Bartnik capacity of an admissible €2 is defined as

cp(2) :=inf{m(g) : (M, g) is an admissible extension of €2}.

Our convention that €2 is an open domain follows [11, 34]. The next theorem answers
Bartnik’s strict positivity conjecture [10, last paragraph of page 2346], and improves
an earlier result of Huisken-Ilmanen [34, Positivity Property 9.1]:

Theorem 5.1 If Q is admissible, then cg(2) > 0, unless there is a Riemannian iso-
metric embedding of Q into the Euclidean 3-space R3.

Proof Let gy denote the Riemannian metric on 2. We can assume that the open do-
main €2 is connected without loss of generality. Let us assume that cp(€2) = 0. Let
(M;, gi) be a sequence of admissible extensions of €2, whose masses m(g;) converge
to 0. We use the notations of the previous section and the notation ¥; := Wi~ as
explained in Sect. 2.1.
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To simplify our task, note that by Huisken-Ilmanen’s work [34, Positivity Prop-
erty 9.1], we already have:

Proposition 5.2 (2, go) is locally flat, namely its sectional curvature is zero.

By Proposition 4.13, there exists a connected closed subset E; C M; so that E;
contains the end of M;,

Area(dE;) — 0 (28)
and for any basepoint p; € E;,
(Ei,dg, ;, pi) =~ (R, dpy, 0) (29)

in the pointed measured Gromov-Hausdorff topology. Moreover, the measured
Gromov-Hausdorff approximations are given by a sequence of harmonic maps

u : E; > R, (30)

depending on p; and satisfying the following:

(1) w; is diffeomorphism onto its image and sends p; to 0;
(2) the Jacobian matrix of u; satisfies lim; _, o, [Jacu; — Id| = 0;
(3) forany D > 0, for any x, y € By, g, (pi, D),

\dg, £, (x, ¥) — dpaa(; (x), w; ()] < ¥,
and

(u;)z(dvolg, | By £ (pi. D)) — dvolgucl| Bgq (0, 0y Weakly as measures.

Here W; depends on D.

We will need the following lemma:
Lemma 5.3 lim;_, o Volg (R \ E;) =0.

Proof of Lemma 5.3 We can assume that dE; # &, otherwise the above equality is
clearly satisfied. If the lemma is not true, then by the isoperimetric inequality,
lim; _, 5o VoI(2 N E;) = 0. Volumes and areas in €2 are with respect to gg. Fix a large
i. We define the following minimization problem in (M;, g;): consider

o:= inf Area(X)
{Zt}iero,1]

where the infimum is taken over all smooth isotopies {X;};¢[o,1] starting at the closed
surface Yo := dE; and such that for all ¢t € [0, 1], Area(X;) < 2Area(dE;). Two
cases could occur.
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e Either o > 0 and, by the work of Meeks-Simon-Yau [44, Theorem 1], we obtain a
closed minimal surface S of area at most 2 Area(d E;) in (M;, g;). Since (M;, g;)
contains no closed minimal surface in its interior, S is contained in the boundary
dM;. In fact, the statement of [44, Theorem 1] ensures the following: for any € >
0, a family of isotopic surfaces {X;};c[0,1] (with the previous properties) can be
chosen so that 3 is the union of two subsurfaces X1 1, X > so that X | is inside
the e-neighborhood of S C dM; and X 7 has area at most €.

e Or o =0, which means that for any € > 0, {X;};¢[0,1] (With the previous properties)
can be chosen so that X; has area at most €.

In both cases, for each ¢ € [0, 1], we can look at the connected region E; ; C M;
bounded by >; which lies on the same side as E;, in the sense that E; ; contains the
end of M;. Then at t =0, Vol(2 N E; o) = Vol(2 N E;) is small by our assumption,
but at r =1, Vol(2 N E; 1) is close to Vol(£2) thanks to the two cases described just
above and the general fact that any small area embedded closed surface in a given
complete noncompact 3-manifold with bounded geometry (like M;) bounds a small
volume region with compact closure, see for instance [44, Lemma 1].
Therefore, there is a time #y € [0, 1] such that

1
Vol(Q N Ei 1) = 5 Vol(2)

so by the isoperimetric inequality, Area(2N 0 E; ;,) is uniformly lower bounded away
from 0. This is a contradiction with the fact that by construction, for all ¢ € [0, 1]
we have Area(Q NJE; ;) < Area(X;) <2 Area(dE;), but by (28) this last quantity
converges to 0. This proves the lemma. 0

For any sufficiently small € > 0, consider
Qe :={x €Q; dg(x,00Q) > €}.

Then by Proposition 5.2, there exists a positive number

Te < —€

2

(independent of i) so that any go-geodesic open 2r¢-ball (By, (x, 2r.), go) with center
x € Q, is isometric to a Euclidean 2r-ball (Bgyc(0, 27¢), gEucl)-

Lemma 5.4 For any x € Q3¢, the inclusion map
G (Ein Bgo(x’ Te), dAgi,E,-) - (Bgo(x’ Te), dgo) (31)

is a V;-GH approximation, and (1;);(dvolg,|g,nB
dvolg, |Bg0 (x,ro)- Here, V; depends on re.

oo (rure)) weakly converges 1o

Proof By Lemma 5.3, we can choose x; € E; N By (x,re) so that dg,(x;, x) — 0.
Then, by applying (29) with respect to the basepoints x;, we have:

(Bg, .k, (xi,2r¢), dg; ;) — (BEuel (0, 2r¢), diuct)
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in the measured GH-topology. Here, as in the previous section, ‘?g,-, E; s the induced
length metric on E;, and By, g, (., .) denotes a corresponding geodesic ball in E;. In

particular, for any geodesic ball égi, E (i, r) C I§g,., E; (xi, 2re), we have the volume
convergence

Vol(By, £, (yi, 7)) = Vol(Beuei (0, 7)) = wsr?. (32)

The following properties suffice to show the lemma:

® By (x,re) is contained in the W;-neighborhood of E; N By, (x, r¢) inside (£2, go).
Otherwise, for some positive constant o > 0 independent of i, and some y; €
Bg,(x,re), we have By (yi,0) C Bgy(x,r¢) \ E;. But then

w3’ = Vol(Bg, (yi,0)) < Vol(Bg,(x,re) \ Ei) < Vol(2\ Ej),

which contradicts Lemma 5.3.
e Forany y,z € E; N Bg,(x,7e),

dg; £ (,2) — dgy (¥, 2)| < ;.

Indeed, let ¥ be a minimal ﬁg,«, E;-geodesic between y and z inside E; N By, (x, 7¢).
If y C Bg,(x,2rc), then

dgy(y, 2) <Length, (y) =dg £ (v, 2).
Otherwise y is not contained in By, (x, 2r¢), and
dgy(y,2) <2r¢ < Lengthgl_ (y)= dAgi,Ei v, 2).

In both cases, the inequality dg,(y, z) < d,, . E: (y, 2) follows.
Setting r := dg, (v, 2), we have from the above

By, £,(y.7) C Bgy (3. 7).

Let us assume that B?gl.,E,. (w,0) C Bgy(y, 1)\ ég,-,E,- (y, r) for some point w and
some o > 0, then

(1= ¥)wzo’ < Vol(égi,E,- (w,0))
< Vol(Bg, (y, 7)) — Vol(By, £, (v, 7))
< Wjw3r?,

where the last inequality comes from the volume convergence (32). Hence, we
have o < W;r. So in fact, there exists 7’ € Bg g; (y,r) so that dg, £ (z,2) < Wr,
which implies that

dgi £, (v,2) <dg; £, (3, 7) + dg; £, (2, 2)
<r+v¥;r
< (14 W;)dg, (v, 2).
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o dvolg)|E;nBy, (x,rc) = dVOlg,|B, (x,r.) Weakly. This is a corollary of Lemma 5.3.
O

Next, we construct a limit of some maps u; from Q3 to R3, which we will show
is an isometric embedding. Recall that 2 is supposed to be connected. Fix a base-
point 0 € . By Lemma 5.3, there is a sequence of points o0; € E; converging to o in
(€2, go). Consider the map given by (30):

u; : (Ei,jg[,Ei) - R3

which depends on o; and sends o; to 0. By Lemma 5.4 and using a finite covering
of Q¢ by balls of the form By, (x,r¢), E; N Q3¢ C égi»Ei (0i, D) for some D > 0
independent of i. Now that D is fixed, the quantities W; in Property (3) of u; after
(29) are fixed too.

Importantly, by Property (3) of u; after (29) and Lemma 5.4, for any a,b € E; N
Q3¢ at go-distance less than 7,

dgy(a,b) — Wi < dguci(0;(a), w; (b)) < dg(a,b) + ;. (33)

By a standard Arzela-Ascoli type argument and Lemma 5.3, after taking a subse-
quence, we can extract a uniform limit of w; which is a Lipschitz map:

U : Q3 — R,
Moreover, we have the following weak convergence of measures:
(u;)z(dvolg, | £;nes.) = (oo)zdvolg,.
Lemma 5.5 ue : Q3¢ — R3 is a Riemannian isometric embedding.

Proof This lemma follows from the following:

® Uy is a local isometry: this follows from (33) and the construction of u.

® Uy is injective. If that was not true, say Uso(x) = uxo(y) for some x # y € Q3,
then by the local isometry property, there exist small balls Bg, (x,0), Bg (v, o) so
that Bg,(x,0) N Bgy(y,0) =0, and U (Bg, (x, 0)) = o (Bg,(y,0)) =: By. Let
xi,yi € Ej and x; — x, y; — y, then both w; (B, (x;, 0) N E;) and u; (Bg, (yi, o) N
E;) converge to By in the measured GH-topology. This implies that w; (B4 (x;) N
E;)) Nu; (B, (y;) N E;) # @, which contradicts with the fact that u; : E; — R3 isan
injective map (see Property (1) of u; listed after (29)). O

By Lemma 5.5, Q3. isometrically embeds inside R>. Taking € — 0, we conclude
that € is also isometrically embedded inside R3. This concludes the proof of Theo-
rem 5.1. U

Remark 5.6 In the proof of Theorem 5.1, we use Sect. 4 crucially to construct a limit
map U, using an Arzela-Ascoli type argument. !

'We thank a reviewer for catching a mistake in an earlier, different version of this proof.
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Section 1.2 in [52] applies to maps which are almost Riemannian isometries out-
side of a region with small volume and small boundary area. It may provide an al-
ternative way of constructing a limit map with measure theoretic methods, and thus
concluding the proof of Theorem 5.1 without using Sect. 4.

Proposition 5.2 is not used in an essential way in the proof of Theorem 5.1 and
could be replaced by a slightly more tedious argument.

Remark 5.7 One could try to strengthen Bartnik’s strict positivity conjecture in var-
ious ways. First, there are other more general ways to define admissible extensions
of 2, by using continuous, but possibly non-smooth, extensions satisfying a mean
curvature boundary condition, as studied for instance by Miao [45], Shi-Tam [51],
Anderson-Jauregui [7]. Secondly, one can ask for an isometric embedding of the
closure of  into R3 when cp (2) =0. In [7, Theorem 1.2], Anderson-Jauregui con-
structed counterexamples to such a stronger version of the conjecture (with respect
to one of the more general definitions of admissible extensions).
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