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Abstract. Among centrality measures, PageRank is particularly famous
due to its implementation in the Google search engine. We have recently
shown that in general undirected networks, the graph-normalized PageR-
ank of any node in the network is bounded from above by its degree. This
general statement, however, is not true in directed networks, where, e.g.,
the directed version of the preferential attachment model exhibits heav-

ier tails for the limiting PageRank distribution than for the limiting in-
degree-distribution. In this note, we illustrate the general upper bound on
PageRank in undirected networks by scatter plots of datasets from three
scale-free real-world networks of different sizes. We observe and explain
a concentration phenomenon within the scatter plots. Furthermore, to
shed light on how the directed-ness of edges changes the relation between
degrees and PageRank, we interpolate between undirected and directed
graphs as follows: for each of the three networks, we construct a new -
directed - network by randomly choosing a subset of the edges of prescribed
size and for each of its elements deleting exactly one of the two possible
directions. As a result of this procedure, some small-degree vertices will
obtain a PageRank that is above their in-degree.

We illustrate and explain this phenomenon for the chosen datasets by
comparing to what happens in the configuration model.

Keywords: Undirected network · Network centrality · PageRank ·
Power-law hypothesis · Power-law distributions

1 Introduction 

1.1 Scale-Free Networks 

A characteristic property of many real-world networks, e.g., online social net-
works, the web graph or router networks, is the absence of a typical scale for the
degrees of nodes within the network. This means that there is a small, yet highly
relevant, proportion of nodes with very high degrees (e.g., [10]). On the level of
the degree distribution (pk)k∈N, the absence of a typical scale in such a network
corresponds to a power-law degree distribution, i.e.,

pk ≈ak −τ ,
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forboththenetworksizenandklarge,where≈denotesanunspecifiedapprox-
imation. In particular, the probability for a uniformly chosen node from the
networktohaveadegreelargerthank(i.e.,thetaildistributionatk)isapprox-
imatedby

P(dVn
> k)≈bk −(τ−1) ,

for some b >0. In this note, we investigate the relation between power-law
degree distributions and the tails of the PageRank distribution. Let us next
definePageRank,andmoregenerally,centralitymeasuresinnetworks.

1.2 Network Centrality Measures 

Networkcentralitymeasuresareemployedtoestablishahierarchybetweennodes
ina(potentiallylarge)network,andtoidentifytheinfluentialones.Presumably,
themost simpleand intuitivenetworkcentralitymeasuresare the (in-)degree
and Google’s PageRank. In the recent thesis [ 15], comparison techniques for
centralitymeasures(inparticulartheClosenessCentralityCurve(CCC)com-
paring the overlap of the k most relevant nodes according to the considered
centralitymeasures)arediscussedandappliedtotheestablishedonessuchas
in- andout-degree, closeness,betweeness,harmonic centrality,Katzcentrality
andthePageRankwithdifferentdampingfactors.Thiscomparisonisdoneon
real-wordnetworkdatasets,aswellasondirectedandundirectedversionsof
theconfigurationmodel.

Inviewoftheresultsof[ 15],wefocusthepresentworkonthecomparison
betweenPageRankandthe(in-)degree,basedonwhatisknownasthepower-law
hypothesis.

1.3 PageRank and the Power-Law Hypothesis 

PageRank. PageRank [ 6] is an influential centrality measure initially intro-
duced and implemented by the Google search engine. The PageRank distri-
bution is nothing but the unique stationary distribution of the easily-bored
surfer Markovchain,which, ineachtimestepandwithprobabilityc∈ [0,1],
takesasimplerandomwalkstepfromitscurrentposition,andwithprobabil-
ity1−cjumpstoanodechosenuniformlyfromtheentirenetwork.Here,the
dampingfactor cinterpolatesbetweenbeingmainlylocal,orbeingmoreglobal
instead.ThePageRankvectoristhesolutiontothelinearsystemofequations

π(i) =c
∑

j→i

1

dout j

π(j) +
1−c

n
.

TohavePageRankonasimilarscaleasthe(in-)degrees,itisconvenienttogo
overtothegraph-normalizedPageRank,whichisdefinedas

R(i) =nπ(i),

wherenisthegraphsize,sothattheaveragePageRankRisequalto1.Through-
outthisnote,byPageRankwemeanitsgraph-normalizedversion.
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PageRank in Scale-Free Networks. Empirical data, particularly for the
web graph, has shown that a power-law degree (in-)degree distribution often
leads toapower-lawfor thePageRankdistribution,withthesamepower-law
exponent.Thequestionofthegeneralityoftheseempiricalobservationsiscoined
thepower-lawhypothesis.

1.4 Heavier PageRank Tails in Directed Preferential Attachment 
Models 

The(undirected)preferentialattachmentmodel(alsocalledtheBarabási-Albert
model) [ 5]was introducedtodescribetheemergenceofpower laws inreal-life
networks.Thepreferential attachmentmodel is a sequence of randomgraphs
(PAm,δ

n )n∈N,whosesizelinearlygrowswiththetimen.Thereareseveralversions
of thepreferential attachmentmodel, andwe focusonone. Ineachtimestep
n+1,anewvertexv n+1 havingafixednumbermhalf-edges isaddedtothe
existinggraph.Eachofthemhalf-edgesis,oneaftertheother,connectedtoone
oftheexistingverticesinthegraphbyalinearupdaterule(see[ 9,(1.3.65)]for
specificinstancesoftheupdateruleandalsotheintroductionof[ 2]forfurther
variationsofthemodel):

P(v
(m) 
j+1,n+1connectstov

(m) 
i |PA m,δ

n ) =
Di(n,j) +δ

2m(n−1)+j+δn
,

whereD i(n,j)isthedegreeofvertexiafterthejthedgeofvertexv n+1 hasbeen
addedandδ >−1isafixedparameter.Inthedirectedversionofthepreferential
attachmentmodel,weregardeachofthemhalf-edgesasanoutgoingedge,i.e.,
alledgesaredirectedfromyoungertoolderverticesinthenetwork,allvertices
haveafixedout-degreem, but canhave (asngrows) anarbitrarily large in-
degree.

Surprisingly, as shown in [ 4], its directed version violates the power-law
hypothesisinthatthePageRankdistributionatauniformlychosenvertexcon-
vergesweakly(withrespecttothesizenofthegraphtendingtoinfinity)toa
powerlawthathasheaviertailsthantheweaklimitofthein-degreedistribution.
Ontheotherhand,thisheavierPageRanktailsphenomenondoesnotoccurin
thedirectedconfigurationmodel [ 7]nor,moregenerally, in theentire classof
randominhomogeneousdigraphs[ 11].

1.5 General Upper Bound in Undirected Networks 

Theabove-mentionedheaviertailsofthePageRankdistributioninthedirected
preferentialattachmentmodelraisesthequestionwhethersuchheaviertailscan
alsooccurinundirectednetworks.

In [ 8] we proved that this is not possible. Indeed, in undirected graphs
of any size (in particular, not only asymptotically) the PageRank of ‘every
node isbounded fromabovebythedegreeof therespectivenode.This result
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remainstrue(uptoascalingfactor)indirectednetworkswithaboundedratio
ofin- andout-degrees.

Forfurtherresultsontheimpactofthisratiointhecontextofthedirected
configurationmodelandinhomogeneousrandomdigraphs,see,e.g.,[ 14],andfor
resultsonpersonalizedPageRanksonundirectednetworkswithboundedratio
(w.h.p.)ofmaximal- andminimaldegree,see[ 3].

2 Data Sets 

Weconsiderthreedifferentdatasetsthatalldescribeundirectednetworksand
aretakenfromtheStanfordLargeNetworksDatabase.Thelargestofthethree
data sets is the as-Skitter [ 12] internet topology graph with 1,696,415 nodes
and11,095,298edges.Theseconddatasetisthemusae-Twitch-de [ 16] (Multi-
scaleAttributedNodeEmbedding)friendshipgraphbetweenGerman-language
gamersontheTwitchplatformconsistsof9498nodesand153,138edges.Finally,
the ego-Facebook [ 13] data set on social circles, or friend lists, on Facebook
consistsof4039nodesand88,234edges.

3 Scatter Plots and Concentration Phenomena 

Toprovidemoreinsightintotherelationbetweenthegraph-normalizedPageR-
ank and (in-)degrees beyond tail-distributions, we present our analysis by
meansofscatterplotsshowninFig. 1.

AsafirstvisualizationthatPagerankisupperboundedbydegrees,inFig. 1,
weshowscatterplotsofthePageRankversusthedegreeforallvertices.Wesee
thatallpointsclearlylieundertheidentitylinewherethePageRankcoincides
withthedegree.

Moreover, thescatterplots inFig. 1 indicate that thepairsofdegreesand
PageRanks seemto concentrate around the graphof the linear functionx �→
x/α, where α is the average degree of the nodes. Moreover, the PageRanks
are (for sufficientlyhighdegrees) above thegraphof the linear functionx �→
x/β, where β is four times the average degree of the nodes. We will provide
an explanation for these phenomena on the basis of the configurationmodel.
While the networks thatwe analyze donot look like typical realizations of a
configuration model (our networks generally have more triangles than in the
configurationmodel),theconfigurationmodelisanestablishedmodelinnetwork
analysis and our theoretical considerations below match to the concentration
phenomenathatbecomevisibleintheplots.Here,theundirectedconfiguration
model CM n(d)isamodelforarandomgraphofsizenwhichhasaprescribed
degreevectord ∈N

n
0 asparameter.Eachnode i isassignedd i half-edges. Let

|d|=
∑

i∈[n] di bethetotaldegree.Then,arandomgraphissampledbychoosing

any permutation ϕ: [|d|] ≡ {1,2, . . .,|d|} → [|d|] uniformly at random and
afterwardsconnecting the jthhalf-edge to theϕ(j)thhalf-edge,where j runs
from1to|d|,andweimposetheconditionthatϕ(j) �=j forallj∈[|d|].
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Conditions on Degree Sequence. LetD n =d φn
denotethedegreeofavertex

inG n whereφ n isauniformlychosennodefromG n.Weimposethefollowing
twoassumptionsonthedegreesequence:

• Condition 1. Dn
n→∞
−→ D indistribution; and 

• Condition 2. E[Dn]
n→∞
−→ E[D].

Underthesetwoconditions,theconfigurationmodelconvergeslocallyinprob-
ability towards the unimodular branching process tree [ 9], whose root-degree
is distributed as D, and all other vertices have i.i.d. offspring-distribution D̃
accordingtothesize-biaseddistributionminusone,i.e.,

P(D̃=k) =
(k+ 1)P(D=k+ 1)

E[D]
. (1)

Thetotaldegree(includingtheedgetotheparent)isgivenbythesized-biased
distributionD ∗ = D̃+1,i.e.,

P(D∗ =k) =
kP(D=k)

E[D]
. (2)

ThefollowingasymptoticlowerboundonPageRankatauniformlychosennode
φn holdsfortheundirectedconfigurationmodel:

Theorem 1 (Theorem 2.8 in [8]). Consider the undirected configuration
model G n = CMn(d(Gn) ) where the degree distribution satisfies Conditions 1
and2.Letc∈[0,1]beaconstant(thedampingfactorforPageRank).Thenthe
PageRankvectorR (Gn) satisfiesthat,foralln,k,

P(R(Gn) 

φn
> k)≤P(D n > k), (3)

whilefurther,foranyβ > 4E[D] 
c(1−c) ,

liminf
k→∞

liminf
n→∞

P(R(Gn) 

φn
> k/β)

P(Dn > k)
≥1. (4)

While [ 8,Theorem2.8] states that thePageRank distributionhas thinner
tailsthanthedegreeinundirectedgraphs,theresultprovedisinfactpointwise,
inthattheproofshowsthatinanyundirectedgraphG,andallv inthevertex
setofG,

R(G) 

v ≤d (G) 

v . (5)

It is this relation that we will investigate empirically in this paper, and, in
particular, how it is changed in graphs that become more directed using an
interpolationscheme.

Theproofofthelowerbound( 4)involvesafirst-orderapproximationofthe
PageRank.As the local limit of

(

CMn(d(Gn) )
)

n∈N 
is a branching-process tree

withi.i.d.-offspringdistributionforallverticesexcepttherootweconjecturethe
followingimprovementwithapotentialproofbeingbasedontakingintoaccount
alltermsoftheseriesexpansionandemployingindependenceofdegrees:
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Conjecture1. Inthelowerbound( 4)inTheorem 1 weconjecturethatthescaling
factorβ canbedecreasedbya factor c(1−c).Moreexplicitly,weconjecture
thatforevery β̃ >4E[D]itholds

liminf
k→∞

liminf
n→∞

P(R(Gn) 

φn
> k/β̃)

P(Dn > k)
≥1. (6)

WenowwanttogetinsightintothebehaviorofE
[

Rφ

Dφ

]

ontheunimodular

branchingprocesstreewithrootφ.Wecanofferaninterestingheuristicinsight
byassuming that the fractionsX(v) = Rv

Dv
of the limitingPageRankandthe

respectivedegreealongtheverticesofthetreeareindependentoftherestofthe
degreesequence.Whilethereisasubtledependenceinreality,thissimplification
helpsustounderstandhowPageRankdissipatesthroughthelayersofthetree.
Wewilluse R̂todenotethisindependentversion.Weformalizetheanalysisin
thenextproposition.Whilethisisanobvioussimplification,tothebestofour
knowledge, these are thefirst calculations for thePageRankof anundirected
configurationmodel.

Proposition 1. Let(D φ,(D ij)i,j∈N)beanindependentfamilyofN-valuedran-
dom, where D φ has distribution D and D ij’s have distribution D ∗ that has
a size-biased distribution of D as defined in ( 2). Let the random variables
(Xφ,(X ij)i,j∈N)satisfythestochasticrecursion

Xφ
d
= (1−c)

1

Dφ

+c
1

Dφ

Dφ
∑

j=1 

X1,j , (7)

Xi,j
d
= (1−c)

1

Di,j

+c
1

Di,j

Di,j−1
∑

j=1 

Xi+1,j +c
1

Di,j

Xi−1,1, i>0. (8)

For i=φ,1,2, . . .,denotex i =E[X i,j ],whichisequalforallj= 1,2, . . .. Then
thecolumnvectorx = (x φ, x1, x2, . . .)

T )isdefinedby

x = [I−cB] −1b. (9)

Here,thematrixBin( 9)istheprobabilitytransitionmatrixofasimplerandom
walkonthenon-negativeintegersreflectedat0 =φ;thisrandomwalktransitions
fromi >0toi−1withprobability

b=E

[

1

Di,j

]

=
∞
∑

k=1 

1

k

kP(D=k)

E[D]
=

1

E[D]
;

fromi >0toi+1withprobability1−b, andfromφto1withprobability1. The
vectorb isgivenbyb = (1−c)·(a,b,b, . . .) T , wherea=E

[

1 
D

]

.
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Proof. Usingthetowerrule( 7),weget

xφ =E 

⎡

⎣E 

⎡

⎣(1−c)
1

Dφ

+c
1

Dφ

Dφ
∑

j=1 

X1,j |Dφ

⎤

⎦

⎤

⎦ = (1−c)a+cx 1. (10)

Similarly,from( 8),weget

xi =E 

⎡

⎣E 

⎡

⎣(1−c)
1

Di,j

+c
1

Di,j

Di,j−1
∑

j=1 

Xi+1,j +c
1

Di,j

Xi−1,1|Di,j

⎤

⎦

⎤

⎦

= (1−c)b+c(1−b)x i+1 +cbx i−1, i>0. (11)

Denotex = (x φ, x1, x2, . . .)
T .Thensystemoflinearequations( 10),( 11) canbe

writtenintheform
[I−cB]x =b.

SinceI−cB isinvertible,thisproves( 9). �

Notethata > b,andthismakesx φ largerthanx i’s.However,thedifference
betweenaandb is typicallynot that large. Ifwehadb=a thenall thex j ’s
wouldbethesameandequaltob= 1/E[D].Thisheuristicderivationintuitively
explainstheobservedslopecloseto1/E[D]inthescatterplots.

4 Interpolation Between Undirectedness and Directedness 

in Real-World Networks 

Asdiscussedabove, thebehaviorofPageRankonundirectednetworkscanbe
quitedifferenttothatondirectednetworks.Bymeansofacasestudy,weperform
anorientedpercolationverysimilar to [ 1].Here,weatfirst identify theundi-
rectednetworkwithadirectedonewithbi-directededgesandthenuniformly
choose a subset of prescribed size from the edges.This subset contains those
edgeswhichwewillmakesingle-directional.Aftersamplingthissubset,forany
ofitselements,weuniformlychooseoneofthetwopossibledirectionsanddelete
it.Dependingontheproportionpofedgesthatwemakesingle-directional,the
procedurewillsignificantlyaltertheratioofin- andout-degrees.

Interpolation Between Undirected and Directed Networks 
Here,wefirstdescribeourrandomizedalgorithmthatinterpolatesbetweenundi-
rectedanddirectedgraphs:

Input: ListofmundirectededgesE={{i 1, j1}, . . .{i m, jm}},proportionp∈
[0,1].

1. CreatetwolistsE − andE + ofdirectededgesfromLoEasfollows:
– Forall{a,b} ∈Edo(a,b)∈E − and(b,a)∈E +.

2. UniformlychooseasubsetRaIndof{1,2, . . .,m}ofsizeround(pm),where
we recall thatmdenotes the total number of edges givenas input for the
algorithm.
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Fig. 1. The graph-normalized PageRank distribution with damping factor c = 0.85
(vertical axis) and the degrees (horizontal axis) with a log

10 
− log

10
-scaling of the axes.

All points lie below the red line corresponding to the graph of the identity function,
which exemplifies the general upper bound for the PageRank in undirected networks.
Furthermore, the point sets are approximately centered around the khaki-colored line
that is vertically shifted by − log

10 
α with α being the average degree of the respective

graph. The black dashed line is vertically shifted by − log
10 

β̃ with β̃ being four times
the average degree as given in Conjecture 1.

3. For each l ∈ RaInd uniformly choose among the two options: either delete
the lth entry of the list E−, or delete the lth entry of the list E+ of reversed
edges.
Let E

′− ⊂ E− and E
′+ ⊂ E+ denote the so-obtained lists of directed edges

with deletions.
4. Generate a directed graph Gdir = (V,E

′−∪E
′+) from the lists with deletions.

Here, V is the set of all vertices appearing in E.
Generate graph Gref = (V,E− ∪ E+) (the reference graph) from the list
without deletions that contains each edge in both directions.

Note that in [1], each directed edge is removed with probability p, while in our
case each edge can be removed with probability p/2, and we guarantee to keep
an edge in at least one of the directions.

In Fig. 2 we see that as the proportion p of single-directed edges increases,
some of the nodes will get a PageRank that is higher than the in-degree.
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Fig. 2. Six realizations of the above algorithm applied to the three data sets and
different values of the proportion p. The respective data plots for the initial undirected
graphs are shown in Fig. 1. For each realization of the algorithm, the graph-normalized
PageRank with damping factor c = 0.85 on the vertical axis are plotted against the
in-degrees on the horizontal axis. As the proportion p of edges that have been made
single-directional increases, some of the low-degree nodes get shifted above the red line,
i.e., they obtain a graph-normalized PageRank that is higher than their in-degree.

The Parents of Nodes Whose PageRank Overshoots the In-Degree. 
To determine the main effects that contribute to this phenomenon, we further
specifically look at those nodes in the truncated graph Gdir that have in-degree
1, but a PageRank that is larger than 1. Heuristically, from the definition of



PageRank on Undirected and on Directed Networks 105

PageRank,theuniqueparentofeachofthesenodesmusthavealargePageRank.
Foreachofthesenodes,wecomparethein- andout-degreeandPageRankofits
uniqueancestorwiththerespectivevaluesofthesequantitiesforthe(undirected)
referencegraphs.

Forthetwosmallerdatasets,musae-twitch-deandego-Facebook,thisreveals
thatthephenomenonofincreasingPageRankseemstobemostlyexplainedby
asuperpositionof twoeffectsontheparentof thosenodes(seeTables 1a and
1b):

– Theout-degreeoftheparentisreduced.Thus,theremainingchildrengeta
highershareofthetotaldegreeweight.

– ThePageRankoftheparentincreases.

While thefirsteffectmightbenotsurprisingwithrespecttothedefinitionof
andwhatisknownaboutPageRank,thesecondeffectmightbemoresurprising.
Weconjecturethatthesecondeffectisexplainedbythefirsteffectaffectingthe
nodeswhichremainadirectededgepointingtowardsthepreviouslyconsidered
node(theparent’sparents).

A Positive Proportion of Vertices with In-Degree 1 and Large PageR-
ank. Wenextexplain,basedonthefirstofthetwoeffectsdescribedabove,how
apositiveproportionofverticeswithin-degree1andlargePageRankcanarise.

Proposition 2. Consider any undirected graph that has a local limit with a
positiveproportionq �,k ofvertices thathavedegreeequal tosomefixedsmall �
(forexample � = 1),andthathaveaneighborofdegreek fork large.Then,for
ksufficientlylargethefollowingholdstrue:
withapositiveprobability,thegraphobtainedfromapplyingtherandomizedalgo-
rithmthatmakesaproportionpofedgessingle-directedwillcontainatleastone
vertexwithaPageRanklargerthanthein-degree.

Proof. Consider a pair (v l, wk) of neighboring vertices in the local limit such
thatv l hasdegree � andw k hasdegreek.Afterapplyingtheaboverandomized
algorithmtomakeaproportionpofedgesdirected,theprobabilitythatvertex
v� willhave in-degree1,gettingthedirectededge fromw k, equalsp � ·(1/2) �,
while the probability thatw k directs all its remaining k−1 edgeswhich are
notattachedtov � toin-edgesforitselfisp k−1 ·(1/2) k−1.Thisimpliesthatthe
degree-kneighborw k sendsallofitsPageRanktothevertexofinterest.Since
Ru ≥1−c for everyvertexu, thismeansthatthePageRankofthevertexv �

willbeatleastkc(1− c),whichcanbemadearbitrarilylargebymakingklarge.
Inparticular,wecanmakethisPageRanklargerthan1.Thisshowsthatwith
apositiveprobability,afterdirectingtheedges,therewillbeapositive(though
possiblyquitesmall)proportionofverticeswithdegree1andPageRanklarger
than1. �
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Table 1. ParametersoftheuniqueparentsofthosenodesinFigs. 2b and 2d that get
shiftedabovethelineandhavein-degree1.Thenodenumberscorrespondtotheones
usedinthedatasources.

(a)InFigure 2b,nodes3984,4010,4024,4035and4036getshiftedabovetheline
andhavein-degreeone.Theyallhavethecommonuniqueparent3980.

Data for unique parent 3980 before removal after removal 

In-degree 59 58

Out-degree 59 11

PageRank 8.71032 12.2927

(b) InFigure 2d, nodes 5918, 6150and1462get shifted above the line andhave
in-degreeone.Thecorrespondingparentsare18,967and8114

Data for the parents before removal after removal 

In-degrees 2;16;3 2;16;3

Out-degrees 2;16;3 1;1;1

PageRanks 0.470515;0.588953;0.433619 1.83977;1.00621;1.21459

Fig. 3. Tworealizationsoftheabovealgorithmforsmallervaluesofpandtheas-Skitter
[12]dataset,againwithdampingfactorc= 0.85.Weseethatalreadyatp= 0.01some
small-degreenodesobtainahigherPageRankthantheirin-degree.

Large PageRanks at Low Proportion p of Single-Directed Edges. In
thetwosmallernetworks,a largevalue(0.5orhigher) fortheproportionpof
single-directededgesisneededtoevoketheeffectofPageRanksbecominglarger
thanthecorrespondingin-degrees(cf.Figs. 2a to 2d).

5 Outlook and Discussion 

Inthispaper,wehaveinvestigatedhowPageRankcanbecomelargerthanthe
in-degree in directed networks, while PageRank is bounded by the degree in
undirectednetworks.Wehavedonethisbyinterpolatingbetweentheundirected
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version of the graphs, and the randomly truncated directed versions of the real-
world networks. We have studied which nodes are such that the PageRank is
larger than the in-degree. This occurs for vertices that have low in-degree, and
have a unique high-degree parent for whom relatively many edges have been
changed to in-edges.

Our work raises the following follow-up questions. It remains to formally
prove the concentration results that become visible in Fig. 1 on the level of
random graph models.

6 Data Availability 

The plots shown in Figs. 1, 2 and 3 have been generated using Wolfram Mathe-
matica and using the datasets mentioned in the respective captions. The under-
lying realizations of the above randomized algorithm presented in Figs. 2 and 3
and Tables 1b and 1a have been obtained with Wolfram Mathematica. The lists
of edges for the resulting directed graphs have been saved as .csv-files and are
available upon request.
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