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Abstract. Among centrality measures, PageRank is particularly famous
due to its implementation in the Google search engine. We have recently
shown that in general undirected networks, the graph-normalized PageR-
ank of any node in the network is bounded from above by its degree. This
general statement, however, is not true in directed networks, where, e.g.,
the directed version of the preferential attachment model exhibits heav-
ier tails for the limiting PageRank distribution than for the limiting in-
degree-distribution. In this note, we illustrate the general upper bound on
PageRank in undirected networks by scatter plots of datasets from three
scale-free real-world networks of different sizes. We observe and explain
a concentration phenomenon within the scatter plots. Furthermore, to
shed light on how the directed-ness of edges changes the relation between
degrees and PageRank, we interpolate between undirected and directed
graphs as follows: for each of the three networks, we construct a new -
directed - network by randomly choosing a subset of the edges of prescribed
size and for each of its elements deleting exactly one of the two possible
directions. As a result of this procedure, some small-degree vertices will
obtain a PageRank that is above their in-degree.

We illustrate and explain this phenomenon for the chosen datasets by
comparing to what happens in the configuration model.

Keywords: Undirected network - Network centrality - PageRank -
Power-law hypothesis - Power-law distributions

1 Introduction
1.1 Scale-Free Networks

A characteristic property of many real-world networks, e.g., online social net-
works, the web graph or router networks, is the absence of a typical scale for the
degrees of nodes within the network. This means that there is a small, yet highly
relevant, proportion of nodes with very high degrees (e.g., [10]). On the level of
the degree distribution (pk)ken, the absence of a typical scale in such a network
corresponds to a power-law degree distribution, i.e.,
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forboththenetworksizenandklarge, whereadenotesanunspecifiedapprox-
imation. In particular, the probability for a uniformly chosen node from the
networktohaveadegreelargerthank (i.e.,thetaildistributionatk)isapprox-
imatedby

P(dy, > k)=bk —(™Y

for some b >0. In this note, we investigate the relation between power-law
degree distributions and the tails of the PageRank distribution. Let us next
definePageRank,andmoregenerally,centrality measuresinnetworks.

1.2 Network Centrality Measures

Networkcentralitymeasuresareemployedtoestablishahierarchybetweennodes
ina(potentiallylarge)network,andtoidentifytheinfluentialones. Presumably,
the most simple and intuitive network centrality measures are the (in-)degree
and Google’s PageRank. In the recent thesis | 15], comparison techniques for
centrality measures (in particular the Closeness Centrality Curve (CCC) com-
paring the overlap of the k most relevant nodes according to the considered
centrality measures) are discussed and applied to the established ones such as
in- and out-degree, closeness, betweeness, harmonic centrality, Katz centrality
and the PageRank with different dampingfactors. Thiscomparisonisdoneon
real-word network datasets, aswell as on directed and undirected versions of
theconfigurationmodel.

Inviewoftheresultsof[  15],wefocusthepresent work onthe comparison
betweenPageRankandthe(in-)degree,basedonwhatisknownasthepower-law
hypothesis.

1.3 PageRank and the Power-Law Hypothesis

PageRank. PageRank [ 6]isan influential centrality measure initially intro-
duced and implemented by the Google search engine. The PageRank distri-
bution is nothing but the unique stationary distribution of the easily-bored
surfer Markov chain, which, in each time step and with probability c € [0,1],
takesasimplerandom walk step fromits current position, and with probabil-

ity 1—cjumpstoanodechosen uniformly from theentire network. Here, the
damping factor cinterpolatesbetweenbeingmainlylocal,orbeingmoreglobal
instead. ThePageRankvectoristhesolutiontothelinearsystemofequations

(i) = Zﬁﬂ'(]’ﬂ— e .

J— J n

TohavePageRank onasimilarscaleasthe (in-)degrees, it isconvenient togo
overtothegraph-normalized PageRank, whichisdefinedas

R(i) =nm(7),

wherenisthegraphsize,sothattheaveragePageRankRisequaltol. Through-
outthisnote, by PageRank wemeanitsgraph-normalized version.
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PageRank in Scale-Free Networks. Empirical data, particularly for the
web graph, has shown that a power-law degree (in-)degree distribution often
leads to apower-law for the PageRank distribution, with the same power-law
exponent.Thequestionofthegeneralityoftheseempiricalobservationsiscoined
thepower-lawhypothesis.

1.4 Heavier PageRank Tails in Directed Preferential Attachment
Models

The(undirected)preferentialattachmentmodel (alsocalledthe Barabdsi- Albert
model) [ 5] wasintroduced to describe the emergence of power lawsinreal-life
networks. The preferential attachment model is a sequence of random graphs
(PA™9),, cn,whosesizelinearlygrowswiththetimen. Thereareseveralversions

of the preferential attachment model, and we focus on one. In each time step
n+1,anewvertexv  ,41 havingafixed numbermhalf-edgesisadded tothe
existinggraph.Eachofthemhalf-edgesis,oneaftertheother,connectedtoone
oftheexistingverticesinthegraphbyalinearupdaterule (see| 9,(1.3.65)]for
specificinstancesoftheupdateruleandalsotheintroductionof| 2] forfurther
variationsofthemodel):

D;i(nj) 46
2m(n—1)+j+on

]P(vj(.szanonnectstov Z(m) |PA ?’5) =

whereD ;(n,j)isthedegreeofvertexiafterthejthedgeofvertexv n+1 hasbeen
addedandd >—lisafixedparameter.Inthedirectedversionofthepreferential
attachmentmodel, weregardeachofthemhalf-edgesasanoutgoingedge,i.e.,
alledgesaredirected fromyoungertoolderverticesinthenetwork,allvertices

have a fixed out-degree m, but can have (asn grows) an arbitrarily large in-

degree.

Surprisingly, as shown in [ 4], its directed version violates the power-law
hypothesisinthatthePageRankdistributionatauniformlychosenvertexcon-
vergesweakly (withrespect tothesizen ofthegraphtendingtoinfinity) toa
powerlawthathasheaviertailsthantheweaklimitofthein-degreedistribution.
Ontheotherhand, thisheavier PageRank tailsphenomenondoesnotoccurin
thedirected configurationmodel [ 7] nor, more generally, in the entire class of
randominhomogeneousdigraphs| 11].

1.5 General Upper Bound in Undirected Networks

Theabove-mentionedheaviertailsofthePageRankdistributioninthedirected
preferentialattachmentmodelraisesthequestionwhethersuchheaviertailscan
alsooccurinundirected networks.

In [ 8] we proved that this is not possible. Indeed, in undirected graphs
of any size (in particular, not only asymptotically) the PageRank of ‘every
nodeis bounded from above by the degree of the respective node. Thisresult
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remainstrue (uptoascalingfactor)indirectednetworkswithaboundedratio
ofin- andout-degrees.
Forfurtherresultsontheimpactofthisratiointhecontextofthedirected

configurationmodelandinhomogeneousrandomdigraphs,see,e.g.,| 14],andfor
resultson personalized PageRanksonundirected networks with boundedratio
(w.h.p.)ofmaximal- andminimaldegree,see[  3].

2 Data Sets

Weconsiderthreedifferent datasetsthatalldescribeundirected networksand
aretakenfromtheStanford LargeNetworksDatabase. Thelargestofthethree

data sets is the as-Skitter [ 12] internet topology graph with 1,696,415 nodes
and11,095,298edges. Theseconddatasetisthe musae- Twitch-de | 16] (Multi-
scale AttributedNodeEmbedding)friendshipgraphbetween German-language
gamersontheTwitchplatformconsistsof9498nodesand153,138edges.Finally,

the ego-Facebook | 13] data set on social circles, or friend lists, on Facebook
consistsof4039nodesand 88,234 edges.

3 Scatter Plots and Concentration Phenomena

Toprovidemoreinsightintotherelationbetweenthegraph-normalized PageR-
ank and (in-)degrees beyond tail-distributions, we present our analysis by
meansofscatterplotsshowninFig. 1.

Asafirstvisualizationthat Pagerankisupperboundedbydegrees,inFig. 1,
weshowscatterplotsofthePageRankversusthedegreeforallvertices. Wesee
thatallpointsclearlylieundertheidentity linewherethe PageRank coincides
withthedegree.

Moreover, thescatter plotsinFig. 1 indicate that the pairs of degrees and
PageRanks seem to concentrate around the graph of the linear function x —
x/a, where « is the average degree of the nodes. Moreover, the PageRanks
are (for sufficiently high degrees) above the graph of the linear function z —
2/, where s four times the average degree of the nodes. We will provide
an explanation for these phenomena on the basis of the configuration model.
While the networks that we analyze do not look like typical realizations of a
configuration model (our networks generally have more triangles than in the
configurationmodel),theconfigurationmodelisanestablishedmodelinnetwork
analysis and our theoretical considerations below match to the concentration
phenomenathatbecomevisibleintheplots. Here, the undirected configuration
model CM ,,(d)isamodelforarandomgraphofsizenwhichhasaprescribed
degreevectord €N { asparameter. Eachnodeiisassignedd i half-edges. Let
ld|= ;¢ in) di bethetotaldegree. Then,arandomgraphissampledbychoosing
any permutation ¢ [|d|] = {12,..|d|} — [/d|] uniformly at random and
afterwards connecting the jth half-edge to the ¢ (j)th half-edge, where j runs
from1to|d|,andweimposetheconditionthatp(j) #jforallje(|d|].
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Conditions on Degree Sequence. LetD ,, =d 4, denotethedegreeofavertex
inG ,, where¢ , isauniformlychosennodefromG  ,,. Weimposethefollowing
twoassumptionsonthedegreesequence:

e Condition 1. D,, =3’ D indistribution; and

e Condition 2. E[D,| "3 E[D].

Underthesetwo conditions, the configuration model convergeslocallyin prob-
ability towards the unimodular branching process tree | 9], whose root-degree
isdistributed as D, and all other vertices have i.i.d. offspring-distribution D
accordingtothesize-biaseddistributionminusone,i.e.,

(k+ 1)P(D=Fk+ 1)
E[D]

P(D=Fk) = (1)
Thetotaldegree (includingtheedgetotheparent)isgiven bythesized-biased
distributionD * = D+1,i.e.,

kP(D=k)

B(D* =k) = —p5

ThefollowingasymptoticlowerboundonPageRankatauniformlychosennode
¢, holdsfortheundirected configurationmodel:

Theorem 1 (Theorem 2.8 in [8]). Consider the undirected configuration
model G ,, = CM,,(d'°™) where the degree distribution satisfies Conditions 1
and?2. Letce[0,1] beaconstant (thedampingfactorfor PageRank). Thenthe
PageRankvectorR ‘“™ satisfiesthat, foralln k,

P(RE™ > k)<P(D , > k), (3)

whilefurther, foranyB > 04(1“1:[—[)!) )

P(Ry > k/B)

.. .. bn
—_— 2>1.
R TR, s

While [ 8, Theorem 2.8] states that the PageRank distribution has thinner
tailsthanthedegreeinundirectedgraphs,theresultprovedisinfactpointwise,
inthat theproofshowsthatin anyundirected graphG,andallvinthevertex
setof G,
R <d (. (5)

It is this relation that we will investigate empirically in this paper, and, in
particular, how it is changed in graphs that become more directed using an
interpolationscheme.

Theproofofthelowerbound(  4)involvesafirst-orderapproximationofthe
PageRank. Asthelocallimitof — (CM,,(d'“")) nen isabranching-process tree
withi.i.d.-offspringdistributionforallverticesexcepttherootweconjecturethe
followingimprovementwithapotentialproofbeingbasedontakingintoaccount
alltermsoftheseriesexpansionandemployingindependenceofdegrees:
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Conjecture 1. Inthelowerbound(  4)inTheorem 1 weconjecturethatthescaling
factor 3 can be decreased by afactor ¢(1—c). More explicitly, we conjecture
thatforevery [ XE[D]itholds

P(RY™ > k/B)
.. .. bn >
i N ©

Wenowwant togetinsightintothebehaviorof E {g—ﬂ ontheunimodular
branchingprocesstreewithroot (;5.Wecanofferaninterestingheuristicinsight
by assuming that the fractions X (v) = “ of thelimiting PageRank and the
respect1vedegreealongthevertlcesofthetreeare1ndependentoftherestofthe
degreesequence. Whilethereisasubtledependenceinreality,thissimplification
helpsustounderstandhowPageRankdissipatesthroughthelayersofthetree.
Wewilluse Rtodenotethisindependent version. Weformalizetheanalysisin
thenextproposition. Whilethisisanobvioussimplification, tothebestofour
knowledge, these are the first calculations for the PageRank of an undirected

configurationmodel.

Proposition 1. Let(D (D ;)i jen) beanindependentfamily ofN-valuedran-
dom, where D 4 has distribution D and D ;;’s have distribution D * that has
a size-biased distribution of D as defined in ( 2). Let the random variables
(Xg(X ij)i,jen) satisfythestochasticrecursion

X, 2 (1) —+c B; ZXLJ, (7)

d
Xij = (ko) D Z Xit1,j +c D—_XZ L1 0> (8)
'L,J 2,7 2,]

Fori=¢12,...,denotex i =E[X ; ;], whichisequalforallj=12,.... Then
the columnvectorx = (z 4,21, xa,...)" )isdefinedby

x = [[—cB] ~'b. (9)

Here,thematrizBin(  9)istheprobabilitytransitionmatrizofasimplerandom
walkonthenon-negativeintegersreflectedat0 =p;thisrandomwalktransitions
fromi X0 toi—1 withprobability

oo
1k = ) 1
b:E = —_— = :
iR Cattv)
fromi S toi+ lwithprobabilityl —b, andromptol withprobabilityl. The

vectorb isgivenbyb = (F-c)-(abb, .. .) T, wherae=E [}5].
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Proof. Usingthetowerrule(  7),weget

Dy
1 1
2o =B |B |(1=¢) -+ @;Xl,j Dy|| = (Fjater 1. (10)
Similarly,from( 8),weget
1 1 et 1
€Z; =E |E 1—c +c Xz J +c 7Xi, , Di"
(1=c) b, ¢ Do 2—21 it 5o 1,1|Di
= (c)bte(l-b)x i+1 +cbx i1, B. (11)

Denotex = (z 4,1, ¥2,...)T . Thensystemoflinearequations(  10),( 11) catbe
writtenintheform
[[—¢B]x =b.

SinceI—cBisinvertible,thisproves( 9). O

Notethata > b,andthismakesz 4 largerthanz ;’s.However,thedifference
between a and bis typically not that large. If wehad b= a then all the ;s
wouldbethesameandequaltob= 1/E[D].Thisheuristicderivationintuitively

explainstheobservedslopeclosetol/E[D]inthescatterplots.

4 Interpolation Between Undirectedness and Directedness
in Real-World Networks

Asdiscussed above, the behavior of PageRank on undirected networks can be
quitedifferenttothatondirectednetworks.Bymeansofacasestudy,weperform
anoriented percolation verysimilarto[  1]. Here, we at first identify the undi-
rected network with adirected one with bi-directed edges and then uniformly
choose a subset of prescribed size from the edges. This subset contains those
edgeswhichwewillmakesingle-directional. Aftersamplingthissubset, forany
ofitselements,weuniformlychooseoneofthetwopossibledirectionsanddelete

it. Dependingontheproportionpofedgesthat wemakesingle-directional, the
procedurewillsignificantlyaltertheratioofin- andout-degrees.

Interpolation Between Undirected and Directed Networks
Here,wefirstdescribeourrandomizedalgorithmthatinterpolatesbetweenundi-
rectedanddirected graphs:

Input: Listofmundirectededges E={{i 1,01} - -4 m, Jjm}},proportionpe
[0,1].

1. CreatetwolistsE ~ andE T ofdirectededgesfrom LoE asfollows:
— Forall{ap} eFdo(ab)eE ~and(ba)eE .
2. Uniformly chooseasubset Ralndof{12, .., m}ofsizeround(pm),where
we recall that m denotes the total number of edges given as input for the
algorithm.
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(a) musae-twitch-de [16] (b) ego-Facebook [13]
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Fig. 1. The graph-normalized PageRank distribution with damping factor ¢ = 0.85
(vertical axis) and the degrees (horizontal axis) with a log;, — log;,-scaling of the axes.
All points lie below the red line corresponding to the graph of the identity function,
which exemplifies the general upper bound for the PageRank in undirected networks.
Furthermore, the point sets are approximately centered around the khaki-colored line
that is vertically shifted by — log,, & with a being the average degree of the respective
graph. The black dashed line is vertically shifted by —log;, B with B being four times
the average degree as given in Conjecture 1.

3. For each I € Ralnd uniformly choose among the two options: either delete
the th entry of the list £~, or delete the lth entry of the list £+ of reversed
edges.

Let E'~ C B~ and E'T C E* denote the so-obtained lists of directed edges
with deletions.

4. Generate a directed graph Ga;, = (V, E- UE/JF) from the lists with deletions.
Here, V is the set of all vertices appearing in E.

Generate graph Gt = (V,E~ U E1) (the reference graph) from the list
without deletions that contains each edge in both directions.

Note that in [1], each directed edge is removed with probability p, while in our
case each edge can be removed with probability p/2, and we guarantee to keep
an edge in at least one of the directions.

In Fig.2 we see that as the proportion p of single-directed edges increases,
some of the nodes will get a PageRank that is higher than the in-degree.
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(a) ego-Facebook [13] at p = 0.5 (b) ego-Facebook [13] at p = 0.8
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(c) musae-twitch-de [16] at p = 0.5 (d) musae-twitch-de [16] at p = 0.8
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(e) as-Skitter [12] at p = 0.5 (f) as-Skitter [12] at p = 0.8

Fig. 2. Six realizations of the above algorithm applied to the three data sets and
different values of the proportion p. The respective data plots for the initial undirected
graphs are shown in Fig. 1. For each realization of the algorithm, the graph-normalized
PageRank with damping factor ¢ = 0.85 on the vertical axis are plotted against the
in-degrees on the horizontal axis. As the proportion p of edges that have been made
single-directional increases, some of the low-degree nodes get shifted above the red line,
i.e., they obtain a graph-normalized PageRank that is higher than their in-degree.

The Parents of Nodes Whose PageRank Overshoots the In-Degree.
To determine the main effects that contribute to this phenomenon, we further
specifically look at those nodes in the truncated graph Gg;, that have in-degree
1, but a PageRank that is larger than 1. Heuristically, from the definition of
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PageRank theuniqueparentofeachofthesenodesmusthavealargePageRank.
Foreachofthesenodes,wecomparethein- andout-degreeand PageRankofits
uniqueancestorwiththerespectivevaluesofthesequantitiesforthe(undirected)
referencegraphs.
Forthetwosmallerdatasets,musae-twitch-deandego-Facebook,thisreveals
that thephenomenonofincreasing PageRank seemstobemostly explained by
asuperposition of two effects on the parent of those nodes (see Tables la and
1b):

— Theout-degreeoftheparentisreduced. Thus, theremainingchildrenget a
highershareofthetotaldegreeweight.
— ThePageRankoftheparentincreases.

While the first effect might be not surprising with respect to the definition of
andwhatisknownaboutPageRank,thesecondeffectmightbemoresurprising.
Weconjecturethatthesecondeffectisexplainedbythefirsteffectaffectingthe
nodeswhichremainadirectededgepointingtowardsthepreviously considered
node (theparent’sparents).

A Positive Proportion of Vertices with In-Degree 1 and Large PageR-
ank. Wenextexplain,basedonthefirstofthetwoeffectsdescribedabove,how
apositiveproportionofverticeswithin-degreelandlargePageRankcanarise.

Proposition 2. Consider any undirected graph that has a local limit with a
positiveproportionqg ¢ ofverticesthat have degree equalto some fized small £
(forexample £ = 1), andthathaveaneighborofdegreek fork large. Then, for

k sufficientlylargethe followingholdstrue:

withapositiveprobability, thegraphobtainedfromapplyingtherandomizedalgo-
rithmthatmakesaproportionp ofedgessingle-directedwillcontainatleastone
vertexwitha PageRanklargerthanthein-degree.

Proof. Consider apair (v, wy) of neighboring vertices in the local limit such
thatv ; hasdegree ¢ andw  hasdegreek. Afterapplyingtheaboverandomized
algorithmtomakeaproportionpofedgesdirected,theprobability that vertex

vy willhavein-degree 1, getting the directed edge from w p.equalsp ¢ -(1/2) ¢,
while the probability that w j directsallitsremaining k—1 edges which are
notattachedtov , toin-edgesforitselfisp ~ #~1.(1/2) ¥~1. Thisimpliesthatthe
degree-kneighborw j sendsallofitsPageRanktothevertexofinterest. Since

R, >1—cforevery vertex u,thismeansthatthe PageRankofthe vertexw )
willbeatleastkc(1 — ¢),whichcanbemadearbitrarilylargebymakingklarge.
Inparticular,wecanmakethisPageRanklargerthan 1. Thisshowsthat with
apositiveprobability, afterdirectingtheedges, therewillbeapositive (though
possibly quitesmall) proportionofverticeswithdegree 1 and PageRanklarger

thanl. g
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Table 1. ParametersoftheuniqueparentsofthosenodesinFigs. 2b and 2d that get
shiftedabovethelineandhavein-degreel. Thenodenumberscorrespondtotheones
usedinthedatasources.

(a)InFigure 2b,nodes3984,4010,4024,4035and4036 getshiftedabovetheline
andhavein-degreeone. Theyallhavethecommonuniqueparent 3980.

Data for unique parent 3980 before removalafter removal
In-degree 59 58
Out-degree 59 11

PageRank 8.71032 12.2927

(b) InFigure 2d,nodes5918,6150 and 1462 get shifted above the line and have
in-degreeone. Thecorrespondingparentsare18,967and 8114

Data for the parents |before removal after removal
In-degrees 2;16;3 2;16;3

Out-degrees 2;16;3 1;1;1

PageRanks 0.470515;0.588953;0.433619 (1.83977;1.00621;1.21459

Graph-normalized PageRank
3
Graph-normalized PageRank
3

100 10' 102 10° 10 10° 10! 102 10° 104
In-degree In-degree

(a) p=10.001 (b) p=0.01

Fig. 3. Tworealizationsoftheabovealgorithmforsmallervaluesofpandtheas-Skitter
[12]dataset,againwithdampingfactorc= 0.85.Weseethatalreadyatp= 0.01some
small-degreenodesobtainahigher PageRankthantheirin-degree.

Large PageRanks at Low Proportion p of Single-Directed Edges. In
the twosmaller networks, alarge value (0.5 or higher) for the proportion p of
single-directededgesisneededtoevoketheeffectofPageRanksbecominglarger
thanthecorrespondingin-degrees(cf.Figs.  2a to 2d).

5 Outlook and Discussion

Inthispaper, wehaveinvestigated how PageRank canbecomelargerthanthe
in-degree in directed networks, while PageRank is bounded by the degree in
undirectednetworks. Wehavedonethisbyinterpolatingbetweentheundirected
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version of the graphs, and the randomly truncated directed versions of the real-
world networks. We have studied which nodes are such that the PageRank is
larger than the in-degree. This occurs for vertices that have low in-degree, and
have a unique high-degree parent for whom relatively many edges have been
changed to in-edges.

Our work raises the following follow-up questions. It remains to formally
prove the concentration results that become visible in Fig.1 on the level of
random graph models.

6 Data Availability

The plots shown in Figs. 1, 2 and 3 have been generated using Wolfram Mathe-
matica and using the datasets mentioned in the respective captions. The under-
lying realizations of the above randomized algorithm presented in Figs.2 and 3
and Tables 1b and 1a have been obtained with Wolfram Mathematica. The lists
of edges for the resulting directed graphs have been saved as .csv-files and are
available upon request.
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