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Abstract. We consider a preferential attachment model that incorpo-
rates an anomaly. Our goal is to understand the evolution of the network 
before and after the occurrence of the anomaly by studying the influence 
of the anomaly on the structural properties of the network. The anomaly 
is such that after its arrival it attracts newly added edges with fixed 
probability. We investigate the growth of degrees in the network, find-
ing that the anomaly’s degree increases almost linearly. We also provide 
a heuristic derivation for the exponent of the limiting degree distribu-
tions of ordinary vertices, and study the degree growth of the oldest 
vertex. We show that when the anomaly enters early, the degree distri-
bution is altered significantly, while a late anomaly has minimal impact. 
Our analysis provides deeper insights into the evolution of preferential 
attachment networks with an anomalous vertex. 

Keywords: Preferential attachment network · Anomaly · Degree 
Structure · Dynamic network 

1 Introduction 

Dynamic network models, where nodes and edges appear or disappear over time,
attracted a lot of attention in the network science literature. Among these mod-
els, the Preferential Attachment (PA) network, as presented by Barabási and
Albert [2], has been particularly influential, because it explains the emergence of
scale-free property in networks through the ‘rich-get-richer’ phenomenon. Specif-
ically, the probability that a new vertex connects to an existing vertex is pro-
portional to the degree of the existing vertex.

One extension of the standard PA network is the superstar model [7], which
is used to analyze key features of retweet networks. In this model, the initial
vertex in the network is a superstar. At each time step, a newly added vertex
connects to the superstar with probability p, or to one of the non-superstar
vertices with probability 1 − p according to the preferential attachment rule.
The superstar alters the dynamics and the resulting degree distribution. It was
shown in [7] that the non-superstar vertices follow a power-law degree distri-
bution, though with a modified exponent 3 + p

1−p
. Additionally, the maximal
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degree of the non-superstar vertices is likewise affected; it grows slower with
thenetworksize.Inthispaper,weconsideraPAmodelwithananomaly.Our
anomalyissimilartothesuperstar,butitmayarriveatanypointoftime.

Sincetheanomalyaltersthenetworkdynamics,ourworkiscloselyrelatedto
thelineofresearchonPAmodelswithachange point,whereaparameterofthe
PAmodelchangesatsomepointoftime.Forinstance, [ 1,6] investigatemeth-
odstoidentifythechangepointinpreferentialattachmenttreesviaembedding
thediscretetimetreeinacontinuous-timebranchingprocessandstudyingthe
proportionofleaves,while[ 5]proposesanapproachbasedonthefractionofver-
ticeswithminimaldegreetodetectalatechangepoint.Furthermore,[ 8]applies
thelikelihoodratiotechniquetoestimatethechangepointinaPAmodel,and
extendthemethodtodetectmultiplechangepointsviascreeningandranking,
aswellasbinarysegmentation.

While change point detection addresses abrupt changes in the parameters
of the network dynamics, here we instead focus on how structural properties
evolvewhenasingleanomalousvertexentersaPAnetwork.Toexplorethis,we
suggestanewmodel incorporatingananomaly.Ourmodel isanextensionof
thesuperstar model,andthetwomodelsarehighlysimilarwhentheanomaly
coincideswiththeinitial vertex.Ourmaincontributionsareasfollows:

� WeproposeaPAnetworkwithananomaly.Thenetworkevolvesaccording
tothestandardpreferentialattachmentruleuntiltheanomalyenters.Once
theanomalyappears in thenetwork, it attractsnewlyaddededgeswitha
fixedprobability,plusaprobabilitythatdependsonitscurrentdegreeasin
thenormalPAdynamics.
� Wecomputethemeandegreeoftheanomalyasafunctionofnetworksize,
andstudythemeandegreeofotherverticesandtheirconvergence.
� Weprovideaheuristicderivationofthelimitingdegreedistributionofthe
ordinaryverticeswhentheanomalyarrivesinvariousdifferentstagesofthe
network’sevolution.

Ourresultsserveasafirststeptowardstheunderstandingofanomalydetec-
tioninPAnetworks.Inthefinalsection,weprovideanoutlookonthisdetection
problem.

2 Model Description 

We start by introducing the preferential attachment network without an
anomaly.Themodelconstructsagraphsequence(G t)t≥2 suchthateachgraph
Gt isformedbyaddingonenewvertexandmedgesconnectingthenewvertex
toexistingvertices,wherem≥1.LetG t = (Vt, Et),whereV t ={v 1,· · ·, v t}
andE t ⊆ {{v,w} :v,w∈V t}. Theinitial graphG 1 consistsofasinglevertex
v1 andmself-loops.Fort >1,noself-loopsarepresent.Wetreattheprocess
of connectingeachedge fromanewly introducedvertex toanexistingvertex
in thenetworkasan individual step.Specifically, letG t,j denote thenetwork
after the jth edge of a newly added vertex v t connects to an existing vertex
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vi ∈ {v1, v2,· · ·, v t−1},wherej∈[m]≡ {1, . . . , m}. We letD i(t,j)denotethe
degreeofvertexiinG t,j ,andintroduceafitness parameterδ >−m.Further,we
defineG t =G t,m =G t+1,0, andD i(t) =D i(t,m).Fort >1, j∈[m],wedefine
theattachmentruleforthejthedgelinkingtothevertexv i ∈ {v1, v2,· · ·, v t−1}
asdefinedin[ 3,4],andstudiedfurtherin[ 5]:

P(v t,j →v i |G t,j−1) =
Di(t,j−1)+δ

2m(t−1)+(t−1)δ+ (j−1)
. (1)

Assumethatananomalyoccursatsometimeτ satisfying1< τ< t,where
the attachment rule changes after the anomaly has occurred. We denote the
anomalybythevertexv τ .Afterτ ,eachnewedgeconnectstotheanomalywith
probability

p≈
β

2m+β+δ
, (2)

whereβ >0isaparameterofthemodel.Otherwise,withcomplementaryprob-
ability,theedgeconnectstoanyexistingvertex,includingtheanomaly,byfol-
lowingtheusualPArule.Formally,thedynamicsofthemodel at step tareas
follows:

(I) Ift < τ ,theanomalousvertexhasnotoccurredinthegraphG t,theattach-
mentruleofG t isthesameas( 1).

(II) If1< τ≤t,theevolutionrulechangesasfollows:

P(v t,j →v i |G t,j−1) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

Di(t,j−1)+δ

(t−1)(2m+β+δ) +j−1
ifi 	=τ,

(t−1)β+D τ (t,j−1)+δ

(t−1)(2m+β+δ) +j−1
ifi=τ.

(3)

Toexplaintherationalebehind( 3),supposem=1,hencej=1istheonlyedge
ofvertexv t.Then

(t−1)β+D τ (t−1)+δ

(t−1)(2+β+δ)
=p+ (1−p)

Dτ (t−1)+δ

(t−1)(2+δ)
,

withp= β
2+β+δ

.Hence,wecanthinkofourconnectionruleasconnectingwith

probability p to the anomaly, and proportional to the degrees (including the
anomaly)withprobability1−p.Thisexplainsthechoicein( 2),whichisexactly 
correct form=1. To make ( 2)exactly correct form >1,wehave tochoose
p=p β,t,j slightlydifferently,sothat

pβ,t,j + (1−p β,t,j)
Dτ (t,j−1)+δ

(t−1)(2m+δ) +j−1

=
pβ,t,j [(t−1)(2m+δ) + (j−1)]+(1−p β,t,j)(Dτ (t,j−1)+δ)

(t−1)(2m+δ) +j−1

=
(t−1)β+D τ (t,j−1)+δ

(t−1)(2m+β+δ) +j−1
,
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Fig. 1. Examples of PA networks with an anomaly. Here t= 500, τ= 200, δ= 0, m= 1.

whichleadstop β,t,j ≈pin( 3).Sincethepreciseformof ( 3)isalittlesimpler,
wechoosetoworkwiththisparameterizationinsteadtosimplifytheformulas.

Figure 1 illustrates an example of aPAnetworkwith ananomaly.We see
thatalargenumberofedgesconnecttotheanomaly,yetapositiveproportion
oftheedgesofverticesarrivingafterτ areattachedtoordinaryvertices.Our
goalistostudythestructuralpropertiesofaPAnetworkwithananomalyand
theasymptoticdegreedistributionfordifferenttypesofvertices.

3 The Growth of the Degrees in Gt

Inthissection,weanalyzethegrowthofthedegreesinG t,bothfortheanomaly
(Sect. 3.1)andtheordinaryvertices(Sects. 3.2, 3.3).Wefollowtheapproachin
[9,Chapter8],adaptedtoourmodelwithananomaly.

3.1 ExpectedDegreeoftheAnomaly

Westartbyinvestigatingtheexpecteddegreeoftheanomaly:

Proposition1 (Degreeoftheanomaly).Consider an anomaly that occurs 

at time τ , where  1 < τ< t, and follows the attachment rule ( 3)with given 
δ >−m, and  β >0. Then  

E[Dτ (t) +δ] =
mβt

m+β+δ
+c 0 

Γ(t+ m
2m+β+δ

)Γ(τ)

Γ(t)Γ(τ+ m
2m+β+δ

)
. (4)

where c0 =m+δ− mβτ
m+β+δ

. In particular, 

lim
β→∞

E[Dτ (t) +δ] = (t−τ+ 1)m+δ. (5)
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Proof. Recall that E[D τ (τ) +δ] =m+δ, for1< τ< t. Based on ( 3), the
expecteddegreeoftheanomalysatisfiestherecursion

E[Dτ (t,m) +δ|D τ (t,m−1)]

=D τ (t,m−1)+δ+E[D τ (t,m)−D τ (t,m−1)|G t,m−1]

=D τ (t,m−1)+δ+
(t−1)β+D τ (t,m−1)+δ

(t−1)(2m+β+δ) + (m−1)

= (Dτ (t,m−1)+δ)

(

1 +
1

(t−1)(2m+β+δ) + (m−1)

)

+
(t−1)β

(t−1)(2m+β+δ) + (m−1)
.

Takingexpectation,andsolvingtherecursion,givesthat

E[Dτ (t,m) +δ] = (m+δ)

t−1
∏

k2=τ

m−1
∏

k1=0

(

1 +
1

k2(2m+β+δ) +k 1

)

+C m(β,δ,t)

= (m+δ)

t−1
∏

k2=τ

k2 +
m

2m+β+δ

k2 
+C m(β,δ,t)

= (m+δ)
Γ(t+ m

2m+β+δ
)Γ(τ)

Γ(τ+ m
2m+β+δ

)Γ(t)
+C m(β,δ,t), (6)

whereC m(β,δ,t)isafunctionofβ,tandδ,that,withc= 2m+β+δ,equals

Cm(β,δ,t) =

m−1
∑

k=0

[

(t−1)β

(t−1)c+k
×

(t−1)c+m

(t−1)c+k+ 1

]

+
(t−1)c+m

(t−1)c
×

m−1
∑

k=0

[

(t−2)β

(t−2)c+k
×

(t−2)c+m

(t−2)c+k+ 1

]

+· · ·

+

t−1
∏

t1=τ+1 

t1c+m

t1c
×

m−1
∑

k=0

[

τβ

τc+k
×

τc+m

τc+k+ 1

]

.

Foreachtimestep,bythetelescopingsumidentity,

m−1
∑

k=0 

t1β(t1c+m)

(t1c+k)(t 1c+k+ 1)
=t 1β(t1c+m)

m−1
∑

k=0

[

1

(t1c+k)
−

1

(t1c+k+ 1)

]

=t 1β(t1c+m)

(

1

t1c
−

1

t1c+m

)

=
mβ

c
.



114 Q. Liang et al.

Thus,

Cm(β,δ,t) =
mβ

c

[

1 +
(t−1)c+m

(t−1)c
+· · ·+

t−1
∏

t1=τ+1 

t1c+m

t1c

]

=
mβ

c

t
∑

t1=τ+1 

Γ(t+ m
c
)Γ(t 1)

Γ(t 1 +
m
c
)Γ(t)

.

Usingpropertiesofthegammafunction,wecanrewrite

Cm(β,δ,t) =
mβΓ(t+ m

c
)

cΓ(t)

(

1
m
c

−1

)

×

t
∑

t1=τ+1

(

Γ(t 1)

Γ(t 1 −1 + m
c
)

−
Γ(t 1 + 1)

Γ(t 1 +
m
c
)

)

=
mβ

m+β+δ

Γ(t+ m
2m+β+δ

)

Γ(t)

(

Γ(t+ 1)

Γ(t+ m
2m+β+δ

)
−

Γ(τ+ 1)

Γ(τ+ m
2m+β+δ

)

)

=
mβt

m+β+δ
−

mβτ

m+β+δ

Γ(t+ m
2m+β+δ

)Γ(τ)

Γ(t)Γ(τ+ m
2m+β+δ

)
. (7)

Substituting( 7) into (6),weget( 4).Inparticular, mβ
m+β+δ

→mand m
2m+β+δ

→0
asβ→ ∞, so that

lim
β→∞

E[Dτ (t) +δ] =mt+ (m+δ−mτ),

whichimpliesthatalltheincomingedgesareexpectedtoconnecttotheanomaly,
andweget( 5).

Forgeneralj∈[m],wecanextend( 4) to findE[D τ (t,j) +δ].Applyingthe
recursiveapproach,

E[Dτ (t,j) +δ|D τ (t,j−1)]

=D τ (t,j−1)+δ+
(t−1)β+D τ (t,j−1)+δ

(t−1)(2m+β+δ) +j−1

= (Dτ (t−1,m) +δ)×
t−1 + j

2m+β+δ

t−1
+

βj

2m+β+δ
,

andtakingexpectation,wehave

E[Dτ (t,j) +δ] =E[D τ (t−1,m) +δ]

(

1 +
j

(t−1)(2m+β+δ)

)

+
βj

2m+β+δ
.

Weobtain( 4)bysolvingthisrecursion. ��
Figure 2 showsthegrowthofD τ (t)overtime,withourtheoreticalresultfor

E[Dτ (t)+δ]depictedasyellowline.Itisveryinterestingthatthecoefficientofthe
lineargrowth, β

m+β+δ
islargerthantheprobability β

2m+β+δ
in( 3)thatanedge

attachesitselftoananomaly.Indeed,ourassumptionthatverticesmayattach
totheanomalyalsothroughthePAmechanism,hasincreasedtherateofgrowth
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Fig. 2. The degree of the anomaly as a function of time t. The parameters used are 
τ= 200, δ= 0, β= 2.0, m = 1.

(ratherthan,say,givingrisetoanextrapolynomialtermasweconjecturedat
thebeginning).TofurtherexploretherelationbetweenD τ (t)andthenetwork
size,weassumethatt=aτ ,a≥1.ByStirling’sformula,

Γ(t+a)

Γ(t)
=t a(1+O(1/t)), (8)

when t→ ∞anda isfixed(see, e.g., [ 9, (8.3.9)]).Thisapproximationallows
ustosimplifytheformulaofexpecteddegreeofv τ . Indeed,applyingitto( 4)
gives

f(a)= lim
τ→∞

E[Dτ (aτ) +δ]

aτ
=

mβ

m+β+δ

(

1−a − m+β+δ
2m+β+δ

)

,

and

f(1)=0, lim
a→∞

f(a) =
mβ

m+β+δ
,

f ′(a) =
mβ

2m+β+δ
a− m+β+δ

2m+β+δ −1 , f ′(1)=
mβ

2m+β+δ
.

Weseethatlargervaluesofa,correspondingtoanearlieranomaly,resultina
largerdeviationfromthelineargrowthofE[D τ (aτ)].

3.2 ExpectedDegreeoftheOrdinaryVertices

Despitethepresenceofananomaly,ordinaryverticescontinuetoreceiveedges
basedonthepreferentialattachmentmechanism.Weapplytherecursiveapp-
roachfrom[ 9,Section8.3] tocalculatetheirexpecteddegrees,astheanomaly
doesnotaltertheedgeassignmentmechanismforthesevertices.Regardingthe
attachmentfunction,itdiffersfori≤t≤τandt > τ .Therefore,wewillanalyze
thefollowingtwoscenarios:
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(1) Ifi < τ , fort < τ ,theanomalyhasnotyetoccurred,theexpecteddegree
ofv i is

E[Di(Gt) +δ] =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(2m+δ)
Γ(t+ m

2m+δ
)

Γ(1+ m
2m+δ

)Γ(t)
, i= 1,

(m+δ)
Γ(t+ m

2m+δ
)Γ(i)

Γ(i+ m
2m+δ

)Γ(t)
, 1< i < τ.

(9)

See,e.g., [ 9,Exercise8.14] forthecasewherem=1.Remarkably, forthe
modelchosenhere,theformulaform >1isactuallyquitenice.
For t > τ ,theattachmentruleischangedaftertheanomalyappears.Then,
theexpecteddegreeofv i changesinto

E[Di(t) +δ] =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(2m+δ)
Γ(τ+ m

2m+δ
)Γ(t+ m

2m+β+δ
)

Γ(1+ m
2m+δ

)Γ(τ+ m
2m+β+δ

)Γ(t)
, i= 1,

(m+δ)
Γ(τ+ m

2m+δ
)Γ(t+ m

2m+β+δ
)Γ(i)

Γ(i+ m
2m+δ

)Γ(τ+ m
2m+β+δ

)Γ(t)
, 1< i < τ.

(10)
(2) Ifi > τ , fort > τ ,theexpecteddegreeofv i is

E[Di(t) +δ] = (m+δ)
Γ(t+ m

2m+β+δ
)Γ(i)

Γ(i+ m
2m+β+δ

)Γ(t)
. (11)

3.3 ConvergenceofDegreesforOrdinaryVertices

In [ 9, Section8.3], it is proved that the degree of vertices in a standard PA

networkscalesast
1 

2+δ whenm= 1,andast
1 

2+δ/m whenm≥2 (see [ 9, Exercise
8.13]).Inourmodel,ift < τ ,theanomalyisnotincludedinG t,sothatagain

thedegreesofverticesareoftheorder t
1 

2+δ/m .When t > τ , it isnecessaryto
analyzetheconvergenceofthedegreesofverticesseparately.

For the vertices added before τ , we consider the sequence (M (1) 

i (t))t≥i

givenby

M (1) 

i (t) =
Di(t) +δ

E[Di(t) +δ]
.

It is easytosee that (M (1) 

i (t))t≥i isanon-negativemartingale. Indeed, since
m ≤ D i(t) < 2mt, we have E[|M (1) 

i (t)|] < ∞. Computing the conditional
expectation,weget
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E[M (1) 

i (t+ 1)|M (1) 

i (t)]=E[M (1) 

i (t+ 1)|D i(t)]

=
E[Di(t+ 1) +δ|D i(t)]

E[Di(t+ 1) +δ]

=
(Di(t) +δ)

E[Di(t+ 1) +δ]

m
∏

j=1

(

1 +
1

t(2m+β+δ) +j−1

)

=
Di(t) +δ

E[Di(t+ 1) +δ]

t+ m
2m+β+δ

t

=
Di(t) +δ

E[Di(t) +δ]
=M (1) 

i (t),

sincealso

E[Di(t+ 1) +δ] =E[D i(t) +δ]
t+ m

2m+β+δ

t
. (12)

Thus,(M (1) 

i (t))t≥i isanon-negativemartingalewithrespectto(G t)t≥i.Accord-

ingtothemartingaleconvergencetheorem,M (1) 

i (t)convergesalmostsurelyto
alimitingrandomvariableast→ ∞[ 9,Theorem2.24],consequently,theresult
canbeextendedtoestablish theconvergenceofdegreeswhen i < τ . Bythe
Stirling’sformula,forsufficientlylargetandτ ,

Di(t) +δ
(

t
τ

)
m

2m+β+δ τ
m

2m+δ

=M (1) 

i (t)
(d+δ)Γ(i)

Γ(i+ m
2m+δ

)
(1+o(1))

a.s.−→
(d+δ)Γ(i)

Γ(i+ m
2m+δ

)
ξ
(1) 
i ,

whereξ
(1) 
i isthealmostsurelimitofM (1) 

i (t),andd= 2mfori= 1,andd=m

fori >1.Thus,wheni < τ , Di(t)+δ

( t
τ )

m
2m+β+δ τ

m
2m+δ

convergesalmostsurelyast→ ∞

andτ→ ∞.
Similarly,fortheverticesaddedafterτ ,let(M (2) 

i (t))t≥i begivenby

M (2) 

i (t) =
Di(t) +δ

E[Di(t) +δ]
, i>τ.

Following the previously described steps again, we get (M (2) 

i (t))t≥i is a non-
negativemartingale,andwhentislargeenough,

Di(t) +δ

t
m

2m+β+δ
=M (2) 

i (t)
(m+δ)Γ(i)

Γ(i+ m
2m+β+δ

)
(1+o(1))

a.s.−→
(m+δ)Γ(i)

Γ(i+ m
2m+β+δ

)
ξ
(2) 
i ,

whereξ
(2) 
i isthealmostsurelimitofM (2) 

i (t).Thus,wheni > τ, Di(t)+δ

t
m

2m+β+δ
con-

vergesalmostsurely.
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4 Heuristic Derivation of the Limiting Degree 

Distribution for Ordinary Vertices 

In this section, we aim to investigate the limiting degree distribution of the
ordinaryverticesinaPAnetworkcontainingananomaly.ForthestandardPA
network, the exponent of power law degree is 3+ δ

m
. The rigorous proof in

[9,Chapter8]stronglyreliesontherecursiverelationbetweenthefractionsof
verticeswithdegreek.However, it ishardtoadaptthisapproach,duetothe
alteration in the recursionafter theappearanceof ananomaly.Consequently,
therigorousderivationremainsanopenproblemforfutureresearch.Here,we
presentaheuristicargument[ 11]thatyieldsresultsconsistentwithournumerical
simulations.

Themainideaisthatifwecanfindtherangeofvertexindexisuchthatthe
averagedegreeofvertexv i fallsin(k−0.5, k+0.5),thenthelimitingfractionp k

ofverticesofdegreekcanbeevaluatedasthatrangedividedbyt, ast→ ∞. We
willexplorethepower-lawdegreedistributionindifferentscalingregimesforthe
arrivaltimeofanomalyτ asafunctionoftimet.Specifically,weconsiderthree
cases:whentheanomalyarriveslate,mid-wayorearly.

4.1 LateAnomaly:τ=t−t γ , γ∈(0,1)

Ifthearrivaltimeofv τ isquitelate,forexamplewhenτ=t−t γ ,whereγ∈(0,1),
thenonlyavanishingfractionofverticesarrivesaftertheanomaly.Therefore,
thedegreedistributionwill bedefinedby thevertices that arrivedbefore the
anomaly.Wheni < τ,theexpecteddegreeofv i is( 10),hereweonlyconsider
i >1,astandτ arelargeenough,bytheStirlingformula,E[D i(t) +δ] canbe
approximatedas

E[Di(t)+δ] = (m+δ)

(

t

t−t γ

)
m

2m+β+δ
(

t−t γ

i

)
m

2m+δ

(1+o(1)), i<τ. (13)

AssumethatE[D i(t) +δ] falls intheinterval(k+δ−0.5, k+δ+ 0.5),theni
shouldbein

(

(m+δ) 2+ δm
(1−t γ−1)

β
2m+β+δ t

(k+δ+ 0.5) 2+ δm
,(m+δ) 2+ δm

(1−t γ−1)
β

2m+β+δ t

(k+δ−0.5) 2+ δm

)

.

LetL 1 bethelengthofinterval,

L1 = (m+δ) 2+ δm (1−t γ−1)
β

2m+β+δ t

(

1

(k+δ−0.5) 2+ δm
−

1

(k+δ+ 0.5) 2+ δm

)

= (m+δ) 2+ δm (1−t γ−1)
β

2m+β+δ t
k2+ δm

[

(

1 + δ+0.5 
k

)2+ δm −
(

1− 0.5−δ
k

)2+ δm
]

k4+ 2δ
m

(

1 + δ+0.5 
k

)2+ δm
(

1− 0.5−δ
k

)2+ δm
.



Degrees in Preferential Attachment Networks with an Anomaly 119

NextweapplythebinomialtheoremtosimplifytheexpressionofL 1,toobtain,
ask→ ∞,

L1 =

(

2 +
δ

m

)

(m+δ) 2+ δm (1−t γ−1)
β

2m+β+δ tk−(3+ δm )(1+o(1)),

sothat,fork→ ∞,

p(late) 

k = lim
t→∞

L1 

t
=

(

2 +
δ

m

)

(m+δ) 2+ δm k−(3+ δm )(1+o(1)). (14)

Thus, theasymptoticdegreedistributionremainsunchangedcomparedtothe
standardPAnetwork.

4.2 Mid-WayAnomaly:τ=αT,α∈(0,1)

Assumethatthearrivaltimeofv τ scaleslinearlywitht, that is,τ=αt,where
α∈(0,1).For1< i < τ ,theaveragedegreeisapproximatedby

E[Di(t) +δ] = (m+δ)α − m
2m+β+δ

(

αt

i

)
m

2m+δ

(1+o(1)), i<τ. (15)

Similarly,forthevertexv i withi > τ ,

E[Di(t) +δ] = (m+δ)

(

t

i

)
m

2m+β+δ

(1+o(1)). (16)

Weseethattheaveragedegreeof theverticesbornafterτ grows slower than
thatoftheverticesthatarrivedbeforeτ .Moreover,theright-handsideof ( 16)
isbounded,andthus it cannot fall into the interval (k+δ−0.5, k+δ+ 0.5)
forlargek.Therefore,weperformderivationsfortheverticesthathavearrived
beforetimeτasthehigherorderprobabilitytoachievealargedegreek.Repeat
thestepsinSect. 4.1,weget,ask→ ∞,

p(mid−way) 

k =

(

2 +
δ

m

)

(m+δ) 2+ δm α
β

2m+β+δ k−(3+ δm )(1+o(1)). (17)

Fromthis formulawesee that theverticesarrivingbeforeτ followthepower
lawdistributionwithexponent3+ δ

m
.Thisisthesamepower-lawexponentas

inthestandardPAnetwork.However,wegeta factorα
β

2m+β+δ in front.This
conformswiththeintuitionthattheanomalyslowsdownthedegreegrowthof
high-degreevertices.Moreover,thisfactordecreaseswithβ,aslargerβincreases
theeffectoftheanomaly.

4.3 EarlyAnomaly:τ=t γ , γ∈(0,1)

Suppose that the anomaly arrives quite early at τ = t γ , where γ ∈ (0,1).
Thenthefractionofverticesbornbeforeτamongallverticesisvanishing.There-
fore,weinvestigatethebehaviorofverticesbornafterτ .Repeatingthestepsin
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Sect. 4.1, we obtain an asymptotic degree distribution given by

p(early) 

k =

(

2 +
β

m
+

δ

m

)

(m + δ)2+ βm+ δm k−(3+ βm+ δm )(1 + o(1)), k → ∞. (18)

The power-law exponent of the degree distribution changes to 3 + β
m

+ δ
m

. We
see that the anomaly has altered the power-law exponent, as also observed in
the superstar model [7].

4.4 Comparison to the Empirical Degree Distribution

Figure 3, 4 and 5 show the empirical and the theoretically predicted degree dis-
tributions for the PA network with the late anomaly, the mid-way anomaly, and
the early anomaly, respectively.

(a) m = 1, β = 5.0, δ = 0. (b) m = 4, β = 10.0, δ = 0.  

Fig. 3. The complementary cumulative degree distribution for PA network with late 
anomaly, parameters are t = 50000, τ = 49950, γ = 0.3615. 

Generally, we see that our computations correctly predict the slope, but the
multiplicative factor may deviate from the experiments. In the future, a rigorous
derivation for the mid-way and early anomaly is needed. The late anomaly is
equivalent to standard PA network but we plot the line that we derived in (14) to
show the difference between the correct multiplicative factor and that resulting
from the heuristic derivation.

In Fig. 3 we see that when the anomaly arrives near the end of the network’s
growth, the proportion of vertices with degree at least k is close to that of the
standard PA network. The straight line derived from (14) (dashed blue line)
has the correct slope, but is slightly different from the empirical degree distri-
bution. The dashed red line, based on the more precise formula (8.4.11) in [9,
Chapter 8] for the standard preferential attachment model has both the slope
and the multiplicative factor matching the experiments.

In Fig. 4 for the mid-way anomaly, the proportion of vertices with degree at
least k is close to that for the standard PA network, but differs by a factor smaller



Degrees in Preferential Attachment Networks with an Anomaly 121

(a) m = 1, β = 5.0, δ = 0. (b) m = 4, β = 10.0, δ = 0.  

Fig. 4. The complementary cumulative degree distribution for PA network with mid-
way anomaly, parameters are t = 50000, τ = 25000, α = 0.5. The green line uses the 

formula (8.4.11) in [ 9, Chapter 8], multiplied by factor α
β

2m+β+δ as in (17). The dashed 
blue line follows (17). (Color figure online) 

(a) m = 1, β = 5.0, δ = 0. (b) m = 4, β = 10.0, δ = 0.  

Fig. 5. The complementary cumulative degree distribution for PA network with early 
anomaly, parameters are t = 50000, τ = 50, γ = 0.3615. 

than 1 as predicted by (17). Interestingly, the experiments agree with formula

(8.4.11) in [9, Chapter 8] multiplied by the factor α
β

2m+β+δ . Thus, our heuristic
derivation correctly predicts the effect of a mid-way anomaly. The visible outlier
in Fig. 4 is the anomaly itself.

In Fig. 5 for the early anomaly, the proportion of vertices with degree
greater than k is significantly lower, as the anomaly attracts a fraction of edges
from the very beginning. However, (18) predicts an even steeper slope. We also
note that the tail of the distribution deviates strongly to the right from the
straight line. We will come back to this phenomenon in the next section, where
we analyze the behavior of the oldest ordinary vertex.

5 Degree Growth of the Oldest Vertex 

Because the existing vertices connect to a new coming vertex with a probability
proportional to its degree, it is more likely that the old vertices receive more
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andmoreedgesovertime,andtheirdegreesareoftheordert
1 

2+δ/m [9,Theorem
8.2].Wefurtherexplorehowthedegreeof theoldestvertexbehavesafterthe
anomaly’s occurrence, by computing the exponent of power-lawdegree of the
initialvertexv 1.ByStirling’sformula,astandτarelargeenough,theexpected
degreeoftheoldestvertexis

E[D1(t) +δ] = (2m+δ)

(

t

τ

)
1 

2+ 
β
m

+ δ
m τ

1 

2+ δ
m (1+o(1)).

Indifferentscenarios,ast→ ∞,theapproximateexpressionareshownasfol-
lows:

Lateanomaly:Ifτ=t−t γ , γ∈(0,1),

E[D1(t) +δ] = (2m+δ)t
1 

2+ δ
m (1+o(1)).

Mid-wayanomaly:Ifτ=αt,α∈(0,1),

E[D1(t) +δ] = (2m+δ)α
1 

2+ δ
m

− 1 

2+ 
β
m

+ δ
m t

1 

2+ δ
m (1+o(1)).

Earlyanomaly:Ifτ=t γ , γ∈(0,1),

E[D1(t) +δ] = (2m+δ)t
γ

2+ δ
m

+ 1−γ

2+ 
β
m

+ δ
m (1+o(1)).

Interestingly,themid-wayandtheearlyanomalyaffectthemeandegreeof
the oldest vertex in adifferentway.Themid-wayanomaly reduces themean
degreebyaconstantfactor,whileanearlyanomalychangestheexponentoft.
Moreover,inthecaseofanearlyanomaly,E[D 1(t)+δ]growsmorequicklythan

t
1 

2+ 
β
m

+ δ
m .Thelatterexpressionwouldbeconsistentwiththepower-lawdistri-

butionforanearlyanomaly in( 18)meaningthattheoldestordinaryvertices
havehigherdegreesthanpredictedby( 18);therefore,weseemanyoutliersto
therightinFig. 5.

6 Conclusion and Further Research 

WeintroducedaPAnetworkincorporatingananomaly,wheretheattachment
rule of the anomaly is vastly different fromthat of the ordinary vertices.We
derivedinsightsonthegrowthofthedegreesandtheirdistributioninthismodel.
Belowwelistsomedirectionsforfurtherresearch:

(1) Concentrationofthedegreeofananomalousvertex.WeseeinFig. 2
thatthedegreeoftheanomalyisclosetoitsmean.Themartingaleconver-
gencetheoremisastandardwaytoprovesuchconcentration.However,we
couldnotdirectlyapplythismethodtothedegreeoftheanomalydueto
thepresenceofalinearterminitsexpression.
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(2) Convergenceofdegreesequences.In[ 9,Chapter8],thelimitingdegree
distributionisderivedfromtherecursiveequationsforthenumberofvertices
ofdegreek.However,wecouldnotusethismethodbecausetheoccurrence
of ananomaly changes the recursion. Inpreviousworks [ 1,6], theasymp-
toticdegreedistributionofPAnetworkswithchangepointswasrigorously
derivedusingcontinuous-branchingprocesses,whichembedthegrowthof
thePAnetworkform=1incontinuoustime.Investigatingwhetherthese
techniquescanbeadaptedtoourmodelisapromisingdirectionforgaining
deeper insights into the interplaybetweenanomalies anddegreedistribu-
tions.

(3) Different attachmentmechanism. Inthispaper,weconsideronlythe
casewheretheanomalyattractsnewedgesataconstant additionalrate.An
interestingdirectionforfutureresearchwouldbetoexplorescenarioswhere
theanomalyattachesnewedgesatratesthatchangeovertime,suchasan
increasingrateorforarandomlydeterminedduration.

(4) Anomaly detection. Building on our results, detecting anomalies is a
naturalnextstep.Existingwork[ 13]hasutilizedLyapunov-basedmethod
todetect certainanomalous events inPAnetwork.Ourmodel,where the
anomalyarrivesataspecificpointandalterstheattachmentmechanisms,
requiresadifferentapproach.Whilemanystudiesonanomalydetectionin
dynamicnetworksfocusonanalyzingspatialandtemporal[ 12,14],orstruc-
tural[ 10],features,wefinditaninterestingproblemtodetecttheanomaly
basedonlyonthehistoryofG t.Ourinitialattemptsshowthatthisproblem
ismorechallengingthanonecouldexpectgivenhowstrongouranomalyis.
Wehopetoreportontheprogressinthenearfuture.
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