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Abstract. We consider a preferential attachment model that incorpo-
rates an anomaly. Our goal is to understand the evolution of the network
before and after the occurrence of the anomaly by studying the influence
of the anomaly on the structural properties of the network. The anomaly
is such that after its arrival it attracts newly added edges with fixed
probability. We investigate the growth of degrees in the network, find-
ing that the anomaly’s degree increases almost linearly. We also provide
a heuristic derivation for the exponent of the limiting degree distribu-
tions of ordinary vertices, and study the degree growth of the oldest
vertex. We show that when the anomaly enters early, the degree distri-
bution is altered significantly, while a late anomaly has minimal impact.
Our analysis provides deeper insights into the evolution of preferential
attachment networks with an anomalous vertex.

Keywords: Preferential attachment network - Anomaly - Degree
Structure + Dynamic network

1 Introduction

Dynamic network models, where nodes and edges appear or disappear over time,
attracted a lot of attention in the network science literature. Among these mod-
els, the Preferential Attachment (PA) network, as presented by Barabdsi and
Albert [2], has been particularly influential, because it explains the emergence of
scale-free property in networks through the ‘rich-get-richer’ phenomenon. Specif-
ically, the probability that a new vertex connects to an existing vertex is pro-
portional to the degree of the existing vertex.

One extension of the standard PA network is the superstar model [7], which
is used to analyze key features of retweet networks. In this model, the initial
vertex in the network is a superstar. At each time step, a newly added vertex
connects to the superstar with probability p, or to one of the non-superstar
vertices with probability 1 — p according to the preferential attachment rule.
The superstar alters the dynamics and the resulting degree distribution. It was
shown in [7] that the non-superstar vertices follow a power-law degree distri-
bution, though with a modified exponent 3 + ﬁ. Additionally, the maximal
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degree of the non-superstar vertices is likewise affected; it grows slower with
thenetworksize.Inthispaper, weconsideraPA model withananomaly. Our
anomalyissimilartothe superstar,butitmayarriveatanypointoftime.
Sincetheanomalyaltersthenetworkdynamics,ourworkiscloselyrelatedto
thelineofresearchonPAmodelswithachange point,whereaparameterofthe
PA modelchangesat somepoint of time. Forinstance, | 1,6]investigate meth-
odstoidentifythechangepointinpreferentialattachmenttreesviaembedding
thediscretetimetreeinacontinuous-timebranchingprocessandstudyingthe
proportionofleaves,while[  5]proposesanapproachbasedonthefractionofver-
ticeswithminimaldegreetodetectalatechangepoint. Furthermore, | 8)applies
thelikelihoodratiotechniquetoestimatethechangepointinaPA model,and
extendthemethodtodetect multiplechangepointsviascreeningandranking,
aswellasbinarysegmentation.
While change point detection addresses abrupt changes in the parameters
of the network dynamics, here we instead focus on how structural properties
evolvewhenasingleanomalousvertexentersaPA network. Toexplorethis,we
suggest anew model incorporating an anomaly. Our model is an extension of
the superstar model, and the twomodels are highly similar when theanomaly
coincideswiththeinitial vertex. Ourmaincontributionsareasfollows:

> WeproposeaPAnetworkwithananomaly. Thenetworkevolvesaccording
tothestandard preferentialattachmentruleuntiltheanomalyenters. Once
the anomaly appears in the network, it attracts newly added edges with a
fixed probability, plusaprobability that dependsonitscurrent degreeasin
thenormal PA dynamics.

> Wecomputethemeandegreeoftheanomalyasafunctionofnetworksize,
andstudythemeandegreeofotherverticesandtheirconvergence.

> Weprovideaheuristicderivationofthelimitingdegreedistributionofthe
ordinaryverticeswhentheanomaly arrivesin variousdifferent stagesofthe
network’sevolution.

Ourresultsserveasafirststeptowardstheunderstandingofanomalydetec-
tioninPAnetworks.Inthefinalsection,weprovideanoutlookonthisdetection
problem.

2 Model Description

We start by introducing the preferential attachment network without an
anomaly. Themodelconstructsagraphsequence (G t);>o suchthateachgraph
G; isformedbyaddingonenewvertexandmedgesconnectingthenewvertex
toexisting vertices, wherem > 1. Let G + = (Vi, By),whereV  ={v 1,40 +}
andE; C {{vw}:vweV ;}. Thanitial graphG 1 consistsofasingle vertex

v1 andmself-loops. Fort >1,noself-loopsare present. We treat the process

of connecting each edge from anewly introduced vertex to an existing vertex

in the network as an individual step. Specifically, let G ¢,j denotethenetwork
after the jth edge of a newly added vertex v + connects to an existing vertex
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v; € {v1,v2,; v _1},whereje[m]= {1,...,m}. We letD i(tg)denotethe
degreeofvertexiinG ¢ j,andintroduceafitness parameterd >—m.Further,we
defineG ¢ =G ¢m =G 1110, andD ;(t) =D ;(t;m).Fort 31, je[m|,wedefine

theattachmentruleforthejthedgelinkingtothevertexw i €{v1,v25 40 -1}
asdefinedin| 3,4],andstudiedfurtherin[ 5]
D;(tj—1)+0
Rvyj—vi|Gyj-1)= (tj—1) ) (1)

- 2m(t=1)+(t-1)0+ (j—1)

Assumethatananomalyoccursatsometimersatisfying1< =< ¢,where
the attachment rule changes after the anomaly has occurred. We denote the
anomalybythevertexv ,.Afterr,eachnewedgeconnectstotheanomalywith
probability 5

_— 2
2m+L+6 2)
where(3 >Disaparameterofthemodel. Otherwise, withcomplementaryprob-

ability, theedge connectstoany existing vertex,including theanomaly, by fol-
lowingtheusual PArule. Formally,thedynamicsofthemodel at step tareas
follows:

p=

(I) Ift < 7,theanomalousvertexhasnotoccurredinthegraphG +,theattach-
mentruleofG ; isthesameas( 1).
(II) Ifl< 7<t,theevolutionrulechangesasfollows:

D;(tj—1)+6 ifi £
-
t—1)(2 +9) H—1 ’
Rvij —vi|Gyjo1) = ((t—l))(ﬂfgﬂ 7&33—1)% i (3)
=T.

(t—1)(2m+B+0) H—1

Toexplaintherationalebehind(  3),supposem=1,hencej=1listheonlyedge
ofvertexv ;. Then
t-1)p+D (t—1)+d
(t—1)(2+6+9)

D, (t—1)+0
(t—1)(246)

=p+ (+p)

B8
245+

probability p to the anomaly, and proportional to the degrees (including the
anomaly)withprobabilityl —p. Thisexplainsthechoicein( 2),whichisezactly
correct form=l. To make (  2)ezactly correctform >l,wehavetochoose
p=p g.,,; slightlydifferently,sothat

D, (tj—1)+6
t—1)(2m+0) H—1
_ Py [(A=1)(2m+6) + (j—1)|+(1—p 5.t,5) (D7 (tj—1)+9)
(t—1)(2m+9) H—1
(t—1)8+D  ,(tj—1)+6
(1) (2mAB+S) H—1 ’

withp= .Hence,wecanthinkofourconnectionruleasconnectingwith

pptg + (Bp ﬁ,t,j)(
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Vertices after T Vertices after T
N Anomaly B Anomaly
Vertices before T Vertices before T

(a) B =05 (b) B =2.0

Fig. 1. Examples of PA networks with an anomaly. Here t= 500, 7= 200, 6= 0, m= 1.

whichleadstop s+, ~pin( 3).Sincethepreciseformof(  3)isalittlesimpler,
wechoosetoworkwiththisparameterizationinstead tosimplify theformulas.
Figure 1 illustrates an example of a PA network with an anomaly. We see
thatalargenumberofedgesconnecttotheanomaly, yet apositiveproportion
oftheedgesof vertices arriving after 7 are attached to ordinary vertices. Our
goalistostudythestructuralpropertiesofaPAnetworkwithananomalyand
theasymptoticdegreedistributionfordifferent typesofvertices.

3 The Growth of the Degrees in G,

Inthissection,weanalyzethegrowthofthedegreesinG t,bothfortheanomaly
(Sect. 3.1)andtheordinaryvertices(Sects. 3.2, 3.3). Wefollowtheapproachin
[9,Chapter8],adapted toourmodel withananomaly.

3.1 Expected Degreeofthe Anomaly

Westartbyinvestigatingtheexpecteddegreeoftheanomaly:

Proposition1 (Degreeoftheanomaly). Consider an anomaly that occurs
at time T, where 1 < =< t, and follows the attachment rule ( 3) with given
6 >m, and B 0. Then

mt It+ 2mf5+5)1(7')
E[D, (1) 48] = + . 4
D)) = s T O Tt o) @
where cg =m-+— % In particular,

ﬁler;o E[D,(t) 4] = (t—1+ 1)m+4. (5)
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Proof. Recallthat E[D (1) 40] =m+4, foi< = t.Basedon ( 3), the
expecteddegreeoftheanomalysatisfiestherecursion

E[D,(tyn) 91D (tsn—1)
=D (tm—1)+0+E[D  ;(tm)-D (tm—-1)|G ¢m-1]
t—1)p+D  (t;m—1)40
(t=1)(2m~+[+9) 4+ (m—1)

1
= (D;(tjm—1)+46) (1 + (t=1)(2m+B+9) + (m—1) )

(t-1)8
(t—=1)(2m+p+9) + (m—1)

=D (t;n—1)+0+

_|_

Takingexpectation,andsolvingtherecursion,givesthat

1 m
E[D;(tyn) 48] = (m+9) 0<1+k2( B 1>+C (B51)

I+ 557 I(7) N
Tt 2 )IT)

whereC ™ ((34¢)isafunctionof 3,tandd, that, withc= 2m+06+9,equals

migsn S~ [ (=18 (t=D)etm
Cm(6o2) = ];) [(t—1)c+k; * EDetkt 1 }
(t-Vetm m—1|:( (=28 (t=2)ctm ]+

(e & [Eetk  (F2etkt 1

C™(Bo1), (6)

= (m+9)

t—1 m—1

tic+m 70 Tetkm

X X .

i H tic Z[TC—HC Tetk+1 ]
t1=7+1 k=0

Foreachtimestep,bythetelescopingsumidentity,

m—1

m—1
t16(tic+m) B 1 1
Z (tict+k)(t 1ctk+ 1) =t 1f(tem) ;;) [(tlc+k) (tic+k+ 1) ]

k=0
=t 18(t1¢c+m) <1— L ) m75

tic tictm
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Thus,

C™(Bot) = —

_mp o~ It )1
RIS GEa vy

Usingpropertiesofthegammafunction,wecanrewrite

e MBI ) (1 NN DR T
C(Bh) = cI(t) (ml > x Z (Rt111+ =) _Ht 11+ T))

c ti=r+1
mB I+ 57575) It+ 1) I+ 1)
T A peo It) (m+ o) I+ 21@))
_ mBt  mfr I+ 5t )1(7) . )
m+G+9 mAp+e I+ 5.7%5+5)
Substituting( 7) into (6),weget( 4).Inparticular, #ﬁié —mand 5 s —0

asf3— o0, so that

lim E[D,(t) 48] =mt+ (m+6—mr),

B—o0

whichimpliesthatalltheincomingedgesareexpectedtoconnecttotheanomaly,
andweget( 5).

Forgeneralj € [m], wecanextend ( 4) to ind&E[D ,(tg) 49]. Applyingthe
recursiveapproach,

EID,(t5) 91D (tj-1)]
(t—l)ﬂJrD T(tj—1)+5

=D =D+ G Gmega0) 51

=1+ 2m~£5+5 ﬁj
= ~1
(Dr(t=1,m) 46)x t—1 2mAp+0
andtakingexpectation, wehave
: J Bj

E[D,(ty) 4] ZE[D (t—1,m) 4 1+ +
(D (t5) +0] £ ( m) 4] ( (t—1)(2m+5+9) ) 2m+PB+0
Weobtain( 4)bysolvingthisrecursion. O

Figure 2 showsthegrowthofD . (t)overtime,withourtheoreticalresultfor
E[D, (t)+0d]depictedasyellowline.Itisveryinterestingthatthecoefficientofthe
lineamgrgwth7 %ﬁ% islargerthantheprobabili'ty ﬁ in( 3)thatanedge
attachesitselftoananomaly.Indeed, ourassumptionthat verticesmay attach

totheanomalyalsothroughthePAmechanism,hasincreasedtherateofgrowth
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1754 Simulated degree, T = 200
Expected degree, E[D.(t)] from Proposition 1

Degree of the anomaly
= o e
w ~ (=] N w
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Fig. 2. The degree of the anomaly as a function of time ¢. The parameters used are
7=200,6=0, = 2.0, m = 1.

(ratherthan,say, givingrisetoanextrapolynomial termasweconjectured at
thebeginning). Tofurtherexploretherelation between D - (t)and thenetwork
size,weassumethatt=a7,a>1.ByStirling’sformula,

M),
—— =t “(1+0(1/1)), (8)
o)
whent — oand aisfixed (see,e.g., [ 9,(8.3.9)]). Thisapproximation allows
us tosimplify the formulaof expected degree of v r.Indeed,applyingitto(  4)
gives
L E[D (at)4] =~ mpj _ mt8ts
fla)= 112100 ar = it Bto (1—a 2 +5+6> ,
and
mpj
1)=0, li S
fQ) m )= s
g e B mms e M8
)= g - W= s

Weseethatlarger valuesofa, correspondingtoanearlieranomaly, resultina
largerdeviationfromthelineargrowthofE[D . (a7)].

3.2 Expected Degreeofthe Ordinary Vertices

Despitethepresenceofananomaly,ordinary verticescontinuetoreceiveedges
based on the preferential attachment mechanism. We apply therecursive app-
roachfrom| 9,Section8.3]tocalculate their expected degrees, astheanomaly
doesnotaltertheedgeassignmentmechanismforthesevertices. Regardingthe
attachmentfunction,itdiffersfori<t<randt > 7.Therefore,wewillanalyze
thefollowingtwoscenarios:
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(1) Ifi < 7, fot < 7,theanomalyhasnotyetoccurred, theexpected degree

OfUz- is
I+ 55) .
E[D;(G) 4] = (2m+96) I{Sj' iﬁl){gﬂ , =il, )
o) e l<i<T.

Mot )00

See,e.g.,[ 9,Exercise8.14] for the case wherem=1. Remarkably, for the
modelchosenhere, theformulaform >lisactuallyquitenice.

Fort > 7, theattachmentruleischangedaftertheanomalyappears. Then,
theexpecteddegreeofv ; changesinto

I+ Sms M+ 2mfﬁ+5)

(2m+9) — - , =i,
— [(1+ 2m+5)]‘(7—+ 2m+ﬂ+§)[(t)
I+ gt )t 2m+ﬁ+6)Rz) .
(m+0) —= - - . I<i<T
it ) Tt 55 I()
(10)
(2) Ifi > 7, for > 7,theexpecteddegreecofv i 1s
I+ 5t ) 100)
E[D;(t) 4] = (m+6) —— 2t L (11)
it 53575 1()
3.3 ConvergenceofDegreesfor Ordinary Vertices
In [ 9, Section8.3], it is proved that the degree of vertices in a standard PA
networkscalesast 7+5 whenm= lanchs =o7m whenm>2 (see [ 9, Exercise
8.13]).Inourmodel,ift < 7,theanomalyisnotincludedinG +,sothatagain
thedegreesof verticesareoftheordert 77377 . Whent > T,itisnecessary to
analyzetheconvergenceofthedegreesofverticesseparately.
For the vertices added before 7, we consider the sequence (M ()i
givenby
M fl)(t) — M
' E[D;(t) 4]

Itiseasy toseethat (M (V(¢));>; isanon-negative martingale. Indeed, since
m <D ;(t) < 2mt,wehave E[|[M (" (t)|] < co. Computing the conditional
expectation, weget
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EMV(t+ 1M P (]=EM [ (t+1)D ()]
_ E[Di(t+ 1) 4|D ()]
E[D;(t+ 1) 4]

ORI s 1
s o 1 ( mmss )

_ Di(t)# t+ StsTs
~ E[D;(t+ 1) 4] t
D,
“Ep

sincealso

E[Di(t+1) 4] <E[D  ;(t) 4] % (12)

Thus,(M {V(t))¢>; isanon-negativemartingalewithrespectto(G ), Accord-
ingtothemartingaleconvergencetheorem, M [ (t)convergesalmost surely to
alimitingrandomvariableast— od 9, Theorem2.24|,consequently, theresult
can be extended to establish the convergence of degreeswheni < 7. Bghe
Stirling’sformula, forsufficientlylargetandr,

D;(t) 46

™
(%) Im+B+0 TWW:—S

g oy LdHO)ITi) o
GO
—>I—(Z+ 2771::-5) t

where& i(l) isthealmostsurelimitof M [V (t),andd= 2mfori= landi=m

Di(t)+5

fori >1.Thus,wheni < T, ———S—~—=— convergesalmostsurelyast— oo
(%) 2m+BT8 £ 2m+s
and7— o00.
Similarly, fortheverticesaddedafterr,let (M 2(t))i>i begivenby
D;(t) 46
MP(t) = e, >

Following the previously described steps again, we get (M 2(t))i>i isanon-
negativemartingale,andwhentislargeenough,

D;(t 0)ITi

M :Mf)(t)%(lﬂ(l))

., (mA0)I(0) £
it i)
where& 52) isthealmostsurelimitof M [*(¢). Thus,wheni > 7 % con-
t m

vergesalmostsurely.



118 Q. Liang et al.

4 Heuristic Derivation of the Limiting Degree
Distribution for Ordinary Vertices

In this section, we aim to investigate the limiting degree distribution of the
ordinaryverticesinaPA network containingananomaly. Forthestandard PA
network, the exponent of power law degree is 3+ %. The rigorous proof in
[9, Chapter 8] stronglyrelieson therecursiverelation between the fractions of
vertices with degree k. However, it ishard toadapt thisapproach, duetothe
alteration in the recursion after the appearance of an anomaly. Consequently,
therigorousderivation remains an open problem for futureresearch. Here, we
presentaheuristicargument| 11]thatyieldsresultsconsistentwithournumerical
simulations.
Themainideaisthatifwecanfindtherangeofvertexindexisuchthatthe
averagedegreeofvertexv ; fallsin(k— 0.5, &+ 0.5),thenthelimitingfractionp k
ofverticesofdegreekcanbeevaluatedasthatrangedividedbyt, ag— oo. We
willexplorethepower-lawdegreedistributionindifferentscalingregimesforthe
arrivaltimeofanomaly Tasafunctionoftimet.Specifically, weconsiderthree
cases:whentheanomalyarriveslate, mid-wayorearly.

4.1 LateAnomaly:T7=t—t 7,~4€(0,1)

Ifthearrivaltimeofv . isquitelate,forexamplewhenr=t—t 7, whereye(0,1),
thenonly avanishing fraction of vertices arrives after the anomaly. Therefore,
the degree distribution will be defined by the vertices that arrived before the

anomaly. Wheni < jtheexpected degreeofv i is( 10),hereweonly consider
i >1,astand rarelargeenough, by the Stirling formula, E[D i(t) 48] carbe
approximatedas

E[Di(t)+5]:(m+5)< ¢ )MMMC_’? 7>2'"T+5(1+o(17),< i (13)

t—t 7 7

AssumethatE[D ;(¢) 46]fallsintheinterval (k+0—0.5, k+d+ 0.5),theni
shouldbein

¢+ -1 ﬁ ¢+ -1 ﬁ
(m+5) 2+7‘% (1 i ) +ﬁ+5t’(m+5) 2+% (1 i ) +6+5t
(k+0+0.5) (k+0—-0.5)

Let L 1 bethelengthofinterval,

; 1 1
Ly = (m+8) ¥ (1—t ")zt -
1= (mtd) ( ) (k+6—0.5) 2tm  (k+6+0.5) 2tm

k2+% [(1 + 5+k?,5)2+% B (17 0‘5]€—5)2+%:|

5 8

= (m40) *Tm (1t 7" Hzmrret . .

28 540.5\ 2t m 0.5-5\2tm
e (14 8508) 7 (1 03t)
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Nextweapplythebinomialtheoremtosimplifytheexpressionof L 1,toobtain,
ask— oo,

L= (2 + i) (m+6) 2w (1—t 7= matsms th~ G+ %) (140(1)),
sothat,fork— oo,
L 1) 9. 5
P =i 2= (24 1) med) RO o). (19
— 00 m

Thus, the asymptotic degree distribution remains unchanged compared to the
standard PA network.

4.2 Mid-Way Anomaly: T=aT,a€(0,1)

Assumethatthearrivaltimeofv . scaleslinearlywitht, that isT=at,where
a€(0,1).Forl< i < 7,theaveragedegreeisapproximated by

BIDi() 4] = (mtd)a = (2) 7 (o, < (15)
Similarly,forthevertexv ; withi > 7,
t\ FtaTs
E[D;(t) 46] = (m+0) <Z) (140(1)). (16)

Weseethat the average degree of the vertices born after 7 grows slower than
thatoftheverticesthatarrived beforeT.Moreover, theright-handsideof ( 16)
isbounded, and thusit cannot fall into the interval (k+0—0.5, k+d+ 0.5)

forlargek. Therefore, weperformderivationsfortheverticesthathavearrived
beforetimerasthehigherorderprobabilitytoachievealargedegreek.Repeat
thestepsinSect. 4.1,weget,ask— oo,

) 0 ]
P = <2+ m) (m+8) Hmarrm k=Gt (1ho(1).  (17)

From this formula we see that the vertices arriving before 7 follow the power
lawdistributionwithexponent 3+ % . Thisisthesamepower-lawexponent as

in thestandard PA network. However, we get a factor « T45%5 infront. This
conformswiththeintuitionthattheanomalyslowsdownthedegreegrowthof
high-degreevertices.Moreover,thisfactordecreaseswith3,aslargerBincreases
theeffectoftheanomaly.

4.3 Early Anomaly: 7=t 7,~€(0,1)

Suppose that the anomaly arrives quite early at 7 = ¢ 7, where v € (0,1).
Thenthefractionofverticesbornbeforeramongallverticesisvanishing. There-
fore,weinvestigatethebehaviorofverticesbornafterr.Repeatingthestepsin
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Sect. 4.1, we obtain an asymptotic degree distribution given by
]
B = (24 5k 2 ) m o AP RO 1 o), ko (1)

The power-law exponent of the degree distribution changes to 3 + % + %. We
see that the anomaly has altered the power-law exponent, as also observed in
the superstar model [7].

4.4 Comparison to the Empirical Degree Distribution

Figure 3, 4 and 5 show the empirical and the theoretically predicted degree dis-
tributions for the PA network with the late anomaly, the mid-way anomaly, and
the early anomaly, respectively.

10°
©  Empirical: Standard PA N »  Empirical: Standard PA

N

LN Empirical: PA with late anomaly . R Empirical: PA with late anomaly
‘\r«\\ = = Theoretical: standard PA 104 == Theoretical: standard PA

—-= Theoretical: PA with late anomaly —-= Theoretical: PA with late anomaly

=
)

= =
o o
7/
7
"
)

s,
2

Number of vertices with degree = k
=
5

Number of vertices with degree =
— "
s 8
/A

H
2
=
5

4

e T T T e
log Degree (log k) log Degree (log k)

(a)m=1,8=5.0,6 =0. (b) m=4,8=10.0,6 = 0.

100

Fig. 3. The complementary cumulative degree distribution for PA network with late
anomaly, parameters are t = 50000, 7 = 49950,y = 0.3615.

Generally, we see that our computations correctly predict the slope, but the
multiplicative factor may deviate from the experiments. In the future, a rigorous
derivation for the mid-way and early anomaly is needed. The late anomaly is
equivalent to standard PA network but we plot the line that we derived in (14) to
show the difference between the correct multiplicative factor and that resulting
from the heuristic derivation.

In Fig. 3 we see that when the anomaly arrives near the end of the network’s
growth, the proportion of vertices with degree at least k is close to that of the
standard PA network. The straight line derived from (14) (dashed blue line)
has the correct slope, but is slightly different from the empirical degree distri-
bution. The dashed red line, based on the more precise formula (8.4.11) in [9,
Chapter 8] for the standard preferential attachment model has both the slope
and the multiplicative factor matching the experiments.

In Fig.4 for the mid-way anomaly, the proportion of vertices with degree at
least k is close to that for the standard PA network, but differs by a factor smaller
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s Empirical: Standard PA 10° s Empirical: Standard PA
Empirical: PA with mid-way anomaly Empirical: PA with mid-way anomaly
== Theoretical: standard PA
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10° N 10° L
10° 10! 10? 10° 104 10! 102 10° 10
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Fig. 4. The complementary cumulative degree distribution for PA network with mid-

way anomaly, parameters are ¢ = 50000, 7 = 25000, = 0.5. The green line uses the
8

formula (8.4.11) in [9, Chapter 8], multiplied by factor a2m+5+5 as in (17). The dashed

blue line follows (17). (Color figure online)
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Fig. 5. The complementary cumulative degree distribution for PA network with early
anomaly, parameters are t = 50000, 7 = 50,y = 0.3615.

than 1 as predicted by (17). Interestingly, the experiments agree with formula

(8.4.11) in [9, Chapter 8] multiplied by the factor QT Thus, our heuristic
derivation correctly predicts the effect of a mid-way anomaly. The visible outlier
in Fig. 4 is the anomaly itself.

In Fig.5 for the early anomaly, the proportion of vertices with degree
greater than k is significantly lower, as the anomaly attracts a fraction of edges
from the very beginning. However, (18) predicts an even steeper slope. We also
note that the tail of the distribution deviates strongly to the right from the
straight line. We will come back to this phenomenon in the next section, where
we analyze the behavior of the oldest ordinary vertex.

5 Degree Growth of the Oldest Vertex

Because the existing vertices connect to a new coming vertex with a probability
proportional to its degree, it is more likely that the old vertices receive more
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andmoreedgesovertime,andtheirdegreesareoftheordert T [9,Theorem
8.2]. We further explore how the degree of the oldest vertex behaves after the
anomaly’s occurrence, by computing the exponent of power-law degree of the
initialvertexv 1.ByStirling’sformula,astandrarelargeenough,theexpected
degreeoftheoldestvertexis

1
t\3: B8 1o
E[D, (t) 4] = (2m+9) (T)Q*m*m7ﬁ+$(1+d1n.
Indifferent scenarios,ast— oo, theapproximateexpression areshown asfol-
lows:

Lateanomaly:Ifr=t—t 7,7€(0,1),

1

E[D;(t) 4] = (2m+8)t >+ (14+0(1)).

Mid-way anomaly:Ifr=atac(0,1),

1
5

E[Di(t) 4] = (2m+6)a >Tm  2mtd t25% (140(1)).

Earlyanomaly:Ifr=t 7, ~€(0,1),

1—vy

mmmwb@mmtf?ﬂ#ﬁum»

Interestingly, themid-way and the early anomaly affect themean degree of
the oldest vertex in a different way. The mid-way anomaly reduces the mean
degreebyaconstant factor, whileanearly anomaly changestheexponent oft.
Moreover,inthecaseofanearlyanomaly,E[D 1(t) 48] growsmorequicklythan

1

t2+ 7 +3 Thelatter expression would be consistent with the power-law distri-
bution for an early anomaly in ( 18) meaning that the oldest ordinary vertices
havehigher degreesthanpredictedby ( 18);therefore, wesee many outliersto
therightinFig. 5.

6 Conclusion and Further Research

Weintroduced a PA networkincorporatingan anomaly, where theattachment
rule of the anomaly is vastly different from that of the ordinary vertices. We
derivedinsightsonthegrowthofthedegreesandtheirdistributioninthismodel.
Belowwelistsomedirectionsforfurtherresearch:

(1) Concentrationofthedegreeofananomalousvertex.WeseeinFig. 2
thatthedegreeoftheanomalyisclosetoitsmean. Themartingaleconver-
gencetheoremisastandard waytoprovesuchconcentration. However, we
could not directly apply thismethod to the degree of the anomaly due to
thepresenceofalinearterminitsexpression.
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(2) Convergenceofdegreesequences.In[ 9,Chapter8],thelimitingdegree
distributionisderivedfromtherecursiveequationsforthenumberofvertices
ofdegreek.However,wecouldnotusethismethodbecausetheoccurrence
of an anomaly changes the recursion. In previous works | 1,6], the asymp-
toticdegreedistribution of PA networkswith changepoints wasrigorously
derived using continuous-branching processes, which embed the growth of
the PA network form=1in continuoustime. Investigating whether these
techniquescanbeadaptedtoourmodelisapromisingdirectionforgaining
deeper insights into the interplay between anomalies and degree distribu-
tions.

(3) Different attachment mechanism. In this paper, we consider only the
casewheretheanomalyattractsnewedgesataconstant additionalrate. An
interestingdirectionforfutureresearchwouldbetoexplorescenarioswhere
theanomalyattachesnewedgesatratesthatchangeovertime,suchasan
increasingrateorforarandomlydeterminedduration.

(4) Anomaly detection. Building on our results, detecting anomalies is a
naturalnextstep. Existingwork|[  13]hasutilized Lyapunov-based method
to detect certain anomalous events in PA network. Our model, where the
anomaly arrivesat aspecificpoint and alterstheattachment mechanisms,
requiresadifferentapproach. Whilemany studiesonanomaly detectionin
dynamicnetworksfocusonanalyzingspatialandtemporal| 12, 14],orstruc-
tural[ 10],features, wefinditaninterestingproblemtodetect theanomaly
basedonlyonthehistoryofG  ;.Ourinitialattemptsshowthatthisproblem
ismorechallengingthanonecouldexpectgivenhowstrongouranomalyis.
Wehopetoreportontheprogressinthenearfuture.
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