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Abstract

We provide the first analysis of (deferred acceptance) clock auctions in the learning-augmented framework.
These auctions satisfy a unique list of very appealing properties, including obvious strategyproofness, trans-
parency, and unconditional winner privacy, making them particularly well-suited for real-world applications.
However, early work that evaluated their performance from a worst-case analysis perspective concluded that
no deterministic clock auction with n bidders can achieve a O(log!™“n) approximation of the optimal social
welfare for a constant € > 0, even in very simple settings. This overly pessimistic impossibility result heavily
depends on the assumption that the designer has no information regarding the bidders’ values. Leveraging the
learning-augmented framework, we instead consider a designer equipped with some (machine-learned) advice
regarding the optimal solution; this advice can provide useful guidance if accurate, but it may be unreliable.

Our main results are learning-augmented clock auctions that use this advice to achieve much stronger
performance guarantees whenever the advice is accurate (known as consistency), while maintaining worst-case
guarantees even if this advice is arbitrarily inaccurate (known as robustness). Our first clock auction achieves
the best of both worlds: (1 + €)-consistency for any desired constant e > 0 and O(logn) robustness; we
also extend this auction to achieve error tolerance. We then consider a much stronger notion of consistency,
which we refer to as consistency®, and provide an auction that achieves a near-optimal trade-off between
consistency™ and robustness. Finally, using our impossibility results regarding this trade-off, we prove lower
bounds on the “cost of smoothness,” i.e., on the robustness that is achievable if we also require that the
performance of the auction degrades smoothly as a function of the prediction error.

1 Introduction

Our focus in this paper is on a classic family of mechanism design problems involving a set N of n buyers competing
for some type of resource or service, and a seller (the service provider) who needs to decide which subset of buyers
to serve. Each buyer ¢ € N has a value v; for receiving the service (i.e., the price they are willing to pay for it),
and there is a feasibility constraint F C 2V that restricts the sets of agents that can be served simultaneously.
The goal of the service provider is to achieve an efficient outcome, i.e., to serve a feasible set of buyers F' € F that
maximizes social welfare: ) .. v;. Depending on the nature of the feasibility constraint F, this captures many
well-studied optimization problems, like the knapsack problem, the maximum weight independent set problem,
and many more. However, apart from the computational challenges of the underlying optimization problem, the
seller also faces the additional obstacle that the values of the buyers are private (not known to the seller), making
it even harder to maximize social welfare.

To address the fact that buyers’ values are private, a common solution in the mechanism design literature is
to use direct revelation mechanisms: these mechanisms ask each buyer to report their value to the mechanism,
which can then use this information to decide which buyers should receive the service and how much they should
pay for it. However, unless these mechanisms are carefully designed, they are very likely to introduce incentives
for buyers to misreport their true values (e.g., to report a lower value to reduce their payment for the service).
A central goal in mechanism design is to design strategyproof mechanisms, which ensure that buyers’ optimal
strategy is to always report their true values. A classic example of a strategyproof direct revelation mechanism
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that maximizes social welfare is the Vickrey-Clarke-Groves (VCG) mechanism. However, despite its elegance
and great theoretical appeal, the VCG mechanism is rarely used in practice due to a variety of shortcomings [4].
For example, its strategyproofness heavily depends on its ability to solve the underlying optimization problem
optimally, even though it may be NP-hard. In fact, direct revelation mechanisms in general face several issues
that make them impractical for many applications. For example, (i) even if they are actually strategyproof, it may
be non-trivial for buyers to verify it [40], (ii) they require that buyers put a lot of trust in the designer [2], and
(iii) buyers need to directly reveal all of their private information, which can be sensitive and could potentially
be used against them in the future (e.g., to set higher reserve prices) [54].

To overcome the issues that direct revelation mechanisms face, Milgrom and Segal [50, 51] proposed deferred-
acceptance clock auctions as a much more practical alternative for high-stakes auctions. In a clock auction, buyers
are not asked to report their private values. Instead, the auction takes place over a sequence of rounds, and each
buyer is offered a personalized price that weakly increases over time. Buyers can then remain active as long
as they are willing to pay the price offered to them, and they can drop out whenever the price offered exceeds
their value. These auctions have a wide variety of benefits that make them very practical: they guarantee (i)
transparency (there is no way the auctioneer can mishandle the information provided by the buyers behind the
scenes), (ii) unconditional winner privacy (the winners of the auction never need to reveal their true value), and
(iii) simplicity (buyers do not need to understand the inner workings of the auction; all they need to know is the
price offered to them in each round). These are properties that most strategyproof auctions do not satisfy.

Motivated by this unique list of very appealing properties, subsequent work focused on analyzing the worst-
case approximation guarantees that clock auctions can achieve for a variety of different feasibility constraints, often
setting aside computational constraints and focusing on information-theoretic constraints. The first set of results
was rather pessimistic, showing that no deterministic clock auction can guarantee an approximation much better
than O(logn) even in seemingly simple settings [24]. On the positive side, subsequent work showed that there
exists a natural clock auction, the water-filling clock auction (WFCA), that can guarantee an approximation
of O(logn) for any type of feasibility constraint [21]. Although the water-filling auction achieves the optimal
worst-case approximation guarantee, a logarithmic approximation may not be quite as appealing from a practical
standpoint. This is a common issue when analyzing algorithms and mechanisms from a worst-case perspective,
leading to results that may be overly pessimistic.

To overcome the overly pessimistic nature of worst-case analysis, a surge of recent work has used the
learning-augmented framework, which assumes that the designer is provided with some useful, though unreliable,
prediction or advice regarding the instance at hand. Using this advice, the goal is to provide stronger and
much more practical performance guarantees whenever this advice is accurate (the consistency guarantee),
while simultaneously maintaining non-trivial worst-case guarantees even if the advice is arbitrarily inaccurate
(the robustness guarantee). As a result, this framework provides a natural way to leverage machine-learned
predictions to guide the design of mechanisms while maintaining the important robustness that comes with
worst-case analysis.

1.1 Ouwur Results. We provide the first analysis of clock auctions within the learning-augmented framework.
Specifically, rather than assuming that the auction has absolutely no information regarding the values of the
bidders, we assume it is provided with a prediction, OPT € F, regarding which feasible set in F has the optimal
social welfare. Crucially, this prediction can be arbitrarily inaccurate, so the auction must use it carefully to
maintain any bounded robustness.

In stark contrast to prior work, our first main result is highly optimistic: we propose a learning-augmented
clock auction that simultaneously achieves the ”best of both worlds.” Specifically, our auction achieves a constant
approximation of the optimal social welfare whenever the prediction is accurate, i.e., OPT is indeed optimal, while
maintaining the worst-case approximation guarantee of O(logn), regardless of how inaccurate the prediction may
be. In fact, we show that it achieves a consistency of 1+ € for any desired, arbitrarily small constant ¢ > 0, while
maintaining a robustness of O(% logn), and we prove that this is asymptotically optimal even with respect to its
dependence on €. We also extend this auction to achieve error tolerance, i.e., an approximation guarantee that
degrades gracefully as a function of the error, up to some predetermined error tolerance threshold.

For our second main result, we move beyond the standard notion of consistency and consider a significantly
stronger notion, which we refer to as consistency®. In contrast to the standard consistency constraint that binds
only if the prediction is fully accurate, consistency® binds on every input and requires that the social welfare
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achieved by the auction always approximates the social welfare of the predicted set, OPT. Note that, whenever
OPT is indeed optimal, approximating its social welfare reduces to approximating the optimal social welfare, so
consistency is strictly more demanding than the standard notion of consistency.

This notion of consistency dates back to earlier work by Mahdian et al. [48] and has also been studied explicitly
or implicitly in some subsequent work in the learning-augmented literature. Our main result for this notion is a
learning-augmented clock auction that achieves a near-optimal trade-off between robustness and consistency.
Specifically, we show that the optimal robustness achievable by any learning-augmented clock auction that satisfies
a-consistency™ is Q(2n!/ (=D logn) and our auction combines a-consistency™ with O(n!/(*~1 log n) robustness.
Note that for any constant « consistency®, the robustness of our auction is asymptotically optimal.

Finally, using our robustness lower bound for constant consistency®, we also prove a lower bound on the “cost
of smoothness” for clock auctions, i.e., a lower bound on the best achievable robustness if we also require that
the performance of the auction degrades smoothly as a function of the prediction error. This result exhibits an
interesting connection between consistency® and smoothness and is in contrast with almost all prior work in the
learning-augmented framework, which does not provide impossibility results regarding smoothness guarantees.

1.2 Related Work. Our paper lies at the intersection of two lines of literature: the literature on (deferred
acceptance) clock auctions and the literature on learning-augmented algorithm and mechanism design. Below,
we provide an overview of the most relevant papers in each of these two areas.

Clock auctions. Since their formal introduction in [50, 51], clock auctions have attracted attention from
both the economics and computer science communities, partly due to their many practical advantages over the
sealed-bid format. These important practical properties include: (i) obvious strategyproofness, a strong notion
of incentive compatibility originally defined by Li [43]; (ii) unconditional winner privacy, defined by Milgrom
and Segal [51], which guarantees that clock auctions reveal the minimum possible information about the winners’
values; and (iii) transparency, including the fact that ascending clock auctions are “credible” auctions, as defined in
[2]. Notably, clock auctions are the unique class of auctions satisfying these properties, making them particularly
well-suited to practical implementation. We refer the reader to [51] and [28, Section 1.2] for a more complete
discussion of the properties of clock auctions.

The papers technically closest to our work include [6, 21, 24]. Before [50, 51] explicitly defined clock auctions,
Babaioff et al. [6] proposed a deterministic, prior-free clock auction that achieved an O(log vyax )-approximation,
where vpyax is the highest value of any single bidder. However, their auction notably achieved only a O(n)-
approximation. In terms of lower bounds, Diitting et al. [24] demonstrated that no deterministic, prior-free clock
auction could achieve a log” n-approximation for any constant 7 < 1. Over a decade after [6], Christodoulou et
al. [21] showed that the bound in [24] was essentially tight by providing a deterministic, prior-free clock auction
that achieved an O(logn)-approximation (and simultaneously an O(log vimax )-approximation).

In single-parameter, forward auction settings, Christodoulou et al. [21] were the first to propose using
randomization to circumvent the impossibility results of [24]. They presented an auction that guarantees expected
welfare, achieving an O(+/log k)-approximation to the optimal social welfare, where k is the number of maximal
feasible sets in the set system F. This was later improved to an O(loglog k)-approximation guarantee by [28].

Clock auctions have also been studied beyond the single-parameter, binary service level, forward auction
context. For example, [32] demonstrated how to extend clock auctions to settings with multiple levels of service
and analyzed several special cases of this general framework. Many works have also examined reverse (i.e.,
procurement) clock auctions, both with [38, 9, 27, 16, 34] and without [42, 18] an auctioneer budget constraint.
The works of [45, 26] studied double clock auctions involving both strategic sellers and buyers. The work of [33]
studied clock auctions in the economically significant setting of interdependent values. Finally, the work of [30]
examined clock auctions aimed at maximizing consumer utility.

Learning-augmented framework. In recent years, the learning-augmented framework has gained
widespread recognition as a valuable paradigm for designing and analyzing algorithms. We refer to [52] for a
survey of early contributions and [44] for a frequently updated list of papers in this field. This approach aims to
overcome the limitations of overly pessimistic worst-case bounds. In the past five years alone, over 200 papers
have revisited classic algorithmic problems using this framework, with prominent examples including online pag-
ing [47], scheduling [53], optimization problems involving covering [13] and knapsack constraints [35], as well as
Nash social welfare maximization [14], the secretary problem [3, 25, 29], and a variety of graph-related challenges
[5]. As we discuss in our results section, there is another, stronger notion of consistency that requires a good
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approximation of the predicted solution irrespective of the quality of predictions. This notion was first proposed
in [48], and subsequent work, including [13, 41], also defines it as consistency. Additionally, we note that while
some works do not explicitly state it, their results actually hold for this stronger notion of consistency [55, 39, 1].

More closely related to our work, the line of research on learning-augmented mechanisms interacting with
strategic agents is recent and was initiated by Agrawal et al. [1] and Xu and Lu [56]. This line of work encompasses
strategic facility location [1, 56, 36, 15, 20, 10], strategic scheduling [56, 11], auctions [49, 56, 46, 19, 12], bicriteria
mechanism design (optimizing both social welfare and revenue) [7], graph problems with private input [23],
metric distortion [17], and equilibrium analysis [31, 37]. Recently, [22] revisited mechanism design problems with
predictions on the outcome space instead of the input. The prediction discussed in our work is one such example.
For further discussion regarding this line of work, we refer the reader to [8].

2 Preliminaries

We consider a canonical single-parameter auction setting where an auctioneer aims to allocate a service among a
set N of n bidders. There exists a public family of sets F C 2V indicating subsets of bidders that can feasibly be
served by the auctioneer. We assume F is downward-closed, meaning if S € F, then T C S implies T' € F. The
auctioneer’s goal is to select a feasible subset S € F of bidders to maximize social welfare, i.e., v(S) = >, g vi.
Since bidders have private values, the auctioneer must design a mechanism to elicit these values. However,
bidders are selfish and may strategically misreport their values to achieve their preferred outcomes (i.e., receiving
the service at a lower price). Therefore, the auctioneer must carefully design payment rules to incentivize accurate
reporting.

We design clock auctions for this problem. A clock auction is a dynamic mechanism proceeding over several
rounds. In each round ¢, each bidder ¢ is offered a personalized “clock” price p;, which represents the current
amount they would need to pay if the auction were to terminate at that moment. At the outset of the auction,
the clock price p; o for each bidder i is initialized to some arbitrarily small positive value vmin, and each bidder is
placed in an “active” bidder set A. The clock prices are non-decreasing throughout the auction, i.e., p;+ > pit—1
for all rounds ¢.! In each round ¢, the auctioneer announces a price p;; for each bidder i € A, and bidder i
can then choose to remain in the auction (staying “active”) or permanently exit (becoming “inactive” and being
removed from A). If i exits at any point in the auction, they will not receive the service and pay nothing. The
auction then terminates when A € F, i.e., all active bidders may be feasibly served.

Note that in each round, the clock price for each bidder can only depend on public information, i.e.,
the feasibility constraint, the history of prices, and the points at which bidders exited the auction. We use
rev(S,Pt) = > ;cgna Pist to denote the revenue of a set S at the current price vector pg. In other words, the
revenue of a set S in round ¢ of the auction is the sum of the clock prices in round ¢ of the active bidders in S.

To analyze the performance of a clock auction M, we consider its worst-case approximation guarantee. On
an instance I, let I denote the welfare obtained by the clock auction on I and OPT(I) denote the maximum social
welfare among all feasible sets in I. Then, M obtains an a-approximation of the optimal social welfare for a class
of instances 7 if

e v(0PT(1)) <
ez v(M(I)) —

The Water-Filling Clock Auction. The central result of [21] is a deterministic clock auction called the
“Water-Filling Clock Auction” (WFCA), which achieves the (near) optimal approximation guarantee of O(logn)
for any family of instances where F is downward-closed. The WFCA computes the revenue of each set in each
round and marks the set of bidders W with the highest revenue as the “conditional winners” and increments the
price of the lowest-priced bidders outside W. This, intuitively, makes sense since the revenue of a set is a lower
bound on its remaining possible welfare. As the WFCA is an important subroutine in our auctions, we include
pseudocode for it here as Subroutine 1 for completion.

We summarize two critical features of the WFCA shown in [21] that we use in our analysis as Lemma 2.1
below. We note that the authors of [21] show that the WFCA achieves a 4 log n-approximation [21, Theorem 2].

IWe assume that each bidder with positive value has a value above a publicly known minimum value vy, which is consistent with
[6] and [21]. Thus, rather than continuous prices, we may increment prices by an arbitrarily small positive value §, say, vmin/n2. As
argued in [21], discretizing prices to this range causes negligible loss in approximation since the optimal social welfare is lower-bounded
by VUmin-
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SUBROUTINE 1: The Water-Filling Clock Auction (WFCA) of [21]

Input: An initial price vector p and set of bidders N
1t 0, A« N, and p; + < D; forallie N
2 while A ¢ F do
3 t—t+1

4 W < argmaxscr.sca {Zies pi,t—l} be the set of highest current revenue

5 £ < min;e g\ {pi,t—1} be the lowest price among active bidders not in W

6 foreach bidder i € A\ W with p; ;—1 = { do

7 Dit < Dit—1+6; // Increment prices of lowest-priced ‘‘losers’’
8 if i rejects updated price then

9 A+ A\ {i}
10 foreach bidder i € W and each bidder with p; —1 > ¢ do
11 Dit & Dit—1 3 // Keep all other prices the same

12 return A, p

The proof of this theorem demonstrates a slightly stronger guarantee that is more useful for our bounds, namely
that the welfare achieved is a 2H,-approximation, where H, = Y. | 1/i is the n-th harmonic number. It is
known that H,, is asymptotically O(logn).

LEMMA 2.1. ([21]) The Water-Filling Clock Auction is revenue monotone, i.e., the sum of prices of bidders in
the set with the highest sum of prices is monotonically increasing throughout the WFCA. In addition, the WFCA
obtains a 2H, -approzimation to the optimal social welfare in any downward-closed set system.

The Learning-Augmented Framework. In this work, we adopt the learning-augmented framework and
study clock auctions that are also equipped with a (potentially erroneous) prediction OPT regarding the feasible
set of highest welfare. Given the predictions and an instance, we denote the welfare achieved by a mechanism M
as M(I,0PT), and we evaluate the performance of M using its robustness and consistency.?

The robustness of a mechanism refers to the worst-case approximation ratio of the mechanism given an
adversarially chosen, possibly erroneous, prediction. Mathematically,

robustness(M) = 51}(%}; m

The consistency of a mechanism refers to the worst-case approximation ratio of the mechanism when the
prediction it is provided with is accurate, i.e., OPT = OPT. Mathematically,

) v(0PT(1))
2.1 consistency(M) = max ————~.
(2.1) y(M) = mg M(I,0PT(I))
Additionally, we consider a stronger notion of consistency first proposed by [48], which we denote as
consistency®. It is defined to be the worst-case approximation ratio with respect to the value of the predicted set,
regardless of the correctness of the prediction. Mathematically,

OPT
(2.2) consistency® (M) = max 1)(7)
1,061 M(I,0PT)

We emphasize that an a-consistency®™ guarantee implies an a-consistency guarantee for any o by considering a
subset of instances where OPT = OPT(I).

2We note that the predictions used by mechanisms are public, i.e., the mechanism designer and bidders observe the predictions.
Although our clock auctions utilize the predictions to guide the price-increase process, the bidders still face only monotonically
increasing clock prices and, thus, they still have a simple interface with an obviously dominant strategy of exiting the auction when
the clock price becomes undesirable (higher than their private value).
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3 Clock Auction Achieving the Best of Both Worlds

In this section, we present a deterministic clock auction augmented with a prediction OPT € F that suggests the
feasible set which maximizes social welfare. Our auction leverages this prediction to achieve a favorable trade-
off between consistency (see Equation (2.1)) and robustness. Recall that without predictions, no mechanism
can achieve an O(log” n)-approximation for any constant 7 < 1. The aim is to bypass this logarithmic barrier
whenever the prediction is accurate, without significantly sacrificing robustness.

One naive approach is to simply serve the predicted set, which would yield 1-consistency; however, this would
suffer from unbounded robustness. Conversely, ignoring the prediction and simply running the WFCA would
provide O(logn) consistency and O(logn) robustness. A desirable outcome is small constant consistency with
O(logn) robustness, often referred to as a “best-of-both-worlds” guarantee. This is precisely what our clock
auction, formally defined in Mechanism 1, achieves. In fact, we can set the consistency arbitrarily close to 1 + €
for any small constant € > 0, while maintaining O (% log n)—robustness. We complement this positive result with
a lower bound, showing that this robustness bound is tight with respect to its dependence on both n and e.

THEOREM 3.1. For any downward-closed set system, Mechanism 1 with parameter v = % is (14€)-consistent

and O (% log n) -robust for any constant € > 0.

The mechanism, called FOLLOWTHEUNPREDICTEDLEADER, is a clock auction that alternates between raising
the price for bidders in the predicted and unpredicted sets, while maintaining a balanced ratio between the target
revenue from the predicted set and the rejected welfare of the unpredicted set. At a high level, in each iteration,
the mechanism first sets a new, higher revenue “target” R; and pushes the unpredicted bidders only until the
robustness guarantee based on current revenue is nearly at risk. It then further pushes the unpredicted bidders,
aiming to ensure the robustness guarantee is satisfied solely by the unpredicted set. If all unpredicted bidders
reject the offers during this process, the mechanism outputs the remaining active bidders in the predicted set.
Otherwise, it switches to pushing the predicted set to match the current revenue obtained. If the target revenue is
met, the process repeats; if all predicted bidders reject, the WFCA is run on the remaining unpredicted bidders.
We assume that bidders choose the obviously dominant strategy of exiting the auction whenever the clock price
exceeds their value, and we learn each bidder’s value upon their exit.

For a formal description, please refer to Mechanism 1.

MECHANISM 1: FOoLLOWTHEUNPREDICTEDLEADER
Input: A system F of feasible sets of bidders, a predicted optimal set OPT, a parameter

1 F+ F\{FNOPT} for all F # 0PT € F // Make OPT disjoint from all unpredicted sets
2 P; ¢ Umip for alli € N // Raise price of each bidder to the initial small amount
3 Ry < rev(OPT, p)

4at+1 // Initialize the counter

5 while TRUFE do

6 Ry < 10- R4

7 Run UNIFORMPRICE(N \ OPT, p) until maxz v(F \ N) € [RyyH,,2R;vH,,) // Reject ‘‘safe’’
amount of welfare to determine minimum total value in optimal set?

if N = OPT then return OPT, p

9 Run UNIFORMPRICE(N \ OPT, p) until maxp rev(F N N,p) > R; // Ensure unpredicted sets
‘‘cover’’ their own lost welfare

10 if N = OPT then return OPT, p

11 Run UNIFORMPRICE(OPT, p) until rev(0PT, p) > R, // Ensure predicted set ‘‘covers’’
welfare lost from unpredicted sets

12 if OPT= () then

13 return WFCA(N,p)

14 t—t+1

3We can make sure the total welfare in some unpredicted set is at least RyyH, but the rejected welfare is no more than 2R:vH,,
by stopping when current price of active unpredicted bidders reaches R¢yHp, .
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SUBROUTINE 2: UNIFORMPRICE
Input: A set S and the current price p; for all i € S, the current price vector p
1 while do

2 { < min;cg p;

3 for i with p; =¥ do

4 Di < pi T €

5 if i reject the updated price i then
6 S+ S\ {i}

We first show that Line 1 affects neither consistency nor robustness by too much.

OBSERVATION 3.1. The social welfare of the optimal set in F before making the transformation in line 1 of
Mechanism 1 is at most 2 times greater than the social welfare of the optimal set after the transformation.

Proof. We first note that the social welfare of the predicted set is the same before and after completing the
transformation in line 1 of Mechanism 1. Then if the predicted set was the optimal set before the transformation,
then the value of the optimal set does not decrease. So suppose some non-predicted set O* is optimal and denote
its total welfare v(O*). If at least half of the welfare contained in O* comes from bidders contained in the predicted
set then after the transformation the predicted set has welfare at least v(O*)/2 and, hence, the optimal set has
welfare at least v(0O*)/2 after the transformation. On the other hand, if more than half of the welfare contained
in O* comes from bidders not in the predicted set then after the transformation O* still has social welfare at least
v(0*)/2. o

For ease of exposition, for the remainder of this section, we assume that F is such that the predicted set is
completely disjoint from all maximal unpredicted sets. According to Observation 3.1, the consistency guarantees
we obtain in this special case are exactly the same as those we obtain for general set systems. Moreover, by
Observation 3.1, the robustness guarantees we obtain in this special case are within a factor of 2 of the robustness
guarantees we obtain for general set systems. Therefore, it suffices to show that we obtain 1 + e-consistent and
O(logn)-robust algorithms for the special case where the predicted set is completely disjoint from all unpredicted
sets. We devote the rest of this section to demonstrating just that. For ease of presentation, without loss of
generality, we normalize Ry to 1. All the missing proofs can be found in Appendix A.

Robustness Argument. We first establish the robustness of Mechanism 1. To begin, we demonstrate the
robustness guarantee if a subset of the predicted set is output (Lemma 3.2). For cases where an unpredicted set
is output, we argue that the revenue obtained at the time point where OPT = () provides a good approximation of
the best welfare achievable from any rejected subset (Lemma 3.3). We then utilize the revenue monotonicity of
WFCA to achieve the desired robustness bound (Lemma 3.4).

LEMMA 3.1. The total welfare rejected from any unpredicted set in line 9 in any iteration t of while loop of
Mechanism 1 is at most Ry - Hy,.

LEMMA 3.2. For any~ > 10/9, if Mechanism 1 outputs a subset of the predicted set, then it is m-mbust.

Proof. Consider the iteration  in which the while loop of Mechanism 1 terminates. By definition, the mechanism
terminates in either line 8 or line 10. By Line 7 and Lemma 3.1 we have that the total welfare rejected from any
unpredicted set in any round ¢’ is at most 2Ry vH,, + Ry H, = Ry - (2y + 1)H,,. But then, summing over all
rounds we have that the total welfare contained in any unpredicted set is at most

i i .

' 100 —1 2y 4+ 1)10H,,

> Re- (2y+ DH, = (29 DH,- 3107 = 2y 4 ), 0t <y BN
t'=1 =1

On the other hand, since we continued to iteration ¢ we have that the revenue of the bidders in the predicted set

R; . . R;/10
reached R; ; = T7£. Hence, Mechanism 1 obtains at least a = (27@/1)1()1,” =
& 9

-fraction of the optimal

) 9
10- 100(2y+1) H,,

social welfare. |
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LEMMA 3.3. For any v > 10/9, if Mechanism 1 reaches line 13, then the revenue of active bidders in the highest
revenue set before running WEFCA is at least a m—appmximation of the maximum social welfare obtainable
by rejected unpredicted bidders, i.e.,

(10(27 +1)H,

> .
9 )I;lg}(rev(FﬂN7p)_%16a]>:w(F\N)

Proof. As before we consider the iteration ¢ in which the while loop of Mechanism 1 hit Line 13 By assumption,
our while loop terminates in line 13. Following the same reasoning as Lemma 3.2, the total welfare rejected from
any unpredicted set over all rounds from 1 to ¢ is at most

t
Z Rir - (2v+1)H, < R; -
V=1

(2y + 1)10H,,
—_—

On the other hand, because we arrive at line 13 we know that there exists some set unpredicted set which obtains
revenue R; in round ¢. Thus, the revenue among active bidders in the highest revenue set when we reach line
13 is a m—fraction of the maximum social welfare obtained from any feasible set of rejected unpredicted
bidders. O

LEMMA 3.4. For any v > 10/9, if Mechanism 1 oulpuls a subset of some unpredicted sets, then it is
m + ﬁn—mbust.

Proof. In case Mechanism 1 outputs a subset of unpredicted bidders it must arrive at line 13. As such, we can
decompose the social welfare from the optimal (unpredicted) set into two components, the portion of the welfare
coming from bidders rejected before Mechanism 1 runs the Water-filling Clock Auction and the portion of the
welfare coming from bidders who participate in the WFCA. From Lemma 3.3 we know that the revenue reached
by Mechanism 1 before running the WFCA is within a m—factor of the welfare rejected from the optimal
set before running the WFCA. Moreover, from Lemma 2.1 we have that the revenue reached by Mechanism 1
after running the WFCA is weakly higher than the revenue reached before running the WFCA. As such, since the
welfare obtained by serving a set of bidders is always weakly higher than the revenue collected from these bidders
we have that the social welfare obtained by Mechanism 1 is within a m—factor of the welfare rejected
from the optimal set before running the WFCA. Finally, we have from Lemma 2.1 that the social welfare achieved
by running the WFCA only on bidders who are active when line 13 is reached is within a 1/(2H,,)-factor of the
optimal social welfare achievable from these bidders. Combining these two guarantees, we have that the social
welfare obtained by Mechanism 1 is within a m + ﬁn—factor of the optimal social welfare. 0
Consistency Argument. We now establish the consistency of Mechanism 1. The high-level idea is to upper
bound the total rejected welfare when the mechanism terminates and argue that: (i) If the predicted set is indeed
optimal, the mechanism will always output a subset of the predicted set; and (ii) the remaining welfare in the
predicted set (when it is output) is high as a result of us “favoring” the predicted set in Mechanism 1.

LEMMA 3.5. The total welfare rejected from the predicted set up to the end of the t-th iteration of the while loop
is at most Ry - 10H,,/9

LEMMA 3.6. For any v > 10/9, Mechanism 1 is (1 — %)—consistent.

Proof. Fix an instance I where the optimal set (also the predicted set by definition of consistency) has social
welfare V*. Consider the minimum value k such that 10* - vH,, exceeds V*. Let  denote the value of ¢ at the
beginning of the final iteration of the while loop of Mechanism 1 when run on instance I. We first note that
the Mechanism 1 terminates in either Line 8 or Line 10, otherwise there exist a unpredicted set with value more
than V*. Since we only continue to line 9 after the preceding if statement when there are still active unpredicted
bidders it must be that £ < k (as, otherwise, some unpredicted set would have total welfare greater than V*) and
t = k if we terminate in Line 8 (i.e., before we cause any additional predicted bidders to exit the auction in the
iteration k).
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Now consider the total amount of welfare lost from the predicted set from rounds 1 to t — 1. By Lemma 3.5
we have that this total welfare is at most R;_; -10H,,/9 = 10*~*. % < 10k-1. %H". On the other hand, by our
definition of k, we know that the total social welfare in the predicted set is at least 10! .~y H,,. But then, at the
end of the ¢ — 1 iteration there must exist active predicted bidders and, moreover, the fraction of the predicted
set’s social welfare that we retain is at least

105" yH, — 10" P H, 7~

1Ok_1 : fYHn Y ’
which completes the proof. 0
We are now ready to prove the main theorem of the section.

Proof. (Proof for Theorem 3.1) First observe that ¢ > 0 ensures that v > 10/9. In the case that the predicted
set, indeed, optimal, Lemma 3.6 gives that some subset of the predicted set is served. Moreover, we obtain that
the total social welfare of served bidders is within a factor

A 10 1
C9y) 7 gl ) T 14

9e

of the total social welfare in the predicted set, thereby guaranteeing (1 + €)-consistency. On the other hand,
if some subset of the predicted set is served, Lemma 3.2 guarantees that the total social welfare obtained by
Mechanism 1 is within a factor m of the optimal social welfare. Since H,, = O(logn) and =y is a constant
for any choice of constant € we obtain O(log n)-robustness. Finally, if some subset of an unpredicted set is served,

Lemma 3.4 guarantees that Mechanism 1 obtains welfare within a factor 52— of the optimal welfare.

10(2731)HH + 3,
Again, since H,, = O(logn) and ~ is constant for any constant ¢ we obtain O(logn)-robustness in this case. |

While the focus of our work is on leveraging advice to circumvent the informational limitations faced by clock
auctions (recall that the lower bound from [24] precludes clock auctions from achieving a log” (n)-approximation
for any constant 7 < 1), FOLLOWTHEUNPREDICTEDLEADER could still require exponential time for certain
feasibility constraints (e.g., when F corresponds to the independent sets of a graph). Fortunately, a key advantage
of FOLLOWTHEUNPREDICTEDLEADER is that it admits the use of a black-box approximation algorithm for the
welfare and revenue maximization steps in lines 7 and 9. Specifically, if there exists an algorithm that outputs
a set of rejected bidders which gives a p-approximation to the welfare of the best-rejected set in line 7 and an
active set which gives p-approximation to the revenue in line 9, then our algorithm achieves robustness that
scales linearly with p (i.e., robustness becomes O (p~ élog n)) This result is formalized in Corollary 3.1. For
completeness, a full proof is provided in Appendix A.

COROLLARY 3.1. For any downward-closed set system, Mechanism 1 with parameter v = w equipped with

a p-approzimate algorithm for the underlying problem of mazimizing revenue/welfare (at some fized clock prices)
is (1 + €)-consistent and O(p - L -logn)-robust for any constant € > 0.

3.1 Lower Bound. We now show that apart from achieving the “best of both worlds” in terms of asymptotic
robustness and consistency guarantees, our learning-augmented clock auction also achieves a tight asymptotic
dependence on the e parameter. Specifically, we show that there exists a family of instances for which any
(1 + €)-consistent auction has robustness at least Q(% logn) (the proof is deferred to Appendix B).

THEOREM 3.2. The robustness of any deterministic clock auction that is augmented with a prediction OPT and
satisfies (1 + €)-consistency for some constant € > 0 is (X logn).

3.2 The Error-Tolerant Auction. We now demonstrate that Mechanism 1 can be extended to achieve a
constant approximation not only when the prediction is optimal, but also when the predicted set deviates from
the optimal set by a constant factor in terms of value. To this end, we define the prediction error of a prediction
OPT in a given instance I as the multiplicative difference between the value of the predicted set and the value of
the actual optimal set:

v(OPT(I))

(3.3) n(0PT, I) = o(0PT)

Copyright (© 2025 by SIAM
Unauthorized reproduction of this article is prohibited

2637



This type of error is called the quality of recommendation by [22]. Next, we introduce the ERRORTOLERANT
auction, which is an extension of Mechanism 1. This auction takes as input a parameter 77 > 1, referred to as the
error-tolerance parameter, which is chosen by the mechanism designer. The only modification from Mechanism 1
to ERRORTOLERANT is that in Line 11, the targeted revenue is adjusted from R; to R;/7. When the prediction
error 1) is at most 77, ERRORTOLERANT achieves an approximation of (1+€)n to the optimal welfare. Additionally,

%ﬁl“) + 1) H,, to the optimal welfare at all times. Note that if 77 = 1,

the auction reduces to Mechanism 1, preserving the corresponding consistency and robustness guarantees. The
formal description of ERRORTOLERANT and the proof of the following theorem are deferred to Appendix C.

it maintains an approximation of (

THEOREM 3.3. For any downward-closed set system and predicted optimal set, ERRORTOLERANT with parameter
v = % and 7 > 1 achieves an approximation of (1 + €)n if n <7 and (%ﬁlﬁ) + 1) H,, otherwise, where

7 is the prediction error defined in (3.3).

4 Clock Auction Guaranteeing a Stronger Notion of Consistency

In this section, we turn to the more demanding notion of consistency®, which requires a good approximation of
the predicted solution irrespective of the prediction quality. We show that achieving good consistency® is much
harder than achieving good consistency. In particular, there is a separation in terms of the robustness that one
can achieve for each of these two notions of consistency. Specifically, we show that if one wants a-consistency® for
some constant «, not only is it impossible to achieve O(logn) robustness, as we achieved for the standard notion

of consistency in the previous section, but one must actually suffer Q (nﬁ log n) robustness. Before proving

this separation, we provide a learning-augmented clock auction that matches this bound for any constant a.

THEOREM 4.1. For any downward-closed set system, Mechanism 2 with parameters a € [1 + €, H,,] and

8H,I' (n+ 2= _
) s )

where T'(x) = [t te~tdt, is a-consistent™® and B-robust.

The clock auction defined in Mechanism 2, named FOLLOWTHEBINDINGBENCHMARK, also alternates between
uniformly raising the bids of the unpredicted and predicted bidders while maintaining a careful balance between
the revenue from the predicted set and the welfare of the unpredicted set. However, to achieve consistency®, it
requires that in every round the revenue collected from the predicted set be at least é of the rejected welfare of
the unpredicted set plus the current revenue, i.e., the lower bound of the welfare of the predicted set. Unless this
constraint is satisfied, the clock auction will continue raising the bids for the predicted set. See Figure 1 for a
demonstration of the asymptotic trade-off the mechanism obtains for different sizes of instances.

As before, we assume that F is a set system where the predicted set is completely disjoint from all maximal
unpredicted sets; by Observation 3.1, this is without loss of generality. We first prove the robustness guarantee.
All the missing proofs can be found in Appendix D.

Robustness Argument. To demonstrate that Mechanism 2 achieves the desired robustness we consider two
cases depending on whether or not the auction terminates by serving a subset of the predicted set or a subset of
some unpredicted set. Since we assume that a < 8 (and we will eventually show that our mechanism achieves
social welfare within a a-factor of the welfare in the predicted set), we show that our mechanism obtains welfare
within a (-factor of the best unpredicted set. Building toward this guarantee, we first prove a useful lemma
regarding the total welfare lost from an unpredicted set.

LEMMA 4.1. The total welfare rejected in any unpredicted set S in some iteration t is at most g “RP ..
As a corollary of this lemma, we can bound the total welfare lost from any unpredicted set of bidders by

observing that the revenue and welfare targets increase by at least a factor 2 in each round.
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Figure 1: The trade-off between robustness and consistency™ when 3 = n!'/(*=V H,, for different values of n

COROLLARY 4.1. The total welfare rejected in any unpredicted set S throughout the first t' iterations is at most
BR{ ;.

We are now ready to prove the robustness guarantees of Mechanism 2. Similarly as in Section 3 we will
analyze the two cases which depend on whether or not a subset of OPT is output separately. We first consider the
case where a subset of OPT is output. The intuition is that we only serve a subset of predicted bidders if we do
not satisfy either condition in Line 7 but we secured good revenue from the predicted set in the previous iteration
of the while loop. We formalize this intuition in the following lemma.

LEMMA 4.2. If Mechanism 2 outputs a subset of the predicted set, then Mechanism 2 is B-robust.

Proof. Let t denote the value of ¢+ when the auction terminates. By assumption that we serve a subset of the
predicted set and definition of the mechanism, this was a result of not satisfying either condition in Line 7. Note
that we proceeded to round ¢ because we satisfied the conditions of Line 11 in round ¢ — 1. As such, the welfare
remaining in the the predicted set is at least Ri 1 (the revenue of the predicted set at the end of the previous
round). On the other hand, we know that the total welfare in any unpredicted set (since all unpredicted bidders
were rejected) is at most ,BRf_ , by Corollary 4.1. Therefore we obtain welfare within a 8 fraction of the optimal
unpredicted set. O

We now turn toward the case where a subset of an unpredicted set is output. As in Section 3, we consider the
welfare contributions from bidders who exit the auction before the WFCA and those active during the WFCA
separately.

LEMMA 4.3. If Mechanism 2 outputs a subset of some unpredicted set, then Mechanism 2 is B-robust.

Proof. Let t denote the value of ¢ when the auction terminates. By assumption that we serve a subset of the
unpredicted set and definition of the mechanism, the auction terminates in Line 12. We may divide the welfare
of the best unpredicted set into two components — the portion of the welfare coming from bidders rejected during
before the WFCA is run and the portion of the welfare coming from bidders which are active when the WFCA is
run in Line 12. By Corollary 4.1 we have that the total welfare rejected in any unpredicted set through the first
iterations is BRil. On the other hand, we have that the revenue of the best unpredicted set before we run Line
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MECHANISM 2: FOLLOWTHEBINDINGBENCHMARK

Input: A system F of feasible sets of bidders, a predicted optimal set OPT, a consistency parameter a, a
robustness parameter /3

1 F+ F\{FNOPT} for all F #0PT € F // Make OPT disjoint from all unpredicted sets
2 P ¢ Upin for all i € N // Raise price of each bidder to the initial small amount
3 RY « rev(0OPT,p)

4 S < OPT

5 £+ 1

6 while TRUE do

7 Run UNIFORMPRICE(N \ OPT, p) until:(i) maxpezrev(F N N,p) > 2. R |; OR (ii)
maxperv(F\ N) > g -RF | and maxperrev(F N N,p) > % “RE |

8 if N = OPT then return OPT, p // All unpredicted bidders reject case

10 Rf «—RE -2

11 Run UNIFORMPRICE(OPT, p) until: (i) rev(0PT, p) > R AND (i) (a — 1) - rev(0PT, p) > v(S \ OPT)
12 if OPT = () then return WFCA(N, p) // All predicted bidders reject case
13

14 RF < rev(OPT, p)

15 tt+1

12 is at least 7~ RP In addition, by Lemma 2.1 we know that the revenue after completing Line 12 must

then be at least RP This gives that the revenue collected by Mechanism 2 is within a 4H,-factor of the
welfare in the best unpredlcted set contributed from bidders rejected before Line 12 is run. Moreover, we have by
Lemma 2.1 that the welfare achieved by our auction is within a 2H,,-factor of the welfare in the best unpredicted
set contributed from bidders who are active when Line 12 is run. Combining these we have that if a subset of
the unpredicted bidders is served then Mechanism 2 obtains welfare within a factor 4H,, + 2H,, < 3 of the best
unpredicted set. 0

Consistency Argument. We now turn toward the more technically challenging consistency™ guarantee. Recall
again that a mechanism achieves a-consistency® if it achieves an a-approximation to the value of the predicted
set, irrespective of the prediction quality. To this end, we first resolve the simpler case where we serve some
subset of predicted set. In this case the guarantee is achieved by design, but we include a formal proof of this for
completeness in Appendix D.

LEMMA 4.4. If Mechanism 2 outputs a subset of the predicted set, then Mechanism 2 is a-consistent™.

The more difficult case involves ensuring a-consistency® given that we output a subset of some unpredicted
set. Intuitively we want to argue that by defining a large enough (3, the revenue we obtained from the best
unpredicted set is enough to “cover” the maximum potential welfare the predicted set can contain. To this end,
we begin with some individual bounds of bidders’ values in the predicted set based on when they rejected the
price offer.

LEMMA 4.5. Consider any iteration t. At the start of running Line 11, condition (ii) is true. In addition, while
(ii) remains true, the current price offered to the bidders is less than RY /k where k is the number of active bidders
in the predicted set.

Proof. We begin by demonstrating the first part of the lemma statement. First observe that, by design, we
satisfied both conditions (i) and (ii) of Line 11 at the end of iteration ¢ — 1. Furthermore, since we do not raise
any prices for predicted bidders in iteration ¢ before reaching Line 11 again, it must be that in iteration ¢ we
satisfy condition (ii) at the start of Line 11. For the second part of the lemma statement, suppose that condition
(ii) of Line 11 is satisfied and & bidders are active. If we continue to uniformly raise prices for these k bidders,
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then it must be we do not satisfy condition (i). As such, it must be that these bidders have not yet accepted a
price of R /k. 0

CLAIM 4.1. Fiz a set of bidders S and index bidders in S in non-increasing value order. Two conditions hold:
1. Suppose that (o — 1)kvy, < ZliilkH v;. Then, if (o —1)(k — 1)vg_1 > Zliilk v; we have that

(a—1k+1

2. Suppose that (o — 1)kvy, > Ziilkﬂ v;. Then, if (o — 1)(k — Lvp—1 < Zlilk v; we have that

(a—1)k+1

Proof. We show part 1 of the claim as part 2 follows, symmetrically, by flipping the inequalities. By assumption,
we have that Zlilkﬂ v; > (o — 1)kvy so substituting gives

IS
(a—1)(k—1)vg_1 > Zvi > v + (o — 1)kvg,
i=k
or, equivalently,
(a—1Dk+1
>
= 0o Dk—1)

as desired. O

LEMMA 4.6. Consider any point when we are running UNIFORMPRICE on the predicted set (i.e., we are running
Line 11) where condition (ii) is satisfied and let k denote the number of active bidders in the predicted set. If the
smallest valued predicted bidder with value py rejecting causes condition (ii) to be violated, then if condition (ii)
s not satisfied before the k — 1-th largest bidder exits the auction her value pyp_1 is upper bounded by
(a—1k+1

(44) Pr—1 < m *PE-

Proof. Fix some point in the auction when the revenue of the predicted set satisfied a-consistency™, i.e., (a — 1)
times the current predicted revenue is greater than or equal to the rejected welfare in the predicted set, and let &
denote the number of remaining active predicted bidders and W denote the total rejected welfare at this point.
Let pi denote the price offered to these k active bidders just before one of them exits the auction. We then have
(a — 1) - kpr > W. If the lowest valued bidder among these k exiting the auction causes a-consistency™ to be
violated, i.e., &+ (k — 1)px < pr + W we may obtain an upper bound on the price py_; corresponding to the point
at which a-consistency® would be satisfied again if k — 1 bidders accept pr_1. By applying part 2 of Claim 4.1,

we obtain that
(a—1k+1

A<
as desired. ]
OBSERVATION 4.1. For any k > 2 and o > 1 we have that

11 (a-Dk+1 1 1
o1k - Dk-D k-1 Ea-DE-1)

With Lemma 4.6 and Observation 4.1 in hand we can now move to show that the auction achieves a-
consistency™ when a subset of the unpredicted set is output provided we have 3 large enough. A crucial function
in both the upper and lower bounds we demonstrate is I'(z) where I'(z) = [;° t* ‘e~ 'dt is the extension of the
factorial function to the complex numbers, i.e., I'(k) = (k — 1)! for k € N.
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LEMMA 4.7. If Mechanism 2 with parameters o € [1 + ¢, H,] and

8H,I' (n+ %5 W(a—1) L
T e

outputs a subset of some unpredicted set, then it is a-consistent™.

Proof. Consider the round £ in which the auction terminates and assume that the auction proceeds to Line 12,
i.e., a subset of the unpredicted bidders is served. By Lemma 4.5, note that the revenue R{i , reached by the

predicted set in iteration £ — 1 was such that (a—1) -Rf_l was more than the total rejected welfare in the predicted

set throughout the first  — 1 iterations of the while loop, i.e., the iteration ¢ — 1 concluded with the predicted set
satisfying a-consistency®. On the other hand, since we proceeded past Line 7 we have that the revenue in the
unpredicted set reached at least % -Ri 1~ We just then want to bound the total welfare lost from the predicted

set in the final iteration ¢. By Lemma 4.5 we have that the first rejected bidder has value at most 2Rf_ 1 /k where

k is the number of active predicted bidders at the start of iteration f. Applying Lemma 4.6 and Observation 4.1
to upper bound the value vg_1 of the next rejecting bidder, we obtain that

2R | (a—1k+1

Ukl S T S (k= 1)

Iteratively applying Lemma 4.6 and Observation 4.1 to find an upper bound to each rejected bidder’s value, we
have that the total welfare rejected in this round is at most

P k P k ) P n P n .
2R; 4 Z 2R; ) H (a—-1)j+1 < 2R; I Z 2R; ) H (a—-1)j+1
k — k i (a—1)(G-1) "~ =n = o s (a—1({G-1)
P P n n .
_ 2R, +2R£—1 'ZH]+1/(Q_1)
n n - j—1
=2 j=1
P P n P — L
_2RP,2RE, P =D (n+ 1+ 2L)
nooon E (i) w
P P nata—n
_ 2R, 2R, aI‘( a-1 )
= + et — -1
oo r (21 rm)
2R [ ol (netepe)

n r (%) (n—1)!

where the inequality comes from the fact that for any o > 1 the partial product from j = k + 1 to n times
2Rf_1/n yields a value at least 2Rf_1/k, the second equality comes from the fact that z - I'(z) = I'(z 4 1) for all
z € R and, hence, I'(z + y) /T (z) =x- (. +1) - - - - (x+y—1) for all y € N and all z € R, and the third equality
is due to Lemma E.1 which we defer to Appendix E.
Combining the welfare rejected from the first £ — 1 rounds and the welfare from the last round we obtain that
the total welfare rejected from the predicted set is at most

2RP ar<ﬂg§:ﬂ)
(a71)~R£1+ 2L —an+ !

n r(%) (n—1)!

+n

But then, since our auction reached revenue at least % -Rfﬁ , before running the WFCA and the WFCA is
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revenue monotone by Lemma 2.1 it suffices that

nat+oa—n
al’ (7(171 )

2
! p >(a—-1)+—-|-an+ +n
4Hn n T (25:11) (n . 1)!
or, equivalently,
AH, 2 o (neteqn)
B> (a=1)4+—-| —an+ +n
! n

r(2e=t) (-1

Therefore, for the proof to go through it suffices for 5 to satisfy

A SHLT (n+225)  SHD(n+2%)  4p7 (-1
"o —1-2a+2)+ oml) _ o-1) A4Hn(a-1)

a r(1+527)n! r(1+52)n! a

g =

_a
a+1

T(z) = ﬁ(i) (1+0C>>,

to obtain that the proof goes through with

o 141/ (a—1) n+l+1/(a—1) )
8H,, nt+1+1/(a—1) ( e ) (1 +0 (n+1+1/(a—1))>

P+ Vi e (10 ()

As we care about the asymptotic behavior of this bound and n + is a positive real number, we can apply

Stirling’s approximation, i.e.,

_ 8H, .0(1).<n+1+1/(a1))"““/(&_1).( e )”“
r(1+52) e nt 1

_ 8H, o). (n+141/(a—1))"+iHt/le=1 17
r(1+52) (n + 1)+ el/(a-1)

=0 (nﬁ log n)

where the last line is since I'(c) is a constant for any constant real number ¢ and H,, > « > 1 + € for constant
e>0s01/(a—1)=0(1) and I'(1 + /(e — 1)) = O(1). O

4.1 Lower Bound. We now provide a lower bound for all deterministic clock auctions in terms of the trade-off
between consistency® and robustness. This lower bound shows that the trade-off achieved by Mechanism 2 is
near-optimal; in particular for any constant «, the trade-off achieved by the mechanism is asymptotically optimal.

THEOREM 4.2. The robustness of any deterministic clock auction that is augmented with a prediction OPT and
satisfies a-consistency™ for a € [1 + €, Hy] is Q(énl/(a’l) logn).

Note that for o = 2, we have 8 = ©(nlogn). As the consistency® guarantee v approaches 1, the robustness
grows exponentially (e.g., for a = 4/3, 3 = ©(n3logn)). This is in sharp contrast with the standard consistency
notion, for which we achieve (1 + €)-consistency with O(logn)-robustness for any arbitrarily small e.

Implications of the impossibility result on the feasible smoothness guarantees. Before presenting
the proof of this impossibility result, we would like to first point out its implications regarding the “price of
smoothness,” i.e., the best achievable robustness if we require that the performance of the auction degrades
smoothly as a function of the prediction error. Although a lot of prior work in the learning-augmented framework
aims to design mechanisms with smoothness guarantees, to the best of our knowledge, (almost) none of this
work provides explicit impossibility results regarding the price of smoothness. In contrast to this paucity of
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impossibility results, the robustness lower bounds that we prove for a-consistent®™ auctions imply that any clock
auction whose performance degrades linearly as a function of the error, 1, needs to be Q(poly(n))-robust.

This bound on the price of smoothness is implied by the following general observation (which holds beyond
our setting, as long as the error is measured as in (3.3), termed quality of recommendation by [22]: any mechanism
whose performance degrades linearly as a function of the error 7, e.g., guaranteeing an approximation factor of an
if the prediction error is 7, also satisfies a-consistency™. To verify this, note that the value of a predicted set D}sT

OPT __ 0BT

with error n is OPT/n (by definition). A mechanism with approximation factor an guarantees welfare o = e

which implies a consistency® of a. This leads to the following Corollary regarding the price of smoothness.

COROLLARY 4.2. If a deterministic clock auction augmented with a prediction OPT quarantees an approzimation
of am for every o € [1 + ¢, H,|, where 1 is the prediction error (as defined in (3.3)), then its robustness cannot be
better than Q(Ln'/(@=Dlogn).

We now provide the proof of Theorem 4.2.

Proof. (Proof of Theorem 4.2) Let « be the targeted consistency any mechanism is aiming for. Consider a
feasibility constraint F defined by two disjoint maximal feasible sets F; and Fy, i.e., N = F; U F5, and a set
F C N is feasible if and only if FF C Fy or F C F5. Let the sizes of these sets be |Fy| = ky and |F»| = aks, and
let F, be the set predicted to be optimal, i.e., OPT = Fj.

Using this feasibility constraint, we now define a family of instances Z by defining the set of values that can
be assigned to the bidders in F; and the bidders in F5; the class of instances in Z corresponds to all possible
assignments of these values to the bidders in the corresponding sets. Let

11 1
Vi=<1l,=,-,...,—
1 {a2735 7k1}

be a set of k1 values that can be matched to the k; bidders in F; and let

V2 = {’l}17’l)2,...7’l)k2}

be a set of ko values that can be assigned to the aks bidders in Fy. In particular, each value v; for i € [1, ko — 1]
is assigned to a single bidder, while vy, is assigned to the remaining (o — 1)ks + 1 bidders. The values in V5 are
in decreasing in sequence such that the highest value among them is v; = 1 for every i € {2,3,...,k2}:

(a—1)(i—1)+6

(4.5) T T A1)t 1

*Vi—1,

where § > 0 is some arbitrarily small constant. Note that as § — 0 and o — oo, this sequence of values converges

11 1
129390 Ky
than that. Specifically, the lowest value in V5 is

to the harmonic sequence {1 } However, for smaller values of a the values in V5 drop much faster

ko ) (1 e 2 ko — 1)!
Vg, = (a-1)(E-1)+d _ ( +a_l)(2 ) '
(4.6) ke = 1;[2 (a—1)yi+1 F(k2+ﬁ) o

where 6’ — 0 as § — 0.

By Equation (4.5), we have that (a« — 1) - (k2 — 1) - vg,—1 < ((@ — 1)k2 + 1)vg,. Note that the right-hand side
is the sum of the values of the bidders in Fy with value vg,. Again by Equation (4.5) and part 1 of Claim 4.1 we
have, for every i € {1,2,..., ko — 1} it satisfies:

ka—1
(4.7) (@=1)-i-v; < ((a@—Dky+ Dvg, + Y vj.

j=it1

To prove this theorem, we consider any learning-augmented clock auction M and simulate it on an instance
from Z, chosen adversarially to maximize the number of bidders that drop out. Note that, since M is deterministic,
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the adversary can essentially determine who to assign each value to after observing the price trajectory that M
will follow. Specifically, whenever M raises the price of an active bidder ¢ € F} to an amount that exceeds some
value v € V; that remains active (i.e., that was not already assigned to a bidder that has dropped out), then the
adversary can assign the value v to ¢ and, as a result, ¢ drops out. This implies that, if at any point during the
execution of M the maximum price offered to an active bidder in Fj is p1, then the value of every active bidder
in F} is at least p; (otherwise the adversary could have assigned that value to the bidder facing price p;, causing
him to drop out). Using the same argument for F5, we can conclude that if at any point during the execution of
M the maximum price offered to an active bidder in Fj is ps, then the values of all active bidders in F; are at
least ps.

We now partition the set of all clock auctions into three cases, based on their outcome facing the adversarially
chosen instance from 7.

Case 1 (the auction M accepts a subset of F): For this case, we show that there exists an instance (not
in 7) for which the auction fails to achieve a-consistency®. To verify this, let  be the number of bidders in F;
that did not drop out and note that, given the harmonic structure of the values in V7, the smallest value among
them will be at most 1/x. As we showed above, this means that the maximum price offered to any one of the
winning bidders in F} was p; < 1/z. Now, consider an alternative instance that is identical in terms of the values
of all the bidders that dropped out, but has value 1/z for all of the bidders that won. Note that the outcome of
the auction would be the same for this alternative instance, since the only difference is regarding values of bidders
that are higher than the price offered to them, so the welfare achieved by M in this alternative instance would
be x - % = 1. However, the social welfare of OPT = F, is more than «, which is implied by Inequality (4.7) for
i = 1 since the left-hand side of (« — 1)v; = @ — 1 is less than the sum of all the remaining values in Fy, which
violates the a-consistency™ constraint.

Case 2 (the auction M accepts a subset of OPT and raises at least (o — 1)ky + 1 bidders’ clocks
above vg,): By the fact that we may assign values adversarially to ensure that the first (o« — 1)ko + 1 bidders
whose clocks are raised above vy, have value vg,, we may assume that all bidders with value v, exit the auction.
For this case, we once again show that there exists an instance (not in Z) for which the auction fails to achieve
a-consistency®. To verify this, let © < ks — 1 be the number of bidders in OPT that did not drop out and note
that, by the definition of the values in V5, the smallest value among them is v,. As we showed above, this means
that the maximum price offered to any one of the winning bidders in OPT was py < v,. We, once again, consider
the alternative instance that is identical in terms of the values of all the bidders that dropped out, but has value
v, for all the bidders in OPT that won. The outcome of the auction would not be affected by this change, so
the resulting welfare would be z - v, but, using Inequality (4.7) for ¢ = = for any x < ko — 1, this violates the
a-consistency™ constraint since the left-hand side of Inequality (4.7) is (o — 1) times the welfare the auction
obtains and the right-hand side is the rejected welfare from the predicted set.

Case 3 (the auction M accepts a subset of OPT and raises fewer than (o — 1)ky + 1 bidders’ clocks
above vyg,: For this case, note that by the adversarial assignment of values, the auction maximizes its welfare
if no price offered to a bidder in OPT exceeded vy,, otherwise the adversarial assignment would ensure that the
corresponding bidder would have dropped out (and M then would not accept all bidders of value vg,). Now
consider an alternative instance that is identical with respect to the values of the bidders in F}, but the values
of everyone in Fj are equal to vg,. Note that the outcome of the auction would be the same in this alternative
instance, since the only difference is regarding values of bidders that are higher than the price offered to them.
Therefore, using Equation (4.6), we conclude that the welfare achieved by the auction in this instance would be

r(1+ﬁ)(k2—1)!+6,:ar(1+ﬁ)k2!
P (ks +525) r (ke + 52

whereas the welfare of F} is equal to H,, =1+ % + e+ 1711’ leading to a robustness of

ko v, =a-ky- + 6,

H,,,T (k2 n %)
ol (1+ 327 ) k!

where the last equation is inferred by following the same steps as we did at the end of the proof of Lemma 4.7.
If we let k1 = n® and ky = *—"-, this yields the claimed robustness lower bound. 0

8=0 -0 (;k;““‘” log k1> ,
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5 Conclusion and Further Directions

In this work, we provide the first analysis of clock auctions through the learning-augmented framework. Apart
from the standard notion of consistency, we also consider a stronger notion of consistency, which we refer to as
consistency>. We prove upper and lower bounds on the trade-off between robustness and each of these notions of
consistency. Additionally, we observe that the impossibility results regarding the trade-off between consistency>
and robustness also provide insights into the “cost of smoothness,” i.e., the robustness that is achievable if we
require the performance to degrade smoothly as a function of the prediction error.

In our setting, the achievable trade-off between consistency and robustness and the achievable trade-off
between consistency™ and robustness are drastically different. This is in contrast to some other settings (e.g.,
[1, 17, 13]), where there is no separation between the two. An interesting open question is to identify which kinds
of problems exhibit such separation and which do not. Another type of result currently lacking in the literature
is the “cost of smoothness”, i.e., the best-possible trade-off between good error-dependence and robustness.

To address the limitations of deterministic clock auctions without prior information, we utilize unreliable
predictions. Prior work has also explored Bayesian clock auctions using distributional information on bidders’
values [28] and randomized clock auctions to eliminate the need for prior information altogether [21]. Despite
the improvements that these alternative approaches have achieved, there remain large gaps. Determining the
tight bounds for Bayesian and randomized clock auctions is one of the most compelling open questions in this
line of work. More broadly, the compelling properties of clock auctions make them highly suited to practical
applications. Thus, further studying their performance in other auction settings (e.g., procurement auctions and
double auction settings), potentially augmented with predictions, is an interesting future direction with important
implications for “real-world” auction implementation.
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A Missing Proofs from Section 3
A.1 Proof of Lemma 3.1

Proof. Fix some set S and consider the process of raising the price offered to bidders in this set as in line 9. If
at least k bidders in S accept a price of R;/k for any k then we terminate this process (since the total revenue
in S would reach the revenue target of R;). This would happen if the k-th highest value bidder in S had value
more than R;/k. As such, rejecting the k’-th highest value bidder in iteration ¢ of the while loop implies that
this bidder has value at most R;/k’. On the other hand, since there are at most n bidders contained in set S the
total value of the bidders rejected in iteration ¢ of the while loop is at most

completing the proof. a

A.2 Proof of Lemma 3.5

Proof. Following the same argument of Lemma 3.1 we first observe that the total welfare rejected from the
predicted set in line 11 in any iteration ¢’ of the while loop of FOLLOWTHEUNPREDICTEDLEADER is at most
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Ry - H,,. Taking a sum over all rounds from 1 to ¢t we then obtain that the total welfare rejected is at most

t t
, 100+ — 1 10H,
Ry -H, =H, 108 = H,, - < Ry - o

as desired. 0

A.3 Proof of Corollary 3.1

Proof. Suppose we have an algorithm which gives a p-approximation to the underlying algorithmic problem of
maximizing welfare/revenue on a fixed set of values. We first argue that the consistency of FOLLOWTHEUNPRE-
DICTEDLEADER when using this approximation algorithm (in place of an exact algorithm) remains (1 + €). To
see this, observe that we can exactly compute the revenue within the predicted set in every round in polynomial
time since we can simply sum the prices of the bidders in the predicted set. As such, the arguments in Lemma
3.6 still hold when we use an approximation algorithm in Lines 7 and 9 of FOLLOWTHEUNPREDICTEDLEADER
on the unpredicted sets.

It remains to verify that the robustness of FOLLOWTHEUNPREDICTEDLEADER is O(p- 1 logn). First observe
that, by definition of the fact that we are using a p-approximate algorithm in Line 7, the maximum welfare
rejected from any unpredicted set in iteration ¢ of the while loop of Mechanism 1 at the end of line 7 is p-2RyyH,,.
Similarly, by the same reasoning as in the proof of Lemma 3.1, the total welfare rejected from any unpredicted
set in line 9 of Mechanism 1 in iteration ¢ is at most pR; - H,, (since k bidders in any set accepting a price pR;/k
would mean that the best revenue is weakly higher than pR; and a p-approximate algorithm would find a set
with revenue at least R;). Combining these two gives that the total welfare rejected from any unpredicted set in
any iteration ¢ is at most Ry - (27 + 1)pH,. As in Lemma 3.2, summing over all rounds then gives that the total
welfare rejected from any unpredicted set from rounds 1 to ¢ is at most R; - %.

Following similar reasoning to Lemmas 3.2 and 3.4, we consider cases depending on whether a predicted or
unpredicted set wins. Let ¢ denote the final iteration of the while loop of Mechanism 1. If Mechanism 1 outputs a

subset of the predicted set, observe that the revenue of the predicted bidders is at least R;_; = %’7. But then, since

the total welfare in any unpredicted set is at most R;- % (since we rejected all the bidders in some round

between 1 and #), we obtain that Mechanism 1 outputs a set with at least a m—fm(}tion of the optimal
welfare. Suppose, instead, that Med}anism 1 outputs a subset of some unpredicted set (i.e., we reach line 13) in
the final iteration of the while loop t. By the same arguments in Lemma 3.3, we know that the revenue among
active bidders in the highest revenue set is R; when we reach line 13. As above, the total welfare rejected from
any unpredicted set by this point is at most R; - %

bidders in the highest revenue set when we reach line 13 is a

. But then, we have that the revenue among active
m—fraction of the maximum social welfare
from any feasible set of rejected unpredicted bidders. We can then apply similar reasoning to the proof of Lemma
3.4 to complete the proof. As noted in [21], the WFCA can also readily admit the use of a p-approximation for
maximizing the revenue at a fixed set of clock prices. In this case, the approximation guarantee given the WFCA
is p - 2H,, [21, Theorem 5]. Moreover, the WFCA remains revenue monotone even when using an approximation
algorithm. Combining these observations with our above reasoning, we have that the revenue from the set output
by Mechanism 1 is a m—fraction of the welfare rejected before running the WFCA and the welfare from
the set output by Mechanism 1 is a pﬁ Putting this all together, we have that Mechanism 1 with any v > 10/9
and a p-approximate black-box achieves at least a p~10(2’3 om, p~21Hn -fraction of the optimal welfare when the
prediction is incorrect and Mechanism 1 outputs a subset of some unpredicted set. Combining our two cases gives

that Mechanism 1 is O(p - £ logn)-robust, as desired. 0

B Missing Proof from Section 3.1

Proof. [Proof of Theorem 3.2] Consider any deterministic clock auction M that is augmented with a prediction
OPT and achieves (1 + €)-consistency and robustness better than Q(1logn). Also, consider a family of instances
involving an arbitrarily large number of bidders n and a feasibility constraint F defined by two disjoint maximal
feasible sets F and F3, i.e., N = F; U Fy, and a set FF C N is feasible if and only if FF C F; or FF C F. F
contains only a single bidder and |Fy| =n — 1. Also, let F, be the set predicted to be optimal, i.e., OPT = Fj.
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Using this feasibility constraint, we now define a family of instances Z where the value of the single bidder in
F1 is 0.99 and the values of the bidders in F5 correspond to the following set of values:

V2 = {099, 2(Hn71 _1)’3(Hn71 _1),-.., (n—l)(Hn,1 _1)}

We now consider what M does facing an instance in Z that is chosen by adversarially matching the values
in V5 to bidders in F5, depending on the deterministic price trajectory that M will follow. Specifically, at each
time ¢ during the execution of M, let V5(t) C V5 be the set of values from V5 assigned to bidders that have not
dropped out yet. Then, the adversarial assignment of values to bidders in F5 ensure that if at any time ¢ the price
offered to an active bidder i € F5 exceeds a value v € V,(t), we can assume that the adversary assigns v to 4, so 4
would drop out. As a result, if number of active bidders at any time ¢ is > 2, then the highest value offered to
any one of them is at most m, so the revenue never exceeds x - I(Hnilfl) = anﬁl.

Using this fact, with the assumption that the auction achieves better than Q(% logn), we can infer that the
auction cannot terminate with at least two active bidder in F5. Specifically, if M terminated with z > 2 active
bidders in F5 and, as we argued above, their final price was at most m, then M would fail to satisfy
the claimed robustness guarantee on an alternative instance (not in Z). This alternative instance is identical in
terms of the values of all the bidders that dropped out and the only difference is in the value of the x winning
bidders, whose values are changed to m Note that the outcome of M facing this alternative instance
would be the same, since the prices offered to the winning bidders would still be below their values. However, in

this alternative instance the welfare of M would be + fl_l while the optimal social welfare is 0.99, leading to a

robustness of (% logn).
If, on the other hand, the auction accepted at most 1 bidder from F5, then the resulting welfare would be
0.99. Consider the total value rejected so far, we would have: Z?;Ql T = © since E?;Ql =H, ;-1

_171)
Therefore the consistency would be

0.99 e
0.99 ©

violating the consistency guarantee. ]

C Missing Proof from Section 3.2
For completeness we include the full description of ERRORTOLERANT below:

LEMMA C.1. Suppose that the predicted set has total welfare at least 1/7 times the optimal social welfare (i.e.,
the prediction is within the error tolerance). Then for a fized parameter v > 10/9 ERRORTOLERANT terminates

in either Line 8 or Line 10 and obtains at least a ( — %)—fmctz’on of the social welfare of the predicted set.

Proof. Fix an instance I where the optimal set has social welfare W* and where the predicted set has welfare
at least W* /7. Consider the minimum value k such that 10* - vH, exceeds W*. Let i’ denote the value of i
at the beginning of the final iteration of the while loop of ERRORTOLERANT when run on instance I. Since we
only continue to line 9 after the preceding if statement when there are still active unpredicted bidders it must be
that i’ < k (as, otherwise, some unpredicted set would have total welfare greater than W*) and if i’ = k then we
terminate before line 9 (i.e., before we cause any additional predicted bidders to exit the auction in the iteration
k).

Now consider the total amount of welfare lost from the predicted set from rounds 1 to ¢ — 1. By Lemma 3.5

we have that this total welfare is at most % -10H,, /9 = 10%71 . 105" < 10%71 . 105". On the other hand, by
our definition of k&, we know that the total social welfare in the predicted set is at least 10;71 -vH,,. But then, at

the end of the i’ — 1 iteration there must be active predicted bidders and moreover, we retain at least a

10kt 10F71 10
f-fyHn—f~§Hn 7_L0

n n _ 9
10"% -~vH, v
fraction of the social welfare of the predicted set. 0
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MECHANISM 3: ERRORTOLERANT
Input: A system F of feasible sets of bidders, a predicted optimal set OPT, a parameter +

1 F < F\{FNOPT} for all F # OPT € F // Make OPT disjoint from all unpredicted sets
2 P ¢ Upin for all i € N // Raise price of each bidder to the initial small amount
3 Ry + rev(OPT,p)

at+1 // Initialize the counter

5 while TRUE do
6 Ry «+ 10'Ry—q
7 Run UNIFORMPRICE(N \ OPT, p) until maxy v(F \ N) € [RyyH,,2R;vH,)* // Reject ‘‘safe’’
amount of welfare to determine minimum total value in optimal set
if N = OPTthen return OPT, p
Run UNIFORMPRICE(N \ OPT, p) until maxy rev(F N N,p) > Ry // Ensure unpredicted sets
‘‘cover’’ their own lost welfare
10 if N = OPT then return OPT, p
11 Run UNIFORMPRICE(OPT, p) until rev(0PT, p) > R;/7 // Ensure predicted set ‘‘covers’’
welfare lost from unpredicted sets
12 if OPT= () then
13 return WFCA(N,p)
14 tt+1

LEMMA C.2. Consider some fized constant parameter v > 10/9 ERRORTOLERANT outputs a subset of the
predicted set. Then ERRORTOLERANT obtains social welfare within a m—factor of the optimal social

welfare.

Proof. Consider the iteration # in which the while loop of ERRORTOLERANT terminates. By definition, the
mechanism terminates in either line 8 or line 10. By Line 7 and Lemma 3.1 we have that the total welfare rejected
from any unpredicted set in any round # is at most 2W; + R;H,, = R; - (2y+ 1)H,,. But then, summing over all
rounds we have that the total welfare contained in any unpredicted set is at most

~+>

100+ — 1 (2y +1)10H,,

i
Z_: -(2y+1)H, = (2y+1)H, Z b= (2y+1)H, - T§R£~ 5

On the other hand since we continued to iteration ¢ we have that the revenue of the bidders in the predicted set

=l = Moreover, this means that the welfare of the active predicted bidders is at least 102 and we

1077
Ry/(107m)
serve all these bidders. Hence, ERRORTOLERANT obtains at least a R{_(MngHn = 54100(27+1)Hn

-fraction of the

optimal social welfare. 0

LeEmMA C.3. Consider some parameter v > 10/9 ERRORTOLERANT reaches line 13. Then the revenue of
active bidders in the highest revenue set before running the Water-filling Clock Auction is at least a W-
approzimation of the maximum social welfare obtainable by rejected unpredicted bidders.

Proof. As before we consider the iteration ¢ in which the while loop of ERRORTOLERANT terminates. By
assumption, our while loop terminates in line 13. Following the same reasoning as Lemma C.2, the total welfare
rejected from any unpredicted set over all rounds from 1 to ¢ is at most

t
> Ri-(2y+1)H, < R;-
/=1

(2y + 1)10H,
.

On the other hand, because we arrive at line 13 we know that there exists some set unpredicted set which obtains
revenue R; in round ¢. Thus, the revenue among active bidders in the highest revenue set when we reach line
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13 is a m-fraction of the maximum social welfare obtained from any feasible set of rejected unpredicted
bidders. O

LeEMMA C.4. Consider some parameter v > 10/9 ERRORTOLERANT outputs a subset of unpredicted bidders.
Then ERRORTOLERANT obtains social welfare within a o0 -approzimation to the optimal social

welfare.

9 1
2vy+1)H, + 4logn

Proof. In the case that ERRORTOLERANT outputs a subset of unpredicted bidders it must arrive at line 13. As
such, we can decompose the social welfare from the optimal (unpredicted) set into two components, the portion
of the welfare coming from bidders rejected before ERRORTOLERANT runs the Water-filling Clock Auction and
the portion of the welfare coming from bidders who participate in the WFCA. From Lemma C.3 we know that
the revenue reached by ERRORTOLERANT before running the WFCA is within a m—factor of the welfare
rejected from the optimal set before running the WFCA. Moreover, from Lemma 2.1 we have that the revenue
reached by ERRORTOLERANT after running the WFCA is weakly higher than the revenue reached before running
the WFCA. As such, since the welfare obtained by serving a set of bidders is always weakly higher than the revenue
collected from these bidders we have that the social welfare obtained by ERRORTOLERANT is within a m—
factor of the welfare rejected from the optimal set before running the WFCA. Finally, we have from Lemma 2.1
that the social welfare achieved by running the WFCA only on bidders who are active when line 13 is reached
is within a 1/(4logn)-factor of the optimal social welfare achievable from these bidders. Combining these two
guarantees, we have that the social welfare obtained by ERRORTOLERANT is within a 00 v?lrl) o T 4101gn—factor
of the optimal social welfare. a

Proof. [Proof of Theorem 3.3] First observe that e > 0 ensures that v > 10/9. In the case that the predicted set,
indeed, has social welfare at least 1/7] times the optimal social welfare then Lemma C.1 gives that some subset of
the predicted set is served. Moreover, we obtain that the total social welfare of served bidders is within a factor

10 10 1
(1— %) = (1_ 910(1+e)> - 14¢
9e
of the total social welfare in the predicted set, thereby guaranteeing (1 + €)n approximation with error tolerance
77. On the other hand, if the predicted set has welfare less than 1/7 times the optimal (i.e., n < 7)) then we can
consider two cases depending on whether or not a subset of the predicted set is ultimately served. If some subset

of the predicted set is served, Lemma C.2 guarantees that the total social welfare obtained by ERRORTOLERANT
is within a factor m of the optimal social welfare. Since H,, = ©(logn) and ~ is a constant for

any choice of constant € we obtain ©(logn)-robustness in this case when 7 = ©(1). Finally, if some subset
of an unpredicted set is served, Lemma C.4 guarantees that ERRORTOLERANT obtains welfare within a factor
of the optimal social welfare. Again, since H,, = O(logn) and + is constant for any constant

9 1
10(2v+1)H,, + 4logn
€ we obtain O (logn)-robustness in this case, completing the proof. |

D Missing Proofs from Section 4
D.1 Proof of Lemma 4.1

Proof. Fix a round ¢ in our auction and consider the total welfare lost by some unpredicted set S in Line 7 during
t. First observe that if we move to Line 11 as a result of satisfying the second condition of the price increase for
the unpredicted sets then it must be that every unpredicted set has rejected welfare less than g - RE | (since we

would have otherwise have stopped raising prices sooner, having met the lower revenue target of % -RE | before

reaching g -RE }). On the other hand, suppose we move to Line 11 as a result of satisfying the first condition.

Once some unpredicted set has rejected welfare 2 - RF |, this condition will be satisfied if there exists any set

E;
B R

iH, "k
unpredicted set in round ¢ after having rejected after having rejected % . Ril from some unpredicted set it must

B . Rf—l
4H,, k

with k remaining bidders of value at least . As such, if we reject the k-th highest value bidder from any

be that her value was at most . However, since each set has size at most n the total value rejected from
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any unpredicted set S in round t after having rejected welfare at least g - RF | from some unpredicted set is at

most "
B R, B

. —_ — . P
4H, k 4 Riy

k=1
In total, we cannot reject total value from any set more than g - RE . Similarly, if neither condition is met (i.e.,
we reject all unpredicted bidders before reaching either (i) or (ii) in Line 7) we cannot reject total value from any

set more than % “RE |+ g “RP | = g “RF .. d

D.2 Proof of Corollary 4.1

Proof. Consider that in each round RY is set to double of R | in Line 10. And, by the conditions of Line 11 we
have that the value of RY at the end of iteration ¢ in the while loop is at least twice R ;. Applying Lemma 4.1 to
each round ¢ < ¢ we then have that the total welfare rejected through the first ¢’ iterations from any unpredicted

set is at most
t t'—1
3 Bpr _ B Lp
2 t—1 —
t=1

B
§R£1 + §Rtu1 < 5R5717
t=1

as desired. 0

D.3 Proof of Lemma 4.4

Proof. Observe that when we terminate, by assumption that we output a subset of the predicted set, we did so
because we did not satisfy either condition in Line 7. But in the previous iteration of the while loop we have that
the revenue of the predicted set was (o — 1) times the total welfare rejected from the predicted set. The social
welfare remaining in the predicted set is then at least a a-factor of the total welfare of the predicted set. 0

E Auxiliary Lemmas

LEMMA E.1. For any choice of @ > 1 and all n > 2, we have that
al’ (na;f;n)
r(2=t)rm)

Proof. We demonstrate first a simpler summation in the form of Equation (E.1) below which we argue holds
whenever o > 1

n T - DU (n+1+ 25) B

) +n—-1
i=2 I (ﬁ + l) F(n)

—an +

(E.1) Z I'(i—1) _ (—an+n—1)I'(n) e

+ .
L) () T
Our proof that Equation E.1 holds proceeds via induction on n. Consider the base case of n = 2. The left-hand
side of Eq. (E.1) is then

ra) 1
r(2+ﬁ) _F(Q—i—ﬁ).

On the other hand we have that the right-hand side is

(—2a+1)I'(2) o (—2a+1) a

= -
2a+a—2 2a— 3a—2 2a—1
rlEe) r(eR) r(e) r(a)

1 -2« «

r(3+ %) T (2222)

1 -2« le}

- (2+4)r(2+:5)
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l—« «

1 1
rl2+2) T(2+5)
1
1 )
r(2+ )
where the third equality is due to the fact that I'(z) = (2 — 1)T'(z — 1) and the fourth equality is due to the fact
that a > 1 means that o # 1/2 (and hence (1 —2a)/(2+ 1/(ac— 1)) =1 — 2a). As such, we have that the base

case of our induction holds.
We now proceed to the inductive step. Assume that

Er(r ) r(mme) r(ad)

for all n < n’ + 1. We thus want to show the equation remains true for n =n’ + 1, i.e., we want to show

z": Ii—1) (—an+n—1T'(n) n !

-1 (—a@ +1)+ @ +1) - DI + 1) a
E.2 3 - .
( ) ~r (Z + ail) T ((n/+1)a;r_al*(n/+1)) T (20(:_—11)

We rewrite the left hand side of Equation (E.2) as

T'(n') CTi-1) INCD (a4 —M@) | a
Pwtl+ ) Sr(ivy) D(w+1+ k) P (oo r (=)
_ I'(n') n (—an’ +n' = 1)I'(n') n e
T (n/(f;ill)+a) r (n’(f;ill)+a) r (25:11)
_ (=an’ +n)['(n') «
- - (n/(og;11)+a) r (20(;:11)
/(1 —a)l'(n) «
- . (n/(oé:11)+a> r (25:11>
1-a)l(n +1) e

+
n/(a—1)+a 200—1
r(ee) ()
where the first equality applies the inductive hypothesis and the last equality applies the identity I'(z) =
(z—=1I'(z—1).
We can similarly rewrite the right hand side of Equation (E.2) as

(—a(n + 1)+ (0 +1)—1T'(n' +1) N a (I=a)(n+1)-1)I'(n' +1) N !
n’+lata—(n'+1 a— a—)(n'+1)+a a—
r () r(e) r(emeee) ()
(=)' +1)-1)I'(n" +1) n !
- n'(a—1)+a a—
r (1 + (a—l) ) r <2a—11>
(=)' +1)-1)I'(n" +1) @
o n’/(a—1)+ao n'(a—1)+a a—
(a—l) - ( (oc—l) ) I <2a—11>
(1 —a)n’ —a)l(n' +1) !
o n'(a—1)+a n'(a—1)+a a—
a—1 T ( a—1 ) r <2a—11)
(I1-a)'(n'+1) @
- r n’(a—1)+a * I(2e=1 ’
( a—1 ) ( a—1 )
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where the third equality applies the identity I'(z) = (z — 1)T'(z — 1), completing the inductive step as desired.
Our main summation then follows, essentially, as a direct consequence of Equation (E.1). Factoring out the
(nt+1+517)

common term )

and applying Equation (E.1) we obtain

n F(i*l)F(ﬂ*Fl*f’ﬁ) F(n+1+ﬁ> "OT(—1)

= L M) Zr(itgy)
7F(”+1+ﬁ>. (—cm—i—n—l)I‘(n)Jr a
= T'(n) r (na{jfz;n) r (25:11>
=—an+ o (”’ﬁ%) +n—1,

I (%) r)

as desired. 0
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