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1 | INTRODUCTION

| Tadele Mengesha? | Xiaochuan Tian'

Abstract

We prove two compactness results for function spaces with finite
Dirichlet energy of half-space nonlocal gradients. In each of
these results, we provide sufficient conditions on a sequence of
kernel functions that guarantee the asymptotic compact embed-
ding of the associated nonlocal function spaces into the class
of square-integrable functions. Moreover, we will demonstrate
that the sequence of nonlocal function spaces converges in an
appropriate sense to a limiting function space. As an applica-
tion, we prove uniform Poincaré-type inequalities for sequence
of half-space gradient operators. We also apply the compactness
result to demonstrate the convergence of appropriately parameter-
ized nonlocal heterogeneous anisotropic diffusion problems. We
will construct asymptotically compatible schemes for these type
of problems. Another application concerns the convergence and
robust discretization of a nonlocal optimal control problem.
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In this article, we revisit the half-space nonlocal gradient operator studied in [20] defined in the

principal value sense as

Ghu(x) = lim

€=

0 /HV\B<.(0) |z|

2 (ux +2) — u(@)w(z)dz, xR,
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where ford > 1, u : R? — R is a measurable function, v € R? is a fixed unit vector, H, is the
half-space H, = {z € R? : z-v > 0}, and w is a nonnegative kernel function that satisfies appropriate
conditions specified later. Additionally, inspired by the integration by parts formula, a distributional
nonlocal gradient ®}; is introduced (see eq. (7)), and the related nonlocal Sobolev-type space Sy (£2),
defined by

SHQ) = {ue L*RY) : Ohu e LX(R;RY),u=0ae.in R?\ Q},

for an open domain Q C R is studied in [20].

The study of nonlocal operators is largely motivated by peridynamics, introduced by Silling [32],
which has been effective in modeling materials undergoing large strains and fractures. Within the peri-
dynamics theory, a specific category of material models known as correspondence models employs
nonlocal gradients and classical stress-strain relationships to calculate the forces between particles
[19, 34, 38, 39]. Despite their effectiveness, correspondence models are challenged by material insta-
bility issues [33], which, however, can be addressed through the use of half-space gradient operators.
The exploration of such operators began with the work of Lee and Du [21] in the context of periodic
domains. Subsequent developments, carried out by Han and Tian [20], extended the study to general
domains in R¥, where they showed a nonlocal Poincaré inequality on SY(Q) with Q being a bounded
domain with continuous boundary. The well-posedness of nonlocal diffusion problems and peridynam-
ics correspondence models using half-space nonlocal operators is therefore implied via the application
Lax—Milgram theorem. For additional studies related to the nonlocal gradient, please refer to [4-6, 11,
13, 24, 26, 30, 31] and the references therein.

This work primarily aims to analyze the convergence of variational problems associated with the
nonlocal gradient ®), and the energy space Sy (2). In particular, the focus is on understanding the
convergence of solutions when the variational problems are associated with a sequence of kernels w,,
that approaches a specific limit as n approaches infinity. The key for showing such convergence relies
on establishing compactness results in the limit as n approaches infinity in the spirit of Bourgain,
Brezis and Mironescu [7]. In this work, we prove two types of compactness results, each associated
with a particular type of kernel sequence convergence. One type of kernel convergence, as detailed in
Assumption 3.9, is fundamentally characterized by the convergence of min(l, |z])w,(z) to a measure
with atomic mass at the origin as n — oo (or as 6 — 0 in the context of Assumption 3.9). Such a
result is crucial for establishing the convergence of solutions from nonlocal variational problems to
their local counterparts as nonlocality diminishes. A different kind of kernel convergence presupposes
{wy}, is a sequence of nonnegative radial kernels converges increasingly to a kernel w almost every-
where, that is, 0 < w,, /" w a.e., where w is nonintegrable near the origin (for detailed assumptions,
refer to Assumption 3.2), resulting in nonlocal-to-nonlocal convergence. A key intermediate result for
this form of compactness is the locally compact embedding of S(R?) into L?(R¢), which extends the
classical compact embedding of H* (s € (0, 1)) into L? by choosing w(z) as the Riesz fractional kernel
C/|z|9*5 [5, 30, 31]. Furthermore, the compactness results yield Poincaré inequalities that remain uni-
form regardless of the size of n. The uniform Poincaré inequalities also serve as essential intermediary
steps in showing the convergence of variational solutions.

To establish the compactness results, we rely on a variant of the Riesz—Kolmogorov—Fréchet com-
pactness criterion [22]. Addressing nonlocal Dirichlet energies with nonlocal gradients presents more
challenges compared to the “double-integral” type nonlocal energies studies in previous works, for
example, [7, 23]. In recent studies [5, 10], compactness results for nonlocal energies with truncated
Riesz fractional gradients are established where a nonlocal version of the fundamental theorem of cal-
culus plays a pivotal role. However, none of the existing methodologies are suitable for addressing the
challenges posed by nonlocal energies defined through a half-space gradient. In our study, to show
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the Riesz—Kolmogorov—Fréchet compactness criterion, we employ Fourier analysis along with fine
estimates (see Section 2) of the Fourier symbols for half-space nonlocal gradient operators.

The compactness results are applied to obtain convergence of parameterized nonlocal heteroge-
neous anisotropic diffusion problems, together with the asymptotic compatibility of their Galerkin
approximations with appropriate finite dimensional subspaces. The concept of asymptotic compatibil-
ity is introduced by [35] and is aimed for robust numerical discretization of parameterized nonlocal
variational problems as the nonlocal modeling parameter and the discretization parameter both go to
an asymptotic limit. We summarize the main convergence theorem in [35] with a slight relaxation on
the conditions, that is, the assumption that strong convergence of operators acting on a dense subset
is replaced by the convergence of bilinear forms in a weak sense. It is worth noting that in the case of
0 <w, /' w for a sufficiently singular kernel w, the Galerkin approximation to the nonlocal problem
associated with w,, serves as a nonconforming discontinuous Galerkin (DG) scheme for the nonlocal
problem tied to w, as discussed in [36]. Another application we discuss is an optimal control problem
with nonlocal diffusion equation as the constraint. The approach we follow and the results we obtain
for this part of the study parallel [25] an optimal control problem is analyzed where the constraint is
the linear bond-based peridynamics model.

The article is organized as follows. In Section 2, we recall the notion and some basic properties of
nonlocal half-space operators studied in [20]. Further, the nonlocal function spaces are reformulated
using the Fourier symbol of the nonlocal gradient, with a crucial lower bound estimate for the symbol
presented. The major compactness results are established in Section 3, utilizing the symbol estimates.
Applications are demonstrated through the proof of convergence for nonlocal diffusion problems and
the establishment of asymptotic compatibility in Section 4. Additionally, the study of the optimal
control problem is undertaken in Section 5. Finally, we conclude in Section 6.

2 | REVISITING NONLOCAL HALF-SPACE OPERATORS AND
ASSOCIATED FUNCTION SPACES

2.1 | Nonlocal half-space Operators

In this section, we revisit definitions of nonlocal half-space vector operators as introduced in [20] and
present some new properties.

Let v € R? be a fixed unit vector. Denote by y,(z) the characteristic function of the half-space
M, :={z € R? : z-v > 0} parameterized by the unit vector v. Throughout this article, we assume
that w satisfies the following conditions.

weLL @RI\ {0}), w>0ae., wisradial; 0
M) i= [ ZIw@)dz € (0,00) and M7 := [ w(z)dz < oo
We notice that by assumption (1) there exists ¢y > 0 such that
0< f€0<|z|<] w(z)dz < 0. 2)

We recall that the nonlocal half-space gradient, divergence, and curl operators are defined in the
principal value sense (see [20, Definition 2.1]). For smooth functions u € C}(R¢) andv € C}(R?; R?),
the operators are meaningful pointwise and are given as ([20, Lemma 2.1])

Gou(x) = [ 10 =) =31 (u®) — u(x)wly —x)dy,  x € RY, 3)

ly
D) = [os 100 — ) r - (¥(y) — v@)W(y — X)dy, x € RY, )

ly — x|

unuo/:sdny woiy papEO[uMO *9 “4Z0T ‘9THTS601
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and for p € [1, 0], Gu € LP(R?;RY), DYy € [P(R?) with the estimate that for a constant C depending
on d and p,
G ullpwasrey < C (MY Vullpraray + M3 ull e ), and (%)

IDYY | @ey < C(MLIIVYI|p@emanay + MENV || @e:re))- (6)
In addition, the nonlocal gradient and nonlocal divergence are related via a nonlocal integration by
parts formula

Cru(x) - v(x)dx = —/

u(x)D;, v(x)dx,
Rd

Rd
for any u € CL(R?) and v € CL(R?;R?). In fact, as shown in [20, Proposition 2.4], the above formula
is valid for u € L'(RY) such that w(x — y)|u(x) — u(y)| € L'(R? x R?). This formula motivates
the introduction of the distributional nonlocal gradient operator ®%u € (C®(R?;R?)) defined for
ue PR, 1<p<oo,as

(BYu, ) 1= = [poux) - DV p(x)dx, Ve C2RIRY, (N

(see [20, Definition 2.2]).
It has also been demonstrated in [21] that for u € CX(R?), v € C¥(RY;R?), and & € R?

F(Ghu)(&) = Ay(&)i(é), and ®)
F(DYw)(&) = A&)(&), ©))

where the Fourier symbol 4,(€) is given by
&) 1= fp )(v(Z)é*lW(Z)(ez”i‘f'z - Ddz. 10)

In the above, and hereafter, F and F~! represent the Fourier transform and the inverse Fourier trans-
form, respectively. We will also use the “-notation for Fourier transform interchangeably. That is,
Fu) = .

By [20, Lemma 2.4], the Fourier symbol 4;,(§) is bounded by a linear function, that is,

|A%E)| < 2V2xMLIE| +V2M2, € € RY. (11)

In fact, in [20, Lemma 5.1], the following estimates on the behavior of 1},(£) near the origin and at
infinity are proved. It is worth noting that in [20], it is assumed that the kernel does not vanish in a
neighborhood of the origin. Nevertheless, the arguments presented in that work remain valid with this
assumption replaced by w # 0 € L _(R? \ {0}), in particular w satisfying (1).

loc

Lemma 2.1. Let w satisfy (1).

1. For any N > 0 there exists a constant C = C(N,w, d) > 0 such that
[An(©)] > C/ min(1, w(x))dx, V|&| > N.
Rd

2. Suppose that in addition w has finite first moment, that is, fRd |z|w(z)dz < o0. Then
there exist constants Ny = N1(w,d) € (0,1) and Cy, = Ci(w,d) > 0 such that

[Au(@] = Cilgl,  VIEI <N
For the compactness result we obtain below, we will need an improved lower bound of 4y,(€) for

large & than provided in the first part of the above lemma. The following lemma has this improved
lower bound whose proof will be postponed to Appendix A.1 since it is long and technical.
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Lemma 2.2. Let w satisfy (1). Assume in addition that w is nonincreasing if d = 1. Then
for any N > 0 and € > 0, there exists a constant C = C(Ne, d) > 0 such that

@12 1RE@ > C [ vz ViEl> N,

21>

Here R(Ay,) stands for the real part of Ay,

2.2 | Nonlocal function spaces via Fourier symbols

In this section, we introduce a function space via the Fourier transform formula of the nonlocal gradient
operator defined in the previous section. We will show that this function space is a Hilbert space and
that it is the same space as the space of function with square integrable distributional nonlocal gradient
that was defined and thoroughly studied in [20].

Define the function space HY(R9) as

HyRY) 1= {u € LR : |uljpgo) := / | AUEAE)dE < oo} (12)
Rd

equipped with norm
1

. 2 2 2
lllygqee 2= (Nl + B3 )

It is direct to check that HY%(R9) is a normed vector space. Moreover, with the inner product given
by (1, Vv ey = (W, V)2gay + (At D)2 @eco) for any u,v € HY(R?), HY(R?) is, in fact, a Hilbert
space. Before we prove this statement we make the following remark.

Let & (R?; C) be the space of Schwartz functions and & '(R¢; C?) be the space of tempered dis-
tribution. Since u € L*(R9), i € L*(R?; C). Moreover, we may define the product A}, as a tempered
distribution in the following way:

(A0t ) 1= (At D)z, = (2. ) Vg e S RY:C.

LRC)
and use eq. (11) to show that A, i€ &' (R?; C?). We will use this observation to prove the completeness
of HY(RY).

Proposition 2.3. HY(R?) is a Hilbert space.
Proof. Let {u,}%, be a Cauchy sequence in H},(R?). Then there existu € L*(R?) andv €
L*(R4; C9) such that u, — u and A%, — v in L*(R¢; C¢). Then for any ¢p € & (R?; C?),
wa¢) = (a.079) = (wF (1))
(Avit, ) = (4, (Ay) ¢ e -\ (4w) @ P
= lim (un,F_l<(l:;)T¢>> = lim (A%4,, §).
L2(R%;C)

n—o0 n—0o0

Note that the above equalities hold true since (/IXV)Td) e L*(R%;C) as a result of
Equation (11) and ¢ € & (R?; C9). Thus, A%, — ALiin &'(R?; C?). Uniqueness of lim-
its in the sense of tempered distributions, we have 1},ii = v € L*>(RY) That is, u € H}(R?)
with u, — u in Hy(R9). Thus HY(R?) is complete. m

In [20], the nonlocal function space SY(IR?) is defined as follows:

SYRY) 1= {u € L2 (R?) : @Yu € L>(R?;RY))}
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with norm
1

. 2 2 2
il sy 2= (Il + il e )
where [u|svray := [|®ull2ga;re). For a given open domain Q@ C R, we define the closed subspace
Sy ={ueSYR) :u=0 ae. inR?\Q}

that collects functions in Sy (R?) that vanish outside of Q. It is shown in [20] that S¥(Q) is a Hilbert
space and that if Q has a continuous boundary C*(Q) is dense in S} (€2). We now establish the
equivalence of the space Sy (R9) with H}(R?).

Proposition 2.4. SY(R?) = HY(RY) with equal norms. More precisely, the identity map
is an isometrical isomorphism between SY,(R?) and Hy(R?).

Proof. First, we show SH(RY) C HY(R?). It suffices to show that for u € SY(RY),
A%l 2gaecey = (|O%ull2@are < oo. Since CX(RY) is dense in SY(RY), there exists
{u,}2, € C*(R?) such that u, — uin L*(RY) and G¥u, — GYu in L>(RY). Since Fourier
transform is an isomorphism on L2(R?), A%4, = F(Ghu,) converges to &}, in L2(R?; C?).
Similar to the proof of Proposition 2.3, one has Aii, — Ayii in &'(R?; C?). Then we
conclude that Ay, = OYu € L>(RY; C9) and || A%dlr2re.coy = [|®hullr2garey < oo.
Second, we show that H}(R¢) C Sy(R9). It suffices to show that for any u € H}(R9),
®Yu € L2(R?; R?). By definition, ®%u € (C®(R?; R?)) and for any ¢p € C®(R?; RY),
v — _ -V _ (s 7vT5
(Gl 9) =~ D Py = (225 D) -
where we used F(D,," ¢p) = —ETQ) by Equations (9) and (10). On the other hand, since u €
HY(@RY), A € L*(RY; C?) and thus F~1(Ayi) € L>(R?; C¢). For any ¢p € CX(R?; RY),
oy 3 s I
(P O00). ) 2y = (B0l D) 2 gy = (” A ¢>L2<Rd;<c>'
Therefore, ®}u = F~!(ALi) in the sense of distribution. We note that F~1 (A1) is
real-valued. This follows from the argument that for any ¢ € CX(R¢;R?),

- VoA A TT o -V
(r 1('lwu)’ ¢)L2(]Rd;(cd) = <u, Ay ¢> =—(u, Dy, ¢)L2(Rd) ER,

L2(R4;C)

and so F~1(Ay4) € L*(R?; RY), thus GYu € L>(R?; R?) and the proof is complete. n

We remark that, on the one hand, in the event that the kernel w satisfying (1) also belongs to
LY(R?), we have that || A} || =@e:re) < 2||W||Li1re). In this case, the function space SY(R9) coincides
with L2(R?) with norm estimate

el 2y o) = / 0+ 2OPNAGPAE < (1 4+ 4wl Ml oy, Vit € SUR?.
v R

On the other hand, when the kernel w satisfying (1) is not integrable, that is, /Rd w(z)dz = +o0, or
equivalently /IZI ., W@)dz = +o0, the space S}(R?) is properly contained in L*(R?). In fact, as one
of our main results of the next section, we will show that SY(IR?) is locally compactly contained in
L*(R?). An example of such type of kernel is w,(z) = |z|~¢~* for s € (0, 1). In this case, C;(s)|&|* <
[Ay, (&) < Ca(s)|€]*, where Ci(s)(1—s) — 1 and C(s)(1—s) — 2w ass /' 1, leading to the conclusion

that Sy (RY) = Hy (RY) = H*(R?), the fractional Sobolev space.

:sdy) SUONIPuOD puE swa], 2y 938 “[S70Z/90/Z1] U0 AIRIQIT SUUQ) AOTIA “WOSIPEIN - UISUOISIAL JO ANSIAIUA £q 6] £2WNW/Z00101/10p W02 [ ATeIqiauIUOy/:SdNY Wo1y PAPEO[uMOQ *9 4707 ‘9THZ8601

10y /w00 Ko

osu0a suWWO) aANEax) ajqeatdde oy Aq POUIAAGS A1 SAAIIE YO 1SN JO AN J0F AIBIQIT AUUQ) ASTIAL U0



HANET AL. Wl LEY 7 of 46

As we will see in the sections below, working on function spaces with compactly supported kernels
leads to simplifications. To that end, given a nonintegrable kernel w, we will show that we can have an
equivalent characterization of the function space Sy (R) using only the cut-off wé(z) := w(z) B,0)(2)
of the kernel w.

Lemma 2.5. Let w(z) be a kernel satisfying (1). Denote w°(z) := w(z)xp,) @) as the
compactly supported kernel obtained cutting of the tail of w. Then there exist positive
constants ¢i and ¢, depending on M2 = f|z|>] w(z)dz such that

cillullsyray < llullsy, @ey < callullsymay, Y € SHRY). 13)

Proof. We begin noting that w* satisfies (1), and so from Proposition 2.4 we have that
Nl g, = / (1 + 2O PIAEPAE,  Vu € SURY).
v RY

A similar equality also holds for functions in SY.(RY) with w replaced by w. Now to
compare ||ul|svga) and [|ullsv, &), it suffices to compare An(E) and A} (€). By (11),

|45(&) = Ae(®)] = |A—ue (E)] <2M3,  VE € R (14)

Then
| A% (E)* < (| ANE)] +2M2)* < 2(|AN(E)]* + 4(M2)?)

and
||u||é:€(Rd) < max{2,1+ S(Mgv)z}”u”;w), Yu € SY(RY).

Therefore, ¢, = (max{2, 1 + 4(M3V)2})%. Changing the role of w and w*, we get the other

1

inequality with ¢; = ¢;". [

3 | COMPACTNESS RESULTS

In this section, we prove two compactness results. The first one states that for a fixed nonintegrable
kernel w satisfying (1), the function space S}(R?) is compactly contained in L?(R¢) with respect to
the leoc—topology. This, in particular, implies that for such w, and any bounded domain with contin-
uous boundary SY() is compactly contained in L*(Q). Other variants of this compactness results
will also be proved. The second result is related to the sequence of parameterized function spaces
{an(Rd )}. associated with a sequence of kernel {w,}, where {min(1, |z|)w,(z)}, is concentrating
around 0 and behaving like a Dirac delta-sequence in the appropriate sense. We will give the precise
statement later, but the result essentially states that a sequence {u, } of L? functions with the property
that sup,, |[u||sy re) < o0, has a compact closure in L*(Q), for any bounded domain Q of R¢. These
compactness results are proved with the aid of a variant of Riesz—Kolmogorov—Fréchet compactness
criterion proved in [7], see also [22, Lemma 5.4].

To state the criterion, we observe that for P € L'(R?;R?) and f € LP(R?), p > 1, we understand
the convolution P = f : R? — R? as (P * f);(x) := (P; * f)(x). Then P * f € LF(RY; RY).

Lemma 3.1. Suppose that P € L'R*;RY) and p := [,, P(x)dx € R? \ {0}. Define
P.(x) :=179P(x/7) for T > 0. For any 1 < p < oo, if {f,}%, is a bounded sequence of

n=1
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8 of 46 Wl LEY HANET AL.

functions in LP(R?) and

lim lim sup||P * fu — pfullr@erey = 0, 15)

70 n—oo

then {f,} has a compact closure in LP(Q) for any bounded domain Q C R?.

3.1 | Compact embedding of function spaces associated with nonintegrable kernel

In this subsection we show a local compact embedding result of Sy(R¢) into L>(R¢) when w is a
nonintegrable kernel. To be precise, we state the assumption on w as follows which will remain in
force throughout this subsection.

Assumption 3.2. Assume that w satisfies (1) and the following conditions:

1. fRd w(z)dz = +o00, or equivalently /|z|<1 w(z)dz = +o00.
2. If d = 1, then we assume in addition that w is nonincreasing.
We use w as the radial representation of w, that is, w : [0, c0) — [0, 00) such that w(|x|) = w(x)
for allx € RY. Note that the above assumptions hold for w(z) = |z|7¢~* x8,0)(@) with s € (0, 1), as well
as for w(z) = — In(|z])|z|~¢ x8,0)(&). The main result we prove in this subsection is the following.

Theorem 3.3. Let w satisfy Assumption 3.2. Let {u,}*, C SY(R?) be a bounded

n=1
sequence in L*(R?) with bounded nonlocal gradient seminorm

sup|| &Y u, || 2 re;rey = B < o0, (16)
then for any bounded domain Q@ C RY, {u,|q}, is precompact in L*(Q). In other words,
SY(R?) is locally compactly embedded in L*(R?).

As we mentioned earlier, we prove the theorem using the criterion given in Lemma 3.1. To that
end, we set P(x) := y,(x)yg 0)(x)x/|x|. By taking the Fourier transform, one can verify that for
u € L*’R% and & € R,

F(P: x u—pu)(&) = n.(5)i),
where

n.(§) = / %xv(z);m,m)(z)i(e‘z’”'zf - Ddz, EeR’ (17)
RS T |z

By a change of variable one implies that
Z —2mitz-
n.(8) = / 1@1s 0@ @ = Ddz, £ R
R4

It then follows from a calculation similar to [21, Theorem 2.4] that

In.(&)] < Vymin{/277|&, 1}, (18)

where V, is the volume of the d-dimensional unit ball B‘I’(O).

After noticing that the boundedness condition (16) of Theorem 3.3 can be expressed using the
Fourier symbols as 4;,c(£), our next goal is to estimate |n,(€)| in terms of |4)(&)|. To that end, we
have the following crucial estimating device.

Remark 3.4. We reiterate that for any w satisfying (1), its cut-off w® = w 3, () also satis-
fies (1) and as a consequence of Lemma 2.1(2), there exist constants Ny = Ni(w,d) > 0
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and C; = C;(w, d) > 0 such that
|45 (&) = Cilgl,  VIEI < Ny

We recall from (2) that there exists ¢y > 0 such that

0< / w(z)dz < oo,
e<lz|<1

and thus, taking N = N; and € = ¢y in Lemma 2.2, it follows that there exists a constant
Cy, = Co(Ni€g, d) > 0 such that

[Ane(8)] > Cz/ w(@)dz >0, V|E| > Ni.

Nieg
<|z|<1
e <kl

Lemma 3.5. Suppose that ey > 0 as in (2). There exists C = C(w,d) such that for 0 <
T < €p,

In.(O)] < Ce@IA ()], VEER?,
where g . (0, €p) = R, satisfies
lim g(z) =0.
0%
Proof. Fix 0 < 7 < €y, we prove the inequality by discussing 0 < [£| < N;, N; < [€] <

Nieo/t and |€| > Nieg/7, where €y and N are as in Remark 3.4.
We begin from the estimate given in (18) where for some ¢, = ¢,(d) > 0 we have

1n.(&)] < c,(d)min{z|&|,1}, forall & € RY.

Then on the one hand for |£| < N, one has
C
1n.(&] < eylé] < F”lfllﬁn(é)L

On the other hand, for |€| > Nyep/7 > N; by Remark 3.4 one has

-1
(O < ¢y < ?(/N W(Z)dZ> [45 (&)
2 IITTO<|ZI<1

-1
C’I v
< ro) (/T<|z|<1 w(z)dz> [Ane (D],

where we used nonnegativity of w in the last step. Finally, for N; < |€| < Niep/7, define

T S
f(r) := sup % = sup T s’
lele[ v 2] /]\%<|z|<1 W@z se[NyeNe] /@4““ W)z

then again by Remark 3.4 we know for N; < [€| < Nyey/7,
¢ \4
1. < cyrlé] < éf(f)l/lwr(é)L

It remains to show f(r) — 0 as 7 — 0*. Suppose that there exist a constant & > 0 and a
sequence {7,}:>; such that 7, - 0 asn — oo and f(z,) > « for any n > 1. Then for each
n > 1 there exists s, € [N7,, N1€y] such that

s,

L >a
leem,,<|z|<l w(z)dz

5,
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We claim that z,, /s, — 0 as n — oo. Suppose this does not hold. Then there exist 0 < B <
1/N; and subsequences {7, };2, and {s,, };2, such that B < 7, /s, < 1/N;. Then since
Nit,, /sq, < 1, we have

S T,
M 0, k— +oo.

/leomk cpjer V@42 T B [y WD)z
"

This is a contradiction. Therefore, the claim holds. Pick a decreasing subsequence of
{7n/5,}52, and still denote it by {z,/s,},. Then since /|z|<1 w(z)dz = oo, we have that
asn — oo,

Sn Nieg N Nieg

a < < =
/leof,l<|zl<1 w@dz = fuan gy w@dz [, w@dz

5,

where we used monotone convergence theorem. This is a contradiction. Therefore, f(7) —
Oas7 — 0" and

-1
g(r) 1= max {T,f(f), </ W(z)dz> } -0, ast— 0"
t<|z|<1

Hence, the proof is complete with C = C(w, d) = ¢,/ min{C}, C;}. [
We are now ready to give the proof of the main result.

Proof of Theorem 3.3. Note that by Proposition 2.4,
Sl;P||/1vVvﬁn||L2(Rd;<Cd) = Slip”(sjvvvun”Lz(]R”;Rd) =B < co.
By Lemma 2.5, we may use the cut-off kernel w* and there exists a constant B’ depending
on B, M3, and sup,, ||uy||12re) such that
sup|| e fin || 2re iy < B < 0.
n
We use the compactness criterion Lemma 3.1 to show that {u, } 2| has a compact closure

in L2(Q) for bounded domain Q C R¢. Choose P(x) := y,(x) x8,0)X)x/|x|. To that end,
it suffices to show that

lim lim supl||P; * u, — pu|lj2@re:rey = 0 (19)
70"

n—oo

But recall that
[|1P: * wy — pupll2reray = IF Py * uy — puan) || i2@a:rey = 10,8001 2R Re)

where 7, is given by (17). By Lemma 3.5, there exists C = C(w, d) such that for 0 < 7 <

€0,
In.()] < Ceg@I AN (&), V&R,

where g : (0,¢9) = R, satisfies lim,_,¢+ g(z) = 0. Then for any n > 1,
||ﬂTMA,1||L2(Rd;(Cd) < Cg(’l')”l]‘,/vcﬁn”LZ(]Rd;(Cd) < B’Cg(’l') b 0, T — 0+.

Hence, (19) holds and that conpletes the proof of the theorem. u
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An important variant of the above compactness result holds true when applied to a sequence of
function spaces Sy (R9) corresponding to the radial kernels w,(z) satisfying 0 < w,(z) / w(z) a.e. z.
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We will present two classes of examples that satisfy this convergence property. First, take w,(z) :=
min{n, w(z)} forn € N,. Foreach n, w, € L'(RY)NL®(R?) and w,(z) / w(z) for allz € R?. Note that
Sy (R) coincides with L*(RY) for each n, while S}/(R) is locally compactly contained in L*(R). For
another example, we take s € (0, 1) and consider wy(z) = |z]7¢™* xB,0)(@). For a sequence of numbers
0<s, / sweknow w, (z) := |z|™"™ y5,0)(z) /" w(z) for allz € R?, and that S} (R?) = H*(RY),
and Sy, (R?) = H*(R), which is compactly contained in Z2(R¢). '

Theorem 3.6. Let w satisfy Assumption 3.2. Suppose that {w, }32, is a sequence of radial

kernels satisfying 0 < w,(z) / w(z) for almost every z € R? and {un oo, C L*RY is a

bounded sequence with

suplIGifvnunlle(Ra;Rd) =B < 0,
n

then for any bounded domain Q C R?, {u,|a}%., is precompact in L*(Q). Moreover, if
in addition u, € Sy, (Q) for every n, that is, u, = 0 in Q°, then for any limit point u, the
zero-extension ii of u outside Q satisfies it € S)(Q) with

||G§X,ﬁ||L2(Rd;Rd) <B.

Proof. We begin by noting that for sufficiently large n, w, satisfies (1). Indeed, by mono-
tone convergence theorem, M), — M), and Mj — M3 as n — oo which yields
M;, € (0, 00) and M\% < oo for sufficiently large n. Without loss of generality, we may
assume w, satisfies (1) for all n. As before, we denote the cut-off by wf;(z) : = w,(2) ¥B,0)(z)
for n € Ny, and again satisfies (1). Similar to the proof of Lemma 2.5, applying (11) it
follows that

[A3:(8) = A3, (O] = |4y, —uc (D] < 2/ wa(z)dz < 2M5 + 1, (20)

|z|>1

for n large enough and thus there exists a constant B depending only on B, M2 and
sup,, ||unllz2w2y such that

n

. =2
sup / | Ave (E)in(§)7dE < B
R4
For the first part of the proof, similar to the proof of Theorem 3.3, it suffices to show that

hr(r)l lim supl||n, i, || 2gre:cey = 0, 21

n—oo

where 1, is given by (17). To that end, after estimating as

100 Py = / 1 ©in
<<2¢0|'f$(f;)'l> / | Ay (E)iin ()| d &
In.(&|
B
< <§¢%’|A (§>|>

In.(&I
lim lim sup su L =0. (22)
o0 e 2t AL (D]

it suffices to show that
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12 of 46 Wl LEY HANET AL.

Let ¢y and N; = N;(w, d) > 0 be as in Remark 3.4 such that for some C; = C;(w,d) > 0
| (©)] = C1l&l,  VIE] <Ny
Applying (11) to w® — wy,, we know that for n sufficiently large,
|A%(&) = A% (©)] = 1A% (O] < 2V27|EIML_,, < 1CIIEl, VEERY,

since M —we = =M} M}V” — 0 as n — oo. Therefore, for n sufficiently large, one has

v 1
14 (D 2 SCilel, VIEl < Ny

On the other hand, since wy, satisfies (1), applying Lemma 2.2 for wy; and N = N; we know
that there exists a constant C, = C(N;€p, d) > 0 independent of n such that

4] > C / wn@dz > 0, VIE| > Ny,
"°<| <1

The rest of the proof builds upon the proof of Lemma 3.5. We sketch the proof using the
same notations from the proof of Lemma 3.5. Fix 0 < 7 < €. To show (22), we discuss
three cases: 0 < |€] < Ni, Ny < |€] < Nyep/t and |€] > Nyep/7. By checking the proof
of Lemma 3.5 and replacing w® by wy,, one may show that for n sufficiently large,

G
ottty 1A% (O] = c1 o

n.l _ c(/ 4 )‘1
|§|S>u£eo [0 @]~ Ca \J ez« @z )

|nr(§)| Sup Tlél
|§|e[1v N]eo] th €3] Cz |§|E[N N]so]fN150<| <1 wa(z)dz

and

Finally, notice that

c s
1 sup

Czse[zvlf Nyeo] /Nv0f<| <1 wa(2)dz’

where we did a change of variables in the last equality. Introduce the notation
s

f(n,7) :=  sup ,
SE[Ny 7N g /w<|z|<1 wy(2)dz
we show next that
lim lim sup f(n,7) = (23)

-0" oo
Suppose that (23) is false. Then there exists ag > 0 and sequences {7; };il’ {n }j?’il and
{5 };21 with 7; = 0, n; = +o0 and s; € [N;7j, N1€] such that
Sj

leLOT <Jzl<1 Wn,-(Z)dZ

> agp.

Arguing as in the proof of Lemma 3.5, one may show that 7;/s; — 0 asj — oo, and without
loss of generality, one may assume that {z;/s; }2, is decreasing and {n;}?2, is increas-

ing. Since { yp ©@wy,(z)}72; is an increasing sequence of nonnegative functions, by

Nyeot/si
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monotone convergence theorem,

Sj Niegg Nieg
S b d =
[niay ) <el<t Wi, (2)dz / My wy, (2)dz /|z|<1 w(z)dz
i J

ay <

asn — oo, a contradiction. Therefore (23) holds, and consequently (22) holds by combing
the three cases. The precompactness follows from Lemma 3.1. Finally, assuming that u,, €
Sy, (L) for every n, we show that for any limit point u, the zero-extension i of u outside
Q satisfies i1 € Sy (Q) with

I®Yll 2re ey < B.

Without loss of generality, assume that u,, — u in L?>(Q). Then u,, — i in L>(R?). Thus
fi, = itin L>(R%) and up to a subsequence we know #,, — i a.e. in R?. On the other hand,
by (11) one may show that 4}, (£) — A}(€) as n > oo for any £ € RY as M}, — M), and
M,%n — M2. Then by Fatou’s 1emma, one obtains that

/ RSP < lim inf / AL (OO dE < B.

This completes the proof. u

As aconsequence of the above compactness result Theorem 3.6, we establish the following uniform
Poincaré inequality.

Theorem 3.7. Let {w, : n € N.} be a family of kernels as in Theorem 3.6. Then there
exist Ny € N and C(Ny) > 0 such that for any n € N, withn > Ny,

[ull2@) £ CNDIIGY, ull2rerey, Vu € Sy, (Q). (24)

Proof. Let
1 . v Y(Q =
c= lnf {ll&wulle(Rd;Rd) .ue Sw( )7 ||M||L2(.Q.) 1}

By the nonlocal Poincaré inequality for the kernel w, that is, [20, Theorem 5.1], one has
0 < A < 0. To prove the theorem, we will prove that for any ¢ > 0, there exist Ny(¢) > 0
and A + ¢ > 0 such that for any n > Ny,

llull2@ < A+ NG, ull®iry, Yu € Sy (Q).

We prove this statement by contradiction. Suppose that there exist C > A, sequences
{ni )52, and {u, };2, where ny > k for all k € N such that u, € S%nk (Q), llup, |2 =1
and

1
NS, un, N2 ra) < ok

Then by Theorem 3.6, there exists u € Sy(Q) such that u,, — u in L*(Q) up to a

subsequence and
1 1
G u||p2repsy < = < —
IO wull 2re Ry c<x1
But since the strong limit ||u||;2q) = 1, this gives a contradiction to the fact that A is

chosen the best constant. ]

Wl LEY 13 of 46
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3.2 | Compactness with vanishing nonlocality

In this subsection, we prove the second compactness criterion which is based on boundedness of the
sequence of nonlocal gradient energies associated with kernels with vanishing nonlocality. To that
end, in this section we will be working with the set of kernels {ws : 6§ € (0, 1)} satisfying (1) and the
additional assumptions that for any R > 0,

Hm/q ws(@)dz = 0, 25)
6—0 B;(O)

lim |z|ws(z)dz = 2d. (26)
6—0 BR(())

Conditions (25) and (26) imply that for any R > 0

lim 1z|*ws(z)dz = 0. (27)
6—0 B (0)

Indeed, given any € € (0, R),

_/ Ww@ﬂ=/ m%mm+/ |z|*ws(z)dz
B(0) B.(0) e<|z|]<R

< e/ |zlws(z)dz + RZ/ ws(2)dz.
B.(0) B.(0)

Letting 6 — 0 and using (25) and (26) we obtain that

lim sup/ |z|?ws(2)dz < 2de.
6—0 Br(0)

Since € > 0 can be arbitrarily small, (27) holds.

A consequence of this is that these conditions on the sequence of kernels are sufficient for the
convergence of corresponding nonlocal operators to their local counterparts as 6 tends to zero as stated
below. The proof is presented in Appendix A.1.

Proposition 3.8. Let u € C:(R?) and v € CLRY;R?). Let {ws : 6 € (0,1)} satisfy
Equations (1), (25) and (26). Denote G = Gy, and Dy := Dy, . Then for any x € R,

Cru(x) — Vu(x), & — 0, (28)
Div(x) — div v(x), & — 0. (29)

Moreover, for any p € [1, ool the above two convergences are strong in L (R*; R?) and
LP(RY) respectively.

This localization result leads to the natural question about the convergence property of bounded
sequence {us € Sy, (R%)}; that is, if supg |us| sy, < o0, is the sequence compact in leoc? And if yes,
what can we say about limit points u#? As the localization result Proposition 3.8 suggest, does u belong
in H._(RY)? We conjecture that these questions can be answered in the affirmative for the general
set of kernels satisfying (1),(25), and (26). Although we are unable to answer these questions in full
generality, we will address the question in this subsection for a selected set of sequence of kernels. The

types of sequence of kernels we will be focused on are listed in the following assumption.
Assumption 3.9. We assume that {ws : 6 € (0, 1)} is given by one of the three cases:

(I) wsz) :=6"9""w(z/8) for 6 € (0, 1) where w satisfies (1) and

|z|w(z)dz = 2d.
Rd
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(II) ws(z) :=2d8|z|°~¢"" for 6 € (0, 1).

(IlI) {ws : 6 € (0, 1)} is a set of kernels satisfying Equations (1), (25), and (26), and there
exist constants Ry > 0, R, > 0 and 69 € (0,1) and a function h : (0,6) = R, with
lims_q h(6) = O such that

lim ws(z)dz = 40 (30)
6=0 J 121>, h(6)

and

sup L lz|*ws(2)dz : = My < +c0. 3D

56(0,30)h(5) Bg, (0)
In addition, when d = 1 assume ws(2) is nonincreasing for each 6 € (0, 1).
Remark 3.10. A typical example satisfying Assumption 3.9(III) is given by
1 1
[log | |z (lz| + 6)

ws(z) = (32)
with R; = Ry = 6o = 1 and h(8) = 6. One may show that the first two types of kernels in
Assumption 3.9 satisfy Equations (1), (25) and (26) but not Assumption 3.9(III). Specif-
ically, Assumption 3.9(I) does not satisfy (31) and Assumption 3.9(II) does not satisfy
(30).

The main theorem of this subsection is the following.

Theorem 3.11. Let {ws : 6, € (0,1)};2, be a sequence of kernels that belongs to either
(1), (11) or (I1l) of Assumption 3.9. Suppose {u,}>, C L*(RY) is a bounded sequence and

=B < o0,
L2(Rd;R4)

v
supluylsy ey = sup”@iwé Uy
. o, n n

then {u,};2, has a compact closure in L*(Q) for bounded domain Q c RY. Moreover, if
in addition Q has a Lipschitz boundary and u, € S‘X&” (Q) for every n, then any limit point
u € HY(Q) with

IVull 2@z < B.

The theorem will be shown for the three classes of kernels in Assumption 3.9 separately, each
requiring subtly different techniques. From now on, we let {8, }:2, be a sequence of positive numbers

such that 6, € (0,1) and 6, » O as n — oo.

Proof of Theorem 3.11 for the class of kernels satisfying Assumption 3.9(I). Taking the
Fourier transform and by applying Proposition 2.4 we have,

G, u, =B < .

[2(R4;RY)

sup|[Ay,. @ =su
np“ Yon " || 2(ReCy np

2

We prove the theorem in two step. We first show the sequence is compact in the Lj

topology, and then demonstrate that any limit point is in Hé (Q).
Step I. To show that {u,};%, has a compact closure in L*(Q) for bounded domain
Q c R4, we will apply the compactness criterion given in Lemma 3.1. For that we choose

P(x) := yy(x) xp,0)(®)x/|x| and demonstrate that

lim lim sup||P; * u, — puy||2®e.rey = 0. (33)
0"

n—oo

As before, we consider n, given by (17).
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Claim. There exists C = C(w,d) such thatfor0 < 6 <7 < 1,

In.(&)] < Cr|Ar, ()], V& e R (34)

Once this claim is proved, (33) holds. Indeed, since for any = € (0, 1), there exists n, > 0
such that for any n > n,, 8, < t we have |n,(&)] < Ct|A)(&)| for all & € R?. Thus for
n>ng,

1P, s 1ty — Pty e, = / I @)
R

< Crz/
Rd

What remains is to prove the above claim. By a change of variable, one may check that
A, (8) = 571 A% (8€) for all &€ € RY. Therefore, for 0 < § < 7 < 1, by Lemma 2.1, there
exist constants N; = Ny(w, d) and C; = Cy(w, d) such that

2
Ay, (©)i,(&)| dE < CB*7”.

4,©1 > crlel. Vel <

and

e s & / min(1, weoydx 2 2D gy > M

Comparing these estimates with (18) proves the (34), completing the proof of the claim.

Step II. Suppose u, € Sxﬁn (Q) for every n and u is a limit point of {u,};2 in L2(Q),
that is, u, — u in L>(Q) up to a subsequence. Then we show that u € Hé(Q) and
[|Vull;2@:rey < B. Let ii be the zero extension of u outside €2, that is,

B ulx), xeQ,
i(x) =
0, x € Q°.

Then u,, — iiin L*(R9). By definition of distributional gradient, for any ¢ € C&(R?; R9),

/ U (D5 lx)dx
R

_ ‘_ / O, 1n(x) - Px)dx
Rd

<Gy, unll2were 1@l r2rara)
< Bl ¢l 2ra:re).-

Passing to the limit as n — oo, one obtains

< Bll§pllpgizs, Vo € C2RERY, (35)

/ i(x)div ¢p(x)dx
R

where we used Proposition 3.8 to assert DY ¢ — div ¢ in L*(RY). Therefore, it € H'(R?)
with
I Vil 2ra:ray < B.

Then by [40, Theorem 3.7], u € Hé(Q) and ||Vul|;2@re) < B, where we used the fact
is a bounded Lipschitz domain. L]

Proof of Theorem 3.11 for the class of kernels satisfying Assumption 3.9(Il). Again we
will use the Riesz—Kolmogorov—Fréchet criterion Lemma 3.1. The key ingredient is a
good lower bound on the norm of Fourier symbol Ay, .
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HANET AL.

We claim that if ws(z) = 2d8|z|°~¢~!, then there exist constants C;(d) > 0, Co(d) > 0
and &y € (0, 1/2) such that for any 6 € (0, &),

Cid)EI'™° < A, (O] < Ca(d)|&l'°, V& e RY. (36)

We will prove (36) shortly but a consequence of it is that there exists C = C(d) such that
for r € (0,1) and 6 € (0, &),

In.(6)] < Cz3|AL, ). VEeRd, (37)

from which the condition in Lemma 3.1 is satisfied.

To prove (37), we estimate it in two regimes. Let 6y be the constant used in (36). Then
forany 6 € (0,60) and |€| < 1/, using (18) and (36) we know that there exists a constant
C(d) > 0 such that

(&1 |&] s s ;
|A%, (&) ~ (d)|§|1 = < C(d)r]g]° < Cd)r'™ < C(d)r>.

Similarly, for || > 1/7, again using (18) and (36), we have

&l c(d)
[y, (§)| B IEI1 o

Let us now prove (36). By (10) and the form of w;, for 6 € (0,1/2) and & € R we have

v o
@< [

o)
_ -
= 2d|¢| /Rd 7|41 ¢

_ 27|z 2
<2d5|E| 5(/ dz+/ dz>
B0 |z|d+l—6 B0 |z|d+1—5

_ 2 2
= 2d5|§|1 5wd_1 (% + m)

<Cd)r'° < C(d)rz

e2;rizf _ 1|dz

2riz-& /18] _ 1|dz

< 8drwg—_1|E|'°.
For the lower bound, we recall from [20, Lemma 5.1] that when d > 2 the norm of
imaginary part of 4}, (&) is given by

3

S(AL (&) = 2dwy» / * cos(8)sin?2() / r;i_& sin(2z|E|r cos(0))drd0.
0

0

By a change of variable we have

|4y, (&) > 2d|E|' P wq_s / cos>7%(0)sin’2(0) / —sm(znr)drde
0

By Proposition A.2 in Appendix A.3 we know as 6 — 0,

/ cos>7%(9)sin’2(0) / —— sinQzr)drdf — 2z / " cos2(0)sin?"2(6)d6 > 0.

0 0
Then there exist constants C;(d) > 0 and §; € (0, 1/2) such that for any § € (0, &),

| A%, (&) > Ci(d)|€]'°, VEeR.

For d = 1 the proof is similar as one can show |4, (&) > 2|&|'=% [* - °_sin(2zr)dr for

r2=é

any ¢ € R. Thus the inequality (36) is established. [

Wl LEY 17 of 46
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18 of 46 Wl LEY HANET AL.

To prove Theorem 3.11 when the set of kernels satisfies Assumption 3.9(III), we first establish
lower bound estimates of the parameterized symbols lfvg(ﬁ) that is uniform in 6. Here w§(z) stands for
the compactly supported kernel after truncation w§(z) : = ws(z) XBy, (0) (z). We achieve this by separately
estimating the real and imaginary parts of /lvvvg (&). We recall that we can write

A (8) = R(A5 (&) + S (A (&)

where
R(A(E) = / 1@ ws(@)(cos(2zE - z) — 1)dz  and
° By, (0) |z]
S X&) = / @) ws(@) sin@rE - 2)dz.
8 By, 0) |z]

We estimate |S(Afv§)(§)| and 'ER().;,;-)(:S)' for small |£| and large |€| respectively.

Lemma 3.12. Let {ws : 6 € (0,1)} be a family of kernels satisfying Assumption 3.9.
Then there exist constants 6; = 6,(h,R1,Rz) € (0,60), Co = Co(My, d), C; = C,(d) and
C, = Cy(R1, My, d) such that for any 6 € (0,61),

|san@| = cilel, viel < (38)
and
RO 2 C [yop e W5@dz > 0, VIE] > 2. (39)

Proof. Without loss of generality, we assume d > 2. The case d = 1 can be proved
similarly. In [20, Lemma 5.1] it is shown that

3 R,
|3(/lfvg)(§)| = a)d_z/ cos(@)sind‘z(e)/ = 555(r) sin(27r|§|rcos(9))drd9’.
0 0

Using the inequality sinx > x — x> /2 for x > 0, one obtains that

[SIE]

|S(AL)©)| > w4 / cos(@)sin’(6)-
0

R,
/ P 15(r) (27| €| cos(9) — 272 |EIPr cos (6)7 ) drdf
0

= [&I{ c1(d) lzlws(2)dz = ca(d)|€| lz*ws(z)dz
By, (0) Bg, (0)
where ¢, (d) and c,(d) are positive constants. Since
‘151_>m0 h(6)=0 and (151_>m0 |z|ws(z)dz = 2d,

By, (0)

there exists 6; € (0, 8) depending on R; and R, such that

Rih(6) <R, and / |z|ws(z)dz > d
By, O)

for any 6 € (0,6;). Choose Cy = Co(My,d) such that CoMyc,(d) = c1(d)d /2, then for
any & € (0,6,) and |&| < Cy/h(5), by the calculation above and (31),

S > |§|<cl<d>d e | |z|ZW5(z>dz> > 2 ei(d)digl.
B, (0)
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HANET AL.

Then (38) is shown where C; = c¢(d)d /2. By Lemma 2.2, taking N = Cy/h(5) and
€ = R h(6) there exist a constant C, = C,(Ry, Cy,d) = Co(Ry, My, d) > 0 such that for
I€] > Co/h(5),

maze|z [

[z]>

o Ws@dz > / wi(2)dz.
e [e12R1h(6)
Note that (30) implies that B 4(5(0) C supp wj§ for 6 small enough. Thus without loss of
generality one may assume that B ;5(0) C supp ws for 6 € (0, 60). The proof is then
complete. n

Remark 3.13. Following the exact proof of Lemma 2.5, one may show that for {ws : 6 €
(0,1)} be a family of kernels satisfying (1), the function spaces Sy (R) and SVVVg (R?) are
equivalent with equivalent norms. For a fixed constant R > 0, if we denote w§(z) :=
ws(2) xB,0)(2) as the compactly supported kernel obtained from a truncation of w;s, then
there exist constants 6, € (0, 1) depending on R such that for any 6 € (0, 6,)

e
V2

We are now ready to prove Theorem 3.11 for the last class of kernels.

“u“Sxﬁ(]R") < lullsy, @) < \/§||M||S;5(Rd), Yu € Sy (RY). (40)
5

Proof of Theorem 3.11 for the class of kernels satisfying Assumption 3.9(1lI). Denote
w5 (@) 1= ws, (@) xB,, (&) Where Ry is given by (31). Similar to the proof of Theorem 3.6
and in view of Remark 3.13, one can show that there exists a constant B depending only
on B and sup,, ||u,|2@r2) such that

y N ~2
sup [ 12, @@t < B
n R n
As in the proof of Theorem 3.6, it suffices to show

&l _, an

lim lim sup sup—; =
=0 ph00 E£0 ng €3]

Choose 6; as in Lemma 3.12. Since 8, — 0 asn — oo, there exists N > 0 such that for any
n>N,§, € (0,6,). Forn > N, we consider two cases |&| < Cy/h(8,) and || > Co/h(5,).

For |&] < Cy/h(8,), using (38) in Lemma 3.12 and (18) we know that there exists a
constant C(d) > 0 such that

Ol _ o 7l g
2, @1 = g =

Similarly, for |€| > Cy/h(6,), (39) in Lemma 3.12 and (18) yield

@l _ c) o
|)':/v;n (é)l - CZ(RI’ MO’ d) ﬂz|>th(5'X) Wgn (z)dz

where we used (30) and (25) to obtain

/ wgn(z)dz = / ws,(2)dz — / ws, (2)dz = 0, n— oo.
lz|>R, h(5,) z|>R, h(5,) [z[>R,

Therefore, (41) holds and the rest of the proof follows is similar to the proof given for the
other class of kernels. (]

Wl LEY 19 of 46
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20 of 46 Wl LEY HANET AL.

We conclude this section by presenting an application of the compactness result to prove a uniform
Poincaré inequality applicable the parameterized function spaces Sy (€2). The proof of this inequality
follows the exact procedures as the proof of Theorem 3.7 and thus omitted.

Theorem 3.14. Let {ws : 6 € (0,1)} be a family of kernels given by Assumption 3.9.
Assume Q is a bounded Lipschitz domain. Then there exist 69 > 0 and C(6g) > 0 such that
for any 6 € (0, ),

[lull2@) < CO)INGY, ull2rerey,  Vu € S¥ (Q). (42)

4 | APPLICATIONI: CONVERGENCE OF PARAMETERIZED PROBLEMS
AND ASYMPTOTICALLY COMPATIBLE SCHEMES

4.1 | Parameterized problems

In this section, we apply the two compactness results proved in the previous section to study the con-
vergence properties of parameterized problems and the asymptotic compatibility of some numerical
schemes for solving these problems. Let Q be a bounded Lipschitz domain in R? and the function
A € L*(R?; R%) be a symmetric matrix such that there exists a constant g > 0 such that
ETA)E > ulEl?, Vx eRY, EeRY.

We would like to investigate the parameterized nonlocal equations

—DLV(AGY, u) =fin Q,

Y(AGY,u) =f 43)
u=0in R\ Q,

where the sequence of kernels {w,} will have some specific properties. From the ellipticity of the
coefficient A, we see that the energy space for the problem is Sy} (€2). The weak form of (43) can be
expressed as follows. Given f € L*(Q), find u € Sy, (Q) such that

By, (u,v) = (f, V)@, Vv e Sy (), (44)
where the bilinear form B,, : Sy (Q) X S) () — Riis given by

B,, (u,v) 1= / AX)Gy, u(x) - G}, v(x)dx. 45)
Rd

We analyze these parameterized nonlocal equation for two classes of sequence of kernels.
Class 1. For a kernel w(x) satisfying Assumption 3.2, we consider a sequence of radial kernels
{w,} where
0<wy,z) /wz) as n— oo forae.ze R

These are exactly the kernels considered in Theorem 3.6. We also notice that using Lax—Milgram
theorem, corresponding to f € L*(2) and for each n, there is a unique solution u, € Sy, () to (44),
see [20], with the stability estimate

lunlsy @ < Cllfllz@

for some C > 0 (independent of n) where we have used the uniform Poincaré inequality Theorem 3.7.
The result we are going to state shortly asserts that u,, — u strongly in L?(Q) where u € SY(Q) solves

B,(u,v) = (f, Vi), Vv € SH(Q). (46)

unuo/:sdny woiy papEO[uMO *9 “4Z0T ‘9THTS601
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Again a unique solution u to (46) exists and, generally, it is expected to be more regular than u, since
w is nonintegrable and S}(Q) is compactly contained in L>(€2). We will also establish connection
with discrete approximations of (44) with the solution u of (46). To that end, consider the Galerkin
approximation of (44) where we look for u, , € V,,, such that

By, (i, v) = (V)2 YV E€ Vi 47

where the finite element spaces { V,,» }, C Sy, (Q) are the conforming spaces of piecewise polynomials,
that is,
Vi = {v € Sy (Q) : v|r € P(T), VT € T),},

where P(T) = Pi(T) is the space of polynomials on 7" € T, with degree less or equal than a given
nonnegative integer k, and 7y, is a quasi-uniform triangulation on Q.

The theorem we state below says that the discrete solutions u,, — u in L[*(Q) and as such the
discretized problem (47) can be viewed as an approximation to the nonlocal problem (46). Moreover,
since SY(L) is compactly contained in L?(Q), the finite element space V,,;, which is conforming in the
rough space Sy (€2), may not be conforming in the regular space S,/ (€2) for a sufficiently singular kernel
w. We then conclude that the Galerkin approximation scheme (47) can be considered as a (possibly
discontinuous) Galerkin (DG) scheme for (46).

Theorem 4.1. Assume the degree of polynomials k > 1. Let {u, },, u and {u,}np be the
solutions to problems (44), (46) and (47) respectively. Then there exists a constant C > 0
such that for eachn € N,

lttn — unpllsy @ < C inf |lu, —vppllsy @ — 0, h—0,
"n Vun €V "n

and, moreover,

[ty — ull2@) = 0, n— oo,

and

[t — ull 2 > 0, n— o0, h—0.

Class II. We next consider a family of kernels {ws, }, given in Assumption 3.9 where 6, — 0 as
n— oo.

As before, for each n, we may apply Lax—Milgram theorem to show that a unique solution us, €
Sw s () exists corresponding to f € L?(Q) to (44) for kernels of this class. There will also be a positive
constant C > 0, independent of n, where for each n,

|“5n|5,$0. @ =< Cllfll2@)-

For the above estimate we have used the uniform Poincaré inequality Theorem 3.14. We may now
use the compactness result Theorem 3.11 to deduce the existence of uy € Hol(Q) such that (up to a
subsequence) us, — ug in L*(Q) as n — oo0. As we will state in the next theorem, it turns out that
up € HA(Q) solves

BO(”O’ V) = (f’ V)LZ(Q)3 Vv e Hé (9)3 (48)
where By(u,v) 1= /Q Ax)Vu(x) - Vv(x)dx for any u,v € H(l) (). Moreover, considering a conforming

finite element spaces { Vs, }n C Sy, (€2) which are the spaces of piecewise polynomials of degree less
or equal than £, that is,

Vo,n = {v €Sy, (&) vk € Pu(K), VK € T},
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and the Galerkin approximation us_; € Vs such that

Bs, (us p,v) = (f, Vi), YV E Vs p, (49)

the theorem asserts that u,, — up asn — oo and &7 — 0. The following theorem states these results
precisely.

Theorem 4.2. Assume that {ws, }, is given in Assumption 3.9 where 6, — 0 as n — .
Assume also that the degree of polynomials k > 1. Let {us },, uo and {us_p}.n be the
solutions to problems (44), (48) and (49) respectively. Then there exists a constant C > 0
such that for each n € N,

Us —u <C f
[[uts, 5n,h||s;_é_”(g) <C inf

inf Jlus —vupullsy @ —0, h—0,
€ S Wop

n,

and, moreover,

||u5n - u0||Lz(Q) = 0, n— oo,

and
lus, o — uollr2@) = 0, n— o0, h — 0.

We defer the proofs of Theorems 4.1 and 4.2 to the next subsection but note that these two theorems
are particular instances of a more abstract result obtained in [35, 36] on the convergence of asymptot-
ically compatible (AC) schemes for parameterized linear problems. A slightly modified version of the
abstract formulation is presented next.

4.2 | Asymptotically compatible schemes for linear equations with bounded and measurable
coefficients

Let {S, : o € X} be a family of Hilbert spaces over R, where the index set X is a subset of R such
that 0 € X and sup Z = oco. Here we identify the dual space of Sy with itself, S; = Sy. (In applications
we will take Sy as the space of L? functions.) Let S, and H be two Hilbert spaces over R which are
continuously embedded into Sy. Associated with the spaces {S, : ¢ € £ U {oo}}, there are bilinear
forms {B, : S, X S, — R} respectively.
Given f € Sy, we consider the parameterized variational problems: for each ¢ € %, find u, € S,
such that
B;(ug,v) = (f,v)s,, VWES,, (50)

and the limiting problem: find u,, € S such that
B (o, v) = (i V)5, VYV € S (51

Let {Vo, C S, : 0 € Z,h € (0,h)} be a family of finite-dimensional Hilbert spaces and consider
the Galerkin approximation of (50): for each ¢ € X and & € (0, hy), find u, 4 € V, such that

BG‘(”G,h? V) = (f’ V)Soa Vv e Va,h- (52)

The main question we would like to address is whether u,;, — U in Sy as (¢,h) — (0, 0). As has
been discussed extensively in [35, 36], in general the answer is negative. However, under addition
assumptions, convergence is shown to hold.

Assumption 4.3. Assume that there exist four positive constants M|, M, Cy, and C;
independent of o such that the following conditions hold:
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(A) Uniform embeddings and asymptotically compact embeddings:

(Ai) Forany o € L, H C S;, Millulls, < |lulls, for any u € S;, and
lulls, < Ma||ullz for any u € H.

(Aii) For any set {u; : o € X}, if sup{|luslls, : o € X} is finite, then
{us : 0 € Z} is relatively compact in Sy with each limit point in Sy,.

(B) Boundedness and coercivity of the bilinear forms {B, : 0 € ZU {0} }:

(Bi) |Bs(u,v)| < Collulls IVlls,, Vu,v € S5, Vo € ZU {co}.
(Bii) B,(u,u) > Ci|lull% ,Vu € S,,Vo € LU {o0}.

(C) Existence of a subset S, of H such that

(Ci) Sy C Ngesu{e)Ss and S, is dense in S, for each 0 € Z U {co} with
respect to their norms,

230, —00

(Cii) for any sequence {u, € S, }kEN+ and u € Sy, satisfying

sup [|ug, Ils, < oo
keN,

and u,, — uin Sy as k — oo one has
Bak(uok’ ¢) > Boo(u, ), k — o

forany ¢ € S..

(D) Approximation of nonlocal space and asymptotic density in limiting space:

(Di) Forgiveno € Zandv € S;,inf, ey, IV —veullv,, > 0ash — 0.
(Dii) Foranyv € S, there exists {vi € Vi p, }Z::g’ such that ||v—vi|ly = 0
ask — oo.

It should be noted that assumptions (A) and (C) in the above relax the conditions specified in the
original paper [35]. Specifically, assumption (A) eliminates the necessity for the continuous embedding
of S, into S, and assumption (C) substitutes the requirement for strong convergence of operators on a
dense subset with the requirement for the convergence of bilinear forms in a weak sense. We refer the
readers to a recent work [15] that discusses extensions of the original AC framework to study nonlinear
problems.

Theorem 4.4 (main convergence theorem [35].). Suppose Assumption 4.3 holds and let
{us}, Ueo and {us} be the solutions to problems (50), (51), and (52) respectively. Then
given properties (A)-(D), we have that for each o € Z,

s — ttonlls, < %chiggwll% —Voulls, =0, h—0, (53)
and, moreover,
lus — Ulls, = 0, o — oo, (54)
and
luop — tolls, > 0, o — 00, h—0. (55)

Proof. We sketch the proof briefly. The first inequality is the best approximation and the
convergence follows from the standard conforming Galerkin approximation theory. To
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show (54), first note that

sup{|luslls, : 0 € X} < m

Ci
by coercivity (Bii) and embedding of S, into Sy. Then by asymptotically compact embed-
ding property (Aii) we know there exists i € Sy such that u, - fiasoc - couptoa
subsequence. Then it suffices to show that # is the unique solution to (51) to conclude
(54). By density of S, in S, it suffices to show (51) holds (with & in place of u.,) for any
v € S.. Fix some v € S,, since S, C S, for each o € X, one knows that

Bo’(“o’a V) = (fv V)SU~

Letting 6 — co and using (Cii) yield B (&, v) = (f, v)s, as desired.
Finally, to show (55), first use the bound

sup{|lusplls, : 0 €Z, h € (0,hp)} <

I Ils,
Ci

and asymptotically compact embedding property to show there exists # € Sy such that
Usp — as o — oo, h — 0up to a subsequence. Then again by density it suffices to show
that By (i1, v) = (f,v)s, for any v € S,. Fix v € S, by asymptotic density, there exists

0 —>00

{w € V,,k,hk}hk_,0 such that ||v — v¢||zy — 0 as k — oo. Note that
Bs, (uo, > Vi) = (> Vi)s,-
Then the final conclusion follows from the computation below:
|Beo (1, v) = (f, V), | < |Boo(il, v) = B, (g 1 s V)| + |Bo, (s i vV = Vi)| + | Bo, (o ps Vi) = (Fs V), |
< |Boo(@t,v) = B, (g iy V| + Collutg i Ils, 1V = viells, + (v —vi)s, |
_ If1ls,
< Boo(it, v) = By, (g, p,» V)| + C2C7M2||V = viella + Cullflls, llv — vill
1
-0, k- o,

where we used (Cii), (Ai) and the embedding inequality ||v|[s, <Cy||v||3; foranyv € H. =
With this abstract result at hand, we are now ready to prove Theorems 4.1 and 4.2.

Proof of Theorem 4.1. 1Tt suffices to verify assumptions (A)-(D) in Theorem 4.4. Using
the notations in Theorem 4.4, we let £ = N, S; = S) (Q), Soo = SH(Q), S = CX(Q)
and H = H}(Q), where functions in H}(Q) are understood to be in H!'(R?) and vanish
outside of Q as the boundary of Q is regular enough [40, Theorem 3.7]. Then M| = 1,
C; = ||A|| e (re¢;raxey and Theorem 3.6 verifies (Aii).

The second inequality in (Ai) amounts to showing that there exists M, > 0 such that

llullsy @ < Mallullie, Vu € Hy(Q).
But this follows from Proposition 2.4 where the norm of Sy (Q2) can be expressed as
lullsy (@ = Nlly o, = / (14125, @P)a@*dg,  Vu e Sy, ().
n Wn R4
Now using (11), one obtains that

1A% (&)] < 2V2xM), |E] + V2M2, < 2/2zML|E| + V2M2, &€ R, (56)
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Thus the second inequality in (Ai) holds true for some M, independent of n but dependent
of w, using the fact that

Nl g, = /R (14187 @)

For (Bii), one may choose C; independent of N but dependent of some Ny determined by
Theorem 3.7. Note that (Ci) follows immediately from [20, Theorem 3.2].

To show (Cii), suppose v, € Sy (), SUp,en, [lvell sy (@ < o, and v, — vin L*(Q)
for v € SY(€2). We need to prove that for any ¢ € C° (Q)

(AGY, v, G D) r2raray = (ABGYY, G )2 (raRe), 1 —> 0. (57)

To that end, first, using (2.8) and (2.9) from [20, Lemma 2.1], one may show that G, ¢ —
Gv in LX(RY;R?) as n — oo, and if y € CX(Q; RY) then DYy — DyYy in L2(RY) as
n — oo. Second, we show that ®, v, = ®}%v in L2(R?; R?). If this holds, then since A €
L®(R?; R¥4), it follows that A®Y, v, — AGYv in L>(R?;RY), hence, combing the first
step, one can conclude that (57) holds, and consequently, (Cii) holds. To show &, v, —
&Yy in L>(R%;RY), fix some w € L*(RY;R9) and ¢ > 0, by density, there exists y €
C2(R4;RY) such that ||w — y||;2@a.re) < €. Then

[(®Y, Vi W2 weiray — (GYv, W)pp@ara)| < [(OF, Ve W — W) 2 ara) |

+ (Y, v W)r2we:rey — (O%V, W) 12 era)|
+ |(®VV Y - W)LZ(Rd-]Rd)|

< esup[[vallsy @+ |V, DR W) 12wy — (v, DR W) 2 we) |

neN,

+elvilsy@.

Since DYy — DyYy in LA(RY), together with v, — v in L*(R?), one can conclude that
O, DY W) 12ey = (v, DY) 2mey as n — oo and thus @Y, v, = Gy in L*(R?;RY) and
(Cii) holds.

Finally, since H = H}(Q2) and {V,,, }» are spaces of piecewise polynomials of degree
k > 1, one may show that (D) is satisfied as in [35, Theorem 3.8]. ]

Proof of Theorem 4.2. The proof is quite similar to that of Theorem 4.1. We only point
out a few key differences. Using the notations in Theorem 4.4, we let £ = 671, ), S, =
le/n Q), Sy = H(') Q), S, =C>(Q)and H = H(l) (). Then Theorem 3.11 verifies (Aii).
For the second inequality in (Ai), one may argue as before for {w;} in Assumption 3.9
by proving
|A%, ()| < Di|&| +D,,  VEERY,

where D, D, > 0 are constants independent of 6. In fact the inequality is even true for
kernels satisfying just Equations (1), (25), and (26) and follows from (11), where

1A% (8)] < 2V2xM), 8] + V2M2,, VEER!

and that
M3V5—>2d and Mvzvé -0 asé—0.

Assumption (Bii) can be verified by Theorem 3.14.

Wl LEY 25 of 46
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To show (Cii), suppose v, € Sy, (£2), SUP,en, [Ivallsy (@ < oo, and v, — vin LX(Q)
forv e Hé(Q). We need to prove that for any ¢ € C®(Q) asn — oo (6, — 0)

(A(gx,(;n Vi, g:/vén ¢)L2(]Rd;]Rd) e (AVV, V¢)L2(Rd;]Rd)’ n — oo. (58)

This holds true by the same argument for (57) if one notices that, according to Proposi-
tion 3.8, G, ¢ — V¢ in L*(RY;RY), and if y € C®(Q;R?) then D,y — divy in
L*(RY) as n - oo.

The rest of the proof is similar to that of Theorem 4.1 and thus omitted. (]

5 | APPLICATION II. OPTIMAL CONTROL PROBLEM OF A NONLOCAL
EQUATION

5.1 | Parameterized continuous and discrete optimal control problems

In this section, we apply the compactness results proved in Section 3 to analyze the well-posedness,
the numerical approximation, and the limiting behavior of solutions of a parameterized optimal control
problem of linear nonlocal equations. Optimal control problems with constraints that involve nonlocal
equations have been a focus of recent research interest. While this work is inspired by work [25] which
deals with an optimal control problem of linearized peridynamics, we should mention that such types
of problems where the state equation is either a fractional or nonlocal equation have been investigated
in literature. To cite a few, the paper [14] rigorously analyzed optimal control problems when the state
equation is of the form

—Lsu=g, where Lsu(x)= 2/Q(u(y) —u(x)ys(x,y)dy (59)

subject to some volumetric boundary condition outside of Q. In the above, y;5(x,y) serves as a kernel.
The paper also presents a finite element approximation and numerical simulations which illustrate
the theoretical results. The papers [17, 27] have also studied optimal control problems with the state
equation being the parameterized nonlocal equations of the form (59) and demonstrated rigorously the
convergence of optimal pairs to an optimal pair of an optimal control problem with a local (PDE) based
state equation. Mathematical analysis and numerical approximation of optimal control problems with
the fractional equation as the state equation have also be been investigated in [1-3, 9, 12, 28]. To put
our work in a clear perspective, we should mention that the parameterized state equation constraints
we will be dealing with is different from the classical fractional equations and the nonlocal equations
of the form (59).

To properly describe the problem we study, we assume that {ws }s-¢ is a family of kernels given
in Assumption 3.9. We fix A € L®(R?; R?*?) which is uniformly elliptic and symmetric. That is, for
any x € Q, A(x) = A(x)” and for some y > 0 we have

ETAX)E > ulé)?, Vx eR?, e R

Given Q, a bounded polygonal domain in R¢, and v € S9!, consider the parameterized nonlocal
equations

- DV(AGY u) =fin Q,

JAGY,u) =f 60)
u=0inR?\ Q,

where the right-hand side data f comes from an admissible class that satisfies a box condition. Given

the functions a, § € C(Q) such that a(x) < f(x) for all x € Q, we introduce the admissible class of

unuo/:sdny woiy papEO[uMO *9 “4Z0T ‘9THTS601
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right-hand side
Zu={g € L*(Q) : a(x) < gx) < fx), ae.x €Q}.
‘We remark that there exists a constant B > 0 such that
sup |gllz2@) < B, (61)
8€Zy

since for any g € Zyg, |g(x)] < max{|ax)[,|f(x)|} a.e. x € Q and Q is bounded. We note that
corresponding to each f € L*(Q), a unique solution us(f) € Sy, (L) exists that solve the weak form of
(60)

Bs(us,v) = {f,v), Vv & Sy (),
where B; : S¥_ () X S¥ () — R is the bilinear form given in (45) with w; in place of w, and (-, -)

is the inner product on L*(€). The solution map &5 : L*(Q) — Sy, (Q) given by ©;(f) = us(f) is a
bounded linear map with the estimate

@5y, @ = lus(Dlsy @ < “2Wfllizer V€ LAQ), 6 € (0,60), (62)

where the constants 6y > 0 and C(6p) > 0 are chosen as in Theorem 3.14. Indeed, By taking the test
function v = us in the weak form of (60) and using the ellipticity of A, we know

ulusy @ < Batus, us) = (f,us) < fllzllusll 2.
Combing this with the inequality ||us]l;2) < C(60)|us|sy @ from Theorem 3.14, one obtains (62)
and, in addition, the following L? estimate

1852 < L |If 2@, Y € LX), 6 € (0,50). (63)

"

Hence ©; : L*(Q) — L*(Q) is a bounded linear operator and [|&;||,2@)-12@) < C(89)*/u for all
6 € (0, 6p).

As we vary f in Z,q, the goal of the optimal control problem is to find a pair (u5(f), ) € Sy, (§2)XZyq,
called the optimal solution pair, that minimizes a certain objective functional I5(u, g) : Sy ()XZy —
R. In this case, the right-hand side f will serve as a control variable and u will be the state variable
satisfying the state equation (60). Following the work in [25], we consider the objective functional
Is = Ilsxﬁ @xz,, Where I © L*(Q) X Z,q — R is given by

I(u,g) := / F(x, u(x))dx + % / I'(x)|g(x)|*dx,
Q Q

where 41 > 0, € L'(Q) is positive and F : Q X R — R satisfies the following properties:

(1) For all £ € R the mapping x — F(x, &) is measurable.
(2) For a.e.x € Q the mapping £ — F(x, ) is convex (and continuous).
(3) There exist a constant ¢; > 0 and a function # € L'(Q) for which

|F(x,&)| < c1]€]* + £(x)

fora.e.x € Qandall £ € R.
(4) There exist two functions ¢ € L}(Q) and d € L?>() such that

F(x,8) 2 c(x) + dx)¢

fora.e.x € Qand all £ € R.
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(5) F is continuously differentiable in the second argument. That is, for a.e. x € Q, Fe(x,-) €
CO(R) where F (x, &) = ‘;—?(x, &) forx € Qand & € R. Moreover, there exist a constant ¢; > 0

and a function e € L*(Q) such that

|Fe(x,8)] < e2]é] + e(x), ae.x €Q, VEER. (64)

A typical objective functional is I(u, g) = ||lu — udes||z2(g) + %ll gllz2 where we are looking for an

optimal pair (1, g) where the control has the smallest L?(Q)-norm and the state u is the closest to a
given desired state uges € L2(Q).

There are now a number of outstanding questions we would like to address in this section. First,
we would like to address whether the problem is well-posed, that is, whether there is a unique optimal
pair (i, f3) to the optimal control problem. Second, we would like to study the asymptotic behavior,
with respect to appropriate topology, of the sequence of optimal pairs (i3, f5) as 6 — 0, and if there
is a limit point (&, f), we would like to determine whether it solves an optimal control problem. And
finally, we would like to study the discretization of the parameterized optimal control problems and
establish the existence of asymptotically compatible schemes.

The following result states the well-posedness of the parameterized optimal control problem as
well as the convergence of solutions. It is one of the main results of this section and its proof is deferred
for later.

Theorem 5.1 (continuous problems and convergence of solutions). Assume all the con-
ditions we stated at the beginning of this section on Q, the sequence of kernels {ws}s-0,
the control admissible set Z,q, and the objective functional I. Then for each 6 > 0, there
exists a unique optimal pair (Us, g5) € Sy, () X Zyq such that

I(u5, g5) = minI(us, 8), (65)
where the minimization is over pairs (us, g) € Sy, () X Zyq that satisfy
Bs(us,v) = (g,v), Vv €& Sy (Q). (66)

Moreover, there exists a unique pair (u,g) € H(l) (Q) X Zyq such that uz — u in L*(Q) and
g5 — g in L*(Q) and (@, 3) solves

I(u,8) = minl(u, g), (67)
where the minimization is over pairs (u,g) € Hé(Q) X Zaq that satisfy
Bo(u,v) = (g,v), Vv €& H)(Q). (68)

Here Bo(u,v) := [, AX)Vu(x) - Vv(x)dx.

To state the corresponding result for discretized problems, let us introduce some notations. Let
{7} >0 be a quasi-uniform mesh of size & on Q. Let X}, be the space of continuous piecewise linear
functions subject to the mesh with zero nonlocal boundary data:

Xy = {wp € CUQ)| wilr € Pi(T), VT € Ty, wy, =0 on RY \ Q}.

We equip X, with H'(Q)-norm. For the nonlocal discrete problem, we use the space of piecewise linear
functions that are in SY_(€):

Xsn = {wn € Sy,(Q)| wilr € Pi(T), VT € Tp,}
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equipped with S} (Q)-norm. Similarly, let Z; denote the piecewise constant functions with respect to
the mesh {7} };>0, that is,

Zy 2= {zn € LY Q)| zulr € Po(T), VT € Ty}

where P,,(T), as before, is the space of polynomials of degree m. Notice that since a(x) < f(x) for all
x € Q, there exists a constant iy > 0 such that Z, N Z,q # @ for any & € (0, hy). Hereafter, we will
always assume h € (0, hp) implicitly.

Theorem 5.2 (Discrete problems and convergence of solutions). Assume all the con-
ditions used in Theorem 5.1. Then for any 6 > 0, there exists a unique optimal pair
(s p>851) € Xsp X (Zi, N Zyq) such that

1(usp, 85.0) = min I (uts j, 85.1) (69)

where the minimization is over pairs (Us y, 8n) € Xsn X (Zy N Zyq) that satisfy

Bs(us V) = 8> Von)s  Yei € Xsp. (70)

Moreover, there is a unique pair (i, 8,) € Xp, X (Zy N Zag) such that uz), — u;, in L*(Q),
Bon — & in LX(Q), as 8 — 0, and in addition, (u, g;,) solves the local discrete optimal
control

Iy, gn) = minI(up, gn) (71)

where the minimization is over pairs (up, gn) € Xy X (Z, N Zyq) that satisfy

Bo(up, vi) = (gn> Vi), Vvu € X (72)

Before we present the proofs of Theorems 5.1 and 5.2, we note that applying the nonlocal and
local Poincaré inequality and Lax—Milgram theorem, we know the state Equations (66), (68), (70) and
(72) are uniquely solvable in their corresponding energy spaces. Like the continuous case, for Equation
(70) we also introduce the discrete solution operator &5, : L*(Q) — X;,, C Sy, () C L*(Q). One
may check the same uniform estimates (62) and (63) hold for ©;, for all 6 € (0, &p) and i € (0, hy).
Since the techniques to prove the well-posedness of the four minimization problems as well as the
convergence results are essentially the same for the two theorems, we present the proof of Theorem 5.1
and omit the proof of Theorem 5.2.

Proof of Theorem 5.1. We will prove the theorem in several steps.

Well-posedness: We show existence of a minimizer to the objective functional subject
to the nonlocal constraint using the direct method of calculus of variations. Using the
solution operator ©;, we will work on the reduced cost functional j(g) = I(S;s(g), g) given
by

J(©) 1= B(Ss(8) + % /gl"(x)lg(x)lzdx, (73)
where § : L*(Q) — R is defined by
F) := / F(x,v(x))dx.
Q

We apply the direct method of calculus of variations to the problem of finding a minimizer
t0 infyez, j(8)-

We first notice that Z,q is a closed, convex and bounded subset of Hilbert space L*(Q),
by [37, Theorem 2.11] Z,4 is weakly sequentially compact. In addition, j is bounded from
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below on Z,4. Indeed, it suffices to show that Fo&;s : Z,y — R is bounded from below,
since the second term in j is nonnegative. To that end, using item (3) of the assumption on
F, (61) and (63), we have that for any g € Z,q,

B(Ss(g)) > —cy ||@6(g)||%z(g) =7l

C(0)* C(80)*
> —a S gl = 1l 2 —eiB S8~ Il

unuo/:sdny woiy papEO[uMO *9 “4Z0T ‘9THTS601

We henceforth denote jo = infgez, j(g). It remains to show that there exists § €
Zaq such that jo = j(g). To this end, first we find a sequence {g,};>; C Z, such
that lim, -« j(g,) = Jjo. Again by [37, Theorem 2.11] there exists a subsequence
{gn,Ji21 C Zaa converging to some g € Z,g weakly in L*(Q). Since Imgnk(x)| <
|\/@| min{|a(x)|, |b(x)|}, {\/lﬁgnk (%)}, is uniformly bounded in L*(Q). Then one
can further obtain a subsequence, still denoted by {g,, }72,, converging weakly in LA(Q).
By a density argument, it is not hard to show this weak limit is \/ﬁg(x). Also, since
F(x,-) is convex in R a.e. x € Q and F is bounded from below by an affine map accord-
ing to items (2) and (4) of the assumption on F, [18, Theorem 6.54] implies that & is
sequentially weakly lower semicontinuous. Moreover, since ©; is continuous on L*(Q),
it is weakly continuous on L>(2) and therefore, Fo&; : L*(Q) — R is also sequentially
weakly lower semicontinuous on L*(2). Combining the above, we have that

i@ = F(@3) + g /g ()30 [2dx

< lilgn inf F(Ssgn,) + lilr<n inf % / F(x)|g,,k(x)|2dx
—00 —00 Q
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— 00 Q —00

Then the existence of minimizer is proved. The uniqueness of the optimal pair follows
from the fact that j is strictly convex because g is convex and 4 > 0.

Compactness: Having shown that, for every horizon 6 > 0, the optimal control
problem has a unique solution (i3, g5), we now study the behavior of the pair as 6 — 0.
Since u; = ©;g5, by (62) and (63) one obtains

_ C(60) ,|— _
|5y, @ < T”gélle(Q) and w5120 <

10y /w00 Ko

C(60)*

g5l 2@

Therefore, using (61) we have

us C(6
sup )||M5||s;§(g) <Vi+ C(50)2%B.

5€(0,5,

By Theorem 3.11 one concludes that, up to a subsequence, 7 converges strongly in L2(Q)
to some u € H}(Q). Also, since Z,q is weakly sequentially compact, then there exists
g € Zyq such that gz — g in L*(Q) up to a subsequence. Without loss of generality, we
assume s — u in L*(Q) and gz — g in L*(Q).

Convergence: Next we show that (u, g) solves

Bo(u,v) = (g,v), Vv €& H)(Q).

By density, it suffices to show this for all v € C*(Q). Fix v € CX(Q). On the one hand,
due to the weak convergence g; — g in L*(Q) it holds that (g5,v) — (g,v) as é = 0. On
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the other hand, arguing as in the proof of (Cii) for Theorem 4.2 one knows
(AGy, us, Gy V)R = (AVu, VV)pprapey, 6 = 0. (74)
Therefore, letting 6 — 0 in
Bts(T(% V) = <§’ V>

finishes the proof of convergence.
Limit point is the optimal solution: Finally, we show that the limit point pair (u, g)
is an optimal pair in the sense that

I(u, 8) < 1(v.f),

where (v,f) € Hé(Q) X Zaa solves Bo(v, p) = (f, ), Vo € H(l)(Q). Given such a pair
(V,f) (S H(l)(g) X Z.d, we denote vs := @&f S S]xé(g) for 6 € (0, 6y). Since ||V5||5y:ﬁ(g) <
Cllfll 2, by compactness, Theorem 3.11, as 6 — 0, up to a subsequence, v;s strongly
converges in L?(€2) to some function belonging to H}(€2), and applying a similar argument
as in the previous step, we can in fact show that vs — v in L?(Q). By [8, Theorem 4.9] we
may take a further subsequence, such that for some h(x) € L2, |vs(x)| < h(x) for all 6, and
vs — v almost everywhere. We then have by item (3) of the assumption on F' that

[F(x,vs(x))| < Clh(x)|> + £(x) and F(x,vs(x)) — F(x,v(x)) ae.x € Q.
By Lebegue dominated convergence thereom, we have
lim / F(x,vs(x))dx = / F(x,v(x))dx.
6—0 Q Q

Thus we have
lim £(vs.f) = 10.f).

Recall that g5 — g in L*(Q). Using a density argument as before, one can show that
\/Tg; = \/Tgin L3(Q) as § — 0. Then it follows that

/ I'(x)|g(x)|*dx < lim inf / I'(x)|g5(x)|>dx
Q 6—0 Q

and

I(u,8) = / F(x, u(x))dx + 4 / I'(x)|g(x)|>dx
Q 2 Q

< lim inf ( / Flx, T dx + 2 / F(x)lga(x)lzdx>
6—0 Q 2 Q
= 111611_)10nf 1(u3, 85),

as ; — uin L*(Q) and g5 — g in L*(Q). Since (i3, g5) is a minimizer of I subject to
the nonlocal state equation, we have that I(us,g5) < I(vs,f). Combining all the above
inequalities yields

I(u,8) < liran ionf I(us,85) < girn0 1vs,[) =1, /).

Having shown now that (i, g) is an optimal solution we will use the bar notation and write
(u, g). This finishes the proof. ]
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5.2 | First order optimality and asymptotic compatibility

As we have seen in the proof of Theorem 5.1, one can rewrite optimal control problem (65)—(66) as
a variational problem involving the reduced objective functional j(g) defined in (73): find g5 € Zyg

such that . o
J(8s) = min j(g). (75)
8€Zy

It is clear that if g5 is the unique solution to (75), then (i3, g5) is the unique solution to (65)-(66)
where u; := ©;g5, and conversely, if (45, g5) is the unique solution to (65)-(66) then g5 is the unique
solution to (75).

By [37, Lemma 2.21], the first order optimality condition of the minimization problem (75) is

(/'(85).9 —85) 20, Vq € Zy.
By calculating j'(g5) the optimality condition can be written as
(S3F:(.©585() + AI' 85,4 — 85) 2 0, Vq € Zy. (76)

where &% : L2(Q) — L*(Q) is the adjoint of &; in the L?-sense. It is immediate that &; is self-adjoint.
Also, the map F:(-, ©585(+)) = (x = F:(x, S585(x))) € L*(Q) so that ©5 can act on it. Indeed, by
assumption |Fz(x, §)| < C|&| + e(x), one has

|Fe(x, @525(x))| < C|@585(x)| + e(x) € L*(Q).

By introducing a new notation pg, the above equation can be rewritten as the system

(Ps + AU 85,4 —85) 20, Vq € Zy,

Ps = ©5F: (-, u5(-), a7

ity = ©58;.
Note that if I' = 1, then the first inequality amounts to the following identity

% = —11z,ps, (78)

where Iz : L*(Q) — E denotes the L>-projection onto the bounded, convex and closed set E C L*(Q),
that is, for any f € L*(Q), I1gf is the unique solution to the minimization problem

min - .
ek Ilg f||L2(Q)

Since @ is self-adjoint, one obtains that ps = ©sF¢ (-, us(-)).
Note that the objective functional is strictly convex, the first order necessary condition is also
sufficient. Therefore, we have the following proposition.

Proposition 5.3 (optimality conditions). For every 6 > 0, the pair (is, g5) € Sy, (L) X
Z.4 is a solution to (65)—(66) if and only if (77) holds.

The optimality conditions for the nonlocal discrete problem read:
(Psn+ AU s qn — 8s0) 20, Van € Zua N Zy,
Do = @snle(-, us (), (79)
s = S5185hs

where &5, @ L*(Q) — L*(Q) is the discrete solution operator, and S5, - LX2(Q) — LX(Q) is its
L?-adjoint operator. Note that in the second equation we used the fact that S5, is self-adjoint in the L?
sense.
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Similarly, the continuous local problem is well-posed if and only if the corresponding optimality
conditions hold:

(P+Al'g,q—8) 20, Vg€ Zy,
P = ©oFe(-,u()), (80)
u=9g,

where & : L*(Q) — L*(Q) is the solution operator defined as ©pg := u where u € H}(Q) C L*(Q)
is the unique solution to (68). Here again we used & is self-adjoint in the second equation.

Finally we state and prove the results for asymptotic compatibility. We first recall [25, Definition
7.1] which is the definition of asymptotic compatibility of a scheme to the optimal control problem.

Definition 5.4 (asymptotic compatibility). We say that the family of solutions
{(Ws 1, 85.0) Yn>0.5>0 to (69) is asymptotically compatible in 6,2 > 0 if for any sequences
{6}521, {hi )2, with 8¢, by > 0, we have that i5,_,, — U strongly in L*(Q) and g5, — 8
weakly in L*(Q). Here (,2) € H(l) (Q) X Z,q denotes the optimal solution for (71).

Recall that in the proof of Theorem 4.2 we have checked the conditions (A)—(D) hold to prove
asymptotic compatibility for parameterized problems. It turns out that for the optimal control (69) we
can establish similar asymptotic compatibility as well in the sense of Definition 5.4. Such type of result
is proved in [25, Theorem 7.3]. We demonstrate below that the parameterized discrete optimal control
problem, under the constraint of the nonlocal state equation we consider here, has similar compatibility
behavior. The following is the main result of the subsection. Its proof is similar to that of [25, Theorem
7.3] with appropriate modification to fit our setting.

Theorem 5.5 (asymptotic compatibility). The solution to ( 69 ) is asymptotically
compatible in 6, h > 0, in the sense of Definition 5.4.

Proof. We denote {(u, gk, pi) Yoy -= {(Us h> 85> Do) } w1 » Which is the sequence of
triples solving (79). We consider an arbitrary, non-relabeled subsequence of the triples
{(ux, 8k, Pr) } 12> and show that it has a further subsequence which always converges to the
same limit point. Moreover, this limit solves (80) and, since this uniquely characterizes
the solution to (71), asymptotic compatibility will follow.

Since {gk};2; C Za, again by [37, Theorem 2.11] there exists a subsequence
(non-relabeled) and a function g, € Z, such that g — g. in L?(Q). Meanwhile,
using (61), (62), and (63) with &, 5, in place of &5 we know there exists a constant
C1 = 1+ C(8p)*C(69)B/u such that “LTk”S% @ < C for all k large enough. By
Theorem 3.11, upon taking a further non-relabeled subsequence, there exists a limit point
u. € H)(Q) such that wy — u, in L*(Q). Since {(ux,gr)}, are the pair of functions
solving (69), we have that

Bs, (W, vi) = (8> vi)» Vi € X5, -

Arguing as in the last paragraph of the proof of Theorem 4.4, with a slight modification
that (f, vi);2 and (f, v);2 are replaced by (g, v) and (g., v) respectively, one can show that

Bo(uy,v) = (g«,v), Vv e HOI(Q). (81)
Recall that py satisfies the second equation in (79), that is,

Bs, (P, vi) = (Fe(,wi (), i), Vv € X5 ,.-
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Since
N 2115112 2 22 2 .
”F.f(', uk('))||L2(Q) < Q’CZHMkHLZ(Q) + 2||e||L2(Q) <2c65CT + 2”3”L2(Q) =: (,
repeating the argument above for the uniform bound on ||#||sv (@), we have ||prllsv (@) <
W Vo

CillFe(-, m()l2 /B £ Ci4/Cy/B for all k large enough. Moreover, up to a subse-
quence, using [8, Theorem 4.9], item (5) of the assumption on F, and the Lebesgue
dominated convergence theorem, we have that as k — oo,

Fe( () = FeCus() in LA(€Q).
Repeating the analysis for {5}, we identify p. € H}(Q) such that up to a subsequence
Pr = P in L*(Q) and
By(p+,v) = (Fe(-,u(-)),v), Vv € HJ(Q). (82)

Finally we show that
Pe+ AI'ge,g—g.:) 20, Vq &€ Zy. (83)

Since a, f € C(Q), it is not hard to show the following approximation result: for any
q € Zaq, there exists a sequence {gx € Z;, N Zya}p,>0 such that gx — g in L*(Q)ask — oo;
see Lemma A.3 for its proof. From the first equation of (79) we know

<IT/<+AF§9Qk_§> > 0.
That is,
Dot — 80 + (AT Zhai) > 4 / ) 7).
Q

By the weak lower semicontinuity, one has

lim inf / ()| ge(x)|*dx > / I(x)|g.(x)|>dx.
On the other hand, letting £ — oo one has

P>k — 8x) + (AT 8k, i) = (P> q — 8+) + (Al'gx, q)-
Therefore,

Psrq — 8«) + (Al 8w, q) 2 X/F(x)lg*(x)lzdx,
Q

and (83) holds. From (83), (82), and (81) we know that (u., g.,p.) solves the equations
(80). Since this system has a unique triple of solution (u, g, p), it follows that (u., g., p«) =
(u, g, p). Therefore, asymptotic compatibility holds. L]

6 | CONCLUSION

In this work we establish two Bourgain—Brezis—Mironescu [7] type compactness theorems regard-
ing the nonlocal Sobolev spaces associated with half-space gradient operators [20] An equivalent
Fourier characterization of the nonlocal function spaces is shown, which highlights the key role of
the Fourier symbol A,(€) in the studies of nonlocal function spaces S)(€2). Using an improved lower
bound estimate on |A},(£)|, we are able to show the locally compact embedding of Sy (R?) into L*(R?)
for a nonintegrable kernel w. For the sequence of kernels {w,} such that 0 < w, / w where w
is nonintegrable, we prove the sequential compactness result in Theorem 3.6. Another compactness
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result holds for a different sequence of kernels satisfying Assumption 3.9, while the result is shown
in Theorem 3.11. Based on these compactness theorems we show the uniform Poincaré inequalities
generalizing the results in [20], and study the convergence and asymptotic compatibility of nonlocal
diffusion problems and their approximations, respectively. Finally we apply the theoretical results to
optimal control problems with nonlocal equations as constraints.

A key tool to show LP-compactness is the Riesz—Kolmogorov—Fréchet compactness criterion.
Here, however, we can only show compactness for p = 2 as in such case one can use Plancherel’s
theorem to convert the L? norm of a function into that of its Fourier transform. It is intriguing to
explore whether the compactness result holds for general 1 < p < oo. For p = 2, one crucial ingre-
dient we frequently use is the lower bound estimate of |A},(€)|. For large |&| the lower bound has
been significantly improved compared to [20, Lemma 5.1]. For small |&|, we apply the technique of
truncation at infinity to make w compactly supported so that Lemma 2.1(2)(a) is applicable to derive
[45(&)] = Cl€]| for |£| small.

Note that Assumption 3.9 provides sufficient conditions to derive the crucial lower bound estimates
for the Fourier symbols associated with a sequence of kernels in Lemma 3.12. However, it is worth
exploring whether these assumptions can be relaxed. An open question remains: can the compactness
result in Theorem 3.11 be established under the weakest assumptions, specifically Equations (1), (25)
and (26)? To illustrate, consider a kernel defined by

2d 1 1
a1 X1
wq-1 |log(d)| |z]**

This kernel appeared in [29, Corollary 2.3] has the feature that it is truncated near origin. Our numer-
ical results show that both the real part and imaginary part of the Fourier symbol are oscillating but
eventually the real part stabilizes at a positive value while the imaginary part converges to zero. How-
ever, we could not prove the compactness results because we were unable to determine the critical value
|&| such that we use the lower bound of imaginary and real part separately across this critical value.
We nevertheless conjecture that Theorem 3.11 will remain valid under the assumptions Equations (1),
(25) and (26) and hope to explore this in future work.

ws(z) = s<lz<1}@)-
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APPENDIX

A.l

| PROOFS OF LEMMA 2.2 AND PROPOSITION 3.8

Proof of Lemma 2.2. Recall from the proof of [20, Lemma 5.1] that

IRANES] = / ZLw()(1 - cosQaRVE - 2))dz,

7>0 |z]

where R, is an orthogonal matrix such that v = R,e;. Denote u := RT£/|RT&|. Then

IR Z/ ELw@)(1 = cos27|€|u - 2))dz

7,>0 |z]

=:1(9).

Our goal is to find constant ¢; = c,(Ne, d) > 0 such that

1&) > ¢, i w@)dz, V|E| >N, Ee€ R4, (AD)

S Ne
Cigr

We distinguish two cases d = 1 and d > 2.
Casel: d = 1. Then u = e; or u = —e;. In either case one has

I1(¢) = / w(2)(1 — cos(2x|€|2))dz.
0

Since the right-hand side is even in &, it suffices to show that for & > N,

1(6) = / w(z)(1 — cos(réz))dz > c,l/ w(z)dz. (A2)
0 =
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Fix R > 1/(4N) + ¢. Without loss of generality, assume N < 1/(4¢). On the one hand,
using the nonincreasing assumption on w and [16, Lemma 2] we have

R 1 2mER
/4% w(z) cosRrnéz)dz = 2715/,25 w<2Zﬂ§> cos(z)dz
27E§R—§
:—%ﬂg w<27115<z+72r>>sin(z)dzso,
0

thus

R R R
/] w(z)dz = / w(z)(1 — cos(2néz))dz + / w(z) cos(2néz)dz
% ER % (A3)
3/ w(z)(1 — cos(Qréz))dz.

4

On the other hand, again by nonincreasing property of w one has

% -1 ; -1 L 1-4Ne [,
w(z)dz = & w(E dz < E —— w(&™ 2)dz
% Ne 2Ne N

_11 —4Ne 1 Ne 4 B
<6 INe 1-— COS(Ne)A w(€  2)(1 — cos(2rz))dz
e (A4)
1 —4Ne 1 a3
T 2Ne 1- cos(Ne)/¥ w(z)(1 — cos(27éz))dz
1 — 4Ne 1 %
< Ne 1-— COS(Ne)/O w(z)(1 — cos(2zéz))dz

Combining (A3) and (A4) yields

R

R
1&) > / w(z)(1 — cos(2réz))dz > ¢, / w(z)dz, &> N,
0 Ne

¢

where

-1
1 — 4Ne
=11 .
“ < * INea —cos(Ne))>

Letting R — +o0 yields (A2).
CaselIl: d > 2. Let u = (uy, ... , 4g). Notice that I(£) maintains if u is replaced by
—u. Without loss of generality, we assume g, > 0. Denote u = (y;, u') where y’ € R?1,
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Case I1(i): u; = 0. This corresponds to the case where £ Lv. Fix R > ¢/2. By doing a
change of variable and using the Fubini—Tonelli theorem, one obtains

=T
(&) > / (1 —cosQr|E|u -z/))/ ﬁw(lzl)dzldm
|z7|<R 0

R
= / (1 —cosQx|&|ur -z1) [ w(r)drdz!
|z/|<R

[z/]

R
= / w(r) (1 — cosz|&| ! - 21))dztdr
0 lz|<r

R (A5)
> /V w(r) (1 —cosQx|&|ut - 21))dzrdr

= lzr|<r

R
- / w) [ (1 = cosr|Ely)dydr

= Bi-1(0)
R

:/ rd‘lw(r) (1 = cosQzrr|&|y1))dydr,
Ne B1(0)

¢l

where in the last two steps we used change-of-variable formula.
Denote

J(@r) = / (1 = cos(2zry))dy.
B (0)

It suffices to show J(r) has a positive lower bound ¢, = c;(Ne, d) over [Ne, c0) to prove
(A1). Indeed, using (A5) and this positive lower bound one obtains

R
CcJy

R
1(&) > / I (r|EDdr > ¢y / r(rdr = / w(z)dz
Xe @d—1 J = <lzl<R

Ne Ne
¢l 141 1§

for any |&| > N with &€ € RY. Letting R — +oo0 gives (Al). Now we focus on the proof of
J(r) > c; for r > Ne.

Note that for any r > 0, J(r) > 0 as the integrand is nonnegative. By a change of
variable, one obtains

1
J(r) =/ (1 = cos2rry ))/ dy’'dy
0 1 ' l<y/1-n l

1 d-2
=Via / (1 = cosQary))(1 =y} = dy,
0

-2
> vd_z<\2@> / "(1 = cos2rry)dy
0

\/_ d-2
- Vd_2<3> % >0, r— 4o,

2

where in the last step we used Riemann-Lebesgue lemma. Since J(r) is continuous, there
exists ¢; = cy(Ne,d) > 0 such that J(r) > ¢, for » > Ne. This concludes the proof of Case
IIG).
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40 of 46 Wl LEY HANET AL.

Case II(ii): u; > 0. By Proposition A.1 in Appendix A.2, there exist v, ... ,v4_1 €
S?-1 such that
vWi=vi.e >0, 1<k<d-1,

and vy, ... ,v4_1, p form an orthonormal basis for R¢. Moreover,
k-1
b = M~ ik | Cl<k<d-l.
R RVA T e

Denote A, := (vi, ... ,vg-1,4). Then A, is a d X d orthogonal matrix. Consider the
following change of variable z = A,y where y € R?. Then

d-1

21 = M1ya + ka i >0

k=1

if yi, ... ,yg > 0. Thus, for R > 1,
16 2 / L)1 - coslélu - D)z
7,>0, |z|<R | |

) 5 (A7)
2/ wya + va — cosQallya) g
¥1>0,....9,>0, [y|<R |yl

Case II(ii)(a): If y; is the largest among {v(l) vfjl)l, w1}, then py > 1/\/3 and (A7)
yields

1 1 — cos(27|&lya)
(&) > — - TORARIS ) d
© \/E/yl>0,.4.,yd>o, e I
w(y)

R
1
= 7/ ya(l = COS(Zﬂlélyd))/ ——-dydya,
\/E 0 ¥1>0,....5,_1>0, yf+~-‘+y12[71<R2—y |y|

where y = (¥, ... ,¥q4-1)- Using polar coordinates one may compute

w - 1
/ M0 gy — (07 + 1) )dy
Y130, oy >0, Yiety? | <R2—y? [yl 2 [Fl<+/R2—y2 (yd + |y|2)2

R—y) d-2 1
=S / ——w (03 + 1) )dr
297 Jo 2 4 12)2
(Yd +7?)

Wd-2 g 2T
=— w(r)(r —yd) 2 dr.
Ya

2d 1
Therefore,
1 wd 2 . R e
1= Va2 Ya(l = cosQx|Elyy)) [ w(r)(r* —y3) * drdyqg
0 Y
Lo [*5 ' N
~ Va2 W) [ va(l = cosQlélya))( = y3) 7 dyadr
0 0

(A8)
1wy

= % d=1

L @42 / (e
> L @ Y,
\/— 2 4]

R 1 d-3
/ - 155(0) / (1 = cosr|Eln)(1 - A)'F didr
0 0
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HANET AL.

where H : (0, ) — (0, 00) is defined by

1 d-3
H(r) := / 1(1 — cosrrt))(1 — )7 dt. (A9)
0

It suffices to show there exists cy = cy(Ne,d) > 0 such that H(r) > cy for r > Ne to
show (A1). Indeed, from (A8) and the lower bound cy one obtains

R

1w d-1— ch 1 @

18) > cy—= 200 / A Va2 / e
V27 ) @a-1 \/d 277 S cpr<n

for any |&] > N with & € R?. Letting R — +oo yields (Al). Noticing that H(r) is
continuous and positive for any r > 0, it suffices to show

lim H(r) > 0

r—+oo
to conclude the existence of the positive lower bound cy. The proof uses again
Riemann-Lebesgue lemma as follows.
1
When d = 2, since the function ¢ — #(1 — )2 is increasing over (0, 1), one has

1
H(r) > L/ (1 —cosQrrt))dt > ——, r — +oo.
V3/4 2\/’
When d > 3, since the function t — (1 — tz)dz;3 is nonincreasing over (0, 1), one has
d-3 1 d-3
H(r) > V3 / 11 = cosQart)dt — V3 LU—
2 0 2 8

Then the proof for Case Il(ii)(a) is done.
Case II(ii)(b): If v(l) is the largest among {v(l) Vfil)l,,u]} where 1 <j<d -1,

then v(l) 1/\/_ d. Denoting § 1= 1, -.. ,9js oo s¥a) = (s ... s F4-1) € RI7L (with
Vi1 = yd) we continue from (A7) to compute

1 1 —cos2x
1(5) > 7/ yj ( lélyd)w(y)dy
d Jy,>0.... 3,50, yI<R |yl
1 R>— |y|2
=— (1 = cos2r|&|3,_ 1))/ W(Iyl)dy,dy
d J3,>0,... 5,_,>0, |§|<R

1 . _ N
=L / (1 = cos(2alE[5,_,) / W(r)drdy
d J3$,>0,....5,.,>0, |[§|<R 151

R
L / (1 = cosQr|€lz) | W(r)drdz
d?2 BI=1(0) Iz|
A
- 7?/ W(r) (1 — cos(2r|&|z1))dzdr
Vd 2" Jo BI-1(0)
R
1 1 d-1—
> ——— [ w0 (1 — cos(2zr|&|z1))dzdr.
\Vd?2 e BI~1(0)

Note that the above calculation is similar to (AS) and the final expression is just a con-
stant multiple of that of (AS5). Therefore, following the proof in Case(Il)(i) after (A5) we
complete the whole proof. [

Wl LEY 41 of 46
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Proof of Proposition 3.8. We first prove the pointwise convergence result and then use
generalized dominated convergence theorem to prove the L7 convergence. For simplicity
we focus on Gj.

Without loss of generality, we may assume that u € C2(R?) in the proof. The result
for u € CL(RY) can then be obtained using a standard density argument so we omit the
details. Since u € C2(R?), there exists R > 0 such that suppu C Bz(0) =: Bg. Recall that

Gyu(x) = / ) ;(v(z)éflw,s(z)(u(x +2) — u(x))dz.
R
We discuss two cases |x| < 2R and |x| > 2R.

Case (I): |x| < 2R. Then for |z|] > 3R one has |x + z| > |z| — |x] > R and thus
u(x +z) = 0. Note that we have Taylor expansion

1
u(x +z) — u(x) = Du(x)z + / 2" D?u(x + 1z)zdt.
0
Hence,

Gyu(x) = / )(v(z) Wa(z)(u(x +2z) — u(x))dz + / ;(v(z)iw,;(z)(—u(x))dz
B BgR

22 |z]
=< / 1@ ws@)— ® dz>Vu(x)+ / @) w5 (@) (—u(x))dz
By lz| ~ Izl B, |z|
1
+ / )(v(z)ZWa(z)< / zTDzu(x+tz)zdt>dz
Bag ] 0
=:L+hL+1.

Since wj is radial, one can compute as in [20, Remark 2.2] that

1
/ ;(v(z)lzlw(s(z)f ® Ldz = </ IZIW5(z)dz>]Id ->1;, 6-0%,
By lz| © |zl T 2d Ba

where 1, is the d X d identity matrix and we used (26). Hence I} — Vu(x) as 6 — 0.
For I and I35, we show that they converge to 0 as 6 — 0. Indeed, as 6 — 0, by
Equations (25) and (27),

11| < llull o / ws(@)dz — 0
By,

and

1] < Nl / (2 Pws(@)dz — 0.
B3R

Combining all the estimates for /,, I, and /3 yields
Gsu(x) - Vu(x), 6 — 0, Vix| <2R.

Moreover, there exist constants 69 € (0,1) and Cy = Co(||ul|c2re)) such that |Giu(x)| <
Cy for |[x] < 2R and 6 € (0, §y).
Case (II): |x| > 2R. Then u(x) = 0 and

Ciu(x) = / )(v(z)iw,;(z)u(x +2)dz = / ){V(z)iw,;(z)u(x +2)dz.
R |z By(-x) |z]

:sdqy) suonIpuoy) pue suua ], oy 3S *[$707/90/71] uo A1eiqr aurjuQ A3[Ip\ UOSIPEIA] - UISUOISIAN JO ANSIAIUN Aq 6] €7 WNU/Z00 [0 /10p/wod" Ka[im reiqipaur[uoy/:sdiy woiy papeojumod ‘9 “b70T ‘97HT8601

1)/w0d KoIAY

osu0a suWWO) aANEax) ajqeatdde oy Aq POUIAAGS A1 SAAIIE YO 1SN JO AN J0F AIBIQIT AUUQ) ASTIAL U0



HANET AL. Wl LEY 43 of 46

Then for |x| > 2R,
1G5uC)] < [lullcogaey / ws(@)dz.

Bp(—x)
Define g5 : R? — R by
Co, |x] £2R,
8s(x) =
oo [ iz, 1+l > 2R
Br(—x)
Then |G¥u(x)| < gs(x) for any x € R. Note that for [x| > 2R, Bg(—x) N Bg(0) = @, hence

1G5 u()| < g5(x) < llull cogra) / ws(@)dz = 0= Vulx), 6 —0.

By

Combining the pointwise limit in Case (I) we obtain
Clu(x) —» Vu(x), 6 —0, Vx € RY.

It remains to show for p € [1, 0], Gfu — Vu in IP(R?). For p = oo this follows from
the estimates above. Now suppose 1 < p < oo. Notice that gs(x) — Co r3,,(x) =: g(x) as
6 — 0 for any x € R, to apply the generalized dominated convergence theorem, we need
to show that ||gs]| ey = |Igllrre) as 6 — 0. In fact, we will show ||g5 — gllr@esy = 0 as
6 — 0. Note that

p
”g5 _g”pz(Rd) = ”u”Ié‘O(Rd)/ </ W,S(Z)dl) dx.
BS, Bg(—x)

Since Br(—x) C B, for |x| > 2R, one has

p P
/ </ W5(z)dz> dx=/ </ )(BR(—x)(Z)Wé(Z)dZ> dx
B, \JBy(-x) B, \JRd
p-1
= / < / Wa(z)dz> / ws(z)dzdx
BSp \J Bp(—x) Bp(=x)

p—1
< < / w§(z)dz> / / XBy(—)(®X)IWs(2)dzdx
By By /By
p—1
_ / wa()dz / / drws(2)dz
B B J BSnBy(—2)
p
< |BR|</ W5(z)dz> -0, 6-0,
B

where we used Tonelli-Fubini theorem and (25). This implies ||gs—g|l»®e) = 0asé — 0
and by generalized dominated convergence theorem G{u — Vu in P R forp € [1,00m

A.2 | AN ORTHONORMAL BASIS IN R’

Proposition A.1. Letd > 2 and p = (u1, ... , ug) € S* ! with uy > 0. Then there exist
Vi, oor sVa1 € S such that

vg) =vi-e1 >0, 1<k<d-1,
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44 of 46 Wl LEY HANET AL.

and vy, ... ,vq_1, 4 form an orthonormal basis for R?. Moreover, one may choose

vl({l) — /’lllﬂk+1| 1 < k < d-1. (AlO)

R VA e

Proof. We prove it by induction on d.
If d = 2, then one may choose

, (2, =), if pp 20,
1= .
(=p2, 1), if pp <0.
Then v, 4 form an orthonormal basis for R? and v(ll) = |u2| as desired.
Suppose the conclusion holds for some d > 2. Given u = (u1, ... , 4g+1) € S¢ with
uy > 0, one has |py41| < 1 and

- 1

A=, ...
V 1 _'”§+1

By the inductive hypothesis, there exist wy, ... ,wy_; € S?"! such that w,(cl) > 0 for
1 <k <d-1andw, ...,ws_1, i form an orthonormal basis for R¢. Define v, :=
Wi, 0)eS?forl <k<d-1and

vy = <|Md+1|l~l’ —sgn(pa+1)\/ 1 — H§+1> es’.

Then it is clear that vy, ... ,v;, u form an orthonormal basis for R4*1. Moreover, if

wﬁl), ,wf,lz, are assumed to have form in (A10), then it can be checked that v(l]), e, vﬁ,l)

satisfy (A10) as well. By induction, the proposition holds for any d > 2. [

,Ha) € ST

A.3 | A USEFUL LIMIT CONCERNING THE FOURIER SYMBOL WITH RESPECT TO RIESZ
FRACTIONAL KERNEL

Proposition A.2. The following equality holds:
® 6

: 27 _ .
35156 ; ZZ—_5(3 ¢ —1)dz = 2xi, (A1D)
that is,
lim ooi(cos(27r )—1)dz=0, lim wi sin(Qrz)dz = 2x (A12)
50 f, 2279 ‘ =050 0 2278 vz =

In addition, these three equalities hold with the upper limit o replaced by 1.

Proof. Note that the last assertion follows from the estimate

© 8 omie ) 1

for 6 € (0, 1/2), provided the following two equalities

1
. )
}Sl—>m0 /o Zz—_ﬁ(cos(Zﬂz) —1)dz=0 (A13)
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A4

and

}sir% / — s1n(27rz)dz =2r (A14)

hold. Using the inequality |1 —cos(x)| < x?/2 for any x € R, it is clear that (A13) holds as

1 1
/ %(COS(Zﬂz) - 1dz| < 27[26/ 2dz <276 -0, 65— 0.
0 < 0

To show (A14), first notice that /01 Z%dz = 1. Since lim,_,o+ sin(x)/x = 1, for any ¢ > 0,
there exists Ny = Ny(e) € (0, 1) such that for any z € (0, Ny),

sin(2zz)
2z

/ Mo g sm(27tz)
1 6 27Z'Z

On the other hand, for 6 € (0, 1) one has

/15<sin(27rz) _ 1>dz
N, 20\ 27z

Thus, there exists 69 = 6p(e) such that for 6 € (0, 5)

1 .
/ 5 (sinQ2n2) ~1)dz
y 20\ 27z

This proves (A14) and the whole proposition. u

—1’<e

<e/ —dz—e.

1
SZ/ édz=—25ln(N0)—>0, 5 —0.
N, <

0

Then

=2r < 2e.

/ —sm(Zﬂz)dz— T

| AN APPROXIMATION RESULT

Lemma A.3. Let Q be a bounded polygonal domain in RY and {Ty}pso be a
quasi-uniform mesh of size h on Q. Given a,f € C(Q) such that a(x) < p(x) for all
x € Q, define Z,g :={f € L*(Q) : a() < f(x) < px), a.e. x € Q} and denote 7, the

piecewise constant functions with respect to the mesh {Tj, } >0, that is,
= {z1 € L¥(Q)| zplr € Po(T), VT € T;,}.

Then for any q € Zaq, there exists {qn}ns0 C Z N Zag such that g, — q in L*(Q).

Proof. Without loss of generality, we assume that a(x) < f(x) for all x € Q. Given
g € L*(Q), define the piecewise constant function p;, € L*(Q) by

prx) = ﬁ /q(y)dy, ifxein(T), T €7
T

where |T| denotes the Lebesgue measure of 7. It is well-known that p, — ¢ in L*(Q).
However, pj, is not necessarily in Z;,. Consider another piecewise constant g, € L*(Q)
given by

gn(x) := min {max {ph(x), suEa(y)}, infﬂ(y)}, ifx €int(T), T € T,,.

yeT yeT
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46 of 46 Wl LEY HANET AL.

It is clear that g, € Zj, N Zyg. To show g, — g in L*(), it suffices to show that ||g, —
Pullzz) — 0 as h — 0. To that end, consider the partition 7;, = 7,! U 7,2 U 7,? of 7, with
respect to g defined by

T :=XTeT,: i/q@)dygsupa(y) ,
1Tl Jr veT

77 = {Te T : i/q@)dy > inﬁﬂ(v)},
71 Jy

yeT

TP = TET : supa®y) < a0y < intp) ¢
yET |T| yeT

Then for T € 7,2, py(x) = g;(x) for all x € T and, therefore,

lpn = anll2q) = / lpn(x) = qn(x)|*dx
TeT,

’ 2
- Z T <|T| /q()’)dy—sup a()’)) Z |T|<|T| /q(y)dy—yig p@))

TeT,! yer TeT?
< D ITIGsup a(y) — inf ay)’+ Y |T|(sup A(y) - inf B,
TeT) yeT TeT? yeT

where in the last step we used a(x) < g(x) < f(x) for a.e. x € Q. Since a and f are
continuous on Q, they are uniformly continuous on Q. Then for any e > 0, there exists
7> 0suchthatforany0<h<zand T € Tj,

sup a(y) — inf a(y) <e, sup f(y) —inf f(y) <e.

yeT yer yeT yeT

Therefore,

2 2 2
Ipn = anllfoy < € D ITI+ D IT| < €2l
TeT) TeT?

This implies ||gx — pallr2@) — 0 as h — 0. Thus ¢, — ¢ in L*(Q) as h — 0. n
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