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where for 𝑑 ≥ 1, u ∶ R𝑑 → R is a measurable function, 𝝂 ∈ R𝑑 is a fixed unit vector, 𝝂 is the

half-space 𝝂 = {z ∈ R𝑑 ∶ z ⋅𝝂 ≥ 0}, and w is a nonnegative kernel function that satisfies appropriate

conditions specified later. Additionally, inspired by the integration by parts formula, a distributional

nonlocal gradient 𝔊𝝂
w is introduced (see eq. (7)), and the related nonlocal Sobolev-type space 𝝂

w(Ω),

defined by

𝝂
w(Ω) = {u ∈ L2(R𝑑) ∶ 𝔊𝝂

wu ∈ L2(R𝑑 ;R𝑑), u = 0 a.e. in R
𝑑 ⧵Ω},

for an open domain Ω ⊂ R𝑑 is studied in [20].

The study of nonlocal operators is largely motivated by peridynamics, introduced by Silling [32],

which has been effective in modeling materials undergoing large strains and fractures. Within the peri-

dynamics theory, a specific category of material models known as correspondence models employs

nonlocal gradients and classical stress-strain relationships to calculate the forces between particles

[19, 34, 38, 39]. Despite their effectiveness, correspondence models are challenged by material insta-

bility issues [33], which, however, can be addressed through the use of half-space gradient operators.

The exploration of such operators began with the work of Lee and Du [21] in the context of periodic

domains. Subsequent developments, carried out by Han and Tian [20], extended the study to general

domains in R𝑑 , where they showed a nonlocal Poincaré inequality on 𝝂
w(Ω) with Ω being a bounded

domain with continuous boundary. The well-posedness of nonlocal diffusion problems and peridynam-

ics correspondence models using half-space nonlocal operators is therefore implied via the application

Lax–Milgram theorem. For additional studies related to the nonlocal gradient, please refer to [4–6, 11,

13, 24, 26, 30, 31] and the references therein.

This work primarily aims to analyze the convergence of variational problems associated with the

nonlocal gradient 𝔊𝝂
w and the energy space 𝝂

w(Ω). In particular, the focus is on understanding the

convergence of solutions when the variational problems are associated with a sequence of kernels wn

that approaches a specific limit as n approaches infinity. The key for showing such convergence relies

on establishing compactness results in the limit as n approaches infinity in the spirit of Bourgain,

Brezis and Mironescu [7]. In this work, we prove two types of compactness results, each associated

with a particular type of kernel sequence convergence. One type of kernel convergence, as detailed in

Assumption 3.9, is fundamentally characterized by the convergence of min(1, |z|)wn(z) to a measure

with atomic mass at the origin as n → ∞ (or as 𝛿 → 0 in the context of Assumption 3.9). Such a

result is crucial for establishing the convergence of solutions from nonlocal variational problems to

their local counterparts as nonlocality diminishes. A different kind of kernel convergence presupposes

{wn}n is a sequence of nonnegative radial kernels converges increasingly to a kernel w almost every-

where, that is, 0 ≤ wn ↗ w a.e., where w is nonintegrable near the origin (for detailed assumptions,

refer to Assumption 3.2), resulting in nonlocal-to-nonlocal convergence. A key intermediate result for

this form of compactness is the locally compact embedding of 𝝂
w(R

𝑑) into L2(R𝑑), which extends the

classical compact embedding of Hs (s ∈ (0, 1)) into L2 by choosing w(z) as the Riesz fractional kernel

C∕|z|𝑑+s [5, 30, 31]. Furthermore, the compactness results yield Poincaré inequalities that remain uni-

form regardless of the size of n. The uniform Poincaré inequalities also serve as essential intermediary

steps in showing the convergence of variational solutions.

To establish the compactness results, we rely on a variant of the Riesz–Kolmogorov–Fréchet com-

pactness criterion [22]. Addressing nonlocal Dirichlet energies with nonlocal gradients presents more

challenges compared to the “double-integral” type nonlocal energies studies in previous works, for

example, [7, 23]. In recent studies [5, 10], compactness results for nonlocal energies with truncated

Riesz fractional gradients are established where a nonlocal version of the fundamental theorem of cal-

culus plays a pivotal role. However, none of the existing methodologies are suitable for addressing the

challenges posed by nonlocal energies defined through a half-space gradient. In our study, to show
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the Riesz–Kolmogorov–Fréchet compactness criterion, we employ Fourier analysis along with fine

estimates (see Section 2) of the Fourier symbols for half-space nonlocal gradient operators.

The compactness results are applied to obtain convergence of parameterized nonlocal heteroge-

neous anisotropic diffusion problems, together with the asymptotic compatibility of their Galerkin

approximations with appropriate finite dimensional subspaces. The concept of asymptotic compatibil-

ity is introduced by [35] and is aimed for robust numerical discretization of parameterized nonlocal

variational problems as the nonlocal modeling parameter and the discretization parameter both go to

an asymptotic limit. We summarize the main convergence theorem in [35] with a slight relaxation on

the conditions, that is, the assumption that strong convergence of operators acting on a dense subset

is replaced by the convergence of bilinear forms in a weak sense. It is worth noting that in the case of

0 ≤ wn ↗ w for a sufficiently singular kernel w, the Galerkin approximation to the nonlocal problem

associated with wn serves as a nonconforming discontinuous Galerkin (DG) scheme for the nonlocal

problem tied to w, as discussed in [36]. Another application we discuss is an optimal control problem

with nonlocal diffusion equation as the constraint. The approach we follow and the results we obtain

for this part of the study parallel [25] an optimal control problem is analyzed where the constraint is

the linear bond-based peridynamics model.

The article is organized as follows. In Section 2, we recall the notion and some basic properties of

nonlocal half-space operators studied in [20]. Further, the nonlocal function spaces are reformulated

using the Fourier symbol of the nonlocal gradient, with a crucial lower bound estimate for the symbol

presented. The major compactness results are established in Section 3, utilizing the symbol estimates.

Applications are demonstrated through the proof of convergence for nonlocal diffusion problems and

the establishment of asymptotic compatibility in Section 4. Additionally, the study of the optimal

control problem is undertaken in Section 5. Finally, we conclude in Section 6.

2 REVISITING NONLOCAL HALF-SPACE OPERATORS AND

ASSOCIATED FUNCTION SPACES

2.1 Nonlocal half-space Operators

In this section, we revisit definitions of nonlocal half-space vector operators as introduced in [20] and

present some new properties.

Let 𝝂 ∈ R𝑑 be a fixed unit vector. Denote by 𝜒𝝂(z) the characteristic function of the half-space

𝝂 ∶= {z ∈ R𝑑 ∶ z ⋅ 𝝂 ≥ 0} parameterized by the unit vector 𝝂. Throughout this article, we assume

that w satisfies the following conditions.
{

w ∈ L1
loc(R

𝑑 ⧵ {0}), w ≥ 0 a.e., w is radial;

M1
w ∶= ∫|z|≤1

|z|w(z)𝑑z ∈ (0,∞) and M2
w ∶= ∫|z|>1

w(z)𝑑z < ∞.
(1)

We notice that by assumption (1) there exists 𝜖0 > 0 such that

0 < ∫
𝜖0<|z|<1

w(z)𝑑z < ∞. (2)

We recall that the nonlocal half-space gradient, divergence, and curl operators are defined in the

principal value sense (see [20, Definition 2.1]). For smooth functions u ∈ C1
c (R

𝑑) and v ∈ C1
c (R

𝑑 ;R𝑑),

the operators are meaningful pointwise and are given as ([20, Lemma 2.1])

𝝂
wu(x) = ∫

R𝑑 𝜒𝝂(y − x)
y − x
|y − x| (u(y) − u(x))w(y − x)𝑑y, x ∈ R𝑑 , (3)

𝝂
wv(x) = ∫

R𝑑 𝜒𝝂(y − x)
y − x
|y − x| ⋅ (v(y) − v(x))w(y − x)𝑑y, x ∈ R𝑑 , (4)
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and for p ∈ [1,∞], 𝝂
wu ∈ Lp(R𝑑 ;R𝑑),𝝂

wv ∈ Lp(R𝑑)with the estimate that for a constant C depending

on 𝑑 and p,

||𝝂
wu||Lp(R𝑑 ;R𝑑 ) ≤ C

(
M1

w||∇u||Lp(R𝑑 ;R𝑑 ) + M2
w||u||Lp(R𝑑 )

)
, and (5)

||𝝂
wv||Lp(R𝑑 ) ≤ C

(
M1

w||∇v||Lp(R𝑑 ;R𝑑×𝑑 ) + M2
w||v||Lp(R𝑑 ;R𝑑 )

)
. (6)

In addition, the nonlocal gradient and nonlocal divergence are related via a nonlocal integration by

parts formula

∫
R𝑑

𝝂
wu(x) ⋅ v(x)𝑑x = −∫

R𝑑

u(x)−𝝂
w v(x)𝑑x,

for any u ∈ C1
c (R

𝑑) and v ∈ C1
c (R

𝑑 ;R𝑑). In fact, as shown in [20, Proposition 2.4], the above formula

is valid for u ∈ L1(R𝑑) such that w(x − y)|u(x) − u(y)| ∈ L1(R𝑑 × R𝑑). This formula motivates

the introduction of the distributional nonlocal gradient operator 𝔊𝝂
wu ∈ (C∞

c (R𝑑 ;R𝑑))′ defined for

u ∈ Lp(R𝑑), 1 ≤ p ≤ ∞, as

⟨𝔊𝝂
wu,𝝓⟩ ∶= − ∫

R𝑑 u(x) ⋅−𝝂
w 𝝓(x)𝑑x, ∀𝝓 ∈ C∞

c (R𝑑 ;R𝑑), (7)

(see [20, Definition 2.2]).

It has also been demonstrated in [21] that for u ∈ C∞
c (R𝑑), v ∈ C∞

c (R𝑑 ;R𝑑), and 𝝃 ∈ R𝑑

 (𝝂
wu)(𝝃) = 𝝀𝝂

w(𝝃)û(𝝃), and (8)

 (𝝂
wv)(𝝃) = 𝝀𝝂

w(𝝃)
T v̂(𝝃), (9)

where the Fourier symbol 𝝀𝝂
w(𝝃) is given by

𝝀𝝂
w(𝝃) ∶= ∫

R𝑑 𝜒𝝂(z)
z

|z|w(z)(e
2𝜋i𝝃⋅z − 1)𝑑z. (10)

In the above, and hereafter,  and −1 represent the Fourier transform and the inverse Fourier trans-

form, respectively. We will also use the ⋅̂-notation for Fourier transform interchangeably. That is,

 (u) = û.

By [20, Lemma 2.4], the Fourier symbol 𝝀𝝂
w(𝝃) is bounded by a linear function, that is,

|𝝀𝝂
w(𝝃)| ≤ 2

√
2𝜋M1

w|𝝃| +
√

2M2
w, 𝝃 ∈ R𝑑 . (11)

In fact, in [20, Lemma 5.1], the following estimates on the behavior of 𝝀𝝂
w(𝝃) near the origin and at

infinity are proved. It is worth noting that in [20], it is assumed that the kernel does not vanish in a

neighborhood of the origin. Nevertheless, the arguments presented in that work remain valid with this

assumption replaced by w ≠ 0 ∈ L1
loc(R

𝑑 ⧵ {0}), in particular w satisfying (1).

Lemma 2.1. Let w satisfy (1).

1. For any N > 0 there exists a constant C = C(N,w, 𝑑) > 0 such that

|𝝀𝝂
w(𝝃)| ≥ C ∫

R𝑑

min(1,w(x))𝑑x, ∀|𝝃| ≥ N.

2. Suppose that in addition w has finite first moment, that is, ∫
R𝑑 |z|w(z)𝑑z < ∞. Then

there exist constants N1 = N1(w, 𝑑) ∈ (0, 1) and C1 = C1(w, 𝑑) > 0 such that

|𝝀𝝂
w(𝝃)| ≥ C1|𝝃|, ∀|𝝃| ≤ N1.

For the compactness result we obtain below, we will need an improved lower bound of 𝝀𝝂
w(𝝃) for

large 𝝃 than provided in the first part of the above lemma. The following lemma has this improved

lower bound whose proof will be postponed to Appendix A.1 since it is long and technical.
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Lemma 2.2. Let w satisfy (1). Assume in addition that w is nonincreasing if 𝑑 = 1. Then

for any N > 0 and 𝜖 > 0, there exists a constant C = C(N𝜖, 𝑑) > 0 such that

|𝝀𝝂
w(𝝃)| ≥ |ℜ(𝝀𝝂

w)(𝝃)| ≥ C ∫|z|> N𝜖

|𝝃|

w(z)𝑑z, ∀|𝝃| > N.

Here ℜ(𝝀𝝂
w) stands for the real part of 𝝀𝝂

w.

2.2 Nonlocal function spaces via Fourier symbols

In this section, we introduce a function space via the Fourier transform formula of the nonlocal gradient

operator defined in the previous section. We will show that this function space is a Hilbert space and

that it is the same space as the space of function with square integrable distributional nonlocal gradient

that was defined and thoroughly studied in [20].

Define the function space 𝝂
w(R

𝑑) as

𝝂
w(R

𝑑) ∶=

{
u ∈ L2(R𝑑) ∶ |u|2𝝂

w
(R𝑑 ) ∶= ∫

R𝑑

|𝝀𝝂
w(𝝃)û(𝝃)|2𝑑𝝃 < ∞

}
(12)

equipped with norm

||u||𝝂
w
(R𝑑 ) ∶=

(
||u||2L2(R𝑑 ) + |u|2𝝂

w
(R𝑑 )

) 1

2

It is direct to check that 𝝂
w(R

𝑑) is a normed vector space. Moreover, with the inner product given

by (u, v)𝝂
w
(R𝑑 ) = (u, v)L2(R𝑑 ) + (𝝀𝝂

wû,𝝀𝝂
wv̂)L2(R𝑑 ;C𝑑 ) for any u, v ∈ 𝝂

w(R
𝑑), 𝝂

w(R
𝑑) is, in fact, a Hilbert

space. Before we prove this statement we make the following remark.

Let 𝒮 (R𝑑 ;C) be the space of Schwartz functions and 𝒮 ′(R𝑑 ;C𝑑) be the space of tempered dis-

tribution. Since u ∈ L2(R𝑑), û ∈ L2(R𝑑 ;C). Moreover, we may define the product 𝝀𝝂
wû as a tempered

distribution in the following way:

⟨𝝀𝝂
wû,𝝓⟩ ∶= (𝝀𝝂

wû,𝝓)L2(R𝑑 ;C𝑑 ) =
(

û, (𝝀𝝂
w)

T
𝝓
)

L2(R𝑑 ;C)
, ∀𝝓 ∈ 𝒮 (R𝑑 ;C𝑑).

and use eq. (11) to show that 𝝀𝝂
wû∈ 𝒮 ′(R𝑑 ;C𝑑). We will use this observation to prove the completeness

of 𝝂
w(R

𝑑).

Proposition 2.3. 𝝂
w(R

𝑑) is a Hilbert space.

Proof. Let {un}
∞
n=1 be a Cauchy sequence in 𝝂

w(R
𝑑). Then there exist u ∈ L2(R𝑑) and v ∈

L2(R𝑑 ;C𝑑) such that un → u and 𝝀𝝂
wûn → v in L2(R𝑑 ;C𝑑). Then for any 𝝓 ∈ 𝒮 (R𝑑 ;C𝑑),

⟨𝝀𝝂
wû,𝝓⟩ =

(
û, (𝝀𝝂

w)
T
𝝓
)

L2(R𝑑 ;C)
=
(

u,−1
(
(𝝀𝝂

w)
T
𝝓
))

L2(R𝑑 ;C)

= lim
n→∞

(
un,−1

(
(𝝀𝝂

w)
T
𝝓
))

L2(R𝑑 ;C)
= lim

n→∞
⟨𝝀𝝂

wûn,𝝓⟩.

Note that the above equalities hold true since (𝝀𝝂
w)

T
𝝓 ∈ L2(R𝑑 ;C) as a result of

Equation (11) and𝝓 ∈ 𝒮 (R𝑑 ;C𝑑). Thus, 𝝀𝝂
wûn → 𝝀𝝂

wû in 𝒮 ′(R𝑑 ;C𝑑). Uniqueness of lim-

its in the sense of tempered distributions, we have 𝝀𝝂
wû = v ∈ L2(R𝑑) That is, u ∈ 𝝂

w(R
𝑑)

with un → u in 𝝂
w(R

𝑑). Thus 𝝂
w(R

𝑑) is complete. ▪

In [20], the nonlocal function space 𝝂
w(R

𝑑) is defined as follows:

𝝂
w(R

𝑑) ∶= {u ∈ L2(R𝑑) ∶ 𝔊𝝂
wu ∈ L2(R𝑑 ;R𝑑)}
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6 of 46 HAN ET AL.

with norm

||u||𝝂
w
(R𝑑 ) ∶=

(
||u||2L2(R𝑑 ) + |u|2𝝂

w
(R𝑑 )

) 1

2

,

where |u|𝝂
w
(R𝑑 ) ∶= ||𝔊𝝂

wu||L2(R𝑑 ;R𝑑 ). For a given open domain Ω ⊂ R𝑑 , we define the closed subspace

𝝂
w(Ω) = {u ∈ 𝝂

w(R
𝑑) ∶ u = 0 a.e. in R

𝑑 ⧵Ω}

that collects functions in 𝝂
w(R

𝑑) that vanish outside of Ω. It is shown in [20] that 𝝂
w(Ω) is a Hilbert

space and that if Ω has a continuous boundary C∞
c (Ω) is dense in 𝝂

w(Ω). We now establish the

equivalence of the space 𝝂
w(R

𝑑) with 𝝂
w(R

𝑑).

Proposition 2.4. 𝝂
w(R

𝑑) = 𝝂
w(R

𝑑) with equal norms. More precisely, the identity map

is an isometrical isomorphism between 𝝂
w(R

𝑑) and 𝝂
w(R

𝑑).

Proof. First, we show 𝝂
w(R

𝑑) ⊆ 𝝂
w(R

𝑑). It suffices to show that for u ∈ 𝝂
w(R

𝑑),

||𝝀𝝂
wû||L2(R𝑑 ;C𝑑 ) = ||𝔊𝝂

wu||L2(R𝑑 ;R𝑑 ) < ∞. Since C∞
c (R𝑑) is dense in 𝝂

w(R
𝑑), there exists

{un}
∞
n=1 ⊂ C∞

c (R𝑑) such that un → u in L2(R𝑑) and 𝝂
wun → 𝔊𝝂

wu in L2(R𝑑). Since Fourier

transform is an isomorphism on L2(R𝑑), 𝝀𝝂
wûn =  (𝝂

wun) converges to𝔊𝝂
wu in L2(R𝑑 ;C𝑑).

Similar to the proof of Proposition 2.3, one has 𝝀𝝂
wûn → 𝝀𝝂

wû in 𝒮 ′(R𝑑 ;C𝑑). Then we

conclude that 𝝀𝝂
wû = 𝔊𝝂

wu ∈ L2(R𝑑 ;C𝑑) and ||𝝀𝝂
wû||L2(R𝑑 ;C𝑑 ) = ||𝔊𝝂

wu||L2(R𝑑 ;R𝑑 ) < ∞.

Second, we show that 𝝂
w(R

𝑑) ⊆ 𝝂
w(R

𝑑). It suffices to show that for any u ∈ 𝝂
w(R

𝑑),

𝔊𝝂
wu ∈ L2(R𝑑 ;R𝑑). By definition, 𝔊𝝂

wu ∈ (C∞
c (R𝑑 ;R𝑑))′ and for any 𝝓 ∈ C∞

c (R𝑑 ;R𝑑),

⟨𝔊𝝂
wu,𝝓⟩ = −(u,−𝝂

w 𝝓)L2(R𝑑 ) =
(

û,𝝀𝝂
w

T
𝝓̂
)

L2(R𝑑 ;C)
,

where we used (−𝝂
w 𝝓) = −𝝀𝝂

w

T
𝝓̂ by Equations (9) and (10). On the other hand, since u ∈

𝝂
w(R

𝑑), 𝝀𝝂
wû ∈ L2(R𝑑 ;C𝑑) and thus −1(𝝀𝝂

wû) ∈ L2(R𝑑 ;C𝑑). For any 𝝓 ∈ C∞
c (R𝑑 ;R𝑑),

(−1(𝝀𝝂
wû),𝝓

)
L2(R𝑑 ;C𝑑 )

=
(
𝝀𝝂

wû, 𝝓̂
)

L2(R𝑑 ;C𝑑 )
=
(

û,𝝀𝝂
w

T
𝝓̂
)

L2(R𝑑 ;C)
.

Therefore, 𝔊𝝂
wu = −1(𝝀𝝂

wû) in the sense of distribution. We note that −1(𝝀𝝂
wû) is

real-valued. This follows from the argument that for any 𝝓 ∈ C∞
c (R𝑑 ;R𝑑),

(−1(𝝀𝝂
wû),𝝓

)
L2(R𝑑 ;C𝑑 )

=
(

û,𝝀𝝂
w

T
𝝓̂
)

L2(R𝑑 ;C)
= −(u,−𝝂

w 𝝓)L2(R𝑑 ) ∈ R,

and so −1(𝝀𝝂
wû) ∈ L2(R𝑑 ;R𝑑), thus 𝔊𝝂

wu ∈ L2(R𝑑 ;R𝑑) and the proof is complete. ▪

We remark that, on the one hand, in the event that the kernel w satisfying (1) also belongs to

L1(R𝑑), we have that ||𝝀𝝂
w||L∞(R𝑑 ;R𝑑 ) ≤ 2||w||L1(R𝑑 ). In this case, the function space 𝝂

w(R
𝑑) coincides

with L2(R𝑑) with norm estimate

||u||2𝝂
w
(R𝑑 ) = ∫

R𝑑

(1 + |𝝀𝝂
w(𝝃)|2)|û(𝝃)|2𝑑𝝃 ≤ (

1 + 4||w||2L1(R𝑑 )

)||u||2L2(R𝑑 ), ∀u ∈ 𝝂
w(R

𝑑).

On the other hand, when the kernel w satisfying (1) is not integrable, that is, ∫
R𝑑 w(z)𝑑z = +∞, or

equivalently ∫|z|<1
w(z)𝑑z = +∞, the space 𝝂

w(R
𝑑) is properly contained in L2(R𝑑). In fact, as one

of our main results of the next section, we will show that 𝝂
w(R

𝑑) is locally compactly contained in

L2(R𝑑). An example of such type of kernel is ws(z) = |z|−𝑑−s for s ∈ (0, 1). In this case, C1(s)|𝝃|s ≤
|𝝀𝝂

ws
(𝝃)| ≤ C2(s)|𝝃|s, where C1(s)(1−s) → 1 and C2(s)(1−s) → 2𝜋 as s ↗ 1, leading to the conclusion

that 𝝂
ws
(R𝑑) = 𝝂

ws
(R𝑑) = Hs(R𝑑), the fractional Sobolev space.
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As we will see in the sections below, working on function spaces with compactly supported kernels

leads to simplifications. To that end, given a nonintegrable kernel w, we will show that we can have an

equivalent characterization of the function space 𝝂
w(R

𝑑) using only the cut-off wc(z) ∶= w(z)𝜒B1(0)(z)

of the kernel w.

Lemma 2.5. Let w(z) be a kernel satisfying (1). Denote wc(z) ∶= w(z)𝜒B1(0)(z) as the

compactly supported kernel obtained cutting of the tail of w. Then there exist positive

constants c1 and c2 depending on M2
w = ∫|z|>1

w(z)𝑑z such that

c1||u||𝝂
w
(R𝑑 ) ≤ ||u||𝝂

wc (R
𝑑 ) ≤ c2||u||𝝂

w
(R𝑑 ), ∀u ∈ 𝝂

w(R
𝑑). (13)

Proof. We begin noting that wc satisfies (1), and so from Proposition 2.4 we have that

||u||2𝝂
w
(R𝑑 ) = ∫

R𝑑

(1 + |𝝀𝝂
w(𝝃)|2)|û(𝝃)|2𝑑𝝃, ∀u ∈ 𝝂

w(R
𝑑).

A similar equality also holds for functions in 𝝂
wc(R𝑑) with w replaced by wc. Now to

compare ||u||𝝂
w
(R𝑑 ) and ||u||𝝂

wc (R
𝑑 ), it suffices to compare 𝝀𝝂

w(𝝃) and 𝝀𝝂
wc(𝝃). By (11),

|𝝀𝝂
w(𝝃) − 𝝀𝝂

wc(𝝃)| = |𝝀𝝂
w−wc(𝝃)| ≤ 2M2

w, ∀𝝃 ∈ R𝑑 . (14)

Then

|𝝀𝝂
wc(𝝃)|2 ≤ (|𝝀𝝂

w(𝝃)| + 2M2
w)

2 ≤ 2(|𝝀𝝂
w(𝝃)|2 + 4(M2

w)
2)

and

||u||2𝝂
wc (R

𝑑 ) ≤ max{2, 1 + 8(M2
w)

2}||u||2𝝂
w
(R𝑑 ), ∀u ∈ 𝝂

w(R
𝑑).

Therefore, c2 = (max{2, 1 + 4(M2
w)

2})
1

2 . Changing the role of w and wc, we get the other

inequality with c1 = c−1
2 . ▪

3 COMPACTNESS RESULTS

In this section, we prove two compactness results. The first one states that for a fixed nonintegrable

kernel w satisfying (1), the function space 𝝂
w(R

𝑑) is compactly contained in L2(R𝑑) with respect to

the L2
loc-topology. This, in particular, implies that for such w, and any bounded domain with contin-

uous boundary 𝝂
w(Ω) is compactly contained in L2(Ω). Other variants of this compactness results

will also be proved. The second result is related to the sequence of parameterized function spaces

{𝝂
wn
(R𝑑)}n associated with a sequence of kernel {wn}n where {min(1, |z|)wn(z)}n is concentrating

around 0 and behaving like a Dirac delta-sequence in the appropriate sense. We will give the precise

statement later, but the result essentially states that a sequence {un} of L2 functions with the property

that supn ||un||𝝂
wn
(R𝑑 ) < ∞, has a compact closure in L2(Ω), for any bounded domain Ω of R𝑑 . These

compactness results are proved with the aid of a variant of Riesz–Kolmogorov–Fréchet compactness

criterion proved in [7], see also [22, Lemma 5.4].

To state the criterion, we observe that for P ∈ L1(R𝑑 ;R𝑑) and f ∈ Lp(R𝑑), p ≥ 1, we understand

the convolution P ∗ f ∶ R𝑑 → R𝑑 as (P ∗ f )j(x) ∶= (Pj ∗ f )(x). Then P ∗ f ∈ Lp(R𝑑 ;R𝑑).

Lemma 3.1. Suppose that P ∈ L1(R𝑑 ;R𝑑) and p ∶= ∫
R𝑑 P(x)𝑑x ∈ R𝑑 ⧵ {0}. Define

P𝜏(x) ∶= 𝜏−𝑑P(x∕𝜏) for 𝜏 > 0. For any 1 ≤ p < ∞, if {fn}
∞
n=1 is a bounded sequence of
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8 of 46 HAN ET AL.

functions in Lp(R𝑑) and

lim
𝜏→0+

lim sup
n→∞

||P𝜏 ∗ fn − pfn||Lp(R𝑑 ;R𝑑 ) = 0, (15)

then {fn} has a compact closure in Lp(Ω) for any bounded domain Ω ⊂ R𝑑 .

3.1 Compact embedding of function spaces associated with nonintegrable kernel

In this subsection we show a local compact embedding result of 𝝂
w(R

𝑑) into L2(R𝑑) when w is a

nonintegrable kernel. To be precise, we state the assumption on w as follows which will remain in

force throughout this subsection.

Assumption 3.2. Assume that w satisfies (1) and the following conditions:

1. ∫
R𝑑 w(z)𝑑z = +∞, or equivalently ∫|z|<1

w(z)𝑑z = +∞.

2. If 𝑑 = 1, then we assume in addition that w is nonincreasing.

We use w as the radial representation of w, that is, w ∶ [0,∞) → [0,∞) such that w(|x|) = w(x)

for all x ∈ R𝑑 . Note that the above assumptions hold for w(z) = |z|−𝑑−s𝜒B1(0)(z) with s ∈ (0, 1), as well

as for w(z) = − ln(|z|)|z|−𝑑𝜒B1(0)(z). The main result we prove in this subsection is the following.

Theorem 3.3. Let w satisfy Assumption 3.2. Let {un}
∞
n=1 ⊂ 𝝂

w(R
𝑑) be a bounded

sequence in L2(R𝑑) with bounded nonlocal gradient seminorm

sup
n

||𝔊𝝂
wun||L2(R𝑑 ;R𝑑 ) = B < ∞, (16)

then for any bounded domain Ω ⊂ R𝑑 , {un|Ω}∞n=1 is precompact in L2(Ω). In other words,

𝝂
w(R

𝑑) is locally compactly embedded in L2(R𝑑).

As we mentioned earlier, we prove the theorem using the criterion given in Lemma 3.1. To that

end, we set P(x) ∶= 𝜒𝝂(x)𝜒B1(0)(x)x∕|x|. By taking the Fourier transform, one can verify that for

u ∈ L2(R𝑑) and 𝝃 ∈ R𝑑 ,

 (P𝜏 ∗ u − pu)(𝝃) = 𝜼𝜏(𝝃)û(𝝃),

where

𝜼𝜏(𝝃) ∶= ∫
R𝑑

1

𝜏𝑑
𝜒𝝂(z)𝜒B𝜏 (0)(z)

z

|z| (e
−2𝜋iz⋅𝝃 − 1)𝑑z, 𝝃 ∈ R

𝑑 . (17)

By a change of variable one implies that

𝜼𝜏(𝝃) = ∫
R𝑑

𝜒𝝂(z)𝜒B1(0)(z)
z

|z| (e
−2𝜋i𝜏z⋅𝝃 − 1)𝑑z, 𝝃 ∈ R

𝑑 .

It then follows from a calculation similar to [21, Theorem 2.4] that

|𝜼𝜏(𝝃)| ≤ V𝑑 min{
√

2𝜋𝜏|𝝃|, 1}, (18)

where V𝑑 is the volume of the 𝑑-dimensional unit ball B𝑑
1 (0).

After noticing that the boundedness condition (16) of Theorem 3.3 can be expressed using the

Fourier symbols as 𝝀𝝂
wc(𝝃), our next goal is to estimate |𝜼𝜏(𝝃)| in terms of |𝝀𝝂

wc(𝝃)|. To that end, we

have the following crucial estimating device.

Remark 3.4. We reiterate that for any w satisfying (1), its cut-off wc = w𝜒B1(0) also satis-

fies (1) and as a consequence of Lemma 2.1(2), there exist constants N1 = N1(w, 𝑑) > 0
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HAN ET AL. 9 of 46

and C1 = C1(w, 𝑑) > 0 such that

|𝝀𝝂
wc(𝝃)| ≥ C1|𝝃|, ∀|𝝃| ≤ N1.

We recall from (2) that there exists 𝜖0 > 0 such that

0 < ∫𝜖0<|z|<1

w(z)𝑑z < ∞,

and thus, taking N = N1 and 𝜖 = 𝜖0 in Lemma 2.2, it follows that there exists a constant

C2 = C2(N1𝜖0, 𝑑) > 0 such that

|𝝀𝝂
wc(𝝃)| ≥ C2 ∫ N1𝜖0

|𝝃| <|z|<1

w(z)𝑑z > 0, ∀|𝝃| > N1.

Lemma 3.5. Suppose that 𝜖0 > 0 as in (2). There exists C = C(w, 𝑑) such that for 0 <

𝜏 < 𝜖0,

|𝜼𝜏(𝝃)| ≤ Cg(𝜏)|𝝀𝝂
wc(𝝃)|, ∀𝝃 ∈ R

𝑑 ,

where g ∶ (0, 𝜖0) → R+ satisfies

lim
𝜏→0+

g(𝜏) = 0.

Proof. Fix 0 < 𝜏 < 𝜖0, we prove the inequality by discussing 0 ≤ |𝝃| ≤ N1, N1 ≤ |𝝃| ≤
N1𝜖0∕𝜏 and |𝝃| > N1𝜖0∕𝜏, where 𝜖0 and N1 are as in Remark 3.4.

We begin from the estimate given in (18) where for some c𝜂 = c𝜂(𝑑) > 0 we have

|𝜼𝜏(𝝃)| ≤ c𝜂(𝑑)min{𝜏|𝝃|, 1}, for all 𝝃 ∈ R
𝑑 .

Then on the one hand for |𝝃| ≤ N1, one has

|𝜼𝜏(𝝃)| ≤ c𝜂𝜏|𝝃| ≤ c𝜂

C1

𝜏|𝝀𝝂
wc(𝝃)|.

On the other hand, for |𝝃| > N1𝜖0∕𝜏 > N1 by Remark 3.4 one has

|𝜼𝜏(𝝃)| ≤ c𝜂 ≤ c𝜂

C2

(
∫ N1𝜖0

|𝝃| <|z|<1

w(z)𝑑z

)−1

|𝝀𝝂
wc (𝝃)|

≤ c𝜂

C2

(
∫𝜏<|z|<1

w(z)𝑑z

)−1

|𝝀𝝂
wc (𝝃)|,

where we used nonnegativity of w in the last step. Finally, for N1 ≤ |𝝃| ≤ N1𝜖0∕𝜏, define

f (𝜏) ∶= sup

|𝝃|∈
[
N1,

N1𝜖0
𝜏

]
𝜏|𝝃|

∫ N1𝜖0
|𝝃| <|z|<1

w(z)𝑑z
= sup

s∈[N1𝜏,N1𝜖0]

s

∫ N1𝜖0𝜏

s
<|z|<1

w(z)𝑑z
,

then again by Remark 3.4 we know for N1 ≤ |𝝃| ≤ N1𝜖0∕𝜏,

|𝜼𝜏(𝝃)| ≤ c𝜂𝜏|𝝃| ≤ c𝜂

C2

f (𝜏)|𝝀𝝂
wc(𝝃)|.

It remains to show f (𝜏) → 0 as 𝜏 → 0+. Suppose that there exist a constant 𝛼 > 0 and a

sequence {𝜏n}
∞
n=1 such that 𝜏n → 0 as n → ∞ and f (𝜏n) > 𝛼 for any n ≥ 1. Then for each

n ≥ 1 there exists sn ∈ [N1𝜏n,N1𝜖0] such that

sn∫ N1𝜖0𝜏n

sn
<|z|<1

w(z)𝑑z
> 𝛼.
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10 of 46 HAN ET AL.

We claim that 𝜏n∕sn → 0 as n → ∞. Suppose this does not hold. Then there exist 0 < B ≤
1∕N1 and subsequences {𝜏nk

}∞k=1 and {snk
}∞k=1 such that B ≤ 𝜏nk

∕snk
≤ 1∕N1. Then since

N1𝜏nk
∕snk

≤ 1, we have

𝛼 <
snk∫ N1𝜖0𝜏nk

snk

<|z|<1
w(z)𝑑z

≤ 𝜏nk

B ∫
𝜖0<|z|<1

w(z)𝑑z
→ 0, k → +∞.

This is a contradiction. Therefore, the claim holds. Pick a decreasing subsequence of

{𝜏n∕sn}
∞
n=1 and still denote it by {𝜏n∕sn}

∞
n=1. Then since ∫|z|<1

w(z)𝑑z = ∞, we have that

as n → ∞,

𝛼 <
sn∫ N1𝜖0𝜏n

sn
<|z|<1

w(z)𝑑z
≤ N1𝜖0∫ N1𝜖0𝜏n

sn
<|z|<1

w(z)𝑑z
→

N1𝜖0∫|z|<1
w(z)𝑑z

= 0,

where we used monotone convergence theorem. This is a contradiction. Therefore, f (𝜏) →

0 as 𝜏 → 0+ and

g(𝜏) ∶= max

{
𝜏, f (𝜏),

(
∫𝜏<|z|<1

w(z)𝑑z

)−1
}

→ 0, as 𝜏 → 0+.

Hence, the proof is complete with C = C(w, 𝑑) = c𝜂∕min{C1,C2}. ▪

We are now ready to give the proof of the main result.

Proof of Theorem 3.3. Note that by Proposition 2.4,

sup
n

||𝝀𝝂
wûn||L2(R𝑑 ;C𝑑 ) = sup

n

||𝔊𝝂
wun||L2(R𝑑 ;R𝑑 ) = B < ∞.

By Lemma 2.5, we may use the cut-off kernel wc and there exists a constant B′ depending

on B, M2
w and supn ||un||L2(R𝑑 ) such that

sup
n

||𝝀𝝂
wc ûn||L2(R𝑑 ;C𝑑 ) ≤ B′ < ∞.

We use the compactness criterion Lemma 3.1 to show that {un}
∞
n=1 has a compact closure

in L2(Ω) for bounded domain Ω ⊂ R𝑑 . Choose P(x) ∶= 𝜒𝝂(x)𝜒B1(0)(x)x∕|x|. To that end,

it suffices to show that

lim
𝜏→0+

lim sup
n→∞

||P𝜏 ∗ un − pun||L2(R𝑑 ;R𝑑 ) = 0 (19)

But recall that

||P𝜏 ∗ un − pun||L2(R𝑑 ;R𝑑 ) = || (P𝜏 ∗ un − pun)||L2(R𝑑 ;R𝑑 ) = ||𝜼𝜏ûn||L2(R𝑑 ;R𝑑 )

where 𝜼𝜏 is given by (17). By Lemma 3.5, there exists C = C(w, 𝑑) such that for 0 < 𝜏 <

𝜖0,

|𝜼𝜏(𝝃)| ≤ Cg(𝜏)|𝝀𝝂
wc(𝝃)|, ∀𝝃 ∈ R

𝑑 ,

where g ∶ (0, 𝜖0) → R+ satisfies lim𝜏→0+ g(𝜏) = 0. Then for any n ≥ 1,

||𝜼𝜏ûn||L2(R𝑑 ;C𝑑 ) ≤ Cg(𝜏)||𝝀𝝂
wc ûn||L2(R𝑑 ;C𝑑 ) ≤ B′Cg(𝜏) → 0, 𝜏 → 0+.

Hence, (19) holds and that conpletes the proof of the theorem. ▪

An important variant of the above compactness result holds true when applied to a sequence of

function spaces 𝝂
wn
(R𝑑) corresponding to the radial kernels wn(z) satisfying 0 ≤ wn(z) ↗ w(z) a.e. z.
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We will present two classes of examples that satisfy this convergence property. First, take wn(z) ∶=

min{n,w(z)} for n ∈ N+. For each n, wn ∈ L1(R𝑑)∩L∞(R𝑑) and wn(z) ↗ w(z) for all z ∈ R𝑑 . Note that

𝝂
wn
(R𝑑) coincides with L2(R𝑑) for each n, while 𝝂

w(R
𝑑) is locally compactly contained in L2(R𝑑). For

another example, we take s ∈ (0, 1) and consider ws(z) = |z|−𝑑−s𝜒B1(0)(z). For a sequence of numbers

0 ≤ sn ↗ s we know wsn
(z) ∶= |z|−𝑑−sn𝜒B1(0)(z) ↗ ws(z) for all z ∈ R𝑑 , and that 𝝂

wsn
(R𝑑) = Hsn (R𝑑),

and 𝝂
ws
(R𝑑) = Hs(R𝑑), which is compactly contained in L2(R𝑑).

Theorem 3.6. Let w satisfy Assumption 3.2. Suppose that {wn}
∞
n=1 is a sequence of radial

kernels satisfying 0 ≤ wn(z) ↗ w(z) for almost every z ∈ R𝑑 and {un}
∞
n=1 ⊂ L2(R𝑑) is a

bounded sequence with

sup
n

||𝔊𝝂
wn

un||L2(R𝑑 ;R𝑑 ) = B < ∞,

then for any bounded domain Ω ⊂ R𝑑 , {un|Ω}∞n=1 is precompact in L2(Ω). Moreover, if

in addition un ∈ 𝝂
wn
(Ω) for every n, that is, un = 0 in Ωc, then for any limit point u, the

zero-extension ũ of u outside Ω satisfies ũ ∈ 𝝂
w(Ω) with

||𝔊𝝂
wũ||L2(R𝑑 ;R𝑑 ) ≤ B.

Proof. We begin by noting that for sufficiently large n, wn satisfies (1). Indeed, by mono-

tone convergence theorem, M1
wn

→ M1
w and M2

wn
→ M2

w as n → ∞ which yields

M1
wn

∈ (0,∞) and M2
wn

< ∞ for sufficiently large n. Without loss of generality, we may

assume wn satisfies (1) for all n. As before, we denote the cut-off by wc
n(z) ∶= wn(z)𝜒B1(0)(z)

for n ∈ N+, and again satisfies (1). Similar to the proof of Lemma 2.5, applying (11) it

follows that

|𝝀𝝂
wc

n
(𝝃) − 𝝀𝝂

wn
(𝝃)| = |𝝀𝝂

wn−wc
n
(𝝃)| ≤ 2∫|z|>1

wn(z)𝑑z ≤ 2M2
w + 1, (20)

for n large enough and thus there exists a constant B̃ depending only on B, M2
w and

supn ||un||L2(R2) such that

sup
n ∫

R𝑑

|𝝀𝝂
wc

n
(𝝃)ûn(𝝃)|2𝑑𝝃 ≤ B̃

2
.

For the first part of the proof, similar to the proof of Theorem 3.3, it suffices to show that

lim
𝜏→0+

lim sup
n→∞

||𝜼𝜏ûn||L2(R𝑑 ;C𝑑 ) = 0, (21)

where 𝜼𝜏 is given by (17). To that end, after estimating as

||𝜼𝜏ûn||2L2(R𝑑 ;C𝑑 ) = ∫
R𝑑

|𝜼𝜏(𝝃)ûn(𝝃)|2𝑑𝝃

≤
(

sup
𝝃≠0

|𝜼𝜏(𝝃)|
|𝝀𝝂

wc
n
(𝝃)|

)2

∫
R𝑑

|𝝀𝝂
wc

n
(𝝃)ûn(𝝃)|2𝑑𝝃

≤ B̃
2

(
sup
𝝃≠0

|𝜼𝜏(𝝃)|
|𝝀𝝂

wc
n
(𝝃)|

)2

,

it suffices to show that

lim
𝜏→0+

lim sup
n→∞

sup
𝝃≠0

|𝜼𝜏(𝝃)|
|𝝀𝝂

wc
n
(𝝃)| = 0. (22)
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12 of 46 HAN ET AL.

Let 𝜖0 and N1 = N1(w, 𝑑) > 0 be as in Remark 3.4 such that for some C1 = C1(w, 𝑑) > 0

|𝝀𝝂
wc(𝝃)| ≥ C1|𝝃|, ∀|𝝃| ≤ N1.

Applying (11) to wc − wc
n, we know that for n sufficiently large,

|𝝀𝝂
wc(𝝃) − 𝝀𝝂

wc
n
(𝝃)| = |𝝀𝝂

wc−wc
n
(𝝃)| ≤ 2

√
2𝜋|𝝃|M1

wc−wc
n
≤ 1

2
C1|𝝃|, ∀𝝃 ∈ R𝑑 ,

since M1
wc−wc

n
= M1

w − M1
wn

→ 0 as n → ∞. Therefore, for n sufficiently large, one has

|𝝀𝝂
wc

n
(𝝃)| ≥ 1

2
C1|𝝃|, ∀|𝝃| ≤ N1.

On the other hand, since wc
n satisfies (1), applying Lemma 2.2 for wc

n and N = N1 we know

that there exists a constant C2 = C2(N1𝜖0, 𝑑) > 0 independent of n such that

|𝝀𝝂
wc

n
(𝝃)| ≥ C2 ∫ N1𝜖0

|𝝃| <|z|<1

wn(z)𝑑z > 0, ∀|𝝃| > N1.

The rest of the proof builds upon the proof of Lemma 3.5. We sketch the proof using the

same notations from the proof of Lemma 3.5. Fix 0 < 𝜏 < 𝜖0. To show (22), we discuss

three cases: 0 < |𝝃| ≤ N1, N1 ≤ |𝝃| ≤ N1𝜖0∕𝜏 and |𝝃| > N1𝜖0∕𝜏. By checking the proof

of Lemma 3.5 and replacing wc by wc
n, one may show that for n sufficiently large,

sup
0<|𝝃|≤N1

|𝜼𝜏(𝝃)|
|𝝀𝝂

wc
n
(𝝃)| ≤ 2

c𝜂

C1

𝜏

and

sup
|𝝃|> N1𝜖0

𝜏

|𝜼𝜏(𝝃)|
|𝝀𝝂

wc
n
(𝝃)| ≤

c𝜂

C2

(
∫𝜏<|z|<1

wn(z)𝑑z

)−1

.

Finally, notice that

sup

|𝝃|∈
[
N1,

N1𝜖0
𝜏

]
|𝜼𝜏(𝝃)|
|𝝀𝝂

wc
n
(𝝃)| ≤

c𝜂

C2

sup

|𝝃|∈
[
N1,

N1𝜖0
𝜏

]
𝜏|𝝃|

∫ N1𝜖0
|𝝃| <|z|<1

wn(z)𝑑z

=
c𝜂

C2

sup
s∈[N1𝜏,N1𝜖0]

s

∫ N1𝜖0𝜏

s
<|z|<1

wn(z)𝑑z
,

where we did a change of variables in the last equality. Introduce the notation

f (n, 𝜏) ∶= sup
s∈[N1𝜏,N1𝜖0]

s

∫ N1𝜖0𝜏

s
<|z|<1

wn(z)𝑑z
,

we show next that

lim
𝜏→0+

lim sup
n→∞

f (n, 𝜏) = 0, (23)

Suppose that (23) is false. Then there exists 𝛼0 > 0 and sequences {𝜏j}
∞
j=1, {nj}

∞
j=1 and

{sj}
∞
j=1 with 𝜏j → 0, nj → +∞ and sj ∈ [N1𝜏j,N1𝜖0] such that

sj

∫ N1𝜖0𝜏j

sj
<|z|<1

wnj
(z)𝑑z

> 𝛼0.

Arguing as in the proof of Lemma 3.5, one may show that 𝜏j∕sj → 0 as j → ∞, and without

loss of generality, one may assume that {𝜏j∕sj}
∞
j=1 is decreasing and {nj}

∞
j=1 is increas-

ing. Since {𝜒Bc
N1𝜖0𝜏j∕sj

(0)(z)wnj
(z)}∞j=1 is an increasing sequence of nonnegative functions, by
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monotone convergence theorem,

𝛼0 <
sj

∫ N1𝜖0𝜏j

sj
<|z|<1

wnj
(z)𝑑z

≤ N1𝜖0∫ N1𝜖0𝜏j

sj
<|z|<1

wnj
(z)𝑑z

→
N1𝜖0∫|z|<1

w(z)𝑑z
= 0

as n → ∞, a contradiction. Therefore (23) holds, and consequently (22) holds by combing

the three cases. The precompactness follows from Lemma 3.1. Finally, assuming that un ∈

𝝂
wn
(Ω) for every n, we show that for any limit point u, the zero-extension ũ of u outside

Ω satisfies ũ ∈ 𝝂
w(Ω) with

||𝔊𝝂
wũ||L2(R𝑑 ;R𝑑 ) ≤ B.

Without loss of generality, assume that un → u in L2(Ω). Then un → ũ in L2(R𝑑). Thus

ûn → ̂̃u in L2(R𝑑) and up to a subsequence we know ûn → ̂̃u a.e. in R𝑑 . On the other hand,

by (11) one may show that 𝝀𝝂
wn
(𝝃) → 𝝀𝝂

w(𝝃) as n → ∞ for any 𝝃 ∈ R𝑑 as M1
wn

→ M1
w and

M2
wn

→ M2
w. Then by Fatou’s lemma, one obtains that

∫
R𝑑

|𝝀𝝂
w(𝝃) ̂̃u(𝝃)|2𝑑𝝃 ≤ lim inf

n→∞ ∫
R𝑑

|𝝀𝝂
wn
(𝝃)ûn(𝝃)|2𝑑𝝃 ≤ B2.

This completes the proof. ▪

As a consequence of the above compactness result Theorem 3.6, we establish the following uniform

Poincaré inequality.

Theorem 3.7. Let {wn ∶ n ∈ N+} be a family of kernels as in Theorem 3.6. Then there

exist N0 ∈ N+ and C(N0) > 0 such that for any n ∈ N+ with n > N0,

||u||L2(Ω) ≤ C(N0)||𝔊𝝂
wn

u||L2(R𝑑 ;R𝑑 ), ∀u ∈ 𝝂
wn
(Ω). (24)

Proof. Let

1

A
∶= inf

{||𝔊𝝂
wu||L2(R𝑑 ;R𝑑 ) ∶ u ∈ 𝝂

w(Ω), ||u||L2(Ω) = 1
}
.

By the nonlocal Poincaré inequality for the kernel w, that is, [20, Theorem 5.1], one has

0 < A < ∞. To prove the theorem, we will prove that for any 𝜖 > 0, there exist N0(𝜖) > 0

and A + 𝜖 > 0 such that for any n > N0,

||u||L2(Ω) ≤ (A + 𝜖)||𝔊𝝂
wn

u||L2(R𝑑 ;R𝑑 ), ∀u ∈ 𝝂
wn
(Ω).

We prove this statement by contradiction. Suppose that there exist C > A, sequences

{nk}
∞
k=1 and {unk

}∞k=1 where nk > k for all k ∈ N such that unk
∈ 𝝂

wnk
(Ω), ||unk

||L2(Ω) = 1

and

||𝔊𝝂
wnk

unk
||L2(R𝑑 ;R𝑑 ) <

1

C
.

Then by Theorem 3.6, there exists u ∈ 𝝂
w(Ω) such that unk

→ u in L2(Ω) up to a

subsequence and

||𝔊𝝂
wu||L2(R𝑑 ;R𝑑 ) ≤ 1

C
<

1

A
.

But since the strong limit ||u||L2(Ω) = 1, this gives a contradiction to the fact that A is

chosen the best constant. ▪
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3.2 Compactness with vanishing nonlocality

In this subsection, we prove the second compactness criterion which is based on boundedness of the

sequence of nonlocal gradient energies associated with kernels with vanishing nonlocality. To that

end, in this section we will be working with the set of kernels {w𝛿 ∶ 𝛿 ∈ (0, 1)} satisfying (1) and the

additional assumptions that for any R > 0,

lim
𝛿→0∫Bc

R
(0)

w𝛿(z)𝑑z = 0, (25)

lim
𝛿→0∫BR(0)

|z|w𝛿(z)𝑑z = 2𝑑. (26)

Conditions (25) and (26) imply that for any R > 0

lim
𝛿→0∫BR(0)

|z|2w𝛿(z)𝑑z = 0. (27)

Indeed, given any 𝜖 ∈ (0,R),

∫BR(0)

|z|2w𝛿(z)𝑑z = ∫B𝜖 (0)

|z|2w𝛿(z)𝑑z + ∫𝜖<|z|<R

|z|2w𝛿(z)𝑑z

≤ 𝜖 ∫B𝜖 (0)

|z|w𝛿(z)𝑑z + R2 ∫B𝜖(0)
c

w𝛿(z)𝑑z.

Letting 𝛿 → 0 and using (25) and (26) we obtain that

lim sup
𝛿→0 ∫BR(0)

|z|2w𝛿(z)𝑑z ≤ 2𝑑𝜖.

Since 𝜖 > 0 can be arbitrarily small, (27) holds.

A consequence of this is that these conditions on the sequence of kernels are sufficient for the

convergence of corresponding nonlocal operators to their local counterparts as 𝛿 tends to zero as stated

below. The proof is presented in Appendix A.1.

Proposition 3.8. Let u ∈ C1
c (R

𝑑) and v ∈ C1
c (R

𝑑 ;R𝑑). Let {w𝛿 ∶ 𝛿 ∈ (0, 1)} satisfy

Equations (1), (25) and (26). Denote 𝝂
𝛿 ∶= 𝝂

w𝛿
and 𝝂

𝛿 ∶= 𝝂
w𝛿

. Then for any x ∈ R𝑑 ,

𝝂
𝛿u(x) → ∇u(x), 𝛿 → 0, (28)

𝝂
𝛿v(x) → div v(x), 𝛿 → 0. (29)

Moreover, for any p ∈ [1,∞], the above two convergences are strong in Lp(R𝑑 ;R𝑑) and

Lp(R𝑑) respectively.

This localization result leads to the natural question about the convergence property of bounded

sequence {u𝛿 ∈ 𝝂
w𝛿
(R𝑑)}; that is, if sup𝛿 |u𝛿|𝝂

w𝛿
< ∞, is the sequence compact in L2

loc? And if yes,

what can we say about limit points u? As the localization result Proposition 3.8 suggest, does u belong

in H1
loc(R

𝑑)? We conjecture that these questions can be answered in the affirmative for the general

set of kernels satisfying (1),(25), and (26). Although we are unable to answer these questions in full

generality, we will address the question in this subsection for a selected set of sequence of kernels. The

types of sequence of kernels we will be focused on are listed in the following assumption.

Assumption 3.9. We assume that {w𝛿 ∶ 𝛿 ∈ (0, 1)} is given by one of the three cases:

(I) w𝛿(z) ∶= 𝛿−𝑑−1w(z∕𝛿) for 𝛿 ∈ (0, 1) where w satisfies (1) and

∫
R𝑑

|z|w(z)𝑑z = 2𝑑.
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(II) w𝛿(z) ∶= 2𝑑𝛿|z|𝛿−𝑑−1 for 𝛿 ∈ (0, 1).

(III) {w𝛿 ∶ 𝛿 ∈ (0, 1)} is a set of kernels satisfying Equations (1), (25), and (26), and there

exist constants R1 > 0, R2 > 0 and 𝛿0 ∈ (0, 1) and a function h ∶ (0, 𝛿0) → R+ with

lim𝛿→0 h(𝛿) = 0 such that

lim
𝛿→0∫|z|>R1h(𝛿)

w𝛿(z)𝑑z = +∞ (30)

and

sup
𝛿∈(0,𝛿0)

1

h(𝛿) ∫BR2
(0)

|z|2w𝛿(z)𝑑z ∶= M0 < +∞. (31)

In addition, when 𝑑 = 1 assume w𝛿(z) is nonincreasing for each 𝛿 ∈ (0, 1).

Remark 3.10. A typical example satisfying Assumption 3.9(III) is given by

w𝛿(z) =
1

| log 𝛿|
1

|z|(|z| + 𝛿)𝑑
(32)

with R1 = R2 = 𝛿0 = 1 and h(𝛿) = 𝛿. One may show that the first two types of kernels in

Assumption 3.9 satisfy Equations (1), (25) and (26) but not Assumption 3.9(III). Specif-

ically, Assumption 3.9(I) does not satisfy (31) and Assumption 3.9(II) does not satisfy

(30).

The main theorem of this subsection is the following.

Theorem 3.11. Let {w𝛿n
∶ 𝛿n ∈ (0, 1)}∞n=1 be a sequence of kernels that belongs to either

(I), (II) or (III) of Assumption 3.9. Suppose {un}
∞
n=1 ⊂ L2(R𝑑) is a bounded sequence and

sup
n

|un|𝝂
w𝛿n

(R𝑑 ) = sup
n

‖‖‖𝔊
𝝂
w𝛿n

un
‖‖‖L2(R𝑑 ;R𝑑 )

= B < ∞,

then {un}
∞
n=1 has a compact closure in L2(Ω) for bounded domain Ω ⊂ R𝑑 . Moreover, if

in addition Ω has a Lipschitz boundary and un ∈ 𝝂
w𝛿n

(Ω) for every n, then any limit point

u ∈ H1
0(Ω) with

||∇u||L2(Ω;R𝑑 ) ≤ B.

The theorem will be shown for the three classes of kernels in Assumption 3.9 separately, each

requiring subtly different techniques. From now on, we let {𝛿n}
∞
n=1 be a sequence of positive numbers

such that 𝛿n ∈ (0, 1) and 𝛿n → 0 as n → ∞.

Proof of Theorem 3.11 for the class of kernels satisfying Assumption 3.9(I). Taking the

Fourier transform and by applying Proposition 2.4 we have,

sup
n

‖‖‖𝝀
𝝂
w𝛿n

ûn
‖‖‖L2(R𝑑 ;C𝑑 )

= sup
n

‖‖‖𝔊
𝝂
w𝛿n

un
‖‖‖L2(R𝑑 ;R𝑑 )

= B < ∞.

We prove the theorem in two step. We first show the sequence is compact in the L2
loc

topology, and then demonstrate that any limit point is in H1
0(Ω).

Step I. To show that {un}
∞
n=1 has a compact closure in L2(Ω) for bounded domain

Ω ⊂ R𝑑 , we will apply the compactness criterion given in Lemma 3.1. For that we choose

P(x) ∶= 𝜒𝝂(x)𝜒B1(0)(x)x∕|x| and demonstrate that

lim
𝜏→0+

lim sup
n→∞

||P𝜏 ∗ un − pun||L2(R𝑑 ;R𝑑 ) = 0. (33)

As before, we consider 𝜼𝜏 given by (17).
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Claim. There exists C = C(w, 𝑑) such that for 0 < 𝛿 ≤ 𝜏 < 1,

|𝜼𝜏(𝝃)| ≤ C𝜏|𝝀𝝂
w𝛿
(𝝃)|, ∀𝝃 ∈ R𝑑 . (34)

Once this claim is proved, (33) holds. Indeed, since for any 𝜏 ∈ (0, 1), there exists n𝜏 > 0

such that for any n > n𝜏 , 𝛿n < 𝜏 we have |𝜼𝜏(𝝃)| ≤ C𝜏|𝝀𝝂
n (𝝃)| for all 𝝃 ∈ R𝑑 . Thus for

n > n𝜏 ,

||P𝜏 ∗ un − pun||2L2(R𝑑 ;R𝑑 ) = ∫
R𝑑

|𝜼𝜏(𝝃)ûn(𝝃)|2𝑑𝝃

≤ C𝜏2 ∫
R𝑑

|||𝝀
𝝂
w𝛿n

(𝝃)ûn(𝝃)
|||
2

𝑑𝝃 ≤ CB2𝜏2.

What remains is to prove the above claim. By a change of variable, one may check that

𝝀𝝂
w𝛿
(𝝃) = 𝛿−1𝝀𝝂

w(𝛿𝝃) for all 𝝃 ∈ R𝑑 . Therefore, for 0 < 𝛿 ≤ 𝜏 < 1, by Lemma 2.1, there

exist constants N1 = N1(w, 𝑑) and C1 = C1(w, 𝑑) such that

|𝝀𝝂
w𝛿
(𝝃)| ≥ C1|𝝃|, ∀|𝝃| < N1

𝛿

and

|𝝀𝝂
w𝛿
(𝝃)| ≥ C1

𝛿 ∫
R𝑑

min(1,w(x))𝑑x ≥ C2(w, 𝑑)

𝜏
, ∀|𝝃| ≥ N1

𝛿
.

Comparing these estimates with (18) proves the (34), completing the proof of the claim.

Step II. Suppose un ∈ 𝝂
w𝛿n

(Ω) for every n and u is a limit point of {un}
∞
n=1 in L2(Ω),

that is, un → u in L2(Ω) up to a subsequence. Then we show that u ∈ H1
0(Ω) and

||∇u||L2(Ω;R𝑑 ) ≤ B. Let ũ be the zero extension of u outside Ω, that is,

ũ(x) =

{
u(x), x ∈ Ω,

0, x ∈ Ωc.

Then un → ũ in L2(R𝑑). By definition of distributional gradient, for any 𝝓 ∈ C∞
c (R𝑑 ;R𝑑),

||||∫R𝑑

un(x)−𝝂
w𝛿n

𝝓(x)𝑑x
|||| =

||||−∫
R𝑑

𝔊𝝂
w𝛿n

un(x) ⋅ 𝝓(x)𝑑x
||||

≤ ||𝔊𝝂
w𝛿n

un||L2(R𝑑 ;R𝑑 )||𝝓||L2(R𝑑 ;R𝑑 )

≤ B||𝝓||L2(R𝑑 ;R𝑑 ).

Passing to the limit as n → ∞, one obtains

||||∫R𝑑

ũ(x)div 𝝓(x)𝑑x
|||| ≤ B||𝝓||L2(R𝑑 ;R𝑑 ), ∀𝝓 ∈ C∞

c (R𝑑 ;R𝑑), (35)

where we used Proposition 3.8 to assert −𝝂
w𝛿n

𝝓 → div 𝝓 in L2(R𝑑). Therefore, ũ ∈ H1(R𝑑)

with

||∇ũ||L2(R𝑑 ;R𝑑 ) ≤ B.

Then by [40, Theorem 3.7], u ∈ H1
0(Ω) and ||∇u||L2(Ω;R𝑑 ) ≤ B, where we used the fact Ω

is a bounded Lipschitz domain. ▪

Proof of Theorem 3.11 for the class of kernels satisfying Assumption 3.9(II). Again we

will use the Riesz–Kolmogorov–Fréchet criterion Lemma 3.1. The key ingredient is a

good lower bound on the norm of Fourier symbol 𝝀𝝂
w𝛿

.
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We claim that if w𝛿(z) = 2𝑑𝛿|z|𝛿−𝑑−1, then there exist constants C1(𝑑) > 0, C2(𝑑) > 0

and 𝛿0 ∈ (0, 1∕2) such that for any 𝛿 ∈ (0, 𝛿0),

C1(𝑑)|𝝃|1−𝛿 ≤ |𝝀𝝂
w𝛿
(𝝃)| ≤ C2(𝑑)|𝝃|1−𝛿 , ∀𝝃 ∈ R𝑑 . (36)

We will prove (36) shortly but a consequence of it is that there exists C = C(𝑑) such that

for 𝜏 ∈ (0, 1) and 𝛿 ∈ (0, 𝛿0),

|𝜼𝜏(𝝃)| ≤ C𝜏
1

2 |𝝀𝝂
w𝛿
(𝝃)|, ∀𝝃 ∈ R𝑑 , (37)

from which the condition in Lemma 3.1 is satisfied.

To prove (37), we estimate it in two regimes. Let 𝛿0 be the constant used in (36). Then

for any 𝛿 ∈ (0, 𝛿0) and |𝝃| ≤ 1∕𝜏, using (18) and (36) we know that there exists a constant

C(𝑑) > 0 such that

|𝜼𝜏(𝝃)|
|𝝀𝝂

w𝛿
(𝝃)| ≤ C(𝑑)

𝜏|𝝃|
|𝝃|1−𝛿 ≤ C(𝑑)𝜏|𝝃|𝛿 ≤ C(𝑑)𝜏1−𝛿 ≤ C(𝑑)𝜏

1

2 .

Similarly, for |𝝃| > 1∕𝜏, again using (18) and (36), we have

|𝜼𝜏(𝝃)|
|𝝀𝝂

w𝛿
(𝝃)| ≤ C(𝑑)

1

|𝝃|1−𝛿 ≤ C(𝑑)𝜏1−𝛿 ≤ C(𝑑)𝜏
1

2 .

Let us now prove (36). By (10) and the form of w𝛿 , for 𝛿 ∈ (0, 1∕2) and 𝝃 ∈ R𝑑 we have

|𝝀𝝂
w𝛿
(𝝃)| ≤ 2𝑑 ∫

R𝑑

𝛿

|z|𝑑+1−𝛿

|||e
2𝜋iz⋅𝝃 − 1

|||𝑑z

= 2𝑑|𝝃|1−𝛿 ∫
R𝑑

𝛿

|z|𝑑+1−𝛿

|||e
2𝜋iz⋅𝝃∕|𝝃| − 1

|||𝑑z

≤ 2𝑑𝛿|𝝃|1−𝛿
(
∫B1(0)

2𝜋|z|
|z|𝑑+1−𝛿

𝑑z + ∫B1(0)
c

2

|z|𝑑+1−𝛿
𝑑z

)

= 2𝑑𝛿|𝝃|1−𝛿𝜔𝑑−1

(
2𝜋

𝛿
+

2

1 − 𝛿

)

≤ 8𝑑𝜋𝜔𝑑−1|𝝃|1−𝛿 .
For the lower bound, we recall from [20, Lemma 5.1] that when 𝑑 ≥ 2 the norm of

imaginary part of 𝝀𝝂
w𝛿
(𝝃) is given by

ℑ(𝝀𝝂
w𝛿
)(𝝃) = 2𝑑𝜔𝑑−2∫

𝜋

2

0

cos(𝜃)sin𝑑−2(𝜃)∫
∞

0

𝛿

r2−𝛿
sin(2𝜋|𝝃|r cos(𝜃))𝑑r𝑑𝜃.

By a change of variable we have

|𝝀𝝂
w𝛿
(𝝃)| ≥ 2𝑑|𝝃|1−𝛿𝜔𝑑−2∫

𝜋

2

0

cos2−𝛿(𝜃)sin𝑑−2(𝜃)∫
∞

0

𝛿

r2−𝛿
sin(2𝜋r)𝑑r𝑑𝜃.

By Proposition A.2 in Appendix A.3 we know as 𝛿 → 0,

∫
𝜋

2

0

cos2−𝛿(𝜃)sin𝑑−2(𝜃)∫
∞

0

𝛿

r2−𝛿
sin(2𝜋r)𝑑r𝑑𝜃 → 2𝜋∫

𝜋

2

0

cos2(𝜃)sin𝑑−2(𝜃)𝑑𝜃 > 0.

Then there exist constants C1(𝑑) > 0 and 𝛿0 ∈ (0, 1∕2) such that for any 𝛿 ∈ (0, 𝛿0),

|𝝀𝝂
w𝛿
(𝝃)| ≥ C1(𝑑)|𝝃|1−𝛿 , ∀𝝃 ∈ R

𝑑 .

For 𝑑 = 1 the proof is similar as one can show |𝜆𝝂w𝛿
(𝜉)| ≥ 2|𝜉|1−𝛿∫ ∞

0

𝛿

r2−𝛿
sin(2𝜋r)𝑑r for

any 𝜉 ∈ R. Thus the inequality (36) is established. ▪
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18 of 46 HAN ET AL.

To prove Theorem 3.11 when the set of kernels satisfies Assumption 3.9(III), we first establish

lower bound estimates of the parameterized symbols 𝝀𝝂
wc
𝛿
(𝝃) that is uniform in 𝛿. Here wc

𝛿(z) stands for

the compactly supported kernel after truncation wc
𝛿(z) ∶= w𝛿(z)𝜒BR2

(0)(z). We achieve this by separately

estimating the real and imaginary parts of 𝝀𝝂
wc
𝛿
(𝝃). We recall that we can write

𝝀𝝂
wc
𝛿
(𝝃) = ℜ(𝝀𝝂

wc
𝛿
)(𝝃) + iℑ(𝝀𝝂

wc
𝛿
)(𝝃)

where

ℜ(𝝀𝝂
wc
𝛿
)(𝝃) = ∫BR2

(0)

𝜒𝝂(z)
z

|z|w𝛿(z)(cos(2𝜋𝝃 ⋅ z) − 1)𝑑z and

ℑ(𝝀𝝂
wc
𝛿
)(𝝃) = ∫BR2

(0)

𝜒𝝂(z)
z

|z|w𝛿(z) sin(2𝜋𝝃 ⋅ z)𝑑z.

We estimate
|||ℑ(𝝀𝝂

wc
𝛿
)(𝝃)

||| and
|||ℜ(𝝀𝝂

wc
𝛿
)(𝝃)

||| for small |𝝃| and large |𝝃| respectively.

Lemma 3.12. Let {w𝛿 ∶ 𝛿 ∈ (0, 1)} be a family of kernels satisfying Assumption 3.9.

Then there exist constants 𝛿1 = 𝛿1(h,R1,R2) ∈ (0, 𝛿0), C0 = C0(M0, 𝑑), C1 = C1(𝑑) and

C2 = C2(R1,M0, 𝑑) such that for any 𝛿 ∈ (0, 𝛿1),

|||ℑ(𝝀𝝂
wc
𝛿
)(𝝃)

||| ≥ C1|𝝃|, ∀|𝝃| ≤ C0

h(𝛿)
, (38)

and |||ℜ(𝝀𝝂
wc
𝛿
)(𝝃)

||| ≥ C2 ∫|z|≥R1h(𝛿)
wc
𝛿(z)𝑑z > 0, ∀|𝝃| > C0

h(𝛿)
. (39)

Proof. Without loss of generality, we assume 𝑑 ≥ 2. The case 𝑑 = 1 can be proved

similarly. In [20, Lemma 5.1] it is shown that

|||ℑ(𝝀𝝂
wc
𝛿
)(𝝃)

||| =
|||||
𝜔𝑑−2∫

𝜋

2

0

cos(𝜃)sin𝑑−2(𝜃)∫
R2

0

r𝑑−1w𝛿(r) sin(2𝜋|𝝃|r cos(𝜃))𝑑r𝑑𝜃
|||||
.

Using the inequality sin x ≥ x − x2∕2 for x ≥ 0, one obtains that

|||ℑ(𝝀𝝂
wc
𝛿
)(𝝃)

||| ≥ 𝜔𝑑−2∫
𝜋

2

0

cos(𝜃)sin𝑑−2(𝜃)⋅

∫
R2

0

r𝑑−1w𝛿(r)
(
2𝜋|𝝃|r cos(𝜃) − 2𝜋2|𝝃|2r2 cos (𝜃)2

)
𝑑r𝑑𝜃

= |𝝃|
(

c1(𝑑)∫BR2
(0)

|z|w𝛿(z)𝑑z − c2(𝑑)|𝝃|∫BR2
(0)

|z|2w𝛿(z)𝑑z

)

where c1(𝑑) and c2(𝑑) are positive constants. Since

lim
𝛿→0

h(𝛿) = 0 and lim
𝛿→0∫BR2

(0)

|z|w𝛿(z)𝑑z = 2𝑑,

there exists 𝛿1 ∈ (0, 𝛿0) depending on R1 and R2 such that

R1h(𝛿) < R2 and ∫BR2
(0)

|z|w𝛿(z)𝑑z > 𝑑

for any 𝛿 ∈ (0, 𝛿1). Choose C0 = C0(M0, 𝑑) such that C0M0c2(𝑑) = c1(𝑑)𝑑∕2, then for

any 𝛿 ∈ (0, 𝛿1) and |𝝃| ≤ C0∕h(𝛿), by the calculation above and (31),

ℑ(𝝀𝝂
wc
𝛿
)(𝝃) ≥ |𝝃|

(
c1(𝑑)𝑑 − c2(𝑑)

C0

h(𝛿) ∫BR2
(0)

|z|2w𝛿(z)𝑑z

)
≥ 1

2
c1(𝑑)𝑑|𝝃|.
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Then (38) is shown where C1 = c1(𝑑)𝑑∕2. By Lemma 2.2, taking N = C0∕h(𝛿) and

𝜖 = R1h(𝛿) there exist a constant C2 = C2(R1,C0, 𝑑) = C2(R1,M0, 𝑑) > 0 such that for

|𝝃| > C0∕h(𝛿),

|||ℜ(𝝀𝝂
wc
𝛿
)(𝝃)

||| ≥ C2 ∫|z|≥ C0R1

|𝝃|

wc
𝛿(z)𝑑z ≥ ∫|z|≥R1h(𝛿)

wc
𝛿(z)𝑑z.

Note that (30) implies that BR1h(𝛿)(0) ⊂ supp wc
𝛿 for 𝛿 small enough. Thus without loss of

generality one may assume that BR1h(𝛿)(0) ⊂ supp w𝛿 for 𝛿 ∈ (0, 𝛿0). The proof is then

complete. ▪

Remark 3.13. Following the exact proof of Lemma 2.5, one may show that for {w𝛿 ∶ 𝛿 ∈

(0, 1)} be a family of kernels satisfying (1), the function spaces 𝝂
w𝛿
(R𝑑) and 𝝂

wc
𝛿
(R𝑑) are

equivalent with equivalent norms. For a fixed constant R > 0, if we denote wc
𝛿(z) ∶=

w𝛿(z)𝜒BR(0)(z) as the compactly supported kernel obtained from a truncation of w𝛿 , then

there exist constants 𝛿2 ∈ (0, 1) depending on R such that for any 𝛿 ∈ (0, 𝛿2)

1√
2
||u||𝝂

w𝛿
(R𝑑 ) ≤ ||u||𝝂

wc
𝛿

(R𝑑 ) ≤
√

2||u||𝝂
w𝛿
(R𝑑 ), ∀u ∈ 𝝂

w𝛿
(R𝑑). (40)

We are now ready to prove Theorem 3.11 for the last class of kernels.

Proof of Theorem 3.11 for the class of kernels satisfying Assumption 3.9(III). Denote

wc
𝛿n
(z) ∶= w𝛿n

(z)𝜒BR2
(0)(z) where R2 is given by (31). Similar to the proof of Theorem 3.6

and in view of Remark 3.13, one can show that there exists a constant B̃ depending only

on B and supn ||un||L2(R2) such that

sup
n ∫

R𝑑

|𝝀𝝂
wc
𝛿n

(𝝃)ûn(𝝃)|2𝑑𝝃 ≤ B̃
2
.

As in the proof of Theorem 3.6, it suffices to show

lim
𝜏→0

lim sup
n→∞

sup
𝝃≠0

|𝜼𝜏(𝝃)|
|𝝀𝝂

wc
𝛿n

(𝝃)| = 0. (41)

Choose 𝛿1 as in Lemma 3.12. Since 𝛿n → 0 as n → ∞, there exists N > 0 such that for any

n > N, 𝛿n ∈ (0, 𝛿1). For n > N, we consider two cases |𝝃| ≤ C0∕h(𝛿n) and |𝝃| > C0∕h(𝛿n).

For |𝝃| ≤ C0∕h(𝛿n), using (38) in Lemma 3.12 and (18) we know that there exists a

constant C(𝑑) > 0 such that

|𝜼𝜏(𝝃)|
|𝝀𝝂

wc
𝛿n

(𝝃)| ≤ C(𝑑)
𝜏|𝝃|
|𝝃| ≤ C(𝑑)𝜏.

Similarly, for |𝝃| > C0∕h(𝛿n), (39) in Lemma 3.12 and (18) yield

|𝜼𝜏(𝝃)|
|𝝀𝝂

wc
𝛿n

(𝝃)| ≤
C(𝑑)

C2(R1,M0, 𝑑) ∫|z|>R1h(𝛿n)
wc
𝛿n
(z)𝑑z

→ 0, n → ∞,

where we used (30) and (25) to obtain

∫|z|>R1h(𝛿n)

wc
𝛿n
(z)𝑑z = ∫|z|>R1h(𝛿n)

w𝛿n
(z)𝑑z − ∫|z|>R2

w𝛿n
(z)𝑑z → ∞, n → ∞.

Therefore, (41) holds and the rest of the proof follows is similar to the proof given for the

other class of kernels. ▪
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We conclude this section by presenting an application of the compactness result to prove a uniform

Poincaré inequality applicable the parameterized function spaces 𝝂
w𝛿
(Ω). The proof of this inequality

follows the exact procedures as the proof of Theorem 3.7 and thus omitted.

Theorem 3.14. Let {w𝛿 ∶ 𝛿 ∈ (0, 1)} be a family of kernels given by Assumption 3.9.

Assume Ω is a bounded Lipschitz domain. Then there exist 𝛿0 > 0 and C(𝛿0) > 0 such that

for any 𝛿 ∈ (0, 𝛿0),

||u||L2(Ω) ≤ C(𝛿0)||𝔊𝝂
w𝛿

u||L2(R𝑑 ;R𝑑 ), ∀u ∈ 𝝂
w𝛿
(Ω). (42)

4 APPLICATION I: CONVERGENCE OF PARAMETERIZED PROBLEMS

AND ASYMPTOTICALLY COMPATIBLE SCHEMES

4.1 Parameterized problems

In this section, we apply the two compactness results proved in the previous section to study the con-

vergence properties of parameterized problems and the asymptotic compatibility of some numerical

schemes for solving these problems. Let Ω be a bounded Lipschitz domain in R𝑑 and the function

A ∈ L∞(R𝑑 ;R𝑑×𝑑) be a symmetric matrix such that there exists a constant 𝜇 > 0 such that

𝝃TA(x)𝝃 ≥ 𝜇|𝝃|2, ∀x ∈ R
𝑑 , 𝝃 ∈ R

𝑑 .

We would like to investigate the parameterized nonlocal equations
{

−𝔇−𝝂
wn
(A𝔊𝝂

wn
u) = f in Ω,

u = 0 in R𝑑 ⧵Ω,
(43)

where the sequence of kernels {wn} will have some specific properties. From the ellipticity of the

coefficient A, we see that the energy space for the problem is 𝝂
wn
(Ω). The weak form of (43) can be

expressed as follows. Given f ∈ L2(Ω), find u ∈ 𝝂
wn
(Ω) such that

Bwn
(u, v) = (f , v)L2(Ω), ∀v ∈ 𝝂

wn
(Ω), (44)

where the bilinear form Bwn
∶ 𝝂

wn
(Ω) × 𝝂

wn
(Ω) → R is given by

Bwn
(u, v) ∶= ∫

R𝑑

A(x)𝔊𝝂
wn

u(x) ⋅𝔊𝝂
wn

v(x)𝑑x. (45)

We analyze these parameterized nonlocal equation for two classes of sequence of kernels.

Class I. For a kernel w(x) satisfying Assumption 3.2, we consider a sequence of radial kernels

{wn} where

0 ≤ wn(z) ↗ w(z) as n → ∞ for a.e. z ∈ R
𝑑 .

These are exactly the kernels considered in Theorem 3.6. We also notice that using Lax–Milgram

theorem, corresponding to f ∈ L2(Ω) and for each n, there is a unique solution un ∈ 𝝂
wn
(Ω) to (44),

see [20], with the stability estimate

|un|𝝂
wn
(Ω) ≤ C||f ||L2(Ω)

for some C > 0 (independent of n) where we have used the uniform Poincaré inequality Theorem 3.7.

The result we are going to state shortly asserts that un → u strongly in L2(Ω) where u ∈ 𝝂
w(Ω) solves

Bw(u, v) = (f , v)L2(Ω), ∀v ∈ 𝝂
w(Ω). (46)
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Again a unique solution u to (46) exists and, generally, it is expected to be more regular than un since

w is nonintegrable and 𝝂
w(Ω) is compactly contained in L2(Ω). We will also establish connection

with discrete approximations of (44) with the solution u of (46). To that end, consider the Galerkin

approximation of (44) where we look for un,h ∈ Vn,h such that

Bwn
(un,h, v) = (f , v)L2(Ω), ∀v ∈ Vn,h. (47)

where the finite element spaces {Vn,h}h ⊂ 𝝂
wn
(Ω) are the conforming spaces of piecewise polynomials,

that is,

Vn,h ∶= {v ∈ 𝝂
wn
(Ω) ∶ v|T ∈ P(T), ∀T ∈ h},

where P(T) = k(T) is the space of polynomials on T ∈ h with degree less or equal than a given

nonnegative integer k, and h is a quasi-uniform triangulation on Ω.

The theorem we state below says that the discrete solutions un,h → u in L2(Ω) and as such the

discretized problem (47) can be viewed as an approximation to the nonlocal problem (46). Moreover,

since 𝝂
w(Ω) is compactly contained in L2(Ω), the finite element space Vn,h which is conforming in the

rough space𝝂
wn
(Ω), may not be conforming in the regular space𝝂

w(Ω) for a sufficiently singular kernel

w. We then conclude that the Galerkin approximation scheme (47) can be considered as a (possibly

discontinuous) Galerkin (DG) scheme for (46).

Theorem 4.1. Assume the degree of polynomials k ≥ 1. Let {un}n, u and {un,h}n,h be the

solutions to problems (44), (46) and (47) respectively. Then there exists a constant C > 0

such that for each n ∈ N,

||un − un,h||𝝂
wn
(Ω) ≤ C inf

vn,h∈Vn,h

||un − vn,h||𝝂
wn
(Ω) → 0, h → 0,

and, moreover,

||un − u||L2(Ω) → 0, n → ∞,

and

||un,h − u||L2(Ω) → 0, n → ∞, h → 0.

Class II. We next consider a family of kernels {w𝛿n
}n given in Assumption 3.9 where 𝛿n → 0 as

n → ∞.

As before, for each n, we may apply Lax–Milgram theorem to show that a unique solution u𝛿n
∈

𝝂
w𝛿n

(Ω) exists corresponding to f ∈ L2(Ω) to (44) for kernels of this class. There will also be a positive

constant C > 0, independent of n, where for each n,

|u𝛿n
|𝝂

w𝛿n
(Ω) ≤ C||f ||L2(Ω).

For the above estimate we have used the uniform Poincaré inequality Theorem 3.14. We may now

use the compactness result Theorem 3.11 to deduce the existence of u0 ∈ H1
0(Ω) such that (up to a

subsequence) u𝛿n
→ u0 in L2(Ω) as n → ∞. As we will state in the next theorem, it turns out that

u0 ∈ H1
0(Ω) solves

B0(u0, v) = (f , v)L2(Ω), ∀v ∈ H1
0(Ω), (48)

where B0(u, v) ∶= ∫
Ω

A(x)∇u(x) ⋅∇v(x)𝑑x for any u, v ∈ H1
0(Ω). Moreover, considering a conforming

finite element spaces {V𝛿n,h}h ⊂ 𝝂
w𝛿n

(Ω) which are the spaces of piecewise polynomials of degree less

or equal than k, that is,

V𝛿n,h ∶= {v ∈ 𝝂
w𝛿n

(Ω) ∶ v|K ∈ k(K), ∀K ∈ h},
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and the Galerkin approximation u𝛿n,h ∈ V𝛿,h such that

B𝛿n
(u𝛿n,h, v) = (f , v)L2(Ω), ∀v ∈ V𝛿n,h, (49)

the theorem asserts that un,h → u0 as n → ∞ and h → 0. The following theorem states these results

precisely.

Theorem 4.2. Assume that {w𝛿n
}n is given in Assumption 3.9 where 𝛿n → 0 as n → ∞.

Assume also that the degree of polynomials k ≥ 1. Let {u𝛿n
}n, u0 and {u𝛿n,h}n,h be the

solutions to problems (44), (48) and (49) respectively. Then there exists a constant C > 0

such that for each n ∈ N+,

||u𝛿n
− u𝛿n,h||𝝂

w𝛿n
(Ω) ≤ C inf

vn,h∈V𝛿n ,h

||u𝛿n
− vn,h||𝝂

w𝛿n
(Ω) → 0, h → 0,

and, moreover,

||u𝛿n
− u0||L2(Ω) → 0, n → ∞,

and

||u𝛿n,h − u0||L2(Ω) → 0, n → ∞, h → 0.

We defer the proofs of Theorems 4.1 and 4.2 to the next subsection but note that these two theorems

are particular instances of a more abstract result obtained in [35, 36] on the convergence of asymptot-

ically compatible (AC) schemes for parameterized linear problems. A slightly modified version of the

abstract formulation is presented next.

4.2 Asymptotically compatible schemes for linear equations with bounded and measurable

coefficients

Let {𝜎 ∶ 𝜎 ∈ Σ} be a family of Hilbert spaces over R, where the index set Σ is a subset of R such

that 0 ∈ Σ and supΣ = ∞. Here we identify the dual space of 0 with itself, ∗
0 = 0. (In applications

we will take 0 as the space of L2 functions.) Let ∞ and  be two Hilbert spaces over R which are

continuously embedded into 0. Associated with the spaces {𝜎 ∶ 𝜎 ∈ Σ ∪ {∞}}, there are bilinear

forms {B𝜎 ∶ 𝜎 × 𝜎 → R} respectively.

Given f ∈ 0, we consider the parameterized variational problems: for each 𝜎 ∈ Σ, find u𝜎 ∈ 𝜎

such that

B𝜎(u𝜎 , v) = (f , v)0
, ∀v ∈ 𝜎 , (50)

and the limiting problem: find u∞ ∈ ∞ such that

B∞(u∞, v) = (f , v)0
, ∀v ∈ ∞. (51)

Let {V𝜎,h ⊂ 𝜎 ∶ 𝜎 ∈ Σ, h ∈ (0, h0)} be a family of finite-dimensional Hilbert spaces and consider

the Galerkin approximation of (50): for each 𝜎 ∈ Σ and h ∈ (0, h0), find u𝜎,h ∈ V𝜎,h such that

B𝜎(u𝜎,h, v) = (f , v)0
, ∀v ∈ V𝜎,h. (52)

The main question we would like to address is whether u𝜎,h → u∞ in 0 as (𝜎, h) → (∞, 0). As has

been discussed extensively in [35, 36], in general the answer is negative. However, under addition

assumptions, convergence is shown to hold.

Assumption 4.3. Assume that there exist four positive constants M1, M2, C1, and C2

independent of 𝜎 such that the following conditions hold:
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(A) Uniform embeddings and asymptotically compact embeddings:

(Ai) For any 𝜎 ∈ Σ,  ⊂ 𝜎 , M1||u||0
≤ ||u||𝜎

for any u ∈ 𝜎 , and

||u||𝜎
≤ M2||u|| for any u ∈ .

(Aii) For any set {u𝜎 ∶ 𝜎 ∈ Σ}, if sup{||u𝜎||𝜎
∶ 𝜎 ∈ Σ} is finite, then

{u𝜎 ∶ 𝜎 ∈ Σ} is relatively compact in 0 with each limit point in ∞.

(B) Boundedness and coercivity of the bilinear forms {B𝜎 ∶ 𝜎 ∈ Σ ∪ {∞}}:

(Bi) |B𝜎(u, v)| ≤ C2||u||𝜎
||v||𝜎

, ∀u, v ∈ 𝜎 , ∀𝜎 ∈ Σ ∪ {∞}.

(Bii) B𝜎(u, u) ≥ C1||u||2𝜎
, ∀u ∈ 𝜎 , ∀𝜎 ∈ Σ ∪ {∞}.

(C) Existence of a subset ∗ of  such that

(Ci) ∗ ⊂ ∩𝜎∈Σ∪{∞}𝜎 and ∗ is dense in 𝜎 for each 𝜎 ∈ Σ ∪ {∞} with

respect to their norms,

(Cii) for any sequence {u𝜎k
∈ 𝜎k

}
Σ∋𝜎k→∞
k∈N+

and u ∈ ∞ satisfying

sup
k∈N+

||u𝜎k
||𝜎k

< ∞

and u𝜎k
→ u in 0 as k → ∞ one has

B𝜎k
(u𝜎k

, 𝜙) → B∞(u, 𝜙), k → ∞

for any 𝜙 ∈ S∗.

(D) Approximation of nonlocal space and asymptotic density in limiting space:

(Di) For given 𝜎 ∈ Σ and v ∈ 𝜎 , infv𝜎,h∈V𝜎,h
||v − v𝜎,h||V𝜎,h

→ 0 as h → 0.

(Dii) For any v ∈ ∗, there exists {vk ∈ V𝜎k ,hk
}
𝜎k→∞
hk→0 such that ||v−vk|| → 0

as k → ∞.

It should be noted that assumptions (A) and (C) in the above relax the conditions specified in the

original paper [35]. Specifically, assumption (A) eliminates the necessity for the continuous embedding

of ∞ into 𝜎 and assumption (C) substitutes the requirement for strong convergence of operators on a

dense subset with the requirement for the convergence of bilinear forms in a weak sense. We refer the

readers to a recent work [15] that discusses extensions of the original AC framework to study nonlinear

problems.

Theorem 4.4 (main convergence theorem [35].). Suppose Assumption 4.3 holds and let

{u𝜎}, u∞ and {u𝜎,h} be the solutions to problems (50), (51), and (52) respectively. Then

given properties (A)-(D), we have that for each 𝜎 ∈ Σ,

||u𝜎 − u𝜎,h||𝜎
≤ C2

C1

inf
v𝜎,h∈V𝜎,h

||u𝜎 − v𝜎,h||𝜎
→ 0, h → 0, (53)

and, moreover,

||u𝜎 − u∞||0
→ 0, 𝜎 → ∞, (54)

and

||u𝜎,h − u∞||0
→ 0, 𝜎 → ∞, h → 0. (55)

Proof. We sketch the proof briefly. The first inequality is the best approximation and the

convergence follows from the standard conforming Galerkin approximation theory. To
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show (54), first note that

sup{||u𝜎||𝜎
∶ 𝜎 ∈ Σ} ≤ ||f ||0

C1

by coercivity (Bii) and embedding of 𝜎 into 0. Then by asymptotically compact embed-

ding property (Aii) we know there exists ũ ∈ 0 such that u𝜎 → ũ as 𝜎 → ∞ up to a

subsequence. Then it suffices to show that ũ is the unique solution to (51) to conclude

(54). By density of ∗ in  , it suffices to show (51) holds (with ũ in place of u∞) for any

v ∈ ∗. Fix some v ∈ ∗, since ∗ ⊂ 𝜎 for each 𝜎 ∈ Σ, one knows that

B𝜎(u𝜎 , v) = (f , v)0
.

Letting 𝜎 → ∞ and using (Cii) yield B∞(ũ, v) = (f , v)0
as desired.

Finally, to show (55), first use the bound

sup{||u𝜎,h||𝜎
∶ 𝜎 ∈ Σ, h ∈ (0, h0)} ≤ ||f ||0

C1

and asymptotically compact embedding property to show there exists ũ ∈ 0 such that

u𝜎,h → ũ as 𝜎 → ∞, h → 0 up to a subsequence. Then again by density it suffices to show

that B∞(ũ, v) = (f , v)0
for any v ∈ ∗. Fix v ∈ ∗, by asymptotic density, there exists

{vk ∈ V𝜎k ,hk
}
𝜎k→∞
hk→0 such that ||v − vk|| → 0 as k → ∞. Note that

B𝜎k
(u𝜎k ,hk

, vk) = (f , vk)0
.

Then the final conclusion follows from the computation below:

|B∞(ũ, v) − (f , v)0
| ≤ |B∞(ũ, v) − B𝜎k

(u𝜎k ,hk
, v)| + |B𝜎k

(u𝜎k ,hk
, v − vk)| + |B𝜎k

(u𝜎k ,hk
, vk) − (f , v)0

|
≤ |B∞(ũ, v) − B𝜎k

(u𝜎k ,hk
, v)| + C2||u𝜎k ,hk

||𝜎k
||v − vk||𝜎k

+ |(f , v − vk)0
|

≤ B∞(ũ, v) − B𝜎k
(u𝜎k ,hk

, v)| + C2

||f ||0

C1

M2||v − vk|| + C||f ||0
||v − vk||

→ 0, k → ∞,

where we used (Cii), (Ai) and the embedding inequality ||v||0
≤C||v|| for any v ∈ . ▪

With this abstract result at hand, we are now ready to prove Theorems 4.1 and 4.2.

Proof of Theorem 4.1. It suffices to verify assumptions (A)-(D) in Theorem 4.4. Using

the notations in Theorem 4.4, we let Σ = N+, 𝜎 = 𝝂
wn
(Ω), ∞ = 𝝂

w(Ω), ∗ = C∞
c (Ω)

and  = H1
0(Ω), where functions in H1

0(Ω) are understood to be in H1(R𝑑) and vanish

outside of Ω as the boundary of Ω is regular enough [40, Theorem 3.7]. Then M1 = 1,

C2 = ||A||L∞(R𝑑 ;R𝑑×𝑑 ) and Theorem 3.6 verifies (Aii).

The second inequality in (Ai) amounts to showing that there exists M2 > 0 such that

||u||𝝂
wn
(Ω) ≤ M2||u||H1(R𝑑 ), ∀u ∈ H1

0(Ω).

But this follows from Proposition 2.4 where the norm of 𝝂
wn
(Ω) can be expressed as

||u||2𝝂
wn
(Ω) = ||u||2𝝂

wn
(R𝑑 ) = ∫

R𝑑

(
1 + |𝝀𝝂

wn
(𝝃)|2)|û(𝝃)|2𝑑𝝃, ∀u ∈ 𝝂

wn
(Ω).

Now using (11), one obtains that

|𝝀𝝂
wn
(𝝃)| ≤ 2

√
2𝜋M1

wn
|𝝃| +√

2M2
wn

≤ 2
√

2𝜋M1
w|𝝃| +

√
2M2

w, 𝝃 ∈ R𝑑 . (56)
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Thus the second inequality in (Ai) holds true for some M2 independent of n but dependent

of w, using the fact that

||u||2H1(R𝑑 ) = ∫
R𝑑

(
1 + |𝝃|2)|û(𝝃)|2𝑑𝝃.

For (Bii), one may choose C1 independent of N but dependent of some N0 determined by

Theorem 3.7. Note that (Ci) follows immediately from [20, Theorem 3.2].

To show (Cii), suppose vn ∈ 𝝂
wn
(Ω), supn∈N+

||vn||𝝂
wn
(Ω) < ∞, and vn → v in L2(Ω)

for v ∈ 𝝂
w(Ω). We need to prove that for any 𝜙 ∈ C∞

c (Ω),

(A𝔊𝝂
wn

vn,𝝂
wn
𝜙)L2(R𝑑 ;R𝑑 ) → (A𝔊𝝂

wv,𝝂
w𝜙)L2(R𝑑 ;R𝑑 ), n → ∞. (57)

To that end, first, using (2.8) and (2.9) from [20, Lemma 2.1], one may show that 𝝂
wn
𝜙 →

𝝂
w𝜙 in L2(R𝑑 ;R𝑑) as n → ∞, and if 𝝍 ∈ C∞

c (Ω;R𝑑) then −𝝂
wn
𝝍 → −𝝂

w 𝝍 in L2(R𝑑) as

n → ∞. Second, we show that 𝔊𝝂
wn

vn ⇀ 𝔊𝝂
wv in L2(R𝑑 ;R𝑑). If this holds, then since A ∈

L∞(R𝑑 ;R𝑑×𝑑), it follows that A𝔊𝝂
wn

vn ⇀ A𝔊𝝂
wv in L2(R𝑑 ;R𝑑), hence, combing the first

step, one can conclude that (57) holds, and consequently, (Cii) holds. To show 𝔊𝝂
wn

vn ⇀

𝔊𝝂
wv in L2(R𝑑 ;R𝑑), fix some w ∈ L2(R𝑑 ;R𝑑) and 𝜖 > 0, by density, there exists 𝝍 ∈

C∞
c (R𝑑 ;R𝑑) such that ||w − 𝝍||L2(R𝑑 ;R𝑑 ) < 𝜖. Then

||(𝔊𝝂
wn

vn,w)L2(R𝑑 ;R𝑑 ) − (𝔊𝝂
wv,w)L2(R𝑑 ;R𝑑 )

|| ≤ ||(𝔊𝝂
wn

vn,w − 𝝍)L2(R𝑑 ;R𝑑 )
||

+ ||(𝔊𝝂
wn

vn,𝝍)L2(R𝑑 ;R𝑑 ) − (𝔊𝝂
wv,𝝍)L2(R𝑑 ;R𝑑 )

||
+ ||(𝔊𝝂

wv,𝝍 − w)L2(R𝑑 ;R𝑑 )
||

≤ 𝜖 sup
n∈N+

||vn||𝝂
wn
(Ω) + |(vn,−𝝂

wn
𝝍)L2(R𝑑 ) − (v,−𝝂

w 𝝍)L2(R𝑑 )|

+ 𝜖||v||𝝂
w
(Ω).

Since −𝝂
wn
𝝍 → −𝝂

w 𝝍 in L2(R𝑑), together with vn → v in L2(R𝑑), one can conclude that

(vn,−𝝂
wn
𝝍)L2(R𝑑 ) → (v,−𝝂

w 𝝍)L2(R𝑑 ) as n → ∞ and thus 𝔊𝝂
wn

vn ⇀ 𝔊𝝂
wv in L2(R𝑑 ;R𝑑) and

(Cii) holds.

Finally, since  = H1
0(Ω) and {Vn,h}n,h are spaces of piecewise polynomials of degree

k ≥ 1, one may show that (D) is satisfied as in [35, Theorem 3.8]. ▪

Proof of Theorem 4.2. The proof is quite similar to that of Theorem 4.1. We only point

out a few key differences. Using the notations in Theorem 4.4, we let Σ = (𝛿−1
0 ,∞), 𝜎 =

𝝂
w1∕𝜎

(Ω), ∞ = H1
0(Ω), ∗ = C∞

c (Ω) and  = H1
0(Ω). Then Theorem 3.11 verifies (Aii).

For the second inequality in (Ai), one may argue as before for {w𝛿} in Assumption 3.9

by proving

|𝝀𝝂
w𝛿
(𝝃)| ≤ D1|𝝃| + D2, ∀𝝃 ∈ R

𝑑 ,

where D1,D2 ≥ 0 are constants independent of 𝛿. In fact the inequality is even true for

kernels satisfying just Equations (1), (25), and (26) and follows from (11), where

|𝝀𝝂
w𝛿
(𝝃)| ≤ 2

√
2𝜋M1

w𝛿
|𝝃| +

√
2M2

w𝛿
, ∀𝝃 ∈ R

𝑑

and that

M1
w𝛿

→ 2𝑑 and M2
w𝛿

→ 0 as 𝛿 → 0.

Assumption (Bii) can be verified by Theorem 3.14.
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To show (Cii), suppose vn ∈ 𝝂
w𝛿n

(Ω), supn∈N+
||vn||𝝂

w𝛿n
(Ω) < ∞, and vn → v in L2(Ω)

for v ∈ H1
0(Ω). We need to prove that for any 𝜙 ∈ C∞

c (Ω) as n → ∞ (𝛿n → 0)

(A𝔊𝝂
w𝛿n

vn,𝝂
w𝛿n

𝜙)L2(R𝑑 ;R𝑑 ) → (A∇v,∇𝜙)L2(R𝑑 ;R𝑑 ), n → ∞. (58)

This holds true by the same argument for (57) if one notices that, according to Proposi-

tion 3.8, 𝝂
w𝛿n

𝜙 → ∇𝜙 in L2(R𝑑 ;R𝑑), and if 𝝍 ∈ C∞
c (Ω;R𝑑) then −𝝂

w𝛿n
𝝍 → div𝝍 in

L2(R𝑑) as n → ∞.

The rest of the proof is similar to that of Theorem 4.1 and thus omitted. ▪

5 APPLICATION II. OPTIMAL CONTROL PROBLEM OF A NONLOCAL

EQUATION

5.1 Parameterized continuous and discrete optimal control problems

In this section, we apply the compactness results proved in Section 3 to analyze the well-posedness,

the numerical approximation, and the limiting behavior of solutions of a parameterized optimal control

problem of linear nonlocal equations. Optimal control problems with constraints that involve nonlocal

equations have been a focus of recent research interest. While this work is inspired by work [25] which

deals with an optimal control problem of linearized peridynamics, we should mention that such types

of problems where the state equation is either a fractional or nonlocal equation have been investigated

in literature. To cite a few, the paper [14] rigorously analyzed optimal control problems when the state

equation is of the form

−𝛿u = g, where 𝛿u(x) = 2 ∫
Ω
(u(y) − u(x))𝛾𝛿(x, y)𝑑y (59)

subject to some volumetric boundary condition outside of Ω. In the above, 𝛾𝛿(x, y) serves as a kernel.

The paper also presents a finite element approximation and numerical simulations which illustrate

the theoretical results. The papers [17, 27] have also studied optimal control problems with the state

equation being the parameterized nonlocal equations of the form (59) and demonstrated rigorously the

convergence of optimal pairs to an optimal pair of an optimal control problem with a local (PDE) based

state equation. Mathematical analysis and numerical approximation of optimal control problems with

the fractional equation as the state equation have also be been investigated in [1–3, 9, 12, 28]. To put

our work in a clear perspective, we should mention that the parameterized state equation constraints

we will be dealing with is different from the classical fractional equations and the nonlocal equations

of the form (59).

To properly describe the problem we study, we assume that {w𝛿}𝛿>0 is a family of kernels given

in Assumption 3.9. We fix A ∈ L∞(R𝑑 ;R𝑑×𝑑) which is uniformly elliptic and symmetric. That is, for

any x ∈ Ω, A(x) = A(x)T and for some 𝜇 > 0 we have

𝝃TA(x)𝝃 ≥ 𝜇|𝝃|2, ∀x ∈ R
𝑑 , 𝝃 ∈ R

𝑑 .

Given Ω, a bounded polygonal domain in R𝑑 , and 𝝂 ∈ S𝑑−1, consider the parameterized nonlocal

equations {
−𝔇−𝝂

w𝛿
(A𝔊𝝂

w𝛿
u) = f in Ω,

u = 0 in R𝑑 ⧵Ω,
(60)

where the right-hand side data f comes from an admissible class that satisfies a box condition. Given

the functions 𝛼, 𝛽 ∈ C(Ω) such that 𝛼(x) < 𝛽(x) for all x ∈ Ω, we introduce the admissible class of
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right-hand side

Zad = {g ∈ L2(Ω) ∶ 𝛼(x) ≤ g(x) ≤ 𝛽(x), a.e. x ∈ Ω}.

We remark that there exists a constant B > 0 such that

sup
g∈Zad

||g||L2(Ω) ≤ B, (61)

since for any g ∈ Zad, |g(x)| ≤ max{|𝛼(x)|, |𝛽(x)|} a.e. x ∈ Ω and Ω is bounded. We note that

corresponding to each f ∈ L2(Ω), a unique solution u𝛿(f ) ∈ 𝝂
w𝛿
(Ω) exists that solve the weak form of

(60)

B𝛿(u𝛿 , v) = ⟨f , v⟩, ∀v ∈ 𝝂
w𝛿
(Ω),

where B𝛿 ∶ 𝝂
w𝛿
(Ω) × 𝝂

w𝛿
(Ω) → R is the bilinear form given in (45) with w𝛿 in place of wn and ⟨⋅, ⋅⟩

is the inner product on L2(Ω). The solution map 𝔖𝛿 ∶ L2(Ω) → 𝝂
w𝛿
(Ω) given by 𝔖𝛿(f ) = u𝛿(f ) is a

bounded linear map with the estimate

|𝔖𝛿(f )|𝝂
w𝛿
(Ω) = |u𝛿(f )|𝝂

w𝛿
(Ω) ≤ C(𝛿0)

𝜇
||f ||L2(Ω), ∀f ∈ L2(Ω), 𝛿 ∈ (0, 𝛿0), (62)

where the constants 𝛿0 > 0 and C(𝛿0) > 0 are chosen as in Theorem 3.14. Indeed, By taking the test

function v = u𝛿 in the weak form of (60) and using the ellipticity of A, we know

𝜇|u𝛿|2𝝂
w𝛿
(Ω) ≤ B𝛿(u𝛿 , u𝛿) = ⟨f , u𝛿⟩ ≤ ||f ||L2(Ω)||u𝛿||L2(Ω).

Combing this with the inequality ||u𝛿||L2(Ω) ≤ C(𝛿0)|u𝛿|𝝂
w𝛿
(Ω) from Theorem 3.14, one obtains (62)

and, in addition, the following L2 estimate

||𝔖𝛿(f )||L2(Ω) ≤ C(𝛿0)
2

𝜇
||f ||L2(Ω), ∀f ∈ L2(Ω), 𝛿 ∈ (0, 𝛿0). (63)

Hence 𝔖𝛿 ∶ L2(Ω) → L2(Ω) is a bounded linear operator and ||𝔖𝛿||L2(Ω)→L2(Ω) ≤ C(𝛿0)
2∕𝜇 for all

𝛿 ∈ (0, 𝛿0).

As we vary f in Zad, the goal of the optimal control problem is to find a pair (u𝛿(f ), f ) ∈ 𝝂
w𝛿
(Ω)×Zad,

called the optimal solution pair, that minimizes a certain objective functional I𝛿(u, g) ∶ 𝝂
w𝛿
(Ω)×Zad →

R. In this case, the right-hand side f will serve as a control variable and u will be the state variable

satisfying the state equation (60). Following the work in [25], we consider the objective functional

I𝛿 = I|𝝂
w𝛿
(Ω)×Zad

where I ∶ L2(Ω) × Zad → R is given by

I(u, g) ∶= ∫Ω

F(x, u(x))𝑑x +
𝜆

2 ∫Ω

Γ(x)|g(x)|2𝑑x,

where 𝜆 > 0, Γ ∈ L1(Ω) is positive and F ∶ Ω × R → R satisfies the following properties:

(1) For all 𝜉 ∈ R the mapping x → F(x, 𝜉) is measurable.

(2) For a.e. x ∈ Ω the mapping 𝜉 → F(x, 𝜉) is convex (and continuous).

(3) There exist a constant c1 > 0 and a function 𝓁 ∈ L1(Ω) for which

|F(x, 𝜉)| ≤ c1|𝜉|2 + 𝓁(x)

for a.e. x ∈ Ω and all 𝜉 ∈ R.

(4) There exist two functions c ∈ L1(Ω) and 𝑑 ∈ L2(Ω) such that

F(x, 𝜉) ≥ c(x) + 𝑑(x)𝜉

for a.e. x ∈ Ω and all 𝜉 ∈ R.
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(5) F is continuously differentiable in the second argument. That is, for a.e. x ∈ Ω, F𝜉(x, ⋅) ∈

C0(R) where F𝜉(x, 𝜉) ∶=
𝜕F

𝜕𝜉
(x, 𝜉) for x ∈ Ω and 𝜉 ∈ R. Moreover, there exist a constant c2 > 0

and a function e ∈ L2(Ω) such that

|F𝜉(x, 𝜉)| ≤ c2|𝜉| + e(x), a.e. x ∈ Ω, ∀𝜉 ∈ R. (64)

A typical objective functional is I(u, g) = ||u − udes||2L2(Ω)
+

𝜆

2
||g||2

L2 where we are looking for an

optimal pair (u, g) where the control has the smallest L2(Ω)-norm and the state u is the closest to a

given desired state udes ∈ L2(Ω).

There are now a number of outstanding questions we would like to address in this section. First,

we would like to address whether the problem is well-posed, that is, whether there is a unique optimal

pair (u𝛿 , f𝛿) to the optimal control problem. Second, we would like to study the asymptotic behavior,

with respect to appropriate topology, of the sequence of optimal pairs (u𝛿 , f𝛿) as 𝛿 → 0, and if there

is a limit point (u, f ), we would like to determine whether it solves an optimal control problem. And

finally, we would like to study the discretization of the parameterized optimal control problems and

establish the existence of asymptotically compatible schemes.

The following result states the well-posedness of the parameterized optimal control problem as

well as the convergence of solutions. It is one of the main results of this section and its proof is deferred

for later.

Theorem 5.1 (continuous problems and convergence of solutions). Assume all the con-

ditions we stated at the beginning of this section on Ω, the sequence of kernels {w𝛿}𝛿>0,

the control admissible set Zad, and the objective functional I. Then for each 𝛿 > 0, there

exists a unique optimal pair (u𝛿 , g𝛿) ∈ 𝝂
w𝛿
(Ω) × Zad such that

I(u𝛿 , g𝛿) = min I(u𝛿 , g), (65)

where the minimization is over pairs (u𝛿 , g) ∈ 𝝂
w𝛿
(Ω) × Zad that satisfy

B𝛿(u𝛿 , v) = ⟨g, v⟩, ∀v ∈ 𝝂
w𝛿
(Ω). (66)

Moreover, there exists a unique pair (u, g) ∈ H1
0(Ω) × Zad such that u𝛿 → u in L2(Ω) and

g𝛿 ⇀ g in L2(Ω) and (u, g) solves

I(u, g) = min I(u, g), (67)

where the minimization is over pairs (u, g) ∈ H1
0(Ω) × Zad that satisfy

B0(u, v) = ⟨g, v⟩, ∀v ∈ H1
0(Ω). (68)

Here B0(u, v) ∶= ∫
Ω

A(x)∇u(x) ⋅ ∇v(x)𝑑x.

To state the corresponding result for discretized problems, let us introduce some notations. Let

{h}h>0 be a quasi-uniform mesh of size h on Ω. Let Xh be the space of continuous piecewise linear

functions subject to the mesh with zero nonlocal boundary data:

Xh ∶= {wh ∈ C0(Ω)| wh|T ∈ 1(T), ∀T ∈ h, wh = 0 on R
𝑑 ⧵Ω}.

We equip Xh with H1(Ω)-norm. For the nonlocal discrete problem, we use the space of piecewise linear

functions that are in 𝝂
w𝛿
(Ω):

X𝛿,h = {wh ∈ 𝝂
w𝛿
(Ω)| wh|T ∈ 1(T), ∀T ∈ h}
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equipped with 𝝂
w𝛿
(Ω)-norm. Similarly, let Zh denote the piecewise constant functions with respect to

the mesh {h}h>0, that is,

Zh ∶= {zh ∈ L∞(Ω)| zh|T ∈ 0(T), ∀T ∈ h}.

where m(T), as before, is the space of polynomials of degree m. Notice that since 𝛼(x) < 𝛽(x) for all

x ∈ Ω, there exists a constant h0 > 0 such that Zh ∩ Zad ≠ ∅ for any h ∈ (0, h0). Hereafter, we will

always assume h ∈ (0, h0) implicitly.

Theorem 5.2 (Discrete problems and convergence of solutions). Assume all the con-

ditions used in Theorem 5.1. Then for any 𝛿 > 0, there exists a unique optimal pair

(u𝛿,h, g𝛿,h) ∈ X𝛿,h × (Zh ∩ Zad) such that

I(u𝛿,h, g𝛿,h) = min I(u𝛿,h, g𝛿,h) (69)

where the minimization is over pairs (u𝛿,h, gh) ∈ X𝛿,h × (Zh ∩ Zad) that satisfy

B𝛿(u𝛿,h, v𝛿,h) = ⟨gh, v𝛿,h⟩, ∀v𝛿,h ∈ X𝛿,h. (70)

Moreover, there is a unique pair (uh, gh) ∈ Xh × (Zh ∩ Zad) such that u𝛿,h → uh in L2(Ω),

g𝛿,h ⇀ gh in L2(Ω), as 𝛿 → 0, and in addition, (uh, gh) solves the local discrete optimal

control

I(uh, gh) = min I(uh, gh) (71)

where the minimization is over pairs (uh, gh) ∈ Xh × (Zh ∩ Zad) that satisfy

B0(uh, vh) = ⟨gh, vh⟩, ∀vh ∈ Xh. (72)

Before we present the proofs of Theorems 5.1 and 5.2, we note that applying the nonlocal and

local Poincaré inequality and Lax–Milgram theorem, we know the state Equations (66), (68), (70) and

(72) are uniquely solvable in their corresponding energy spaces. Like the continuous case, for Equation

(70) we also introduce the discrete solution operator 𝔖𝛿,h ∶ L2(Ω) → X𝛿,h ⊂ 𝝂
w𝛿
(Ω) ⊂ L2(Ω). One

may check the same uniform estimates (62) and (63) hold for 𝔖𝛿,h for all 𝛿 ∈ (0, 𝛿0) and h ∈ (0, h0).

Since the techniques to prove the well-posedness of the four minimization problems as well as the

convergence results are essentially the same for the two theorems, we present the proof of Theorem 5.1

and omit the proof of Theorem 5.2.

Proof of Theorem 5.1. We will prove the theorem in several steps.

Well-posedness: We show existence of a minimizer to the objective functional subject

to the nonlocal constraint using the direct method of calculus of variations. Using the

solution operator 𝔖𝛿 , we will work on the reduced cost functional j(g) = I(𝔖𝛿(g), g) given

by

j(g) ∶= 𝔉(𝔖𝛿(g)) +
𝜆

2 ∫Ω

Γ(x)|g(x)|2𝑑x, (73)

where 𝔉 ∶ L2(Ω) → R is defined by

𝔉(v) ∶= ∫Ω

F(x, v(x))𝑑x.

We apply the direct method of calculus of variations to the problem of finding a minimizer

to infg∈Zad
j(g).

We first notice that Zad is a closed, convex and bounded subset of Hilbert space L2(Ω),

by [37, Theorem 2.11] Zad is weakly sequentially compact. In addition, j is bounded from
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below on Zad. Indeed, it suffices to show that 𝔉◦𝔖𝛿 ∶ Zad → R is bounded from below,

since the second term in j is nonnegative. To that end, using item (3) of the assumption on

F, (61) and (63), we have that for any g ∈ Zad,

𝔉(𝔖𝛿(g)) ≥ −c1||𝔖𝛿(g)||2L2(Ω) − ||𝓁||L1(Ω)

≥ −c1
C(𝛿0)

4

𝜇2
||g||2L2(Ω) − ||𝓁||L1(Ω) ≥ −c1B2 C(𝛿0)

4

𝜇2
− ||𝓁||L1(Ω).

We henceforth denote j0 = infg∈Zad
j(g). It remains to show that there exists g̃ ∈

Zad such that j0 = j(g̃). To this end, first we find a sequence {gn}
∞
n=1 ⊂ Zad such

that limn→∞ j(gn) = j0. Again by [37, Theorem 2.11] there exists a subsequence

{gnk
}∞k=1 ⊂ Zad converging to some g̃ ∈ Zad weakly in L2(Ω). Since |√Γ(x)gnk

(x)| ≤
|√Γ(x)|min{|a(x)|, |b(x)|}, {

√
Γ(x)gnk

(x)}∞k=1 is uniformly bounded in L2(Ω). Then one

can further obtain a subsequence, still denoted by {gnk
}∞k=1, converging weakly in L2(Ω).

By a density argument, it is not hard to show this weak limit is
√
Γ(x)g̃(x). Also, since

F(x, ⋅) is convex in R a.e. x ∈ Ω and F is bounded from below by an affine map accord-

ing to items (2) and (4) of the assumption on F, [18, Theorem 6.54] implies that 𝔉 is

sequentially weakly lower semicontinuous. Moreover, since 𝔖𝛿 is continuous on L2(Ω),

it is weakly continuous on L2(Ω) and therefore, 𝔉◦𝔖𝛿 ∶ L2(Ω) → R is also sequentially

weakly lower semicontinuous on L2(Ω). Combining the above, we have that

j(g̃) = 𝔉(𝔖𝛿 g̃) +
𝜆

2 ∫Ω

Γ(x)|g̃(x)|2𝑑x

≤ lim inf
k→∞

𝔉(𝔖𝛿gnk
) + lim inf

k→∞

𝜆

2 ∫Ω

Γ(x)|gnk
(x)|2𝑑x

≤ lim inf
k→∞

(
𝔉(𝔖𝛿gnk

) +
𝜆

2 ∫Ω

Γ(x)|gnk
(x)|2𝑑x

)
= lim

k→∞
j(gnk

) = j0.

Then the existence of minimizer is proved. The uniqueness of the optimal pair follows

from the fact that j is strictly convex because 𝔉 is convex and 𝜆 > 0.

Compactness: Having shown that, for every horizon 𝛿 > 0, the optimal control

problem has a unique solution (u𝛿 , g𝛿), we now study the behavior of the pair as 𝛿 → 0.

Since u𝛿 = 𝔖𝛿g𝛿 , by (62) and (63) one obtains

|u𝛿|𝝂
w𝛿
(Ω) ≤ C(𝛿0)

𝜇
||g𝛿||L2(Ω) and ||u𝛿||L2(Ω) ≤ C(𝛿0)

2

𝜇
||g𝛿||L2(Ω).

Therefore, using (61) we have

sup
𝛿∈(0,𝛿0)

||u𝛿||𝝂
w𝛿
(Ω) ≤ √

1 + C(𝛿0)2
C(𝛿0)

𝜇
B.

By Theorem 3.11 one concludes that, up to a subsequence, u𝛿 converges strongly in L2(Ω)

to some u ∈ H1
0(Ω). Also, since Zad is weakly sequentially compact, then there exists

g ∈ Zad such that g𝛿 ⇀ g in L2(Ω) up to a subsequence. Without loss of generality, we

assume u𝛿 → u in L2(Ω) and g𝛿 ⇀ g in L2(Ω).

Convergence: Next we show that (u, g) solves

B0(u, v) = ⟨g, v⟩, ∀v ∈ H1
0(Ω).

By density, it suffices to show this for all v ∈ C∞
c (Ω). Fix v ∈ C∞

c (Ω). On the one hand,

due to the weak convergence g𝛿 ⇀ g in L2(Ω) it holds that ⟨g𝛿 , v⟩ → ⟨g, v⟩ as 𝛿 → 0. On
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the other hand, arguing as in the proof of (Cii) for Theorem 4.2 one knows

(A𝔊𝝂
w𝛿

u𝛿 ,𝝂
w𝛿

v)L2(R𝑑 ;R𝑑 ) → (A∇u,∇v)L2(R𝑑 ;R𝑑 ), 𝛿 → 0. (74)

Therefore, letting 𝛿 → 0 in

B𝛿(u𝛿 , v) = ⟨g𝛿 , v⟩
finishes the proof of convergence.

Limit point is the optimal solution: Finally, we show that the limit point pair (u, g)

is an optimal pair in the sense that

I(u, g) ≤ I(v, f ),

where (v, f ) ∈ H1
0(Ω) × Zad solves B0(v, 𝜙) = ⟨f , 𝜙⟩, ∀𝜙 ∈ H1

0(Ω). Given such a pair

(v, f ) ∈ H1
0(Ω) × Zad, we denote v𝛿 ∶= 𝔖𝛿f ∈ 𝝂

w𝛿
(Ω) for 𝛿 ∈ (0, 𝛿0). Since ||v𝛿||𝝂

w𝛿
(Ω) ≤

C||f ||L2(Ω), by compactness, Theorem 3.11, as 𝛿 → 0, up to a subsequence, v𝛿 strongly

converges in L2(Ω) to some function belonging to H1
0(Ω), and applying a similar argument

as in the previous step, we can in fact show that v𝛿 → v in L2(Ω). By [8, Theorem 4.9] we

may take a further subsequence, such that for some h(x) ∈ L2, |v𝛿(x)| ≤ h(x) for all 𝛿, and

v𝛿 → v almost everywhere. We then have by item (3) of the assumption on F that

|F(x, v𝛿(x))| ≤ C|h(x)|2 + 𝓁(x) and F(x, v𝛿(x)) → F(x, v(x)) a.e. x ∈ Ω.

By Lebegue dominated convergence thereom, we have

lim
𝛿→0∫Ω

F(x, v𝛿(x))𝑑x = ∫Ω

F(x, v(x))𝑑x.

Thus we have

lim
𝛿→0

I(v𝛿 , f ) = I(v, f ).

Recall that g𝛿 ⇀ g in L2(Ω). Using a density argument as before, one can show that√
Γg𝛿 ⇀

√
Γg in L2(Ω) as 𝛿 → 0. Then it follows that

∫Ω

Γ(x)|g(x)|2𝑑x ≤ lim inf
𝛿→0 ∫Ω

Γ(x)|g𝛿(x)|2𝑑x

and

I(u, g) = ∫Ω

F(x, u(x))𝑑x +
𝜆

2 ∫Ω

Γ(x)|g(x)|2𝑑x

≤ lim inf
𝛿→0

(
∫Ω

F(x, u𝛿(x))𝑑x +
𝜆

2 ∫Ω

Γ(x)|g𝛿(x)|2𝑑x

)

= lim inf
𝛿→0

I(u𝛿 , g𝛿),

as u𝛿 → u in L2(Ω) and g𝛿 ⇀ g in L2(Ω). Since (u𝛿 , g𝛿) is a minimizer of I subject to

the nonlocal state equation, we have that I(u𝛿 , g𝛿) ≤ I(v𝛿 , f ). Combining all the above

inequalities yields

I(u, g) ≤ lim inf
𝛿→0

I(u𝛿 , g𝛿) ≤ lim
𝛿→0

I(v𝛿 , f ) = I(v, f ).

Having shown now that (u, g) is an optimal solution we will use the bar notation and write

(u, g). This finishes the proof. ▪
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5.2 First order optimality and asymptotic compatibility

As we have seen in the proof of Theorem 5.1, one can rewrite optimal control problem (65)–(66) as

a variational problem involving the reduced objective functional j(g) defined in (73): find g𝛿 ∈ Zad

such that
j(g𝛿) = min

g∈Zad

j(g). (75)

It is clear that if g𝛿 is the unique solution to (75), then (u𝛿 , g𝛿) is the unique solution to (65)-(66)

where u𝛿 ∶= 𝔖𝛿g𝛿 , and conversely, if (u𝛿 , g𝛿) is the unique solution to (65)-(66) then g𝛿 is the unique

solution to (75).

By [37, Lemma 2.21], the first order optimality condition of the minimization problem (75) is

⟨j′(g𝛿), q − g𝛿⟩ ≥ 0, ∀q ∈ Zad.

By calculating j′(g𝛿) the optimality condition can be written as

⟨𝔖∗
𝛿F𝜉(⋅,𝔖𝛿g𝛿(⋅)) + 𝜆Γ g𝛿 , q − g𝛿⟩ ≥ 0, ∀q ∈ Zad. (76)

where 𝔖∗
𝛿 ∶ L2(Ω) → L2(Ω) is the adjoint of 𝔖𝛿 in the L2-sense. It is immediate that 𝔖𝛿 is self-adjoint.

Also, the map F𝜉(⋅,𝔖𝛿g𝛿(⋅)) ∶= (x → F𝜉(x,𝔖𝛿g𝛿(x))) ∈ L2(Ω) so that 𝔖∗
𝛿 can act on it. Indeed, by

assumption |F𝜉(x, 𝜉)| ≤ C|𝜉| + e(x), one has

|F𝜉(x,𝔖𝛿g𝛿(x))| ≤ C|𝔖𝛿g𝛿(x)| + e(x) ∈ L2(Ω).

By introducing a new notation p𝛿 , the above equation can be rewritten as the system

⎧
⎪⎨⎪⎩

⟨p𝛿 + 𝜆Γ g𝛿 , q − g𝛿⟩ ≥ 0, ∀q ∈ Zad,

p𝛿 = 𝔖∗
𝛿F𝜉(⋅, u𝛿(⋅)),

u𝛿 = 𝔖𝛿g𝛿 .

(77)

Note that if Γ = 1, then the first inequality amounts to the following identity

g𝛿 = −
1

𝜆
ΠZad

p𝛿 , (78)

where ΠE ∶ L2(Ω) → E denotes the L2-projection onto the bounded, convex and closed set E ⊂ L2(Ω),

that is, for any f ∈ L2(Ω), ΠEf is the unique solution to the minimization problem

min
g∈E

||g − f ||L2(Ω).

Since 𝔖𝛿 is self-adjoint, one obtains that p𝛿 = 𝔖𝛿F𝜉(⋅, u𝛿(⋅)).

Note that the objective functional is strictly convex, the first order necessary condition is also

sufficient. Therefore, we have the following proposition.

Proposition 5.3 (optimality conditions). For every 𝛿 > 0, the pair (u𝛿 , g𝛿) ∈ 𝝂
w𝛿
(Ω) ×

Zad is a solution to (65)–(66) if and only if (77) holds.

The optimality conditions for the nonlocal discrete problem read:

⎧⎪⎨⎪⎩

⟨p𝛿,h + 𝜆Γ g𝛿,h, qh − g𝛿,h⟩ ≥ 0, ∀qh ∈ Zad ∩ Zh,

p𝛿,h = 𝔖𝛿,hF𝜉(⋅, u𝛿,h(⋅)),

u𝛿,h = 𝔖𝛿,hg𝛿,h,

(79)

where 𝔖𝛿,h ∶ L2(Ω) → L2(Ω) is the discrete solution operator, and 𝔖∗
𝛿,h ∶ L2(Ω) → L2(Ω) is its

L2-adjoint operator. Note that in the second equation we used the fact that 𝔖𝛿,h is self-adjoint in the L2

sense.
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Similarly, the continuous local problem is well-posed if and only if the corresponding optimality

conditions hold:

⎧⎪⎨⎪⎩

⟨p + 𝜆Γ g, q − g⟩ ≥ 0, ∀q ∈ Zad,

p = 𝔖0F𝜉(⋅, u(⋅)),

u = 𝔖0g,

(80)

where 𝔖0 ∶ L2(Ω) → L2(Ω) is the solution operator defined as 𝔖0g ∶= u where u ∈ H1
0(Ω) ⊂ L2(Ω)

is the unique solution to (68). Here again we used 𝔖0 is self-adjoint in the second equation.

Finally we state and prove the results for asymptotic compatibility. We first recall [25, Definition

7.1] which is the definition of asymptotic compatibility of a scheme to the optimal control problem.

Definition 5.4 (asymptotic compatibility). We say that the family of solutions

{(u𝛿,h, g𝛿,h)}h>0,𝛿>0 to (69) is asymptotically compatible in 𝛿, h > 0 if for any sequences

{𝛿k}
∞
k=1, {hk}

∞
k=1 with 𝛿k, hk → 0, we have that u𝛿k ,hk

→ u strongly in L2(Ω) and g𝛿k ,hk
⇀ g

weakly in L2(Ω). Here (u, g) ∈ H1
0(Ω) × Zad denotes the optimal solution for (71).

Recall that in the proof of Theorem 4.2 we have checked the conditions (A)–(D) hold to prove

asymptotic compatibility for parameterized problems. It turns out that for the optimal control (69) we

can establish similar asymptotic compatibility as well in the sense of Definition 5.4. Such type of result

is proved in [25, Theorem 7.3]. We demonstrate below that the parameterized discrete optimal control

problem, under the constraint of the nonlocal state equation we consider here, has similar compatibility

behavior. The following is the main result of the subsection. Its proof is similar to that of [25, Theorem

7.3] with appropriate modification to fit our setting.

Theorem 5.5 (asymptotic compatibility). The solution to ( 69 ) is asymptotically

compatible in 𝛿, h > 0, in the sense of Definition 5.4.

Proof. We denote {(uk, gk, pk)}
∞
k=1 ∶= {(u𝛿k ,hk

, g𝛿k ,hk
, p𝛿k ,hk

)}∞k=1, which is the sequence of

triples solving (79). We consider an arbitrary, non-relabeled subsequence of the triples

{(uk, gk, pk)}
∞
k=1, and show that it has a further subsequence which always converges to the

same limit point. Moreover, this limit solves (80) and, since this uniquely characterizes

the solution to (71), asymptotic compatibility will follow.

Since {gk}
∞
k=1 ⊂ Zad, again by [37, Theorem 2.11] there exists a subsequence

(non-relabeled) and a function g∗ ∈ Zad such that gk ⇀ g∗ in L2(Ω). Meanwhile,

using (61), (62), and (63) with 𝔖𝛿k ,hk
in place of 𝔖𝛿 we know there exists a constant

C1 ∶=
√

1 + C(𝛿0)2C(𝛿0)B∕𝜇 such that ||uk||𝝂
w𝛿k

(Ω) ≤ C1 for all k large enough. By

Theorem 3.11, upon taking a further non-relabeled subsequence, there exists a limit point

u∗ ∈ H1
0(Ω) such that uk → u∗ in L2(Ω). Since {(uk, gk)}

∞
k=1 are the pair of functions

solving (69), we have that

B𝛿k
(uk, vk) = ⟨gk, vk⟩, ∀vk ∈ X𝛿k ,hk

.

Arguing as in the last paragraph of the proof of Theorem 4.4, with a slight modification

that (f , vk)L2 and (f , v)L2 are replaced by ⟨gk, vk⟩ and ⟨g∗, v⟩ respectively, one can show that

B0(u∗, v) = ⟨g∗, v⟩, ∀v ∈ H1
0(Ω). (81)

Recall that pk satisfies the second equation in (79), that is,

B𝛿k
(pk, vk) = ⟨F𝜉(⋅, uk(⋅)), vk⟩, ∀vk ∈ X𝛿k ,hk

.
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Since

||F𝜉(⋅, uk(⋅))||2L2(Ω) ≤ 2c2
2||uk||2L2(Ω) + 2||e||2L2(Ω) ≤ 2c2

2C2
1 + 2||e||2L2(Ω) =∶ C2,

repeating the argument above for the uniform bound on ||uk||𝝂
w𝛿k

(Ω), we have ||pk||𝝂
w𝛿k

(Ω) ≤
C1||F𝜉(⋅, uk(⋅))||L2(Ω)∕B ≤ C1

√
C2∕B for all k large enough. Moreover, up to a subse-

quence, using [8, Theorem 4.9], item (5) of the assumption on F, and the Lebesgue

dominated convergence theorem, we have that as k → ∞,

F𝜉(⋅, uk(⋅)) → F𝜉(⋅, u∗(⋅)) in L2(Ω).

Repeating the analysis for {uk}
∞
k=1, we identify p∗ ∈ H1

0(Ω) such that up to a subsequence

pk → p∗ in L2(Ω) and

B0(p∗, v) = ⟨F𝜉(⋅, u∗(⋅)), v⟩, ∀v ∈ H1
0(Ω). (82)

Finally we show that
⟨p∗ + 𝜆Γg∗, q − g∗⟩ ≥ 0, ∀q ∈ Zad. (83)

Since 𝛼, 𝛽 ∈ C(Ω), it is not hard to show the following approximation result: for any

q ∈ Zad, there exists a sequence {qk ∈ Zhk
∩Zad}hk>0 such that qk → q in L2(Ω) as k → ∞;

see Lemma A.3 for its proof. From the first equation of (79) we know

⟨pk + 𝜆Γ gk, qk − gk⟩ ≥ 0.

That is,

⟨pk, qk − gk⟩ + ⟨𝜆Γ gk, qk⟩ ≥ 𝜆∫Ω

Γ(x)|gk(x)|2𝑑x.

By the weak lower semicontinuity, one has

lim inf
k→∞ ∫Ω

Γ(x)|gk(x)|2𝑑x ≥ ∫Ω

Γ(x)|g∗(x)|2𝑑x.

On the other hand, letting k → ∞ one has

⟨pk, qk − gk⟩ + ⟨𝜆Γ gk, qk⟩ → ⟨p∗, q − g∗⟩ + ⟨𝜆Γg∗, q⟩.
Therefore,

⟨p∗, q − g∗⟩ + ⟨𝜆Γg∗, q⟩ ≥ 𝜆∫Ω

Γ(x)|g∗(x)|2𝑑x,

and (83) holds. From (83), (82), and (81) we know that (u∗, g∗, p∗) solves the equations

(80). Since this system has a unique triple of solution (u, g, p), it follows that (u∗, g∗, p∗) =

(u, g, p). Therefore, asymptotic compatibility holds. ▪

6 CONCLUSION

In this work we establish two Bourgain–Brezis–Mironescu [7] type compactness theorems regard-

ing the nonlocal Sobolev spaces associated with half-space gradient operators [20] An equivalent

Fourier characterization of the nonlocal function spaces is shown, which highlights the key role of

the Fourier symbol 𝝀𝝂
w(𝝃) in the studies of nonlocal function spaces 𝝂

w(Ω). Using an improved lower

bound estimate on |𝝀𝝂
w(𝝃)|, we are able to show the locally compact embedding of 𝝂

w(R
𝑑) into L2(R𝑑)

for a nonintegrable kernel w. For the sequence of kernels {wn} such that 0 ≤ wn ↗ w where w

is nonintegrable, we prove the sequential compactness result in Theorem 3.6. Another compactness
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result holds for a different sequence of kernels satisfying Assumption 3.9, while the result is shown

in Theorem 3.11. Based on these compactness theorems we show the uniform Poincaré inequalities

generalizing the results in [20], and study the convergence and asymptotic compatibility of nonlocal

diffusion problems and their approximations, respectively. Finally we apply the theoretical results to

optimal control problems with nonlocal equations as constraints.

A key tool to show Lp-compactness is the Riesz–Kolmogorov–Fréchet compactness criterion.

Here, however, we can only show compactness for p = 2 as in such case one can use Plancherel’s

theorem to convert the L2 norm of a function into that of its Fourier transform. It is intriguing to

explore whether the compactness result holds for general 1 < p < ∞. For p = 2, one crucial ingre-

dient we frequently use is the lower bound estimate of |𝝀𝝂
w(𝝃)|. For large |𝝃| the lower bound has

been significantly improved compared to [20, Lemma 5.1]. For small |𝝃|, we apply the technique of

truncation at infinity to make w compactly supported so that Lemma 2.1(2)(a) is applicable to derive

|𝝀𝝂
w(𝝃)| ≥ C|𝝃| for |𝝃| small.

Note that Assumption 3.9 provides sufficient conditions to derive the crucial lower bound estimates

for the Fourier symbols associated with a sequence of kernels in Lemma 3.12. However, it is worth

exploring whether these assumptions can be relaxed. An open question remains: can the compactness

result in Theorem 3.11 be established under the weakest assumptions, specifically Equations (1), (25)

and (26)? To illustrate, consider a kernel defined by

w𝛿(z) =
2𝑑

𝜔𝑑−1

1

| log(𝛿)|
1

|z|𝑑+1
𝜒{𝛿<|z|<1}(z).

This kernel appeared in [29, Corollary 2.3] has the feature that it is truncated near origin. Our numer-

ical results show that both the real part and imaginary part of the Fourier symbol are oscillating but

eventually the real part stabilizes at a positive value while the imaginary part converges to zero. How-

ever, we could not prove the compactness results because we were unable to determine the critical value

|𝝃| such that we use the lower bound of imaginary and real part separately across this critical value.

We nevertheless conjecture that Theorem 3.11 will remain valid under the assumptions Equations (1),

(25) and (26) and hope to explore this in future work.
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APPENDIX

A.1 PROOFS OF LEMMA 2.2 AND PROPOSITION 3.8

Proof of Lemma 2.2. Recall from the proof of [20, Lemma 5.1] that

|ℜ(𝝀𝝂
w)(𝝃)| ≥ ∫z1>0

z1

|z|w(z)(1 − cos(2𝜋RT
𝝂𝝃 ⋅ z))𝑑z,

where R𝝂 is an orthogonal matrix such that 𝝂 = R𝝂e1. Denote 𝝁 ∶= RT
𝝂𝝃∕|RT

𝝂𝝃|. Then

|ℜ(𝝀𝝂
w)(𝝃)| ≥ ∫z1>0

z1

|z|w(z)(1 − cos(2𝜋|𝝃|𝝁 ⋅ z))𝑑z

=∶ I(𝝃).

Our goal is to find constant c𝜆 = c𝜆(N𝜖, 𝑑) > 0 such that

I(𝝃) ≥ c𝜆 ∫|z|> N𝜖

|𝝃|

w(z)𝑑z, ∀|𝝃| > N, 𝝃 ∈ R
𝑑 . (A1)

We distinguish two cases 𝑑 = 1 and 𝑑 ≥ 2.

Case I: 𝑑 = 1. Then 𝜇 = e1 or 𝜇 = −e1. In either case one has

I(𝜉) = ∫
∞

0

w(z)(1 − cos(2𝜋|𝜉|z))𝑑z.

Since the right-hand side is even in 𝜉, it suffices to show that for 𝜉 > N,

I(𝜉) = ∫
∞

0

w(z)(1 − cos(2𝜋𝜉z))𝑑z ≥ c𝜆∫
∞

N𝜖

𝜉

w(z)𝑑z. (A2)
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Fix R > 1∕(4N) + 𝜖. Without loss of generality, assume N < 1∕(4𝜖). On the one hand,

using the nonincreasing assumption on w and [16, Lemma 2] we have

∫
R

1

4𝜉

w(z) cos(2𝜋𝜉z)𝑑z =
1

2𝜋𝜉∫
2𝜋𝜉R

𝜋

2

w

(
z

2𝜋𝜉

)
cos(z)𝑑z

= −
1

2𝜋𝜉∫
2𝜋𝜉R−

𝜋

2

0

w

(
1

2𝜋𝜉

(
z +

𝜋

2

))
sin(z)𝑑z ≤ 0,

thus

∫
R

1

4𝜉

w(z)𝑑z = ∫
R

1

4𝜉

w(z)(1 − cos(2𝜋𝜉z))𝑑z + ∫
R

1

4𝜉

w(z) cos(2𝜋𝜉z)𝑑z

≤ ∫
R

1

4𝜉

w(z)(1 − cos(2𝜋𝜉z))𝑑z.

(A3)

On the other hand, again by nonincreasing property of w one has

∫
1

4𝜉

N𝜖

𝜉

w(z)𝑑z = 𝜉−1∫
1

4

N𝜖

w(𝜉−1z)𝑑z ≤ 𝜉−1 1 − 4N𝜖

2N𝜖 ∫
N𝜖

N𝜖

2

w(𝜉−1z)𝑑z

≤ 𝜉−1 1 − 4N𝜖

2N𝜖

1

1 − cos(N𝜖)∫
N𝜖

N𝜖

2

w(𝜉−1z)(1 − cos(2𝜋z))𝑑z

=
1 − 4N𝜖

2N𝜖

1

1 − cos(N𝜖)∫
N𝜖

𝜉

N𝜖

2𝜉

w(z)(1 − cos(2𝜋𝜉z))𝑑z

≤ 1 − 4N𝜖

2N𝜖

1

1 − cos(N𝜖)∫
1

4𝜉

0

w(z)(1 − cos(2𝜋𝜉z))𝑑z

(A4)

Combining (A3) and (A4) yields

I(𝜉) ≥ ∫
R

0

w(z)(1 − cos(2𝜋𝜉z))𝑑z ≥ c𝜆∫
R

N𝜖

𝜉

w(z)𝑑z, 𝜉 > N,

where

c𝜆 =

(
1 +

1 − 4N𝜖

2N𝜖(1 − cos(N𝜖))

)−1

.

Letting R → +∞ yields (A2).

Case II: 𝑑 ≥ 2. Let 𝝁 = (𝜇1, … , 𝜇𝑑). Notice that I(𝝃) maintains if 𝝁 is replaced by

−𝝁. Without loss of generality, we assume 𝜇1 ≥ 0. Denote 𝝁 = (𝜇1,𝝁
′) where 𝝁′ ∈ R𝑑−1.

 1
0
9
8
2
4
2
6
, 2

0
2
4
, 6

, D
o
w

n
lo

ad
ed

 fro
m

 h
ttp

s://o
n
lin

elib
rary

.w
iley

.co
m

/d
o
i/1

0
.1

0
0
2
/n

u
m

.2
3
1
4
9
 b

y
 U

n
iv

ersity
 O

f W
isco

n
sin

 - M
ad

iso
n
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [1

2
/0

6
/2

0
2
5
]. S

ee th
e T

erm
s an

d
 C

o
n
d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o
n
s L

icen
se



HAN ET AL. 39 of 46

Case II(i): 𝜇1 = 0. This corresponds to the case where 𝝃⊥𝝂. Fix R > 𝜖∕2. By doing a

change of variable and using the Fubini–Tonelli theorem, one obtains

I(𝝃) ≥ ∫|z′|<R

(1 − cos(2𝜋|𝝃|𝝁′ ⋅ z′))∫
√

R2−|z′|2

0

z1

|z|w(|z|)𝑑z1𝑑z′

= ∫|z′|<R

(1 − cos(2𝜋|𝝃|𝝁′ ⋅ z′))∫
R

|z′|
w(r)𝑑r𝑑z′

= ∫
R

0

w(r)∫|z′|<r

(1 − cos(2𝜋|𝝃|𝝁′ ⋅ z′))𝑑z′𝑑r

≥ ∫
R

N𝜖

|𝝃|

w(r)∫|z′|<r

(1 − cos(2𝜋|𝝃|𝝁′ ⋅ z′))𝑑z′𝑑r

= ∫
R

N𝜖

|𝝃|

w(r)∫B𝑑−1
r

(0)

(1 − cos(2𝜋|𝝃|y1))𝑑y𝑑r

= ∫
R

N𝜖

|𝝃|

r𝑑−1w(r)∫B𝑑−1
1

(0)

(1 − cos(2𝜋r|𝝃|y1))𝑑y𝑑r,

(A5)

where in the last two steps we used change-of-variable formula.

Denote

J(r) ∶= ∫B𝑑−1
1

(0)

(1 − cos(2𝜋ry1))𝑑y.

It suffices to show J(r) has a positive lower bound cJ = cJ(N𝜖, 𝑑) over [N𝜖,∞) to prove

(A1). Indeed, using (A5) and this positive lower bound one obtains

I(𝝃) ≥ ∫
R

N𝜖

|𝝃|

r𝑑−1w(r)J(r|𝝃|)𝑑r ≥ cJ∫
R

N𝜖

|𝝃|

r𝑑−1w(r)𝑑r =
cJ

𝜔𝑑−1 ∫ N𝜖

|𝝃|<|z|<R

w(z)𝑑z

for any |𝝃| > N with 𝝃 ∈ R𝑑 . Letting R → +∞ gives (A1). Now we focus on the proof of

J(r) ≥ cJ for r ≥ N𝜖.

Note that for any r > 0, J(r) > 0 as the integrand is nonnegative. By a change of

variable, one obtains

J(r) = ∫
1

0

(1 − cos(2𝜋ry1))∫|y′|<
√

1−y2
1

𝑑y′𝑑y1

= V𝑑−2∫
1

0

(1 − cos(2𝜋ry1))(1 − y2
1)

𝑑−2

2 𝑑y1

≥ V𝑑−2

(√
3

2

)𝑑−2

∫
1

2

0

(1 − cos(2𝜋ry))𝑑y

→ V𝑑−2

(√
3

2

)𝑑−2

1

2
> 0, r → +∞,

where in the last step we used Riemann-Lebesgue lemma. Since J(r) is continuous, there

exists cJ = cJ(N𝜖, 𝑑) > 0 such that J(r) ≥ cJ for r ≥ N𝜖. This concludes the proof of Case

II(i).
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Case II(ii): 𝜇1 > 0. By Proposition A.1 in Appendix A.2, there exist v1, … , v𝑑−1 ∈

S𝑑−1 such that

v
(1)
k ∶= vk ⋅ e1 ≥ 0, 1 ≤ k ≤ 𝑑 − 1,

and v1, … , v𝑑−1,𝝁 form an orthonormal basis for R𝑑 . Moreover,

v
(1)
k =

𝜇k−1
1 |𝜇k+1|√

𝜇2
1 + · · · + 𝜇2

k

√
𝜇2

1 + · · · + 𝜇2
k+1

, 1 ≤ k ≤ 𝑑 − 1.

Denote A𝝁 ∶= (v1, … , v𝑑−1,𝝁). Then A𝝁 is a 𝑑 × 𝑑 orthogonal matrix. Consider the

following change of variable z = A𝝁y where y ∈ R𝑑 . Then

z1 = 𝜇1y𝑑 +

𝑑−1∑
k=1

v
(1)
k yk > 0

if y1, … , y𝑑 > 0. Thus, for R > 1,

I(𝝃) ≥ ∫z1>0, |z|<R

z1

|z|w(z)(1 − cos(2𝜋|𝝃|𝝁 ⋅ z))𝑑z

≥ ∫y1>0,… ,y𝑑>0, |y|<R

(
𝜇1y𝑑 +

𝑑−1∑
k=1

v
(1)
k yk

)
1 − cos(2𝜋|𝝃|y𝑑)

|y| w(y)𝑑y.

(A7)

Case II(ii)(a): If 𝜇1 is the largest among {v
(1)
1 , … , v(1)𝑑−1, 𝜇1}, then 𝜇1 ≥ 1∕

√
𝑑 and (A7)

yields

I(𝝃) ≥ 1√
𝑑 ∫y1>0,… ,y𝑑>0, |y|<R

y𝑑
1 − cos(2𝜋|𝝃|y𝑑)

|y| w(y)𝑑y

=
1√
𝑑 ∫

R

0

y𝑑(1 − cos(2𝜋|𝝃|y𝑑))∫y1>0,… ,y𝑑−1>0, y2
1
+···+y2

𝑑−1
<R2−y2

𝑑

w(y)

|y| 𝑑ỹ𝑑y𝑑 ,

where ỹ = (y1, … , y𝑑−1). Using polar coordinates one may compute

∫y1>0,… ,y𝑑−1>0, y2
1
+···+y2

𝑑−1
<R2−y2

𝑑

w(y)

|y| 𝑑ỹ =
1

2𝑑−1 ∫|ỹ|<
√

R2−y2
𝑑

1

(y2
𝑑 + |ỹ|2) 1

2

w
(
(y2

𝑑 + |ỹ|2) 1

2

)
𝑑ỹ

=
𝜔𝑑−2

2𝑑−1 ∫
√

R2−y2
𝑑

0

r𝑑−2

(y2
𝑑 + r2)

1

2

w
(
(y2

𝑑 + r2)
1

2

)
𝑑r

=
𝜔𝑑−2

2𝑑−1 ∫
R

y𝑑

w(r)
(
r2 − y2

𝑑

) 𝑑−3

2 𝑑r.

Therefore,

I(𝝃) ≥ 1√
𝑑

𝜔𝑑−2

2𝑑−1 ∫
R

0

y𝑑(1 − cos(2𝜋|𝝃|y𝑑))∫
R

y𝑑

w(r)
(
r2 − y2

𝑑

) 𝑑−3

2 𝑑r𝑑y𝑑

=
1√
𝑑

𝜔𝑑−2

2𝑑−1 ∫
R

0

w(r)∫
r

0

y𝑑(1 − cos(2𝜋|𝝃|y𝑑))(r2 − y2
𝑑)

𝑑−3

2 𝑑y𝑑𝑑r

=
1√
𝑑

𝜔𝑑−2

2𝑑−1 ∫
R

0

r𝑑−1w(r)∫
1

0

t(1 − cos(2𝜋r|𝝃|t))(1 − t2)
𝑑−3

2 𝑑t𝑑r

≥ 1√
𝑑

𝜔𝑑−2

2𝑑−1 ∫
R

N𝜖

|𝝃|

r𝑑−1w(r)H(r|𝝃|)𝑑r,

(A8)
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where H ∶ (0,∞) → (0,∞) is defined by

H(r) ∶= ∫
1

0

t(1 − cos(2𝜋rt))(1 − t2)
𝑑−3

2 𝑑t. (A9)

It suffices to show there exists cH = cH(N𝜖, 𝑑) > 0 such that H(r) ≥ cH for r ≥ N𝜖 to

show (A1). Indeed, from (A8) and the lower bound cH one obtains

I(𝝃) ≥ cH
1√
𝑑

𝜔𝑑−2

2𝑑−1 ∫
R

N𝜖

|𝝃|

r𝑑−1w(r)𝑑r =
cH

𝜔𝑑−1

1√
𝑑

𝜔𝑑−2

2𝑑−1 ∫ N𝜖

|𝝃|<|z|<R

w(z)𝑑z

for any |𝝃| > N with 𝝃 ∈ R𝑑 . Letting R → +∞ yields (A1). Noticing that H(r) is

continuous and positive for any r > 0, it suffices to show

lim
r→+∞

H(r) > 0

to conclude the existence of the positive lower bound cH . The proof uses again

Riemann-Lebesgue lemma as follows.

When 𝑑 = 2, since the function t → t(1 − t2)−
1

2 is increasing over (0, 1), one has

H(r) ≥ 1√
3∫

1

1

2

(1 − cos(2𝜋rt))𝑑t →
1

2
√

3
, r → +∞.

When 𝑑 ≥ 3, since the function t → (1 − t2)
𝑑−3

2 is nonincreasing over (0, 1), one has

H(r) ≥
(√

3

2

)𝑑−3

∫
1

2

0

t(1 − cos(2𝜋rt))𝑑t →

(√
3

2

)𝑑−3

1

8
, r → +∞.

Then the proof for Case II(ii)(a) is done.

Case II(ii)(b): If v
(1)
j is the largest among {v

(1)
1 , … , v(1)𝑑−1, 𝜇1} where 1 ≤ j ≤ 𝑑 − 1,

then v
(1)
j ≥ 1∕

√
𝑑. Denoting ỹ ∶= (y1, … , ŷj, … , y𝑑) = (ỹ1, … , ỹ𝑑−1) ∈ R𝑑−1 (with

ỹ𝑑−1 = y𝑑) we continue from (A7) to compute

I(𝝃) ≥ 1√
𝑑 ∫y1>0,… ,y𝑑>0, |y|<R

yj
1 − cos(2𝜋|𝝃|y𝑑)

|y| w(y)𝑑y

=
1√
𝑑 ∫ỹ1>0,… ,ỹ𝑑−1>0, |ỹ|<R

(1 − cos(2𝜋|𝝃|ỹ𝑑−1))∫
√

R2−|ỹ|2

0

yj

|y|w(|y|)𝑑yj𝑑ỹ

=
1√
𝑑 ∫ỹ1>0,… ,ỹ𝑑−1>0, |ỹ|<R

(1 − cos(2𝜋|𝝃|ỹ𝑑−1))∫
R

|ỹ|
w(r)𝑑r𝑑ỹ

=
1√
𝑑

1

2𝑑−1 ∫B𝑑−1
1

(0)

(1 − cos(2𝜋|𝝃|z1))∫
R

|z|
w(r)𝑑r𝑑z

=
1√
𝑑

1

2𝑑−1∫
R

0

w(r)∫B𝑑−1
r

(0)

(1 − cos(2𝜋|𝝃|z1))𝑑z𝑑r

≥ 1√
𝑑

1

2𝑑−1∫
R

N𝜖

|𝝃|

r𝑑−1w(r)∫B𝑑−1
1

(0)

(1 − cos(2𝜋r|𝝃|z1))𝑑z𝑑r.

Note that the above calculation is similar to (A5) and the final expression is just a con-

stant multiple of that of (A5). Therefore, following the proof in Case(II)(i) after (A5) we

complete the whole proof. ▪
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Proof of Proposition 3.8. We first prove the pointwise convergence result and then use

generalized dominated convergence theorem to prove the Lp convergence. For simplicity

we focus on 𝝂
𝛿 .

Without loss of generality, we may assume that u ∈ C2
c (R

𝑑) in the proof. The result

for u ∈ C1
c (R

𝑑) can then be obtained using a standard density argument so we omit the

details. Since u ∈ C2
c (R

𝑑), there exists R > 0 such that supp u ⊂ BR(0) =∶ BR. Recall that

𝝂
𝛿u(x) = ∫

R𝑑

𝜒𝝂(z)
z

|z|w𝛿(z)(u(x + z) − u(x))𝑑z.

We discuss two cases |x| ≤ 2R and |x| > 2R.

Case (I): |x| ≤ 2R. Then for |z| > 3R one has |x + z| ≥ |z| − |x| > R and thus

u(x + z) = 0. Note that we have Taylor expansion

u(x + z) − u(x) = Du(x)z + ∫
1

0

zTD2u(x + tz)z𝑑t.

Hence,

𝝂
𝛿u(x) =∫B3R

𝜒𝝂(z)
z

|z|w𝛿(z)(u(x + z) − u(x))𝑑z + ∫Bc
3R

𝜒𝝂(z)
z

|z|w𝛿(z)(−u(x))𝑑z

=

(
∫B3R

𝜒𝝂(z)|z|w𝛿(z)
z

|z| ⊗
z

|z|𝑑z

)
∇u(x) + ∫Bc

3R

𝜒𝝂(z)
z

|z|w𝛿(z)(−u(x))𝑑z

+ ∫B3R

𝜒𝝂(z)
z

|z|w𝛿(z)

(
∫

1

0

zTD2u(x + tz)z𝑑t

)
𝑑z

= ∶ I1 + I2 + I3.

Since w𝛿 is radial, one can compute as in [20, Remark 2.2] that

∫B3R

𝜒𝝂(z)|z|w𝛿(z)
z

|z| ⊗
z

|z|𝑑z =
1

2𝑑

(
∫B3R

|z|w𝛿(z)𝑑z

)
I𝑑 → I𝑑 , 𝛿 → 0+,

where I𝑑 is the 𝑑 × 𝑑 identity matrix and we used (26). Hence I1 → ∇u(x) as 𝛿 → 0.

For I2 and I3, we show that they converge to 0 as 𝛿 → 0. Indeed, as 𝛿 → 0, by

Equations (25) and (27),

|I2| ≤ ||u||C0(R𝑑 ) ∫Bc
3R

w𝛿(z)𝑑z → 0

and

|I3| ≤ ||u||C2(R𝑑 ) ∫B3R

|z|2w𝛿(z)𝑑z → 0.

Combining all the estimates for I1, I2 and I3 yields

𝝂
𝛿u(x) → ∇u(x), 𝛿 → 0, ∀|x| < 2R.

Moreover, there exist constants 𝛿0 ∈ (0, 1) and C0 = C0(||u||C2(R𝑑 )) such that |𝝂
𝛿u(x)| ≤

C0 for |x| ≤ 2R and 𝛿 ∈ (0, 𝛿0).

Case (II): |x| > 2R. Then u(x) = 0 and

𝝂
𝛿u(x) = ∫

R𝑑

𝜒𝝂(z)
z

|z|w𝛿(z)u(x + z)𝑑z = ∫BR(−x)

𝜒𝝂(z)
z

|z|w𝛿(z)u(x + z)𝑑z.
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Then for |x| > 2R,

|𝝂
𝛿u(x)| ≤ ||u||C0(R𝑑 ) ∫BR(−x)

w𝛿(z)𝑑z.

Define g𝛿 ∶ R𝑑 → R by

g𝛿(x) =

⎧
⎪⎨⎪⎩

C0, |x| ≤ 2R,

||u||C0(R𝑑 ) ∫BR(−x)

w𝛿(z)𝑑z, |x| > 2R.

Then |𝝂
𝛿u(x)| ≤ g𝛿(x) for any x ∈ R𝑑 . Note that for |x| > 2R, BR(−x) ∩BR(0) = ∅, hence

|𝝂
𝛿u(x)| ≤ g𝛿(x) ≤ ||u||C0(R𝑑 ) ∫Bc

R

w𝛿(z)𝑑z → 0 = ∇u(x), 𝛿 → 0.

Combining the pointwise limit in Case (I) we obtain

𝝂
𝛿u(x) → ∇u(x), 𝛿 → 0, ∀x ∈ R

𝑑 .

It remains to show for p ∈ [1,∞], 𝝂
𝛿u → ∇u in Lp(R𝑑). For p = ∞ this follows from

the estimates above. Now suppose 1 ≤ p < ∞. Notice that g𝛿(x) → C0𝜒B2R
(x) =∶ g(x) as

𝛿 → 0 for any x ∈ R𝑑 , to apply the generalized dominated convergence theorem, we need

to show that ||g𝛿||Lp(R𝑑 ) → ||g||Lp(R𝑑 ) as 𝛿 → 0. In fact, we will show ||g𝛿 − g||Lp(R𝑑 ) → 0 as

𝛿 → 0. Note that

||g𝛿 − g||p
Lp(R𝑑 )

= ||u||p
C0(R𝑑 ) ∫Bc

2R

(
∫BR(−x)

w𝛿(z)𝑑z

)p

𝑑x.

Since BR(−x) ⊂ Bc
R for |x| > 2R, one has

∫Bc
2R

(
∫BR(−x)

w𝛿(z)𝑑z

)p

𝑑x = ∫Bc
2R

(
∫

R𝑑

𝜒BR(−x)(z)w𝛿(z)𝑑z

)p

𝑑x

= ∫Bc
2R

(
∫BR(−x)

w𝛿(z)𝑑z

)p−1

∫BR(−x)

w𝛿(z)𝑑z𝑑x

≤
(
∫Bc

R

w𝛿(z)𝑑z

)p−1

∫Bc
2R

∫Bc
R

𝜒BR(−z)(x)w𝛿(z)𝑑z𝑑x

=

(
∫Bc

R

w𝛿(z)𝑑z

)p−1

∫Bc
R

∫Bc
2R
∩BR(−z)

𝑑xw𝛿(z)𝑑z

≤ |BR|
(
∫Bc

R

w𝛿(z)𝑑z

)p

→ 0, 𝛿 → 0,

where we used Tonelli–Fubini theorem and (25). This implies ||g𝛿−g||Lp(R𝑑 ) → 0 as 𝛿 → 0

and by generalized dominated convergence theorem 𝝂
𝛿u → ∇u in Lp(R𝑑) for p ∈ [1,∞).▪

A.2 AN ORTHONORMAL BASIS IN R
d

Proposition A.1. Let 𝑑 ≥ 2 and 𝝁 = (𝜇1, … , 𝜇𝑑) ∈ S𝑑−1 with 𝜇1 > 0. Then there exist

v1, … , v𝑑−1 ∈ S𝑑−1 such that

v
(1)
k ∶= vk ⋅ e1 ≥ 0, 1 ≤ k ≤ 𝑑 − 1,
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and v1, … , v𝑑−1,𝝁 form an orthonormal basis for R𝑑 . Moreover, one may choose

v
(1)
k =

𝜇1|𝜇k+1|√
𝜇2

1 + · · · + 𝜇2
k

√
𝜇2

1 + · · · + 𝜇2
k+1

, 1 ≤ k ≤ 𝑑 − 1. (A10)

Proof. We prove it by induction on 𝑑.

If 𝑑 = 2, then one may choose

v1 =

{
(𝜇2,−𝜇1), if 𝜇2 ≥ 0,

(−𝜇2, 𝜇1), if 𝜇2 < 0.

Then v1, 𝜇 form an orthonormal basis for R2 and v
(1)
1 = |𝜇2| as desired.

Suppose the conclusion holds for some 𝑑 ≥ 2. Given 𝝁 = (𝜇1, … , 𝜇𝑑+1) ∈ S𝑑 with

𝜇1 > 0, one has |𝜇𝑑+1| < 1 and

𝝁̃ ∶=
1√

1 − 𝜇2
𝑑+1

(𝜇1, … , 𝜇𝑑) ∈ S
𝑑−1.

By the inductive hypothesis, there exist w1, … ,w𝑑−1 ∈ S𝑑−1 such that w
(1)
k ≥ 0 for

1 ≤ k ≤ 𝑑 − 1 and w1, … ,w𝑑−1, 𝝁̃ form an orthonormal basis for R𝑑 . Define vk ∶=

(wk, 0) ∈ S𝑑 for 1 ≤ k ≤ 𝑑 − 1 and

v𝑑 ∶=

(
|𝜇𝑑+1|𝝁̃,−sgn(𝜇𝑑+1)

√
1 − 𝜇2

𝑑+1

)
∈ S

𝑑 .

Then it is clear that v1, … , v𝑑 ,𝝁 form an orthonormal basis for R𝑑+1. Moreover, if

w
(1)
1 , … ,w(1)

𝑑−1 are assumed to have form in (A10), then it can be checked that v
(1)
1 , … , v(1)𝑑

satisfy (A10) as well. By induction, the proposition holds for any 𝑑 ≥ 2. ▪

A.3 A USEFUL LIMIT CONCERNING THE FOURIER SYMBOL WITH RESPECT TO RIESZ

FRACTIONAL KERNEL

Proposition A.2. The following equality holds:

lim
𝛿→0 ∫

∞

0

𝛿

z2−𝛿

(
e2𝜋iz − 1

)
𝑑z = 2𝜋i, (A11)

that is,

lim
𝛿→0 ∫

∞

0

𝛿

z2−𝛿
(cos(2𝜋z) − 1)𝑑z = 0, lim

𝛿→0 ∫
∞

0

𝛿

z2−𝛿
sin(2𝜋z)𝑑z = 2𝜋. (A12)

In addition, these three equalities hold with the upper limit ∞ replaced by 1.

Proof. Note that the last assertion follows from the estimate

||||∫
∞

1

𝛿

z2−𝛿

(
e2𝜋iz − 1

)
𝑑z
|||| ≤ 2∫

∞

1

𝛿

z2−𝛿
𝑑z ≤ 2𝛿∫

∞

1

1

z3∕2
𝑑z

for 𝛿 ∈ (0, 1∕2), provided the following two equalities

lim
𝛿→0 ∫

1

0

𝛿

z2−𝛿
(cos(2𝜋z) − 1)𝑑z = 0 (A13)
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and

lim
𝛿→0 ∫

1

0

𝛿

z2−𝛿
sin(2𝜋z)𝑑z = 2𝜋 (A14)

hold. Using the inequality |1−cos(x)| ≤ x2∕2 for any x ∈ R, it is clear that (A13) holds as

|||||∫
1

0

𝛿

z2−𝛿
(cos(2𝜋z) − 1)𝑑z

|||||
≤ 2𝜋2𝛿∫

1

0

z𝛿𝑑z ≤ 2𝜋2𝛿 → 0, 𝛿 → 0.

To show (A14), first notice that ∫ 1

0

𝛿

z1−𝛿
𝑑z = 1. Since limx→0+ sin(x)∕x = 1, for any 𝜖 > 0,

there exists N0 = N0(𝜖) ∈ (0, 1) such that for any z ∈ (0,N0),

||||
sin(2𝜋z)

2𝜋z
− 1

|||| < 𝜖.

Then |||||∫
N0

0

𝛿

z1−𝛿

(
sin(2𝜋z)

2𝜋z
− 1

)
𝑑z
|||||
< 𝜖∫

1

0

𝛿

z1−𝛿
𝑑z = 𝜖.

On the other hand, for 𝛿 ∈ (0, 1) one has

|||||∫
1

N0

𝛿

z1−𝛿

(
sin(2𝜋z)

2𝜋z
− 1

)
𝑑z
|||||
≤ 2∫

1

N0

𝛿

z
𝑑z = −2𝛿 ln(N0) → 0, 𝛿 → 0.

Thus, there exists 𝛿0 = 𝛿0(𝜖) such that for 𝛿 ∈ (0, 𝛿)

|||||∫
1

0

𝛿

z2−𝛿
sin(2𝜋z)𝑑z − 2𝜋

|||||
= 2𝜋

|||||∫
1

0

𝛿

z1−𝛿

(
sin(2𝜋z)

2𝜋z
− 1

)
𝑑z
|||||
< 2𝜖.

This proves (A14) and the whole proposition. ▪

A.4 AN APPROXIMATION RESULT

Lemma A.3. Let Ω be a bounded polygonal domain in R𝑑 and {h}h>0 be a

quasi-uniform mesh of size h on Ω. Given 𝛼, 𝛽 ∈ C(Ω) such that 𝛼(x) < 𝛽(x) for all

x ∈ Ω, define Zad ∶= {f ∈ L2(Ω) ∶ 𝛼(x) ≤ f (x) ≤ 𝛽(x), a.e. x ∈ Ω} and denote Zh the

piecewise constant functions with respect to the mesh {h}h>0, that is,

Zh ∶= {zh ∈ L∞(Ω)| zh|T ∈ 0(T), ∀T ∈ h}.

Then for any q ∈ Zad, there exists {qh}h>0 ⊂ Zh ∩ Zad such that qh → q in L2(Ω).

Proof. Without loss of generality, we assume that 𝛼(x) < 𝛽(x) for all x ∈ Ω. Given

q ∈ L2(Ω), define the piecewise constant function ph ∈ L2(Ω) by

ph(x) ∶=
1

|T| ∫T

q(y)𝑑y, if x ∈ int(T), T ∈ h.

where |T| denotes the Lebesgue measure of T . It is well-known that ph → q in L2(Ω).

However, ph is not necessarily in Zh. Consider another piecewise constant qh ∈ L2(Ω)

given by

qh(x) ∶= min

{
max

{
ph(x), sup

y∈T

𝛼(y)

}
, inf

y∈T

𝛽(y)

}
, if x ∈ int(T), T ∈ h.
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It is clear that qh ∈ Zh ∩ Zad. To show qh → q in L2(Ω), it suffices to show that ||qh −

ph||L2(Ω) → 0 as h → 0. To that end, consider the partition h =  1
h ∪  2

h ∪  3
h of h with

respect to q defined by

 1
h ∶=

{
T ∈ h ∶

1

|T| ∫T

q(y)𝑑y ≤ sup
y∈T

𝛼(y)

}
,

 2
h ∶=

{
T ∈ h ∶

1

|T| ∫T

q(y)𝑑y ≥ inf
y∈T

𝛽(y)

}
,

 3
h ∶=

{
T ∈ h ∶ sup

y∈T

𝛼(y) <
1

|T| ∫T

q(y)𝑑y < inf
y∈T

𝛽(y)

}
.

Then for T ∈  3
h , ph(x) = qh(x) for all x ∈ T and, therefore,

||ph − qh||2L2(Ω) =
∑
T∈h

∫T

|ph(x) − qh(x)|2𝑑x

=
∑

T∈ 1
h

|T|
(

1

|T| ∫T

q(y)𝑑y − sup
y∈T

𝛼(y)

)2

+
∑

T∈ 2
h

|T|
(

1

|T| ∫T

q(y)𝑑y − inf
y∈T

𝛽(y)

)2

≤ ∑
T∈ 1

h

|T|(sup
y∈T

𝛼(y) − inf
y∈T

𝛼(y))2 +
∑

T∈ 2
h

|T|(sup
y∈T

𝛽(y) − inf
y∈T

𝛽(y))2,

where in the last step we used 𝛼(x) ≤ q(x) ≤ 𝛽(x) for a.e. x ∈ Ω. Since 𝛼 and 𝛽 are

continuous on Ω, they are uniformly continuous on Ω. Then for any 𝜖 > 0, there exists

𝜏 > 0 such that for any 0 < h < 𝜏 and T ∈ h,

sup
y∈T

𝛼(y) − inf
y∈T

𝛼(y) < 𝜖, sup
y∈T

𝛽(y) − inf
y∈T

𝛽(y) < 𝜖.

Therefore,

||ph − qh||2L2(Ω) ≤ 𝜖2
∑

T∈ 1
h

|T| + ∑
T∈ 2

h

|T| ≤ 𝜖2|Ω|.

This implies ||qh − ph||L2(Ω) → 0 as h → 0. Thus qh → q in L2(Ω) as h → 0. ▪
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