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Abstract
Objective: Explore deep learning applications in predictive analytics for public health data, identify
challenges and trends, and then understand the current landscape. Materials and Methods: A sys-
tematic literature review was conducted in June 2023 to search articles on public health data in the
context of deep learning, published from the inception of medical and computer science databases
through June 2023. The review focused on diverse datasets, abstracting applications, challenges, and
advancements in deep learning. Results: 2004 articles were reviewed, identifying 14 disease categories.
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Observed trends include explainable-AI, patient embedding learning, and integrating different data sources
and employing deep learningmodels in health informatics. Noted challengeswere technical reproducibility
and handling sensitive data.Discussion: There has been a notable surge in deep learning applications on
public health data publications since 2015. Consistent deep learning applications and models continue to
be applied across public health data. Despite the wide applications, a standard approach still does not exist
for addressing the outstanding challenges and issues in this field.Conclusion: Guidelines are needed for
applying deep learning and models in public health data to improve FAIRness, efficiency, transparency,
comparability, and interoperability of research. Interdisciplinary collaboration among data scientists, public
health experts, and policymakers is needed to harness the full potential of deep learning.
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Introduction
The fusion of deep learning methodologies with extensive and heterogeneous health datasets has
emerged as a powerful and trans-formative field, revolutionizing the way of analyzing, interpreting,
and extracting insights from vast and complex healthcare data.1 Public health datasets encompass a
diverse range of information, including electronic health records, epidemiological data, images
data2; where the traditional analytical approaches have limited capabilities to uncover hidden
relationships and patterns within these datasets due data volume and complexity.3

Deep learning applications have helped medical professionals through several areas such as
symptommonitoring, diseases and outbreak predictions, patients profiling, patients’ disease history,
predictive modeling, and decision support systems. Deep learning could revolutionize public health
by providing insights and surveillance tools to prevent and treat diseases.

Health-related public data provides valuable resources for researchers. Wanga et al.4 mentioned 28
of those health- related repositories such as OCHINwhich is “a collaborative, member-based network
of federally qualified health centers and similar organizations, which delivers primary health care to
vulnerable populations”.5 It is the largest network of CHCs using a single instance of the Epic EHR.6 It
has more than 500 community health centers (CHCs) in its network and serves approximately 2.8
million patients.7 High-dimensional EHR data provides a rich source of information for machine and
deep learning algorithms, allowing them to capture complex patterns and relationships between
different variables. Deep learning and high-dimensional EHR data have the potential to improve
healthcare outcomes by enabling the development of more accurate and personalized predictions and
decisions, leading to improved patient care and better population health management.

This systematic review aims to explore the scope and limits of cutting-edge deep learning
techniques that researchers are using for predictive analytics in public health data and to review
associated issues and trends, such as challenges, in this area of research. Specifically, in this review
we tried to answer the following questions: (1) What are major deep learning and predictive
modeling approaches discussed in public health research papers? (2) What are some of the sig-
nificant research trends and associated issues in this area of research?

Preliminary review of the literature
We conducted a preliminary SLR to learn about the general popular public health datasets that are
available and used frequently in research papers. Based on this initial research, we focused on the
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three terms combined “public health datasets” in one source, Google Scholar. The initial search from
Google Scholar for those three terms together retrieve around 750 results, excluding patents. We
focus on two main aspects searching through those results:

· What are the main subjects discussed in those papers?
· What are the main public health datasets mentioned in those papers?

Preliminary SLR: Main subjects
Visualization. Visualization is a large theme in surveyed research papers related to public health
datasets. Some of the focused visualization subjects include: geospatial,8–11 interactive data
visualization,12–15 customizable visualization,16 and visualization libraries.17 Research indicated
that visualization is not as advanced in health applications as compared with other scientific
disciplines despite its significant positive influence on better understanding data in those
applications.12

While most of medical or health visualization focused on images (e.g.10,18–21), yet few research
papers discussed text visualization, e.g. medical documents.22

Health insurance issues and analysis. Health information concerns from privacy perspectives span
from personal, to health and also financial information about patients. Public and private health
providers can have access to all those categories of sensitive information. There are few public
insurance datasets such as:

· All-payer claims databases: (e.g. cited by:23–27).
· : CPS ASEC.28–30

· HealthCare.gov datasets.31–33

· Primary Care Reimbursement Service.34,35

Public health datasets and predictive analytic. Predictive analytic is a major tool for the evaluation and
analysis of health datasets. Among all different public datasets and their focuses, machine learning
and predictive analytics are on top of the researched subjects.

Preliminary SLR: popular public health datasets
There are several public health datasets that are available online. The nature of variables and details
in those datasets can vary from privacy and user information perspectives. Open data is a new public
health model, where previously only reports or outputs in certain formats are provided in public,
while raw data can be provided upon request.36 The formats and structure for those datasets are not
consistent due to several factors. Public health datasets may have to deal with different state and
federal regulations specially in relation to privacy and sensitive information.

We include below a comprehensive list of some of the public health datasets that are frequently
used in public health research. Most of the datasets are publicly available, but there are a few that
may not be fully public or may have restrictions.

· US Census: General use popular important public dataset in US. It contains a lot of important
information about people lives. Census data are used to distribute funds for government
programs such as Medicaid, and for planning the locations of schools, roads, and other public
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facilities. Census data are also used to track population trends over time as well. In the
preleiminary SLR, some papers reported using health-related data from US Census
(e.g.37).

· OCHIN (Oregon Community Health Information Network) dataset (https://ochin.org/data-
exchange). OCHIN is used in several health studies and publications and not fully publicly
available.38 OCHIN is a collaborative, member-based organization of federally qualified
health centers and similar entities.

· The Uniform Hospital Discharge data set (UHDDS) with Restricted access.39

· The Minimum data set for long term care (MDS).
· The Health Plan Employer Data and Information Set (HEDIS) with Restricted access.
· Healthdata. gov which incorporates more than a century of US healthcare data.
· The World Health Organization.
· Data. gov which includes thousands of data sets which, among others, include health, public

safety, and scientific research data sets.
· The Human Mortality Database (HMD).
· OpenFDA, launched by the U.S. Food and Drug Administration.
· Medicare. gov
· Canadian Community Health Survey (CCHS).
· National Health Interview Survey (NHIS).
· Mississippi Youth Risk Behavior Survey (YRBS).
· Behavioral Risk Factor Surveillance System (BRFSS).
· National Health and Nutrition Examination Survey (https://www.cdc.gov/nchs/nhanes/index.

htm/).
· Medical MNIST (https://medmnist.com/).
· Medical imaging and MRICloud with Restricted access to specific research groups.40

· Open EEG (https://github.com/meagmohit/EEG-Datasets/).
· Ontario Incidence Study of Reported Child Abuse and Neglect-2003 (OIS 2003): (https://

cwrp.ca).

Searching strategy to retrieve studies
After completing the preliminary SLR process, we decided to focus on public health datasets in the
era of deep learning. In this focused Systematic Literature Review (SLR), the guidelines were
followed from References.41,42 The research process is divided into three phases. In the first
planning phase, the stages of defining research questions, developing, and validating review
protocols are covered. In the second phase, identification and selection of relevant studies, data
extraction, and the information synthesis process are covered; and in the third phase, writing and
validating the review are reported.

Plan review
Review protocol. The development and validation of the review protocol highlight the searching of
related articles with the appropriate keywords and the literature sources.

Searching Keywords. To guarantee that the review closely covers Public Health dataset and relevant
to deep learning and predictive modeling, we tried to limit our search to the most relevant search
term. Thus, we started with the keywords, and then we went through the following steps:
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· Extracting the major distinct terms from our research questions;
· Using different spellings of the terms;
· Updating our search terms with keywords from relevant papers.

We used the main alternatives and added “OR operator” and “AND operator” to get the
maximum amount of directly relevant works in the literature as shown in (Table 1). This table
outlines the alternative search keywords used to ensure comprehensive coverage of relevant lit-
erature in our systematic review. Each ID represents a distinct search query combination aimed to
capture various studies related to public health datasets and deep learning techniques. For example,
ID 1 queries include core terms related to public health data and the fundamental deep learning
methods, ID 2 expands on ID 1 by including additional advanced deep learning methods to capture
more recent advancements and specialized applications of deep learning in public health contexts,
ID 3 queries further broadens the scope by incorporating even more specific deep learning
techniques to cover a wide array of deep learning methodologies that may be applied in the analysis
of public health data. Appendix A provides the specific search formulas used in each database

Literature resources. Primary review studies: PubMed, Web of Science, Scopus, and Springer da-
tabases were chosen for selection of relevant articles. These databases have maximum coverage of
quality articles in our domain. We restricted our search to research articles published in English and in
peer-reviewed journals or conferences available from the inception of each database through 2023.

Conduct review
In this phase, we conducted the review according to the research questions, keywords, and pro-
tocols. This phase mostly emphasizes the inclusion and exclusion of articles, according to (Table 2).

Table 1. Searching keywords alternatives.

ID Keywords

1 (“Public health data” OR “public health dataset” OR “EHR” OR “electronic health record”) AND (“deep
learning” OR “representation learning” OR “neural network” OR “convolutional neural network” OR
“con- vNet” OR “CNN” OR “recurrent neural network” OR “RNN” OR “long short-term memory”
OR “LSTM” OR “generative adversarial network” OR “GAN” OR “autoencoder” OR “restricted
Boltzmann machine” OR “deep belief network” OR “DBN”)

2 (“Public health data” OR “public health dataset” OR “EHR” OR “electronic health record”) AND (“deep
learning” OR “representation learning” OR “neural network” OR “convolutional neural network” OR
“con- vNet” OR “CNN” OR “recurrent neural network” OR “RNN” OR “long short-term memory”
OR “LSTM” OR “generative adversarial network” OR “GAN” OR “autoencoder” OR “restricted
Boltzmann machine” OR “deep belief network” OR “DBN” OR “deep reinforcement learning” OR
“DRL”)

3 (“Public health data” OR “public health dataset” OR “EHR” OR “electronic health record”) AND (“deep
learning” OR “representation learning” OR “neural network” OR “convolutional neural network” OR
“con- vNet” OR “CNN” OR “recurrent neural network” OR “RNN” OR “long short-term memory”
OR “LSTM” OR “generative adversarial network” OR “GAN” OR “autoencoder” OR “AE” OR
“restricted Boltzmann machine” OR “deep belief network” OR “DBN” OR “deep reinforcement
learning” OR “DRL” OR “gated recurrent units” OR “GRU” OR “pre-trained model” OR “transfer
learning” OR “graph neural network” OR “feed-forward neural network”)
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Generally, this study focused on peer-reviewed publications that was relevant to deep learning and
directly related to the data, applied deep learning techniques used to analyze data available from
public health datasets. Studies that were irrelevant to public health datasets and deep learning
domain were skipped.

Study selection. As mentioned in section 2, we conducted a primary review of research articles
using various databases, including PubMed, Web of Science, Scopus, and Springer. Our
findings revealed that Scopus yielded the highest number of relevant articles among these
databases. Specifically, approximately 45.80% of Springer’s unique records, 59.16% of Web of
Science’s unique records, and 84.29% of PubMed’s unique records were also included in
Scopus. Consequently, we have chosen to focus our analysis primarily on Scopus results. The
whole process of Scopus study selection is illustrated in (Figure 1). A total of 2545 articles
appeared in the online search. By applying filtration with title, keyword, inclusion, and ex-
clusion criteria, a total of 2534 papers were short-listed. Inclusion and exclusion criteria are
defined in (Table 2). Among them, 530 articles were excluded; 200 articles were found ir-
relevant to deep learning, and 330 were found irrelevant to Public Health. At the end, 2004
articles are kept in the list after going through full reading. To ensure the quality of our selection,
we assessed the remaining articles with a focus on identifying studies that are not only more
pertinent and comprehensive but also address all the core research questions. These primary
inquiries include whether the studies center around public health data and if they dig into the
essential deep learning techniques, such as neural networks, CNNs, RNNs, LSTM, and GANs,
particularly in the context of large datasets.

The article selection process involved three researchers: Authors “X”, “B”, and “C”. The 2545
articles identified from the initial search were equally divided among the three researchers for
screening. Each researcher independently reviewed their assigned articles based on predefined
inclusion and exclusion criteria. To ensure consistency, a subset of 10% of the articles was randomly
selected and reviewed by all three researchers, resulting in a Cohen’s kappa statistic of 0.78,
indicating substantial agreement. Authors “A” and “F” contributed to other essential tasks in the
study but were not involved in the article screening process. Cohen’s kappa statistic, a measure of
inter-rater reliability, was calculated using the formula κ = P0!Pe/1-Pe, where P0 is the observed
proportion of agreement among raters and Pe is the expected proportion of agreement by chance.
This confirming the reliability of the selection process. Collaborators “G” and “I” contributed to the
data formatting process, ensuring that the data collected was in the appropriate formats for analysis
and reporting.

Table 2. (a) Inclusion criteria description and (b) exclusion criteria description.

Category Criteria

(a) Inclusion • The research was relevant to public health datasets
• The research was directly related to the data
• The research was related to deep learning applications
• The research was conducted using deep learning techniques related to various data types
• For duplicate publications of the same study, the newest and most complete one was selected.
This is recorded for only one study whose related work appeared two times

• The research is a journal article or a conference proceeding
(b) Exclusion • Studies that were irrelevant to public health datasets and deep learning domain were skipped
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Report review. At this stage, the extracted data were aggregated to answer the research questions. For
our research questions, we used the narrative synthesis method. Accordingly, we used tables and
charts to present our results. The guidelines of References41 were closely followed in the reporting of
results in the Statistical Analysis section below. The provided guidelines emphasize the importance of
a thorough methods overview, calling for clear and detailed descriptions of research methods en-
compassing data collection, processing, and analysis to ensure reproducibility. Additionally, they
stress the significance of presenting research results coherently through structured and organized
formats, including visual aids like figures, tables, and graphs for improved clarity. Furthermore, the
guidelines highlight the need for offering a comprehensive overview of how the research findings are
applicable to real-world contexts and contribute to practical applications and services.

Statistical analysis
In this section, we provide few stat figures and tables. (Figure 2) shows the years of publications for
the selected papers. The Figure indicates the recent increase of interests in this field with a significant
growth starting the year 2016. The same finding can be noticed observing the top 10 cited pub-
lications where they are between the years 2016-2019.

The top different disease categories are highlighted in (Figure 3) that used public health datasets
and deep learning techniques.

The top different data formats or sources of data studied are presented in (Figure 4) that used
public health datasets and deep learning techniques.

Figure 1. Study selection process.
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(Tables 3 and 4) shows the distribution of our included publications based on their type. The
overall included are about 2000 with roughly 1/4-th conference papers and 3/-4th journal articles.

(Table 5) shows for journal articles number of papers published in major publishers.
(Table 6) shows the different Deep learning types presented in the literature reviewed. Those are

based on citing those types only within the “Abstract” section of the paper. While it captures a broad
range of models, it is not exhaustive. Additional models may be identified in specific studies or
emerging research.

(Table 7) shows the Top Researchers Names and Number of Publications per Researcher.
(Table 8) shows the top Journals and the Number of Publications shown in each Journal.

Deep learning and health informatics
We noticed a research trend that started around a decade ago, employing deep learning models in
health-related knowledge learning and prediction. Earlier in the statistics section, we showed that

Figure 2. The Number of publications per year.

Figure 3. The Top Common Disease Categories Studied using Public Health Datasets.
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Figure 4. The top data formats or sources of data studied.

Table 3. Distribution of papers based on publication type. (Table 4) shows top 10 cited papers in our
collected list. The list shows that most of the top cited papers focus on using deep learning approaches in health
related data.

Publication type Number Status

Journal articles 1408 Included
Book or book chapter 91 Excluded
Conference paper 596 Included
Conference review 81 Excluded
Review 246 Excluded
Others (note, erratum, editorial, short survey, letter) 112 Excluded
Total included 2004

Table 4. Top 10 cites articles.

Article Year Subject Current citations no. (scopus)

43 2018 Deep learning for healthcare 1153
44 2018 Deep learning for healthcare 1076
45 2018 Deep learning in biology and medicine 968
46 2016 Deep patient 864
47 2017 Cardiovascular risk prediction 626
48 2017 Deep EHR 557
49 2016 Attention mechanisms and health care data 536
50 2017 RNN and heart failures detection 458
51 2019 Acute kidney injury prediction 454
52 2017 Graph-based attention and healthcare learning 359
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most of the top 10 cited papers in this review utilized deep learning models. This is not uncommon
or surprising as deep learning has the similar hype in many other fields as well. (Figure 5) shows
more than million candidate articles in Google Scholar that include the two keywords “Deep
learning” and “Health”. More than half of those are after 2015.

Deep learning Models for health public data
Deep learning models (DLMs) or deep neural networks can be used to solve several urgent and
important real-world health-related problems on large-scale datasets. The need of effective data
analytics in health informatics for better decision making is an ongoing challenging issue.53 Our
analysis focuses on deep learning models that have been extensively validated and are widely
adopted in current health data applications. Although newer architectures like transformers and
large language models are gaining traction, their application in health informatics is still emerging
and is therefore beyond the scope of this study. Our previous sections shows some of the popular
DLMs in health informatics (e.g. LSTM, CNN, GAN, AE, RNN, GRU, GNN and DBN). We cover
a summary of each one of those models in health informatics in the next sections.

Long short-term memory networks: LSTM. LSTM is a variant of RNN designed to alleviate problems
related to long- term dependencies.54 LSTMs are well-suited for processing sequences of data with
long-range dependencies. They can capture information from earlier time steps and remember it for
a more extended period, making them effective for tasks like natural language processing (NLP) and
time series analysis.55 LSTM can refer to the information of the previous unit when processing the
information of this unit, but it does not refer to the information of the subsequent unit.56 LSTM in
health care research have been used to predicting life expectancy,57 healthcare usage based on
medical records,58 and machine health monitoring.59 LSTM networks’ ability to handle long-range

Figure 5. Deep Learning and Health search on Google Scholar.
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dependencies in health data makes them effective for modeling lifespan estimations. However,
LSTMs can be computationally intensive and prone to overfitting if not properly used. Despite these
challenges, their capacity to capture temporal dynamics and manage missing data proves ad-
vantageous in health applications like forecasting patient lifespans from historical records.

Convolution neural networks: CNN. CNN is an advanced version of DNNs which arranges its neurons
in three basic dimensions. The main advantage of CNN is that it does both feature extraction and
classification, automatically.60–63 CNN is used in many image detection and classification in many
domains and applications including health related image classification applications (e.g. medical
images classification,64,65 lung cancer,66 Ultrasound images,67 breast tumors,68 skin cancer,69

tuberculosis,70 and many others.

Generative adversarial networks: GAN. GAN is an unsupervised learning method consisting of two
neural networks that are competing with each other in trying to learn the pattern of its input by
itself and generate new samples with similar characteristics to the real data. One key advantage
of GAN is that the model is able to learn the underlying data distribution. Additionally, the
existence of a discriminator enforces the generator in generating accurate results. GANs can
also reduce the training data needed for training, which is suitable for medical imaging due to
the shortage of data.71 In health data GAN is used in many applications such as: ECG de-
noising,72 chest X-ray images classification,73 tomato leaf disease identification,74 neuro
imaging and clinical neuroscience.75

Auto-encoders: AEs. Autoencoders are unsupervised neural networks used for representing the
structural data by data compression. They have been used for the purpose of reducing dimen-
sionality and also detecting network anomalies in large datasets. Autoencoders benefit from the
many technical advances made in the last years in the development of DNNS. One of the main
advantages of autoencoders is their ability to learn quickly on unlabeled data.76

In health informatics, AEs are used to learn Cardiac-ICU and Neuro-ICU.77 They are also used in
medical imaging,76 compressing patients features,78 RNA target prediction,79 detection of plants
diseases,80 and tumor identification and detection.81–84

Recurrent neural networks: RNNs. Recurrent neural networks are neural networks with directed
cycles that are particularly suitable to process time series data.85,86 They are designed to process
sequences, and can remember or forget information from earlier steps when processing later steps in
a sequence.87 RNNs allow previous outputs to be used as inputs while hiding the state.88 RNNs are
used in health informatics in different examples or applications such as, future diagnosis of heart
failure,89,90 predicting health by suicide,87 predicting hospital readmission of diabetic patients,91

predicting HIV status,92 and end-to-end classification of cell-cycle stages.93

Gated Recurrent Units: GRU. Gated Recurrent Units are special variants of LSTMs that merge the
forget and input gates into a single update gate resulting in a simpler more efficient model than
standard LSTM models.94 GRUs do not incorporate memory cells, they have reset gates instead.
These reset gates allow the hidden state to leave the unimportant information and thus, focusing on
the quality of content.95 In health informatics, GRUs are used in life estimation,96 patient case
similarity evaluation,97 flu forecasting,98 clinical event prediction,99 stroke volume estimation,100

prediction of Parkinson’s disease,101 patients trajectory prediction,102 predicting blood pressure,103

and human emotions recognition.104
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Graph Neural Networks: GNN. Graph neural networks (GNNs) are models for representation of
learning graphs, they are built upon the multi- layer perceptrons (MLP) architecture with additional
message passing layers to allow features to flow a cross nodes.105 They are increasingly becoming
popular in various fields such as computer vision, computational biology and chemistry, where data
are naturally explained by graphs.106 Graph Neural Networks are used in health informatic research
and applications such as: classification of mammograms,107 estimating the state of epidemics
spreading,108–110 identification of providers with similar risk profiles in healthcare claims,111 virus-
human protein-protein interaction prediction,112 modelling the bioactivities of ligands targeting
orphan G protein-coupled receptors,113 drug-target affinity prediction,114,115 and prediction of
circRNA-miRNA association.116

Deep belief networks: DBN. Deep belief nets are probabilistic generative models that are composed of
multiple layers of stochastic, latent variables.117 The main advantages of deep belief networks are
their efficient learning algorithm, their ability to extract high dimensional features and to represent
them in low dimensions, as well as their associative memory ability.118 Deep belief nets are used in
health informatics research and applications such as: seizure detection,119 heart failure prediction,120

detecting Neuro-degenerative Disease from MRIs,121 emotion recognition,122 and the classification
of malaria-infected and uninfected images.123

Deep learning applications in health public data
Applying Deep learning (DL) techniques in health public data has revolutionized how vast amounts
of healthcare information are analyzed and interpreted in many health applications.124 These
techniques contribute to several applications that help in assessing population health trends, op-
timizing resource allocation, and enhancing public health strategies.125 In this section, we outline
the most crucial applications where the Deep Learning (DL) approaches are utilized and elucidate
how Deep Learning (DL) approaches contribute to the enhancement of these applications and we
discuss how the DL techniques hold immense promise for reshaping healthcare in public health
datasets.

Disease prediction. Deep learning applications in the health public provide invaluable tools for
accurate disease prediction, offering unprecedented insights into early detection, improving pre-
vention strategies, and disease progressive assessment. With the development of DL techniques, the
accuracy of medical disease prediction is continuously improved.126 Several works reviewed the
deep learning algorithms for disease prediction as.127 In127, Yu et al. showed the use of Structured
data algorithms and Unstructured data algorithms to predict several types of disease. The DL
techniques are extensively used for Chronic Disease prediction and for Epidemic Outbreak Pre-
diction. The application of deep learning in infectious disease prediction has proven the efficiency in
the surveillance of outbreaks.

Drug discovery. Drug discovery research generally aims to identify molecules with therapeutic
effects against specific diseases The primary objective of drug discovery research is typically to
identify molecules with therapeutic effects targeted at specific diseases.128 DL techniques have
emerged as a powerful tool being used in all stages of drug discovery and development. Several
research utilized DL techniques in Deep learning in drug discovery.129 For instance, In130, Bai et al.
proposed a tool called MolAICal that employs a two-component approach to design 3D drugs: the
first component utilizes deep learning (DL) and a genetic algorithm trained on FDA-approved
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drugs, and the second component integrates molecular docking with a DL. Popova et al.131 designed
a deep reinforcement learning-based approach called ReLeaSE utilized for drug design. ReLeaSE
integrates two deep neural networks (DNN), known as generative and predictive. The generative
model was used to produce new compounds, and the predictive model was used to predict the
properties of the compound.131 The SLR in129 presented the integration between the recent DL
technologies and several drug discovery applications.

Image analysis. Medical image analysis plays a crucial role in healthcare that enhances early and
accurate diagnosis and treatment planning and monitoring. DL techniques have revolutionized
medical image analysis, offering unparalleled capabilities in interpreting imaging data and im-
proving diagnostic decision-making. DL techniques are used for several medical image types and
utilized in several disease diagnostic processes. Suzuki et al.132 overviewed the area of deep learning
in medical imaging and included the deep learning effects in the medical imaging analysis field, the
focus of this overview is two models: a massive-training artificial neural network (MTANN) and a
convolutional neural network (CNN) their applications to medical imaging. Several systematic
reviews have already discussed the current approaches of DL in Medical image analysis as.133,134

Other research focuses on using medical images and DL to study specific diseases, for example, the
research in135 determined the types of medical images utilized in the classification of COVID-19
and explored the employed methodologies in the COVID-19 classification tasks.

Health monitoring. The utilization of public datasets with deep learning techniques in health
monitoring provides many applications with powerful tools for advancing personalized healthcare
solutions.136 The public health datasets, are comprised of diverse sources and kinds of data such as
electronic health records and population health statistics that provide a comprehensive foundation of
information for the health monitoring systems.137,138 Deep learning techniques with their capa-
bilities in handling large and complex datasets, bring unparalleled analytical prowess to extract
meaningful insights from the available public health data.139,140 By utilizing deep learning
techniques, researchers can develop predictive models for health monitoring offering a nuanced
understanding of health dynamics.141 combining the accessibility of public data with the analytical
power of deep learning holds significant potential to enhance the precision of health monitoring
which contributes to early disease detection, supports the development of more targeted health
monitoring systems, and provides effective healthcare interventions on a population scale. Sujith
et al. in136 presented a review of the smart health monitoring frameworks that utilized deep learning
and machine learning techniques and algorithms for enhancing the handling of the healthcare data
generated in Smart health monitoring.

Medical research. The availability of many public datasets and the strength of DL techniques fosters
a collective approach to problem- solving in medical research.142 This collaborative paradigm
accelerates the discovery, leading to breakthroughs in disease understanding, drug development,
and personalized medicine. The utilization of deep learning in public datasets marks a paradigm
shift in medical research, where open access to data enhances medical innovation,143 and drives
advancements that have the potential to revolutionize healthcare practices and outcomes.144

Common disease categories and techniques studied
In this paper, different disease categories studied are discussed. The most common disease cat-
egories studied are presented in (Table 9). The top common disease categories studied include
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Hepatitis, Cardiovascular, Cancer, Stroke, Pneumonia, Diabetes, Alzheimer, Dementia, Obesity,
Asthma, Hypertension, Arthritis, COVID-19, and Depression. The most common techniques used
among these disease categories include Recurrent Neural Network (RNN), Convolutional Neural
Network (CNN), Long Short-Term Memory (LSTM), Bi-directional Long Short-Term Memory
(BiLSTM), Deep Neural Network (DNN), Perceptron Neural Network Autoencoder Networks,
BERT (Bidirectional Encoder Representations from Transformers) Deep Auto-encoder Artificial
Neural Network, Longitudinal Deep Learning Model, MLP (Multilayer Perceptron), and Transfer
Learning.

Research trends and challenges: EXAMPLES
One of the promising research trends in the scope of this paper is obviously to use deep learning
algorithms to improve the accuracy of data analysis tasks. Another trend that we discussed already is
the usage of different deep learning models and settings in health information data analysis.

We cite examples of research trends in health informatics datasets utilizing machine and deep
learning methods.

The integration of different data sources or types
In (Figure 4), data formats or sources of data are presented. Many recent research publications
integrate data from different sources and types. So far, those are the different types of data used :

· Electronic Health Records Structured data
· Images
· Text (unstructured)
· Biological sequences
· ECG, EEG, MEG, etc signals
· Patient, clinical and medical data

In the last couple of decades the amount of data used in data analytic research increased rapidly.
Additionally, there was a significant increase in the usage of unstructured data or text that is coming
from several input sources such as: web-based contents, and documents, patients and medical
records, and so on. Such spectrum of data is not only different in terms of those types mentioned
earlier, but also in many other aspects. For example, how you deal with combining data from social
networks that may have a lot of misinformation with data from hospitals, clinics and medical
doctors?.

In addition, the presence of a significant quantity of data in various unspecified formats or
originating from diverse sources in reviewed studies necessitates adherence to the principles of
FAIRness in open and responsible research. This concept emphasizes the importance of data being
Findable, Accessible, Interoperable, and Reusable, ensuring that research data management is
conducted efficiently and effectively.

Deep learning research and reproducibility issues
The issue of reproducibility is an ongoing problem in deep learning research in general. Many
research papers present models, settings and discuss results and accuracy, however, with no solid
public data about these details such results can be hardly verifies.
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Technical reproducibility refers to the ability to reproduce a paper’s results precisely as presented
in the paper under the same condition.145,146 Reproducibility is also critical for deep learning
research, whose goal is to develop algorithms to reliably solve complex tasks at scale.147 Re-
producibility is an essential metric when assessing for possible clinical deployments of evaluated
algorithms. of any algorithm.

Explainable-AI
Explainable-AI is a rapidly emerging research area that focuses on annotating model’s decisions as
well as decision- making characteristics.148,149 It is used to describe an AI model, its expected
impact and potential biases and helps characterize model accuracy, fairness and transparency.150

Explanations serve as a bridge between humans and AI systems.151 The EU’s guidelines on AI
robustness and explainability152 emphasize three key elements for the proper utilization of AI:
transparency, reliability, and safeguarding of individual data. There are many popular frameworks of
explainable AI including SHAP, LIME, MUSE, PDP, CE, etc. In health data Explainable-AI is
important to interpret results and utilize their findings. Explainable AI is critical in health infor-
matics helps avoid practical consequences.153,154 It can also improve fairness and remove bias in
decision making.155 “Positional SHAP” (PoSHAP),156 is proposed to interpret models trained from
biological sequences by exploiting SHAP to generate positional model interpretations.

Patient embedding learning
Patient embedding learning has several potential applications in healthcare, including:

· Predictive modeling: Patient embeddings can be used as input features in predictive models,
allowing for more accurate predictions of patient outcomes, such as hospital readmission or
disease progression.

· Improved patient clustering: Patient embeddings can be used to cluster patients into sub-
populations with similar medical histories and demographics, improving population health
management and reducing health disparities.

· Personalized medicine: Patient embeddings can be used to predict the likelihood of a patient
responding to a specific treatment, allowing for the development of more personalized
treatment plans.

Imbalanced data
Handling of imbalanced health-related public data poses a considerable challenge for machine
learning and deep learning approaches.157 This imbalance data can impact model training, where the
algorithm may prioritize the majority class. To overcome this challenge, employing machine
learning and deep learning techniques in health public dataset should explore several imbalance
handling strategies,158 such as oversampling the minority class,159 or utilizing techniques like
Synthetic Minority Over-sampling Technique (SMOTE).160,161

Deep learning techniques offer a promising approach for handling imbalanced health datasets.162

As examples, Convolutional neural networks (CNNs) and recurrent neural networks (RNNs) excel in
handling and capturing spatial and temporal dependencies in medical data.163,164 Moreover, transfer
learning Techniques where pre-trained deep learning models are fine-tuned for specific health
challenges, can be particularly advantageous in scenarios with limited imbalanced labeled data.165
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Data ownership
Health data ownership and privacy concern are debated issues in the context of healthcare sys-
tems.166 The current use of Big Data in healthcare faces challenges due to a lack of rules that manage
data ownership and responsibilities.167 These challenges arise when considering the collaborative
and constructed nature of clinical data.168 In169 et al suggested discussing the use of Blockchain as
shown in170 to offer a new way to empower patients to control their data while ensuring secure and
confidential data sharing through encrypted transactions.168 However, despite Blockchain tech-
niques’ potential benefits in enhancing security and privacy, the widespread adoption of blockchain
for healthcare data transfer and storage is still pending.171

Discussions, limitations of the study and recommendations for
future work
In conclusion, this systematic literature review delves into the dynamic landscape of public health
research within the era of deep learning. The synthesis of existing studies has provided a com-
prehensive overview of the applications, challenges, and advancements in utilizing deep learning
methodologies for the analysis of diverse datasets in public health contexts. The findings underscore
the potential of deep learning to revolutionize the way we approach and address public health issues,
offering innovative solutions for data-driven decision-making.

Throughout the review, common themes such as predictive modeling, disease surveillance, and
risk assessment have emerged as focal points of deep learning applications in public health.
However, the review also highlights challenges such as data privacy concerns, interpretability of
models, and the need for standardized methodologies. These challenges underscore the importance
of a thoughtful and ethical integration of deep learning into public health research.

As the field continues to evolve, future research should focus on addressing the identified
challenges, exploring novel applications, and fostering interdisciplinary collaboration between data
scientists, public health experts, and policymakers. By doing so, we can harness the full potential of
deep learning to advance our understanding of public health phenomena, ultimately contributing to
more effective strategies for disease prevention, health promotion, and healthcare delivery. This
review serves as a valuable resource for researchers, practitioners, and policymakers navigating the
intersection of public health and deep learning, providing a roadmap for future investigations in this
rapidly evolving field.

There are a few limitations of this review to consider. We were unable to review all of the initial
results due to resource constraints. We conducted a primary review of research articles using various
databases, including PubMed, Web of Science, Scopus, and Springer. Our findings revealed that
Scopus yielded the highest number of relevant articles among these databases. Therefore, our
screening process could be considered a convenience sample which optimizes for recent research
and highly visible research based on citation frequency. A future review could take the time to
review all initial search results rather than adopting our visibility approach.

Conclusions
The employment of Deep Learning Models in public health settings continually proves to play a
transforming role that can advance multiple areas particularly those of disease prediction, surveillance
and risk assessment. Despite the challenges highlighted in this study, Deep learning methods hold
promising future in improving healthcare and disease prevention. This study serves as a helpful resource
for future research to address these challenges and work as a guideline for further study in this field.
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Appendix A

Detailed search formulas and criteria
This appendix provides the specific search formulas used in each database (i.e. ID 1 in Table 1) to

ensure the retrieval of relevant literature on the application of deep learning in public health data.

PubMed
To conduct a comprehensive search in PubMed, the following steps were taken. First, we

navigated to the PubMed Web site. The search formula used was for ID 1 as follows:
(“Public Health Data” [Title/Abstract] OR “Public Health Dataset” [Title/Abstract] OR “EHR”

[Title/Abstract] OR “electronic health record” [Title/Abstract]) AND (“deep learning” [Title/Abstract]
OR “representation learning” [Title/Abstract] OR “neural network” [Title/Abstract] OR “convolu-
tional neural network” [Title/Abstract] OR “ConvNet” [Title/Abstract] OR “CNN” [Title/Abstract]
OR “recurrent neural network” [Title/Abstract] OR “RNN” [Title/Abstract] OR “long short-term
memory” [Title/Abstract] OR “LSTM” [Title/Abstract] OR “generative adversarial network” [Title/
Abstract] OR “GAN” [Title/Abstract] OR “autoencoder” [Title/Abstract] OR “restricted boltzmann
machine” [Title/Abstract] OR “deep belief network” [Title/Abstract] OR “DBN” [Title/Abstract])

Web of Science
We accessed the Web of Science database. The initial search formula for ID 1 was:
TS=(“Public Health Data” OR “Public Health Dataset” OR “EHR” OR “electronic health re-

cord”) AND TS=(“deep learning” OR “representation learning” OR “neural network” OR “con-
volutional neural network” OR “ConvNet” OR “CNN” OR “recurrent neural network” OR “RNN”
OR “long short-term memory” OR “LSTM” OR “generative adversarial network” OR “GAN” OR
“autoencoder” OR “restricted boltzmann machine” OR “deep belief network” OR “DBN”)

Scopus
In Scopus, the search was conducted using the following detailed ID 1 formula:

Obeidat et al. 29



TITLE-ABS-KEY ((“Public Health Data” OR “Public Health Dataset” OR “EHR” OR
“electronic health record”) AND (“deep learning” OR “representation learning” OR “neural
network” OR “convolutional neural network” OR “ConvNet” OR “CNN” OR “recurrent neural
network” OR “RNN” OR “long short-term memory” OR “LSTM” OR “generative adversarial
network” OR “GAN” OR “autoencoder” OR “restricted boltzmann machine” OR “deep belief
network” OR “DBN”))

Springer
For Springer, the search was performed using the following ID 1 search formula:
(“Public Health Data” OR “Public Health Dataset” OR “EHR” OR “electronic health record”)

AND (“deep learning” OR “representation learning” OR “neural network” OR “convolutional
neural network” OR “ConvNet” OR “CNN” OR “recurrent neural network” OR “RNN” OR “long
short-term memory” OR “LSTM” OR “generative adversarial network” OR “GAN” OR “au-
toencoder” OR “restricted boltzmann machine” OR “deep belief network” OR “DBN”)

Appendix B
Appendix Table A1

Appendix Table A2

Table A1. Top publishers This table lists the top publishers and their respective article counts.

Publisher Count

IEEE 644
Elsevier 200
Springer 137
ACM 148

Table A2. Deep Learning Models This table shows the count of various deep learning models used in the
reviewed articles This table shows the count of various deep learning models used in the reviewed articles.

Type Count

LSTM 224
CNN 174
GAN 150
AE 148
RNN 139
GRU 46
GNN 21
DBN 11
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Appendix Table A3

Appendix Table A4

Table A3. Top researchers names and number of publications per researcher This table lists the top
researchers and the number of publications attributed to each.

Researcher name Number of occurrence

Sun, jimeng (9737233900) 97372339000 occurs 26 times
Wang, fei (56177292700) 561772927000 occurs 23 times
Xiao, cao (57199799682) 571997996820 occurs 22 times
Xu, Hua (55493876700) 554938767000 occurs 17 times
Liu, Hongfang (7409753328) 74097533280 occurs 16 times
Jiang, Xiaoqian (24479530900) 244795309000 occurs 15 times
Glicksberg, Benjamin S. (55845627200) 558456272000 occurs 15 times
Tang, Buzhou (35115621400) 351156214000 occurs 15 times
Ma, fenglong (57052032200) 570520322000 occurs 14 times
Qian, Buyue (36601594000) 366015940000 occurs 13 times

Table A4. Top Journals and the Number of Publications shown in each Journal This table lists the top journals
and the number of publications in each journal.

Journal name Number of occurrence

‘ Journal of Biomedical informatics’ Occurs 116 times
‘Lecture notes in computer science’ Occurs 73 times
‘BMC medical informatics and decision making’ Occurs 73 times
‘ Journal of the American medical informatics association’ Occurs 68 times
‘ JMIR medical informatics’ Occurs 61 times
‘ IEEE journal of Biomedical and health informatics’ Occurs 56 times
‘Artificial intelligence in medicine’ Occurs 48 times
‘PLoS one’ Occurs 41 times
‘Studies in health technology and informatics’ Occurs 37 times
‘Scientific reports’ Occurs 37 times
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Appendix Table A5

Table A5. Summary of common disease categories and techniques studied This table summarizes the
common disease categories and the techniques used in the studies.

Disease category Common techniques
Samples of studies’
references

Cancer Recurrent neural network, convolutional neural network 63,105,172–180

COVID-19/Corona
virus

Convolutional neural network, Multilayer perceptron, transfer learning 140,181–188

Diabetes Convolutional neural network, long short term memory networks
(LSTM)

189–196

Cardiovascular Convolutional neural network, long short term memory networks
(LSTM), bidirectional long short-term memory (BiLSTM)

197–203

Stroke Recurrent neural network (RNN), convolutional neural network
(CNN), deep neural network (DNN), perceptron neural network

204–208

Hypertension Convolutional neural network (CNN), long short-term memory
(LSTM), bidirectional long short-term memory (BiLSTM),
Autoencoder networks

209–211

Alzheimer Convolutional neural network (CNN), long short-term memory, BERT,
deep Auto-encoder

212–215

Depression Artificial neural network, deep neural network 216–218

Dementia Neural networks, recurrent neural networks 219,220

Pneumonia Recurrent neural network, BiLSTM, deep neural network 204,221–223

Asthma Recurrent neural network, long short-term memory, BiLSTM 224,225

Obesity Recurrent neural network, long short-term memory, BiLSTM 226,227

Hepatitis Artificial neural network 228–230

Arthritis Convolutional neural network, longitudinal deep learning model 231,232
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