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Anthropogenic habitat destruction and climate change are reshaping the geographic
distribution of plants worldwide. However, we are still unable to map species shifts
at high spatial, temporal, and taxonomic resolution. Here, we develop a deep learning
model trained using remote sensing images from California paired with half a million
citizen science observations that can map the distribution of over 2,000 plant species.
Our model—Deepbiosphere—not only outperforms many common species distribution
modeling approaches (AUC 0.95 vs. 0.88) but can map species at up to a few meters
resolution and finely delineate plant communities with high accuracy, including the
pristine and clear-cut forests of Redwood National Park. These fine-scale predictions
can further be used to map the intensity of habitat fragmentation and sharp ecosystem
transitions across human-altered landscapes. In addition, from frequent collections of
remote sensing data, Deepbiosphere can detect the rapid effects of severe wildfire on plant
community composition across a 2-y time period. These findings demonstrate that inte-
grating public earth observations and citizen science with deep learning can pave the way
toward automated systems for monitoring biodiversity change in real-time worldwide.

deep learning | biodiversity change | remote sensing | species distribution models

Humans are impacting plant biodiversity worldwide (1, 2), affecting critical ecosystem
services such as carbon sequestration (3), primary productivity (4), and climate regulation
(5). Major drivers include climate warming, which shifts plant ranges toward the poles
and peaks over decades (2, 6) and land use change, which converts hundreds of thousands
of hectares of habitat each year (7). Even largely undisturbed habitats are often still under-
going marked change at the individual species level (8). Therefore, comprehensively mon-
itoring plant biodiversity will require tracking individual species at high-resolution in
both space and time, a challenging and hard to solve task (9-11). Such high spatial and
temporal resolution plant species maps will be crucial to tracking the world’s progress
toward the United Nations’ Global Biodiversity Framework goal of protecting 30% of
the world’s biodiversity by 2030 (12).

Deep learning has shown remarkable ability to make sense of large-scale, noisy datasets
from across the life and earth sciences, from protein folding (13) to climate modeling
(14). To help close the gap in mapping plant species at high spatiotemporal resolution
(15), here, we take a similar data-driven, deep learning-based approach, and train deep
neural networks to predict the presence of thousands of plant species simultaneously from
large-scale citizen science, climate, and remote sensing datasets. We showcase how these
deep neural networks can generate fine-scale maps of thousands of plant species from
meter-resolution remote sensing imagery. We further demonstrate that these maps are
high enough resolution in both space and time to detect anthropogenic signatures of
biodiversity change, including deforestation, habitat fragmentation, and severe wildfire.
Relying solely on publicly available data, our approach is easily scalable to entire continents
and paves the way for automated plant biodiversity monitoring tools at global-scale.

To develop deep neural networks that predict the presence of thousands of plant species
from high-resolution remote sensing imagery, we focused on California, a species-rich
and data-dense state with abundant high-quality remote sensing imagery (16), dense
citizen science observations [~2 million species occurrences since the year 2000 (17)], and
avariety of independently generated ecosystem measurements and maps to serve as ground
truth (18-21). First, we compiled almost one million observations from the Global
Biodiversity Information Facility (22), filtering out duplicate observations, low coverage
species, and oversampled areas to curate a large dataset of over 650,000 research-grade,
primarily iNaturalist, citizen science observations for 2,221 vascular plant species (23, 24)
(Fig. 14 and SI Appendix, SM 1.1). Similar to previous datasets (25), we paired each
observation’s species label with the location’s corresponding 256 x 256 pixel, 1-m-resolution
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Fig. 1. Training a deep neural network to predict the presence of thousands of plant species. (A) Map of over 650,000 iNaturalist observations for 2,221 plant
species we curated to train plant species distribution models (SDMs) (24). (B) To train the CNNs, species observations were linked to 256 x 256 m remote sensing
images cropped from 2012 NAIP data (16), along with climate variables (31) (S/ Appendix, Fig. S2). (C) Deepbiosphere architecture, which combines a residual CNN
(TResNet) (27) trained using remote sensing imagery with a multilayered perceptron (MLP) network (32) trained using climate variables to predict plant families,
genera, and species (S/ Appendix, Table S3). Layer types and dimensions are annotated for each section of the neural network. (D) Comparison of Deepbiosphere’s
performance to common climate-based SDMs including Maxent, Random Forest (33), as well as the Bioclim MLP head trained with just climate, the remote sensing
TResNet head trained with just NAIP data, and an Inception V3 model from previous work (34). Metrics are reported per-species for the 1,541 species shared
between the uniform split of the training and testing set, with the median score annotated on each boxplot. spp = per-species, AUC = area under the curve;
ROC = receiver operating characteristic curve; RS = remote sensing. Stars indicate results from unpaired student's t test, with *** indicating a P-value < 1073,

* indicating a P-value < 107", and NS. indicating a nonsignificant P-value of > 0.1.

RGB-Infrared acrial image from the National Agricultural Imagery
Program (NAIP) (16) (Fig. 1B and S/ Appendix, SM 1.4, Fig. S2,
and Table S1). For extracting statistical patterns from this
high-resolution imagery, we employed convolutional neural net-
works (CNNGs) (26), specifically, a multilabel-optimized, residual
CNN architecture (RS TResNet, SI Appendix, SM 3.2.1 and
Table S2) (27). To improve performance for species with few
observations, we modified this architecture to classify both species,

https://doi.org/10.1073/pnas.2318296121

genus, and family to help share signals of niche similarity for
species that are both phylogenetically related (28) and occupy
similar ranges, which outperformed CNNs trained with just
species labels (S7 Appendix, Table S6). We further included
co-occurring species information through neighbor imputation
(81 Appendix, SM 1.2 and Fig. S2) which also improved CNN per-
formance (81 Appendix, Table S6), matching previous work, and
expectations from community ecology (29, 30) (see SI Appendix,
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SM 1.2 for options to train models without these additional
information).

To improve learning from noisy citizen science data—which
possesses systematic user observation biases, like overrepresenting
common species and species in densely populated regions (35)
(ST Appendix, Fig. S3)—we developed a sampling bias-aware
loss function [sampling-aware binary cross-entropy (BCE),
SI Appendix, SM 3.2.2]. Most locations in our dataset contain an
incomplete list of present species because many plants simply have
not yet been observed and uploaded to iNaturalist (SI Appendix,
Fig. S3B). To combat this, our new loss function differentially
downweighs the information contributed from absent species
based on the estimated per-location incompleteness of the species
presence data. Across a suite of twenty different accuracy metrics
using held-out test examples (S Appendix, SM 1.3.1 and 2 and
Fig. S4A4), our modified TResNet and sampling-aware loss function
outperformed a range of common loss functions (S/ Appendix,
Table S7), reinforcing how incorporating information about
known biases into the learning process improves species distribu-
tion modeling (36).

Both climate and land cover are key drivers of plant range limits,
but at different spatial scales (37). Climate data such as WorldClim’s
Bioclim variables [19 composite climate variables chosen for their
biological relevance and averaged across 1970 to 2000 from
monthly precipitation and temperature averages (31)] are com-
mon predictors for species distribution models (SDMs) (29, 33),
and we were curious how performance would vary when training
deep neural networks only with climate variables, only with
remote sensing imagery, or with both. To do so, we modified a
feed-forward multilayer perceptron (MLP) deep learning archi-
tecture to predict species from bioclimatic data (32) (Bioclim MLP,
SI Appendix, SM 3.3.3 and Table S5). Surprisingly, this simple
climate-based MLP outperformed our remote sensing-based
TResNet CNN for several accuracy metrics (SI Appendix, Table S8),
so next we sought to develop a deep learning architecture that
could utilize both types of data together.

Since most remote sensing data and climate variables are of much
different spatial resolutions (S7 Appendix, Fig. S1), we designed a
unique neural network architecture to process both data streams
simultaneously by combining our Bioclim MLP with our modified
TResNer (Fig. 1C and SI Appendix, SM 3.2.3 and Table S3). For
this multiheaded architecture—which we call Deepbiosphere—we
see that for species prediction the sum is greater than the parts, as

Deepbiosphere largely outperformed both our Bioclim MLP trained
only with climate data and our modified 7ResNet trained only with
remote sensing data (Table 1 and SI Appendix, Table S8). Deepbiosphere
further outperformed the classical climate-based species distribution
modeling methods Random Forest and Maximum Entropy (Maxent)
(Table 1 and S7 Appendix, SM 3.3 and Fig. S8), and a previously
published CNN trained with remote sensing data using a standard
computer vision loss function and single-label training paradigm
(34) (Inception V3, Table 1 and ST Appendix, SM 3.2.4 and Tables S4
and S8). Per-species, Deepbiospheres performance increased across
a wide range of accuracy metrics (S Appendix, Figs. S5 and S6),
including the area under the receiver operator characteristic curve
(AUCyoc» SI Appendix, SM 2.2), a metric of the model’s discrimi-
nation ability across a gradient of presence—absence thresholds,
alongside binary classification metrics using a standard presence—
absence threshold of 0.5 (ST Appendix, SM 2.1). For the 1,541 spe-
cies tested, Deepbiosphere improved the mean AUC by 1 to 7%
compared to all nontrivial baselines (Fig. 1D and S/ Appendix,
Fig. S5), especially including the rarest species (57 Appendix, Table S9).
While these individual accuracy improvements may seem small and
some species—especially rare ones—are predicted poorly (S Appendix,
Fig. S6), Deepbiosphere importantly exhibits consistent and improved
performance on all types of accuracy metrics—including binary
classification metrics, which are important when drawing species
range maps (Precision,,: 0.2 to 1.3% improvement; Recall ;,;: 0.0
to 100.%; F1,,: 0.4 to 2.6%, Presence Accuracy: 1.0 to 89.5%);
discrimination metrics, which are important for calibrating model’s
performance across presence thresholds (AUCpge: 0.4 to 2.2%
improvement; AUCgq¢: 1.1 to 6.8%); and ranking metrics, which
are important for understanding models’ confidence across species
(Top-100,,: 4.2 to 62.5% improvement; Top—100,,: 0.8 to 47.%)
(Table 1).

To test Deepbiospheres ability to extrapolate to previously unseen
regions, a 10-fold latitcudinal block-based cross-validation exper-
iment was also performed (S Appendix, SM 1.3.2 and Fig. S4B).
Deepbiosphere exhibited a significant increase in accuracy across
all metrics (P-values < 0.025, except for Random Forest Recallw;
Table 2 and SI Appendix, Fig. S7 and Table $10), supporting an
improved extrapolation ability to geographic areas excluded from
training. While accuracy did decrease in regions with fewer train-
ing observations per-region, the overall decrease was less imbal-
anced than the original training data, implying that there is
significant transfer in predictability from well-sampled ecosystems

Table 1. Comparing the accuracy of SDMs on unseen examples. Bolded entries refer to the top performing model

for a given accuracy metric
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Model name Data Res. Loss AUCgoc AUCppe Recallypg Recalls,, Precg,, Flgp Pres. Acc. Top 100,  Top 100,
Deepbiosphere  Remote sensing + 256 m Sampling- 0.9496 0.0398 1.0 0.9583 0.0131 0.0258 0.8918 0.7613 0.6667
Climate aware BCE [0.89 to 0.98] [0.01 to 0.11] [0.89 to 1.0] [0.5t0 1.0] [0.004 to 0.04] [0.01 to 0.07] [0.0 to 0.93]
Bioclim MLP Climate ~1,000m  Sampling- 0.9346 0.0346 1.0 0.9643 0.0111 0.0218 0.8820 0.7035 0.5
aware BCE  [0.86 to 0.98] [0.01 to 0.10] [0.86t01.0]  [0.43t01.0]  [0.002t00.03]  [0.005 to 0.06] [0.0 to 0.86]
RS TResNet Remote sensing 256 m Sampling- 0.9268 0.0265 1.0 0.8958 0.01 0.0198 0.8645 0.6779 0.5
aware BCE  [0.86 to 0.97] [0.01 to 0.08] [0.83t01.0]  [0.47t01.0]  [0.003 to 0.03] [0.01 to 0.05] [0.0t0 0.8]
Inception Remote sensing 256 m CE 0.9391 0.0359 0.0 0.0 0.0 0.0 0.0013 0.7533 0.625
V3 (34) [0.88 t0 0.99] [0.01 to 0.10] [0.0 to 0.0] [0.0 to 0.0] [0.0t0 0.0] [0.0 t0 0.0] [0.0 t0 0.92]
Maxent (33) Climate ~1,000 m N/A 0.8825 0.018 0.0 0.1348 0.0048 0.0089 0.2761 0.2910 0.0417
[0.78 to 0.95] [0.004 to 0.07] [0.0t0 0.5] [0.0to0 0.57] [0.0 to 0.03] [0.0 to 0.06] [0.0t0 0.5]
Random Climate ~1,000 m N/A 0.882 0.0237 0.2821 0.3684 0.0086 0.0166 0.3943 0.3709 0.2857
Forest (33) [0.76 to 0.95] [0.004 to 0.09] [0.0 to 0.88] [0.0to 0.82] [0.0 to 0.04] [0.0 to 0.07] [0.0 to 0.60]
Random N/A NA N/A 0.4995 0.0022 0.5 0.5 0.0016 0.0031 0.5005 0.0451 0.0333
[0.48 to 0.52] [0.0017 to 0.006] [0.4 to0 0.6] [0.47 to 0.53] [0.001 to 0.01] [0.001 to 0.01] [0.0 to 0.07]
Frequency N/A NA N/A 0.5 0.0016 0.0 0.0 0.0 0.0 0.0656 0.1952 0.0
[0.5t0 0.5] [0.007 to 0.01] [0.0 to 0.0] [0.0 t0 0.0] [0.0to 0.0] [0.0 to 0.0] [0.0 to 0.0]

Median [IQR] are reported for each accuracy metric and for each species distribution model along with baseline random and frequency-based estimations. Examples used for evaluation
were sampled from across all of California and were at least 1.3 km away from any training point (S/ Appendix, SM 1.3.1 and Fig. S4A). For more reported accuracy metrics, see S/ Appendix,
Table S8. Res. = Resolution; MLP = multilayer perceptron; BCE = binary cross-entropy; CE = cross-entropy; spp = per-species; obs = per-observation; AUCo = area under receiver operating
curve; AUCyxc = area under precision-recall curve; Prec = precision; Pres. Acc. = Presence Accuracy.
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to data-sparse ones with our approach (S/ Appendix, Fig. S3 D
and E). These results suggest that combining remote sensing and
climate information with deep learning improves the joint species
distribution modeling of plants across a wide range of taxa and
heterogeneous landscapes.

The ultimate goal of building predictive SDMs is to study where
species are and what environmental features or human activities
have shaped their ranges. Doing so at high spatial resolution may
enable the detection of certain signatures of anthropogenic impacts
on plant biodiversity, such as the lasting effects of deforestation.
To test this hypothesis, we generated high-resolution species maps
using Deepbiosphere by iteratively predicting the presence of all
~2,000 species across NAIP tiles, yielding species presence predic-
tion maps at up to a few meters resolution per-pixel (S/ Appendix,
SM 4.2 and Fig. S8). We focused on a region emblematic of
anthropogenic biodiversity: the redwood forests of coastal
California (Sequoia sempervirens; 2,349 observations in the dataset).
Redwood forests are highly heterogeneous due to heavy logging in
the mid-20th century which decimated 95% of the old-growth
forest (38). The scars of this deforestation are easy to recognize
from aerial imagery, including around the iconic old-growth Tall
Trees grove (Fig. 24 and SI Appendix, Table S11), which has been
fully mapped by the National Park Service (NPS) to the vegetation
association level, including by forest age (18) (Fig.2D and
SI Appendix, SM 4.4). These mature groves were manually anno-
tated by humans (Fig. 2B and S7 Appendix, SM 4.3 and Fig. S9)
with high accuracy (mature redwood pixels true positive rate:
93.5%, Fig. 2D and SI Appendix, Fig. S10B), but human anno-
tators failed to detect additional postclear cutting secondary-
growth redwood forest in the area (young redwood pixels true
positive rate: 2.6%, SI Appendix, Fig. S10C), ultimately gener-
ating low accuracy maps when considering the full redwood
forest extent (all redwood pixels binary classification accuracy:
37.9%, SI Appendix, Fig. S104).

In contrast to these human-derived maps, Deepbiosphere’s red-
wood presence map indicated a much broader distribution of
redwoods (Fig. 2C) and correctly demarcates both mature redwood
groves (mature redwood pixels true positive rate: 100.0%, Fig. 2D
and ST Appendix, Fig. S10B) and young secondary regrowth red-
wood forest (young redwood pixels true positive rate: 89.7%,
SI Appendix, Fig. S10C), generating an accurate map of redwood
forest extent (all redwood pixels binary classification accuracy:
81.4%, SI Appendix, Fig. S10A). This young redwood forest is
difficult to detect not just for humans but also climate-only and
remote sensing-only SDMs (87 Appendix, Fig. S11), which in
general predict redwoods as absent across the study area (Maxent
all redwood pixels true positive rate: 0.0%, Inception V3 all red-
wood pixels true positive rate: 0.0%, SI Appendix, Fig. S104) and

have poor predictability across the broader region (S/ Appendix,
Table S12). While Deepbiosphere can accurately predict species
probabilities from remote sensing imagery (Tables 1 and 2)—
including across fragmented and heterogeneous landscapes and at
fine spatial scales (Fig. 2C)—currently, Deepbiosphere is still a cor-
relative approach and not a truly process-based method (40). Since
fragment size, distance from fragment edges, distance between
similar patches, and landscape context are all known to affect
species distributions (41-44), a powerful way to better map and
understand the human-altered distributions of plant species across
space and time would be to combine Deepbiosphere’s species pres-
ence maps with models that explicitly account for these anthro-
pogenic drivers (40).

Along with redwoods themselves, mid-20th century clear-
cutting also dramatically altered understory species composition
(39), but mapping these species from remote sensing imagery can
be challenging when individuals are not directly detectable (45).
While these understory species may not be directly visible from
above, they often show preferences for certain habitats and form
visually distinguishable communities (18), preferences which
Deepbiosphere could potentially exploit to map these understory
species. To explore this hypothesis, from six field-validated focal
understory species (S Appendix, SM 4.4 and Figs. S12 and S13),
we focused on two understory species common to redwood forests:
Oxalis oregana (redwood sorrel; 1,063 observations in the dataset)
and Rubus ursinus (California blackberry, 458 observations in the
dataset), which Deepbiosphere-generated maps suggest occupy dif-
ferent types of redwood forest (Fig. 2E). Deepbiosphere predicted
Oxalis oregana with the highest probability mainly in mature red-
wood groves (median [IQR] Deepbiosphere predicted presence O.
oregana: mature redwood map pixels = 0.996 [1.0 to 0.99], young
redwood map pixels = 0.944 [0.98 to 0.85], # test P-value < 2 x
1071, 7 Appendix, Fig. S12B), matching field-validated associa-
tions with cool and moist old-growth redwood understories
(18, 39) (median [IQR] field-validated O. oregana constancy meas-
urements: mature redwood associations = 0.96 [0.98 to 0.96],
young growth associations = 0.49 [0.62 to 0.35], ¢ test P-value =
0.057, SI Appendix, Fig. S13B). Meanwhile, Deepbiosphere pre-
dicted Rubus ursinus with high probability mainly in young red-
wood regrowth (median [IQR] Deepbiosphere predicted presence
R. wrsinus: mature redwood map pixels = 0.864 [0.92 to 0.76],
young redwood map pixels = 0.957 [0.97 to 0.93], # test P-value
<2 x 10'16, SI Appendix, Fig. S12E), reflecting a preference for
semishaded young redwood understory also validated by field
measurements (18, 39) (median [IQR] field-validated R. ursinus
constancy measurements: mature redwood associations = 0.27
[0.28 to 0.14], young growth associations = 0.735 [0.85 to 0.65],
t test P-value = 0.057, SI Appendix, Fig. S13C).

Table 2. Comparing the accuracy of selected SDMs on held-out cross-validation blocks. Bolded entries refer to the

top performing model for a given accuracy metric

Model name Data Res. AUCroc AUCppe Recall;g Recally,, Precg,, Flgp Pres. Acc. Top 100, Top 100,
Deepbiosphere  Remote sensing + 256 m 0.8682 0.0365 0.8571 0.5865 0.0219 0.0414 0.8425 0.6803 0.2242
Climate [0.84 to 0.88] [0.03 to 0.04] [0.82 to 0.88] [0.54 to 0.64] [0.02 to 0.029] [0.04 to 0.05] [0.83 to 0.87] [0.67 to 0.69] [0.16 to 0.29]
Climate MLP Climate ~1,000 m 0.8025 0.0279 0.8091 0.4536 0.0129 0.0242 0.7856 0.5482 0.0378
[0.77 to 0.82] [0.026 to 0.03] [0.76 to 0.85] [0.38 to 0.50] [0.01 to 0.017] [0.02 to 0.03] [0.75t0 0.82] [0.53 to 0.58] [0.0 to 0.07]
Maxent (33) Climate ~1,000 m 0.7339 0.0207 0.4273 0.1541 0.0045 0.0088 0.4268 0.1862 0.0
[0.71 t0 0.77] [0.02 to 0.024] [0.32t0 0.68] [0.00 to 0.51] [0.0 t0 0.011] [0.0 to 0.021] [0.36 to 0.64] [0.16 to 0.19] [0.0to 0.0]
Random Climate ~1,000 m 0.7056 0.0219 0.5714 0.4129 0.0073 0.0137 0.5113 0.2234 0.0288
Forest (33) [0.69 to 0.76] [0.02 to 0.025] [0.40 to 0.74] [0.09 to 0.69] [0.0 t0 0.012] [0.01 to 0.02] [0.44 to 0.69] [0.20 to 0.28] [0.0 to 0.06]
Frequency N/A N/A 0.5 0.0045 0.0801 0.0 0.0 0.0 0.103 0.3008 0.0
[0.5t0 0.5] [0.0 to 0.005] [0.01 to 0.09] [0.0 to 0.0] [0.0 to 0.0] [0.0 t0 0.0] [0.07 t0 0.12] [0.22 t0 0.31] [0.0to 0.0]

Median [IQR] are reported for each accuracy metric across ten latitudinal cross-validation blocks (S/ Appendix, SM 1.3.2 and Fig. S4B). For accuracy results per-image, see S/ Appendix,
Table S10. Res. = Resolution; MLP = multilayer perceptron; spp = per-species; img = per-image; AUCgq = area under receiver operating curve; AUCysc = area under precision-recall curve;

Prec = precision; mAP = mean average precision, Pres. Acc. = Presence Accuracy.
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Fig. 2. Deepbiosphere predictions of field-validated coastal redwood forest species. (A) NAIP aerial imagery (16) of Tall Trees redwood grove (Sequoia sempervirens)
in California’s Redwoods National and State Parks. The region contains some of the last old-growth redwood remnants in the world, visible as the dark green
line bordering the right-hand side of Redwood Creek. (B) Human annotations of redwood forest cover at 256 m resolution, based on examples of other old-
growth redwood groves (S/ Appendix, Fig. S9). Annotators can correctly distinguish mature groves (S/ Appendix, Fig. S10B). (C) Deepbiosphere predicted presence of
S. sempervirens at 50 m resolution. Deepbiosphere correctly detects both mature and young regrowth groves (S/ Appendix, Fig. S10A). (D) Official NPS vegetation map
(18) highlighting mature redwood (dark red) and young redwood regrowth (blue) vegetation classes. (E) Deepbiosphere’s difference in predicted presence of two
understory species: Oxalis oregana which has a preference for mature redwood stands, and Rubus ursinus which has a preference for secondary-growth redwood
forest (18, 39). Differences were calculated by subtracting the predicted presence of Oxalis oregana from the predicted presence of Rubus ursinus per-map pixel.

These associations are further supported by analyses of other
well-known understory species associated with either mature and/
or regrowth redwood forests (18, 39) (see case studies of Struthiopteris
spicant, Viola sempervirens, Polystichum munitum, and Vaccinium
ovatum, SI Appendix, Figs. S12 and S13). In contrast, climate-based
SDM species presence maps were qualitatively too low-resolution
to capture these deforestation-induced differences (S7 Appendix,
Fig. S11C) and were quantitatively less accurate detecting known
species occurrences from the region (S Appendix, Table S12).
Deepbiospheres ability to accurately map the distribution of both
canopy trees and small herbaceous plants also extends to other hab-
itats, including Southern California’s mediterranean ecosystems
where Deepbiospheres species predictions better matched previ-
ously mapped vegetation distributions (19, 46) and better
detected known presences from the region compared to climate-
based models (see case studies of Quercus lobata, Q. berberidifolia,
Ceanothus cuneatus, Bromus diandrus, Arctostaphylos glandulosa,
Adenostoma fasciculatum, SI Appendix, SM 4.5, Figs. S14-S16, and
Table S13). Furthermore, Deepbiosphere can generate regional
maps of species distributions with high accuracy for both
well-predicted species (Deepbiosphere average AUCy = 0.972,
Masxent average AUCyq = 0.917, average Deepbiosphere AUCpo
improvement = 5.53%, SI Appendix, Fig. $22) and random species
(Deepbiosphere average AUCy- = 0.941, Maxent average AUCy
= 0.909, average Deepbiosphere AUCyp improvement = 3.15%,
SI Appendix, Fig. S23), as quantified using an independently
derived set of species occurrence records from Calflora (47)

PNAS 2024 Vol.121 No.37 2318296121

(81 Appendix, SM 4.1). These improvements likely stem from the
rich habitat information present in remote sensing imagery that
Deepbiosphere can leverage and are especially pronounced for
disturbance-related, open-ground, coastal, or wetland species like
Lupinus arboreus (AUCgq improvement of 19.6%, SI Appendix,
Fig. $22), Coreopsis gigantea (AUCyp improvement of 10.4%,
SI Appendix, Fig. S22), Malacothrix saxatilis (AUCgp¢ improve-
ment of 17.4%, SIAppendix, Fig. S22), and Juncus acutus
(AUCro¢ improvement of 9.7%, SI Appendix, Fig. S22) whose
unique habitat characteristics are readily visible from remote
sensing imagery. Deepbiospheres remote sensing-based approach
especially enables the creation of range maps at fine spatial scales
(see SI Appendix, Figs. S24-S28 for additional high-resolution
case studies). Together, these results demonstrate that deep learn-
ing can map both large tree species (48) and small herbaceous
plants from high-resolution remote sensing imagery and, from
these data, detect the lasting effects of deforestation on entire plant
communities decades later.

One major effect of deforestation—and land use or environ-
mental change more broadly—is the increasing fragmentation of
native habitat (2, 7). While fragmentation can depress plant
genetic diversity (49), natural ecosystem transitions (called eco-
tones) often instead exhibit increased biodiversity (50). Marin
County is a prime example of both kinds of ecosystem edges,
containing both fragmented native vegetation broken up by agri-
cultural areas and urban districts (Fig. 34), but also many eco-
tones, as it sits on the boundary of the coast range and valley
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chaparral ecosystems (20) (S Appendix, Figs. S17Cand S18). We
wondered whether Deepbiosphere could be used to automatically
delineate these important areas of spatial biodiversity change. To
do so, we adapted an edge-detection algorithm from image pro-
cessing, and for each 256 x 256 m aerial image in the region, we
generated presence probabilities for all 2,221 species from
Deepbiosphere. We then calculated the average Euclidean distance
between these probabilities and the probabilities from the eight
neighboring images, where a larger Euclidean distance means
higher turnover (87 Appendix, SM 5.1 and Fig. S19). Mapping
this species turnover metric that we call spatial community change
across north Marin county captured both mountain-to-valley and
developed-to-undeveloped ecotone edges (Fig. 3B). Quantifying
these results, Deepbiospheres estimated spatial community change
strongly correlated with the number of unique vegetation classes
in the official Marin County fine-scale vegetation map (20)
(Pearson’s 7 = 0.45, P-value < 2.2 x 107" , Fig. 3Cand SI Appendix,
Fig. S17C), more strongly than the raw underlymg NAIP imagery
(Pearson’s 7 = 0.25, P-value < 2.2 x 107" F[g 3D and SI Appendix,
S17D), and the density of iNaturalist observatlons (Pearson’s 7 =
0.08, P-value = 0.02, SI Appendix, Fig. S17 E and F). These results
suggest that Deepbiospheres aggregated species predictions can be

3
<)
@

ge (unitless)

spatial community chan

less

used to automate detection of important spatial patterns of
anthropogenic biodiversity at high-resolution.

Monitoring plant biodiversity in the Anthropocene ultimately
will require detecting rapid changes in plant communities caused
by forest clear-cutting, flooding, and wildfires. High-resolution
remote sensing data collected at weekly-to-yearly timescales can
capture these events (21, 51, 52), and thus remote sensing-based
SDMs should capture their effects on plant communities. Last,
we showcased Deepbiospheres ability to detect fire-induced
community-level change across time precipitated by the 2013 Rim
wildfire in the western California Sierra foothills (Fig. 3E). The
Rim Fire’s burn scar is clearly visible from NAIP imagery taken
both before and after the fire (2014 vs. 2012, S/ Appendix, Fig. S20
A and B). From these two images, we generated presence predic-
tion maps for all 2,221 species at 35 m resolution from
Deepbiosphere and calculated the Euclidean distance between these
predictions per-map pixel to generate an estimate of temporal com-
munity change, with a higher Euclidean distance indicating a more
pronounced change in time (S8 Appendix, SM 5.2 and Fig. $21).
Deepbiospheres predicted temporal community change was higher
inside the fire’s boundary than outside (unpaired student’s # test,
P-value < 2.2 x 107", Fig. 3F and SI Appendix, Fig. S20F),

(]
j=2}
g 25
S deepblosphere
220
| e
15
£
Q
L 10
s r=0.4517
§ 5 P-value <2.2 x 10
12 16
D Num vegetatlon classes
3 raw NAIP imagery
r=0.2449
.Pvalue <22x1071
2

Num. vegetatlon classes

NAIP neighbor distance

©)

g r=0.5316 deepbiosphere
= P-value <2.2x 1016 -
< 10 ..
< .
o
28
c
g
£ 6
8 - 30
® 4 pixel. . 5g
é‘ countgili10
Qo -0.5 0.0 0.5 1.0
H dNBR
pixel count )
g 10. . raw NAIP imagery
S 40 r=0.2896
® 75 P-value <2.2 x 101
o
% 50
Q
o
=< 25
z
?u 0.0 cT=e :
= -0.5 0.0 0.5 1.0

dNBR

Fig. 3. Detection of high-resolution spatial and temporal community change using Deepbiosphere. (A) NAIP aerial imagery of northern Marin county (16). Marin
county has substantial habitat fragmentation and sits between two major ecoregions, the coast range and oak chaparral. (B) Deepbiosphere’s spatial community
change calculated using an edge-detection algorithm applied to the predicted presence of all 2,221 plant species (S/ Appendix, SM 5.1 and Fig. $19). (C) Comparison
of the number of unique fine-scale vegetation types (20) present in each 256 x 256 m plot and Deepbiosphere’s spatial community change predictions. (D)
Comparison of the number of unique fine-scale vegetation types (20) present at each 256 x 256 m plot and an edge-detection algorithm run on raw NAIP RGB-|
images. (E) 2014 NAIP aerial imagery (16) of Sierra foothills after severe Rim Fire of 2013 (fire boundary in white). (F) Deepbiosphere’s temporal community change
metric, calculated using the Euclidean distance between predicted species presence in 2012 and 2014 (S/ Appendix, SM 5.2 and Fig S21). (G) Comparison of an
empirical burn severity metric—difference in normalized burn ratio (dANBR, S/ Appendiix, Fig. S20C) (21)—with Deepbiosphere’s temporal community change from
f. (H) Comparison of dNBR with the Euclidean distance calculated between raw NAIP RGBI-l imagery from 2012 and 2014 (16) (S/ Appendix, Fig. S20E).
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implying that the fire substantially changed the community com-
position of the burned habitats. To further quantify these results,
we compared the predicted temporal community change to a
field-calibrated, NDVI-like metric used to map burn severity from
hyperspectral imagery called the difference in Normalized Burn
Ratio (dANBR) (21) (8] Appendix, SM 5.2 and Fig. S200).
Deepbiospheres predicted temporal community change significantly
correlated with these independently measured dNBR severity
estimations (Pearson’s 7 = 0.53, P-value < 2.2 x 107, Fig. 3G),
far exceeding the correlation of INBR with the Euclidean distance
between the original NAIP RGB + Infrared images from 2012
and 2014 (Pearson’s r = 0.29, P-value < 2.2 x 10~ o Fig. 3H and
SI Appendix, Fig. S20E). Compared to traditional highly special-
ized hyperspectral approaches used in fire ecology, Deepbiosphere
can detect fire-induced community change from simple RGB-I
imagery, solidifying the potential of deep learning-based SDMs
trained on ubiquitous remote sensing imagery to detect rapid
anthropogenic community changes cost-effectively and at scale.
To achieve the United Nations’ Global Biodiversity Framework,
a paradigm shift in species distribution modeling for global biodi-
versity monitoring is needed (53). Prioritizing species-rich sensitive
areas or fragmented habitats will require maps of thousands to mil-
lions of species at high spatial resolution. Tracking progress toward
restoring 30% of the world’s degraded lands will involve synthesiz-
ing large amounts of data of different modalities. Detecting and
attributing environmental disasters and illegal impacts on ecosys-
tems calls for temporally explicit approaches. Toward these goals,
here, we showcased how deep learning models can perform complex
biodiversity monitoring tasks, from fine mapping of a fragmented
keystone species and its community to detecting rapid shifts in
species presence after a massive fire. While Deepbiospheres accuracy
is overall higher than other SDMs and can generate species range
maps at high-resolution, many species with few observations are
still hard to account for. Nevertheless, expanding Deepbiosphere
beyond plants to predict species across of the tree of life should help
improve these cases by providing more signal of the complex inter-
specific relationships that weave together and define ecological
communities. Ultimately, we envision a paradigm shift toward
open-source foundation models (54) that are continuously trained
and improved with new remote sensing data, citizen science obser-
vations, and data modalities as they become available. Achieving
this from public airborne or satellite imagery and growing citizen
science observations will make biodiversity monitoring more acces-
sible, thus advancing local and global nature conservation goals.

Methods

Species Observations. We collected observations from kingdom Plantae using
GBIF.org from the years 2015 to 2022 (22). Only records observed by humans with
a coordinate uncertainty radius of less than or equal to 120 m with no flagged
geospatial issues were taken from within the state of California (S Appendix, SM
1.1).We downloaded a total of 912,380 observations of 5,193 unique plant species
and further filtered the dataset to only include vascular plants, remove duplicate
observations of the same species within a 150 m radius, remove species that contain
all observations located within a 256 m radius, remove observations that were not
geographically located within the Global Administrative Area boundary of California,
and remove observations that were not located within both the climaticand remote
sensing imagery rasters (see S/ Appendix, SM 1.1 for details, S| Appendiix, Table S1
for more dataset details). To increase the density of observations and allow for
multiple species within a single image, we used neighbor imputation to add any
other species observed within an overlapping 256 m radius to a given observation
(SI Appendix, SM 1.2 and Fig. S2). We finally removed any species that had fewer
than 500 total observations in the dataset after neighborimputation, leaving us with
a total of 652,027 observations of 2,221 unique plant species (23, 24).

PNAS 2024 Vol.121 No.37 2318296121

Remote Sensing Data. To link species observations with images, we utilized
aerial imagery from the NAIP (16) which we downloaded for the entire state
of California from 2012 and 2014 using Microsoft Azure's NAIP data blob disk
image on its West Europe and Eastern US servers (S Appendix, SM 1.4). For
training the CNN models, we specifically used the NAIP data from 2012 at 1-m
resolution to generate 256 x 256 pixel images, where 1 pixel corresponds to
a1 x 1 mresolution (23). We used all available bands for training, specifically
the RGB and infrared color bands (S/ Appendix, Table S1). The 256 x 256 pixel
images were extracted so that the geographic coordinates of the corresponding
species observation mapped to the center of the image (S/ Appendix, Fig. S2).

Climate Variables. We used the 19 bioclimatic variables available from
WorldClim Version 2 (31) at 30 arc-second (approximately 1 km) per-pixel resolu-
tion. Variables were downloaded directly from the WorldClim Version 2 repository
(51 Appendix, SM 1.5). Before fitting any model, all bioclimatic variables were
normalized per-variable to mean 0 and SD of 1 using the entire raster clipped
to the outline of California.

Train/Test Split and Cross-Validation. In order to properly validate and com-
pare models, we split the datasetinto multiple partitions. The first partition, which
was used for hyperparameter tuning and loss comparison, was generated by ran-
domly selecting observations uniformly from across the state (23) (S/ Appendix,
SM 1.3.1 and Fig. S44) which we refer to as the uniform partition and use the
notation modelname,,; to refer to models trained using this partition of the
dataset. For this train/test partition, we chose points uniformly across the state to
maximize the number of unique ecosystems models would be evaluated on.To
ensure the independence of training and testing set data due to spatial autocor-
relation, we added all overlapping observations to the test set to guarantee that
none of the remote sensing images and observations in the test set were present
in the training set. To further ensure that there was no data leakage between the
testand train set, only observations which were more than 1,300 m away from any
othernonoverlapping observation were included. We chose an exclusion radius of
1,300 m because the climate variable raster pixels converted from arc-seconds to
meters can have a diameter of up to 1,200 m, so any test set observation within
that distance to any observation in the train set would have an identical input
value as some observations used during fitting. Ultimately 12,277 observations
(1.88% of the dataset) were set aside for testing in this split.

In order to provide cross-validation of the uniform train-test split and to test
the extrapolation ability of all models, we also conducted a latitudinal ten-fold
spatial holdout block validation by partitioning California into ten one-degree
latitudinal bands (23) (S/ Appendix, SM 1.3.2 and Fig. S4B) which we refer to as
the spatial partition, using the notation modelname, to refer to models trained
using points from the k-th spatial block (S/ Appendix, Fig. S4B). Training obser-
vations within 1,300 m of the test band were removed to prevent data leakage
as discussed above. For SDMs fitted with pseudoabsence points, all pseudoab-
sence points within the test bands were removed to ensure a fair comparison to
presence-only models. Ultimately, the percentage of test points per-spatial block
ranged from 1.40 to 25.35% of the entire dataset.

Deep CNNs for SDMs. We chose to use the medium-sized TResNet architecture,
a CNN-based residual neural network (27) which is optimized for fast inference
on Graphics Processing Units (GPUs) and optimized for multilabel image classifi-
cation. We modified the TResNet architecture to have four input channelsin order
to support the RGB and infrared NAIP imagery and added three fully connected
output layers corresponding to three taxonomic ranks (family, genus, and species)
that confer some phylogenetic signal during training (28) (S/ Appendix, SM 3.2.1
and Table S2). All TresNet-based CNNs are trained to predict each of the 2,221
plant species simultaneously, giving a probability of presence from 0 to 1 forall
species. Along with this standard version of the TResNet architecture trained using
only the NAIP aerial imagery, we also created our own custom CNN model which
combines a TResNet head trained using NAIP imagery with an MLP multilayer
perceptron head trained using climate inputs (S/ Appendix, SM 3.2.3) which we
referto as the Deepbiosphere model (Fig. 1Band S/ Appendix, Table S3). Weights
were initialized following best practices laid out in the original TResNet paper,
using Kaiming He-style for CNN layers and zeroed out BatchNorm and residual
connections. Forall analyses, TresNet-based CNN outputs were converted to inde-
pendent probabilities using the sigmoid transformation.
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We compared the performance of the TResNet architecture trained on a vari-
ety of standard loss functions (S/ Appendix, SM 3.2.2). The loss function com-
pares how well CNN outputs align with a training set of observations and thus
determines how well the model fits the data and learns from it. While we report
results from a variety of common loss functions for fair comparison to previous
work, the final results use a new loss function we called sampling-aware BCE that
overcomes limitations of common functions like cross-entropy loss which is best
suited for single-label images, BCE which is best suited for multilabel images
where the absence of labels are informative, or the recent asymmetric focal loss
which is best suited for multilabel images where many mislabels may occur, by
weighing the contribution of the few species presentin any given image as much
as the contribution of the many species that are absent.

For comparison to previous work using CNNs to rank species presence from
remote sensing imagery, we trained an Inception V3architecture (34) (Inception V3,
SI Appendix, SM 3.2.4 and Table S4) with softmax cross-entropy loss using the
official architecture implementation and initial weights from pytorch and using
both the standard and auxiliary loss during training. We utilize the standard
dropout rate of 0.5 and a standard leaming rate of 0.0, different but comparable
hyperparameters to those used in previous work. For all analyses, the Inception V3
outputs were converted to a probability density function using the softmax trans-
formation. While the Inception V3 model is trained jointly across all species like
Deepbiosphere, the cross-entropy loss forces the Inception V3 CNN to fit a prob-
ability density function across species and as such the predicted probabilities
per-species are not independent.

All CNNs were trained with standard minibatch stochastic gradient descent for
13 epochs using the Adam optimizer. The epoch of evaluation was determined
using early stopping calculated from the per-species average AUCgq on the uni-
form test set split (see S/ Appendix, SM 2.2 for metric details). Learning rates were
tested using a stepwise sweep ranging from 5 x 10™°to 1 x 107" in increments
of 0.5 and batch sizes were chosen depending on model size relative to the GPU
size used for training. Batch size, learning rate, memory usage, and GPU architec-
ture used for training are reported for each CNN in S/ Appendix, Tables $2-S10.

SDM Based on Climate Rasters and Other Baselines. We use the popular
dismo R package for species distribution modeling and compared against two
popular SDM approaches: Maxent and downsampled single stacked random
forest (RF). We chose these two models as they consistently had the best per-
formance across dozens of models and hundreds of species in a large bench-
marking experiment (33) (S/ Appendix, SM 3.3.1 and 3.3.2). We removed all
but one bioclim variable with a Pearson correlation coefficient higher than 0.8,
leaving ten variables in total for modeling including Mean Diurnal Range, Max
Temperature of Warmest Month, Minimum Temperature of Coldest Month,
Annual Precipitation, Precipitation of Wettest Month, Precipitation of Driest
Month, Precipitation Seasonality, Precipitation of Wettest Quarter, Precipitation
of Warmest Quarter, and Precipitation of Coldest Quarter. For each species, we
generated 50,000 background samples using a circular overlay across all points
in the training dataset where the radius of each circle is the median distance
between said species’ observations. We used the same number of presence
and background points for both the RF and Maxent models and we used the
"nothreshold” option for Maxent and 1,000 trees with equal bootstrapping of
positive and negative samples with replacement, with all other options set using
dismo default. For a few species, the fitting process failed for Maxent and/or RF.
For these species, in downstream accuracy analyses, we impute an accuracy of
0 for all metrics.

For completeness, we also trained a fully connected, feed-forward MLP on all
19 bioclim variables to predictall 2,221 species simultaneously as a climate-only
deep leaming baseline (S/ Appendix, SM 3.3.3). The architecture consists of two
fully connected layers with 1,000 neurons each, followed by a dropout layer with
a0.25 dropout rate, then by two layers with 2,000 neurons each (32), before pre-
dicting species, genus, and family (S/ Appendix, Table S5). The random baseline
was calculated by drawing random values from a standard normal distribution ten
times and averaging the accuracy metrics across these ten trials (S/ Appendix, SM
3.3.4).The frequency baseline involved calculating the frequency of observations
per-species on the training set, rescaling the probabilities to 0.001 to 1.0 and
imputing these frequencies as the predicted probabilities at each test set example
(SI Appendix, SM 3.3.4).
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Accuracy Metrics. We utilized a wide variety of accuracy metrics from across a
variety of relevant disciplines, from computer vision to species distribution mod-
eling. Forthe full list of reported accuracy metrics and their explicit mathematical
definitions, see S/ Appendix, SM 2.The reported accuracy metrics can be classified
into three broad categories.

The first category of accuracy metrics—binary classification metrics, SIAppendix,
SM 2.1-captures an SDM's ability to correctly predict the presence or absence of
a species given a probability of presence threshold. We report precision, recall,
and F1 score both per-species and per-image, along with presence accuracy. For
all reported binary classification metrics in the main text, figures, tables, and
supplemental (precision, recall, F7, presence accuracy), we use a standard 0.5
threshold. This is not only a common threshold in species distribution modeling,
butitis a standard threshold used by the computer vision community, as when
using asigmoid-based loss function, values above 0.5 map to positive real-valued
numbers and values below 0.5 map to negative real-valued numbers. However,
the requirement to choose a threshold for classification makes binary classification
metrics less desirable as accuracy metrics for species distribution modeling, and
other metrics are thus generally favored.

Unlike binary classification metrics, the next category of accuracy metrics—
discrimination metrics, S/ Appendix, SM 2.2—calculates an SDM's performance
across a wide range of presence thresholds and describe the relationship between
threshold change and performance change. Discrimination metrics essentially
integrate accuracy across a gradient of presence thresholds, negating the need to
pick a threshold value like binary classification metrics, and is a deciding factor in
why discrimination metrics like AUCgq, are very commonly used metrics for select-
ing SDMs. For this reason, we primarily focus on AUCg, for comparing model
performance across the range of case studies in this work. Reported discrimination
metrics in this work include AUCgoc and area under the precision-recall curve
(AUCpqc), averaged across species (spo) and a calibrated version of both metrics
(calibrated AUCgqc and calibrated AUCpgc).

The third and final accuracy category-ranking metrics, S/ Appendix, SM 2.3~
focus solely on how high a given species is ranked by probability of presence
compared to other species in the same image or observation and are common
in machine learning and computer vision research. In this work, we report Top-1,
Top-5, Top-30, and Top-100 accuracy across observations and species, plus mean
average precision.

Case Studies of Species and Ecosystems. For both case studies, locations
were chosen using expert knowledge of the respective species ranges and known
occurrences from Calflora (47). Three nonexpert human annotators annotated
Sequoia sempervirens cover and two annotated Quercus lobata cover. To calibrate
annotators to the task, each annotator received three NAIP images from 2012 and
an assigned cover classification using known species occurrences pulled from
Calflora(47)(S/ Appendix, SM 4.3 and Figs. S9, S14C, and Table S11). Annotations
took between 30 min to 2 h per-case study (depending on the efficiency and
familiarity of the annotators with the task) and final cover scores were calculated
by averaging annotations per-pixel across annotators.

High-resolution species predictions at 50 m resolution were generated from
the CNNs by convolving the 256 x 256 pixel prediction window with a stride of
50 (S Appendix, SM 4.2 and Fig. S8). It is important to note that the versions of
Deepbiosphere, Maxent, RF, and MLP used in these case studies were trained with-
out observations or pseudoabsences from the respective spatial cross-validation
band where the case study was located (see darkened band inside California inset
inFig. 2 and S/ Appendix, Fig. S14). Thus, these models did not see any example
images or climate variables from the respective regions at train time, with the
nearest training examples located between 9 to 20 km away from the case studies
(SI Appendix, Fig. S4B). Conversely, the Inception V3 baseline was trained using
multiple observations from within the parks (specifically using the uniform data
split, (S Appendix, Figs. S4 Aand S11B).

Forthe redwoods case study, the 2017 NPS generalized alliance-level map was
used for vegetation comparison (18), with the class "mature redwoods" mapping
to the Sequoia sempervirens mature forest alliance, the class "young redwoods”
mapping to the Sequoia sempervirens-(other) YG alliance, and the class "other
vegetation” mapping to all other alliance-level classes present in the study area
(51 Appendix, SM 4.4). Per-pixel labels were determined based on which alliance
had the largest area overlap with the pixel's extent.
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For the oaks case study, the United States Department of Agriculture (USDA)
Forest Service's 2018 map of existing vegetation in Region 5's South Coast
Ecological Province was used for comparison (19), specifically the type 1
regional dominance map with species crosswalked to vegetation type using the
vegetation class descriptions from Region 5's CALVEG Zone 7 (46) (S/ Appendix,
SM 4.5). For the per-species analysis, the species to CALVEG mappings are as
follows: Ceanothus cuneatus: CC, CQ, and EX; Quercus lobata: QL; Bromus dian-
drus: HG; Quercus berberidifolia: CQ; Arctostaphylos glandulosa: CQ and SD,
Adenostoma fasciculatum: QA, CC, CQ, SS, and EX. For each species, pixels were
marked as "inside" if said pixel intersected with at least one of the associated
CALVEG classes for that species.

For the additional full-state species range map examples, range maps at 150
m resolution for Deepbiosphere and ~1 km resolution for Maxent were generated
for the best-predicted species by AUCyqc by Deepbiosphere and Maxent for the five
L2 ecoregions of California using a minimum 0.98 accuracy threshold and 10 test
set observations to choose species to display, or species were randomly selected
using numpy's random.choice function and a random seed of 1 (S/ Appendix,
SM 4.7 and Figs. 522, S23). For the quantitative accuracy assessment, occurrence
records were derived from Calflora (47), specifically for each species using all observa-
tions uploaded directly from Calflora, the Consortium of California Herbaria, and the
Consortium of North American Bryophyte Herbaria (excluding just records derived
from iNaturalist). All subsequent occurrences with location information from inside
California were included, including obscured records, all varieties, and subspecies.
Absence locations for calculating AUCyoc were derived from the location of all
other Calflora occurrences for the selected species not predominantly found in the
species' ecoregion (e.g., excluding observations for all other species predominant
to the Warm Deserts L2 ecoregion for Bahiopsis parishii). For each L2 ecoregion, one
species was chosen for a high-resolution case study zoom-in at~1,0.1,and 0.001
degrees resolution (S/ Appendix, Figs. S24-528).

Spatial Community Change Metric. For calculating spatial community change
using Deepbiosphere, we designed an edge detection algorithm inspired by
edge-detection filters from the field of computer vision. Specifically, the aver-
aged one-neighbor Euclidean norm was calculated per-pixel to generate a
map of averaged similarity to neighbor pixels using standard 256 m resolution
Deepbiosphere predictions (S/ Appendix, SM 5.1). This algorithm essentially
measures the average distance from a given pixel's species prediction to all its
nearest neighbors' predictions, summarizing how similar or different a given
pixel's predicted species list is from nearby areas (see S/ Appendix, Fig. S19 for
visual walkthrough). To validate Deepbiosphere’s spatial community change pre-
dictions, we utilized the 2018 Marin fine-scale vegetation map (20) to calculate
the number of vegetation classes intersecting each pixel. Pearson’s r between the
number of intersecting vegetation classes and spatial community change was
calculated using the spatially corrected modified t test from SpatialPack, using
the centroid of each pixel as the coordinates per-sample. A similar comparison to
the number of intersecting vegetation classes was performed using the averaged
one-neighbor Euclidean norm between the normalized raw NAIP pixel values
per-band, upsampled to 256 m resolution.

Temporal Community Change Metric. For calculating temporal commu-
nity change using Deepbiosphere, we used the per-pixel Euclidean distance
between Deepbiosphere’s predicted species probabilities made at two different
timepoints (S/ Appendix, SM 5.2 and Fig. S21). This change metric essentially
measures the magnitude of per-species change (including both increases and
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decreases) aggregated between the two timepoints. To validate Deepbiosphere’s
temporal community change predictions for the Rim Fire, we compared an inde-
pendently generated map of dNBR (21) to Deepbiosphere-generated tempo-
ral community change predictions made using 2012 and 2014 NAIP imagery.
Pearson's r between temporal community change and nDBR was calculated
using the spatially corrected modified t test from SpatialPack, using the centroid
of each pixel as the sample coordinates. For this comparison, we used 256 m,
nonstrided species predictions from Deepbiosphere and dNBR upsampled to
256 m resolution to minimize spatial autocorrelation and ensure the memory-
intensive spatially corrected modified t test could run in sufficient time. A similar
comparison to upsampled dNBR was performed using the Euclidean distance
between the normalized raw NAIP pixel values per-band upsampled to 256 m
resolution.

Data, Materials, and Software Availability. Training data are publicly avail-
able through GBIF.org (24) and NAIP (16), and original occurrence records can
be found at ref. 22. Code to build paired image-species datasets and to train
Deepbiosphere are available at github.com/moiexpositoalonsolab/deepbio-
sphere (23). Documentation of use is provided within the code. Additional data
were used from the vegetation mapping and classification project for Redwood
National and State Parks, California (2017) conducted by ref. 18; the Marin County
Fine Scale Vegetation Map (2021) created by ref. 20; old-growth and unmanaged
second-growth riparian forest plots at Redwood National Park, USA by ref. 39;
climate data from ref. 31; remote sensing data before and after the California
Rim and King forest fires (2010 to 2015) by ref. 21; existing vegetation data
for the USDA Forest Service Region 5- Zone 7, South Coast (2018) by ref. 19;
additional California plant observations by ref. 47; and the U.S. General Soil Map
(STATSGO2) by ref. 55.
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