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Abstract Through the implementation of a streaming filter, output of numerical ocean simulations can be
band-pass filtered at tidal frequencies while the model is running, yielding time series of sinusoidal motions
consisting of tidal signals in the filter's target frequency band. The filtering algorithm is developed from a
system of two ordinary differential equations that represents the motion of a damped harmonic oscillator. The
filter's response to a broadband input signal is unity at its target frequency but vanishes toward the low and high
frequency limits. The decay of the filter response is controlled by a dimensionless parameter, which determines
the filter's bandwidth. As a result, the filter allows signals within a small frequency band around its target
frequency to pass through, while blocking signals outside of its target frequency band. In this work, the filtering
algorithm is implemented into the barotropic solver of the Modular Ocean Model version 6 (MOMG6) for
determining the instantaneous tidal velocities of the semi-diurnal and diurnal tides. Utilizing the filters, the
frequency-dependent internal wave drag is applied to the semi-diurnal and diurnal frequency bands separately.
The simulation results suggest that the performance of the algorithm is consistent with the filter transfer function
in Fourier space. Potential applications of the algorithm also include de-tiding the model output for nested
regional ocean models, especially those for the purpose of operational forecasting.

Plain Language Summary In this work, we developed a computationally efficient algorithm for
detecting tidal signals from the instantaneous model output, without needing to harmonically analyze the entire
time series of model output. This is achieved through the construction of a streaming filter, which takes the
instantaneous model output as the input and returns a time series consisting of tidal motions at its target
frequency band as the output, in a process that effectively allows signals within its target frequency band to pass
through and blocks signals outside of its target frequency band. Unlike the conventional harmonic analysis, the
band-pass filtering process does not require information from any of the previous or future time steps. The
filtering algorithm is implemented and validated in a global ocean model. The filters can be utilized to
parameterize frequency-dependent internal wave drag, as demonstrated in this work, and to remove tidal signals
from the model output, which has potential application in regional ocean forecasting systems.

1. Introduction

In the global oceans, tidal signals (amplitudes and phases) are usually determined by means of harmonic analysis,
provided that data of reasonable temporal resolution and record length are available (Foreman et al., 2009). There
are some limitations, however. First, in order to perform harmonic analysis, the entire time series must be
available a priori. Second, performing harmonic analysis over a large geographical extent tends to be a
computationally expensive task for two-dimensional data sets and impractical for three-dimensional data sets.
Moreover, tidal amplitudes and phases determined through the harmonic analysis are constant in time, unless the
harmonic analysis is repeated in a sliding time window, which further increases the computational cost. Because
of these limitations, it is generally difficult and often impractical to use the conventional harmonic analysis for
determining the instantaneous tidal signals in numerical simulations performed in the time domain.

Nevertheless, there are instances in which knowing the instantaneous tidal signals while the model is running is
desired. One such instance is the parameterization of frequency-dependent internal wave drag in global ocean
models. Input of tidal energy into the world's oceans is about 3.5 TW (Egbert & Ray, 2003), of which about 30% is
dissipated in the deep ocean due to barotropic-to-baroclinic energy conversion (Egbert & Ray, 2000, 2001). The
conversion acts as a linear drag on the barotropic flow and is often referred to as the “internal wave drag” or the
“wave drag” (Arbic, 2022). In barotropic models, the entire barotropic-to-baroclinic conversion is parameterized.
Even in baroclinic models which may partially resolve low-mode energy conversion, parameterization is still
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needed in order to represent conversion due to unresolved higher mode waves and energy loss due to wave
breaking (Buijsman et al., 2016). Most of the internal wave parameterization schemes are based on either the
linear theory (e.g., Garner, 2005; Nycander, 2005) or dimensional analysis (e.g., Jayne & St. Laurent, 2001; Zaron
& Egbert, 2006). Both types of parameterization schemes suggest that the wave drag is frequency dependent, with

a scaling factor given by /1 — f2/w?, where f is the Coriolis frequency and w is the tidal frequency. This implies

that the energy dissipation due to semi-diurnal tides is different from that due to diurnal tides. Moreover, applying
the drag to the broadband barotropic velocity field would disproportionally affect the low-frequency motions,
which has significantly implications on climate simulations. However, due to difficulties in determining the
instantaneous tidal velocities in numerical simulations performed in the time domain, the frequency-dependent
scaling factor is often neglected.

Another task that would benefit from knowing the instantaneous tidal signals and their temporal variation is de-
tiding the model output in nested ocean models. Because tides in global and basin-scale models tend to be less
accurate than tides in satellite altimeter-constrained data assimilative tide models (e.g., TPXO09 by Egbert and
Erofeeva (2002)), tidal signals are often removed from their output when they are used to force smaller-scale,
higher-resolution regional models. This allows tides in the regional models to be forced by data assimilative
models (e.g., Paquin et al., 2020). De-tiding by means of harmonic analysis can be computationally expensive,
and impractical for two-way nested models, since the parent and child models must be running at the same time.
Moreover, the conventional harmonic analysis may not fully and accurately capture the temporal variation of tidal
signals, especially at locations where tides exhibit strong seasonal variability (e.g., where there exists seasonal ice
coverage; Rotermund et al., 2021). Knowing the instantaneous tidal elevations and velocities would allow for
efficient de-tiding without needing to harmonically analyze the model output data. This could be particularly
helpful for improving the performance of regional ocean forecasting systems, since the model output must be
available in a timely manner.

In both instances discussed above, the goal is to determine the sinusoidal motions at tidal frequencies while the
model is running. In fact, it is possible to achieve this goal without performing harmonic analysis, because the
time series representing the sinusoidal motions does not have to be constructed from the tidal amplitudes and
phases. In this work, we will show that such a time series can be obtained by band-pass filtering the model output
at tidal frequencies through the implementation of a streaming filter. In Section 2 of this paper, we will derive the
filter equations and discuss the filter's response to a broadband input signal. In Section 3, some guidance on
choosing the filter's bandwidth will be provided. In Section 4, the algorithm is implemented and validated in a
global barotropic ocean model, developed based on Modular Ocean Model version 6 (MOMS6), and the appli-
cation to the parameterization of frequency-dependent internal wave drag is demonstrated. Finally, in Section 5, a
brief summary of this work will be provided.

2. Methods
2.1. Filter Design

Let u(f) denote a time series that is broadband in the frequency domain, consisting of tidal signals at various
frequencies as well as the noise. To detect the tidal signal at frequency w;, consider the system of equations for a
damped harmonic oscillator,

%: —w [5,() + au,(t) — g(H)], a>0, (12)
ds;
E:wl[ul(l)—ﬁsl(t) —f®], p=0. (1b)

In this system, w is the resonant frequency, f and g represent inputs into the system, and o and f are the damping
coefficients. It is important to note that, in order for the system to be stable for arbitrary bounded inputs, a and S
cannot be both zeros. Assuming the inputs are linear functions of u, that is,

J@) = fiu@), and () = gu), @
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where f| and g, are real coefficients, it is possible to configure this system as a band-pass filter, so that u; consists
primarily of the tidal signal at frequency @; (and s, is a dummy variable). Represented in the frequency domain,
this system may be written as

o'l = —w,§) + ol — gi), (3a)
Sy = o, — 1 — fil), (3b)
where o* is the broadband input (forcing) frequency, and the tilde denotes the Fourier transforms of the original

variables. To simplify the analysis and notation, we shall non-dimensionalize the input frequency by the target
frequency and define ® = ®*/w;. With some algebra, a relationship between ii; and ii can be established,

_— h+ (B +io)g ~
" i) B rio)+1]" )

To determine f; and g, we impose a constraint that if @ = 1, then it =i, such that at the target frequency, u,
captures the full signal from the inputs. This implies that

h+B+Dg
(a+DP+iD+1 "

From the real and imaginary parts of this equation, two equations for the real coefficients can be obtained, from
which f; and g, can be solved,

fi=—f, and g =a+p Q)
This implies that the relation between ii; and i is given by

af + ila + fw .

= (@f—w? + D) +iatPo|"” ©

and that the filter equations are given by
B = o 510 + () = (a+ Puco)] )

d
= o1 [0 = s (0 + Fud) (7b)

In the context of a streaming band-pass filter, @, represents the target frequency of the filter, while a and
determine the bandwidth of the filter.

2.2. Filter Response

The filter's response to a broadband input is determined by the complex coefficient in Equation 6. Here and
henceforth, we shall refer to it as the “filter transfer function” and denote it by A(w; a,p),

ap + i(a + Pw

Aw; a,f) = @fp—?+ D) +ia+ P’

w>0, a>0, p>0. ®)

Here, we emphasize again that a and f cannot be both zeros. The real and imaginary parts of A are given by

ap(af— o +1) + (a+ A w?
(@f—?+ 1) + (a+ ) a?

R(A) = (92)
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and

w(a + ﬁ)(l - a)z)

(A) = , 9b
“) (af— @? + 1) + (a + f)o? (b)

respectively, while the magnitude and argument of A are given by
|A| = \/[ER(A)]2 +[J(A)]*, and arg(A) = tan™! g;;ij;] (10)

respectively. For an output signal, |.A| characterizes the amplitude change due to filtering, while arg(.A) char-
acterizes the phase shift due to filtering. It can be shown that the filter transfer function has the following
properties for all >0 and > 0:

A =land |A|=latw =1,

. R(A)>0 and |A|>0 for all @ >0,

. J(A)=0and arg(A)=0atw =1,

. J3(A)>0 and arg(A)>0 if w < 1, while JI(A)<0 and arg(A)<0 if 0> 1.

AW~

Additionally, the filter transfer function has the following properties:

Theorem 1: In the log-linear scale of w, N(A) and |.A| are reflectional symmetric about @ = 1 if and only if
either a = 0 or # = 0, whereas J(.A) and arg(A) are rotational symmetric about @ = 1 if and only if either @ = 0
or f=0.

Theorem 2: | A| <1 for all @ >0 if and only if either @ = 0 or # = 0. Otherwise, there exists a small frequency
band to the right of @ = 1 in which |A]| > 1.

Theorem 3: If either & = 0 or # = 0, then $R(A), I(A) and |.A| all vanish in both low and high frequency limits,
while ii_r}}) arg(A) = 5 and Jl_I)Iolo arg(A) = —%. If a and f are both non-zero, then J1(A) and |.A| do not vanish

completely in the low frequency limit, while arg(.A) — 0 in the low frequency limit.

Proofs of the above theorems are provided in Appendix A. According to these theorems, it is necessary to set
either a or f to be zero, in order for the filter to be centered at the target frequency and to minimize the signal
picked up from the low frequency limit. Without loss of generality, we shall set f = 0 and reformulate the filter
equations for the remainder of this paper,

diy

priniad [s1(2) + au; () — au(@®)], a>0, (11a)

The filter transfer function of the above system is given by

iow
Alw; ) = ——F—7, >0, a>0, 12
(@; ) (1 = @?) + iaw @ “ (12)
whose real and imaginary parts are given by
2@? aw(1l — »?
RA)=— 2 and S(A)=—( R ), (13)
(1 — ?)" + a2w? (1= a?) + d?w?
respectively. This filter transfer function can be visualized in Figure 1.
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Figure 1. Visualization of the filter transfer function defined by Equation 12.

2.3. Diagnostic Tool

For an input signal of frequency other than the filter's target frequency, the effects of filtering are an amplitude
reduction, determined by |.A|, and a phase shift, determined by arg(A). This implies that the strength of the
filtering effects, or the difference between the input and output signals, depends on w, the proximity of the input
and target frequencies, and a, the filter's bandwidth. The combined effects of amplitude reduction and phase shift
can be measured by the root mean squared error (RMSE), defined by

RMSE = /([u(t) = uy (DT), (14)

where the angle brackets indicate time average. Because the output frequency is determined by the input fre-
quency (instead of the filter's target frequency), it is possible to express the RMSE in terms of the amplitude C and
the phase 0,

RMSE = 1/0.5(C2 + C2,) = C,C,, cos(0, — 0,,) = C,rJ05(1 + |AF) — (). (15)

When normalized by 4/0.5C,,, the RMSE quantifies the signal blocked by the filter,

B(w;a) = \/1 + |A]* = 2R(A). (16)
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3. Discussion
3.1. Optimal Choice of a
For clarity of presentation, we shall refer to a filter by its target frequency. As an example, consider the M, filter
whose target frequency is @, = 1.4 x 107 s~!. For four different values of a between 0.05 and 0.4, the effects of
filtering are shown in Figure 2. In the diurnal frequency band, the filtering leads to an amplitude reduction of more
a) Amplitude change b) Amplitude change
g g
0.4 T T - - 1.1 - . . .
Q| | 04 Pq]| K4 Ny | [ M2 S2 |1 Ko
03t I I I I 4 1 7
| /]
02r 1 09 ¢
I I [l I I I
0.1 '——_I—’_I/II’- 08t I N
— I I 1
0 I I [ | 071 I I I
NP N T T [ A 1L
044 046 048 0.5 052 054 096 098 1 1.02 1.04 1.06
(c) Phase shift (d) Phase shift
23 b Qul |04 PllK; /3 . Nal [ M, Sz [ Ko
I I I I |1
w2 F i } H : w/6 | 1
il I I I ol
I I I I I
/6 | I I : /6 | o
I I I I I
O i | 1 ] T3 I I 1)
044 046 048 0.5 052  0.54 096 098 1 1.02 1.04 1.06
(e) Signal blocked (f) Signal blocked
1.1 T ' - - 0.4 - . :
Q:l |04 Py||K4
1 | | L 03 |
I I I
09 r I I 1l 1 0.2
) S — [ l
a=02 I I |1
0.7 1 a=01 1 1 0r | 1
a = 0.05
I e e S | oL N M2 S| |Ks
044 046 048 0.5 052 054 096 098 1 1.02 1.04 1.06
w w
Figure 2. Effects of filtering of the M, filter on the diurnal and semi-diurnal frequency bands. Here, the amplitude change is
quantified by |.A|, the phase shift is quantified by arg(.A), and the proportion of signal blocked by the filter is quantified by B
defined by Equation 16.
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Table 1 than 70% and a phase shift of almost 90°. As a result, more than 95% of the

Effects of Filtering of the M, Filter Measured by | A|, the Amplitude Change, diurnal signal is blocked by the filter. In the semi-diurnal frequency band,
arg(A), the Phase Shift, and B, the Proportion of Signal Blocked by the however, with a sufficiently large bandwidth, a significant amount of signal
Filter, for Different Values of a, With the Input Frequencies Being the S; and  can pass through the filter. For example, with a = 0.4, the amplitude reduc-

K, Frequencies

tion of the S, signal is less than 1.5%, while the phase shift of the S, signal is

Input at S, frequency Input at K, frequency less than 10°. As a result, less than 17% of the S, signal is blocked by the M,
a 14| arg(A) B 14| arg(A) B filter. Some quantitative measurements of the effects of the M, filter can be
found in Table 1, while the proportion of various input signal that can pass
1 0.9976 —3.94° 6.88% 0.5790 54.62° 81.53% .
through the M, and K, filters (the latter has the target frequency
0.7 09952 =562 SEU S 89.54% 4 =7.3x 1075 s71) as a function of & can be visualized in Figure 3.
0.4 0.9855 —9.78° 16.98% 0.2733 74.14° 96.19% . ) o ) )
02 09454 —1901° 3258% 01406  8192° 99.01% The above z?naly51s.pr0v1des .some insights into how the f?lters st_lould be
3 . constructed in practice. Most importantly, there does not exist a universally
0.1 08234 =34.57 56.74% 00708 85.94 99.75% applicable criterion for the optimal choice of a. Instead, the optimal choice
005 05873  —54.04°  80.94% 00355  87.97° 99.94% depends on the application. For example, suppose that at a certain location
0.02 02787  —73.82° 96.04%  0.0142  89.19°  99.99% there exist very strong semi-diurnal tides but weak diurnal tides. In this case, a
0.01 0.1436  —81.74° 98.96%  0.0071 89.59° 100.00% single semi-diurnal filter with a moderate bandwidth will allow the majority

of semi-diurnal tidal signals to pass through, while filtering out other high and
low frequency motions. For example, Table 1 shows that with a = 0.7, about
90% of the S, signal can pass through the M, filter, with a phase shift of about
6°, whereas only 10% of the K, signal can pass through the M, filter. Note
that the phase shift of the S, signal will translate into the phase shift of the spring-neap cycle in the output signal,
and whether or not this is acceptable depends on the application. To block more signal from the diurnal frequency
band without decreasing the filter's bandwidth, the filter's target frequency can be shifted toward the S, frequency,
so that it is located further away from the diurnal frequency band. If, for some reason, it is necessary to block the
S, signal (e.g., to remove the phase shift in the spring-neap cycle by constructing an S, filter), then Table 1
suggests that a of the M, filter should be 0.02 or less, so that less than 4% of the input S, signal will pass through
the M, filter.

In contrast, Figure 3b shows that the K; filter is not very effective in band-passing the Q; or O, signal while
blocking the semi-diurnal signals at the same time. This is because the Q; and O, frequencies are located rela-
tively farther away from the K; frequency and are on the opposite side of the frequency spectrum from the semi-
diurnal frequency band. In this case, depending on the relative importance of the Q; and O; tides, it might be
necessary to reduce the bandwidth of the K filter and to construct another filter with relatively small , in order to
band-pass the Q; and O, signals.

(a) M filter (b) K; filter

1 1
— N2 — Q1
— M2 ——— o0l
08 | S2 08 P1
— K2 —— Kl

=06t 1 0.6
3
QN 04t 1 0.4
02t 1 0.2
0 , - , - 0 - - ,
107 102 107! 10° 10! 1073 102 107! 10° 10!
(8] 8]

Figure 3. Proportion of input signal that passes through the M, and K filters, measured by (1 — B) as a function of a defined
by Equation 16. The input frequencies are those of the eight major tidal constituents, Q;, Oy, P;, K;, N,, M», S,, and K,. In
Panel (a), curves with input frequencies in the diurnal frequency band are shown in black, whereas in panel (b), curves with
input frequencies in the semi-diurnal frequency band are shown in black.
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(a) M, filter (b) K filter

10° 10°
= 107! a=0.05 101 F
3
]
|
N———
o,
%107 102 ¢
10° : : : : 107 ' : : :
0 5 10 15 20 25 0 5 10 15 20 25
Time (day) Time (day)

Figure 4. Normalized amplitude of the transient solutions, exp(—aw;t/2), for (a) the M, filter and (b) the K, filter with
different values of a between 0.05 and 0.4.

3.2. Transient Solutions to the Filter Equations

So far, the analyses have been based on Fourier transforms of the filter equations in an unbounded time domain,
and the filter responses discussed are only applicable to the equilibrium solutions of the filter equations.
Nevertheless, there also exist transient solutions that represent the decay of the initial conditions. The homo-
geneous version of the system of equation (Equation 11) can be represented in the form

d*u du
le+aw]7;+w%u] =0, a7

which is a typical second-order constant-coefficient scalar linear homogeneous ordinary differential equation.
Solving this equation (e.g., Chapter 4 of Trefethen et al. (2018)) yields solutions of the form

uy(f) = exp [%(—a +Va? — 4) t]. (18)

If a > 2, then the exponents are real, and both solutions decay exponentially, whereas if @ < 2, then the exponents
are complex, and both solutions decay exponentially but at the rate set by the real part of the exponent. Figure 4
shows the decay of the transient solutions for the M, and K| filters in the first 25 days. It provides some guidance
for determining the spin-up time that the filter equations need before their outputs can be considered as consisting
of tidal signals only.

3.3. Discretization Errors

Numerically, the filter equations (Equation 11) can be implemented using, for example, the following time
stepping algorithm,

$ = @ Anl"D 4 5070, (19a)
”(1n) = —wlAz[s(I") — au(”)] + (1 — aw A1) u(l"_l). (19b)

Here, the superscripts (n) and (n — 1) represent the current and previous time steps, respectively, and At is the
time step size. Note that the dummy variable s; is evaluated first, in order for «; to be evaluated based on the value
of s; at the current time step. While only the continuous time has been considered in the analyses so far, dis-
cretization of the time domain will lead to errors of both amplitude and phase in the output signals, even at the
target frequency of the filter.

XU AND ZARON

8 of 16

ASUDIT suowwo)) AAnea1) d[qedrjdde ayy £q pauIaA0S Al SAONIR Y SN JO SA[NI 10J KIeIqIT duIUQ AI[IAL UO (SUONIPUOI-PUB-SULID) WO KI[1m° KIeiqiaul[uo//:sdny) suonipuo) pue swia, 3y 23S [¢z0z/90/¢1] uo Areiqy autjuQ L3[1M ‘61 €H00SINFZOT/6201 01/10p/wod Aafim’ Krelqrjaurjuorsqndnge//:sdny woiy papeojumo( ‘01 “v0T ‘99¥CTH61



V od |
AGU

ADVANCING EARTH
AND SPACE SCIENCES

Journal of Advances in Modeling Earth Systems

10.1029/2024MS004319

(a) M, filter (b) K; filter
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Figure 5. Discretization error as a function of the time step size, Az, measured in terms of the root mean squared error of the
numerical solutions computed against the exact solution with unit amplitude.

As an example, consider the input signal given by
u(r) = cos(w1), (20)

whose frequency is the same as the target frequency of the filter. Without discretization error, the output of
the filter should be identical to the input, that is, u;(¢) = u(¢) for all 7. Hence, the discretization error can be
quantified by calculating the RMSE of the numerical solutions against the exact solution. Figure 5 shows that
the discretization error scales approximately linearly with Ar, which is expected for a first-order time stepping
scheme. For a given At, the discretization error increases as a decreases, though this increase is insignificant
for small Az. The discretization error is also frequency dependent. Given the same At and «, the error tends to
be larger for higher-frequency signals. In this particular example, the amplitude of the input signal is unity.
Hence, the RMSE plotted in Figure 5 may be interpreted in terms of percentage. We have also performed
additional tests and found that the discretization error is independent of phase change. Given a desired
precision level, Figure 5 thus provides some guidance for determining At of the filter equations. Note that Az
does not have to be the same as the time step size adopted by the model, as long as the model output is
available as input for the filter equations.

4. Numerical Simulations
4.1. Model Description

In this section, the filter equations (Equation 19) are incorporated into MOM®6 to demonstrate its application to the
parameterization of frequency-dependent internal wave drag. MOMBS is a three-dimensional primitive equation
numerical model, developed at the Geophysical Fluid Dynamics Laboratory (GFDL) of the National Oceanic and
Atmospheric Administration (NOAA) for long-term integration and climate studies (Adcroft et al., 2019). In this
work, a barotropic version of the global model was configured, which solves the one-layer shallow water mo-
mentum and continuity equations,

Cpluju C-u

Du

E+fk><u= —gV(1n = Neg — N1saL) — 7 i (21a)
Dn _
="V [(H + nu]. (21b)

In these equations, u is the horizontal velocity, 7 is the perturbation tidal elevation, 7, is the equilibrium tidal
potential, 55,y is the self-attraction and loading term, g is the acceleration due to gravity, f is the Coriolis fre-
quency, k is the vertical unit vector, H is the resting water depth, Cj, is the bottom drag coefficient, and C is the
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Table 2

internal wave drag tensor. The model is configured on a tri-polar grid with a 1/12° nominal resolution, adapted
from the “GLBc0.08” configuration of the Hybrid Coordinate Ocean Model (HY COM,; Bleck, 2002). The bottom
and under-ice-shelf topography is adapted from the NOAA Global Storm Surge and Tide Operational Forecast
model (G-STOFS; Blakely et al., 2022). The barotropic tides are forced by the astronomical tidal potential at the
M, and K| frequencies and are modified by the term 7g4,; to include the effects of ocean self-attraction and solid-
earth loading (Egbert & Erofeeva, 2002). The baroclinic tides are parameterized based on the scheme developed
by Jayne and St. Laurent (2001), who suggested that the internal wave drag tensor, C, can be approximated by a
simple linear drag coefficient

ﬂflsz

7 (22)

CisL =

where L is the topographic length scale, h is the topographic roughness scale, and N, is the buoyancy frequency
along the ocean bottom.

In our simulations, the barotropic velocity was filtered at the M, and K, frequencies, so that internal wave drag
can be applied to the M, and K; velocities. This involves modifications to the MOM6 barotropic solver by
replacing the momentum equation with

Du

E+fk><u = —gV(1 = Neg — NsaL) —

Cpluju Gy
H H

(ka2 Wap + Kg1Uky), (23)

where u,;, and ug; represent the M, and K, band-passed velocities obtained from the filtering, while x;, and kg
are the dimensionless scaling factors, controlling the internal wave drag applied to the semi-diurnal and diurnal
frequency bands, respectively. For both M, and K filters, @ was set to 0.1, so that the proportion of diurnal (semi-
diurnal) signal that can pass through the M, (K ) filter is about 0.25% (see Table 1), while the spin-up times for the
M, and K filter equations are about 7.5 and 15 days, respectively. At the end of the spin-up time, the amplitude of
the transient solution is expected to be less than 1% of its initial value.

4.2. Simulation Results
Based on the linear theory (Bell, 1975a, 1975b; Llewellyn Smith & Young, 2002), the scaling factors k;, and xx;
are of the form 4/ 1 — f2/w? and are latitude dependent. In our simulations, for clarity of presentation and for the

purpose of demonstrating the application of the filters, spatially uniform values of k,,, and kg, were adopted. The
numerical simulations were performed with either k), = 0 or kg; = 0 and the other scaling factor varied between
0 and 2. The simulation results were compared against the TPXO9 data (Egbert & Erofeeva, 2002) by computing
the RMSE of the tidal elevation,

RMSE = 1/0.5(C2 + €3) — C,,Cr cos (6, — 0y). (24)

where the subscripts m and T refer to the model results and TPXO data, respectively. From model output, tidal
amplitudes and phases were obtained by performing harmonic analysis on the sea surface height from day 16 to
day 30. Then, the global mean RMSE of the M, and K elevations were taken
over all depths and latitudes, as well as waters deeper than 1,000 m. The

Global Mean Root Mean Squared Error of M, and K, Elevations (cm) for All global mean RMSE is defined by
Depths and Deep Waters, With kg, = 0 and kyy, Varying Between 0 and 2

Kua 0 025 05 075 1 125 15 175 2 - TRMSEZAA

M,, all depths ~ 11.39 8.54 6.64 573 5.77 647 7.48 8.58 9.67 RMSE:\/T’ (25)
M,, deep waters  9.54 6.69 4.67 3.65 3.79 4.67 580 695 8.05

K, all depths 342 339 336 335 334 333 333 333 332 wphere AA represents the area of each grid cell.

K. deep waters 239 237 235 234 233 233 232 232 232

Note. Visualization is provided in Figure 6a.

Tables 2 and 3 show that the variation of the scaling factors has a systematic
effect on the RMSE calculated at their target frequency band but very little
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Table 3
Global Mean Root Mean Squared Error of M, and K, Elevations (cm) for All Depths and Deep Waters, With ky, = 0 and kg,
Varying Between 0.25 and 2

Kk 0.25 0.5 0.75 1 1.25 15 1.75 2

M,, all depths 11.42 11.45 11.48 11.52 11.56 11.60 11.64 11.68
M,, deep waters 9.55 9.57 9.59 9.61 9.63 9.66 9.68 9.71
K, all depths 2.95 2.60 2.37 2.27 2.28 2.36 2.51 2.70
K, deep waters 1.95 1.62 1.42 1.36 1.41 1.56 1.75 1.96

Note. Visualization is provided in Figure 6b.

influence on the RMSE calculated from the off-target frequency band. This suggests that the filters were per-
forming as expected during the simulations, allowing us to control the internal wave drag applied to the semi-
diurnal and diurnal frequency bands separately. Moreover, Figure 6 shows that the RMSE appears as a convex
function of the scaling factor imposed on the filter's target frequency band. For the RMSE of M, elevation, the
local minimum occurs when k,;, is between 0.75 and 1, and the minimum value is smaller than that in the
simulation where the drag is applied to the unfiltered velocity field. For the RMSE of K, elevation, the local
minimum occurs when kg, is between 1 and 1.25, and the minimum value is marginally larger than that in the
simulation where the drag is applied to the unfiltered velocity field. The fact that the local minima of the RMSE of
M, and K elevations occur at different values of ks, and kg suggests that the optimally tuned internal wave drag
for the semi-diurnal and diurnal frequency bands should be different, which is consistent with theoretical analyses
reported in the past literature (Bell, 1975a, 1975b; Llewellyn Smith & Young, 2002; Nycander, 2005).

5. Conclusions

In this work, we developed a computationally efficient algorithm for constructing streaming band-pass filters that
are capable of detecting the instantaneous tidal signals and their temporal variations in numerical simulations
performed in the time domain. The filter equations consist of a system of two coupled ordinary differential
equations, which takes the instantaneous model output at the current time step as the input and then filters the
input signal based on the pre-determined target frequency and bandwidth. Analyses in Fourier space show that the
filter's response to a broadband input is unity at its target frequency and vanishes toward both low and high-
frequency limits. The decay of the filter response away from the target frequency is symmetric about the

b (a) My elevation, k1 =0 S (b) K; elevation, ke =0
¢ —O— All depths
4t —— Deep waters

K2 RK1

Figure 6. Global mean root mean squared error (RMSE) of (a) M, elevation and (b) K; elevation for all depths (blue) and
deep waters only (red), reproduced from Tables 2 and 3. Solid curves indicate results from simulations in which frequency-
dependent wave drag is applied to the filtered velocity fields. Dashed lines indicate results from the simulation in which the
wave drag is applied to the unfiltered velocity field, where the global mean RMSE of M, elevation are 5.88 cm for all depths
and 3.93 cm for deep waters, while the global mean RMSE of K; elevation are 2.18 cm for all depths and 1.37 cm for deep
waters.
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target frequency in the log-linear scale of the frequency spectrum, and the rate of decay is controlled by a
dimensionless parameter that determines the filter's bandwidth.

The filter equations are incorporated into the barotropic solver of MOMG6 and are used for determining the
instantaneous tidal velocities at the M, and K, frequencies, in order to demonstrate the application of the band-
pass filtering to the parameterization of frequency-dependent internal wave drag. The algorithm is validated by
the simulation results, which suggest that the drag has a systematic effect on the dynamics at the filter's target
frequency band but very little influence at the off-target frequency band.

There are several major differences between the conventional harmonic analysis and the band-pass filtering.
Essentially, the former decomposes the input signal into trigonometric series and searches for least-square so-
lutions that can be interpreted in terms of tidal amplitudes and phases, whereas the latter simply outputs time
series consisting of sinusoidal motions, where information of amplitudes and phases is not directly available.
Moreover, harmonic constants determined from the conventional harmonic analysis are time-independent,
whereas the band-pass filtering is a streaming process, and the filter's output adjusts to the input signal
dynamically during the time-stepping. This makes the band-pass filtering particularly suitable for capturing the
seasonal variability of tides.

The filtering algorithm developed in this work is based on a system of equations that can be represented in terms
of a second-order linear ordinary differential equation. For future works, high order systems of differential
equations can be considered, which may allow for separate control of the filter's bandwidth and sharpness
(Schaumann et al., 2009), so that more signal within the filter's target frequency band may pass through while
more signal outside of the target frequency band is blocked.

Appendix A: Proofs of Theorems
Al. Proof of Theorem 1

If either @ = O or # = 0, then we can simply let # = 0 and a > 0 without loss of generality. By letting Q = In w, the
filter transfer function can be written as

PRe)
iae
A ) = ——5— > Al
@) (1 —e22) + iae® (AD
whose real and imaginary parts are given by
2,20 Q(] _ 29
%(A):*, and S(A)ZM’ (A2)
(1 —€e*2)" + a?e? (1 —e*2)" + a?e?
respectively. It follows that
2,20
RACQ; a)] = il
(1 —e722)° + 2720
22
£4Q [(1 _ 6—29)2 + aze—zg] (A3)
P ele)
(€22 = 1)* + @2e2
= RA a)],
and that
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ae*Q(l — e*m)
a1- 6‘29)2 + a2e29
aem(l _ e—m)
pete) [(1 _ e—zg)2 + aze—zg] (A4)
_ ae® (e2Q — 1)
B (e®? — l)2 + a2e?

= —J[AQ; a)].

S[AELs )] =

This implies that R(.A) is reflectional symmetric about = 0, while J(A) is rotational symmetric about Q = 0.
From the definitions of |.A| and arg(.4), this also implies that

|ACQ;a)| = [A(Q5a)]. and  arg[AQ; @)] = —arg[ A(Q; @], (A5)

which means that |.4] is reflectional symmetric about = 0, while arg(.A) is rotational symmetric about Q = 0.

If e and 3 are both non-zero, then the proof of Theorem 3 (Appendix A3) implies that H(A), I(A), and |.A| are all
asymmetric. To show that J(A) is also asymmetric about Q = 0, we shall rewrite J(A) in terms of

(a+ [J’)eg(l — em)

S[AQ; a,p)] = Frlo 629)2 @t (A6)
It follows that
SE AL O _ (a+ ﬁ)e*Q(l - e*m)
SACap] = (afp+1— e‘m)2 + (a + f)’e 22
(a+ ﬂ)em(l - e_m)
= (A7)

e [(aﬁ +1- e‘m)2 +(a+ ﬂ)ze‘m]

(a+ e (em — 1)
a (afpe®® + 2@ — 1)2 +(a+ /;)2629'

However, this does not equal to either I[A(Q; a, )] or —I[A(Q; a,)]. Therefore, I(A) is neither reflectional
symmetric nor rotational symmetric about Q = 0.

A2. Proof of Theorem 2
Let f = 0. An expression of |.A| is given by

aw

| A(w; a)| = : (A8)
V(1= 0?) + 2e?
From this expression, we can determine the first derivative of |.A| with respect to w,
d a(l — o*
4 s = —U=) (A9
@

32"
[(1 - 0?) + azwz]

Since @ >0, this implies that there exists only one local extremum, which is |.A| =1 and occurs at @ = 1.
Moreover, Theorem 3 states that |.A| vanishes in both low and high frequency limits. Therefore, |.4| = 1 must be
the global maximum.

If a and p are both non-zero, then we can define a constant ¢ through
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= w’-1=apc (A10)

With some algebra, we can obtain an expression for |.A| represented in terms of c,

a*fe(c —2) 2

A = | = e + @+ e + 1)

(A11)

This expression suggests that |.A|>1 if ¢(c —2)<0, which can occur if 0<c<2, or equivalently, if
1 <w<+2af + 1. As long as @ and f are both non-zero, such an interval always exists to the right of @ =1,
implying that the maximum value of |.4]| is always greater than unity.

A3. Proof of Theorem 3

In the high-frequency limit, @ > 1 and w > af, such that

—apa’ + (a + f)’ * (ot B’ —ap

NA) ~ ~ = limRA) =01, Al12
) o* + (a + )Y w? w? w00 “) (a12)
and
3
SWmo @D P imda) =0 (A13)
0)4 + (a + ﬂ) a)2 () ®W—00

Since R(A) ~ O(w™?) while J(A) ~ O(w™"), from the definition of |.A|, this implies that |A| ~ O(»™"), and
that

lim |A| = 0" (Al14)

Moreover, since g;ﬁ—jg ~ O(w), while R(A) >0 and I(A) <0, this also implies that

lim S(A) -
oI A)

T

5 (A15)

—o0, = limarg(A)=—
w— 0

Note that the above limiting behaviors hold for all >0 and > 0.

In the low-frequency limit, we shall first assume that @ and f are both non-zero, such that w < 1 and w < af. In

this case,
_aplap+1) + (a + ) o’ __ap
NN s 1+ s prar " a1 (A16)
and
o o@tp  aath) e
™ et @eprar “ @y AmI =0 (A7)

This suggests that :i(.A) does not vanish but approaches some constant determined by a and 8. As a result, |A|
does not vanish either. Moreover, this implies that

3(A)

. (A
ER(A)N(‘)(G))’ = lim

w—»OEﬁ(.A) B

o, = lir%arg(A)=0+. (A18)
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If either @ = 0 or = 0, then we can let # = 0 as we did before. In this case,

7o’ 2 2 N 2 : +
R(A) ~ TR S o >  NRA) ~0O(w®), and (}]1_1}69?(./4) =07, (A19)
and
S~ —2  jaw, = I(A)~OW), and limI(A) = 0*. (A20)
1+ d?w? 0—0
This implies that
|A| ~ O(w), = 1in})|A| =0%, (A21)
and that
J(A) _1 . SA) ) 7z
A ~ O(w ), > ﬂ%m =00, = ilir(l)arg(A) =3 (A22)
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Implementation of the streaming filters and the frequency-dependent drag in MOMS6 can be found at https:/
github.com/c2xu/MOM6/releases/tag/v1.0.0 (Xu, 2024).
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