


needed in order to represent conversion due to unresolved higher mode waves and energy loss due to wave

breaking (Buijsman et al., 2016). Most of the internal wave parameterization schemes are based on either the

linear theory (e.g., Garner, 2005; Nycander, 2005) or dimensional analysis (e.g., Jayne & St. Laurent, 2001; Zaron

& Egbert, 2006). Both types of parameterization schemes suggest that the wave drag is frequency dependent, with

a scaling factor given by

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − f 2/ω2

√
, where f is the Coriolis frequency and ω is the tidal frequency. This implies

that the energy dissipation due to semi‐diurnal tides is different from that due to diurnal tides. Moreover, applying

the drag to the broadband barotropic velocity field would disproportionally affect the low‐frequency motions,

which has significantly implications on climate simulations. However, due to difficulties in determining the

instantaneous tidal velocities in numerical simulations performed in the time domain, the frequency‐dependent

scaling factor is often neglected.

Another task that would benefit from knowing the instantaneous tidal signals and their temporal variation is de‐

tiding the model output in nested ocean models. Because tides in global and basin‐scale models tend to be less

accurate than tides in satellite altimeter‐constrained data assimilative tide models (e.g., TPXO9 by Egbert and

Erofeeva (2002)), tidal signals are often removed from their output when they are used to force smaller‐scale,

higher‐resolution regional models. This allows tides in the regional models to be forced by data assimilative

models (e.g., Paquin et al., 2020). De‐tiding by means of harmonic analysis can be computationally expensive,

and impractical for two‐way nested models, since the parent and child models must be running at the same time.

Moreover, the conventional harmonic analysis may not fully and accurately capture the temporal variation of tidal

signals, especially at locations where tides exhibit strong seasonal variability (e.g., where there exists seasonal ice

coverage; Rotermund et al., 2021). Knowing the instantaneous tidal elevations and velocities would allow for

efficient de‐tiding without needing to harmonically analyze the model output data. This could be particularly

helpful for improving the performance of regional ocean forecasting systems, since the model output must be

available in a timely manner.

In both instances discussed above, the goal is to determine the sinusoidal motions at tidal frequencies while the

model is running. In fact, it is possible to achieve this goal without performing harmonic analysis, because the

time series representing the sinusoidal motions does not have to be constructed from the tidal amplitudes and

phases. In this work, we will show that such a time series can be obtained by band‐pass filtering the model output

at tidal frequencies through the implementation of a streaming filter. In Section 2 of this paper, we will derive the

filter equations and discuss the filter's response to a broadband input signal. In Section 3, some guidance on

choosing the filter's bandwidth will be provided. In Section 4, the algorithm is implemented and validated in a

global barotropic ocean model, developed based on Modular Ocean Model version 6 (MOM6), and the appli-

cation to the parameterization of frequency‐dependent internal wave drag is demonstrated. Finally, in Section 5, a

brief summary of this work will be provided.

2. Methods

2.1. Filter Design

Let u(t) denote a time series that is broadband in the frequency domain, consisting of tidal signals at various

frequencies as well as the noise. To detect the tidal signal at frequency ω1, consider the system of equations for a

damped harmonic oscillator,

du1

dt
= −ω1 [s1(t) + αu1(t) − g(t)], α≥ 0, (1a)

ds1

dt
= ω1 [u1(t) − βs1(t) − f (t)], β≥ 0. (1b)

In this system, ω1 is the resonant frequency, f and g represent inputs into the system, and α and β are the damping

coefficients. It is important to note that, in order for the system to be stable for arbitrary bounded inputs, α and β

cannot be both zeros. Assuming the inputs are linear functions of u, that is,

f (t) = f1u(t), and g(t) = g1u(t), (2)
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where f1 and g1 are real coefficients, it is possible to configure this system as a band‐pass filter, so that u1 consists

primarily of the tidal signal at frequency ω1 (and s1 is a dummy variable). Represented in the frequency domain,

this system may be written as

iω∗ũ1 = −ω1 (̃s1 + αũ1 − g1ũ), (3a)

iω∗s̃1 = ω1(ũ1 − βs̃1 − f1ũ), (3b)

where ω∗ is the broadband input (forcing) frequency, and the tilde denotes the Fourier transforms of the original

variables. To simplify the analysis and notation, we shall non‐dimensionalize the input frequency by the target

frequency and define ω = ω∗/ω1. With some algebra, a relationship between ũ1 and ũ can be established,

ũ1 = [ f1 + (β + iω)g1
(α + iω)(β + iω) + 1

] ũ. (4)

To determine f1 and g1, we impose a constraint that if ω = 1, then ũ = ũ1, such that at the target frequency, u1
captures the full signal from the inputs. This implies that

f1 + (β + i)g1
(α + i)(β + i) + 1

= 1.

From the real and imaginary parts of this equation, two equations for the real coefficients can be obtained, from

which f1 and g1 can be solved,

f1 = −β2, and g1 = α + β. (5)

This implies that the relation between ũ1 and ũ is given by

ũ1 = [ αβ + i(α + β)ω
(αβ − ω2 + 1) + i(α + β)ω] ũ, (6)

and that the filter equations are given by

du1

dt
= −ω1 [s1(t) + αu1(t) − (α + β)u(t)], (7a)

ds1

dt
= ω1 [u1(t) − βs1(t) + β2u(t)]. (7b)

In the context of a streaming band‐pass filter, ω1 represents the target frequency of the filter, while α and β

determine the bandwidth of the filter.

2.2. Filter Response

The filter's response to a broadband input is determined by the complex coefficient in Equation 6. Here and

henceforth, we shall refer to it as the “filter transfer function” and denote it by A(ω; α,β),

A(ω;α,β) = αβ + i(α + β)ω
(αβ − ω2 + 1) + i(α + β)ω , ω≥ 0, α≥ 0, β≥ 0. (8)

Here, we emphasize again that α and β cannot be both zeros. The real and imaginary parts of A are given by

R(A) = αβ(αβ − ω2 + 1) + (α + β)2ω2

(αβ − ω2 + 1)2 + (α + β)2ω2
, (9a)
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and

I(A) = ω(α + β)(1 − ω2)
(αβ − ω2 + 1)2 + (α + β)2ω2

, (9b)

respectively, while the magnitude and argument of A are given by

|A| =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
[R(A)]2 + [I(A)]2

√
, and arg(A) = tan−1[I(A)

R(A)], (10)

respectively. For an output signal, |A| characterizes the amplitude change due to filtering, while arg(A) char-
acterizes the phase shift due to filtering. It can be shown that the filter transfer function has the following

properties for all α≥ 0 and β≥ 0:

1. R(A) = 1 and |A| = 1 at ω = 1,

2. R(A)≥ 0 and |A|≥ 0 for all ω≥ 0,

3. I(A) = 0 and arg(A) = 0 at ω = 1,

4. I(A)≥ 0 and arg(A)≥ 0 if ω< 1, while I(A)≤ 0 and arg(A)≤ 0 if ω> 1.

Additionally, the filter transfer function has the following properties:

Theorem 1: In the log‐linear scale of ω, R(A) and |A| are reflectional symmetric about ω = 1 if and only if

either α = 0 or β = 0, whereas I(A) and arg(A) are rotational symmetric about ω = 1 if and only if either α = 0

or β = 0.

Theorem 2: |A|≤ 1 for all ω≥ 0 if and only if either α = 0 or β = 0. Otherwise, there exists a small frequency

band to the right of ω = 1 in which |A| > 1.

Theorem 3: If either α = 0 or β = 0, thenR(A), I(A) and |A| all vanish in both low and high frequency limits,

while lim
ω→0

arg(A) = π
2
and lim

ω→∞
arg(A) = −π

2
. If α and β are both non‐zero, then R(A) and |A| do not vanish

completely in the low frequency limit, while arg(A) → 0 in the low frequency limit.

Proofs of the above theorems are provided in Appendix A. According to these theorems, it is necessary to set

either α or β to be zero, in order for the filter to be centered at the target frequency and to minimize the signal

picked up from the low frequency limit. Without loss of generality, we shall set β = 0 and reformulate the filter

equations for the remainder of this paper,

du1

dt
= −ω1 [s1(t) + αu1(t) − αu(t)], α> 0, (11a)

ds1

dt
= ω1u1(t). (11b)

The filter transfer function of the above system is given by

A(ω; α) = iαω

(1 − ω2) + iαω
, ω≥ 0, α> 0, (12)

whose real and imaginary parts are given by

R(A) = α2ω2

(1 − ω2)2 + α2ω2
, and I(A) = αω(1 − ω2)

(1 − ω2)2 + α2ω2
, (13)

respectively. This filter transfer function can be visualized in Figure 1.
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2.3. Diagnostic Tool

For an input signal of frequency other than the filter's target frequency, the effects of filtering are an amplitude

reduction, determined by |A|, and a phase shift, determined by arg(A). This implies that the strength of the

filtering effects, or the difference between the input and output signals, depends on ω, the proximity of the input

and target frequencies, and α, the filter's bandwidth. The combined effects of amplitude reduction and phase shift

can be measured by the root mean squared error (RMSE), defined by

RMSE =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
〈[u(t) − u1(t)]2〉

√
, (14)

where the angle brackets indicate time average. Because the output frequency is determined by the input fre-

quency (instead of the filter's target frequency), it is possible to express the RMSE in terms of the amplitudeC and

the phase θ,

RMSE =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
0.5(C2

u + C2
u1
) − CuCu1 cos(θu − θu1)

√
= Cu

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
0.5(1 + |A|2) −R(A)

√
. (15)

When normalized by
̅̅̅̅̅̅
0.5

√
Cu, the RMSE quantifies the signal blocked by the filter,

B(ω;α) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 + |A|2 − 2R(A)

√
. (16)

Figure 1. Visualization of the filter transfer function defined by Equation 12.
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3. Discussion

3.1. Optimal Choice of α

For clarity of presentation, we shall refer to a filter by its target frequency. As an example, consider the M2 filter

whose target frequency is ω1 = 1.4 × 10−4 s−1. For four different values of α between 0.05 and 0.4, the effects of

filtering are shown in Figure 2. In the diurnal frequency band, the filtering leads to an amplitude reduction of more

Figure 2. Effects of filtering of the M2 filter on the diurnal and semi‐diurnal frequency bands. Here, the amplitude change is

quantified by |A|, the phase shift is quantified by arg(A), and the proportion of signal blocked by the filter is quantified by B
defined by Equation 16.

Journal of Advances in Modeling Earth Systems 10.1029/2024MS004319

XU AND ZARON 6 of 16

 1
9

4
2

2
4

6
6

, 2
0

2
4

, 1
0

, D
o

w
n

lo
ad

ed
 fro

m
 h

ttp
s://ag

u
p

u
b

s.o
n

lin
elib

rary
.w

iley
.co

m
/d

o
i/1

0
.1

0
2

9
/2

0
2

4
M

S
0

0
4

3
1

9
, W

iley
 O

n
lin

e L
ib

rary
 o

n
 [1

2
/0

6
/2

0
2

5
]. S

ee th
e T

erm
s an

d
 C

o
n

d
itio

n
s (h

ttp
s://o

n
lin

elib
rary

.w
iley

.co
m

/term
s-an

d
-co

n
d
itio

n
s) o

n
 W

iley
 O

n
lin

e L
ib

rary
 fo

r ru
les o

f u
se; O

A
 articles are g

o
v
ern

ed
 b

y
 th

e ap
p

licab
le C

reativ
e C

o
m

m
o

n
s L

icen
se



than 70% and a phase shift of almost 90°. As a result, more than 95% of the

diurnal signal is blocked by the filter. In the semi‐diurnal frequency band,

however, with a sufficiently large bandwidth, a significant amount of signal

can pass through the filter. For example, with α = 0.4, the amplitude reduc-

tion of the S2 signal is less than 1.5%, while the phase shift of the S2 signal is

less than 10°. As a result, less than 17% of the S2 signal is blocked by the M2

filter. Some quantitative measurements of the effects of the M2 filter can be

found in Table 1, while the proportion of various input signal that can pass

through the M2 and K1 filters (the latter has the target frequency

ω1 = 7.3 × 10−5 s−1) as a function of α can be visualized in Figure 3.

The above analysis provides some insights into how the filters should be

constructed in practice. Most importantly, there does not exist a universally

applicable criterion for the optimal choice of α. Instead, the optimal choice

depends on the application. For example, suppose that at a certain location

there exist very strong semi‐diurnal tides but weak diurnal tides. In this case, a

single semi‐diurnal filter with a moderate bandwidth will allow the majority

of semi‐diurnal tidal signals to pass through, while filtering out other high and

low frequency motions. For example, Table 1 shows that with α = 0.7, about

90% of the S2 signal can pass through the M2 filter, with a phase shift of about

6°, whereas only 10% of the K1 signal can pass through the M2 filter. Note

that the phase shift of the S2 signal will translate into the phase shift of the spring‐neap cycle in the output signal,

and whether or not this is acceptable depends on the application. To block more signal from the diurnal frequency

band without decreasing the filter's bandwidth, the filter's target frequency can be shifted toward the S2 frequency,

so that it is located further away from the diurnal frequency band. If, for some reason, it is necessary to block the

S2 signal (e.g., to remove the phase shift in the spring‐neap cycle by constructing an S2 filter), then Table 1

suggests that α of the M2 filter should be 0.02 or less, so that less than 4% of the input S2 signal will pass through

the M2 filter.

In contrast, Figure 3b shows that the K1 filter is not very effective in band‐passing the Q1 or O1 signal while

blocking the semi‐diurnal signals at the same time. This is because the Q1 and O1 frequencies are located rela-

tively farther away from the K1 frequency and are on the opposite side of the frequency spectrum from the semi‐

diurnal frequency band. In this case, depending on the relative importance of the Q1 and O1 tides, it might be

necessary to reduce the bandwidth of the K1 filter and to construct another filter with relatively small α, in order to

band‐pass the Q1 and O1 signals.

Table 1

Effects of Filtering of theM2 Filter Measured by |A|, the Amplitude Change,
arg(A), the Phase Shift, and B, the Proportion of Signal Blocked by the
Filter, for Different Values of α, With the Input Frequencies Being the S2 and

K1 Frequencies

α

Input at S2 frequency Input at K1 frequency

|A| arg(A) B |A| arg(A) B

1 0.9976 −3.94° 6.88% 0.5790 54.62° 81.53%

0.7 0.9952 −5.62° 9.80% 0.4452 63.57° 89.54%

0.4 0.9855 −9.78° 16.98% 0.2733 74.14° 96.19%

0.2 0.9454 −19.01° 32.58% 0.1406 81.92° 99.01%

0.1 0.8234 −34.57° 56.74% 0.0708 85.94° 99.75%

0.05 0.5873 −54.04° 80.94% 0.0355 87.97° 99.94%

0.02 0.2787 −73.82° 96.04% 0.0142 89.19° 99.99%

0.01 0.1436 −81.74° 98.96% 0.0071 89.59° 100.00%

Figure 3. Proportion of input signal that passes through the M2 and K1 filters, measured by (1 − B) as a function of α defined
by Equation 16. The input frequencies are those of the eight major tidal constituents, Q1, O1, P1, K1, N2, M2, S2, and K2. In

Panel (a), curves with input frequencies in the diurnal frequency band are shown in black, whereas in panel (b), curves with

input frequencies in the semi‐diurnal frequency band are shown in black.
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3.2. Transient Solutions to the Filter Equations

So far, the analyses have been based on Fourier transforms of the filter equations in an unbounded time domain,

and the filter responses discussed are only applicable to the equilibrium solutions of the filter equations.

Nevertheless, there also exist transient solutions that represent the decay of the initial conditions. The homo-

geneous version of the system of equation (Equation 11) can be represented in the form

d2u1

dt2
+ αω1

du1

dt
+ ω2

1u1 = 0, (17)

which is a typical second‐order constant‐coefficient scalar linear homogeneous ordinary differential equation.

Solving this equation (e.g., Chapter 4 of Trefethen et al. (2018)) yields solutions of the form

u1(t) = exp[ω1

2
(−α ±

̅̅̅̅̅̅̅̅̅̅̅̅̅
α2 − 4

√ ) t]. (18)

If α≥ 2, then the exponents are real, and both solutions decay exponentially, whereas if α< 2, then the exponents

are complex, and both solutions decay exponentially but at the rate set by the real part of the exponent. Figure 4

shows the decay of the transient solutions for the M2 and K1 filters in the first 25 days. It provides some guidance

for determining the spin‐up time that the filter equations need before their outputs can be considered as consisting

of tidal signals only.

3.3. Discretization Errors

Numerically, the filter equations (Equation 11) can be implemented using, for example, the following time

stepping algorithm,

s
(n)
1 = ω1Δtu

(n−1)
1 + s

(n−1)
1 , (19a)

u
(n)
1 = −ω1Δt[s(n)1 − αu(n)] + (1 − αω1Δt) u(n−1)1 . (19b)

Here, the superscripts (n) and (n − 1) represent the current and previous time steps, respectively, and Δt is the

time step size. Note that the dummy variable s1 is evaluated first, in order for u1 to be evaluated based on the value

of s1 at the current time step. While only the continuous time has been considered in the analyses so far, dis-

cretization of the time domain will lead to errors of both amplitude and phase in the output signals, even at the

target frequency of the filter.

Figure 4. Normalized amplitude of the transient solutions, exp(−αω1t/2) , for (a) the M2 filter and (b) the K1 filter with

different values of α between 0.05 and 0.4.
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As an example, consider the input signal given by

u(t) = cos(ω1t), (20)

whose frequency is the same as the target frequency of the filter. Without discretization error, the output of

the filter should be identical to the input, that is, u1(t) = u(t) for all t. Hence, the discretization error can be

quantified by calculating the RMSE of the numerical solutions against the exact solution. Figure 5 shows that

the discretization error scales approximately linearly with Δt, which is expected for a first‐order time stepping

scheme. For a given Δt, the discretization error increases as α decreases, though this increase is insignificant

for small Δt. The discretization error is also frequency dependent. Given the same Δt and α, the error tends to

be larger for higher‐frequency signals. In this particular example, the amplitude of the input signal is unity.

Hence, the RMSE plotted in Figure 5 may be interpreted in terms of percentage. We have also performed

additional tests and found that the discretization error is independent of phase change. Given a desired

precision level, Figure 5 thus provides some guidance for determining Δt of the filter equations. Note that Δt

does not have to be the same as the time step size adopted by the model, as long as the model output is

available as input for the filter equations.

4. Numerical Simulations

4.1. Model Description

In this section, the filter equations (Equation 19) are incorporated into MOM6 to demonstrate its application to the

parameterization of frequency‐dependent internal wave drag. MOM6 is a three‐dimensional primitive equation

numerical model, developed at the Geophysical Fluid Dynamics Laboratory (GFDL) of the National Oceanic and

Atmospheric Administration (NOAA) for long‐term integration and climate studies (Adcroft et al., 2019). In this

work, a barotropic version of the global model was configured, which solves the one‐layer shallow water mo-

mentum and continuity equations,

Du

Dt
+ fk × u = −g∇(η − ηeq − ηSAL) − CD|u|u

H
− C ⋅ u

H
, (21a)

Dη

Dt
= −∇ ⋅ [(H + η)u]. (21b)

In these equations, u is the horizontal velocity, η is the perturbation tidal elevation, ηeq is the equilibrium tidal

potential, ηSAL is the self‐attraction and loading term, g is the acceleration due to gravity, f is the Coriolis fre-

quency, k is the vertical unit vector, H is the resting water depth, CD is the bottom drag coefficient, and C is the

Figure 5. Discretization error as a function of the time step size, Δt, measured in terms of the root mean squared error of the

numerical solutions computed against the exact solution with unit amplitude.
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internal wave drag tensor. The model is configured on a tri‐polar grid with a 1/12° nominal resolution, adapted

from the “GLBc0.08” configuration of the Hybrid Coordinate OceanModel (HYCOM; Bleck, 2002). The bottom

and under‐ice‐shelf topography is adapted from the NOAA Global Storm Surge and Tide Operational Forecast

model (G‐STOFS; Blakely et al., 2022). The barotropic tides are forced by the astronomical tidal potential at the

M2 and K1 frequencies and are modified by the term ηSAL to include the effects of ocean self‐attraction and solid‐

earth loading (Egbert & Erofeeva, 2002). The baroclinic tides are parameterized based on the scheme developed

by Jayne and St. Laurent (2001), who suggested that the internal wave drag tensor, C, can be approximated by a

simple linear drag coefficient

CJSL = πĥ
2
Nb

L
, (22)

where L is the topographic length scale, ĥ is the topographic roughness scale, and Nb is the buoyancy frequency

along the ocean bottom.

In our simulations, the barotropic velocity was filtered at the M2 and K1 frequencies, so that internal wave drag

can be applied to the M2 and K1 velocities. This involves modifications to the MOM6 barotropic solver by

replacing the momentum equation with

Du

Dt
+ fk × u = −g∇(η − ηeq − ηSAL) − CD|u|u

H
− CJSL

H
(κM2uM2 + κK1uK1), (23)

where uM2 and uK1 represent the M2 and K1 band‐passed velocities obtained from the filtering, while κM2 and κK1
are the dimensionless scaling factors, controlling the internal wave drag applied to the semi‐diurnal and diurnal

frequency bands, respectively. For both M2 and K1 filters, αwas set to 0.1, so that the proportion of diurnal (semi‐

diurnal) signal that can pass through theM2 (K1) filter is about 0.25% (see Table 1), while the spin‐up times for the

M2 and K1 filter equations are about 7.5 and 15 days, respectively. At the end of the spin‐up time, the amplitude of

the transient solution is expected to be less than 1% of its initial value.

4.2. Simulation Results

Based on the linear theory (Bell, 1975a, 1975b; Llewellyn Smith & Young, 2002), the scaling factors κM2 and κK1

are of the form

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − f 2/ω2

√
and are latitude dependent. In our simulations, for clarity of presentation and for the

purpose of demonstrating the application of the filters, spatially uniform values of κM2 and κK1 were adopted. The

numerical simulations were performed with either κM2 = 0 or κK1 = 0 and the other scaling factor varied between

0 and 2. The simulation results were compared against the TPXO9 data (Egbert & Erofeeva, 2002) by computing

the RMSE of the tidal elevation,

RMSE =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
0.5(C2

m + C2
T) − CmCT cos(θm − θT)

√
, (24)

where the subscripts m and T refer to the model results and TPXO data, respectively. From model output, tidal

amplitudes and phases were obtained by performing harmonic analysis on the sea surface height from day 16 to

day 30. Then, the global mean RMSE of the M2 and K1 elevations were taken

over all depths and latitudes, as well as waters deeper than 1,000 m. The

global mean RMSE is defined by

RMSE =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑RMSE2ΔA

∑ΔA

√
, (25)

where ΔA represents the area of each grid cell.

Tables 2 and 3 show that the variation of the scaling factors has a systematic

effect on the RMSE calculated at their target frequency band but very little

Table 2

Global Mean Root Mean Squared Error ofM2 andK1 Elevations (cm) for All

Depths and Deep Waters, With κK1 = 0 and κM2 Varying Between 0 and 2

κM2 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2

M2, all depths 11.39 8.54 6.64 5.73 5.77 6.47 7.48 8.58 9.67

M2, deep waters 9.54 6.69 4.67 3.65 3.79 4.67 5.80 6.95 8.05

K1, all depths 3.42 3.39 3.36 3.35 3.34 3.33 3.33 3.33 3.32

K1, deep waters 2.39 2.37 2.35 2.34 2.33 2.33 2.32 2.32 2.32

Note. Visualization is provided in Figure 6a.
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influence on the RMSE calculated from the off‐target frequency band. This suggests that the filters were per-

forming as expected during the simulations, allowing us to control the internal wave drag applied to the semi‐

diurnal and diurnal frequency bands separately. Moreover, Figure 6 shows that the RMSE appears as a convex

function of the scaling factor imposed on the filter's target frequency band. For the RMSE of M2 elevation, the

local minimum occurs when κM2 is between 0.75 and 1, and the minimum value is smaller than that in the

simulation where the drag is applied to the unfiltered velocity field. For the RMSE of K1 elevation, the local

minimum occurs when κK1 is between 1 and 1.25, and the minimum value is marginally larger than that in the

simulation where the drag is applied to the unfiltered velocity field. The fact that the local minima of the RMSE of

M2 and K1 elevations occur at different values of κM2 and κK1 suggests that the optimally tuned internal wave drag

for the semi‐diurnal and diurnal frequency bands should be different, which is consistent with theoretical analyses

reported in the past literature (Bell, 1975a, 1975b; Llewellyn Smith & Young, 2002; Nycander, 2005).

5. Conclusions

In this work, we developed a computationally efficient algorithm for constructing streaming band‐pass filters that

are capable of detecting the instantaneous tidal signals and their temporal variations in numerical simulations

performed in the time domain. The filter equations consist of a system of two coupled ordinary differential

equations, which takes the instantaneous model output at the current time step as the input and then filters the

input signal based on the pre‐determined target frequency and bandwidth. Analyses in Fourier space show that the

filter's response to a broadband input is unity at its target frequency and vanishes toward both low and high‐

frequency limits. The decay of the filter response away from the target frequency is symmetric about the

Table 3

Global Mean Root Mean Squared Error ofM2 andK1 Elevations (cm) for All Depths and DeepWaters, With κM2 = 0 and κK1
Varying Between 0.25 and 2

κK1 0.25 0.5 0.75 1 1.25 1.5 1.75 2

M2, all depths 11.42 11.45 11.48 11.52 11.56 11.60 11.64 11.68

M2, deep waters 9.55 9.57 9.59 9.61 9.63 9.66 9.68 9.71

K1, all depths 2.95 2.60 2.37 2.27 2.28 2.36 2.51 2.70

K1, deep waters 1.95 1.62 1.42 1.36 1.41 1.56 1.75 1.96

Note. Visualization is provided in Figure 6b.

Figure 6. Global mean root mean squared error (RMSE) of (a) M2 elevation and (b) K1 elevation for all depths (blue) and

deep waters only (red), reproduced from Tables 2 and 3. Solid curves indicate results from simulations in which frequency‐

dependent wave drag is applied to the filtered velocity fields. Dashed lines indicate results from the simulation in which the

wave drag is applied to the unfiltered velocity field, where the global mean RMSE of M2 elevation are 5.88 cm for all depths

and 3.93 cm for deep waters, while the global mean RMSE of K1 elevation are 2.18 cm for all depths and 1.37 cm for deep

waters.
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target frequency in the log‐linear scale of the frequency spectrum, and the rate of decay is controlled by a

dimensionless parameter that determines the filter's bandwidth.

The filter equations are incorporated into the barotropic solver of MOM6 and are used for determining the

instantaneous tidal velocities at the M2 and K1 frequencies, in order to demonstrate the application of the band‐

pass filtering to the parameterization of frequency‐dependent internal wave drag. The algorithm is validated by

the simulation results, which suggest that the drag has a systematic effect on the dynamics at the filter's target

frequency band but very little influence at the off‐target frequency band.

There are several major differences between the conventional harmonic analysis and the band‐pass filtering.

Essentially, the former decomposes the input signal into trigonometric series and searches for least‐square so-

lutions that can be interpreted in terms of tidal amplitudes and phases, whereas the latter simply outputs time

series consisting of sinusoidal motions, where information of amplitudes and phases is not directly available.

Moreover, harmonic constants determined from the conventional harmonic analysis are time‐independent,

whereas the band‐pass filtering is a streaming process, and the filter's output adjusts to the input signal

dynamically during the time‐stepping. This makes the band‐pass filtering particularly suitable for capturing the

seasonal variability of tides.

The filtering algorithm developed in this work is based on a system of equations that can be represented in terms

of a second‐order linear ordinary differential equation. For future works, high order systems of differential

equations can be considered, which may allow for separate control of the filter's bandwidth and sharpness

(Schaumann et al., 2009), so that more signal within the filter's target frequency band may pass through while

more signal outside of the target frequency band is blocked.

Appendix A: Proofs of Theorems

A1. Proof of Theorem 1

If either α = 0 or β = 0, then we can simply let β = 0 and α> 0 without loss of generality. By letting Ω = ln ω, the

filter transfer function can be written as

A(Ω;α) = iαeΩ

(1 − e2Ω) + iαeΩ
, (A1)

whose real and imaginary parts are given by

R(A) = α2e2Ω

(1 − e2Ω)2 + α2e2Ω
, and I(A) = αeΩ (1 − e2Ω)

(1 − e2Ω)2 + α2e2Ω
, (A2)

respectively. It follows that

R[A(−Ω; α)] = α2e−2Ω

(1 − e−2Ω)2 + α2e−2Ω

= α2e2Ω

e4Ω [(1 − e−2Ω)2 + α2e−2Ω]
= α2e2Ω

(e2Ω − 1)2 + α2e2Ω

= R[A(Ω;α)],

(A3)

and that
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I[A(−Ω; α)] = αe−Ω (1 − e−2Ω)
(1 − e−2Ω)2 + α2e−2Ω

= αe3Ω (1 − e−2Ω)
e4Ω [(1 − e−2Ω)2 + α2e−2Ω]

= αeΩ (e2Ω − 1)
(e2Ω − 1)2 + α2e2Ω

= −I[A(Ω; α)].

(A4)

This implies thatR(A) is reflectional symmetric about Ω = 0, while I(A) is rotational symmetric about Ω = 0.

From the definitions of |A| and arg(A), this also implies that

|A(−Ω; α)| = |A(Ω; α)|, and arg[A(−Ω; α)] = −arg[A(Ω;α)], (A5)

which means that |A| is reflectional symmetric about Ω = 0, while arg(A) is rotational symmetric about Ω = 0.

If α and β are both non‐zero, then the proof of Theorem 3 (Appendix A3) implies thatR(A),I(A), and |A| are all
asymmetric. To show that I(A) is also asymmetric about Ω = 0, we shall rewrite I(A) in terms of

I[A(Ω; α,β)] = (α + β)eΩ (1 − e2Ω)
(αβ + 1 − e2Ω)2 + (α + β)2e2Ω

. (A6)

It follows that

I[A(−Ω; α,β)] = (α + β)e−Ω (1 − e−2Ω)
(αβ + 1 − e−2Ω)2 + (α + β)2e−2Ω

= (α + β)e3Ω (1 − e−2Ω)
e4Ω [(αβ + 1 − e−2Ω)2 + (α + β)2e−2Ω]

= (α + β)eΩ (e2Ω − 1)
(αβe2Ω + e2Ω − 1)2 + (α + β)2e2Ω

.

(A7)

However, this does not equal to either I[A(Ω; α,β)] or −I[A(Ω; α,β)]. Therefore, I(A) is neither reflectional
symmetric nor rotational symmetric about Ω = 0.

A2. Proof of Theorem 2

Let β = 0. An expression of |A| is given by

|A(ω; α)| = αω̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(1 − ω2)2 + α2ω2

√ . (A8)

From this expression, we can determine the first derivative of |A| with respect to ω,

d

dω
|A(ω; α)| = α(1 − ω4)

[(1 − ω2)2 + α2ω2]3/2 . (A9)

Since ω≥ 0, this implies that there exists only one local extremum, which is |A| = 1 and occurs at ω = 1.

Moreover, Theorem 3 states that |A| vanishes in both low and high frequency limits. Therefore, |A| = 1 must be

the global maximum.

If α and β are both non‐zero, then we can define a constant c through
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c = ω2 − 1

αβ
⟺ ω2 − 1 = αβc. (A10)

With some algebra, we can obtain an expression for |A| represented in terms of c,

|A(c; α,β)| = [1 − α2β2c(c − 2)
α2β2(c − 1)2 + (α + β)2 (αβc + 1))

]1/2. (A11)

This expression suggests that |A|> 1 if c(c − 2)< 0, which can occur if 0< c< 2, or equivalently, if

1<ω<
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2αβ + 1

√
. As long as α and β are both non‐zero, such an interval always exists to the right of ω = 1,

implying that the maximum value of |A| is always greater than unity.

A3. Proof of Theorem 3

In the high‐frequency limit, ω≫ 1 and ω≫ αβ, such that

R(A)≈
−αβω2 + (α + β)2ω2

ω4 + (α + β)2ω2
≈

(α + β)2 − αβ

ω2
, ⇒ lim

ω→∞
R(A) = 0+, (A12)

and

I(A)≈ − ω3(α + β)
ω4 + (α + β)2ω2

≈ − α + β

ω
, ⇒ lim

ω→∞
I(A) = 0−. (A13)

Since R(A) ∼ O(ω−2) while I(A) ∼ O(ω−1), from the definition of |A|, this implies that |A| ∼ O(ω−1) , and
that

lim
ω→∞

|A| = 0+. (A14)

Moreover, since I(A)
R(A) ∼ O(ω), while R(A) > 0 and I(A) < 0, this also implies that

lim
ω→∞

I(A)
R(A) → −∞, ⇒ lim

ω→∞
arg(A) = −π

2
. (A15)

Note that the above limiting behaviors hold for all α≥ 0 and β≥ 0.

In the low‐frequency limit, we shall first assume that α and β are both non‐zero, such that ω≪ 1 and ω≪ αβ. In

this case,

R(A)≈
αβ(αβ + 1) + (α + β)2ω2

(αβ + 1)2 + (α + β)2ω2
≈

αβ

αβ + 1
, (A16)

and

I(A)≈
ω(α + β)

(αβ + 1)2 + (α + β)2ω2
≈
ω(α + β)
(αβ + 1)2

, ⇒ lim
ω→0

I(A) = 0+. (A17)

This suggests that R(A) does not vanish but approaches some constant determined by α and β. As a result, |A|
does not vanish either. Moreover, this implies that

I(A)
R(A) ∼ O(ω), ⇒ lim

ω→0

I(A)
R(A) = 0+, ⇒ lim

ω→0
arg(A) = 0+. (A18)
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If either α = 0 or β = 0, then we can let β = 0 as we did before. In this case,

R(A)≈
α2ω2

1 + α2ω2
≈ α2ω2, ⇒ R(A) ∼ O(ω2), and lim

ω→0
R(A) = 0+, (A19)

and

I(A)≈
αω

1 + α2ω2
≈ αω, ⇒ I(A) ∼ O(ω), and lim

ω→0
I(A) = 0+. (A20)

This implies that

|A| ∼ O(ω), ⇒ lim
ω→0

|A| = 0+, (A21)

and that

I(A)
R(A) ∼ O(ω−1), ⇒ lim

ω→0

I(A)
R(A) = ∞, ⇒ lim

ω→0
arg(A) = π

2
. (A22)

Data Availability Statement

Implementation of the streaming filters and the frequency‐dependent drag in MOM6 can be found at https://

github.com/c2xu/MOM6/releases/tag/v1.0.0 (Xu, 2024).
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