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Hazard event sets, a collection of synthetic extreme events over a given
period, are important for catastrophe modelling. This paper addresses the is-
sue of generating event sets of extreme river flow for northern England and
southern Scotland, a region which has been particularly affected by severe
flooding over the past 20 years. We start by analysing historical extreme river
flow across 45 gauges, using methods from extreme value analysis, includ-
ing the concept of extremal principal components. Our analysis reveals in-
teresting connections between the extremal dependence structure and the re-
gion’s topography/climate. We then introduce a framework which is based
on modelling the distribution of the extremal principal components in order
to generate synthetic events of extreme river flow. The generative framework
is dimension-reducing in that it distinctly handles the principal components
based on their contribution to describing the nature of extreme river flow
across the study region. We also detail a data-driven approach to select the
optimal dimension. Synthetic flood events are subsequently generated effi-
ciently by sampling from the fitted distribution. Our results indicate good
agreement between the observed and simulated extreme river flow dynam-
ics and, therefore, illustrate the usefulness of our approach to practitioners.
For the considered application, we also find that our approach outperforms
existing statistical approaches for generating hazard event sets.

1. Introduction. Severe flood events regularly cause widespread disruption and huge
losses. In the U.K., the flooding caused by Storm Desmond, Storm Eva and Storm Frank in
2015/2016 led to an estimated economic damage of between £1.3—1.9 billion (Environment
Agency (2018)), and the cascading effects of Storm Ciara and Storm Dennis in February 2020
broke record levels for multiple rivers. Catastrophe models are an important tool to estimate
the impact of such natural hazards (Grossi and Kunreuther (2005)) and are used by insurance
companies to predict the financial capital required to cover potential payouts. One component
of these models is a set of simulated hazard events, representing, for instance, a collection of
potential floods over a long period, for example, 1000 or 10,000 years.

Approaches for generating hazard sets fall into two broad categories: numerical and statis-
tical. Numerical approaches often try to capture the physics of the phenomenon of interest,
which requires the modelling of a number of complex processes, such as rainfall and soil
conditions. For example, numerical weather models can be used to produce simulated spa-
tiotemporal rainfall, and this can be coupled with runoff models to assess flood hazards (e.g.,
Camici et al. (2014)).

In this paper we propose a novel statistical framework for hazard set generation in order to
produce hazard event sets of extreme river flow for northern England and southern Scotland.
This region has recent flooding history—Storm Desmond and Storm Frank led to collapsed
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F1G. 1. Locations of the 45 river flow gauges in northern England and southern Scotland (left) and the effect of
Storm Desmond on river flow levels (right). The numbering in the left panel is determined by the latitude of the
gauge, and the lines highlight flow-connected gauges. In the right panel, gauges are shaded subject to the rank
of the observation recorded during/after Storm Desmond. The darkest shaded gauges recorded their maximum
river flow between 1980 and 2018 in the week of Storm Desmond; the second darkest shade corresponds to
the observation being amongst the five highest values for the gauge, while the lightest shade indicates that the
observed river flow was not very extreme.

bridges and thousands of flooded homes in Cumbria, northern Lancashire and Dumfries and
Galloway. To assess the region’s historical flood risk, we obtained daily river flow levels (in
m?/s) for the period 01/01/1980-30/09/2018 for 45 gauges from the U.K.’s National River
Flow Archive (nrfa.ceh.ac.uk). Figure 1 left panel shows that most of the gauges are located
along the west coast, ranging from southern Scotland to the Welsh border, and in North East
England. The region has a varying topography (described later in Section 2.1), which we will
find to be represented by some of our results. To give an example of the spatial structure
of extreme river flow, the right panel in Figure 1 highlights the gauges that recorded very
extreme flow due to Storm Desmond; most of them are located in Cumbria and northern
Lancashire.

Statistical approaches for generating hazard sets often rely on extreme value theory, as it
provides asymptotically justified methods to analyse the tail behaviour of multivariate ran-
dom variables (Beirlant et al. (2004)) and stochastic processes (Davison, Padoan and Ribatet
(2012)). Crucially, extremes models provide a framework for extrapolation, that is, they can
estimate the occurrence probability of events outside the range of recorded data. Conceptu-
ally, if one can draw realizations from an extremes model, it can be used to generate hazard
sets. Keef, Tawn and Lamb (2013) and Quinn et al. (2019) produce flood hazard sets using
the conditional extremes approach (Heffernan and Tawn (2004)). A potential drawback of
their approach is that several residual distributions have to be modelled and the analysis of
the tail from the estimated conditional distributions is challenging.

When analysing the tail behaviour of a K-dimensional random vector X, marginal dis-
tributions and extremal dependence structure are often modelled separately. While a block-
maxima or peaks-over-threshold model is generally employed for the marginals of X (Coles
(2001)), most existing approaches for extremal dependence (Tawn (1988), Hiisler and Reiss
(1989), Boldi and Davison (2007), Cooley, Davis and Naveau (2010), Ballani and Schlather
(2011), de Carvalho and Davison (2014)) are limited to fairly moderate dimensions; see
Engelke and Ivanovs (2021) for a review. This limitation is caused by extremal dependence
being defined via a measure Hy on the K -dimensional unit sphere (or simplex) which usually
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has to be estimated based on a small number of extreme events. Some issues can be overcome
by instead defining a graphical model on the dependence structure (Engelke and Hitz (2020)),
but the assumptions on Hx may still be too strong. The extremal dependence in our applica-
tion is likely to be very complex, due to the K =45 gauges in Figure 1 being spread across
a river network with disparate catchments and the varying topography and climate across the
region.

Rather than beginning with fitting a model, our approach for generating hazard sets starts
with an extremal principal component analysis (PCA). Nonextreme PCA is often used as a
dimension reducing exploratory tool for high-dimensional data. Recently, both Cooley and
Thibaud (2019) and Drees and Sabourin (2021) have adapted ideas from PCA for studying
multivariate extremes. Nonextreme PCA has also been applied to define generative models.
Dreveton and Guillou (2004) use PCA to generate synthetic temperature data. Unlike precip-
itation and river flow, temperature is approximately Gaussian and well suited to the elliptical
nature of traditional PCA. No analogous procedure exists for generating extreme events; we
will later see that the extreme case is more challenging, since the principal components are
dependent.

This paper makes two substantial contributions to the area of statistical flood risk analy-
sis. Our first contribution is the analysis of historical extreme river flow in northern England
and southern Scotland using recently developed methodology in extreme value analysis, in
particular, clustering and PCA. The second contribution is our method to generate hazard
event sets. Our framework utilises the methodology by Cooley and Thibaud (2019), which
provides a transformation of X into a K -dimensional random vector V, termed the extremal
principal components, with the extremes of V and X being linked. Critically, in our river
flow application the first components of V describe the large-scale spatial structure in the
extreme river flow, while the remaining components capture local-scale dynamics or residual
behavior. This invites the application of dimension-reduction techniques; our proposed meth-
ods model the full extremal dependence structure of the first components of V and provide a
reasonable fit for the remaining components. The approach presented herein uses the kernel
density estimate for spherical data by Hall, Watson and Cabrera (1987) to model the extremal
dependence; alternatives are discussed at the end of the paper. From the estimated model,
large hazard event sets can be generated with low computational cost.

The remainder of this paper is organized as follows: Section 2 models the gaugewise ex-
treme values, summarizes the approach by Cooley and Thibaud (2019) and applies it to the
river flow data; Section 3 introduces our generative framework; the generated flood event sets
for northern England and southern Scotland are analyzed in Section 4; we conclude with a
discussion in Section 5.

2. Analysis of extreme river flow.

2.1. Data. An exploratory data analysis for the K = 45 gauges in Figure 1 reveals sea-
sonality in both the magnitude and spatial structure of observed extreme river flow levels.
An increase in river flow is largely driven by convectional rainfall (e.g., thunderstorms) in
summer months and by frontal rainfall (e.g., extratropical cyclones) in winter months. Since
the most severe flood events occur in winter, we focus on generating hazard event sets for
November—March, and both the marginal distributions and tail dependence can be assumed
to be stationary.

We obtain 7 = 848 weeks of recorded winter river flow between January 1980 and
September 2018. For each of the K gauges and T weeks, the maximum daily river flow
is stored for analysis, yielding T data points per gauge. Some gauges have a small proportion
of missing values (2-3%), and complete records are available for 28 of the 45 gauges. The
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average river flow ranges from 2.67 m3/s (gauge 31) up to 151.8 m3/s (gauge 12), indicat-
ing substantial differences in catchment sizes. The study region is also quite topographically
varied: low mountain ranges dominate the northern half, while the southern half is mostly
flatland. Twelve of the gauges, most of them in the northeast, are located on rivers flowing
east toward the North Sea, while the remaining gauges record westward flows into the Irish
Sea.

2.2. Modelling the marginal distributions. We first model the marginal distributions, and
we describe the process for modeling the tail dependence in subsequent subsections. Let
X k denote the random variable representing the maximum river flow for gauge k in week ¢
(k=1,...,K;t=1,...,T). We adopt a peaks-over-threshold approach (Pickands (1975))
to model the upper tail of X; ;. For some suitably high threshold uy, exceedances by X; y of
uy are modelled as generalized Pareto distributed, GPD(oy, &), with

Ekx 71/‘§k
(D) IP’(Xt,k>x+uk|Xt,k>uk)=(l+G—)
k

(x >0),

+

where (z)+ = max{z, 0}, and (o%, &) € R4+ x R are termed the scale and shape parameters,
respectively. The value of & = 0, interpreted as the limit of (1) as & — 0, gives the exponen-
tial distribution, whilst & < O corresponds to a short-tailed distribution with finite upper end
point, and & > 0 gives a power-law tail decay.

We select the threshold uy using graphical diagnostic tools (Coles (2001)); see Wadsworth
(2016) and Northrop, Attalides and Jonathan (2017) for recent reviews. The diagnostic plots
suggest setting uy to the empirical 94% quantile of X; x, leaving about 50 data points at each
location. Initial gaugewise maximum likelihood estimates for & have a large range between
—0.3 and 0.58, and the standard errors of o} and & are also large. It appears that estimates for
several sites are highly influenced by Storm Desmond in 2015; Barlow, Sherlock and Tawn
(2020) also find that this single event led to quite different tail estimates.

In order to reduce uncertainty in the parameter estimates, we aim to borrow statistical
information across gauges. One widely applied approach in flood risk analysis is to group
gauges based on catchment attributes and to assume a common shape parameter for all gauges
within a group; see, for example, Institute of Hydrology (Great Britain) (1975) and Asadi,
Davison and Engelke (2015). However, the K gauges in our application are located across
several river systems, leading to the groups derived based on catchment attributes to be small.
Alternatively, Bayesian hierarchical models have also been proposed to estimate spatially
varying parameters in extreme value analysis (Cooley, Nychka and Naveau (2007), Bracken
et al. (2016)). The difficulty with this approach in our application is the selection of the
spatial priors, because the variations in climate and topography across the study region may
lead to considerable differences in the distribution of extreme river flow, even for spatially
close gauges.

We propose a new two-step process which derives estimates for oy and & (k=1,..., K)
under the sole assumption that the pooled groups of gauges are contiguous. In the first step,
the Bayesian clustering framework by Rohrbeck and Tawn (2021) is used to estimate the
gaugewise shape parameters. In the second step, the scale parameter oy is estimated using
maximum likelihood estimation, with & being fixed to its posterior mean estimate obtained
in the first step. The estimates for & have a reduced range between 0.10 and 0.22, and oy is
estimated based on the observations exceeding the empirical 96% quantile.

Under the assumption that P(Xy ; > uy) is constant for all 7, the -year event is given
by ux + %[(kuklfl)& — 1], where A, is the expected number of times X, ; exceeds uy per
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year. Regulators can require that structures withstand a specific iy -year event (e.g., 1000-year
event). Here, the yr-year event has to be seen as a measure of severity of events in the near
future and not as a prediction for extreme river flow over the next i years, since climate
change may affect the distribution of extreme river flow in the coming decades. For our
application we find the stationarity assumption to be reasonable for the November—March
period over the years 1980-2018. We will discuss in Section 5 how our analysis can be
modified should the distribution of river flow levels be nonstationary.

2.3. Analysing extremal dependence using principal components. In Section 2.4 we will
apply the method by Cooley and Thibaud (2019) to analyze extremal dependence across the
components of the random vector X; = (X, 1, ..., X; k) representing river flow on day ¢t =
1,..., T across the K gauges. In this section we summarize their methodology and compare
it to the approach by Drees and Sabourin (2021).

Let X = (X 1s-- X k) be a K-dimensional random vector with the marginal distributions
given by P(X; < x) =exp(—x~2) (x > 0; k= 1,..., K), that is, X; follows a Fréchet dis-
tribution. It is further assumed that X is regularly Varying with index o = 2; that is, for any
Borel set BCSK ! = {0 eRE : |0l =1} and z > 1,

) rgn;op(uxnz > rz, ”;b € B|IX|>> r) =2 Hx({B}).
where Hy is termed the angular measure. We apply a marginal transformation to the random
vector X;(r =1, ..., T) of river flows later in Section 2.4 to meet these conditions.

Tail dependence of X is summarized via the K x K tail pairwise dependence matrix
(TPDM) X which is defined by the second-order properties of Hy. Formally, the (i, j)th
element of X is

(3) Zi,j:_/SK_la)iwjdHX(w) (i,j=1,...,K).
+

Equation (3) corresponds to the extremal dependence measure of Larsson and Resnick
(2012). The restriction to o = 2 gives X properties analogous to a covariance matrix: X
is positive semidefinite, and high values of X; ; indicate strong extremal dependence of the
variables X; and X j» while values close to zero represent weak or no extremal dependence
between X ; and X je

Since X is positive semidefinite and symmetric, we can derive its eigendecomposition and
express it in the form X = UDUT, where Dis a diagonal matrix with entries A| > -+ > Ag >
Oand Uis a K x K unitary matrix. Extremal dependence of the components of X is explored
by investigating the eigenvalue/eigenvector pairs (A1, U. 1), ..., (Ag, U. k) sequentially. The
extremal principal components of X are then defined as

“4) v=U"r"1(X),

where 771(-) = log[exp(-) — 1] is applied componentwise and the components of V can take
any real value. Lemma A4 in Cooley and Thibaud (2019) implies that V is regularly varying
with o« = 2, and we let Hy denote its angular measure. This result will form the basis for
our generative framework in Section 3. Note that the measure Hy operates on the whole unit
sphere SK=1' = {w e RX : ||w|| = 1}, unlike Hy, which is restricted to the first quadrant.
Furthermore, Proposition 6 in Cooley and Thibaud (2019) implies that the TPDM X for V
satisfies X; ii =A; and 3 i,j =0 for i # j. As such, the extremal principal components have
analogous properties to the classical principal components. However, the random variables
Vi and V; are not independent. Consequently, the angular measure Hy has no simple form,
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and we have to estimate it in order to sample realizations of V. We will address the estimation
of Hy later in Section 3.

Drees and Sabourin (2021) consider a slightly more general framework to (2) and (3). In
particular, they do not require o« = 2, and Hy operates on SK~! and not Sf ~!, that is, the
components of X can take any real value. Extremal dependence is summarized via the limit
of S = E(XXT / ||)~(||%) as ||)~(||2 — 0o which is equivalent to the definition of the TPDM in
(3). Using the eigendecomposition of S, Hy is projected onto a lower-dimensional linear sub-
space of SK~1. As such, Drees and Sabourin (2021) explore the dimension reduction aspect
of principal component analysis, and they provide theoretical results for the approximation
error of the projection. Similar theoretical results can be shown for the approach of Cooley
and Thibaud (2019) using: (i) the theoretical arguments by Drees and Sabourin (2021) and
(ii) that the function v~ in (4) has only a negligible effect on the upper tail of the random
vector X.

2.4. Application to the UK. river flow data. The two variables X; and X j are asymptot-
ically independent if ]P’(f(j > X | X; > x)—>0asx —o00(i,j=1,...,K). The first-order
approximation, described in (2), is useful in the case of asymptotic dependence, where the
pairwise relationships described by Hy are nondegenerate. No extremal dimension reduction
procedures analogous to Cooley and Thibaud (2019) or Drees and Sabourin (2021) have been
suggested for the more nuanced case of asymptotic independence. We examine our data and
find an assumption of asymptotic dependence is not unreasonable for the study region, based
on the coefficients y and x proposed by Coles, Heffernan and Tawn (1999). Furthermore,
our estimates )f?,-, ;j take values which appear different from zero, the value corresponding to
asymptotic independence; plots for x, x and f),-, j are provided in Section 1 of the Supple-
mentary Material (Rohrbeck and Cooley (2023)).

We apply a marginal transformation to the components of X; in order to obtain a random
vector 5(, = (f(,,l, e, )?t, k) =1...,T) with marginal distributions, as required in Sec-
tion 2.3. Let x; x denote the observation for gauge k in week ¢ (k =1, ..., K), and define the
transformed observation as

(5) T =[—log Fr(x,.0] 2,

where Fy is an estimate for the cumulative distribution function (cdf) of X 1.k- Applying the
method by Coles and Tawn (1991), I:“k is set to the empirical cdf for values below a threshold
uy, and a GPD(oy, &) is used to model ﬁk above uy. The values oy and & are replaced by
their estimates obtained in Section 2.2, and uy is set to the empirical 96% quantile.

Let X ={X; = (X;.1,...,X;,x) :t =1, ..., T} be the set of marginally transformed obser-
vations obtained by applying (5) to the original weekly river flow measurements. We remove
the weeks with missing data from X, that is, X, is removed if no river flow is recorded for
at least one gauge in week ¢. This leaves about 92% of observations for the analysis of the
extremal dependence structure, and the set of weeks with complete records is denoted by
T*cC{l,...,T}. Define r; = ||X;|l2 and w; x = X, k/r: (t € T*;k=1,...,K). The (i, j)th
element of the TPDM X, defined in (3), is then estimated as

N K ..
(6) Yij=— Z wp o jI(ry >ro) (G, j=1,...,K),
teT*

where I(-) denotes the indicator function and rg is set to the 94% quantile of {r; : t € T*},
which corresponds to n = 47 weeks being used to estimate X.
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FIG. 2. Estimated TPDM % (left) and a scree plot of the eigenvalues 5\2, ey 5»12 of ® (right) for the 45 river
flow gauges in Figure 1. The largest eigenvalue X1 = 28.9 is omitted to better visualize the differences between
the remaining eigenvalues.

The estimated TPDM in Figure 2 left panel indicates that pairwise extremal dependence
decreases with increasing spatial distance between gauges; for instance, ) i,j 1s small when
considering pairs of a northern gauge (indexes 1-9) and a southern gauge (indexes 40—45).
The block structure apparent between index 28 and 29 corresponds to the separation between
the mountainous northern stations and the southern stations.

We compute the eigendecomposition of 3 and obtain matrices U and D such that
DUt = 3. By investigating the spatial structure of the leading eigenvectors sequentially,
we derive features of the extremal dependence across gauges. Figure 3 shows the first 12
eigenvectors, plotted according to each gauge’s spatial location. The first eigenvector has
only positive values and accounts for the overall magnitude of extreme river flow events with
the highest values in the centre of the study area. The second eigenvector shows a north-
south divide, indicating that extreme river flow events tend to affect either the northern or the
southern half of the study area more severely; this north-south divide corresponds with the to-
pographical features described in Section 2.1. Next, the third eigenvector shows a linear trend
from the west to the east coast, with the exception of the most southerly gauges, correspond-
ing to the gauge’s exposure to weather fronts from a westerly or south-westerly direction; the
north-easterly gauges are protected by the Pennines, and the most southerly gauges lie in the
rain shadow of Snowdonia in northern Wales. The fourth eigenvector has a similar structure
to the third, but it also splits the gauges close to the west coast based on their topography. The
fifth eigenvector shows a general west-east trend, with the biggest differences being visible
for the most southerly gauges, and the spatial structure of the sixth eigenvector resembles
that of Storm Desmond in Figure 1 for the northerly gauges. Some spatial structure is visible
for eigenvector seven, but it does not correspond to any known climatology. The remaining
eigenvectors have no clear spatial structure, and these eigenvectors may represent local vari-
ations between gauges. In summary, the first five eigenvectors and, potentially, the sixth and
seventh appear to capture the large-scale spatial structure of extreme river flow events, while
the remaining eigenvectors represent local dynamics.

We conclude the analysis by studying the observed extremal principal components v; =
ﬁTr_l(i,) (t € T*) defined in (4). The eigenvalues A, ..., hg relate to the scale of these
components, and Figure 2’s right panel shows that they are quite small after the first six
or seven components, with ():1, cee, 5\6) =(28.9,4.7,2.2,1.7,1.3,1.2). Figure 4 shows time
series plots for the extremal principal components associated to the first three eigenvectors.
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FI1G. 3. Spatial illustration of the first 12 eigenvectors of the TPDM. The first row corresponds to the first three
eigenvectors (left—right). Scales for eigenvectors are balanced such that squares indicate positive values, while
triangles correspond to negative values; however, each plot has its own scale.

For Storm Desmond in 2015 (highlighted by a square), the first component indicates that
this event caused extreme river flow across the region, and the second component contains
the information that the most severe river flow was observed across the northern half of the
study area. The moderately negative value of the third component shows that river flows
were slightly more severe in the west than in the east (after accounting for the effects already
described by the first two components). This agrees with the findings shown in Figure 1’s
right panel. We find further agreements between high values for the first extremal principal
components and recorded extreme river flow events. For instance, the highest value for the
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FI1G. 4. Time series plots for the first three extremal principal components: V| (left), V, (middle) and V3 (right).
The dots highlight the weeks for which r; exceeds the 98% quantile of {r; : t € T}. The square highlights the
extremal principal components related to Storm Desmond.

third component relates to the highest observed levels for the southern gauges over the study
period which were caused by record levels of precipitation in the autumn of 2000.

3. Generating hazard event sets.

3.1. Introduction. The generation of flood event sets requires accurate sampling from
the upper tail of a K-dimensional random vector X, with K = 45 in Section 2. Instead of
X, we consider sampling from the tail distribution of the regular-varying random vector X
obtained by the marginal transformation (5). One could generate values for X based on a fitted
tail dependence model, such as Tawn (1988) or de Carvalho and Davison (2014). However,
existing multivariate extreme value models are ill equipped to handle the dimension of the
considered river flow application, due to the complexity of the angular measure Hy and the
low number of observed extreme events.

Our proposed generative framework for hazard event sets is based on sampling values for
the extremal principal components V. By applying the inverse of the transformations (4) and
(5) to the generated values of V, we obtain samples for the random vector X of interest.
Since the extremes of X and V are linked, an accurate model for the tail of V will capture the
extremal dependence of the components of X. As V is regularly-varying with index o = 2
(Section 2.3) and P(||V]|; <r) = exp[—(r/K)_z] (r > 0), we only need to estimate Hy
which describes the behavior of W = ﬁ | IV]l2 > rv as ry — oo. We assume the limit
holds above a sufficiently high ry, which we set to the empirical 94% quantile of || V|2, and
we let {w; € SK=1:i =1, ..., n} denote the observations for W.

At first glance, the estimation of Hy is as difficult as that of Hy. The key difference is that
the components of V have diminishing contributions to the extremes of X. For the analysis in
Section 2.4, we find A1 + - - - + Xg = 39.75, compared to A7 + - - - + Ag = 5.25, indicating that
the first six eigenvalue/eigenvector pairs explain about 88% of the scale in the extremes. This
observation motivates our proposal to estimate the distribution of W as a combination of: (i)
a flexible model capturing the full dependence structure in the first m components and (ii) a
simplified framework for the remaining components. In Section 3.2 we describe our models
for parts (i) and (ii) for fixed m. With our models in place, we are better able to explore
the choice of m in Section 3.3. Figure 5 previews that samples generated via our framework
exhibit a good agreement in the extremal dependence structure of sampled and observed
values of X for three pairs of gauges (from left to right: strongly dependent, moderately
dependent and weakly dependent). Model uncertainty is considered in Section 3.4, and an
analysis of the generated hazard event sets is performed in Section 4.
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F1G. 5. Simulated (grey) and observed (black) extreme events of X for three pairs of gauges. The generated
extreme events are based on a sample of size 4400, corresponding to a 200-year hazard event set, while the
observed extremes are for the period 1980-2018. Samples are generated using the framework described in Sec-
tions 3.2 and 3.3. The two gauges in the left panel are flow-connected and spatially close, the gauges in the middle
panel are spatially close but not flow-connected, and the gauges in the right panel are neither spatially close nor
flow-connected.

3.2. Generative framework and sampling algorithm. We first describe separate potential
models for the random vectors Wy.,, = (Wy, ..., Wy) and Wq1).x = (Wig1, ..., Wi) but
then transition to a joint modelling framework which achieves superior results.

Modelling the first m components. We require a sufficiently flexible model to capture the
potentially complex dependence structure of the components in Wy.,,. Consider the random
vector Wy, /[|W1., [|2. Given the observations {w; 1., : i =1, ..., n} for Wy ;,,, we model the
distribution of Wy.,,, /||W1., ||2 using a kernel density estimate appropriate for spherical data.
As suggested by Hall, Watson and Cabrera (1987), our kernel of choice is the von Mises—
Fisher distribution with density % (z; p, k) = co(k) exp(kz' pt) for z € S"~!, where p € S”~!
and « > 0 are termed the mean direction and concentration parameter, respectively, and cq (k)
is a normalizing constant. The kernel density estimate for Wi.,, /[|W1.x |12 is then given by

n

7 izv(z;,c)=12h(z- Wi Lm K> (zesS" ).

) b
n i=1 ||Wi,11m||2

We estimate « using the vimf . kde. tune () function in the R package Directional;
the function obtains an estimate using maximum likelihood inference. The robustness of this
approach for our analysis was verified using bootstrapping, and only small variations in the
estimated x were found.

Modelling the remaining components. An overly simple approach sets the components
Win+1, ..., Wk to their empirical average and only samples values for Wy, ..., W, using
the kernel density estimate (7). However, generated flood event sets exhibited a higher de-
gree of extremal dependence than we observed in the U.K. river flow data. An alternative
approach samples values for W, 1, ..., Wk from their joint empirical distribution function.
For the U.K. river flow, this sampling strategy improved upon the first one, but the generated
extremes for spatially distant gauges appeared more dependent than in reality. The limitation
of both approaches is that they assume Wi.,, and W, 11.x to be independent, ignoring the
fact that V; and V; (i, j =1, ..., K) are asymptotically dependent (Section 2.3). Since sep-
arate modelling of Wy.,, and W, 11).x is unable to capture all properties of the underlying
process, we instead propose a joint modelling framework.

Joint modelling framework. We start by transforming W into a random variable Z on the
(m + 1)-dimensional unit sphere S”. The idea is that the first m components of Z represent the
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information contained in Wy.,,, while the final component Z,, | summarizes some aspects
of the random vector W,y 1).x. Let Z=(Zy, ..., Zyyy1) with Z; =W; (j =1,...,m) and

m
L= W if Wy >0,
j=1

(8) Zmi1 = _

1= W7 if Wy <O.

Jj=1
Given observations {z; : i =1, ..., n}, we obtain the kernel density estimate
A 1¢

) hz(Z,Kz)=;Zh(Z; zi,kz) (zeS").

i=1
In addition to the ability to fully capture the dependence in Wy, ..., W,,, this model also ac-

counts for some of the dependence between Wy, and W, 1).x at the cost of one additional
dimension.

The next step is to define a mapping, which converts a sample z* for Z, obtained by
drawing from the kernel density estimate in (9), into a sample w* for W. Based on the defined
connection between W and Z, the first m components of w* are set to those of z*, that
is, w}‘f = Zj (j =1,...,m). Consequently, we are left with transforming the sampled value
2,41 into a sample Wz‘m +1y:x for Wnp1):x, while accounting for the dependence amongst
Wi, ..., Wk.

We propose to use the observations of Z most similar to the sampled vector z* in order to
identify possible patterns for w]k ..., Wk, conditional on w}f = zjf(j =1,...,m). We suggest
a nearest-neighbour approach, with the index g of the observation closest to the sample given
by

(10) q = argmaxz, z*.
i=l1,..., n

The sample wz‘m +1):k 1 then set to a scaled version of Wy, n+1):k, yielding

wo.r )

Note, the described mapping yields w* =w; forz* =z; (i =1,...,n).

Figure 6 shows that the pairwise dependence of sampled and observed values for W gen-
erally agree. Here, m was set to the preliminary value of m = 6. The discrete nature of the
right panel in Figure 6 is due to there only being n possible pairwise patterns for the sampled
values W’(“m NS Since the components of Wy.,, contain most of the information on the tail

* *
Lm+1 Ln+1

(11) w*:<z’f,...,zf,,, Wy, mt1s--- s

Zg,m+1 Zg,m+1

distribution of X, this restrictive sampling of w’(“m +1):x Will only have a small effect on the

samples for X. Furthermore, the discrete nature of wz‘m +1):x Will be masked after accounting
for uncertainty in the estimates of the marginal distributions and the TPDM in Section 3.4.

Simulating values for X. Using the framework described above, samples for X are generated
as follows:

1. Obtain a sample z* € S™ from the distribution with estimated density (9).

2. Extract the index ¢ in (10), and derive the angular component w* € SK~! using (11).

3. Sample r* from a Fréchet distribution with P(||V], <r) = exp[—(r/K)_z].

4. Calculate the generated sample v* for V, v* = (v}, ..., vk) = (r*wj,..., r*wk) €
RK.
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FIG. 6. Pairwise plots of generated (grey) and observed (black) values for (W, Wy) (left), (W3, Wg) (middle)
and (W7, Wqq) (right) for the U.K. river flow data. The number of observed values is n = 47, and 2000 samples
were generated using the procedure outlined in expressions (9), (10) and (11). The parameter m was set to m = 6.
As such, the number of components directly modelled via the density in (9) is two (left), one (middle) and zero
(right). The plots also illustrate that the variance of W tends to decrease with increasing index j (j =1, ..., K)
which reflects the difference in scale of the extremal principal components V1, ..., Vi.

5. Apply the inverse of (4) to obtain a sample X* € R_’f for X,

K
ok * .
X _r{ E ij.,]},
j=1

where 7(-) = log[exp(-) + 1] is applied componentwise, and U. ; is the jth eigenvector of
the estimated TPDM. Note, X* € RX, while, in steps 1, 2 and 4, the sampled values can be
positive or negative.

The nearest-neighbour approach in (10) and (11) is dimension-reducing: the sample w*
for W lies within a m-dimensional nonconnected manifold on SX~!. Further, as n — oo,
the sampling space of w* is dense in the support of Hy ; that is, there exists a point in the
sampling space within any neighbourhood of a possible outcome of W.

We can also consider alternatives to the nearest-neighbour approach. One possible ap-
proach is to sample the index ¢ among the observations of Z reasonably close to z*. Another
alternative is to sample w’(“m +1):x from a von Mises—Fisher distribution with mean direction
Wy (m+1):k - Both of these approaches achieve convergence of the sampling distribution to
Hy as n — oo and perform similarly to the nearest-neighbour approach. However, they re-
quire more fine-tuning in practice: selection of the sampling distribution for g or a value for
the concentration parameter in the von Mises—Fisher distribution.

3.3. Selection of m. The generative framework in Section 3.2 requires the selection of m
which balances two competing aspects. For a small value of m, the distribution of the random
vector Z in (8) can be estimated to a reasonable degree of accuracy, but we may underestimate
the variance of W due to the restrictive sampling approach for w’(km +1)%- A large m provides
greater model flexibility, but the approach suffers from the curse of dimensionality: if m
increases, the relatively few extreme observations of Z become more isolated in S™.

In classical principal component analysis, multiple rules-of-thumb to select the number
of principal components exist. One such rule is to look for an “elbow” in the scree plot; the
scree plot in Figure 2 indicates that the elbow lies between m = 5 and m = 8 for the U.K. river
flow data. Another rule-of-thumb for PCA on correlation matrices is to keep all components
with eigenvalue greater than 1. Due to data preprocessing, our TPDM has diagonal elements
of 1, and applying this rule yields m = 6. While these heuristics motivate a moderate value
for m, we can also check whether certain types of extreme events are poorly explained by
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FIG. 7. Valuesof D form=1, ..., 30 estimated based on 100 leave-one-out cross validations for the U.K. river
flow data. The grey lines correspond to the central 90% confidence interval of D of the different values of m.

such a choice. We studied the extreme events which are poorly captured by the first m =
5, ..., 8 eigenvectors, and we found no common spatial pattern of these events; our analysis
is provided in Section 2 of the Supplementary Material (Rohrbeck and Cooley (2023)).

Drees and Sabourin (2021) propose a graphical diagnostic tailored toward the analysis of
extreme values, for the selection of m. The diagnostic in Drees and Sabourin (2021) arises
from the assumption that the angular measure is concentrated on a lower-dimension linear
subspace of SX~!, and the diagnostic measures the risk distance from the lower-dimensional
projection. Their diagnostic performs well in simulations where this assumption is true, but
the performance is less clear when this only holds approximately. Since the first 12 eigenval-
ues in Figure 2 right panel are not zero, the diagnostic by Drees and Sabourin (2021) would
require the user to select m when the assessed risk is close enough to zero; a choice similar to
using the aforementioned scree plot or the reconstruction error analyzed in Section 2 of the
Supplementary Material (Rohrbeck and Cooley (2023)).

We propose selecting m by leave-one-out cross-validation. Unlike the scree plot, this not
only accounts for how well modelling the leading m eigenvalues captures dependence but also
accounts for how well the nearest neighbour approach accounts for any residual behaviour.
For sample i, we remove the ith extreme event X) (i = 1, ..., n) from the data for X and ob-
tain an estimate Z - , as in (6), using the remaining data w1th the value ry bemg fixed to the
94% empirical quantile across all samples. As such, each estimated TPDM 2 o is derived
from n — 1 = 46 extreme events in our river flow application. We then generate 2000 sam-
ples ig_’) , Xzooz) for Z using the generative framework in Section 3.2 for the different

possible values of m. Performance is assessed based on the proximity of X( D Xéo(l)g) and

the ith removed extreme event X*) using

® X( i)
D; = 1-— max ( _J )
=1,..,2000 \ ||X@|| “X( )

where e is the dot product and D; close to 0 corresponds to close proximity of the samples
and the removed extreme event. We choose an m that approximately minimizes the average
cross-validation error D =n~— (D + --- + Dy). Figure 7 shows that D takes its minimum
between m =7 and m =9, and we use m = 7 in the remainder.

3.4. Handling uncertainty. So far, we have ignored any uncertainty in the marginal
model estimates in Section 2.2 and the estimated TPDM X in (6). Herein, we use nonparamet-
ric bootstrapping to account for both these sources of uncertainty in our generative framework
in Section 3.2. We start by resampling the data for the random vector X with replacement,
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and by drawing values for the shape parameters &, ..., &x in (1) from their joint posterior
distribution obtained in Section 2.2; one may also estimate the shape parameters for each
new sample, but this approach was not pursued due to computational cost of the approach
by Rohrbeck and Tawn (2021). The GPD scale parameters o1, ..., ok are then estimated, as
described in Section 2.2, using maximum likelihood estimation. By applying the marginal
transformation (5) and deriving the empirical estimate (6), we obtain a different TPDM for
each sample.

Let X; denote the estimated TPDM for the ith resampled data set of X. A sample X' is
then generated, as described in Section 3.2, with a common value for m; we select m =7 for
the U.K. river flow data. This approach also leads to greater variety of patterns of W(,41):x
and thus reduces the possible limitations found in Figure 6’s right panel. However, this effect
cannot be easily illustrated since the interpretation of the jth eigenvectors (j =1,..., K)
may vary across the resampled data sets.

4. Analysis of generated flood event sets.

4.1. Validation and analysis. To validate our approach described in Section 3, we sim-
ulate 100 event sets of the same length as the original data. As such, each set comprises
T = 848 samples (Section 2.1). Herein, we compare our generated values to the original river
flow measurements; that is, we analyse the performance of the samples for the random vector
X. We first assess the samples at a gauge level by comparing the 50 highest order statistics
of the observed and simulated event sets. Our results show agreement between the sampled
and observed highest order statistics for the components of X; quantile-quantile plots for
three gauges are provided in Section 3 of the Supplementary Material (Rohrbeck and Cooley
(2023)).

The next step is to confirm that the extremal dependence structure of the simulated val-
ues agrees with that of the observed river flow levels. Figure 5 indicates that our approach
performs well at capturing pairwise extremal dependence. To examine this aspect in higher
dimensions, we select three groups, each comprising five of the K = 45 gauges in Figure 1.
The groups are G| = {3, 4, 16,20, 24}, G, ={1,27,36,41,43} and G3 = {6, 15, 21, 25, 33},
and gauges within a group are similar regarding their maximum observed river flow levels.
For each group G; (j = 1,2, 3), we consider two summary measures: (i) maxXieg : Xp, the
maximum river flow across the gauges, and (ii) | Xg|2» = (Zkegj X,%)l/ 2 the Lo-norm as a
summary of aggregated river flow. As for the marginal distributions, we again focus on the
50 largest order statistics for maxeg; X and [|Xg|. Figure 8 shows that the observed or-
der statistics for maxieg; Xx and ||Xg|| lie within the central 95% sampling interval for all
three groups. We conclude that our sampling algorithm in Section 3 generates samples with
characteristics similar to the extreme events of the U.K. river flow data.

After verifying that our generative framework produces extreme events that exhibit prop-
erties similar to the observed extremes, we investigate the spatial structure of the simulated
hazard events. We generate a set with 4400 events, corresponding to a time window of 200
years. Figure 9 illustrates the spatial pattern of the four most extreme simulated events in
terms of || X]||2. In the top-left panel, the most extreme values are found in the centre of the
study region, and almost all gauges observe severe river flow. The top-right panel shows an
event that predominately affects the southern half of the study region. Finally, the remaining
two extreme events affect gauges mostly located in the north of the study area. As stated in
Section 2.2, we quantify severity using the concept of yr-year event. The generated hazard
event set includes 200-year events for 41 of the 45 gauges, and some of these are visible in
Figure 5. The generated hazard event set can now be used as input for catastrophe models,
for instance, to calculate insurance premiums.
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4.2. Comparison to existing methods.

Keef, Tawn and Lamb (2013) and Quinn et al.

(2019) generate hazard event sets using conditional extremes models. We briefly outline their
framework before comparing its performance to our generative approach described in Sec-
tion 3. The first step in Keef, Tawn and Lamb (2013) is to transform the marginal distribu-
tions of X to common Laplace margins; this is similar to our approach, where we transform
to Fréchet margins. Let Y denote the random vector X after the marginal transformation.
Heffernan and Tawn (2004) show that under a relatively weak assumption and for a suffi-
ciently high threshold vy, the distribution of Y_y | (Y% > vi) can be approximated as

(12)

random vector that is independent of Y.

Yo | (> v =eale + YNy (k=1,....K),

where Y_ refers to Y without the kth component, a; and B, are (K — 1)-dimensional param-
eter vectors, which vary with the conditioning variable Y%, and Ny is a (K — 1)-dimensional

Given estimates (o1, ﬁl), oo (e, [9 k) and fitted distributions for Ny, ..., Nk, synthetic
observations for Y are generated as follows:

1. Sample the index k of the conditioning site and a value yj for Yy with y; > vy.

2. Draw a realisation nj from the fitted distribution of N.

3. Derive the simulated values for the other (K — 1) sites withy_; = a;y; + yf “nj.

There are a few more intricacies to this approach, and we refer the reader to Keef, Tawn
and Lamb (2013) for details. The R package texmex was used for most of the operations,
including the estimation of the marginal GPD parameters (o, &) in (1) and the parameter
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F1G. 9. [llustration of four simulated extreme events. The shading shows the severity of the event in terms of
each gauge’s estimated return levels. For instance, the darkest shade corresponds to the 200-year level being
exceeded.

vectors o and B (k =1, ..., K). The vector n} in Step 2 of the algorithm is sampled from
the empirical distribution function of Ni. We set the threshold v in (12) to the empirical 93%
quantile of Y; (k =1, ..., K); we explored alternatives, and they gave results similar to those

presented in the following.

As in Section 4.1, 100 hazard event sets are simulated for the random vector X, and per-
formance is assessed based on the summaries maxieg; Xk and [|Xg||2 for the three groups of
gauges. Figure 10 shows the results for maxeg; X, and the plots for ||Xg/||, are provided
in Section 4 of the Supplementary Material (Rohrbeck and Cooley (2023)). While the plots
show a reasonable agreement between the simulated and observed values of maxyeg; Xk, they
also indicate a bias for the nonextreme but high values of maxieg; Xk (j =1, 2, 3). The same
result is found for || Xg|2, and the bias remains when we increase vy to the 96% empirical
quantile of Y.

We again conclude our analysis by investigating the spatial structure of the generated ex-
treme events. Figure 11 shows two of the four most extreme events generated by the con-
ditional extremes approach. While the extreme event in the left panel appears realistic, and
has similarities to one of the events in Figure 9, the synthetic extreme event in the right
panel seems highly unlikely—the event corresponds to very extreme river flow across spa-
tially distant gauges, with the gauges between them experiencing much less extreme river
flow. Consequently, the approach by Keef, Tawn and Lamb (2013) exhibits limitations in the
context of our U.K. river flow application.
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F1G. 10. Quantile-quantile plots for the 50 largest observations of max jeg Xj for the groups of gauges
G1 =1{3,4, 16, 20,24} (left), G = {1, 27,36, 41, 43} (middle) and G3 = {6, 15,21, 25,33} (right). The simulated
observations are obtained using the sampling algorithm by Keef, Tawn and Lamb (2013). The dashed lines corre-
spond to the central 95% sampling intervals.

S. Discussion. This paper proposed a novel generative framework, based on a principal
component analysis of the most severe events, to obtain hazard event sets of extreme river
flow across 45 gauges in northern England and southern Scotland. We used the approach,
common to extremes, of separating the modeling of marginal distributions from the character-
ization of dependence. For marginal estimation we used the clustering method by Rohrbeck
and Tawn (2021) to reduce estimation variability; Huser and Wadsworth (2022) provides a
summary of other spatial methods for estimating marginal extreme value models. Extremal
dependence was analyzed by the principal component decomposition of Cooley and Thibaud
(2019). We find a close link between the first eigenvectors of the TPDM and known geo-
graphical/climatological features of the region. The robustness of this analysis was assessed
using a nonparametric bootstrap; the combined interpretation of the first six eigenvectors is
usually the same with potential permutations of the fourth to sixth eigenvector.

Our generative framework is based on a statistical model for the extremal principal com-
ponents. We reduce the dimension by modelling only the leading extremal principal compo-
nents using a kernel density estimate and use an empirical estimate for the remaining com-
ponents. Cross-validation is used to select the number of principal components to model,
and bootstrapping is used to account for uncertainty. We found good agreement between the
generated and observed extreme events. Because the methods required to generate samples

¢

e

i i

10 20 50 100 200 2000 10 20 50 100 200 2000

FIG. 11. Illustration of the two most severe extreme events generated by the approach of Keef, Tawn and Lamb
(2013). The shading shows the severity of the event at each gauge, in terms of it exceeding the estimated return
levels. For instance, the darkest shade corresponds to the 200-year level being exceeded.
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are computationally efficient, the method can be implemented by practitioners in insurance
or engineering. The method requires no more work than fitting a max-stable or other spatial
extremes model and is much more accessible than implementing a physical model to produce
hazard sets.

We assumed that the data are stationary, both in their marginal distributions and depen-
dence structure. Nonstationarity in the marginal distributions could be modelled using the
approaches by Davison and Smith (1990), Eastoe and Tawn (2009) or Eastoe (2019), amongst
others. Extrapolating nonstationarity into the future requires assumptions about future behav-
ior and accounting for nonstationarity in the dependence structure is much more challenging.

While extreme flood events are spatial by nature, the application herein is rather nonstan-
dard since we considered a river network with disparate catchments. As such, the dependence
structure is highly complex, and any spatial extremes model has to incorporate both geograph-
ical and hydrological distances (Asadi, Davison and Engelke (2015)). We attempted to use
the R package mvpot to compare our method to a Brown—Resnick process with extremal
dependence characterized by an anisotropic covariance function and distance based on lat-
itude and longitude coordinates. We found the estimated parameters were highly sensitive
to the initial parameters set for the optimization problem, and the produced samples seemed
unrealistic.

Our generative framework can be applied to other study regions, seasons and environmen-
tal/hydrological variables. The number of sites that can be handled efficiently by our approach
depends on the underlying dependence structure. We found that m = 7 performed best in our
application, but a larger number of components may be required in other settings. If a large
number of principal components is required, the kernel-density estimate may be replaced by
a mixture of von Mises—Fisher distributions, with the number of mixture components being
estimated using clustering.

Finally, developments in machine learning are providing alternative methods for mod-
eling dependence in high-dimensional settings. Recently, generalized adversarial networks
(GANs) have been tailored for estimating extremal dependence (Bhatia, Jain and Hooi
(2021), Boulaguiem et al. (2022)). While such approaches seem to be quite powerful, they
are difficult to interpret. We believe the ability to relate the leading vectors of the eigenbasis
to known geographic features as a strong advantage of our approach.
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SUPPLEMENTARY MATERIAL

Supplementary material (DOI: 10.1214/22-A0AS1672SUPPA; .pdf). Provides plots to
support that the assumption of asymptotic dependence is not unreasonable, an analysis of the
extreme events least well-explained by the first principal components and additional plots
illustrating the model fit of the approaches considered in Section 4.

Code and data (DOI: 10.1214/22-A0AS1672SUPPB; .zip). Code~ for Sections 2.4, 3 and
4, together with the observations for the transformed random vector X.
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