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Abstract
Summary: Pool sequencing is an efficient method for capturing genome-wide allele frequencies from multiple individuals, with broad applica-
tions such as studying adaptation in Evolve-and-Resequence experiments, monitoring of genetic diversity in wild populations, and genotype-to- 
phenotype mapping. Here, we present grenedalf, a command line tool written in C"" that implements common population genetic statistics 
such as θ, Tajima’s D, and FST for Pool sequencing. It is orders of magnitude faster than current tools, and is focused on providing usability and 
scalability, while also offering a plethora of input file formats and convenience options.
Availability and implementation: grenedalf is published under the GPL-3, and freely available at github.com/lczech/grenedalf.

1 Introduction and motivation
Pool sequencing, or Pool-seq, is a cost-effective high-through-
put sequencing method for obtaining genome-wide allele fre-
quencies across multiple individuals simultaneously 
(Schl"otterer et al. 2014). The approach is commonly used in 
large-scale genomic studies to estimate genetic diversity and 
variation within a population across space and time, or to 
identify genetic changes that are associated with trait evolu-
tion or environmental adaptation across populations. This 
makes it suitable for applications such as studying adaptation 
in Evolve-and-Resequence (E&R) studies, genotype-to- 
phenotype mapping, or pooled genome scans and mu-
tant screens.

The pooling of a finite number of individuals from the pop-
ulation, as well as the finite number of reads being sequenced 
from each individual, introduce two levels of sampling noise 
in allele counts (Ferretti et al. 2013). Typical population ge-
netic statistics, such as measures of diversity (θ, Tajima’s D) 
and differentiation (FST), hence need to be adapted to correct 
for the induced biases. Existing software tools that implement 
these corrections are POPOOLATION (Kofler et al. 2011a,b), 
POOLFSTAT (Hivert et al. 2018, Gautier et al. 2022), and 
NPSTAT (Ferretti et al. 2013). These tools however lack usabil-
ity, do not scale to contemporary large datasets, and do not 
support haplotype-corrected frequencies in low-coverage 
E&R experiments such as those from HAF-pipe or other 
HARP-based pipelines (Kessner et al. 2013, Tilk et al. 2019).

We present GRENEDALF, a command line tool to compute 
widely used population genetic statistics for Pool-seq data. It 
aims to solve the shortcomings of previous implementations, 
and is several orders of magnitude faster, scaling to thou-
sands of samples (Czech et al. 2022). Further, it improves us-
ability, accepts many standard file formats, and offers many 
convenience options.

2 Estimators of population genetic statistics
We re-implemented consistent estimators of population di-
versity and differentiation, namely nucleotide diversity θπ, 
Watterson’s θ, Tajima’s D, and Nei’s and Hudson’s FST, 
which account for the noises introduced by the two finite 
sampling processes of individuals and reads in Pool-seq. 
Several of these estimators were previously available in multi-
ple software packages implemented in Perl (Kofler et al. 
2011a,b), R (Hivert et al. 2018, Gautier et al. 2022), or C 
Ferretti et al. (2013). Because of implementation differences 
of estimates available in these packages, we re-derived popu-
lation genetic estimates and examined their differences (see 
Supplementary Material).

Most commonly, our input are sequence reads or read- 
derived allele counts, as those fully capture the effects of both 
sources of noise, which can then be corrected for. Our imple-
mentation however can also be used with inferred or adjusted 
allele frequencies as input, for instance using information 
from the haplotype frequencies of the founder generation in 
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E&R experiments (Kessner et al. 2013, Tilk et al. 2019). 
These can elevate the effective coverage, and thus improve 
the calling of low-frequency alleles, which can otherwise be 
difficult to distinguish from sequencing errors (Ferretti et al. 
2013). With these reconstructed allele frequencies, the correc-
tion for read depth is less relevant, but the correction for pool 
size remains important. It is hence convenient to be able to 
use the same framework for these data, which existing imple-
mentations do not offer.

2.1 Genetic diversity (π)
Our implementation of the Pool-seq estimators for θπ and 
Watterson’s θ largely follows the approach by PoPoolation. 
We have however updated some of the equations with com-
putationally more efficient but otherwise equivalent alterna-
tives, and have improved the numerical stability.

However, in our attempt to re-derive a Pool-seq estimator 
for Tajima’s D, we noticed several long-standing issues in the 
existing estimator. In short, it seems that Pool-seq data might 
not allow meaningful estimates of this statistic; see the 
Supplementary Material for details. In addition, we noticed 
several implementation bugs in POPOOLATION (Kofler et al. 
2011a), up until and including v1.2.2 of the tool. We dis-
cussed these with the authors, and the bugs have since been 
fixed (pers. comm. with R. Kofler). If conclusions of studies 
depend on numerical values of Tajima’s D computed with 
POPOOLATION, we recommend reanalyzing the data. Due to 
these statistical issues, we generally advise to be cautious 
when applying and interpreting Tajima’s D with Pool- 
seq data.

2.2 Population differentiation (FST)
We also show that the estimators for FST as implemented in 
POPOOLATION2 (which we call the “Kofler” and “Karlsson” 
estimators) are biased upward for low read depths and for 
small sample pool sizes (see Supplementary Material). We 
hence developed unbiased estimators for the average pairwise 
diversity within populations, πwithin, the pairwise diversity be-
tween populations, πbetween, and the pairwise diversity across 
the combined populations, πtotal, that take the particular 
biases and assumptions of Poo-seq data into account. With 
these, we compute two variants of FST, following Nei (1973)
and Hudson et al. (1992): 

FNei
ST # 1$ πwithin

πtotal
and FHudson

ST # 1$ πwithin

πbetween 

We provide thorough derivations and analyses of these 
estimators in the Supplementary Materials, and showcase 
their application in Czech et al. (2022).

3 Features and data processing flow
Beyond implementing a variety of population genetic esti-
mates, our C"" software library and command line tool 
were designed to address several bioinformatics challenges 
which limit the next generation of pool-sequencing 
applications: (i) flexible and modular architecture. Different 
Pool-seq softwares use different file formats. We separated 
file format reading and transformations from computations 
and algorithms. File format transformations are seamless, 
and new formats can be included independent of downstream 
analyses. (ii) Usability. Software for large-scale individual 
genotypes (i.e. VCFtools, PLINK, etc.) provide convenience 

tools for merging, filtering, and manipulating datasets. We 
provide these for Pool-seq formats. (iii) Speed. Current tools 
are too inefficient to allow modern Pool-seq datasets and 
experiments to grow into hundreds or thousands of popula-
tion samples. Our highly optimized routines provide orders 
of magnitude gains in speed.

In the following, we provide an overview of the data proc-
essing flow, which is summarized in Fig. 1.

3.1 File formats
Two commonly used file formats for Pool-seq data are the 
(m)pileup (Li et al. 2009) and sync format. The latter is a 
simple allele count format introduced in POPOOLATION2 
(Kofler et al. 2011b), which is usually obtained by converting 
from bam via (m)pileup to sync, requiring an additional 
data transformation step to analyze the data.

In contrast, and in addition to these formats, GRENEDALF 

can directly work with other standard file formats such as 
sam/bam (Li et al. 2009), cram (Fritz et al. 2011), vcf (using 
the “AD” allelic depth field) (Danecek et al. 2011), and a vari-
ety of simple table formats, for reading allele counts or allele 
frequencies from pool sequencing data. All formats can also 
optionally be gzipped (decompression is done asynchronously 
for speed), and their idiosyncratic options (such as filtering 
by read flags or splitting by read groups for sam/bam) are 

WindowsFilters

Variant

A C G T N DRef  A
Alt  T A C G T N D

Sample 1 Sample 2
. . .

Chr1:123

Base counts:

Statistics

• SAM/BAM/CRAM
• (m)pileup
• Sync (PoPoolation)
• VCF (pooled)
• Frequency Table

Input 
Files

Figure 1. Summary of the data flow from input files to stream through a 
genome and compute statistics. Different input file types are supported 
with their idiosyncratic options, which all are represented by a uniform 
data type that we call a (potential) Variant. A Variant describes a 
single position on a chromosome, here, position 123 on chromosome 
Chr1, and stores the reference and alternative base for file formats that 
support them (and otherwise infers them from the two most common 
bases at the position, or from a provided reference genome file). This is 
similar to the data of the sync format. For each sample of the input (e.g. 
read groups in SAM files, columns in mpileup files, or sample frequencies 
from tabular formats), the nucleotide base counts (ACGT) of the pooled 
reads are stored, including counts for “any” (N) and “deletion” (D), which 
are however ignored in most statistics. The stream of Variants along 
the genome is then filtered using a cascade of filters, such as sub-setting 
to regions of interest and numerical quality filters. Next, the data stream 
can be assembled into different types of windows, such as sliding 
windows, single positions, or entire chromosomes. Finally, the desired 
statistics are computed per window.
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supported. This eliminates the need for intermediate file con-
versions, reduces overhead for file bookkeeping, disk space, 
and processing time (see Supplementary Material), and 
increases user convenience.

Note that not all data types are well suited for the Pool-seq 
approach. For instance, a widespread practice is to use a vari-
ant calling tool on the data before downstream analyses. 
However, many standard variant callers were developed for 
individual instead of pooled data, meaning that their statisti-
cal assumptions might be violated in Pool-seq (Czech et al. 
2022). Furthermore, formats such as vcf only store variant 
sites in the first place, so one cannot distinguish if a missing 
site is invariant or did not meet the minimum data quality 
threshold. Mask files as explained below can be used to rem-
edy this. We still support vcf as a convenience, but recom-
mend to ensure that the variant calling was conducted 
appropriately for the Pool-seq approach. For this reason, it is 
often beneficial to directly work off the “raw” data, such as 
sam/bam files or sync files that were not already filtered for 
SNPs, when running GRENEDALF.

If a reference genome is provided, it is used to fill in the ref-
erence bases when using file formats that do not store these. 
When multiple input files are provided (even of different for-
mats, and with missing data), they are traversed in parallel, 
using either the intersection or the union of the genomic posi-
tions present in the files, and internally combined as if they 
were one file with multiple samples. Samples can furthermore 
be grouped by merging their counts, for instance to combine 
different sequencing runs into an (artificial) pool.

3.2 Filters
After parsing the input, a variety of filters can be applied to 
the data stream, either per-sample or across samples. First, 
we can apply sample sub-setting, and sub-setting to chromo-
somes or genomic regions within or across chromosomes, us-
ing a variety of formats [bed, GFF2/GFF3/GTF, map/bim 
(PLINK), vcf, or simple text formats]. The region filters 
completely remove genomic positions from the data stream, 
to speed up the downstream steps.

Next, masks can be specified, in order to pre-select loci of 
interest. This is for instance useful when an external filtering 
was applied to the data beforehand; the masks then specify 
which positions were considered “valid” by that filter. This is 
important in order to correctly compute the per-window 
averages of the statistical estimators, where we need to know 
the number of high-quality loci (independently of whether 
they are SNPs or invariant positions). Masks can be provided 
either per sample, or one mask for all samples.

Lastly, users can specify a variety of numerical quality fil-
ters, such as minimum allele count and minimum or maxi-
mum read depth. Some of the numerical filter settings are 
highly relevant for the computed estimators; see the 
Supplementary Material for details. Some commands then of-
fer to sub-sample or re-scale the counts to limit excessively 
high read depths.

After all specified filters have been applied, we execute a 
simple SNP detection, based on the base counts (ACGT). Any 
locus that has (after filtering) exactly one base with nonzero 
count is considered invariant, while a locus with two or more 
nonzero counts is considered a SNP. Additional filters can be 
specified for this step, such as a minimum allele frequency, or 
sub-setting to only biallelic SNPs (exactly two counts are 
nonzero). This SNP detection mechanism is hence 

independent of the input file format, and simply uses the 
available data. For instance, with sam/bam files, we typically 
have data at (almost) all loci, and can hence use this to distin-
guish invariant sites from low quality or missing sites.

3.3 Windowing
The data is then assembled into windows along the genome. 
We implemented different types of windows, depending on the 
analysis needs, namely, representing (i) intervals of a fixed 
number of bases, (ii) a fixed number of variants (SNPs) per win-
dow, (iii) user-defined regions that can be potentially nested or 
overlapping, such as genes or LD blocks, (iv) single SNPs, (v) 
whole chromosomes, and (vi) whole genome. Existing tools 
only offered one or two of these types of windows. The first 
three of these types keep data in memory proportional to the 
window sizes, which is necessary for overlapping windows and 
for sliding windows to allow a stride between windows smaller 
than the window size. The remaining window types (single 
SNPs, whole chromosomes, and whole genome) instead directly 
stream through the input data, thereby keeping the memory 
footprint to a minimum. This is a distinguishing feature com-
pared to, e.g. POOLFSTAT, which reads whole files into memory, 
and hence does not scale to large datasets with many samples 
(see Supplementary Material).

3.4 Statistics computation
Finally, with the data stream processed as described above, 
the desired statistical estimators are computed. Typically, the 
statistics are then averaged over the window, in order to ob-
tain per-base-pair estimates. To account for the characteris-
tics of the input data (with missing data; only containing 
variant loci; etc.), we offer different policies for determining 
the denominator used for the window averaging: (i) the win-
dow size (likely an underestimation), (ii) the number of all 
available loci in the input, (iii) the number of “valid” high- 
quality positions (i.e. the number of loci that passed all qual-
ity filters; invariants and SNPs), (iv) the number of SNPs only 
(likely an overestimation), (v) no averaging (i.e. simply report 
the sum of all per-site values; this allows the user to apply 
custom averaging later on), and (vi) using a user-defined 
mask (this allows to set a window-based denominator for in-
stance based on external quality or SNP filters). These poli-
cies are covering the most common use cases of data types. 
When the data has sufficient coverage, we recommend to use 
(iii), the number of high-quality positions. If specified, this 
also takes the mask into account, so that SNP-only input data 
can be properly normalized per window.

4 Performance comparison and 
implementation
In Fig. 2, we compare the runtime of existing tools to 
GRENEDALF, which is more than two orders of magnitude 
faster than previous implementations on real-world data even 
when run on a single core. More detailed benchmarks are 
available in the Supplementary Material. Overall, these 
improvements enable the analysis of datasets much larger, as 
for instance required in our GrENE-net.org experiment 
(Czech et al. 2022). Furthermore, this will allow for novel 
types of applications that were previously not feasible, such 
as running bootstrapping (either over reads, or genomic posi-
tions, or both) to obtain confidence intervals for the statistics 
of interest.
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Performance in runtime and memory was one of the major 
design goals. For instance, the file parsing is highly optimized 
and executed with asynchronous buffers. All data is read in 
streams, so that the number of input files, and their sizes, do 
not significantly affect the amount of required memory. 
Processor-intensive steps, such as file parsing and the 
statistics computations, are multi-threaded with a high- 
performance shared thread pool to leverage modern 
multi-core systems, and we paid close attention to selecting 
appropriate data structures for efficiency. Particular care was 
given to the implementation of the statistics; we optimized 
computations toward CPU-level parallelism, increased over-
all numerical stability and range, extended the range of valid 
inputs for aspects such as the involved binomial computa-
tions, and replaced some expensive subroutines by fast 
closed-form expressions or lookup-tables.

The core implementation of the command line tool 
GRENEDALF is part of GENESIS, our high-performance software li-
brary for working with phylogenetic and population genetic 
data (Czech et al. 2020). Written in modern C"", GENESIS is 
the best-scoring code across 48 scientific code bases in com-
prehensive software quality benchmarks (Zapletal et al. 
2021). A key feature of the underlying software design is its 
flexibility and modularity. The design allows for further addi-
tions of file formats and statistics algorithms without the need 
to alter any other software component. Therefore, any new 
addition benefits from the overall architecture and efficiency, 
and components of the software can be combined as needed. 
This structure permits users to use the command line tool 
GRENEDALF directly on their datasets, but they can also use the 
functionalities of GENESIS for their own method development.

5 Conclusion and outlook
We presented GRENEDALF, a command line tool for computing 
population genetic statistics, which scales to modern pool 

sequencing datasets, and which provides a plethora of input 
file formats and convenience options.

In the future, given the ease with which statistics computa-
tions can be incorporated into our modular software design, 
we aim to re-implement more of the existing Pool-seq statis-
tics, such as f statistics (Hivert et al. 2018, Gautier et al. 
2022), and implement a Pool-seq-based GWA tool 
(Schl"otterer et al. 2014). An under-explored area is the incor-
poration of short indels, which can potentially be treated as 
another type of count-based variation. Furthermore, we want 
to integrate GRENEDALF with our short-read processing and 
variant calling pipeline GRENEPIPE (Czech and Exposito- 
Alonso 2022), which already supports estimating allele fre-
quencies from Pool-seq data via the HAF-pipe tool (Kessner 
et al. 2013, Tilk et al. 2019). To this end, it will also be bene-
ficial to develop a proper file format for allele frequencies 
from Pool-seq, akin to the vcf for individual sequencing.
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